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ABSTRACT 
 
Nuclear forensics (NF) is a systematic and scientific methodology designed to identify, 

categorize, and characterize seized nuclear and radiological materials (NRM). The aim of NF 

is to reveal the geographical origin, process/production history, age and intended use of the 

NRM to prevent future diversions and thefts, thereby strengthening the national security of a 

country. The complexity of the signatures utilizing the existing methods poses an analytical and 

interpretation challenge. Hence, the need to develop rapid, non-invasive and non-destructive 

techniques to speed up NF investigations. Laser Based Induced Breakdown Spectroscopy 

(LIBS) fingerprints the elements associated with the spectral peaks, while Laser Raman 

microspectrometry (LRM) uniquely identifies specific chemical compounds and 

microstructures in a sample based on molecular vibrations. Although these methods have high 

accuracy and versatility following little or no sample preparation, their practical utility is 

limited due to the complexity of the samples and the interpretative challenges of multivariate 

data.  Machine learning (ML) techniques can overcome these limitations and help analyse this 

complicated and bulky data. LIBS and LRM combined with ML possess the power to conduct 

direct, rapid NF analysis of limited size NRM with accuracy and precision. The uranium lines 

at 386.592 nm, 385.957 nm and 385.464 nm were identified as NF signatures of uranium in 

cellulose and uranium ore surrogates (uranium mineral ores and high background soil samples). 

The detection limit for uranium in cellulose was determined at 76 ppm. Multivariate calibration 

models in artificial neural network (back-propagation algorithm) were developed using 

resonant and weak uranium lines. The calibration model using weak U-lines predicted the 

uranium concentration in the certified reference material (CRM) RGUMix (101 ppm) and 

RGU-1 (400 ppm) at relative error of prediction (REP) = 2.97% and 2.25% respectively, while 

using resonant U-lines at REP = 69.31% and 4.25%, respectively. The calibration model 

utilizing weak U-lines predicted the uranium content in the uranium mineral ores in the range 
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of (112 - 1000) ppm. Application of principal component analysis (PCA) on the complete LIBS 

spectra of uranium ore surrogates revealed patterns that were related to their origin. PCA 

applied to selective spectral regions of uranium mineral ores successfully grouped them into 

their mineral mines (origin). NF signatures associated with uranium molecules in uranyl nitrate, 

uranyl sulphate, uranyl chloride and uranium trioxide samples were identified at 865 cm-1, 868 

cm-1, 861 cm-1, and 848 cm-1respectively using LRM (laser λ= 532 nm, 785 nm). Spectral imaging 

on simulate samples of uranium and uranium ore surrogates using NF signatures demonstrated 

the distribution of uranium molecules. Thus, ML assisted laser-based spectroscopy and spectral 

imaging, have the potential to not only perform rapid, direct and minimally intrusive qualitative 

and quantitative analysis of trace uranium, but also aid in the source attribution of uranium ore 

surrogates and distribution of uranium molecules.  
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CHAPTER 1: INTRODUCTION 

1.1 Background to the Study 

Nuclear terrorism is one of the most difficult security challenges that the world is currently 

facing (Kristo and Tumey, 2013). Nuclear terrorism involves hazards which demand 

safeguarding the nuclear security of the nation by anticipating emerging threats, disrupting and 

defusing terrorist attacks. It is therefore to the benefit and advantage of all nations to prevent 

diversion and illicit trafficking of nuclear and radiological materials (NRM) by strengthening 

their capabilities (Aggarwal, 2016; Kristo and Tumey, 2013). Diversion, smuggling and illicit 

trafficking of NRM have led to the development of a multi-disciplinary science known as 

“nuclear forensics” (Aggarwal, 2016).  

Nuclear forensics (NF) is a systematic and scientific methodology designed to identify, 

categorize, and characterize seized NRM. The aim of NF is to reveal the geographical origin, 

production history, age and intended use of the NRM to prevent future diversions and thefts, 

thus enhancing the national security of a nation. The illicit trafficking of nuclear materials, 

including low-threat materials like Uranium Ore Concentrate (UOC) or “yellow cake” presents 

an ongoing threat to peace and security (Robel et al., 2009).  

The beginning of nuclear forensics (NF) was in the year 1990, when the first case of illicit 

trafficking was reported. More than 1000 cases of illicit trafficking involving NRM were 

recorded between 1993 and 2005 in the International Atomic Energy Agency (IAEA) Incident 

and Trafficking Database (ITDB) (Mayer and Wallenius, 2007). Since 1993, the ITDB has 

registered a total of 3686 documented illicit trafficking incidents from its 36 participating states 

(Source: ITDB Factsheet, 2020). Of these 3686 incidents, 290 were confirmed or probable acts 

of smuggling or malicious acts (Figure 1.1), 1023 had insufficient information to confirm 

whether they were linked to smuggling or malicious use (Figure 1.2) and the remaining 2373 
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incidents were not linked to smuggling or malicious use (Figure 1.3) (Source: ITDB Factsheet, 

2020).  

Nuclear forensic investigations commence when a material is seized and categorized as ‘nuclear 

materials’ (Mayer et al., 2005).  As a result, the interception of NRM (uranium and plutonium) 

from illegal trafficking initiates questions related to its history, such as the mode of production, 

processing plant, production batch, the nature of the material and its origin or source attribution 

(Mayer et al., 2011). Identifying the origin of the illicitly trafficked NRM is very crucial in 

strengthening the security system of a nuclear plant or the nation and averting future trafficking 

or diversions.  

 

Figure 1.1: ITDB report of incidents with confirmed or probable act of smuggling or malicious 

use, 1993-2019 (Source: ITDB Factsheet, 2020). 
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Figure 1.2: ITDB report of registered incidents with insufficient information to confirm if they 

are linked to smuggling or malicious use, 1993-2020 (Source: ITDB Factsheet, 2020). 

 

Figure 1.3: ITDB report confirming the reported incidents to be unlikely or not linked with 

smuggling or malicious use, 1993-2019 (Sources: ITDB Factsheet, 2020).  
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The processing history, intended use and origin of the unknown NRM are inferred by so-called 

“Nuclear Forensic Signatures”. The nuclear forensic signatures are parameters such as the 

isotopic ratio, trace elemental concentrations, chemical impurities, non-metallic impurities, 

particle size, microstructure, macrostructure or decay products associated with unknown NRM 

(Mayer et al., 2011; Wallenius et al., 2018). As material moves from one stage to another in 

the nuclear fuel cycle, the nuclear signatures are created, modified and destroyed. Therefore, it 

is crucial to identify suitable analytical techniques in the context of the stage in the nuclear fuel 

cycle, where the NRM is processed. Each stage of the nuclear fuel cycle furnishes vital NF 

signatures which throw light on the origin of NRM (Borg and Hutcheon, 2013). NF signatures 

are divided into predictive and comparative signatures based on how the information is derived. 

Predictive signatures are those for which nuclear forensic science relies on the scientific 

knowledge, competence, and experience of the investigating scientists. Comparative signatures 

are derived by comparing the signature of the material in question with those saved in the 

national nuclear forensic library of NRM with known material history (Robel et al., 2009). The 

NF signatures being complex, they pose analytical and interpretational challenges. However, 

the various parameters measured during the NF investigations contain a wealth of information. 

This helps to develop the signatures and interpret with credibility the nature of the NRM (Mayer 

et al., 2011). Therefore, by employing multiple signatures, NF analysts can confidently 

conclude about the origin, intended use and history of the seized NRM (Kristo and Tumey, 

2013).  

Today, radiochemical analysis is regarded as the backbone of nuclear forensic investigation. 

However, many other analytical techniques designed for nuclear fuel cycle applications, such 

as alpha spectrometry (AS), gamma-ray spectrometry, microstructural techniques, and mass 

spectrometry, are still used (Mayer et al., 2005). X-ray fluorescence (XRF) and K-edge 

densitometry (KED) or L-edge densitometry (LED) are used for the quantification of uranium 
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or plutonium. The molecular compound of uranium in yellow cakes is determined by using 

infrared spectroscopy (IR). The isotope composition of nuclides with long life is determined 

using thermal ionization mass spectrometry (TIMS) (International Atomic Energy Agency, 

2014). Inductively coupled plasma mass spectrometry (ICP-MS) is utilized to determine the 

impurity and isotope ratios in seized samples while panoramic impurity of solid samples can 

be analyzed using glow discharge mass spectrometry (GDMS) for NF analysis. The isotope 

composition of an inhomogeneous or limited size sample is determined using secondary ion 

mass spectrometry (SIMS). Scanning electron microscopy (SEM) coupled with energy-

dispersive x-ray spectroscopy (EDX) determines the microstructure, elemental composition and 

distribution (International Atomic Energy Agency, 2015). The high resolution of transmission 

electron microscopy (TEM) is used for the examination of thin layers of a specimen. SEM and 

TEM combined can differentiate the different processes of different samples (Mayer et al., 

2005). Crystal structure and molecular composition of the material are obtained with the aid of 

X-ray diffraction (XRD). Techniques like AS, XRF, KED, LED, IR, TIMS, ICP-MS, GDMS 

are SIMS are destructive in nature (International Atomic Energy Agency, 2015). Most of these 

existing techniques require liquid samples to perform the analysis.  Another very critical 

limitation of the destructive techniques is that they generate radioactive waste. Although these 

techniques require very little material for the actual measurement, a substantial amount of the 

sample needs to be dissolved for preparing the sample (Varga et al., 2018). Gamma 

spectrometry, EDS, TEM, SEM and XRD are the only non-destructive technique used 

(International Atomic Energy Agency, 2015). However, these instruments have their own set 

of limitations. Nuclides like Pu242 or U236 cannot be detected by gamma spectrometry. TEM 

requires laborious sample preparation. SEM can analyse samples only when it is conductive 

(Mayer et al., 2005). EDX is destructive when it comes analysis of nonconductive samples. 

Also, its performance gets limited due to the spectral artifacts, poor ability to detect light 

elements and heterogenous nature of the sample (Eun, 1991; Wolfgong, 2016).  
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XRD is time consuming and requires a large volume of crystalline sample(Ginder-Vogel and 

Sparks, 2010). 

The methodologies currently in use or under development must be sensitive, non-destructive, 

rapid and validated to enable determination of the parameters during NF investigation with 

accuracy and precision (Mayer et al., 2005; Aggarwal, 2016).  

