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A B S T R A C T

The unpredictable nature of epileptic seizures makes it challenging to detect and effectively treat this disorder.
The seizures are random, and most epileptic patients experience dangerous physical symptoms during an attack
that renders the patient uneasy when conducting their daily tasks. This paper focuses on the generalised type of
epilepsy, namely "Grand mal epilepsy Tonic-Clonic (GTC) seizure. The research aims to monitor symptoms of
epileptic disease behaviour signals in humans and prevent it at its early stage of illness. To achieve this objective,
we used the Electrocardiogram (ECG), Electromyography (EMG), accelerometer 3-axes for fall detection, and
Dallas sensor for body temperature signals monitoring for updating the IoT system. The fuzzy logic algorithm that
has been used to assess specified data set of diseased patients' parameters allows the classification into diverse
types of seizures such as heart rate, body temperature, muscles spasm and falls. These are used as inputs to obtain
the seizure type as an output which is then illustrated graphically on the dashboard of an IoT platform (Think-
Speak), where abnormal conditions have been used to notify the medical personnel by sending an SMS message
through "If This Then That” (IFTTT) technology. A prototype of an epileptic monitoring system has been suc-
cessfully built and tested. It has an average accuracy of 98.90%, 95.49%, 83.0%, and 87.21% for body temper-
ature, heart rate monitoring, muscle spasm, and fall detection.
1. Introduction

The fast improvement of Internet of things (IoT) innovation makes it
workable to associate different objects together through the Internet and
to give more information on Interoperability techniques for application
purposes [1]. More potential uses of IoT in data-intensive modern do-
mains, such as medical care services, are being investigated. With the
help of the Internet of Things and developments in sensor technology,
monitoring epilepsy patients has never been easier with IoT assistance
[2]. This paper aims to discuss monitoring epilepsy seizures and develop
a wearable sensor network for patient monitoring. The project is based
on an IoT monitoring system that integrates three monitoring units: an
ECG signal transmitter, a MyoWare muscles sensor (EMG), an acceler-
ometer sensor, a Dallas temperature sensor, and a microcontroller
(EsP32) as control modules.

2. Related work

Giulia Regalia et al. [3] Developed Wearable automated seizure
detection devices offer tremendous potential to enhance seizure
Hassan).
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management through continuous ambulatory monitoring, accurate
seizure detection, and notifications for fast action. Machine learning is
utilised in a bracelet with the accelerometer (ACC) and electrodermal
activity (EDA) sensors to automatically utilise recognised an event based
on symptoms of ongoing GTCS and send an alarm to a mobile app,
which prompts designated caregivers with a call and text via a
cloud-based system. The patient's GPS location can be sent to the
caregivers. The wearer can quickly silence the alert in the event of a
false alarm., Before the signal is delivered to caregivers, the user can
promptly silence it. Pranjal T. et al. [4] Proposed an approach for
epilepsy patients who utilise a sensor to assess temperature, patient fall,
handshaking, and sound. The patient's condition may be viewed on a
P.C. via IoT. The system was created to identify Atonic Seizure: This
type of Seizure results in a lack of muscular control, as seen by the
patient's temperature dropping. Myoclonic seizure, this type of seizure
involves jerking movements throughout the body. These changes are
most noticed in children and occur in the arms and legs. They have
shown jerking hands in this way. Tonic-clonic seizure, this type of
seizure results in a lack of bodily control and shaking. Only a few people
will be able to maintain control where the patient's fall has been
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Figure 1. Data conducted from Epileptic patients, (A) Age category, (B) Seizure type, (C) Time of blanking out.

Figure 2. The graphical statistic of epilepsy parameters (D) Recovering time after the attack, (E) Seizure level, and (F) Number of seizures in 2021.
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demonstrated. Simple Focal seizure: This type of seizure involves jerks
in any body area, and the patient shouts during the seizure. These
changes may be seen in the arms and legs regularly. They have shown
how to shake their hands and make sounds. Using sympathetically
mediated electrodermal activity (EDA) and accelerometry with a new
wrist-worn biosensor, an algorithm for automated identification of
generalised tonic-clonic (GTC) seizures was developed by Ming-Zher
Poh et al. [5].

