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1 Introduction

In this chapter, We give terminologies, notations and definitions that will be used through-
out the project and also some brief historical backgrounds of some normal and non-
normal operators.

1.1 Notations, Terminologies and Definitions

Notations

H : Hilbert space over C
B(H): Banach algebra of bounded operators

T ∗: the adjoint of an operator T

‖T x‖: the operator norm of T

‖x‖: the norm of a vector x

σ(T ): the spectrum of an operator T

π0(T ) : point spectrum of an operator T

Ran(T ) : the range of an operator T

Ker(T ):the kernel of an operator T

M⊕M⊥: the direct sum of the Subspaces M and M⊥ of H .
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Terminologies and Notations

Throughout this paper, H or K will denote a complex Hilbert space and B(H) will denote
the Banach algebra of bounded linear operators on H
We denote the kernel and range of an operator T by Ker(T ) and Ran (T ) respectively.
M and M⊥ stands for the closure and orthogonal complement of of a closed subspace M
of H .
We denote by σ(T ),π0(T ),‖T‖ and W (T ) the spectrum, point spectrum, norm and nu-
merical range of T ∈ B(H) respectively.
We write w(T ) for the Weyle spectrum of T and w(T ) for the closure of w(T ).
We denote the essential numerical range of T by We(T ) and the set of all isolated points
of the spectral of T that are eigenvalues of finite multiplicity by σ00(T ).
Let M be a closed subspace of H and T ∈ B(H) be an operator. We denote the restriction
of T to M by T |M.
Definition 1.1.1 An inner product space is a vector space E together with a map< . >:
E×E→ F such that
(i) < λx+µy,z >= λ < x,z >+µ < y,z >
(ii)< x,y >=< y,x >
(iii) < x,x >≥ 0,< x,x >= 0 if and only if x = 0∀x,y,z ∈ E and λ ∈ F.
Definition 1.1.2 let X be a vector space and ‖.‖ : X → R · · ·∗ be a real valued function.
Then the function ∗ is called a norm if it satisfies the following.
(i) ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0
(ii)‖λx‖= |λ |‖X‖∀x ∈ X ,λ ∈ R
(iii) ‖x+ y‖ ≤ ‖x‖‖y‖∀x,y ∈ X .
The pair (X ,‖x‖) is called a normed space.
Proposition 1.1.3(Cauchy-Schwarz’s inequality)
For any two elements x,y in an inner product space X,
|< x,y >| ≤ ‖x‖‖y‖.
Definition 1.1.4 An operator T ∈ B(H) is said to be normal if it commutes with its ad-
joint(i.e, T ∗T = T T ∗, equivalently, T ∗T −T T ∗ = 0)
Preposition 1.1.5 Let T be an operator on a Hilbert Space H . The following assertions
are equivalent
(i) T is normal
(ii) ‖T ∗x‖= ‖T x‖ for any x ∈ H
(iii) T n is normal for any integer ,n≥ 1
(iv) ‖T ∗nx‖2 = ‖T nx‖2.
Remark 1.1.6 By relaxing some conditions of normality of operators, we obtain non nor-
mal operators. The results below we check some of these nonnormal operators.
definition 1.1.7 An operator T ∈ B(H) is said to be quasinormal if T (T ∗T ) = (T ∗T )T
i.e(T ∗T −T T ∗)T = 0.
Proposition 1.1.8 A unilateral and bilateral shi� operators are quasinormal operators.
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Definition 1.1.9 An operator T ∈ B(H) is said to be subnormal if it has a normal exten-
sion.
Proposition 1.1.10 Every Subnormal operator T ∈ B(H) on a finite dimensional Hilbert
Space is normal.
Definition 1.1.11 An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ T T ∗.
Proposition 1.1.12 An operator T ∈ B(H) is hyponormal if and only if ‖T ∗x‖ ≤ ‖T x‖.
Proof
=⇒ If T is hyponormal, then T T ∗ ≤ T ∗T if and only if

< T T ∗x,x >≤< T ∗T x,x > i.e < T ∗x,T ∗x >≤< T x,T x >

that is ‖T ∗x‖2 ≤ ‖T x‖2 which implies
‖T ∗x‖ ≤ ‖T x‖.
Definition 1.1.13 An operator T ∈ B(H) is said to be hyponormal if its adjoint T ∗ is
hyponormal.
That is, T T ∗ ≥ T ∗T .
Proposition 1.1.14. An Operator T ∈ B(H) is normal if and only if it is both hyponormal
and cohyponormal.
Definition 1.1.15. An operator T ∈ B(H) is semi-normal if it is either hyponormal or
cohyponormal.
Definition 1.1.16 An operator T ∈ B(H) is said to be paranormal if

∥∥T 2x
∥∥≥ ‖T x‖2 for

every x ∈ H .
Definition 1.1.17 An operator T is called normaloid if

‖T‖= sup
‖x‖
|< T x,x > |

.
Definition 1.1.18 An operator T is called convexoid if the closure of the numerical range
equals the convex hull of the spectrum of T .
That is

W (T ) = {< T x,x >: ‖x‖= 1}= σ(T )

.
Definition 1.1.19. An operator T ∈ B(H) is n-normal if T nT ∗ = T ∗T n.
Remark 1.1.20. The class of all n-normal operators is denoted by [nN].
Definition 1.1.21. An operator T ∈ B(H) is said to be binormal if T ∗T commutes with
T T ∗.
Definition 1.1.22. An operator T is said to be w-hyponormal if |∆(T )| ≥ |T | ≥ |∆∗(T )|.
Definition 1.1.23. An operator T ∈ B(H) is said to be spectraloid if W (T ) = r(T ).
Definition 1.1.24. An operator T ∈ B(H) is said to be a scalar if it is a scalar multiple of
the identity operator (i.e T = αI,α ∈ C).
Definition 1.1.25 An operator T is said to be an isloid if any isolated point of δ (T ) is an
eigenvalue of T .
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Definition 1.1.26 An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥ (T T ∗)p.
Definition 1.1.27.An operator T ∈ L(H) is posinormal if there exists a positive operator
P ∈ B(H) such that T T ∗ = T ∗PT .
Definition 1.1.28 An operator T ∈ L(H) is coposinormal if T ∗ is posinormal.
Remark 1.1.29. Every hyponormal operator is posinormal but the converse is not gen-
erally true.
Proposition1.1.30 Let T be a posinormal operator. Then T is hyponormal if and only if
KerT = KerT ∗.
Definition 1.1.31. An operator T ∈ B(H) is said to be log-hyponormal if T is invertible
and log T ∗T ≥ logT T ∗.
Definition 1.2.32 An operator T ∈ L(H) is said to be p-posinormal if (T T ∗)P≤α(T ∗T )p

for some α > 1 and P > 0.
Definition 1.1.33. An operator T ∈ B(H) is said to be semi-hyponormal if (T ∗T )

1
2 ≥

(T T ∗)
1
2 .

Definition1.1.34. An operator T ∈ L(H) is said to be polaroid if every isolated point of
the spectrum of T is a pole of the resolvent of T .
Definition 1.1.35. An operator is said to be an adjoint of an operator T if there exists a
unique operator T ∗ ∈ B(K,H) such that < T x,y >=< x,T ∗y > ∀x ∈ H,y ∈ (K). In this
case,T ∗ is called the adjoint of T .
Theorem 1.1.36. For S,T ∈ B(H,K), the following holds
(i) αS+T )∗ = ᾱS∗+T ∗

(ii)(s∗)∗ = S
(iii(ST )∗ = T ∗S∗

(iv) I∗ = I,where I is the identity operator in H
(v) ‖T ∗x‖= ‖T‖2 hence ‖T ∗‖= ‖T‖.
Definition 1.1.37. An operator T ∈ B(H) is said to be Hermitian (or self-adjoint ) if
T = T ∗.
Remark 1.1.38 Every Hermitian Operator is normal.
Definition 1.1.39. An operator P ∈ B(H) is said to be idempotent if P2 = P.
Definition 1.1.40. An operator P∈ B(H) is said to be a projection if P is idempotent and
Ker(P) = Ran(P)⊥.
Theorem 1.1.41. Let P∈ B(H) be an idempotent operator. Then the following properties
are equivalent
(i) P is a projection
(ii) P is the orthogonal projection of H onto Ran P
(iii) ‖P‖= 1
(iv) P is Hermitian
(v) P is normal
(vi) P is positive
Definition 1.1.42 An operator U ∈ B(H) is said to be an isometry if ‖Ux‖= ‖x‖∀x ∈H .
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Theorem 1.1.43 For an operator U ∈ B(H), the following are equivalent.
(i) U is an isometry
(ii) U∗U = I,the identity in H
(iii) <Ux,Uy >=< x,y > ∀x,y ∈ H
Proof
(i) =⇒ (ii)
∀x ∈ H,< (U∗U− IH)x,x >= ‖Ux‖2−‖x‖= 0
Thus U∗U− IH = 0
which implies U∗U = IH

(ii) =⇒ (iii)
<Ux,Uy >=<U∗Ux,y >=< x,y >
(iii) =⇒ (i)
‖Ux‖2 =<Ux,Ux >=< x,x >= ‖x‖2

Definition 1.1.44 An operator U ∈ B(H,K) is said to be a partial isometry if it satisfies
the following conditions.
(i) U =UU∗U
(ii) P =U∗U is a projection
(iii) U |Ker⊥U is an isometry.
Definition 1.1.45. An operator T ∈ B(H) is said to be co-isometry if T T ∗ = I (that is ,T
is a co-Isometry if T ∗ is an Isometry).
Definition 1.1.46. An operator U ∈ B(H) is called unitary if T ∗T = T T ∗ = I.
Remark 1.1.47. An operator U ∈ B(H,K) is unitary if and only if U is both an isometry
and co-isometry.
Remark 1.1.48. A unitary operator is normal.
definition 1.1.49. An operator T ∈ B(H) is said to be an essential isometry if T ∗T − I is
compact.
Definition 1.1.50. An operator T ∈ B(H) is said to be an essential co-isometry if T T ∗− I
is compact.
definition 1.1.51. An operator t ∈ B(H) is said to be positive if ∀x,y ∈ H,< T x,y >≥ 0
and T is Hermitian.
Remark 1.1.52. Every projection operator is positive
Definition 1.1.53 An operator T ∈ B(H,K) is invertible if there exists an operator S ∈
B(K,H) such that ST = I and T S = I.
Remark 1.1.54 An invertible operator is denoted by T−1.
Proposition 1.1.55. For S and T invertible operators, then the following equality holds
true.
(T S)−1 = S−1T−1

Proof

(T S)(S−1T−1) = T (SS−1)T−1 = T IT−1 = T T−1 = I
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and

(S−1T−1)(T S) = S−1(T−1T )S = S−1IS = S−1S = I

Remark 1.1.56 A unitary operator is invertible.
Definition 1.1.57An operator T ∈B(H) is said to compact if for every bounded sequence,{xn}
in H , the sequence {T xn} has a subsequence which converges in H .
Definition 1.1.58 An operator T ∈ B(H,K) is said to be a Hilbert-Schmidt operator if it
satisfies the following conditions.
(i) ∑n ‖Ten‖2 < ∞ for some orthonormal basis {en} of H
(ii)∑m ‖T ∗ fm‖2 < ∞ for some orthonormal basis { fm} in K
(iii) ∑n ‖Ten‖2 < ∞ for all orthonormal basis {en} of H.
Definition 1.1.59. An operator T ∈ B(H) is called Fredholm if there exists an operator
S such that the operators ST − I and T SI are compact
Remark 1.1.60 Let T be a Fredholm operator. The index of T denoted by IndT is defined
by
IndT = dimKerT −dimKerT ∗.
Remark 1.1.61 If T and S are Fredholm operators, then T S is a Fredholm operator and
IndT S = IndT + IndS.
Definition 1.1.62 An operator S on H is called (Unilateral)shi� operator if Sen = en +

1,n = 1,2 · · · for some orthonormal basis {en} of H .
definition 1.1.63 An operator T ∈ B(H) is called anti-adjoint (equivalently skew Hermi-
tian ) if T ∗ =−T .
Definition 1.1.64 An operator T ∈ B(H) is called a semi-shi� operator if
(i) T is an Isometry
(ii) ∩∞

i=1RanT = 0.
definition 1.1.65. An operator T is said to be Backward shi� if it satisfies the following
conditions
(i) dim (kerT ) = I.
(ii) The Induced operator T̂ : x/kerT → X defined by T̂ (x+KerT ) = T x is an isometry.
(iii) ∪n=1∞KerT n is dense in X
Definition 1.1.66 An operator T ∈ B(H) is called a le� shi� operator if T x = y where
x = (x1,x2 · · ·) and y = (x2,x3 · · ·) ∈ l2.
Definition 1.1.67. An operator T ∈ B(H) is called a right shi� operator if T (x1,x2, · · ·) =
(0,x1,x2, · · ·) ∈ l2.
Definition 1.1.68 An operator V for a function f ∈ l2[0,1] and a value t ∈ [0,1] defined
by V( f )(t) =

∫ t
0 f (s)ds is called a volterra operator.