Laser induced breakdown spectroscopy (LIBS), as a spectrochemical analytical technique, 

fingerprints the elemental (ionic and atomic) composition of a material (Fichet et al., 1999). 

The technique has many advantageous features over other competing methods, particularly for 

nuclear applications, which include no sample preparation, small size sample requirement and 

capacity to perform direct, rapid and in-situ microanalysis of heterogenous samples ((Smith et 

al., 2002); (Fichet et al., 1999)). The atomic emission lines of metals lie mostly in the ultraviolet 

and visible spectral region and are therefore easily detectable by LIBS. LIBS can sample 

material in any state (solid, liquid & gas) (Dwivedi et al., 2010). Although LIBS is primarily a 

versatile elemental analysis technique, the spectra obtained have rich information content, 

making them useful for molecular identification. Thus, these inbuilt features make it an 

attractive nuclear forensic tool.  

Raman spectroscopy and spectral imaging, based on Raman scattering, is another technique 

which has evolved as a promising tool for stand-off detection because of its appealing features: 

non-destructive, generating spatial and spectral information, fast sensing capability, little or no 

sample preparation required, ability to detect samples through glass walls, transparent plastic 

and thin translucent materials (Moore and Scharff, 2009; Drumm and Morris, 1995).  

Spectrometric methods have high accuracy and versatility and are of immense potential in the 

study of nuclear forensics. However, the practical utility of most methods for rapid forensic 

analysis is limited due to the complexity of the samples and the difficulty of interpreting large 

data obtained from the spectra and spectral images.  For instance, it is difficult to analyze 
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colored compounds using Laser Raman microspectrometry (LRM) owing to laser heating, 

intense fluorescence, deviations from stoichiometry and diversity of oxidation states. The 

analysis in LIBS gets difficult in ambient air due to matrix effects caused by laser-matter 

interactions. Consequently, the strong continuum masks bury most of the spectral lines in the 

emission spectra. Also, the large multivariate poses interpretative challenges, thus limiting the 

practical applicability of LIBS in ambient air. These limitations of the spectrometric methods 

can be circumvented to a large extent with chemometrics and machine learning (ML) 

techniques. Chemometric techniques have the ability to extract relevant information from subtle 

nuclear forensic signatures while reducing the complexity and dimensionality of the meta 

multivariate data and subsequently improving the prediction accuracy of the model (Howley et 

al., 2006). Thus, combining LRM and LIBS with machine learning and chemometrics 

techniques can lead to great synergy and broaden their applicability to direct and rapid NF 

analysis by enabling data mining (analysis, model building and pattern detection) and extraction 

of required information from the large spectra/and images with a high level of accuracy and 

precision.   

1.2 Statement of the Problem 

 The growing danger of nuclear proliferation and the possibilities for terrorists to utilize 

radiological dispersal devices (RDD) and/or improvised nuclear devices (IND) call for nuclear 

forensics analysis techniques that can characterize small size samples and/or concealed NRM 

rapidly, directly and in a minimally invasive way. This represents a critical challenge for the 

existing traditional techniques (radiochemical, radiometric) and highlights the need to develop 

new analysis techniques with improved capability on the existing assessment methods and cope 

with the demand of the burgeoning field of nuclear forensics analysis and attribution. The 

current limitation in NF is the lack of appropriate methodologies to directly, rapidly, and non-

invasively analyze small size NRM in hidden conditions. This demands development of 

methodologies for direct and rapid characterization of trace (concentration less than 1000 parts 
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per million (ppm)  (Homman, 1994)) NRM. The potential to detect and quantify trace NRM 

directly, rapidly, and non-destructively under concealed conditions in a small sample size 

without destroying the sample’s integrity is of global significance.  

1.3 Research Objectives 

1.3.1 Main Objective 

The main aim of this research is to develop chemometrics and ML assisted laser spectroscopy 

(LIBS and LRM) and spectral imaging techniques (LRM) for rapid nuclear forensic analysis 

and attribution. 

1.3.2 Specific Objectives 

I. To identify uranium lines in uranium trioxide and uranium ore surrogates (uranium 

mineral ores and HBRA) using LIBS in ambient air and helium environment.  

II. To evaluate the limit of detection of uranium in cellulose (organic binder) using LIBS 

and develop a model using all the NF signatures of uranium by coupling artificial 

neural network (ANN) with LIBS quantitative analysis.  

III. To compare the prediction accuracy of the ANN-LIBS models using resonant and weak 

emission lines of uranium and later use the model with higher prediction accuracy to 

predict the concentration of uranium in the uranium mineral ores collected from 

various parts of Kenya. 

IV. To group the uranium ore surrogates to their geographical origins using principal 

component analysis (PCA) and further, identify the elements that attribute to their 

origins. To analyze the PCA performed on the mineral ores of Kenya using spectral 

feature selection. 
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V. To identify and assign the Raman scatter bands to uranium molecules in uranium 

compounds such as uranyl nitrate, uranyl sulphate, uranyl chloride and uranium 

trioxide and later utilize these bands to identify uranium molecules in the simulate  and 

and real sample (uranium ore surrogates). 

VI.  To obtain map distribution of uranium molecules in simulate and real samples (HBRA 

soil samples and uranium mineral ores). 

1.4 Significance and Justification of the Study 

Global climate change is a burning topic of discussion for the whole world, and carbon dioxide 

emissions are the primary reason for climate change. Clean energy is a must in the present 

world to combat climate change (Sadekin et al., 2019). The fast-growing demand for energy, 

particularly electricity in developing economies, and the global pressure to reduce green-house 

gas (GHG) emissions have forced several countries to consider adding nuclear power to their 

national electricity generation portfolios (International Atomic Energy Agency, 2021). The low 

carbon emissions of nuclear power plants and their ability to meet the increasing demand for 

energy have made them a strategic choice over traditional sources like coal, oil, and 

gas (Sadekin et al., 2019). Nuclear energy is assessed to play an important role in mitigating 

climate change in countries, where cheap renewable energy sources (RESs), e.g. solar power 

and wind power, are low or limited (International Atomic Energy Agency, 2021).  In 2010, 

under President Mwai Kibaki’s governance, the National Economic and Social Council 

recommended adopting nuclear power to meet the growing demand for electricity in the 

country. With the indisputable global nuclear renaissance and the government of Kenya’s plan 

to build a power plant by the late 2030s, the risk of nuclear materials falling into the wrong 

hands and nuclear attacks or smuggling of nuclear and radiological materials is likely to 

increase. There is a dire need for powerful tools to monitor undeclared activity, verify nuclear 

safeguards, respond to anthropogenic and hot particle releases to the environment, and analyze 
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materials such as debris at radiological crime scenes following terrorist attacks that might 

attempt to utilize IND and or RDD in light of the potential for nuclear proliferation risks posed 

or associated with a nuclear power program. 

Therefore, a novel multimodal machine learning based microanalytical methodology was 

developed to combine trace and spatially resolved chemical, elemental, and microstructural 

information to realize direct rapid nuclear forensic characterization of NRM in the country, 

within the burgeoning field of nuclear forensics analysis and attribution.  
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CHAPTER 2: LITERATURE REVIEW 

Nuclear Forensics being a fairly young branch of science, analytical methods were borrowed 

from other scientific areas namely nuclear fuel cycle, nuclear safeguards, geochemistry and 

material science (Mayer et al., 2007; Aggarwal, 2016; Lützenkirchen et al., 2019). The aim of 

NF investigation is to identify the origin and establish the history of the unknown NRM (Denton 

et al., 2020). Preservation of testimony is very important for safeguards and NF purposes 

(Marin et al., 2013). Today, NF science depends greatly on the subject expertise, skills, 

knowledge and experience of the scientists (Mayer et al., 2005; Wallenius et al., 2018). The 

challenges with the present day mass spectrometric and radioanalytical techniques, namely AS, 

TIMS, ICP-MS, GDMS, SIMS, SEM coupled with EDX, TEM and XRD in NF analysis, are 

that they are either destructive and generate radioactive waste, or time-consuming, or require 

laborious sample preparation (Mayer et al., 2005;  International Atomic Energy Agency, 2015). 

These limitations can to a great extent be overcome with the use of laser-based spectroscopy 

and imaging along with the application of statistical methods. 

2.1 Nuclear Forensics Using Laser Based Techniques 

The ability to accurately identify or locate the geographical origin of seized NRM rapidly is of 

great interest in NF investigations (Reading et al., 2016). Robel et al. (2009) developed an 

iterative partial least squares discriminant analysis (PLSDA) method that could successfully 

identify the production location of unknown UOC samples (Robel et al., 2009). Also, Reading 

et al. (2016), showed that PCA applied to radiometric signatures collected from gamma and 

alpha spectrometry serves as a useful NF tool in the source attribution of illicitly recovered 

UOCs. The study accurately linked all the 19 UOC samples to their geolocations in Australia, 

Canada and the USA (Reading et al., 2016). UOC products consist of different uranium species. 

Therefore, it is very important to identify these species so that the interdicted samples can be 

traced back to their origins.  Klunder et al. (2013), presented the first reported application of 
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near-infrared (NIR) spectroscopy for rapid, contactless and non-destructive analysis of UOC 

materials to detect and identify the chemical species and/or process involved in their formation. 

They used PCA for the classification of the different UOC samples (Klunder et al., 2013). 

Varga et al. (2017) described the use of characteristic signatures, namely REE pattern, 

radiochronometry, sulphur and organic impurities, to trace the origin or history of the UOC for 

nuclear safeguards and strengthen the national security of a country. 

The isotope ratio of uranium plays a crucial role in the NF investigation to determine the 

intended use and origin of NRM. Laser ablation sector field inductively coupled plasma mass 

spectrometry (LA-SF-ICP-MS), a non-destructive technique, was used in their study to 

determine uranium isotope composition in an enriched uranium sample by Marin et al. (2013). 

The results obtained from their study revealed that LA-SF-ICP-MS can be a robust and 

powerful method in NF studies (Marin et al., 2013). Varga et al. (2018) proposed an analytical 

method using a laser ablation multi-collector inductively coupled plasma mass spectrometer 

(MC-ICP-MS) to determine the uranium isotope ratio in solid nuclear samples for direct, rapid 

forensic analysis and nuclear security of the nation. The quasi-non-destructive method was used 

to characterize the illicit NRM for hazard assessment and source attribution (Varga et al., 2018). 