3. Materials and method

3.1. Materials

3.1.1. ECG
Electrocardiography has added value to automatically detect seizures

in temporal lobe epilepsy (TLE) patients. The wired hospital system is
unsuitable for a long-term seizure detection system at home [6].

3.1.2. EMG
It is a technique for evaluating & recording the electrical activity

produced by skeletal muscles [7]. It is performed using an electromyo-
graph instrumentally to make a record called an electromyogramwhere a
resting muscle does not show recordable electrical potential. with an
increased force of contraction, the amplitude of potential increases, and
an EMG detects the electrical potential generated by muscle cells when
these cells are electrically or neurologically activated [8].
Figure 3. Categories of epilepsy symptoms in terms of the number of pa-
tients (G).
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3.1.3. Dallas temperature sensor
The DS18B20 is a small temperature sensor with a built-in 12bit ADC.

It can be easily connected to an Arduino digital input. The sensor over a
one-wire bus requires little in the way of additional components. The
sensor has a quoted accuracy of �0.5 �C in the range of -10 �C to þ85 �C
[9].

3.1.4. ESP32
This is a low-cost, low-power System on Chip (SoC). It consists of

integrated Wi-Fi and dual-mode Bluetooth. It has Tensilica Xtensa LX6
microprocessor. It was created and developed by Espressif Systems and
Manufactured by TSMC. It is the successor of ESP8266, created by the
same company. ESP32 can be used in the form of a module or NodeMCU
[10].

3.1.5. Accelerometer
The accelerometer sensor utilised as a part of the exhibited frame-

work is ADXL335. In this system, two accelerometers are utilised accel-
erometer one is utilised to identify the fall of the patients, and
accelerometer two is utilised for shaking the patients' hands. The accel-
erometers are orthogonal. It implies that ADXL335 reaction to both tilt
and increasing speed is physical information [10, 11].

3.2. Method

This work comes with ethical approval from the Kenya Association for
the Welfare of people with epilepsy (KAWE), and informed consent was
obtained from all patients for the experiments.
Figure 4. Blok diagram of epileptic monitoring system using fuzzy logic.



Figure 5. Flowchart of the algorithm system to monitor epileptic patient's.
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3.2.1. Field epilepsy study
A field survey was conducted with the Kenya Association for the

Welfare of people with epilepsy (KAWE) in three health clinics based in
Nairobi, Kenya, to determine the actual behaviour that can be monitored
through the system. One hundred eleven patients participated in the
questionnaire study, with 51% male and 49% female.

3.2.2. IoT system architecture
The NodMCU ESP32 reads data from the s ECG (heart rate), EMG

(Muscles spasm), as well as Acc (3-axes) for fall detection and Dallas
(body temperature). Then the data is converted from analogue to digital
format. A user Datagram Protocol (UDP) receives the data, and a Fuzzy
Logic Controller (FLC)makes a classification. The IoT architecture system
is illustrated in Figure 4.

The FL algorithm does a pre-analysis of data that will help the process
of decision making to detect seizure types in a specific range. In case of
seizure is detected, notification will be sent to the relatives and doctor
from the system to the mobile application; in case of emergency, the
caregivers are notified through IFTT notification to act accordingly. The
outputs data then being sent through HTTP protocol to the server Thing-
Speak IoT platform used for real-time data streaming and visualization
for Hospital monitoring. Figure 5 shows the flowchart of the algorithm
system to monitor epileptic patients:

We have in this paper the Dallas temperature sensor is a digital
temperature sensor with only one wire. This means only one data line
(and GND) is required to connect with the ESP32. It can be powered by an
external power supply or by drawing power directly from the data line
(known as "parasitic mode"), preventing an external power supply
requirement. This sensor allows us to monitor the patient's body tem-
perature with a power supply range of 3.0V–5.5V and an operating
Figure 6. ECG electrodeposition on the body patient [15].
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temperature range of -55 �C to þ125 �C, with an accuracy of �0.5 �C
(between -10 �C and 85 �C).

Three lead ECG transmitter (AD8232) is an integrated signal condi-
tioning block for ECG and other biopotential measurement applications
that measures heart rate. It's made to extract, amplify, and filter tiny
biopotential signals in noisy environments like those caused by mobility
or remote electrode placement [12].