Remark 1.1.69 V is bounded. We note that V is a Hilbert-Schmidt operator and hence
in particular compact.
Definition 1.1.70. The rank of an operator T ∈ L(H,K) is the dimension of range of T .
1.1.71 An operator T ∈ L(H) is a finite rank operator if Ran(T) is finite dimension.
Remark 1.1.72 A finite rank operator need not be bounded.
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Proposition 1.1.73 If an Operator T is bounded, linear and has a finite rank, then T is
compact.
Remark 1.1.74. Every T ∈ B(H) finite rank operator is compact.
Definition 1.1.75. Suppose 1 ≤ P ≤ ∞, the Hardy space H p is defined by H p = { f ∈
Lp(T )| f̂ (n) = 0,n < 0}.
Remark 1.1.76 H2 endowed with the l2-scalar product is a Hilbert space with an or-
thonormal basis.
Definition 1.1.77An operator Tα is said to be Toeplitz if Tα : H2→H2, f →P(α f )where
p is the projection of l2 ontoH2 and α ∈ l∞(T ).
Remark 1.1.78. A Toeplitz operator is self adjoint
Definition 1.1.79 An operator T ∈ B(H) is said to be involutive if if T 2 = I.
Definition 1.1.80 An operator T ∈ B(H) is said to be a contraction if ‖T‖ ≤ 1.
Definition 1.1.81. An operatot T ∈ B(H) is called diagonalisable if there exists an or-
thonormal basis {en} for H consisting of eigenvectors of T .
Remark 1.1.82 Any unitary operator on a finite dimensional complex Hilbert Space is
diagonalisable.
Definition 1.1.83 An operator T ∈ B(H) is called a numeroid if W (T ) is a spectral set
for T .
Definition 1.1.84 An operator T ∈ B(H) is said to be co-subnormal if its adjoint is sub-
normal.
Definition 1.1.85An operator T ∈ B(H) is called co-paranormal if its adjoint is paranor-
mal.
Definition 1.1.86Operator radius of an operator T ∈B(H) is defined by wp(T ) = inf{U :
U > 0,U−1T ∈Cp},0 < p < ∞.
Definition 1.1.87 An operator T ∈ B(H) is said to be of class Cp(p≥ 0) if there exists a
unitary operator U on B ∈ B(K) such that T nx = p pUnx for n = 1,2 · · · ,x ∈ H .
Definition 1.1.88 An operator T ∈ B(H) is called p− oid if W (T K) = (W (T ))k,k =

1,2, · · · .
Remark 1.1.891− oid and 2− oid operators are normaloids and spectraloid operators
respectively.
Definition 1.1.90 An operator T ∈ B(H) is called a p-convexoid if W (T ) = conv.σ(T ).
Definition 1.1.91 An operator T ∈ B(H) is said to be reduction-p if the restriction of T
to every invariant subspace of T has property p.
Definition 1.1.92 The Aluthge transformation of an operator T ∈ B(H) (denoted by T̃ )
is defined as
T̃ = |T | 12U |T | 12 for a unitary operator U.

Definition 1.1.93 An operator T ∈ B(H) is called n-power quasinormal if T nT ∗T =

T ∗T T n = T ∗T n+1.
Remark 1.1.94 The class of n-power quasinormal operators is denoted by [nQN].
Remark 1.1.95 When n = 1, an n-power quasinormal operator is quasinormal
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Definition 1.1.96 An operator T ∈ B(H) is called m-partial isometry if it satisfies

T Bm(T ) = T ∑
m
k=0

m

k

(−1)kT ∗m−kT m−k = 0

where Bm(T ) is obtained from the binomial expansion of Bm(T ) = (T ∗T − I)m.
Remark 1.1.97 When m = 1, T is called partial isometry
Definition 1.1.98 An operator T ∈ B(H) is called dominant if Ran(A−λ I) ⊆ Ran(A−
λ I)∗∀λC.
Definition 1.1.99 An operator T ∈ B(H) is called Browder if T is Fredholm and T −λ I
is invertible for su�iciently small λ 6= 0 ∈ C.
Definition 1.1.100 The essential spectrum of T (denoted by σe(T )) is defined by
σe(T ) = {λ ∈ C : T −λ I is not Fredholm}.
1.1.101 The Browder spectrum (denoted by σb(T )) of T is defined by
σb(T ) = {λ ∈ C : T −λ I is not Browder}.
Definition 1.1.102 An operator T ∈ B(H) is said to be resuloid if T −λ I is regular for
each λ ∈ Isoσ(T ).
Definition 1.1.103 An operator T ∈ B(H) is said to be closoid if Ran(T −λ I) is closed
for each λ ∈ Isoσ(T ).
Definition 1.1.104 An operator T ∈ B(H) is called (α,β )−normal(0≤ α ≤ 1≤ β ) if
α2T ∗T ≤ T T ∗ ≤ β 2T ∗T .
Definition 1.1.105 An operator T ∈ B(H) is said to be m-hyponormal if there exists a
positive number m such that
m2(T −λ I)∗(T −λ I)− (T −λ I)(T −λ I)∗ ≤ 0∀λ ∈ C.
Definition 1.1.106 An operator T ∈ B(H) is said to be quasi-invertible if T has zero ker-
nel and dense range.
Definition 1.1.107 An operator T ∈ B(H) is called transloid if aT + bI is normaloid
∀a,b ∈ C.
Remark 1.1.108 Every Transloid is convexoid
Definition 1.1.109 An operator T ∈ B(H) is said to be a class yα operator(for α ≥ 0) if
there exists a positive number kαsuch that
|T T ∗−T ∗T |α ≤ K2

α(T −α)∗(T −α)∀λ ∈ C.
Remark 1.1.110 A class y operator id m-hyponormal.
Definition 1.1.111 An operator N is called Julia operator (denoted by J(N)) if

J(N) =

(1−NN∗)
1
2 N

−N∗ (1−N∗N)
1
2


. Definition 1.1.112An operator T ∈B(H) is called p-quasihyponormal if T ∗ ((T ∗T )p− (T T ∗)p)T ≥
0 for p≥ 0.
Remark 1.1.113 If p = 1, Then T is quasihyponormal
If p = 1

2 ,then T is semi-quasihyponormal.
Definition 1.1.114 An operator A is said to be p−w−hyponormal operator if ˜|A|p ≥
|A|p ≥ ˜|A∗|p.

8



Definition 1.1.115 Let A,B ∈ B(H) be operators. We define the generalized deriva-
tion(denoted by δA,B(X)) induced by A and B as
δA,B(X) = AX−XB∀X ∈ B(H).
Remark 1.1.116 The class of Hilbert-Schmidt operators is denoted by C2(H).
Remark 1.1.117 C2(H) is a Hilbert space .The Hilbert-Schmidt norm of X ∈ C2(H) is
given by ‖x‖2 =< X ,X >

1
2

Definition 1.1.118An operator A is said to be (p,k)−quasiposinormal if A∗k
(
C2(A∗A)p− (AA∗)p)Ak≥

0 for some positive integer 0 < p≤ 1, some C > 0 and a positive integer k.
Definition 1.1.119 Two operators A,B ∈ B(H,K) are said to be similar if there exists an
invertible operator N ∈ B(H,K) such that NA = BN.
Definition 1.1.120 Two operators A,B ∈ B(H,K) are said to be unitarily equivalent if
there exists a positive unitary operator U ∈ B(H,K) such that UA = BU .
Definition 1.1.121 A subspace M⊆H is said to be invariant under T ∈ B(H) if T M⊆M.
Definition 1.1.122 A subspace M ⊆ H is said to be a reducing subspace of T ∈ B(H) if
it is invariant under both T and T ∗.

1.2 Normal and Non-normal operators

Normal operators

The study of normal operators has been very successful in the sense that a lot of inter-
esting results have been obtained concerning these operators.
One of the main results of these operators is the classical Fuglede-Putnam theorem that
we will discuss in detail in this research paper and the spectral theorem that only holds
for normal operators.
Many authors have defined new classes of operators by making them satisfy certain
known properties of normal operators in the hope that some of the results which holds
for normal operators will also hold for these new classes of operators. This has led to a
new area of research on non-normal operators which are as a result of relaxing normality
of normal operators.

It is well known that given two normal operators A,B ∈ B(H),A+ B, and AB are not
normal in general. For example, consider the operators

A =

2 1

1 1


and

B =

0 1

1 0
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A simple computation shows that A and B are normal but AB is not.

The question on characterizing those pairs of normal operators for which their products
are normal was studied for finite dimensional spaces by Gantmaher and Krein[20] in
1930 and Weigmann[63] for compact operators. However, it is important to point that
normality of AB does not always imply normality of BA.
In 1953, Kaplansky[27] showed that under the compactness assumptions, the normality
of AB and BA are equivalent. Later on, Ki�aneh considered this question in [31] and
showed that it is su�icient to assume that A and B∗ be hyponormal and that AB be com-
pact in order to conclude that BA is normal.
Gheondea proved the Gantmaher-Krein-Weigmann theorem in [21].
On the normality of any pair of normal operators, it is well known that if each of two
normal operators commute with the adjoint of each other, then their sum is normal and
so is their product. That is, if A and B are normal operators such that A commute with
B∗, then A+B is normal and so is AB.
Yadav and Ramanujan[66] proved that if the real part of each of two normal operators
commutes with the imaginary part of the other, then their sum is normal. Mortad also
showed in [40] that for two bounded operators A,B ∈ B(H), A+B is normal if AB and
AB∗ are normal such that A is positive.
In 1970, Embry[15] introduced the concept of similarities of normal operators by stating
that:
if S and T are two commuting normal operators and AS = TA, where 0 /∈ W (A) for
A ∈ B(H), then S = T .
Mortad [41] generalized Embry’s theorem by imposing a self-adjointeness condition on
A and dropping the commutativity of S and T and came up with the following result.
Let A be bounded self-adjoint operator such that 0 /∈W (A). If S and T are bounded nor-
mal operators such that AS = TA, then S = T .
Apart from the operations of normal operators, other authors have given more proper-
ties of normal operator. For instance, Putnam[48]has given su�icient condition that a
square root of a norma operator is normal. Stampfli[58] also showed a result that an
nth root of of an invertible normal operator is similar to a normal operator. Radjavi and
Rosenthal[51] gave a clear representation of all square roots of normal operators.
We also note that if T is normal, then any polynomial of T is normal but the converse is
not true in general. Ki�aneh[32] has shown that if T n is normal foe some n > 1, then T
is quasi-similar to a direct sum of a normal operator and a compact operator. The author
also showed that if P(T ) is normal for some nonzero polynomial P and T is essentially
normal, then T can be wri�en as a sum of a normal operator and a compact operator.
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Thus, the class of normal operators has given birth to various areas of research and many
authors today are still trying to relax their normalities to obtain new classes of operators
that satisfies some results are only satisfied by normal operators.

Non-normal operators

One of the main results of normal operators is the class of non-normal operators which
is achieved by relaxing some normality conditions of normal operators. This class has
led to a wide area of research notably the Fuglede-Putnam theorem where many authors
have come up with various classes of non-normal which under some conditions, satisfy
the Fuglede-Putnam theorem.
As we have seen from section 1.1, there are many classes of non-normal operators and
many more are still introduced even today and each of these operators has their own
properties which makes them unique from the others. We shall see some of these prop-
erties in section 2.
One of the main classes of these operators is the class of subnormal operators. This class
was introduced by Hamos in [23] who later defined the concept of hyponormal operators
in 1950 by bringing the definition T ∗T ≤ T T ∗. By considering the case where T T ∗≤ T ∗T ,
the class of cohyponormal was thus introduced. This enabled Brown[?] to introduce and
study the class of quasinormal operators. As we shall show later on, it was proved that
every quasinormal operator is subnormal.
The class of posinormal operators (or positive normal operators) was introduced by Rhaly
in [52] and further studied in [24] where the authors studied more properties of this class
and showed that Weyl’s theorem holds for some totally posinormal operators.
Jibril[26] introduced the class of n-power normal operators and proved that an operator
T ∈ L(H) is n-power normal if and only if ‖T nx‖= ‖(T n)∗x‖ for all x ∈ H and also gave
some properties of n-power operators. Alzuraiqi and Patel studied further properties in
of this class in [5]. As seen in subsection 1.1, this class is denoted by [nN] for all positive
intergers n.
Ahmed [1] continued the work of Jibril by introducing the class of n-power quasinor-
mal operators and showed some relations between n-normal and quasi-normal operators.
These relations will be investigated in section 2. This class is denoted by [nQN].