Thus, laser-based analysis coupled with statistical methods can help NF analysts speed up the 

analysis process while preserving the testimony for future investigations. 

2.2 Laser Induced Breakdown Emission Spectral Analysis using ML and Chemometrics  

LIBS has innumerable advantages in contrast to other analytical techniques presently used in 

the investigation of seized NRM. The ability of LIBS to carry out in-situ analysis of limited 

size samples, quickly and directly in heterogeneous matrices has enabled it to emerge as a 

versatile analytical tool (Smith et al., 2002). LIBS spectra contain very rich information about 

the material (Gornushkin et al., 2008).  
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The ability of LIBS to take continuous, rapid and non-invasive measurements has made it an 

attractive tool for monitoring the ongoing process in nuclear fuel reprocessing plants (Cremers 

et al., 2012). LIBS can detect light and heavy elements at the same time (Dwivedi et al., 2010). 

LIBS was used to detect uranium on surfaces and in soil by Chinni et al. (2009) for surveillance 

of the environment and the detection of weapons of mass destruction. Hartig et al. (2012) 

demonstrated that the use of chirped pulses in femtosecond LIBS improved the signal-to-noise 

ratio (SNR) of the uranium emission line. This method improves the sensitivity of uranium 

while controlling the ionization process, making LIBS an attractive technique for the 

characterization of NRM in NF analysis (Hartig et al., 2012). 

Although LIBS is seen as a versatile analytical tool, its spectra are extremely large and complex 

as it can collect thousands of data points within a second. Therefore, MVA techniques have 

been employed to extract the desired information from LIBS spectra (Labbé et al., 2008).  

Multivariate techniques, namely multivariate linear regression (MLR), partial least square 

(PLS) and principal component regression coupled with LIBS, were reported as useful for 

quantitative analysis (Doucet et al., 2011). LIBS coupled with chemometrics, namely soft 

independent modelling of class analogy (SIMCA), PCA, PLS-DA, and ML techniques like 

ANN have been used to classify and identify samples (Lui and Koujelev, 2011). Application of 

robust statistical methods to complex LIBS spectra has helped LIBS to emerge as an important 

tool in different fields (Labbé et al., 2008). 

Linear correlation and PCA are the most common chemometric techniques applied to LIBS 

spectra to identify material (Gornushkin et al., 2008). Hybl et al. (2003) demonstrated that LIBS 

combined with PCA has significant potential as a bioaerosol classifier. Munson et al. (2005) 

employed linear correlation, PCA and SIMCA on LIBS spectra to discriminate among bacterial 

molds, pollen and dirt, while Samuels et al. (2003) applied PCA to distinguish bacterial spores 

from molds and pollens. Linear correlation was applied to LIBS spectra to classify warfare 
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chemical agents and landmines (DeLucia et al., 2005), for depth profiling (Mateo et al., 2006), 

and for the classification of ancient pottery (López et al., 2006). ANN was applied to LIBS 

spectra for characterization of recyclable plastics (Sattmann et al., 1998) and rank correlation 

analysis to identify alloys in the jewellery manufacturing industry (Jurado-López and Luque de 

Castro, 2003). Gornushkin et al. (1999) applied linear and rank correlation to classify stainless 

steel and cast-iron samples. Gornushkin et al. (2000) used the same methods to classify iron 

ores and iron oxide samples. Using the PLS-DA model on LIBS spectra, Gottfried et al. (2009) 

achieved 100% classification of all samples with 2.4% and 0.7 % misclassification for silicate 

rock samples  and slate and shale samples, respectively. They coupled the emission spectra 

collected from geomaterials with PCA and PLSDA for identification of the distinguishing 

characteristics among them and classification of the materials. The technique enabled perfect 

discrimination of chemically similar but visually indistinguishable samples.  

Harmon et al. (2011) demonstrated that use of PLSDA on the LIBS spectra collected from three 

sets of columbite and tantalite samples successfully distinguished the samples into their 

geographic sources. Hark et al. (2012) classified coltan ores from South America, North 

America, Australia, Asia and Africa at success rates between 90 and 100% using the PLSDA 

classification model. REE was identified to be the factor contributing to the sample 

discrimination (Hark et al., 2012).  

Traditional statistical techniques such as SIMCA and PCA are based on linear processing. 

Therefore, they face difficulty in taking into account non-linear effects in the sample. ANN is 

a non-linear computational tool and has excellent potential to solve nonlinear problems, matrix 

effects and spectral overlapping (Motto-Ros et al., 2008). Inakollu et al. (2009) applied ANN 

on the LIBS spectrum to quantify the elementals in aluminium alloys. ANN was applied to 

LIBS by Ferrer et al. (2008) to predict the copper concentration in heterogeneous soil samples. 

Sattmann et al. (1998) applied ANN to the LIBS spectra collected from polymer samples to 
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identify and discriminate polyvinyl chloride from other polymers. Thirty six pieces of ceramic 

Terra Sigillata were successfully classified into respective provenances with the aid of ANN on 

the LIBS spectra (Ramil et al., 2008).  Great success was achieved by two groups, Koujelev et 

al. (2009) and Motto-Ros et al. (2008) to quantify the elemental composition of natural 

geological samples by employing ANN on the LIBS spectra. The potential of ANN combined 

with LIBS was applied in material identification, quantitative mineralogy and quantitative 

elemental analysis (Lui and Koujelev, 2011).  

Multivariate techniques like PLS and PCA were employed to analyze the LIBS data collected 

from the biological samples for wood furnish and wood polymer lignin (Labbé et al., 2008). 

PCA applied to the LIBS spectra of polymer lignin classified them into three distinct clusters 

based on their unique elemental composition (Labbé et al., 2008). The interpretation of positive 

loadings derived from the PCA indicated that alkali lignin had higher sodium content compared 

to hydrolytic. Organsolv lignin had the least sodium content (Labbé et al., 2008). The PLS 

model applied to the emission spectra predicted the buffer capacity of the wood furnish and a 

linear correlation was established between its buffer capacity and the elemental composition of 

the wood furnish (Labbé et al., 2008).  

LIBS has not been widely used in the determination of isotope ratio of many elements owing 

to the small isotopic shifts and the difficulty of detecting these shifts on account of Stark line 

broadening and Doppler effects (Chinni et al., 2009; Smith et al., 2002). PLS regression when 

applied to LIBS in ambient air successfully determined the isotopic ratio of U235/U238 and 

hydrogen/deuterium isotope shift lines (Doucet et al., 2011). This approach has been globally 

considered excellent for rapidly determining the isotopic ratio with the aid of LIBS (Doucet et 

al., 2011).  The results achieved demonstrate that the developed chemometric methods are 

robust and should be integrated into a portable handheld system so that it can be operated by 

unqualified personnel to identify NRM (Doucet et al., 2011). A robust system was built using 
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LIBS combined with a high-resolution spectrometer to rapidly determine the isotopic 

composition of H, U, 6Li and 7Li in ambient air for monitoring radiological, nuclear and 

explosive attacks (Cremers et al., 2012). Smith et al., (2002) showed that LIBS can be applied 

to obtain plutonium isotope ratios and that the results obtained are accurate and reasonably 

precise. They also concluded that the developed technique should enable LIBS to determine the 

isotope ratios of all lightweight actinides. Thus, chemometric techniques coupled with LIBS 

may be referred to enhance and further detect the shifts with higher sensitivity. These findings 

illustrate LIBS potential to perform extensive NF analysis (characterization, qualitative and 

quantitative) of NRM, both in large quantities as well as small sized samples, when combined 

with multivariate chemometrics. 

2.3 Laser Raman Microspectrometry using ML and Chemometrics       

The vibrational modes obtained using Raman spectroscopy are the fingerprints of the substance 

or substances present in a sample (Östmark et al., 2011). Fingerprints are unique characteristics 

of a substance and are often referred to as molecular signatures. Raman spectroscopy has 

emerged as an attractive forensic tool for standoff detection of explosives and hazardous 

substances at transportation centres (Moore and Scharff, 2009). This is because Raman 

spectroscopy has the ability to analyze limited size samples rapidly, non-destructively, with 

little or no sample preparation through glass walls, transparent plastic and thin translucent 

materials (Sun and Xin, 2014). 

Sun and Xin, (2014) developed a method to identify and extract meaningful hidden chemicals 

from the Raman spectra collected from mixture samples. The robustness of this technique lies 

in its ability to identify or quantify unknown chemical substances by using unknown or known 

reference spectra, respectively. Computational results on swept wavelength optical resonant 

Raman detector data revealed that the proposed method has the power to rapidly identify 
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unknown chemical substances in mixture samples. Thus, the method can be further developed 

for identifying NRM in mixture samples.  

One of the greatest challenges in chemometrics is to analyze and extract chemical information 

from complex analytical signals. Chemometric methods like chemical factor analysis, 

multivariate curve resolution-alternating least squares and immune algorithms have shown 

success in the resolution of complex signals.  Although, independent component analysis (ICA) 

is extensively used to separate complex signals, the statistical technique is unable to process or 

extract chemical information from complex signals as demonstrated by Shao et al. (2009). In 

their work, they developed a non-negative ICA to extract chemical information from 

multidimensional data. The proposed method extracted Raman spectra of the pharmaceutical 

tablets and mass spectra of the multicomponent overlapping gas chromatography-mass 

spectrometry very precisely. Therefore, this method can serve as a powerful tool to extract 

chemical information from complex analytical spectra. 

Madden and Ryder, (2003) demonstrated the use of machine learning techniques on Raman 

spectra for data reduction and prediction of cocaine concentration in solid mixtures. The study 

showed that with the use of Neural Networks and k-Nearest Neighbors on Raman spectra, good 

results are achievable provided data reduction improves the data dimensionality. Data reduction 

was achieved by feature selection. Thus, automated identification and quantification of U and 

Pt in nuclear and radiological materials can be achieved with better accuracy by applying ANN 

and k-Nearest Neighbors to Raman spectra. 