The AD8232 module breaks out nine connections from the I.C. where
pins can be soldered, wires, or other connectors. SDN, LOþ, L.O.-,
OUTPUT, 3.3V, GND provide essential pins for operating this monitor
with the development board ESP32. Also offered on this board are R.A.
(Right Arm), L.A. (Left Arm), and R.L. (Right Leg) pins to attach and use
our custom sensors. Additionally, an LED indicator light will pulsate to
the rhythm of a heartbeat. Figure 6 illustrates the ECG electrodeposition
on the body patient [6].

EMG is a MyoWare board that measures a muscle's filtered and
rectified electrical activity. Depending on the level of activity in the
particular muscle, the output ranges from 0 to Vin Volts. The sensor is
simple to operate. When muscles are flexed, you must attach a few
electrodes and read the voltage [8].

We can attach biomedical sensor pads directly to the board because
the sensor has a wearable design. This board has a single-supply voltage
range of þ3.1V to þ5V, a RAW EMG output, polarity-protected power
pins, indication LEDs, and an on/Off switch. It also features a few shields
attached to the MyoWare Muscle Sensor to expand its adaptability, such
as cable, cower, and proto shield and functionality [7]. The position of
the EMG MyoWare electrode on the muscle is shown in Figure 7.

The ADXL335 is a small, thin, low-power, complete 3-axis acceler-
ometer with conditioned voltage outputs. The product measures accel-
eration with a minimum full-scale range of�3 g. It can measure the static
acceleration of gravity in tilt sensing applications and dynamic acceler-
ation resulting frommotion, shock, or vibration. This research selects the
accelerometer bandwidth using the CX, C.Y., and C.Z. capacitors at the
XOUT, YOUT, and ZOUT pins. Bandwidths were chosen to suit our sys-
tem, with a range of 0.5 Hz–1600 Hz for the X and Y axes and 0.5 Hz–550
Hz for the Z-axis [13]. We aim to detect the fall. Fall detecting can be
achieved by analysing accelerometer extradited data. The most common
method of detecting a fall is calculating the absolute sum of ACC signal
differences, as shown in Eq. (1).

Acc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAxÞ2 þ ðAyÞ2 þ ðAzÞ2

q
(1)

[13] The thresholding fall value is utilized to inform the user when a
fall is detected.



Figure 7. EMG Myoware electrodeposition on the muscle.

Table 1. The number of patients participated in the study.

Clinic Name No of Male No of Female Total

Karen Health Centre 9 15 24

Riruta Health Centre 18 14 32

Lions Health Clinic 30 25 55

A. The age categories of patients were 57% (From 21 to 50 years), 22% (from 10 to 20
years), and 11% (Above 50 years), then 10% (Under ten years). As it is illustrated in
Figure 1

B. GTC seizures affect 74% of individuals, with 16% developing Myoclonic attacks and
10% experiencing Absence seizures. As it is shown in Figure 1

C. 5% of patients blanked out for less than 1 min during the attack, 14% never blanked
out during the seizure, 15% of patients blanked out for 1–2 min during the attack,
then 22 % blanked out for more than 5 min, and 44 % blanked out between 3 to 5 min.
As it is illustrated in Figure 1

D. The recovery time after the attack is significant for the patients who have GTC seizures,
so we figure out that 37% of the patient take from 1 to 2 h and 33% of them take from 6
min to 1 h, and as a minimum and 2 h as maximum to be expected. As it is illustrated
in Figure 2

E. The seizure level was varied as 29% of the patients experienced a very severe seizure,
and 31% of them have usually experienced a severe episode, then 29% had mild
attacks, and 11% of the patients experienced very mild seizures. As it is illustrated in
Figure 2

F. The number of seizures is significant to know the repetitive rate of attack for each
particular patient; where we figure out that 38% of patients experience ten or more
during 2021, and most of them have GTC seizure type Figure 2 shows the graphical
statistic of epilepsy behaviours

G. Based on the study, 74% of the patients with GTC seizures have common symptoms and
behaviours came as follows, loss of consciousness that can cause falling of the body,
which the accelerometer sensor can detect, andmuscles spasm that can be detected by the
EMG sensor and increasing heart rate that will be detected by ECG sensor.