1.3 Historical development of Hilbert Spaces

Functional analysis is a very important branch of mathematics that has found numerous
applications both in mathematics world and other fields such as engineering and com-
puter science among many others .
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One of the cornerstones of Functional analysis is the notion of a Hilbert Space.
Hilbert Space emerged from the German mathematician David Hilbert’s(1862-1943) ef-
forts to generalize the concept of Euclidean Space to an infinite dimensional space.
He formulated the theory of square summable spacel2.

However, it would be interesting to note that although Hilbert is considered to be the
father of Hilbert Spaces, it was not until years later that von Neumann (1903-1957) gave
the definition of a Hilbert space in 1927.
In his work, Neumann formulated an axiomatic theory of Hilbert Space and developed
the modern theory of operators in Hilbert spaces .
Although these two great mathematicians contributed highly to the growth and devel-
opment of Hilbert spaces, we note that other mathematicians contributed a lot to this
development
The notion of a ’Space’ was introduced by Riemann in his work in 1856 and was also the
one who conceived the idea of a closed subspace of a Hilbert space(manifold).
Between 1844 and 1862, Herman Grassman(1809-1877) introduced the concept of a finite
dimensional vector space.
Karl Heinstrass (1815-1897)considered the distance between two functions in the context
of the calculus of variations but it was not until 1897 that Jacques Hadamand(1865-1963)
gave a boost to Hilbert space theory by connecting the set theoretic ideas of Cantor with
the notion of a space of functions.
However it was not until 1906 that Hadamand’s PhD student, Maurice frechet, (1878-
1973) astounded the mathematics world by introducing the concept of a metric space.
In 1916, the notion of a topological space was introduced by Felix Hausdor� (1868-1942)
which was a crucial boost to the Hilbert theory. Topological spaces have become widely
applicable in functional analysis and their contributions cannot be underrated.
Many other modern mathematicians, the likes of Schmidt, have greatly contributed to
what we now love and know as the Hilbert Space Theory.The theory has not only enriched
the world of mathematics but has proven extremely useful scientific theories. Hilbert
spaces play a central role in analysis, mostly functional, geometry group theory and and
number theory among others.

1.4 Historical development of Fuglede-putnam’s theorem

The original paper of Fuglede first appeared in 1950[16] where the author proved the Fu-
glede’s theorem. This was in answering a problem posed by John Von Neumann [44] in
1942.
In his theorem, Fuglede was able to prove the following result;
Let A and B be bounded operators on a complex Hilbert space with B being normal. If
AB = BA,then AB∗ = B∗A.

12



However, in 1958, Putnam generalized[49]Fuglede’s theorem by proving the following;
If A,B,X are linear operators on a complex Hilbert Space and suppose X and B are nor-
mal, B is bounded and BA = AX ,then B∗A = AX∗.
Berberian[10] proved that the Fuglede theorem was actually equivalent to that of Put-
nam by a nice operator matrix derivation trick. Thus Fuglede -Putnam theorem was born
and it states as follows;
Let A and B be normal operators and X be an operator such such such that AX = XB,
then A∗X = XB∗. Berberian was able to relax the hypothesis on A and B by requiring X
to be a Hilbert -Schmidt operator(i.e X ∈C2(H)).
A�er the work of these great mathematicians, several authors have relaxed the normality
of A and B in the Fuglede-Putnam’s theorem over the years in various ways.
In 1958, Rosenblum[56] gave a simple and clear proof of Fuglede Putnams’ theorem by
using lioville’s theorem.
Later on, M. Radjabalipour [50] (1987)showed that Fuglede-Putnam’s theorem holds for
hyponormal operators.
In 1994, Cha[13] showed that the hyponormality hypothesis can be replaced by the quasi-
hyponormality of A and B∗ under some conditions in the Fuglede-Putnam’s theorem.
B.P. Duggal [14] showed that if A, B∗ are p-hyponormal operators , then A and B satisfy
Fuglede-Putnam’s theorem.
In 1997, Lee[33] proved that if if A is p-quasihyponormal operator and B∗ is an invertible
p-quasihyponormal operator such that AX=XB for X ∈C2(H) and∥∥|A|1−p∥∥ .∥∥|B−1|1−p∥∥≤ 1

, then Fuglede-Putnam theorem holds(that is A∗X = XB∗).
In 1996, Patel[46] proved that for a Hilbert Schmidt operator X and A and B∗ being p-
hyponormal operators such that AX = BX , then A∗X = XB∗.
Uchiyama and Tanahashi[62](2002) showed that the Fuglede-Putnam theorem holds for
p-hyponormal and log-hyponormal operators.
In 2005, Mecheri[38] showed that Lee’s results remain the same without the condition∥∥|A|1−p∥∥ .∥∥|B−1|1−p∥∥≤ 1

.
The author further showed that Lee’s results remain true for (p,k)−quasihyponormal
operators without the additional condition∥∥|A|1−p∥∥ .∥∥|B−1|1−p∥∥≤ 1

.
Kim [28] showed that the result A∗X =XB∗ remains remains valid for an injective (p,k)−quasihyponormal
and log-hyponormal operator.
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In 2009, Bakiri [9] showed that that if A is an injective (p,k)-quasihyponormal in H and
B is a dominant operator in H such that AX = XB for some X ∈ B(H), then A∗X = XB∗.
The author also showed that the above result remains valid for injective (p,k)−quasihyponormal
and log hyponormal operators.
Mecheri and Uchiyama [39] showed that normality in the Fuglede-Putnam theorem can
be replaced by A and B∗ class operators.
Rashid and Noorani[54] showed that the result by Mecheri and Uchiyama for A and B∗

quasi-class A operators with the additional condition

‖|A∗|‖ .
∥∥|B|−1∥∥≤ 1

satisfies the Fuglede-putnam theorem.
As recent as 2012, Bashir et al. [6]proved that the Fuglede-Putnam theorem hold for w-
hyponormal operators.
Clearly, Fuglede-Putnam theorem has fascinated many mathematicians in the mathe-
matics world and many mathematicians are working day and night to try and relax the
normality of A and B in the theorem.

1.5 Series of inclusion of classes of operators

In this section, we set to investigate some classes of operators and show some inclusion
relationship of these operators.
In 1962, Stampfli[59] introduced hyponormal operators and was able to show that any
normal operator is hyponormal.
In 1978, Campbell and Gupta[12] introduced k-quasinormal operators for some k ∈ C.
The authors were able to show that by le�ing k = 1, then a hyponormal operator would
become a k-quasihyponormal.
It was in 1990 that Aluthge [3] astounded the mathematics world by introducing p-
hyponormal operators and illustrated that if we let p= 1 in the definition of a p-hyponormal
operator, then we get a hyponormal operator.
Another class of operators is the p-quasihyponormal and by le�ing p = 1,we get quasi-
hyponormal operators.
Tanahashi[60],in 1999 introduced another class of operators called log-hyponormal op-
erators which contains all invertible hyponormal operators. He was able to demonstrate
that invertible p-hyponormal operators are log-hyponormal operators.
Then, in 2000, Aluthge et al.[4] was able to generalise both log-hyponormal and p-hyponormal
operators to w-hyponormal operators which contains all p-hyponormal operators.
In 2003, Hyoun[28] introduced (p,k)−quasihyponormal operators and showed that if
we let p = 1and k = 1, in the definition of (p,k)−quasihyponormal operator, then we get
k−quasihyponormal and p−quasihyponormal operators respectively.
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We note that a q-quasihyponormal operator is a (p,k)−quasihyponormal since 0< q< p
and thus (p,k)-quasihyponormal operators contain all p-hyponormal operators.
In 2007, Jibril[26] introduced he class of 2-power normal operators and later generalized
the class of 2-power normal operators in the class of n-power normal operators[25].
Later on, in 2011, Ahmed[1] generalised the work of Jibrii on n-power normal operators
into the class of n-power quasinormal operators and through this he was able to show
that every n-power normal operator is n-power quasinormal.
In 2012, Panayan[45] introduced an extension of all normal operators which he later call
the n-power class operator.
We therefore have;
Projection⊆Self-Adjoint⊆NormalsubseteqHyponormal.
Normal⊆�asinormal⊆Subnormal⊆Hyponormal⊆m-hyponormal.
Unitary⊆Isometry⊆Partial Isometry⊆Contraction.
Unitary⊆Isometry⊆2-normal⊆Binormal.
Normal⊆�asinormal⊆Subnormal⊆Hyponormal⊆P-hyponormal⊆Log-hyponormal.
Normal⊆Hyponormal⊆P-hyponormal⊆w-hyponormal.
Normal⊆�asihyponormal⊆Subnormal⊆Hyponormal⊆m-hyponormal.
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2 Normality of non normal operators

Normal operators are a major class of both bounded and unbounded operators in Hilbert
Spaces. There are many classes of non normal operators such as hyponormal,subnormal
operators and many more. In this section, we set to investigate some of the conditions
under which some non normal operators are normalized
. To set the stage, we first invsetigate some properties of these normal and non-normal
operators.

2.1 Some general properties of normal and non normal operators

In this section, we investigate some properties of normal operators and non normal op-
erators as discussed in chapter 1.

Properties of normal operators

Theorem 2.1.1 (Spectral theorem) If A∈B(H) is normal, then there exists a finite mea-
sure space (X ,µ) and a φ ∈ L∞(X ,µ) such that A is unitarily equivalent to the operator
Mφ on L2(X ,µ).
Corollary 2.1.2 Let A be normal. Then A is
(i). Hermitian
(ii). Unitary
(iii). Positive
(iv). A projection
if and only if its spectrum is
(i). real
(ii). On the unit circle
(iii). on the non-negative real axis (iv). in the set {0,1}

We now represent square roots of normal operators.
Definition 2.1.3 (Square root of a normal operator) An operator is the square root of
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an operator T ∈ B(H) if and only if it is of the form

A⊕

B C

0 −B


where A and B are normal and C is a positive one-to-one operator commuting with B.
Furthermore B can be chosen such that σ(B) lies in the closed upper half plane and the
Hermitian part of B is non-negative.
Theorem 2.1.4, (Radjavi and Rosenthal, [51]) If S and T are two operators with re-
spective representations

A⊕

B C

0 −B


and

D⊕

E F

0 −E


where A,B,D,E are normal and the C and F are as in definition 2.1.3, then (i). A is the
normal part of S
(ii). S and T are unitarily equivalent if and only if A is unitarily equivalent to D and the
pair (B,C) is simultaneously unitarily equivalent to the pair (E,F)

Proof
(i). To prove this, it su�ices to show that S0 is completely non-normal. This will follow if

we show that S0
∗S0−S0S0

∗ has trivial null space. But S0
∗S0−S0S0

∗=

C 0

0 C

−C 2B∗

2B C


where both of the factors on the right are one-to-one, positive operators and hence our
result.
(ii). Suppose S and T are unitarily equivalent. Then their normal parts are also unitarily
equivalent. Thus A is unitarily equivalent to D and S0 is unitarily equivalent to T0.
Since C commutes with B, the null space of B reduces C. Hence S0 can be put in the formB1 C1

0 −B1

⊕
0 C0

0 0


, whereB1 has trivial null space. Similarly, T0 can be put in the formE1 F1

0 −E1

⊕
0 F0

0 0


.
The unitarily equivalence of So and T0 implies that of S0

2 and T0
2. Since the second direct
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summand in the two sums are the restrictions of S0 and T0 to the null spaces S0
2 and T0

2,
we conclude they are unitarily equivalent and so are the two first summands.
The proof of the other parts follows similarly.

We now investigate operations of normal operators. Recall that in general, the sum and
product of two normal operators are not normal in general. Furthermore, in the case
where it happens that AB is normal for two normal operators A,B ∈ B(H), it does not
always imply that BA is also normal. That is , normality of AB does not imply normality
of BA.
The following result by Kaplansky gives the condition under which normality of AB im-
plies normality of BA.
Proposition 2.1.5 [27] Let A,B ∈ B(H) be such that A and AB are normal. Then BA is
normal if and only if B commutes with |A|.
Proof
Suppose by hypothesis that A and AB are normal. Let A = U |A| be the polar decom-
position of A where U ∈ B(H) is unitary and commutes with A = (A∗A)

1
2 . In addition,

suppose B commutes with |A|. Then
U∗ABU =U∗U |A|BU = B|A|U = BU |A|= BA and hence BA is normal.
Conversely, suppose BA is normal. Let M = AB and N = BA.
Since MA=ABA=AN,it follows that M∗A=AN∗(by Putnam theorem). That is, B∗A∗A=

AA∗B∗ and taking into account that A∗A = AA∗, this means that B∗ commutes with A∗A
and so does B.