A typical Raman spectrum consists of 500-3000 data points and innumerable datasets 

containing 20 to 200 samples. Raman spectral data and images are a big challenge for ML 

techniques because of redundancy or highly correlated attributes in the data that lower the 

accuracy of the classification. Howley et al. (2006) investigated the use of PCA to reduce the 

redundancy in high-dimensional spectral data, thereby improving the predictive power of ML 
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techniques. It was concluded that Non-linear Iterative Partial Least Squares PCA combined 

with ML is a promising technique in the classification of high dimensional spectra.  

Characterization of uranium oxides has always been a great challenge for scientists owing to 

its intense coloration and laser induced heating (Allen et al., 1987). The high efficacy of the 

microscope and the micro-Raman spectrometer’s ability to focus a laser to micrometer size and 

perform multi-scanning has made it possible to obtain the Raman spectra of uranium 

compounds and oxides of uranium for its characterization. Palacios and Taylor (2000) 

concluded that in situ Raman is a robust characterization tool that can easily distinguish the 

uranium oxides. The technique enables the study of the mechanism involved during the 

transformation and stabilization of different oxides of uranium in oxidizing environments. Ho 

et al. (2015) for the first time classified the 95 uranium compound samples consisting of mainly 

uranium tetra fluoride, uranium ore concentrate and uranium dioxide by applying PCA on their 

Raman spectra for NF analysis. There are many portable Raman setups in the market which can 

detect very small size of white powdered explosives in the field. But when it comes to study of 

dark or deep colored explosives and propellants, Raman spectroscopy faces issues of ignition, 

fluorescence and background mitigations (Moore and Scharff, 2009). Thus, the application of 

LRM in the study of colored or white powdered uranium compounds is restricted because of 

the ignition, background mitigations and fluorescence caused by the colored samples. Low 

intensity lasers coupled with chemometrics can overcome these limitations immensely. In this 

work, the use of low power laser has been used to reduce the fluorescence and background 

mitigations pertaining to colored samples and prevent them from ignition while chemometric 

techniques were applied to assist in extracting the required information from the weak Raman 

spectra. Therefore, chemometrics coupled with Raman spectroscopy can help in the 

characterization of limited size NRM rapidly, non-destructively and non-invasively.  
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2.4 Analysis of Raman Spectral Images 

The new generation confocal Raman microscopy provides spatial and spectral information of a 

sample by rapidly, non-destructively, and non-invasively analyzing it at the sub-micron level 

(Zhao et al., 2013). The position of the Raman peak provides images of the molecular structure 

of the material and the intensity of the Raman peak yields images of the material concentration 

and distribution.  

Raman microscopic imaging is gaining popularity in the pharmaceutical industry because of its 

ability to characterize solid dosages. Raman imaging instruments use charge-coupled device 

(CCD) detectors because they are very sensitive and generate very little noise. But the limitation 

of these detectors is their vulnerability to cosmic rays, which dampens the performance of 

multivariate data analysis. Zhang and Henson, (2007) proposed an algorithm for cosmic spike 

removal. The algorithm has been observed to correct cosmic spikes and generate recovered 

spectra with insignificant spectral distortion. In addition to the cosmic spikes, fluorescence has 

always been a matter of concern while analyzing soil and rock samples. Pre-processing of the 

spectral data using asymmetrical least squares fit and Savitzky-Golay filtering can effectively 

reduce the fluorescence in the data (Zhang and Henson, 2007; Eilers, 2004).  

The biggest challenge of Raman spectral imaging is to condense the vast hyperdimensional 

spectral information into compact, easily visible, and meaningful data to ease the clustering of 

the chemical groups with similar patterns. Wang et al. (2006) used a differential wavelet-based 

approach combined with a fuzzy clustering algorithm to reduce noise and classify the Raman 

spectral images, respectively. The use of this algorithm on adhesive and denim interfaces 

showed that reduction of noise can improve classification accuracy. Traditional chemometrics 

like inverse least squares, classical least squares, MLR, and multivariate curve regression can 

successfully predict the chemical composition of samples with known constituents. However, 

the predictive accuracy reduces when any scientific information related to the sample is 
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unavailable. Turner et al. (2004) developed spectral identity mapping, a data reduction 

technique to generate chemically relevant images by reducing the dependency of training 

datasets, learning algorithms, or priori chemical information about the sample. 

Drumm and Morris, (1995) made their first attempt to apply PCA on Raman images where 

band overlapping, and background correction can be severe.  They demonstrated that 

reconstruction of Raman spectral images can be achieved with the aid of multivariate 

procedures. They concluded PCA is a feasible analytical tool for Raman imaging but caution is 

necessary while selecting spectral interval and pre-processing of the spectra to obtain desired 

results (Drumm and Morris, 1995). Thus, Raman spectral imaging in combination with 

multivariate chemometrics has the potential to extract qualitative and quantitative information 

from complex analytical data to speed up NF analysis of seized NRM 

2.5 Summary on Literature Review 

The multi-faceted NF analysis demands methods which are highly sensitive and preferably non-

destructive, non-invasive and less time-consuming (Aggarwal, 2016; Östmark et al., 2011). The 

method should also detect an explosive material at stand-off distance in a gaseous state and at 

very low concentration or as trace amounts of particles (Östmark et al., 2011). LIBS and LRS 

are undoubtedly powerful laser-based spectroscopic techniques for elemental, ionic and 

molecular analysis over a wide range of applications. These spectroscopic techniques are only 

as powerful as the information that can be retrieved from the resulting spectral data (Torrione 

et al., 2014). The experts in spectroscopy often make inferences based on their expertise and 

visual inspection of the data. However, in NF analysis, characterization of nuclear material 

cannot be singly achieved with human expertise. Multivariate ML techniques have the power 

to improve and enhance the performance of these laser based spectroscopic techniques by 

reducing the effects of noise, matrix, spectral interferences, cosmic spikes and fluorescence. 

Thus, ML coupled with laser based spectroscopic techniques can minimize the disparities 
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which often remain in the interpretation of data during NF analysis and thereby aid to develop 

novel methodology for rapid characterization of trace NRM.  
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CHAPTER 3: THEORETICAL BACKGROUND 

3.1 Laser-Induced Breakdown Spectroscopy  

LIBS is a spectrochemical technique, which detects the multielement composition of a sample 

in any state from its micro plasma (Dwivedi et al., 2010). The radiation released by the plasma 

when a laser beam with sufficient energy is focused on a small sample, fingerprints the element 

associated with the emission spectral lines. Thus revealing the elemental constituents of a 

sample (Dwivedi et al., 2010; Labbé et al., 2008). The plasma plume expands very rapidly with 

a supersonic velocity of about 106 cm/s and later cools, thus emitting analytical lines of 

emission, characteristic of the constituent atoms (Pauline, 2012). The LIBS spectrum of the 

plasma undergoes changes with time during its lifetime (Noll, 2012). Figure 3.1 displays the 

LIBS spectra as a function of time, at t1, t2 and t3 post the irradiation of the sample by the laser 

pulse. At t1, very weak intensity peaks of atoms and ions are seen due to free-free 

(bremsstrahlung) transitions of electrons. The intensity ratio of these small peaks to that of the 

neighboring continuum is low at this point of its lifetime. The laser-induced plasma cools off 

at time t2. As a result, there is a remarkable rise in the intensity of the spectral lines. The ratio 

of the intensity of the peak to that of the spectral continuum is also observed to increase 

remarkably. The plasma temperature drops even further at time t3 resulting in very low intensity 

emission lines (Noll, 2012).  The LIBS technique aims to produce an optically thin plasma with 

an elemental composition same as that of the sample and at local thermodynamic equilibrium 

(LTE) (Cremers and Radziemski, 2013). Hence, LIBS, particularly in the past decade, has 

emerged as a versatile elemental analysis tool (Smith et al., 2002). 

As a very small amount of the sample is vaporized during the process, LIBS is considered 

minimally destructive (Cremers and Radziemski, 2013). LIBS being an optical technique, is 

non-invasive in nature with no or minimal sample preparation. Also, LIBS, being a very 

sensitive instrument, has the potential to detect elements with low as well as high atomic 
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numbers. The atomic and ionic emission lines detected using the LIBS set-up provide 

qualitative information about the sample under investigation while the emission line intensities 

help in the quantification of the respective element once the LTE is attained.  

 

Figure 3.1: Schematic representation of LIBS spectra as a function of time post irradiation of 

the sample (Source: Noll, 2012).  

Under these conditions of no self-absorption and LTE, the temperature estimated from a 

Boltzmann plot ranges from 7500 to 8500 K.  The contribution of the first ionization state must 

be considered to quantify the element of interest (Lazic et al., 2001). Most of the soil elements 

do not have superposition free spectral lines which belong to the first state of ionization between 

240 nm to 650 nm (Lazic et al., 2001; Barbini et al., 2000). Therefore, it is necessary to measure 

the electron density of the plasma during the detection time window so that the concentration 
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of the element can be evaluated. The Saha-Boltzmann equation gives the average electron 

density of the laser-induced plasma as below (Barbini et al., 2000), 

𝑁! =
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where B ≈ 6.05 x 1021cm-3, 𝑁( and 𝑁) are the concentration of the atoms and ions respectively, 

T is the electron temperature, 𝑈( and 𝑈) are the partition function of the species in the atomic 

and first ionization state respectively and E1 represents the first ionization energy, 𝐾 is 

Boltzmann constant. 

Assuming there is no self-absorption in this process and the plasma has attained LTE, the 

intensity of the LIBS emission line corresponding to the transition between the energy levels 

Ek and Ei is expressed as (Wang et al., 2008), 
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where 𝐼*+) represents the measured intensity of the emission line, F is a constant determined 

after the concentrations of the species have been normalized, 𝐶,  is the concentration of the 

element corresponding to the emitting atomic lines, 𝐴+) is the transition probability of the given 

atomic line, 𝑔+ is the degeneracy of the k level,  𝑈,(𝑇) is the partition function of the emitting 

atomic lines, 𝐾is Boltzmann constant, T is the electron temperature and l is the transition 

wavelength. 