28% of the patients with GTC seizures have additional symptoms, such as the
increasing temperature that the Dallas temperature sensor will detect. As it is illustrated
in Figure 3.
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3.2.3. Fuzzy logic simulations
In this work, we consider the outputs data sensor, which represents

the patients' behaviours as an input for the fuzzy logic system using
MATLAB script command to identify the membership function of each
input. Fuzzy Input-Output Inference Mapping.

The Mamdani type inference is used in this paper fuzzy modelling,
prompting to replicate and express knowledge concerning the experience
of healthcare professionals.

Described as a series of IF-THEN rules:
Rj: IF x1 is Mj1(x1) AND . . . AND xn is Mjn(xn)

THEN 〈y is N〉, (2)
4

[14] The antecedent part, IF proposition, specifies the premise, while
the subsequent part, THEN proposition, relates to the conclusion; prop-
ositional language phrases define both, P¼ x is M. The number of rules is
represented by the j–the rule, j ¼ 1, 2,.., m. The elements xi and y
correspond to the i–the input and output about items inserted in discrete
classes (sets) known as the universe of discourse, xi Xi and y Y, also given
linguistic variables. The input vector, x ¼ [x1,..., xn]T, is related to the
premises, whereas the output vector, y, is related to the conclusion. The
language term "AND” is equivalent to the T–norm, t (x, y). The T–model is
conducted via minimal operation when employing the Mamdani fuzzy
system. The defuzzification procedure is carried out here by utilising the
area's centre. The components Mi Xi and N Y are both fuzzy sets with
linguistic words attached to them, splitting the respective discourse
universes.

In language terms, illustrating crisp values is "fuzzification.” In this
way, the fuzzifier correlates the crisp input values with particular levels,
and the fuzzifier can generate linguistic values for each input variable for
the inference engine. The setpoint of the fuzzifier is based on data that
includes two input variables: "ECG,” "TEMP,” and EMG and ACC.

The linguistic values map the importance of the fuzzy input variables
with the M.F. occupied in the regions. As we use four variables, four
linguistic values are demonstrated in the following Table2 (see Table 1).

4. Results and discussion

4.1. Part.1 MATLAB simulation results

We used a collection of IF-THEN rules to build the fuzzy logic rules
inference. The IF section of the rule is the antecedent, and the THEN part
is the consequent. Linguistic variables are used to create rules. These
variables take on fuzzy values expressed in words and modelled as fuzzy
subsets of a domain. The fuzzy logic system's final step is to convert the
fuzzy variables created by the fuzzy rules back into actual values, which
can then be utilized to perform the intended action. The fuzzy output is
finally mapped to crisp output using the membership function. Fuzzy
rules are a set of linguistic statements that describe how the FIS should
decide whether to classify anything, an input or controlling an output
fuzzy system rule generated by MATLAB, as shown in Table 3.

The MATLAB toolbox R2021b is used to create MATLAB simulations.
The following are MATLAB simulations for a seizure control system. All
other control systems' simulations are based on the same patterns. The
rule viewer editor displays fuzzy rules graphically to calculate the output.
Essentially, this is the complete approach to the fuzzy output method.
The rule viewer confirms the algorithm by perceiving the fuzzy rules for
the crisp value, assigning the values of inputs to the two input variables
(Heart rate ¼ 110, Temperature ¼ 26.2, and Muscles spasm ¼ 5.06 and



Table 2. Membership function input/output variables with fuzzy system: The X-axis shows the input variables such as heart rate, muscular spasm, body temperature,
and fall detection, and the output variable named seizure type, while the Y-axis represents the degrees of membership in the [0, 1] interval.

Inputs/Outputs Membership functions Graphical representation of M.F.