In the result below, we now give the form of those normal operators A,B ∈ B(H) such
that AB and BA are normal. Before this, we consider the following definition.
Definition 2.1.6 An operator T ∈ B(H) is homogeneously normal if there exists P ≥ 0
such that T ∗T = T T ∗ = P2I, equivalently, for some unitary operator U ∈ B(H), we have
A = PU .
Theorem 2.1.7 Let S,T ∈ B(H) be normal compact operators. The following assertions
are equivalent
(i). ST is normal.
(ii). T S is normal.
(iii). There exists at most countable family of mutually orthogonal subspaces (Hi)i∈J such
that H =⊕i∈JHi, the subspace (Hi) reduces both S and T and in addition, S|Hi and T |Hi
are homogeneously normal for all i ∈ J.
Proof
See[64]
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We now show the conditions under which A+B is normal for A,B ∈ B(H) normal.
Proposition 2.1.8 Let A,B ∈ B(H) be self-adjoint operators and let S = A+ iB. If A or B
is strictly positive and if AB is normal, then S is also normal.
Proof
Suppose A is strictly positive. Then 0 /∈W (A). Since AB is normal and A and B are self-
adjoint by hypothesis, it follows that S is normal.
Theorem 2.1.9 Let A and B be two bounded normal operators. If AB and AB∗ are normal
such that A is positive, then A+B is normal.
Proof
Follows from the fact that BAB = (AB∗)∗B and the Fuglede-Putnam theorem.

Properties of non-normal operators

One of the main classes of non-normal operators is the class of hyponormal operators
introduced by Hamos[23] as shown in subsection 1.3. In this study, the author showed
that the product and sum of two hyponormal operators need not be hyponormal. It was
also shown that if S and T are hyponormal operators on a Hilbert space H such that S
commutes with T ∗, the S+T is hyponormal.
However, if S and T are commuting hyponormal operators, then their sum, S+T , need
not be hyponormal. Hamos also showed that this scenario also holds true for the product
of two hyponormal opereators, that is, the product of two hyponormal operators need
not be hyponormal even if they commute.
The following result gives some conditions under which this is true.
Remark 2.2.1 We first note that the positive part of an operator A ∈ B(H) is given by
(A∗A)

1
2 .

Theorem 2.2.2 Let T1 and T2 be hyponormal operators. Suppose that T1 commutes with
the positive part of T2 and T2 commutes with the positive part of T1

∗. Then T1T2 and T2T1

are hyponormal.
Proof
In this proof, we will show the hyponormality of T1T2 only because the proof of hyponor-
mality of T2T1 is similar.
Now by hypothesis, T1(T2

∗T2) = (T2
∗T2)T1

∗ and T2
∗(T1T1

∗) = (T1T1
∗)T2

∗.
Since for a positive operator P, R∗PR is a positive operator for every operator R, we have
(T1T2)

∗(T1T2)− (T1T2)(T1T2)
∗

= T2
∗T1
∗T1T2−T1T2T2

∗T1
∗

≥ T2
∗T1T1

∗T2−T1T2T2
∗T1
∗

≥ T1T1
∗T2
∗T2−T1T2

∗T2T1
∗

= T1T1
∗T2
∗T2−T1T1

∗T2
∗T2

= 0
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Hence T1T2 is hyponormal.

Corollary 2.2.3 Let T1 and T2 be normal operators. Then each of T1 and T2 commutes
with the positive part of each other if and only if T1T2 and T2T1 are normal.
Remark 2.2.4 Corollary 2.2.3 is an immediate result of Theorem 2.2.2

We now give sonme properties of quasihyponormal and subnormal operators and show
how they relate.
Proposition 2.2.5 If S =UA is the polar decomposition of S, then S is quasihyponormal
if and only if AU =UA where U is unitary.
Proof
If A and U commute, then SA2 = A2S and so S is quasihyponormal.
Conversely, suppose S is quasihyponormal, then by definition, S commutes with A2.
Since A can be approximated by the polynomials in A2, SA = AS
Hence (UA−AU)A = SA−AS = 0
Thus (UA−AU) = 0 on Ran(A).
But if f ∈ (RanA)⊥ = KerA, then by definition, U f = 0
Thus UA−AU = 0.
proposition 2.2.6 Every quasinormal operator is subnormal.
Proof
Let S ∈ B(H) be quasinormal. We need to show that S is subnormal. In this proof, we will
consider two cases;where KerS = {0} and KerS 6= {0}.
Suppose KerS = {0}. If S = UA is the polar decomposition of S, then U must be an
isometry.
If E =UU∗, then E is the projection onto the final spaceU j thus, E⊥U =U∗E⊥= 0(where
E⊥ = I−E)
Define operators V and B on H = H1⊕H2 by

V =

U E⊥

0 U∗

 ,B =

A 0

0 A


and let N =V B. Since UA = AU and U∗A = AU∗, it is easily seen that N is normal.
Since

N =

S E⊥A

0 U∗A

=

S E⊥A

0 S∗


It follows that N leaves H = H1⊕{0} invariant and N|H = S.
Now suppose that KerS 6= {0}. Here KerS = l ⊆ KerS∗, since S∗ = AU∗ =UA∗.
Let S1 = S|l⊥; so S = S1⊕{0} on l⊥⊕ l = H .
Now S∗S = S1

∗S1⊕{0} and it is easy to see that S1 is quasinormal.
By the first part, S1 is subnormal.
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Clearly, S is subnormal.

In the next result, we show the relation of k-quasi-M-hyponormal operators with M-
hyponormal.
We recall that an operator T ∈ B(H) is k-quasi-M-hyponormal for a positive integer k, if
there exists M > 0 such that
T ∗kM(T −λ )∗(T −λ )T k ≥ T ∗k(T −λ )(T −λ )∗T k for all λ ∈ C.
It is clear that the following inclusion holds
Remark 2.2.7 M-hyponomality implies k-quasi-M-hyponormality but the converse is
not generally true. For instance, the matrix

A =

0 1

0 0


on H = C2 is 2−quasi-M-hyponormal but not M-hyponormal.
The following result shows the conditions under which a k-quasi-M-hyponormal opera-
tor is M-hyponormal.
Theorem 2.2.8 Let T ∈ B(H) be a k-quasi-M-hyponormal operator. If T has a dense
range, then T is M-hyponormal.
Proof
Suppose T ∈ B(H) is k-quasi-M-hyponormal and suppose Ran(T ) = H . Then there exists
a sequence (xn)n in H such that
x = lim

n→∞
T xn for x ∈ H

By continuity of T , we get lim
n→∞

T kxn = lim
n→∞

T k−1T xn = T k−1x
Since T is k-quasi-M-hyponormal,∥∥∥√M(T −λ )T kxn

∥∥∥≥ ∥∥∥(T −λ )∗T kxn

∥∥∥∀λ ∈ C

Thus∥∥∥√M(T −λ )T k−1x
∥∥∥=∥∥∥√M lim

n→∞
(T −λ )T kxn

∥∥∥ =
∥∥∥ lim

n→∞

√
M(T −λ )T kxn

∥∥∥ ≥∥∥∥ lim
n→∞

(T −λ )∗T kxn

∥∥∥ =
∥∥∥ lim

n→∞
(T −λ )∗T kxn

∥∥∥ =
∥∥∥(T −λ )∗T k−1x

∥∥∥
Hence, T is (k−1)−quasi-M-hyponormal.
Since T has a dense range, T is (k−2)−quasi-M-nyponormal operator.
By iteration, T is M-hyponormal.

We finish this section with the class of n-normal operators.
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Proposition 2.2.9Let T ∈ L(H). T ∈ [nN] if and only if T n is normal for any positive
integer n≥ 1.
Proof
Suppose T ∈ [nN]. Then by definition, T nT ∗ = T ∗T n

Then, T n(T ∗)n = T ∗T n(T ∗)n−1

i.eT n(T n)∗ = T ∗T nT ∗(T ∗)n−2 = (T n)∗T n

Conversely, suppose T n is normal, then T nT = T T n implies that (T n)∗T = T (T n)∗
i.eT ∗T n = T nT ∗ (by Fuglede theorem).
Corollary 2.2.10 Let T ∈L(H). Then T is n-power normal if and only if ‖T nx‖= ‖(T n)∗x‖∀x∈
H.

Corollary 2.2.11 The class [nN] of n-power normal operators on H is closed under scalar
multiplication, unitary equivalence, and taking adjoints.
Moreover, the inverse, it it exists, and the restriction to a closed subspace of H of an n-
power normal operator is n-power normal.
Proof
Follows immediately from proposition 2.2.9.
Remark 2.2.12 Unitary equivalence in corollary 2.2.9 cannot be replaced by similarity.
The operator

T =

0 0

0 1


and

S =

0 1

0 1


acting on H = C2 are similar since

S = X−1T X where X =

1 −1

0 1

, but T is 3−normal and S is not.

Proposition 2.2.13 Let T ∈ B(H) be n-normal. Then
(i). T ∗ is n-normal
(ii). If T−1 exists, then (T−1)n is n-normal.
(iii). If S ∈ B(H) is unitarily equivalent to T , then S is n-normal.
(iv). If M is closed subspace of H such that M reduces T , then S = T |M is an n-normal
operator.
Proof
(i). Since T is n-normal, T n is normal.
So, (T n)∗ = (T ∗)n is normal, T ∗ is an n-normal operator.
(ii). Since T is n-normal, then T n is normal
Since (T n)−1) = (T−1)n is normal, T−1 is an n-normal operator.
(iii). Let T ∈ B(H) be an n-normal operator and S be unitary equivalent to T . Then there
exists a unitary operator U such that S =UTU∗ so
Sn =UT nU∗.

22



Since T n is normal, Sn is normal.
So T |M is n-normal.
(iv). Since T ∈ B(H) is n-normal, T n is normal.
SoT n|M is normal and since M is invariant under T , T n|M = (T |M)n

Thus (T |M)n is normal.
So T |M is n-normal.

2.2 Normality of
hyponormal,p-hyponormal,log-hyponormal,subnormal and
semi-normal operators

In this section, we start by showing the conditions under which the above named non-
normal operators are normal
Theorem 2.3.1 [11] If T is a semi-normal operator such that
T p = ST ∗pS−1+C for some positive integer p,C compact and 0 /∈W (S), then T is normal.
Remark 2.3.2 We note that for a semi-normalT ∈ B(H) operator such that w(T ) lies on
finitely many lines through the origin, then T is normal.
Theorem 2.3.3 [51] If A,B and K are operators on H such that A and B∗ are subnormal
and K is positive(not necessarily invertible) and one-to-one, and if AK = KB, then A and
B are normal and A = B.
Proof
See [51] Corollary 2.3.4 [51] If A,B and K are operators on H such that A and B∗ are
subnormal and K is one-to-one and Ran(K) = K, and if AK = KB , then A and B are
normal and unitarily equivalent.
Proof
LetK =UH be the polar decomposition of K where U is unitary and H is positive. Then
U∗AUH = HB. Since U∗AU is subnormal.
It follows from Theorem 2.3.3 that U∗AU and B are normal and U∗AU = B.
Remark 2.3.5 Any polynomial of a normal operator is normal but the converse is not
generally true.
By recalling the definition of an Aluthge transformation, the following result shows the
condition under which T̃ is normal.
Theorem 2.3.6 Let T ∈ B(H) be an invertible operator and T =U |T | be its polar decom-
position.
Let Sp(U) be contained in some open semicircle. Then T̃ is normal if and only if T is nor-
mal.
Theorem 2.3.7 Let T ∈ B(H) be a p-hyponormal operator and let S∗ ∈ B(H) be a p-
hyponormal operator. If T X = XS for some X ∈ B(H) injective and has a dense range,
then T is normal and unitary equivalent to S.
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Theorem 2.3.8 Let T ∈ B(H) be a (p,k)− quasihyponormal operator and let S∗ ∈ B(H)

be a p-hyponormal operator. If T X = XT for some X ∈ B(H) injective with a dense range,
then T is a normal operator and unitarily equivalent to S.
Proposition 2.3.9 Let T ∈ B(H) be a hyponormal operator. If T n is normal for some
integer n, then T is normal.
Remark 2.3.10 If T ∗ is hyponormal, then T is normal
Propositio 2.3.11 Let T ∈ B(H) be a hyponormal operator. If the spectrum of T (σ(T ))
only contains a finite number of limited points or has zero area, then T is normal
Theorem 2.3.12 [43] Let T ∈ B(H) be log-hyponormal and T = U |T | be its polar de-
composition such that Um =U∗for some positive integer m.
Then T is normal.
Proof
Suppose T∈ B(H) is log-hyponormal. Then we have
log|T | ≥ log|T ∗|=U(log|T |)U∗ · · ·(i)
By multiplying both sides of (i) by U and U∗, we have

U(log|T |)U∗ ≥U2(log|T |)U2∗

whence
log|T | ≥U(log|T |)U∗ ≥U2(log|T |)U2∗

By proceeding in this way,we get
log|T | ≥ log|T ∗|=U(log|T |)U∗ ≥U2(log|T |)U2∗ ≥ ·· · ≥Um+1(log|T |)U (m+1)∗

Since by hypothesis Um =U∗, we have
Um+1 =U∗U =U (m+1)∗ is the projection onto Ran(|T |)
Thus Um+1(log|T |)U (m+1)∗ = log|T | and hence we get
log|T |= log|T ∗|.
Thus |T |2 = |T ∗|2 which shows that T is normal.