3.2 Confocal Raman Microspectroscopy  

One of the many spectroscopic methods that has recently seen a drastic increase in use is Raman 

Spectroscopy (Moore and Scharff, 2009). Raman Spectroscopy is based on the phenomenon 

called Raman scattering. In an inelastic scattering of light, the frequencies of the incident light 

either increase or decrease when a laser beam irradiates a spot on a sample. The change in the 

frequency of the incident and scattered light can result from any permitted transition between 
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any two molecular energy levels: electronic, rotational, or molecular. When light with energy, 

E = hω, is incident on a sample, the light interacts with the molecules in the sample causing 

either transmission, absorption (>hω) or scattering (<hω) in some manner. While the first two 

phenomena are related to middle infrared spectra (IR), the latter is the one responsible for 

Raman spectra. When the scattered light energy remains unchanged, it is called Rayleigh 

scattering as shown in Figure 3.2 (a). When the scattered light energy changes, the difference 

between the incident and scattered photon energy, ∆𝐸 = 𝐸- − 𝐸. ,	may convert to electronic, 

rotational or vibrational molecular energy (Demtröder, 2010). This phenomenon is known as 

Raman scattering, as shown in Figure 3.2 (b). When a photon with energy EL collides with a 

molecule at ground state (S0), part of the photon’s energy is transferred to the molecule. The 

scattered light therefore has a lower energy ES than the incident light. This inelastic scattering 

is termed Stokes Raman scattering, as shown in Figure 3.2 (c). However, when the photon with 

energy EL collides with a molecule and the molecule transfers part of its energy to the scattered 

photon, the scattered photon has an energy ES higher than the energy of the incident photon. 

This super-elastic scattering is termed as anti-Stokes Raman scattering, as shown in Figure 3.2 

(d) (Demtröder, 2010). The change in the scattered photon energy is due to molecular 

vibrations. Thus, the Raman effect provides a molecular fingerprint of the substance (Johnston 

et al., 2015). 

The intensity (I) of Raman scattering in the Raman experiment is given by the Equation 3.3 

(Smith and Dent, 2005), 

𝐼 = 𝐾𝑙𝛼/𝜔0      

𝐼 = 𝐾𝑙𝜌/ 81
*
9
0
                                                                                           (3.3) 

where K consists of constants, w is the frequency of the incident light, l is the laser power and 

𝜌 is the polarizability of the electrons in the molecule. Considering that the Raman signal 
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strength or the intensity of Raman scattered light is indirectly proportional to the wavelength 

of the laser, the initial impression would be that the use of more energetic lasers would provide 

better performance. However, this is not always favourable because the photon could acquire 

enough energy to reach the electronic excited state instead of the virtual state, generating a 

florescence spectrum whose signal is more intense and obscures the Raman scattering.  Thus, 

use of the NIR diode laser (785 nm) reduces the intensity of Raman scattering, while use of the 

green laser (532 nm) increases the scattered light intensity. 

 

Figure 3.2: A Jablonski diagram showing (a) Rayleigh scattering, (b) Raman scattering, (c) anti-

Stokes Raman scattering, and (d) Stokes Raman scattering. Abbreviations: S0, ground state; S1, 

excited state (Source: Johnston et al., 2015). 

The spatial resolution of the Raman spectrometer is obtained by the laser spot diameter (LSD). 

The laser spot diameter (d) for a laser beam which operates in a fundamental mode and has 

Gaussian energy distribution across the beam is given by Equation (3.4) (Singh, 2012). 
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𝑑 = 𝑓 *
2
,                                                                                                         (3.4) 

Where f denotes the focal length of the lens, 𝛼 and 𝜆 represent the characteristic dimension and 

wavelength of the laser respectively. 

For a given objective, the LSD will be bigger for the NIR diode laser (785 nm) in comparison 

to that for a green laser (532 nm). Thus, the spatial resolution of the Raman spectrometer is 

dependent on the wavelength of the laser to a great extent. 

Raman spectroscopy uses the inelastic scattering of monochromatic light to probe molecular 

structure. 

3.3 Raman Imaging 

Raman imaging is a powerful tool which integrates Raman spectroscopy and digital imaging 

technology to generate spatial and spectral information about a sample (Boiret et al., 2014). 

This technique offers visualization of the chemical composition and molecular structure of a 

sample. Raman imaging is performed by focusing a laser beam onto the sample surface 

followed by scanning, i.e., acquiring one or more Raman spectra across various spatial positions 

on the sample surface (Stewart et al., 2012). The large number of spectra can yield high quality 

spectra, even though a single spectrum might contain a very weak signal. Due to the enormous 

number of spectra in an image, the integration time of each spectrum, i.e., the number of 

accumulations times the exposure time, must be kept as short as possible (Dieing et al., 2010). 

Raman imaging reveals discrete spectroscopic information at various spatial points within a 

sample. The data obtained is made up of a number of diffraction-limited images. Each image 

represents the wavelength band employed and each pixel corresponds to the Raman spectrum 

of the material at the given spatial location (Turner et al., 2004; Stewart et al., 2012). Data 

collection in imaging can reduce the effect of interferents as the chemical data contained in 

each pixel of an image corresponds to the molecule in that pixel and to a finite volume (Stewart 
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et al., 2012). The most common spectral imaging modalities are point-mapping, line-mapping 

and wide-field spectral imaging. Point-mapping Raman is suitable for near-field scanning and 

wide-field or line-scanning is typically used in the far-field. Raman chemical imaging is an 

important subclassification of Raman imaging (Turner et al., 2004). Raman spectroscopy 

combined with digital imaging technology to simultaneously visualize the molecular structure 

and chemical composition of a substance is called Raman chemical imaging (Stewart et al., 

2012).  It is a two-step process which involves the acquisition of a spectral image and the 

generation of a chemically relevant image contrast by processing the image data. Chemical 

imaging, like spectral imaging, is also suitable for analyzing complex heterogeneous samples 

(Turner et al., 2004). Point-mapping Raman instrumentation was employed to obtain Raman 

images in this work. Multiple Raman spectra were collected from several spatial locations of 

the sample to obtain the distribution of uranium molecules in pellets of uranium compounds 

and uranium ore surrogates. 

3.4 Chemometrics and Machine Learning Techniques 

ML techniques are strong mathematical and statistics-based techniques used to analyze data. In 

machine learning, the algorithm identifies patterns in data and adjusts the actions of the program 

accordingly (Villmann et al., 2008). Validation in ML is important to identify the algorithm 

that performs best on a given dataset. ML can be supervised or unsupervised. A ML approach 

that uses labelled input datasets and predetermined output datasets is defined as supervised ML 

(Kotsiantis, 2007; Alloghani et al., 2020). In supervised ML, the machine first learns from the 

input labelled datasets to create an algorithm and then deduces conclusions utilizing the model 

(Zhai et al., 2020).  The ML algorithm learns from the training datasets that have labels 

containing pattern(s) (Zhai et al., 2020). The ability of the ML algorithms to classify and predict 

predetermined output datasets accurately or inaccurately depends on the predetermined 

ML. The learning process stops when the performance of the algorithm reaches an acceptable 
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level. The supervised algorithm first uses the training datasets to perform analytical tasks, 

followed by the construction of contingent functions to map new instances of the attribute. It 

has been noticed that to achieve the desired result in less computational time, a training set of 

66% is rationale (Alloghani et al., 2020). Supervised ML is classified into regression and 

classifications. Unsupervised ML involves analyzing and recognizing patterns without the use 

of labelled datasets for training the machine (Alloghani et al., 2020; Zhai et al., 2020). 

Unsupervised ML algorithms use all the variables as inputs and identify patterns in the training 

datasets without depending on the labelled datasets (Alloghani et al., 2020; Zhai et al., 2020). 

This makes the approach suitable for clustering and association mining. Unsupervised ML 

algorithms are ideal for creating labels for each data value that will later be utilized in 

supervised learning tasks (Alloghani et al., 2020). 

The implementation of statistical and mathematical techniques for extraction of chemical 

information or patterns by analyzing the chemical data is called Chemometrics (Otto, 2016).  

The technique reduces the size of the data to a smaller dimension with very little loss of 

information. ML and chemometrics, therefore, has tremendous potential to add to this ongoing 

research efforts to develop direct, rapid NF methods. ML techniques coupled with laser-based 

spectroscopy and spectral imaging can help in addressing the current limitations in NF analysis 

and assist in the development of methodology for rapid, direct, non-invasive characterization 

of trace NRM. 

3.4.1 Principal component analysis 

PCA is a classical statistical technique extensively used to accomplish multiple objectives: 

exploratory data analysis, efficient dimensionality reduction, building of predictive models and 

visual recognition of clusters within the data (Howley et al., 2006; Wentzell and Hou, 2012). 

PCA, an unsupervised ML technique, was used for dimensionality reduction and exploratory 
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data analysis of uranium ore surrogates. In PCA, linear mathematical transformation is 

performed on the input data to transform it into a new coordinate system (Myakalwar et al., 

2011). Fundamentally, PCA identifies the variations in a data set and reduces the variations to 

a smaller sets called principal components (PC) (Clegg et al., 2009). Reduction of data into 

smaller dimensions without any loss of information is achieved by discarding a few PCs.  

Principal components are orthogonal basis vectors (eigenvectors), uncorrelated, and linear 

combination of the input data, thus eliminating the problem of collinearity in the data (Madden 

and Howley, 2009).  

The first PC (PC1) contains the maximum variation and accounts for the majority of the total 

variance, followed by the second PC (PC2), third PC (PC3), etc. PC2 is orthogonal to PC1 

(Clegg et al., 2009). 

Mathematically, if a matrix X is the summation of the product of all PCs (p1, p2, p3, …. pn) and 

their weighing factor (t1, t2, t3….tn), that is,  

𝑋 = (𝑡3𝑝3 + 𝑡/𝑝/ + 𝑡4𝑝4……… .+𝑡5𝑝5) + 𝐸                                                     (3.5) 

𝑋 = 𝑇𝑃 + 𝐸          (3.6) 

where T is the matrix score containing the x-variables (spectra), P is the matrix of the loadings 

displaying the influence of the variables on each score, i.e., the intensities at different 

wavelengths or wavenumbers while E is the residual matrix representing the deviation between 

projected and original values.  

PCA generates, scores, loadings, and variances. The score plot or the PCA plot displays the 

variations in the sample while the respective loadings display the variations which influence 

each PC. Peaks close to ±1 in the loadings contribute more significantly to the variation in the 

data. The peak in LIBS or Raman spectra is associated with the elements or molecules in the 

sample respectively (Clegg et al., 2009). 
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3.4.2 Artificial neural networks (ANN) 

ANN, a supervised ML technique, is a very effective nonlinear computational tool having the 

potential to model any complex function by representing the functional relationship between 

input sets and corresponding output sets through an ANN architecture (Marini et al., 2008). 