Heart Rate (ECG): The membership functions of
heart rate input come with five linguistic variables
which are very low (VL), low (L) and normal (N),
then high (H), very high (VH). defended as Heart
Rate ¼ μHR (h)

μHR VL (h) ¼ {max ((1,
20� h
20

),0)}

μHR L (f) ¼ {max ((
h� 20
20

;1;
70� h
10

), 0)}

μHR N (f) ¼ {max ((
h� 70
10

;1;
115� h

15
), 0)}

μHR H (f) ¼ {max ((
h� 115

15
;1;

150� h
10

), 0)}

μHR VH (f) ¼ {max ((
h� 150

10
;1), 0)}

Muscles spasms (EMG): The membership functions
of the muscles spasms (EMG) have four linguistic
variables: rest (R), start (S), end (E), and relax (r),
defended as Muscles spasms ¼ μMS (m)

μMS Rest (m) ¼ {max ((1,
2�m
0:5

),0)}

μMS Start (m) ¼ {max ((
m� 2
0:5

;1;
4�m
0:5

), 0)}

μMS End (m) ¼ {max ((
m� 4
0:5

;1;
6�m
0:5

), 0)}

μMS Relax (m) ¼ {max ((
m� 6
0:5

;1;
10�m
0:5

), 0)}

Fall detection (ACC): The membership functions of
the fall detection (Acc) contain three linguistic
variables: low, medium, high defended as Fall
detection ¼ μFd (f)

μFd Low (f) ¼ {max (1,
20� f
20

),0)}

μFd Medium (f) ¼ {max ((
f � 20
20

;1Þ, 0)}

μFd High (f) ¼ {max ((
f � 100

50
;1), 0)}

Body Temperature: The membership functions of
the body temperature (Dallas) have three linguistic
variables: low, normal, high defended as Body
Temperature ¼ μBT(b)

μBT Low(b) ¼ {max ((1,
35� b

5
),0)}

μBT Normal (b) ¼ {max ((
b� 35

5
;1;

60� b
5

), 0)}

μBT High(b) ¼ {max ((
b� 60

5
;1), 0)}

Muscles spasms (EMG): The membership functions
of the muscles spasms (EMG) have four linguistic
variables: rest (R), start (S), end (E), and relax (r)
defended as Muscles spasms ¼ μMS (m)

μST Clonic(s) ¼ {max ((1,
20� s

5
),0)}

μST Myoclonic (s) ¼ {max ((
s� 20

5
;1;

40� s
5

), 0)}

μST Tonic (s) ¼ {max ((
s� 40

5
;1;

60� s
5

), 0)}

μST Atonic (s) ¼ {max ((
s� 60

5
;1;

80� s
5

), 0)}

μST Absence (s) ¼ {max ((
s � 80

5
;1), 0)}
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Table 3. Fuzzy inference system rules.

RULES IF THEN OUTPUTS

Rule 1 If (ECG is H) or (EMG is Start), then (Seizure Type is Clonic)

Rule 2 If (Temperature is High) and (EMG is Start), then (Seizure Type is
Clonic)

Rule 3 If (ECG is N) and (EMG is Start), then (Seizure Type is Tonic)

Rule 4 If (ECG is H) and (EMG is Start) and (Accelerometer is Medium), then
(Seizure Type is Tonic)

Rule 5 If (ECG is H) and (Temperature is Low) and (EMG is Start), then
(Seizure Type is Tonic)

Rule 6 If (ECG is N) and (Temperature is Low) and (EMG is End) and
(Accelerometer is High), then (Seizure Type is Atonic)

Rule 7 If (ECG is N) and (Temperature is Low) and (EMG is Relax) and
(Accelerometer is High), then (Seizure Type is Atonic)

Rule 8 If (ECG is N) and (Accelerometer is High), then (Seizure Type is
Atonic)

Rule 9 If (Temperature is High) and (EMG is Start), then (Seizure Type is
Myoclonic)

Rule 10 If (ECG is N) and (Temperature is High) and (EMG is Start), then
(Seizure Type is Myoclonic)

Rule 11 If (ECG is N) and (Temperature is High) and (EMG is Rest) and
(Accelerometer is Medium), then (Seizure Type is Absence)

Rule 12 If (Temperature is High) then (Seizure Type is Absence)

Figure 8. Rule Viewer of Seizure type classification System.