In the results below, we extend the results of proposition 2.3.9 and show that it still holds
for T n+1.
Lemma 2.3.13 Let T ∈ B(H) be p-hyponormal with the polar decomposition T =U |T |
for U a partial isometry.
Then for n≥ 0,n≥ p, the following inequalities hold(

T n+1∗T n+1) p
n+1 ≥ ·· · · · ·(T ∗T )p ≥ (T T ∗)p ≥ ·· · ≥

(
T n+1T n+1∗) p

n+1

.
Theorem 2.3.14 [57] Let T ∈ B(H) be p-hyponormal. If T n+1 is normal, then T is nor-
mal.
Proof
Suppose T is p-hyponormal. Then from lemma 2.3.12, T n+1 is ( p

n+1)-hyponormal.
Since T n+1 is normal by our hypothesis, then we have by definition,
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T n+1∗T n+1 = T n+1T n+1∗ · · ·(i)

.
Thus we have that(

T n+1∗T n+1) p
n+1 = (T ∗T )p = (T T ∗)p =

(
T n+1T n+1∗) p

n+1

.
Thus we get T ∗T = T T ∗ which shows the normality of T .
Remark 2.3.15 Theorem 2.3.14 holds true for T ∈ B(H) a log-hyponormal operator. The-
orem 2.3.16 [53] Let A,B,X ∈ B(H) be operators such that A∗ is p-hyponormal operator,
B is a dominant operator and X is an invertible operator. If XA = BX , then there is a uni-
tary operator U such that AU = BU and hence A and B are normal.

Proof
Let XA = BX , then by Uchiyama’s and Tanahashi’s results on the Fuglede-Putnam’s the-
orem, we have that B∗X = XA∗ and so X∗B = AX∗.
Since AX∗X = X∗BX = X∗XA, we let X =UP be the polar decomposition of X.
Since by the hypothesis X is invertible, it follows that P is invertible and unitary. Now,
AP2 = P2 and by the positivity of P, we get AP = PA.
Clearly, BUP =UPA =⇒ BUP =UAP. But P is invertible. Thus BU∼UA.
Hence, we have that A,B are unitary equivalent which implies that A is dominant and B
is p-hyponormal
Thus A,B are normal.
Remark 2.3.17 Theorem 2.3.16 holds for A∗ a log-hyponormal operator.
Theorem 2.3.18 [53] Let T = A+ iB be the cartesian decomposition of T . If T ∗ is hy-
ponormal and AB is p-hyponormal, then T is a normal operator.
Proof
Let S = AB, then SA = AS∗ = ABA
By the Fuglede-Putnam’s theorem for p-hyponormal operator we have S∗ = AS which
implies BA2 = A2B.

Now(S+S∗)A = A(S+S∗)

and
(S−S∗)A = A(S∗−S)

.
Since T ∗ is hyponormal, we have T T ∗−T ∗T = 2i(BA−AB) = 2i(S∗−S)≥ 0.
Le�ing W = 2i(BA−AB), then W ≥ 0 and WA =−AWi
Now,W 2A =W (WA) =W (−AW ) =−WAW = (−AW )W = AW 2.
But W is positive, then WA = AW = 0.
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Thus A(AB−BA) = (AB−BA)A
=⇒ δ (AB−BA) = {0}
Thus AB−BAis quasinilpotent skew-Hermitian.
Thus AB−BA = 0.So T is normal.
Theorem 2.3.19 [38] Let T ∈ (WN). If T P are T q are normal operators for some co-prime
integers p,q, then T is normal.
Remark 2.3.20 The normality of T 2 for a certain operator T ∈ (WN) is not su�icient to
ensure the normality of T .
The following example is a clear illustration of this.

Example 2.3.21 Let T =

 i 1

0 −1

 on H = dim2.

A simple computation shows that T is normal but T 2 is not.

Theorem 2.3.22 [38] Let T ∈ (WN). If T is a partial isometry and 0 /∈W (T ), then T is
Normal.
Remark 2.3.23 Theorem 2.3.22 is the converse of Theorem 2.3.19.

2.2.1 Normality of n-power normal operators and n-power quasinormal opera-
tors

In this section, conditions under which n-power normal and n-power quasinormal oper-
ators are investigated.
We recall that the class of all n-power normal operators is denoted by [nN] and that of
n-power quasinormal operators by [nQN].
Proposition 2.4.1 Some properties of n-power quasinormal operators.
(i) The class[nQN] is closed under unitary equivalence and scalar multiplication.
(ii) If T is of the class [nQN] and M a subspace of H that reduces T , then TM is of class
[nQN].
(iii) Every quasinormal operator is n-power quasinormal for each n.
(iv) a n-power normal operator is also n-power quasinormal.
Proof
We will prove (i) and (ii) since the proof of the other two is trivial.
Suppose S ∈ B(H) is unitary equivalent to T ∈ B(H) then, there is a unitary operator
U ∈ B(H) such that T =U∗SU which implies
T ∗ =US∗U∗

Since T n =U∗SnU , and noting I =UU∗, we have

U∗SnS∗SU = T nT ∗T = T ∗T n+1 =U∗S∗Sn+1U
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and hence the proof of part (i) follows.
Now since (T |M)∆ = T ∆|M for ∆ as the n-th power or the adjoint, it follows that the le�
side of T nT ∗T = T ∗T T n = T ∗T n+1 · · ·(i) for (T |M) reads (T nT ∗T |M) which is

T ∗T n+1|M = (T |M)∗(T |M)n+1

which is the right hand side of (i). Thus shows that T |M is of class [nQN].
Remark 2.4.2 We note that the converse of property (iv) need not hold in general. The
following example gives an illustration of this.

Example 2.4.3
Consider the operator

T =


0 0 0 ........

1 0 0 ........

0 1 0 ........


which is a unilateral Shi� in H = l2.

A simple computation shows that T 2T ∗−T ∗T 2 6= 0 and
(T 2T ∗−T ∗T 2)T = 0 which shows that T is not 2-power normal but is a 2-power quasi-
normal operator.
Remark 2.4.4 The classes [2QN] and [3QN] are not the same. The following examples
show a clear illustration.
Example 2.4.5
Let H = C3 and T ∈ B(H) be given by

T =


−1 0 0

0 0 0

1 0 1


A simple computation shows that T is of class [2QN] but not of [3QN].
Example 2.4.6
Let H = C3 and S ∈ B(H) be given by

S =


1 1 1

0 0 0

−1 0 −1


A simple computation shows that S is of class [3QN] but not of class [2QN].
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Proposition 2.4.7 Let T ∈ B(H) ∈ [2QN]
⋂
[3QN].

Then T is of class [nQN]for all positive integer n≥ 4.
Proof
We use mathematical induction to prove proposition 2.2.6. We note that the case n = 4
is trivial and thus we start with the case n = 5.
Now, for n = 5, we have that since T ∈ [2QN], then
T 2T ∗T = T ∗T 3 · · ·∗
Multiplying (∗) to the le� by T 3 we get
T 5T ∗T = T 3T ∗T 3

= T ∗T 4T 2

T ∗T 6.
Now suppose the result is true for n≥ 5
i.e T nT ∗T = T ∗T T n then

T n+1T ∗T = T T ∗T n+1 = T T ∗T 3T n−2 = T 3T ∗T T n−2 = T ∗T n+2

Thus T is of class [(n+1)QN] and hence our result.
Theorem 2.4.8 [35] LetT ∈ [nQN]. If T and T − I are of class [2QN], then T is normal.
Proof
The condition on T − I implies

T 2(T ∗T )−T 2T ∗−2T (T ∗T )+2T T ∗ = (T ∗T )T 2−T ∗T 2−2(T ∗T )T +2T ∗T

Since T is of class [2QN], we have

−T T ∗2−2T (T ∗T )+2T T ∗ =−T ∗T 2−2(T ∗T )T +2T ∗T

or

−T T ∗2−2(T ∗T )T ∗+2T T ∗ =−T ∗2T −2T ∗(T ∗T )+2T ∗T · · ·∗

Which shows that ∗ implies N(T ∗)⊆ N(T ) · · ·(i)
Suppose T ∗x = 0, from ∗, we get
−3T ∗2T x+2T ∗T x = 0 · · ·∗∗
Then −3T ∗3T x+2T ∗2T x = 0
Thus since T ∈ [2QN],
−3T ∗T T ∗2x+2T ∗2T x = 0 and hence
2T ∗T x = 0.
Consequently, ∗∗ gives 2T ∗2T x = 0 or T x = 0
Thus −T (T ∗T )+T T ∗ =−(T ∗T )T +T ∗T or
T ∗(T ∗T −T T ∗) = T ∗T −T T ∗ · · ·∗ ∗∗
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Thus, if N(T ∗− I) = 0, then ∗∗∗ implies T is normal.
If N(T ∗− I) 6= 0,let T ∗x = x then ∗∗ gives
T ∗2T x−T ∗T x = T ∗T x−T x since T ∗2T = T T ∗2,we have T ∗T x = T x
Therefore‖T x‖2 =< T ∗T x,x >=< T ∗x,x >= ‖x‖2

which implies ‖x‖2 = ‖x‖2

Thus ‖T x− x‖2 = ‖T x‖2 +‖x‖2−2Re < T x,x >by (Cauchy-Schwarz’s inequality)
= ‖x‖2−‖x‖2

= 0 or T x = 0
Thus N(T ∗− I)⊂ N(T − I) · · ·(ii)
Hence (ii) together with ∗∗ gives
T (T ∗T −T T ∗) = T ∗T −T T ∗ and so
T (T ∗T −T T ∗)T = (T ∗T −T T ∗)T or
T T ∗T 2−T 2T ∗T = T ∗T 2−T T ∗T
since T 2T ∗ = T ∗T and T 3T ∗ = T ∗T 3 we deduce that
T ∗T 2 = T T ∗T .
Thus T is quasinormal.
from (i), it follows that T is normal.
Theorem 2.4.9 If T is of class [2QN]

⋂
[3QN] such that T − I is of class [nQN], then T is

normal.
Proof
Follows easily from the proof of Theorem 2.4.8.

2.2.2 Normality of other non-normal operators

Proposition 2.5.1 Let T be an invertible operator such that the following holds
(i)ST ∗ = T−1pS+K, where K is compact, 0 6⊂We(S) and p 6=−1 is an integer
(ii) T is p-oid,T−1 is δ -oid(p,δ ≥ 1)
(iii)σ00(T ) = /0
Then T is unitary.
Proposition 2.5.2 If T is convexoid and satisfies
ST ∗ = T S+K, where K is compact, 0 6⊂We(S) and σ00 = /0, then T is Self-adjoint.
Theorem 2.5.3 (Thakare,[61]) Let T ∈ B(H) be an operator and suppose T satisfies the
following.
(i)T is restriction-convexoid.
(ii) T is reduced by each of its eigenspaces.
(iii) T = S−1ApS+K,where σ(A) is real, K is compact and p is a positive integer.
Then T is normal.
Proof
See [61].
Theorem 2.5.4 (Kim,[30]) If T is restriction convexoid and is reduced by each of its
eigenspaces corresponding to its isolated eigenspaces and σ(T ) is countable, then T is
diagonal and normal.
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Proof
See [30].
Corollary 2.5.5 If T is restriction -convexoid and is reduced by each of its eigenspaces
corresponding to isolated eigenspaces and σe(T ) = {0}, then T is compact and normal.

Proof
Now since by hypothesis we have σe(T ) = {0}, then we haveσ(T )⊂ {0}

⋃
p00(T ), σ(T )

is countable
Thus by Theorem 2.5.4, we note that T is normal. We skip the proof for T as compact.
Corollary 2.5.6 If T is restriction-convexoid and is reduced by each of its eigenspaces
corresponding to isolated eigenspaces and all but a finite number of elements of σ(T )
are real, then T is normal.
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3 ON THE FUGLEDE-PUTNAM THEOREM

In this chapter, we generalize the Fuglede-Putnam theorem by relaxing the normality
hypotheses of operators A and B. Many authors have relaxed this normality hypotheses
of A and B in order to generalize the theorem.
The following result by Berberian was the first generalization of the Fuglede-Putnam the-
orem where we require that A and B∗ are hyponormal operators and that X is a Hilbert-
Schmidt operator.
Theorem 3.1 (Berberian [10]) If A and B∗ are hyponormal, then AX = XB implies
A∗X = XB∗ for some X ∈C2(H).
Proof
See [10]
Corollary 3.2 Suppose A,B ∈ B(H) are operators such that AX = XB. Then for some
X ∈ B(H), A∗X = XB∗ under either of the following hypotheses.
(i) A and B∗ are hyponormal
(ii) B is invertible and ‖A‖.