ANNs have many advantages over the existing traditional computing and modelling tools. They 

are robust, fault tolerant and at the same time keep a check on the dimensionality problem while 

modelling complex and nonlinear functions (Marini et al., 2008; Liu et al., 1993). Therefore, 

ANN was used in this study to overcome the non-linearity between the intensity of the uranium 

emission line and its respective concentration and develop a suitable model to quantify the 

uranium content in the uranium mineral ores collected from different parts of Kenya.  

An ANN has innumerable parallel arithmetic units termed as neurons. A neuron is 

mathematically defined as a bounded, parameterized and nonlinear function. The variables on 

which the neuron depends are called the inputs while its value represents the output.  The 

multivariate calibration model built using ANN is given by Equation (3.7) (Marini et al., 2008). 

𝑦 = 𝑓5(∑𝑤) 𝑥) +𝑤6) ,         (3.7) 

y is the value of the nonlinear function  𝑓5. It is the output of the neuron and can represent a 

sample response like concentration. 𝑥) is an input variable like a sample spectrum which is 

multiplied by a weight 𝑤). 𝑤6 is an offset term called bias and its presence or absence depends 

on the way the activation function, 𝑓5 is defined.  

The ANN principle and a sample architecture are illustrated in Figure 3.3. The artificial neuron 

identifies xi, the sum of input weights and compares it to a bias b, finally transforming the 

resulting value into a response i.e., the output n using a nonlinear transfer function. The network 

is formed by arranging the neurons in layers. The three-layer network is called a perceptron. 

Each neuron of the input layer (Layer 1) has one input which corresponds to the spectrum 
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intensity measured for a given wavelength. The outputs of Layer 3 (output layer) correspond to 

the results of the network. The neuron in the output layer corresponds to a chemical element 

that contributes to the spectrum. In Layer 2 , also called the hidden layer, the number of neurons 

is a free parameter (Motto-Ros et al., 2008). 

 

Figure 3.3: Artificial neural network principle and architecture (Source: Motto-Ros et al., 

2008). 

The algorithm must be trained or calibrated using a set of reference spectra, that is spectral data 

of known concentrations of element of interest, in order to obtain accurate results. The training 

phase involves determining the ideal set of bias and weight values to reduce the output errors. 

This is achieved with the use of a back-propagation algorithm, which is based on the steepest 

descent criterion. The algorithm, after several iterations, finds the best fit for the training set of 

input-output pairs. Finally, the validation set evaluates the prediction ability of the network 

(Motto-Ros et al., 2008). 

The back-propagation algorithm consists of backward-propagation or reverse pass and forward-

propagation or forward pass. The network outputs are computed by the forward pass layer by 

layer. One layer’s output is the input for the following layer. The goal of this algorithm is to 
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train the network to associate target or output patterns to curb the error between the actual and 

target output of the network (Liu et al., 1993). Thus, a net input is given by, 

𝑛𝑒𝑡7 = ∑ 𝑤)7𝑥) +	𝜃75
)83          (3.8) 

wij represents the connection weight between unit j in the hidden layer and unit i in the input 

layer, θj is the jth node bias and xi is the ith output from the input layer and (Liu et al., 1993). 

The output of unit j is given by Equation 3.9 (Liu et al., 1993). 

𝑃7 = 𝑓((𝑛𝑒𝑡7)           (3.9) 

𝑓( is an activation function. 

3.5 Identification and Assignment of Atomic Emission Lines and Molecular Bands 

3.5.1 Identification and assignment of LIBS emission lines  

The assignment of an emission line to a specific element is a combination of science, art and 

experience (Cremers and Radziemski, 2013). Thus, for precise assignment of the spectral line, 

the following points should be taken into consideration. 

(a) Knowledge of the sample: It is very important to have a basic knowledge of the 

sample under investigation. This will help assign the interference spectral lines to the 

appropriate element. The presence of emission lines corresponding to elements 

unexpected in the sample spectra indicates possible contamination of the sample. 

(b) Relative intensities of emission lines: The relative intensities of line emissions in the 

NIST database can be used as a guide to identify and assign the spectral lines to their 

appropriate elements (Cremers and Radziemski, 2013). 

(c) The state of ionization of the element: When there is an equal possibility of two 

elements being present in a given sample and these elements have emission lines with 

interference, then the spectral line that corresponds to neutral species is most likely to 
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be present in comparison to the one corresponding to their double or triple ionization 

state (Cremers and Radziemski, 2013). It may be noted that although species in the first 

ionization state are often observed in LIBS spectra in air, it is very unlikely to observe 

higher ionized states, namely doubly or triply state species, under this condition. 

(d) Observation of multiple resonant lines: Most of the elements have multiple resonant 

emission lines. Therefore, if one such resonant line is visible in the emission spectrum, 

then other resonant lines should also be observed in the spectrum (Cremers and 

Radziemski, 2013). 

3.5.2 Identification and assignment of Raman scatter bands 

To assign and interpret the Raman spectra for identification of the substances present in the 

sample, pattern matching by manually searching through the relevant publications is practiced. 

In Raman spectra, the Raman scatter bands act as a molecular fingerprint. Therefore, prior 

knowledge of the sample is undoubtedly a boon while analyzing the spectra and associating the 

Raman scatter bands to the appropriate molecules. Compounds of uranium are often oxidized 

due to laser heating and, therefore, there is always a possibility of observing the Raman scatter 

band associated with oxidized uranium compounds. Also, compounds like uranium chloride 

are hygroscopic in nature, therefore the Raman scatter band associated with U-O bond may also 

be seen in the Raman spectra (Dargent et al., 2013). Thus, knowledge of the sample to be 

analyzed is essential to account for the occurrence of the unexpected Raman scatter band in the 

spectra, which may not always be due to contamination of the sample. 
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CHAPTER 4: MATERIALS AND METHODS 

4.1 Laser Based Spectroscopy 

4.1.1 LIBS set up 

A schematic diagram of the experimental LIBS 2500 PLUS (Ocean Optics, Inc) set-up utilized 

in this study is illustrated in Figure 4.1.  

 

Figure 4.1: A schematic setup for laser induced breakdown spectroscopy.  

The LIBS system comprises seven spectrometer channels, which operate with a Universal 

Serial Bus (USB) compatible Windows PC (32-bit). Each of these seven spectrometers has a 

chip with the data programmed inside it along with the wavelength calibration coefficients. The 

specifications of these seven spectrometers are listed in Table 4.1. Each of these seven 

spectrometers is made up of a linear silicon CCD array of 2048 pixels and a 0.065 nm optical 

resolution. The sample is kept on a stage, which is manually controlled. A Q-switched pulsed 

Nd-YAG 10 ns wide laser (Ocean Optics, Inc., (Quantel Laser)), operating at 1064 nm 

fundamental wavelength and 10 Hz pulse, is focused through a quartz lens with a focal length 

of 101 mm, to ablate the sample surface, thus generating a high temperature micro-plasma. 

When the plasma cools down, the excited atomic and ionic species emit radiation that 
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fingerprints the elemental composition of the sample. The emission radiation is collected by a 

fused silica optical fiber having a 0.22 numerical aperture and simultaneously recorded with 

the aid of these seven HR2000+ High-resolution Miniature Fiber Optic Spectrometers. The 

optical fiber is placed at 90o in the direction of the plasma.  

A USB port is used to connect the LIBS system with the computer so that the OOILIBS 

software installed in the system displays the LIBS spectrum (LIBS 2500 PLUS Operational 

Manual, 2008). The OOLIBS software embedded in the system compares the LIBS spectrum 

with the inbuilt library comprising of 2500 atomic emission lines from the National Institute of 

Standards and Technology (NIST) and identifies the elements. 

Table 4.1: Specification of the seven-channel spectrometer of LIBS 2500 plus. 

Model Region Gratings (lines/nm) l-Band nm 

HR+C0463 UV 2400 200-305 

HR+C0464 UV 2400 295-400 

HR+C0465 Visible 1800 390-525 

HR+C0466 Visible 1800 520-635 

HR+C0467 Visible-NIR 1800 625-735 

HR+C0468 NIR 1800 725-820 

HR+C0469 NIR 1800 800-980 

4.1.2 Laser Raman set up 

A schematic diagram of the confocal Raman spectrometer used for this study is shown in Figure 

4.2. The confocal setup improves the spatial resolution by suppressing the backgrounds arising 

from the substrates and fluorescence, the natural enemy of Raman spectroscopy. The confocal 

laser Raman spectrometer consists of a microscope, laser source, the spectroscope, CCD camera 

and an optical fiber system. The sample is mounted on a glass slide and focused using a 
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microscope objective. The microscope was utilized to bring the focus of the excitation light to 

the microscale. Raman spectra were always collected from the samples with the aid of a 

microscope (Dieing et al., 2010). Although the microscope contributes to enhancing the 

collection efficiency of the confocal laser Raman spectrometer, caution must be taken to avoid 

heating and thermal destruction of the sample. Raman spectra were acquired using a confocal 

laser Raman spectrometer (STR Raman Spectrum System, Seki Technitron Corp, Japan) fitted 

with a 532 nm green laser and a 785 nm NIR diode laser and an imaging triple grating 

monochromatic spectrograph of 300 mm. The system is equipped with gratings of 600, 1200 

and 1800 lines/mm spectral windows and a CCD camera. Neutral density filters (NDF) with 

different attenuation coefficients control the excitation of the laser.  

The laser light (green or red) is supplied to Raman optics through an optical fiber where the 

beam undergoes total internal reflection. The beam then passes through the NDF to the shutter. 

The laser beam is 100% filtered before it is passed to the shutter. The shutter directs the beam 

through the band pass filter of either a 532 nm or 785 nm laser, depending on the laser in use. 