Figure 10. Rule Viewer of Seizure type classification System.
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fall ¼ 90), and using Si * Ri/Ri to determine and produce crisp values for
the output variable (Seizure type ¼ 30.7) as it is shown in Figure 8.

Reaching a computed result in bloated logic and acceptable fuzzy
groups and comparing the degree of membership requires a defuzzifi-
cation method. The approach generates a new set from a fuzzy set, which
is also needed by fuzzy control systems. De-Fuzzifiers are classified into
numerous categories. In the proposed model, a centroid type of De-
Fuzzifier is applied. The illustrations represent the graphical explana-
tion of the De-Fuzzifier. The De-Fuzzifier visual explanation of FIS is
shown in Figure 9.

Figure 9 (a): Shows a 3D depiction of the suggested system's ruled
surface related to heart rate and temperature, with a yellow hue
Figure 9. Rule surface of the proposed system based on (a) heart rate and
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indicating that the results of the presented approach are positive. If the
temperature is between 34.2 �C and 36.8 �C and the heart rate is over 75.
When the temperature is between 33 �C and 35 �C, the heart rate is be-
tween 0 and 75, and 150 to 200, it provides average results. It has a
bluish tinge and generates horrible effects. If the temperature is less than
35.2 �C and the heart rate is between 125 and 150 beats per minute. At
the same time, the remainder of the surface area is close to normal.

Figure 9 (b): displays a 3D rendering of the proposed system's ruled
surface about heart rate and muscular spasm. The outcomes of the pro-
posed method are acceptable, with a yellow colour. Suppose the heart
rate range between 70 to105 and the muscles spasm lies between 4.7
to10 and 0 to 2.5. It produces average results when the heart rate range
between 0 to 55, 125 to 150 and 150 to 200, and themuscles spasm range
between 2.2 to 4.2, 0 to 10 and 2.2 to 4.2, respectively. It produces awful
effects with a blue tint if the temperature is under 35.2 �C and the heart
rate lies between 125 to 150. At the same time, the rest of the surface area
is near the average results.

Figure 9 (c): Shows a 3D illustration of the presented system's ruled
surface as a heart rate and fall function. It should be mentioned that the
suggested systems. The findings are promising if the heart rate is between
66 and 114.5 and falls lie between 50 to 180. Consider that the outcomes
will be average if the Heart rate lies between 114.5 and 129 and the Fall
range between 60 to 180. It will provide poor results if the heart rate is
between 114.5 and 166 and the fall lies between 0 to 180.

The seizure type remains constant when the muscles spasm and fall
value increases in most of the ranges of membership functions. However,
the seizure type does not remain stable when the heart rate and tem-
perature and fall values increase in all the fields of membership func-
tions, as shown in Figure 10.

The type of seizure changes directly with the difference in the heart
rate value and temperature with neglecting muscles spasm values which
mean some types of seizure can happen without muscles spasm symp-
toms, as shown in Figure 11.

Following the prediction layer, the output is sent to the performance
layer, where it is checked for accuracy and miss rate, so if the results are
not satisfactory to the learning condition, it is rejected, then the predic-
tion layer is updated; if Yes, the value is communicated to the IoT
temperature, (b)heart rate and muscles spasm, (c)heart rate and fall.



Figure 11. Rule surface of the proposed system based on (d) Temperature and Muscles spasm, (e)Temperature and Fall.

Figure 12. Final prototype of IoT based monitoring system for
epileptic patients.
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platform database. The system then proceeds to the validation step,
where a Fuzzy-based smart epilepsy classifier is loaded, and the type of
seizure is determined. The device will display a message notifying the
user of the kind of seizure that has been diagnosed.