∥∥B−1
∥∥< 1.

Proof
Follows easily from the proof of Theorem 3.1
Theorem 3.3 (Furuta,[17]) If A and B∗ are subnormal and if X ∈ C2(H) such that
AX = XB, then A∗X = XB∗

Proof
Let

NA =

A A12

0 A22


be the normal extension of A ∈ B(H) on a lager Hilbert space KA than H and

NB∗ =

B∗ B12

0 B22


be the normal extension on a larger Hilbert space KB∗ that contains H .

We consider the operator T =

B∗22 B12

0 B

 acting on (KB∗	H)⊕H .

Clearly, we note that T is normal since NB∗ is also normal. Now consider Â and X̂ acting
on a lager Hilbert space H⊕ (KA	H)⊕ (KB∗	H)⊕H as shown below.
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Â =


A A12 0 0

0 A22 0 0

0 0 B∗22 B12

0 0 0 B

 , X̂ =


0 0 0 X

0 0 0 0

0 0 0 0

0 0 0 0


.
Clearly, Â is normal and we have ÂX̂ = X̂ Â
Since AX = XB, we get Â∗X = X̂ Â∗.
Thus A∗X = XB∗ and thus the Fuglede-Putnam theorem is satisfied.
Theorem 3.4 If A,B ∈ B(H) are operators such that AX = XB for some X ∈C2(H), then
A∗X = XB∗ under any of the following hypotheses.
(i) A is k-quasihyponormal and B∗ is invertible hyponormal
(ii) A is quasihyponormal and B∗ is invertible hyponormal
(iii) A is nilpotent and B∗ is invertible hyponormal
Remark 3.5 We arrive at Theorem 3.4 by relaxing the hypothesis on A in corollary 3.2
and keeping the hypotheses on B and X constant.

In the next result, we extend theorem 3.1 by using a Hilbert-Schmidt norm inequality.
Theorem 3.6 (Furuta,[18]) If A and B∗ are hyponormal, then the following inequality
holds.

‖AX−XB‖2 > ‖A
∗X−XB∗‖2

for X ∈C2(H)

‖AX−XB‖2 = ‖A
∗X−XB∗‖2

if and only if A and B are normal.
Proof
Let J ∈C2(H) be defined as
JX = AX−XB
Then J∗ exists(since C2(H) is a Hilbert space) and is given by
J∗X = A∗X−XB∗.
Also,

(J∗J−JJ∗)X =A∗((AX−XB)−(AX−XB))B∗−{A(A∗X−XB∗)−(A∗X−XB∗)B}=(A∗A−AA∗)X+X(BB∗−B∗B) · · ·∗

.
Clearly, J is hyponormal and hence

‖JX‖2 ≥ ‖J
∗X‖2
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That is
‖AX−XB‖2 > ‖A

∗X−XB∗‖2 · · ·∗∗

Equality follows from inclusions ∗ and ∗∗.
Lemma 3.7 If A and B∗ are p-quasihyponormal, the operator J ∈C2(H) defined by.
JX = AXB for some X ∈C2(H),then JX is also p-quasihyponormal
Theorem 3.8 (Lee,[34]) Let A and B be P-quasihyponormal and B∗ be invertible quasi-
hyponormal such that
AX = XB for X ∈C2(H) and

∥∥|A∗|1−p
∥∥ .∥∥|B−1|1−p

∥∥≤ 1.
Then A∗X = XB∗

Proof Define J ∈C2(H) by
JY = AY B−1∀Y ∈C2(H). Since B∗ is invertible by hypothesis and we note that (B∗)−1 =

(B−1), thus (B−1) is p-quasihyponormal and thus by lemma 3.7, J is p-quasihyponormal.
Now, since JX = X and since we have that J is a P-quasihyponormal, we have the fol-
lowing,

< (J∗J)pX ,X >≥< (JJ∗)pX ,X >

and thus we get∥∥|J∗|PX
∥∥2 ≤< (J∗J)pX ,X >≤ ‖X‖2(1−p)< J∗JX ,X >p = ‖X‖2

and therefore

‖J∗X‖ ≤
∥∥|J∗|1−pX

∥∥.∥∥|J∗|PX
∥∥≤ ∥∥|A∗|1−p∥∥.∥∥|B−1|1−p∥∥≤ ‖X‖

.
Thus ‖J∗X−X‖2 ≤ 0
So,A∗X(B−1)∗ = X
which implies that A∗X = XB∗

Corollary 3.9 Let A be quasihyponormal and let B∗ be invertible quasihyponormal such
that AX = XB for X ∈C2(H)

Then A∗X = XB∗.
Remark 3.10 Corollary 3.9 is an immediate result of Theorem 3.8.
Theorem 3.11 (Lee,[33]) If A is a (p,k)-quasihyponormal operator and B∗ is an invertible
(p,k)-quasihyponormal operator such that AX = XB for X ∈C2(H) and∥∥|A|1−p

∥∥.∥∥|B−1|1−p
∥∥≤ 1, then A∗X = XB∗.

Remark 3.12 Theorem 3.11 is an extension of Theorem 3.8 by requiring that A is a (p,k)-
quasihyponormal and B∗ is an invertible (p,k)-quasihyponormal operator.

We show that we can generalize the Fuglede-Putnam theorem by relaxing the normality
hypotheses of A and B by requiring A∗ be P-hyponormal or log-hyponormal and B be a
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dominant operator.
Lemma 3.13 Let A∗,B ∈ B(H,K) be p-hyponormal operators. If XA = BX for some
X ∈ B(H,K), then XA∗ = B∗X

Proof
Let

W =

A∗ 0

0 B


and

V =

0 0

X 0


be operators on H⊕K
A simple computation shows that W is a p-hyponormal operator on H⊕K that satisfies
VW ∗ =WV .
Hence we have VW =W ∗V and therefore XA∗ = B∗X
Theorem 3.14 (Uchiyama and Tanahashi,[62]) Let A ∈ B(H) be such that A∗ is p-
hyponormal or log-hyponormal.
Let B ∈ B(K) be dominant. Then if XA = BX , then XA∗ = B∗X for some X ∈ B(K,H).
Remark 3.15 In the result below, we show that the Fuglede-Putnam theorem still holds
if A∗ is m-hyponormal in theorem 3.13.
Theorem 3.16 Let A∗ ∈ B(H) be m-hyponormal and B ∈ B(K) be dominant. Then if
XA = BX for some X ∈ B(K,H), then XA∗ = B∗X .

In the following result we show that theorem 3.8 still holds without the additional con-
dition ∥∥|A|1−p∥∥ .∥∥|B−1|1−p∥∥≤ 1

Theorem 3.18 (Mecheri,[38]) Let A be p-quasihyponormal operator and B∗ be an in-
vertible p-quasihyponormal operator such that AX = XB for X ∈C2(H)

Then A∗X = XB∗.
Proof
Let the operator J ∈C2(H) be defined by JY = AY B−1

Then ∀Y ∈C2(H), we note from theorem 3.8 that (B∗)−1 is p-quasihyponormal and also
that J is p-quasihyponormal.
Also, JX = AXB−1 = X and so X is an eigenvector of J
Thus we have J∗X(B−1)∗ = X which implies that A∗X = XB∗
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Theorem 3.19 Let A be (p,k)-quasihyponormal operator and B∗ be an invertible (p,k)-
quasihyponormal such that AX = XB for X ∈C2(H).
Then A∗X = XB∗.
Remark 3.20 Theorem 3.19 is a result of dropping the additional condition

∥∥|A|1−p
∥∥ .∥∥|B−1|1−p

∥∥≤
1 in Theorem 3.11.
The following are the immediate results of Theorems 3.18 and 3.19.
Corollary 3.21 Let A be quasihyponormal operator and B∗ be an invertible quasihy-
ponormal operator such that AX = XB for X ∈C2(H)

Then A∗X = XB∗.
Corollary 3.22 If A∈ B(H) is a p-quasihyponormal operator and B∗ ∈ B(H) is an invert-
ible p-quasihyponormal operator such that AX = XB for X ∈C2(H) (0 < p≤ 1) and∥∥|A|1−p

∥∥ .∥∥|B−1|1−p
∥∥≤ 1, then A∗X = XB∗.

Corollary 3.23 Let A,B∈B(H) be operators such that A is p-hyponormal and B∗ is an in-
vertible p-hyponormal operator such that Ax = XB for some X ∈C2(H), then A∗X = XB∗.
Theorem 3.24 (Mecheri and Uchiyama,[39]) Let A,B ∈ B(H) be operators and S ∈
C2(H) be a Hilbert-Schmidt operator.
Then ∥∥δA,B(X)+S

∥∥2
2 =

∥∥δA,B(X)
∥∥2

2 +‖S‖
2

2

and ∥∥δ
∗
A,B(X)+S

∥∥2
2 =

∥∥δ
∗
A,B(X)

∥∥2
2 +‖S‖

2
2

if and only if A and B∗ are class A operators.
Remark 3.25 BY replacing the (p,k)-quasihyponormality of A and B∗ in Theorem 3.18
with the class A operators A and B∗, we arrive at Theorem 3.24.

We now then try to generalize the Fuglede-Putnam theorem by introducing class y op-
erators.
Lemma 3.26 Let A,B ∈ B(H,K) be operators. Then the following are equivalent.
(i)A,B satisfy Fuglede-Putnam theorem
(ii) If AX = XB for some operator X ∈ B(H,K).then Ran(X) reduces A,(KerX)⊥ reduces
B and A|Ran(X),B|KerX⊥ are normal.
Lemma 3.27 Let A,B ∈ B(H,K) be such that A is an injective p-hyponormal and B∗ be
a class y operator.
If AX = XB for some operator X ∈ B(H,K), then A∗X = XB∗.
Moreover, Ran(X) reduces A,(kerC)⊥ reduces B and A|Ran(X),B|(KerX)⊥ are unitarily equiv-
alent normal operators.
Remark 3.28 Lemmas 3.26 and 3.27 are generalization of the Fuglede-Putnam theorem
by using class y operators.
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Theorem 3.29 (Mecheri,Tanahashi and Uchiyama,[38, ?]) Let A ∈ B(H) and B∗ ∈
B(K) . If either
(i) A is P-hyponormal and B∗ is a class y operator (ii) A is a class y operator and B∗ is
p-hyponormal
Then if AX = XB for some X ∈ B(H,K), then A∗X = XB∗

Moreover, Ran(X) reduces A,(Ker(X))⊥ reduces B, and A|RanX ,B|(KerX)⊥ are unitarily
equivalent normal operators.
Proof
Let’s decompose A into two parts ,i.e, the normal part A1 and the pure part A2.

I.e A = A1⊕A2on H = H1⊕H2 and write X =

X1

X2

.

We note that KerA2 ⊂ KerA∗2 and since A2 is pure, then A2 is injective.
Thus AX = XB implies A1X1

A2X2

=

X1B

X2B


Thus

A∗X =

A1
∗X1

A∗2X2

=

X1B∗

X2B∗

= XB∗

Thus A∗X = XB∗.
We leave the proof of the second part of Theorem 3.29 because it’s almost similar to that
of the first part.
Theorem 3.30 (Kim,[29]) If A∗ ∈ B(H) is p-hyponormal ,B ∈ B(H) is injective (p,k)-
quasihyponormal and if XA = BX for X ∈ B(H), then XA∗ = B∗X .
Proof
We note that since AX = BX ,then (KerX)⊥ and RanX are invariant Subspaces of A∗ and
B respectively
Clearly,A∗|RanX is p-hyponormal and B|RanX is a (p,k)-quasihyponormal.
We consider the decompositions H = (KerX)⊥⊕KerX and H = RanX⊕ (RanX)⊕.
Then we get the following matrix representations

A =

A1 0

A2 A3

 ,B =

B1 B2

0 B3

 ,X =

X1 0

0 0


A simple computation shows that A∗1 is p-hyponormal and X1 is injective with dense
range.
Thus, X1A1 = B1X1 and hence A1 and B1 are normal and X1A∗1 = B∗1X1.
Thus we obtain XA∗ = B∗X .
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Corollary 3.31 Let A∈B(H) be p-hyponormal operator and B∈B(H) be a p-hyponormal
operator. If XA = BX for X ∈ B(H), then
XA∗ = B∗X .