The beam travels to the beam splitter, which divides the beam into two equal parts: one part is 

reflected while the other part travels to the sample through the beam splitter. The beam 

undergoes Rayleigh and Raman scattering on striking the sample. The scattered beam passes 

through the low pass filter of a 532 nm or 785 nm laser through the objective. The filter blocks 

the Rayleigh scattered beam and permits only the Raman scattered beam to travel through the 

optical fiber connected to the CCD camera. The CCD camera is, in turn, connected to the 

computer. The sample is brought to focus with the help of a motorized stage, a CCD camera 

and the STR software. Scanning and collection of Raman spectra from random points were 

achieved with the help of the motorized stage.  When a sample is excited by a laser beam, the 

Raman scattered beam is collected by the CCD camera and the imaging spectrometer. The 

number of accumulations and the exposure time were set with the aid of the STR software. To 
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minimize the background impact on the Raman spectra, the measurements were recorded in a 

dark room.  

 

Figure 4.2: Confocal Raman Microspectrometer set-up (Technotron Corp Raman spectroscopy 

Manual, 2012). 

4.2 Samples Acquisition 

4.2.1 Uranium ore concentrates (uranyl nitrate, uranyl sulphate, uranyl chloride and 

uranium trioxide)  

Analytical grade uranium compounds namely uranyl nitrate (UO2(NO3)2.6H2O), uranyl 

sulphate (UO2SO4, 3H2O), uranyl chloride (UCl3) and uranium trioxide (UO3) were acquired 

to prepare simulates. The uranium content in uranyl nitrate, uranyl sulphate, uranyl chloride 

and uranium trioxide were 47%, 55%, 69% and 83% respectively.  
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4.2.2 Uranium ore surrogates 

Samples from uranium mineral ores and high background radiation area (HBRA) were 

collected from various parts of Kenya study as they mimic uranium mines. A total of 39 

uranium ore surrogate samples (18 uranium mineral ores and 21 HBRA soil) were collected for 

laser-based analysis from various parts of Kenya as listed in Table 4.2. The geographical 

location of the uranium ore surrogates is shown in  Figure 4.3. Uranium mineral ores in rock 

form were collected from the Coast (KH-RK, MH-RK), Lake Magadi Rock (LMR) and South 

Ruri Rock (SRR) and HBRA soils were collected from the Coast (DZHS, KRK, SL), Lake 

Magadi Soil (LMS) and North Ruri Soil (NRS). Kenya’s high background radiation areas have 

gamma radiation levels that are five times higher than the global average (Patel, 1991). Soil 

samples were collected by delving a few centimeters into the earth’s surface while small pieces 

of rock samples were picked from the surface of the earth. The collected samples were packed 

in polyethene bags with stoppers and appropriately labelled. 

Table 4.2: Locations of the uranium ore surrogates. 

Sample Name Codes Used Location Description 

Coast KH-RK, 39° 17'44" E, 4° 27' 58" S Rock 

 MH-RK 39° 15'10" E,  4° 29' 9" S Rock 

Lake Magadi LMR 36° 16' 0" E, 1° 52' 59" S Rock 

South Ruri SRR 34° 21'46" E, 0° 33' 22" S Rock 

Coast DZHS  39° 25'60" E, 3° 55' 0" S Soil 

 KRK 39° 17'44" E, 4° 27' 58" S Soil 

 SL 39° 18'0" E, 4° 27' 0" S Soil 

Lake Magadi LMS 36° 16' 0" E, 1° 52' 59" S Soil 

North Ruri NRS 34° 22' 53" E, 0° 31' 31" S Soil 
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Figure 4.3: Geographical locations from where the uranium mineral ores and HBRA soil 

samples were collected. 

4.2.3 Certified reference materials (CRM) 

IAEA-RGU-1 (Uranium Ore (IAEA/RL/148)) and RGMIX are the certified reference materials 

used in this work. The concentration of uranium in IAEA-RGU-1 is 400 ppm as per the 

Certificate of Irradiation mentioned in Appendix 3.  RGMIX is a generic reference material 

containing 101 ppm of uranium (Kebwaro et al., 2011). 
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4.3 Sample Preparation 

4.3.1 Sample preparation for LIBS 

a. Simulate samples (pellets of uranium trioxide impeded in cellulose): In order to perform 

qualitative analysis and quantitative analysis, simulate samples with known concentrations of 

uranium over a broad range of 82 ppm to 108517 ppm were prepared with uranium trioxide (I5 

86) embedded in cellulose (organic binder). The ratio of the atomic weight of uranium to the 

molecular mass of uranium trioxide was evaluated to obtain the concentration of uranium (in 

ppm) in uranium trioxide (I5 86). RANDBETWEEN function in Microsoft Excel was used to 

generate a random concentration of uranium between 82 ppm to 108517 ppm. The mass of 

uranium trioxide was calculated to achieve the random concentration of uranium in the simulate 

sample using the dilution equation, 

𝐶3𝑉3 = 𝐶/𝑉/,          (4.1) 

where 𝐶3 is the initial concentration of uranium, 𝑉3 is the initial mass of UO3, 𝑉/ is the total 

mass of the mixture (UO3 and cellulose) and 𝐶/ is the new concentration of the simulate sample. 

The uranium trioxide and cellulose mixture was milled for 30 mins with a pestle in a mortar to 

ensure the mixture was homogeneous. 2 gm of the mixture was used to make pellets. A 

hydraulic pellet press machine (LPM-15T) with 10 tons of mass was exerted on the 

homogeneous mixture to prepare pellets of 25 mm in diameter.  

Uranium pellets with 39,617 ppm and 108,517 ppm concentration were used for qualitative 

analysis. Simulate pellets with concentration ranging from 95 ppm – 2025 ppm of uranium were 

used to build the calibration models in ANN for quantitative analysis.  

Baranwal et al., (2006) found the average uranium concentration in rocks collected from the 

HBRA zone ranged from 312 ppm to 1434 ppm. Therefore, simulate uranium samples ranging 

from 95 ppm – 1075 ppm were utilized to build the calibration model in ANN for quantitative 
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analysis of uranium mineral ores collected from different parts of Kenya. As defined by IUPAC, 

a trace element is any element having an average concentration of less than 100 ppm or less 

than 100 mg/kg (Bulska and Ruszczyńska, 2017). So, a simulate pellet with 85 ppm of uranium 

was also prepared to check the prediction accuracy of the calibration model. This pellet also 

mimicked a typical scenario of illicitly trafficked NRM under concealed conditions. 

b. Real samples (pellets of uranium mineral ore rocks and HBRA soils): Uranium mineral 

ores from the Coast (KH-RK, MH-RK), Lake Magadi (LMR) and South Ruri (SRR) were 

pulverized into grain sizes and sieved to obtain fine rock particles (< 2mm). Pellets of 25 cm 

each were prepared with 2 mg of a mixture of fine particles of uranium mineral ores with 

cellulose in the ratio of 4:1. The HBRA soil samples from the Coast (DZHS, KRK), North Ruri 

(NRS) and Lake Magadi (LMS) were naturally dried by spreading a thin layer of soil on a flat 

surface for three to four weeks in ambient air. The fine soil particles were separated from the 

coarse fragments of rocks by using a 2 mm sieve. The fine HBRA soil particles (< 2 mm) were 

mixed with cellulose in the ratio of 4:1 (2 gm of the mixture for a pellet of 25 mm diameter).  

c. Standard Samples (pellets of certified reference materials): Similarly, pellets of RGMIX 

(Kebwaro et al., 2011) (101 ppm of uranium) and IAEA-RGU-1 (Uranium Ore 

(IAEA/RL/148)) (400 ppm of uranium) were prepared.  

4.3.2 Sample preparation for Laser Raman Microspectroscopy 

To identify Raman scatter bands corresponding to the uranium molecules in uranium 

compounds, the ratio of the atomic mass of uranium to the molecular mass of uranium 

compounds was calculated to obtain the concentration of uranium (in ppm) in each uranium 

compound. The uranium simulate samples with a known concentration of uranyl nitrate (832 

ppm of U), uranyl sulphate (875 ppm of U) and uranium chloride (899 ppm of U) were prepared 

by adding cellulose to the original concentration of each of these compounds using the dilution 
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equation. The mixture was then milled and pressed using a hydraulic pellet press machine 

(LPM-15T) to prepare pellets of uranyl nitrate (832 ppm of uranium), uranyl sulphate (875 ppm 

of uranium), uranyl chloride (899 ppm of uranium) and uranium trioxide (900 ppm, 800 ppm 

and 150 ppm of uranium). A pellet was made by mixing 0.5 gm of uranyl nitrate (832 ppm of 

uranium), uranyl sulphate (875 ppm of uranium), uranyl chloride (899 ppm of uranium) and 

uranium trioxide (800 ppm of uranium) to study the uranium bands when the uranium 

compounds are mixed. Another pellet was prepared by mixing 0.5 gm of cellulose, uranyl 

nitrate (832 ppm of uranium), uranyl sulphate (875 ppm of uranium), uranyl chloride (899 ppm 

of uranium) and uranium trioxide (800 ppm of uranium) to study the change in Raman band 

position associated with uranium compounds due to the addition of an equal quantity of 

cellulose in the pellet. The two pellets were made by milling the respective mixtures for 30 min 

in a pestle and mortar.  A hydraulic pellet press machine (LPM-15T) was used to press the two 

mixtures into respective pellets with a diameter of 25 mm by exerting 10 tons of mass. A 

cellulose pellet with a diameter of 25 mm was prepared by applying a mass of 10 tons with the 

aid of a hydraulic pellet press machine (LPM-15T).  

Raman spectra from pellets of uranium ore surrogates (Coast (KH-RK, MH-RK), Lake Magadi 

(LMR) and South Ruri (SRR)) were collected to identify and assign the Raman scatter band 

associated with the uranium molecule. HBRA soil samples were also analyzed to identify and 

assign the Raman scatter band associated with the uranium molecule. The distribution of the 

uranium molecules in the HBRA soil (DZHS-01) pellet and uranium mineral ore (SRR-09) 

pellet was studied by performing spectral mapping on the pellet samples. 