4.2. Comparison with other methods

Alternative researchers have proposed numerous other approaches
for identifying epileptic episodes, the majority of which used EEG-based
techniques to detect seizures by implementing classifications of EEG
signal analysis in the second step of the process [15], the most widely
used classifiers being SVN [16, 17, 18], KNN [19], Neural networks [20,
21], Decision trees [22], and Naive Bayes [14].
Figure 13. Final Test of IoT based monitoring system for epileptic patients.
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The loss of some information throughout the classification process
added to the uncertainty of data generated after the pre-processing phase
and used as input for the classification stage. This uncertainty should be
recognised and included in signal classification algorithms and proced-
ures. The EEG-based strategies concentrate on brain activity where many
variables contribute to uncertainty. In contrast, this research work fo-
cuses on the patients' symptoms that can be observed and remotely
monitored through a group of sensors. Then the signals will be classified
by fuzzy logic technique to deal with the uncertainty and help the doctor
diagnose. The classification performance was evaluated using statistical
metrics such as accuracy (Acu), sensitivity (Sen), and specificity (Spe),
which were derived as follows:

Sen ¼ Tp

Tp þ FN
(3)

Spe ¼ Tp

Fp þ FN
(4)

Acu ¼Tp þ TN

Pþ N
(5)

[23] where TP ¼ True Positive, FN ¼ False Negative, TN ¼ True Nega-
tive, FP ¼ False Positive.
4.3. Part.2 electronic system results

After integrating the fuzzy logic algorithm and connecting the device
to a human body Figure 12, we visualize graphically sensor data of body
temperature, heart rate, muscles signal, and body balance on the Thing-
Speak dashboard IoT platform shown in Figure 12.

The final prototype includes information on the epileptic patient's
heart rate, temperature, muscle spasms, and the patient fall and alarm
notification (Figure 13). The end product displays prototype architecture
and reports, which can be recorded on the Thing-Speak platform as
shown in Figure 14 and Figure 15.

Notification: In case of seizure accrue, a message will be sent through
IFTTT to the phone number of the caregivers. Figure 16 shows the
notification process.

5. Conclusion

A fuzzy inference system was applied as the fuzzy classifier for
epileptic seizure detection. Its application enables the accurate classifi-
cation of epileptic seizures. Compared to previous research, FIS is
particularly successful in detecting epileptic seizures. Furthermore, the
prototype of an epileptic monitoring system has been successfully built.
Unlike a traditional healthcare device, the created IoT-based system can
visualize data graphically and send out notification requests when a
patient has a seizure. The system's operation was confirmed in the test,
with an average accuracy of 98.90%, 95.49%, and 83.0%,87.21% for
body temperature and heart rate monitoring and muscle signal, fall



Figure 14. Graphical waveform of the sensors ECG, EMG, and Dallas temp on IoT platform, (A)Temperature, (B)Heart rate, (C) Muscles signal.

Figure 15. Graphical waveform of the sensor ACC on IoT platform, (D)ACC-Y, (E)ACC-Z, (F)ACC-X.

Figure 16. Seizure notification through IFTTT.
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detection, respectively. With this system, doctors may give quick assis-
tance. Still, they can also monitor the patient's condition through an IoT
platform that updates the data case every 15 s. Patients can be monitored
and tracked through any computer or smartphone Android/iOS in com-
plete freedom with easy tools such as IFTTT services or the Blynk
application. We can also know the variation of seizure time for each
person. The approaches described in this research for further develop-
ment and clustering analysis can be used in any condition where recog-
nized symptoms per patient can be customized and classified. However,
to fully utilize this approach, the proposal of the Fuzzy inference system
merging with the IoT systems framework (FISIoT) can be especially
applied to patients who have symptoms that can be monitored with
multiple IoT sensor-based gadgets and personalized further by wearing
the device on different physical positions. The suggested FISIoT frame-
work can manage different categories of patients in the future.

6. Recommendations

This model prototype of an IoT-based monitoring system fabricated
using various sensors to be used for epilepsy seizure detection; however,
it requires additional testing in real-world scenarios as well as a tiny
8

wireless sensor to be worn on a shirt to be comfortable and accurate in
monitoring epilepsy seizures and detecting false alarms. These sensors
can be fully realized considering, for example, BMD101 Micro Wireless
ECG, EDA to detect electrodermal activities, and wearable nano EMG
sensor. These sensors can control andmonitor all the random occurrences
with the help of a fuzzy logic system. The GPS can track the subject's
position (Global Positioning System). This system has an ARM 7 LPC2138
processor, an R.F. modem, an accelerometer sensor, a sound detection
sensor, and a temperature sensor. The parameters are displayed on a P.C.
and sent to Thing-speak using Visual Basics.
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