In the following result, we generalize the Fuglede-Putnam theorem by considering the
case when A is dominant and B∗ is either p-hyponormal or log-hyponormal or w-hyponormal.
Theorem 3.32 Let A ∈ B(H) be dominant and B∗ ∈ B(H) be p-hyponormal operator.
Then if AX = XB for some X ∈ B(H), then
A∗X = XB∗.
Remark 3.33 Theorem 3.32 holds for B∗ log-hyponormal operator.
Theorem 3.34 (Bachir and Lombarkia,[6]) Let A ∈ B(H) be dominant operator and
B∗ ∈ B(H) be w-hyponormal such that KerB∗ ⊂ KerB, then if AX = XB for some X ∈
B(H),
Then A∗X = XB∗

Proof
We prove theorem 3.34 by considering two cases, i.e , when B∗ is injective and when its
not injective.
However, since the proof of the two cases are almost the same, we will prove the first
case in which B∗ is injective.
Suppose B∗ is injective. Now by hypothesis, AX = XB for some X ∈ B(H).

We note that RanX is invariant for A and (KerX)⊥ is invariant for B∗.
Consider the following decompositions
H = RanX⊕ (RanX)⊥,H = (KerX)⊥⊕KerX
and

A =

A1 A2

0 A3

 ,B =

B1 0

B2 B3

 ,X =

X1 0

0 0


Then we get A1X1 = X1B1 · · ·∗.
Now, we suppose B∗1 =U∗|B∗1| is the polar decomposition of B∗1
By multiplying the le� hand side and the right hand side of ∗ by |B∗1|

1
2 , we obtain,

A1X1|B∗1|
1
2 = X1B1|B∗1|

1
2

, hence

A1X1|B∗1|
1
2 = X1|B∗1|

1
2 (B∗1)∗

Now since A1 is dominant, and B∗1 is w-hyponormal, then ˜B∗1 is semi-normal.
Clearly, A1X = ˜B∗1X implies A∗1X = ( ˜B∗1)∗X
Therefore, A1|RanX1|

|B∗1|
1
2

and ˜B∗1|Ker(X1
|B∗1|

1
2
)⊥ are normal operators.
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Since X1 is injective with dense range and |B∗1|
1
2 is injective, thus

Ran(X1|B∗1|
1
2 ) = Ran(X1) = RanX and

Ker(X1|B∗1|
1
2 ) = Ker(X1) = KerX

Clearly, B∗1|Ker(X)⊥ is normal and Ker(X)⊥ reduces B∗.

Therefore Ran(X) reduces A and Ker(X)⊥ reduces B.
It thus follows that A2 = A3 = 0
Since we have shown that A1 and B1 are normal, it therefore follows that A∗1X1 = X1B∗1.
Hence A∗X = XB∗.
Theorem 3.35 Let A∗ ∈ B(H) be w-hyponormal and B ∈ B(H) be w-hyponormal with
Ker(A∗)⊂ Ker(A) and Ker(B)⊂ Ker(B∗).
If AX = XB for some X ∈ B(H), then A∗X = XB∗.
Theorem 3.36(Rashid,[55]) Let A∗ ∈ B(H) be an injective w-hyponormal operator and
B ∈ B(H) be dominant. If XA = BX for some X ∈ B(H), then XA∗ = B∗X .
Proof
See [55]
Theorem 3.37 Let A ∈ B(H) be w-hyponormal operator and B∗ ∈ B(H) be injective-w-
hyponormal, then if AX = XB for some X ∈ B(H), then A∗X = XB∗.
Theorem 3.38 Let A ∈ B(H) be w-hyponormal operator such that KerA ⊂ KerA∗ and
B∗ ∈ B(H) be w-hyponormal such that KerB∗ ⊂ KerB. If AX = XB, then A∗X = XB∗.
Remark 3.39 We note that the proofs of Theorems 3.37 and 3.38 follows easily from that
of Theorem 3.34.
In the following result, by replacing the condition on A from being dominant to being a
class y operator in Theorem 3.29, we show that that the theorem still holds.
Theorem 3.40 (Bachir,[8]) Let A ∈ B(H) be a class y operator and B∗ ∈ B(K) be w-
hyponormal such that KerB∗⊂KerB. If AX =XB for some X ∈B(H,K), then A∗X =XB∗.
Proof
We note that the proof of theorem 3.40 is similar to that of theorem 3.34.
In this theorem, we will proof the second case that we skipped in Theorem 3.34 (i.e the
case when B∗ is not injective).
Suppose B∗ is not injective. Then kerB∗ ⊂ KerB implies that KerB∗ reduces B∗. Now,
since KerA reduces A, we note that the operators A and B can be wri�en as the following
decomposition.
H = (KerA)⊥⊕KerA,K = (kerB∗)⊥⊕KerB∗ as follows

A =

A1 0

0 0

 ,B =

B1 0

0 0


.
We thus have that A1 is injective class y operator and B∗1 is injective w-hyponormal op-
erator.
Now let X : (KerB∗)⊥⊕KerB∗→ (kerA)⊥⊕KerA and let X = [Xi j]

2i, j = 1 be the matrix
representation, then AX = XB implies that A∗X = XB∗.
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Corollary 3.41 Let A,B∈ B(H,K) be operators such that A is an injective w-hyponormal
operator and B∗ is a class y operator.
If AX = XB for some X ∈ B(H,K), then A∗X = XB∗.
Remark 3.42 Corollary 4.41 is an immediate consequence of Theorem 3.40 by reversing
the conditions on A and B∗.
Theorem 3.43 Let A ∈ B(H) be w-hyponormal operator such that KerA ⊂ KerA∗ and
B∗ ∈ B(K) be a class y operator. If AX = XB for some X ∈ B(K,H), then A∗X = XB∗

Proof
By decomposing A into the normal and pure parts, we get
A = A1⊕A2 on H = H1⊕H2.

Let X =

X1

X2

 : K→ H

Since KerA2 ⊂ KerA∗ is injective ,then AX = XB impliesA1X1

A2X2

=

X1B

X2B


Thus A∗X =

A∗1X1

A∗2X2

=

X1B∗

X2B∗

= XB∗.

In the next result, we extend the Fuglede-Putnam theorem to posinormal operators.
Theorem 3.44 (Bachir,[7]) If A ∈ B(H) is hyponormal and B∗ ∈ B(H) is an invertible
posinormal operator such that AX = XB for some X ∈C2(H), then A∗X = XB.

We now generalize the Fuglede-Putnam theorem by relaxing the normality of A to p-w-
hyponormal operator and that of B∗ to class y operator.
Theorem 3.45(Prasad and Bachir,[47]) Let A ∈ B(H) be an injective p-w-hyponormal
and B∗ ∈ B(K) be class y operator. If AX = XB for some X ∈ B(K,H), then A∗X = XB∗.
Theorem 3.46 If A ∈ B(H) is a p-w-hyponormal operator such that KerA ⊂ KerA∗ and
B∗ ∈ B(K) a class y operator, such that AX = XB for some X ∈ B(K,H), then A∗X = XB∗.
Proof Follows easily from the proof of Theorem 3.43
That is, by decomposing A into normal part A1 and pure part A2 as follows,

A = A1⊕A2 on H = H1⊕H2 and by le�ing X =

X1

X2

 : K→ H1⊕H2.

We find that since KerA2 ⊂ KerA∗2 and A2 is pure, A2 is injective.
Thus AX = XB implies
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A1X1

A2X2

=

X1B1

X2B2


.
Hence,

A∗X =

A∗1X

A∗2X

=

X1B∗1

X2B∗2

= XB∗

Which shows that A∗X = XB∗.

Generalization of the Fuglede-Putnam theorem by putting conditions to X.

So far, we have tried to generalize the Fuglede-Putnam theorem by relaxing the normality
hypotheses of the operators A and B.

In this section, a generalization of the Fuglede-Putnam theorem is done by pu�ing some
conditions on the operator X .
Lemma 3.47Let X ∈ B(H) be unitary and A,B ∈ B(H) be operators.If XA = BX , then
XA∗ = B∗X
Remark 3.48 By dropping the unitary hypothesis on X in Lemma 3.47, we use a matrix
operator trick by use of the Julia operator to arrive to the result below.
Theorem 3.49(Mortad,[42]) Let A,B ∈ B(H) be operators and suppose X ∈ B(H) is a
contraction such that

(1−X∗X)
1
2 A = B(1−XX∗)

1
2 = (1−X∗X)

1
2 A∗ = B∗(1−XX∗)

1
2 = 0

If XA = BX , then XA∗ = B∗X .
Proof
Consider the matrix operators defined on H⊕H as

Â =

0 0

0 A

 , B̂ =

B 0

0 0


and

N̂ = J(N) =

(1−NN∗)
1
2 N

−N∗ (1−N∗N)
1
2
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Then N̂Â=

0 NA

0 (1−N∗N)
1
2 A

=

0 NA

0 0

 by hypothesis. We also have B̂N̂ =

B(1−NN∗)
1
2 BN

0 0

=0 BN

0 0


Then B̂N̂ = N̂Â.
But N̂ is unitary so that we have

B̂∗N̂ =

B∗(1−NN∗)
1
2 BN

0 0

=

0 NA∗

0 (1−N∗N)
1
2 A∗

= N̂Â

.
Thus we get B∗N = NA∗.

Corollary 3.50 Let A and B be two bounded operators. If N is an isometry such that
B(1−NN∗)

1
2 = B∗(1−NN∗)

1
2 = 0(1)then BN = NA =⇒ B∗N = NA∗.

Theorem 3.51 Let A,B ∈ B(H) be operators and X ∈ B(H) be a partial isometry. If
(i) XA = XB
(ii)‖A‖ ≥ ‖B‖
(iii) (X∗X)A = A(X∗X)

(iv) X(‖A‖2−AA∗)
1
2 = 0

then XA∗ = B∗X .
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4 Applications and conclusions

In this chapter, we give some of the numerous applications of the Fuglede-Putnam theo-
rem and give a detailed summary of our work.

4.1 Applications of Fuglede-Putnam theorem

In this section, we look at some of the applications of the Fuglede-Putnam theorem.
In the following result, we use the Fuglede-Putnam theorem to prove that if we have
self-adjoint operators(bounded or unbounded) and if their product is normal, then it is
self-adjoint provided a certain condition is satisfied.
Albrecht and P. G. Spain [2] proved that if we have two bounded self-adjoint operators
A and B and if B satisfies σ(B)∩σ(−B)⊆ {0}.....∗∗, then AB normal implies AB is self-
adjoint.
By using the Fuglede-Putnam theorem, we show that the above condition is satisfied
even when one operator is unbounded. That is, if B is is a bounded self-adjoint operator
satisfying condition ∗∗, and if A is any unbounded self adjoint operator, then the result
holds.
We also show that when both A and B are unbounded and B satisfies condition ∗∗, then
the result holds.
Theorem 4.1.1 (Albrecht and Spain) Let A and B be two bounded self-adjoint opera-
tors. Let B satisfy σ(B)∩σ(−B)⊆ {0}. If AB is normal, then it is self-adjoint.
Proof
Let N = AB. Then we have BAB = BN = N∗B. Using the Fuglede theorem we obtain
BN∗ = NB or B2A = AB2 and because f : σ(B2)→ σ(B) : λ 2 → λ is well defined and
continuous, f (B2)A = A f (B2) or BA = AB which implies that AB is self-adjoint.
Remark 4.1.2 In the following result, we show that the result above holds for A densely
defined self-adjoint operator and B a bounded self adjoint operator satisfying condition
∗∗.
Theorem 4.1.3 Let A be densely defined self-adoint operator and let B be a bounded self-
adjoint operator such that σ(B)∩σ(−B)⊆ {0}. If AB is normal, then it is self-adjoint.
Proof
Let N = AB be normal. Then since N∗ = (AB)∗ ⊃ B∗A∗ = BA
we have BAB = (BA)B = B(AB) =⇒ BN = (BA)B ⊂ N∗B. But N and N∗are normal, so
by the Fuglede-Putnam theorem we get BN∗ ⊂ NB = NB = NB since N is closed.
It thus follows that B2A=B(BA)⊆BN∗⊂NB= (BA)B=AB2 that is, B2 and A commute.
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Since the function f : σ(B2)→ σ(B) : λ 2→ λ is well defined and continuous, f (B2) and
Acommute or B and A commute i.e BA = AB i.e BA⊂ AB.
Since AB is normal, then D(AB) =D((AB)∗) and on D((AB)∗) we have (AB)∗= AB which
shows that AB is self adjoint.
Remark 4.1.3 Theorem 4.1.2 still holds if instead of assuming that AB is normal, we
assume that BA is normal and the other assumptions remains, then BA is normal.
Lemma 4.1.4 If N is an unbounded normal operator and if B is a self-adjoint operator
such that D(N)⊂ D(B), then

BN ⊂ N∗B =⇒ BN∗ ⊂ NB

.
Proposition 4.1.5 Let A,B be two unbounded self-adjoint operators. If N =AB is normal,
then

BN ⊂ N∗B =⇒ BN∗ ⊂ NB

.
Proof
The proof is trivial since D(AB)⊂ D(B).
Theorem 4.1.5 [40] Let A,B be two unbounded self-adjoint operators such that σ(B)∩
σ(−B)⊆ {0}. If AB is normal, then it is self-adjoint.
Proof
Let N = AB. We have BAB = B(AB) = (BA)B ⊂ (AB)∗B which implies that BN ⊂ N∗B
but D(N)⊂ D(K).
From Proposition 4.1.5, we have that BN ⊂ N∗B or B2A ⊂ B(AB)∗ ⊂ AB2 and B2Aα =

NB2α for α ∈ D(B2A). Using the same argument as in the proof of lemma 4.1.4, we can
say that for α ∈ RanPBnwe have B2Nα = NB2α .
Now we take the function f : σ(B2)→ σ(B) : λ 2→ λ to get f (B2)Nα =N∗Bα and hence
BNα = NBα . But BNα = N∗Bα on Hn.
Hence N∗Bα = NBal pha.
Using the orthogonal decomposition Hn = RanB⊕KerB for the B restricted to Hn, we
have N = N∗ on Hn. This shows that Nn, where Nn is N restricted to Hn, is self-adjoint.
Hence σ(Nn) ⊆ R∀n and then σ(N) ⊆ R and a normal operator with a real spectrum is
self adjoint. Thus AB is self-adjoint.
Remark 4.1.6 We have clearly seen that the result is true for any couple of self-adjoint
operators regardless of their boundedness and provided condition (∗∗) is satisfied.

Another application of the Fuglede-Putnam theorem is in the rectangular matrix ver-
sion of the Fuglede-Putnam theorem where it is used to prove that for rectangular com-
plex matrices A and B, both AB and BA are normal if and only if A∗AB = BAA∗ and
B∗BA = ABB∗.
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In [63] , the author proved that if A and B are normal n×n complex matrices, AB and BA
are normal if and only if A∗AB = BAA∗.
Later on, the author improved this in [65] by omi�ing the requirement that B be normal.
In this work, by using the Fuglede-Putnam , we show that the assumption on the nor-
mality of A can also be removed.
By recalling that Cmn denote the set of all m× n complex matrices, we start by having
Fuglede-Putnam theorem in matrix notation.
Theorem 4.1.7 (Fuglede-Putnam) Let P ∈Cmm,Q ∈Cnn,T ∈Cmn. If P and Q are nor-
mal and PT = T Q, then P∗T = T Q∗.
Proof
Since the matrix P⊕Q is normal, there exists a scalar polynomial g such that (P⊕Q)∗ =

g(P⊕Q).
This implies that P∗ = g(p) and Q∗ = g(Q). Hence

P∗T = g(P)T = T G(Q) = T Q∗

Theorem 4.1.8 Let A∈Cmn and B∈Cnm. Then AB and BA are normal if and only A∗AB=

BAA∗ and ABB∗ = B∗BA.
Proof
Suppose AB and BA are normal. Then (AB)∗ and (BA)∗ are normal.
Hence, since

A∗(AB)∗ = A∗B∗A∗ = (BA)∗A∗

, then by the Fuglede-Putnam theorem, we have A∗AB = BAA∗.
Similarly, from (AB)∗B∗ = B∗(BA)∗, we obtain ABB∗ = B∗BA
Conversely, from A∗AB = BAA∗ and ABB∗ = B∗BA, by multiplying the first equation by
B∗ and the second one by A∗, we have that AB and BA are normal.
Remark 4.1.9 We note that every A ∈Cnn has a polar decomposition as A =UH where
H ∈Cnn is positive semidefinite Hermitian and U ∈Cnm is unitary. If A is singular, U is
not unique. We have the following theorem.
Theorem 4.1.10 ([22]) Let A = UH where H ∈Cnn is positive semi definite Hermitian
and U ∈Cnn is unitary and let B ∈Cnn.
(a). If BU is normal and HBU = BUH , then AB and BA are normal.
(b). If AB and BA are normal, then HBU = BUH .
Proof
Suppose that BU is normal and HBU = BUH . Then

BAA∗ = BUH(UH)∗ = BUH2U∗ = H2BUU∗ = H2B = (UH)∗UHB = A∗AB

Since BU is normal and HBU = BUH , from the Fuglede-Putnam theorem, we also have
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H(BU)∗ = (BU)∗H .
Hence,

ABB∗ =UHBU(BU)∗ =UBU(BU)∗H =U(BU)∗BUH =UU∗B∗BUH = B∗BA

.
Therefore by Theorem 4.1.8, AB and BA are normal and hence the proof of (a).
Now to prove (b), we let AB and BA be normal and note that there exists a positive semi
definite Hermitian K ∈Cnn such that A = KU .
Using Theorem 4.1.8, we obtain H2B = A∗AB = BAA∗ = BK2.
Hence, since H and K are positive semidefinite Hermitian, HB = BK.
Then HBU = BKU = BUH .

4.2 Conclusion

In this thesis, we have found that under some certain conditions, some non-normal op-
erators are normal.
Some of the non-normal operators we have observed are hyponormal,p-hyponormal, log-
hyponormal, semi-normal, n-power normal, n-power quasihyponormal and restriction-
convexoid operators and we have clearly shown some conditions under which these op-
erators are normal. In this section, we give a brief summary of our work where we have
generalized the Fuglede-Putnam theorem to non-normal operators.
Remark 4.2.1 In Theorem 3.8, we have shown that if A is P−quasihyponormal operator
and B∗ is an invertible P−quasihyponormal operator such that AX = XB for X ∈C2(H)

and
∥∥|A∗|1−p

∥∥ .∥∥|B−1|1−p
∥∥≤ 1. Then A∗X = XB∗. However, we have proved in Theorem

3.18 that Theorem 3.8 still holds without the additional condition
∥∥|A∗|1−p

∥∥ .∥∥|B−1|1−p
∥∥≤

1..
We have also shown in Theorem 3.11 that if A is (P,k)−quasihyponormal operator and B∗

is an invertible (P,K)−quasihyponormal such that AX =XB for X ∈C2(H) and
∥∥|A∗|1−p

∥∥ .∥∥|B−1|1−p
∥∥≤

1., then A∗X = XB∗. However, we have shown that the results of Theorem 3.18 still holds
true if we consider a (p,k)− quasihyponormal operator instead of a p−qusihyponormal.
Since an invertible (p,k)−quasihyponormal is (p,k)− quasihyponormal operator, thus
in Theorem 3.19, we have shown that Theorem 3.11 remains true with (p,k)− quasihy-
ponormal operator without the additional condition

∥∥|A∗|1−p
∥∥ .∥∥|B−1|1−p

∥∥≤ 1..
Therefore, as a consequence of Theorem 3.19, we obtain.
Corollary 4.2.2 Let A,B,∈ B(H) and X ∈C2(H) such that AX = XB. Then A∗X = XB∗

under either of the following hypotheses
Remark 4.2.3 In Theorem 3.14, we have shown that for A ∈ B(H) with A∗ p-hyponormal
or log-hyponormal and B ∈ B(K) being dominant such that XA = BX , then XA∗ = BX∗

for X ∈ B(K,H).In [19], it is shown that every p-hyponormal and every log-hyponormal
operator is class A. However, the following example shows that the assertion of Theorem
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3.14 does not necessary hold true for class A operators.
Example 4.2.4 Let(En)

∞
n=−∞ be a complete orthonomal system for H . We denote the

orthogonal projection onto Cenby Pn. Let W be weighted shi� on H defined by

Wen =
{√

2en +1(n≥ 0)en+1(n < 0)
}

Then W ∗W −WW ∗ = P0.
Define an operator T on a Hilbert space K = H⊕Ce0 by

T =

W 0

0 0


.
Then T ∗2T 2 = (T ∗T )2 and therefore |T |2 = T ∗T .
This shows that T is class A. It is easy to see that
KerT = C(−e,⊕ e0) and KerT ∗{0}⊕Ce0.
Hence T does not reduce T and therefore the assertions of Theorem 3.14 are not neces-
sarily true for class A operators.
Remark 4.2.4 In Theorem 3.49, we have shown that we can also generalize the Fuglede-
Putnam theorem by pu�ing some conditions to X . Also, we note that the condition
B(1−NN∗)

1
2 = B∗(1−NN∗)

1
2 = 0 in Corollary 3.50 cannot be completely eliminated.

For instance, if we take the unilateral shi�U on l2 and set N = B =U , then N is an isom-
etry and one can check that does not verify equationB(1−NN∗)

1
2 = B∗(1−NN∗)

1
2 = 0 .

If we also set A =U , then BN =U2 = NA while B∗N =U∗U 6=UU∗ = NA∗.

We now give an example satisfying the hypothesis of Corollary 3.50 and not satisfied by
any other known version of the Fuglede-Putnam theorem.
Example 4.2.5 Consider the infinite matrices

X =



0 0 0

0 0

1 0

0 1 0

0 1

0


,B =



0 0 0 0 0

0 0 0 0

0 0 2 0

0 0 1 0

0 0 1

0



,A =



0 0 2 0 0

0 0 0 1 0

0 0 0 1

0 0 0

0

0


.
A simple computation shows that A and B are non normal and N is an isometry.
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Further we have

B(1−XX∗)
1
2 = B∗(1−XX∗)

1
2 = 0

.
Thus, we can verify that BX = XA and hence XA∗ = B∗X .

In Theorem 3.51 , we have shown that by requiring X ∈ B(H) to be a partial isometry,
then the Fuglede-Putnam theorem is satisfied given that the conditions in Theorem 3.51
are satisfied.
In examples 4.2.6 we show that without necessarily pu�ing conditions on A and B and
requiring that X is an isometry, the Fuglede-Putnam theorem is satisfied if the conditions
of Theorem 3.50 are met.
Example 4.2.4 Let

A=



0 0 a1

0 0 a

0 0 a2

0 0 a

0


,B=



0 0 a 0

0 0 b1

0 0 a

0 0 b2

0


,X =



0 1 0 0

0 0 0

0 0 0

0



A simple computation shows that A,B and X satisfies properties (i),(ii),(iii) and (iv) of

Theorem 3.51 and thus XA∗ = B∗X .

4.3 Summary

In summary, we have been able to prove that the Fuglede-Putnam theorem can be gen-
eralised to non-normal operators under the following condtions:
(1). A and B∗ are hyponormal. (2). B is invertible and ‖A‖ .

∥∥B−1
∥∥≤ 1.

Also, we have shown that the Fuglede-Putnam theorem holds under the following con-
ditions for some non-normal operators:
(i) If A and B∗ are hyponormal and X ∈ B(H).
(ii) If A and B∗ are subnormal and X ∈C2(H).
(iii) If A is quasihyponormal and B∗ is invertible quasi-hyponormal and X ∈C2(H).
(iv)If A∗ is p-hyponormal or log-hyponormal , B is dominant and X ∈ B(H).
(v) If A∗ is m-hyponormal, B is dominant and X ∈ B(H).
(vi) If A is (p,k)-quasihyponormal, B∗ is invertible (p,k)-quasihyponormal and X ∈C2(H).
(vii) If A is p-quasihyponormal, B∗ is invertible p-quasihyponormal and X ∈ B(H).
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(viii) If A is an injective p-hyponormal operator, B∗ is a classy and X ∈ B(H).
(ix) If A∗ is p-hyponormal, B is injective (p,k)-quasihyponormal and X ∈ B(H).
(x) If A is dominant, B∗ is p-hyponormal or log-hyponormal and X ∈ B(H).
(xi) If A is dominant, B∗ is w-hyponormal such that KerB∗ ⊂ KerB and X ∈ B(H).
(xii) If A is w-hyponormal, B∗ is injective w-hyponormal and X ∈ B(H).
(xiii) If A is w-hyponormal such that KerA⊂ KerA∗,B∗ is w-hyponormal and X ∈ B(H).
(xiv) If A is a class y operator, B∗ is w-hyponormal such that KerB∗⊂KerB and X ∈ B(H).
(xv) If A is w-hyponormal such that KerA⊂KerA∗ , B∗ is a class y operator and X ∈ B(H).
(xvi) If A is injective p-w-hyponormal for 0 < P≤ 1,B∗ a class y operator and X ∈ B(H).
(xvii)If A∗ is w-hyponormal, B w-hyponormal with KerA∗ ⊂KerA and KerB⊂KerB∗ and
X ∈ B(H).
(xviii) If A∗ is an injective w-hyponormal operator, B is dominant and C2(H).
(xix) If A is hyponormal, B∗ is invertible posinormal and X ∈C2(H).

4.4 Open Problem

In our research, we found that an open problem is to find more classes of non-normal
operators that satisfies the Fuglede-Putnam theorem.
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