4.4 Optimization of Laser Based Spectrometers 

4.4.1 Optimization of LIBS set-up 

The analytical performance of LIBS depends on the experimental conditions, namely the 

environment (air, helium, argon or vacuum), laser power, wavelength, energy pulse and other 
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parameters like laser to sample distance, delay time and the number of laser shots. The laser 

parameters were varied to optimize the LIBS set-up for the best signal-to-noise ratio before 

qualitative analysis of the HBRA soil, uranium mineral ores and the simulate samples of 

uranium in cellulose. LIBS spectra were collected from the HBRA soil pellet (DZHS-19), 

uranium mineral ores pellet (SRR-09) and simulate pellet of uranium (39617 ppm) by varying 

laser pulse energy (LPE) between 2.5 mJ to 50 mJ, integration time between 0 µsec to 2.4 µsec, 

laser head to sample distance between 0.4 cm to 1 cm and number of laser shots between 1 to 

6. Q-switch delay has been optimized to 150 µsec for this set-up by the manufacturer. The 

optimization was achieved by varying one parameter at a time while keeping the remaining 

three parameters constant. Fifty spectra were collected from different points on the pellet 

surface and averaged to obtain the representative emission spectrum. 

Three uranium lines (386.592 nm, 385.957 nm, and 385.464 nm) were used to optimize the 

SNR in the soil, rock and the simulate samples. These lines were chosen because they were 

neither saturated, nor did they have any self-absorption or spectral interference and helped to 

verify the SNR obtained from the weak uranium line at 386.592 nm with that of the resonant 

uranium lines at 385.464 nm and 385.957 nm.  

The highest SNR value for LPE, integration time, sample to laser distance and number of laser 

shots were evaluated using Equation 4.2  (Carranza et al., 2003). 

𝑆𝑁𝑅 = 9+,-.
9/
,                                                                                                                (4.2) 

where 𝐼5 represents the average noise of the intensity of very weak emission lines which is 

comparable to background between 365 nm - 415 nm for uranium trioxide pellet, 359 nm - 318 

nm for uranium mineral ore and 365 nm - 412 nm for HBRA soil samples. 𝐼.9:- is the intensity 

of the uranium lines (386.592 nm, 385.957 nm, and 385.464 nm). 
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4.4.2 Optimization of the Raman Spectrometer 

Raman spectra using the three windows were recorded. It was observed that for the analysis of 

uranium compounds, grating using 600 lines/mm and a center wavelength of 1050 cm-1 was the 

suitable combination of parameters as it covered the Raman shift between (95 -1200) cm-1. 

Raman shifts corresponding to uranium molecules are observed in this band. The power of the 

laser after the first filter and the objective was measured using the Orion Laser Power Meter, 

as shown in Table 4.3. For 532 nm laser, 25% NDF transmission intensity was used for 

recording the Raman spectra, while for 785 nm, laser 100% NDF transmission intensity was 

used. The 50X short-range microscope objective and laser 785 nm were concluded to be most 

suitable for the qualitative analysis of uranium samples. Laser 785 nm was set to a power of 

4.71 mW to reduce fluorescence and background mitigations from the colored uranium 

compounds and prevent ignition of the sample owing to laser heating. Prior to any 

measurements, calibration was performed using silicon to ensure that the sensitivity of the 

instrument is not altered at the time of measurement. The instrument automatically calibrated 

the wavenumber. With 1050 cm-1 center grating, an extended scan was obtained between 98 

cm-1 and 1800 cm-1. 
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Table 4.3: Laser power of the Raman spectrometer-using laser 532 nm and laser 785 nm after 

the objective and the first filter using X50 short lens. 

NDF Transmission Power after the first filter  Power after the objective 

Laser Intensity (%) Laser 532 nm Laser 785 nm Laser 532 nm Laser 785 nm 

5 0.695 W 4 W 0.024 W 0.000767 W 

10 0.709 W 3 W 0.0241 W 0.000526 W 

25 0.733 W 6 W 0.028 W 0.001094 W 

50 0.759 W 10 W 0.032 W 0.00223 W 

100 0.765 W 30 W 0.041 W 0.00471 W 

The laser spot diameter was found to be about 50 𝜇𝑚 for the 785 nm laser and 40 𝜇𝑚 for the 

532 nm laser. This is very much in agreement with the literature, which states that the laser spot 

diameter varies directly with the wavelength of light. Although the laser at 532 nm has a 

resolution higher than at 785 nm, it was concluded that the use of the laser at 785 nm was more 

suitable for this study of uranium compounds.  

SNR was evaluated using Equation 4.3 to obtain the best combination of number of 

accumulations, exposure time and laser power for each laser (Carranza et al., 2003). 

𝑆𝑁𝑅 = 901213
9/

,			           (4.3) 

where 𝐼;<=<" represents the intensity of the Raman scatter band (832 cm-1) associated with 

uranium and 𝐼5 is the average intensity of the adjacent noises on either side of the uranium 

band. 

4.5 Limit of Detection of Uranium using LIBS  

The lowest or least concentration of uranium that can be detected and quantified in cellulose 

using LIBS is called the limit of detection (LOD) of uranium and is evaluated using Equation 

4.4 (Mohamed, 2008). 



 

 

47 

𝐿𝑂𝐷 = 4>4
,
,           (4.4) 

where s represents the sensitivity and 𝜎? represents the standard deviation of the background 

intensity. In this study, sensitivity is the response of LIBS spectra to the change in uranium 

concentration and represents the slope or gradient of the calibration curve. Interference-free 

uranium peaks were identified  to evaluate the LOD. The spectral region between 380.01359 

nm and 390.97873 nm excluding the uranium emission line was considered to determine the 

standard deviation.  

4.6 Multivariate Data Analysis 

4.6.1 Spectral preprocessing of LIBS spectra 

Prior to qualitative analysis, the emission spectra from all the samples used were preprocessed 

using mean-centering, denoising and smoothing techniques to remove noise and redundant data 

while retaining the important information. Baseline correction and baseline offset were 

performed in Unscrambler X 10.4 on the data before carrying out quantitative analysis. This 

prevented the subtle uranium lines from getting removed as noise.  

4.6.2 Spectral preprocessing of Raman spectra 

A Raman spectrum is made up of deterministic signal or molecular information from the 

sample, a baseline and noise (Sobron et al., 2008). Therefore, separation of the signal from 

noise and background is very necessary prior to analysis of the spectrum (Schulze et al., 2005). 

The Confocal Raman Microspectroscopy system has a mechanism for background noise 

removal embedded with it. The Raman spectrometer was regularly calibrated using standards 

(silicon) prior to any measurements to minimize the Raman shift. The Raman spectra collected 

from the uranium samples pelletized in cellulose was preprocessed in Unscrambler X 10.4 

before any qualitative analysis.  
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Detrending (DT) was performed on the spectra to remove nonlinear trends that appeared in the 

Raman spectra. Standard normal variate (SNV) was applied to the Raman spectra to center the 

data on zero and remove interferences arising from particle-size and scattering effects (Klunder 

et al., 2013). SNV and DT in combination reduced the multicollinearity, baseline shift and 

curvature of the spectra. The baseline offset eliminated the fluorescence background in the 

spectrum by adjusting the data to the minimum point. Smoothing was applied to remove the 

noise in the data arising due to cosmic ray peaks without reducing the number of variables 

(Dieing et al., 2010). The smoothened spectra were subjected to de-resolve. The technique 

smoothens and convolves the spectra with a resolution function and further reduces the noise 

without eliminating the important information in the spectra.   



 

 

49 

 

Figure 4.4: Pre-processing of Raman spectra using Unscrambler X 10.4 

It was observed that the Raman spectra when subjected to the above sequence of pre-processing 

techniques could successfully eliminate the fluorescence background, cosmic ray peaks and 

noise from the Raman spectra collected from uranium compounds bound in cellulose matrix. 

The transformation of raw Raman spectra collected from uranium trioxide bound in cellulose 

using laser 785 nm when subjected to pre-processing techniques in the above-mentioned 
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sequence is shown in Figure 4.4. The figure displays the elimination of fluorescence and noise 

from the raw Raman spectra successfully using the pre-processing techniques.  

Raman spectra collected from mixture sample pellet (containing uranyl nitrate, uranyl sulphate, 

uranyl chloride and uranium trioxide) bound in cellulose, soil (HBRA) and rock (uranium 

mineral ores) samples had too much fluorescence and noise due to its matrix. As a result, the 

Raman scatter bands were not clearly visible. The mentioned pre-processing steps using 

Unscrambler X 10.4 could not effectively reduce the fluorescence and noise. Therefore, pre-

processing techniques in MATLAB Version 7.12 were used to eliminate the fluorescence 

background and noise in the spectra. The pre-processing steps involved baseline correction 

using asymmetrical least square fitting followed by smoothing using Savitzky-Golay filtering. 

The asymmetrical least squares fit fits every spectrum in the dataset. It determines how close 

the baseline needs to be fit to the original spectra and calculates the weight of negative 

contribution to the sum of fit (Eilers, 2004). Savitzky-Golay filtering was used to smooth the 

spectra to improve the SNR without eliminating the important information (number of 

variables). The unprocessed Raman spectra of the rock sample and Raman spectra after 

subjecting it to the mentioned pre-processing method in MATLAB are shown in Figure 4.5.  

Raman spectra recorded during spectral mapping from numerous spots of the mixture pellet 

(containing uranyl nitrate, uranyl sulphate, uranyl chloride and uranium trioxide), HBRA soil 

pellet (DZHS-01) and uranium bearing mineral ore pellet (SRR-09) were subjected to the pre-

processing technique in MATLAB to remove noise and fluorescence from the spectra. After 

pre-processing the spectra, the bandwidth of the uranium molecule was recorded for each 

sample. The recorded bandwidth was now assigned a different color (red, green and blue) to 

represent each uranium band and obtain the distribution of the uranium molecule in each 

sample.  
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Figure 4.5: Pre-processing of Raman spectra using MATLAB 

4.6.3 Exploratory analysis of LIBS spectra using PCA 

The conceptual framework for exploratory analysis using PCA is presented in Figure 4.6. PCA 

was applied utilizing Unscrambler X 10.4 to reduce data and obtain combinations of different 

PCs (variables) and relevant patterns within the set of data. In the PCA score plot, the score of 
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each principal component revealed variation of the samples and the loadings plot displayed the 

correlations among the principal components. PCA was performed on the LIBS spectra based 

on spectral feature (variable) selection to identify the spectral regions, which accurately 

grouped the samples to their geographical origin. The corresponding loading plot was later 

analyzed to identify the elements contributing to the attribution of the samples to their 

geological origins. 
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Figure 4.6: Conceptual framework for PCA analysis. 
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4.6.4 Quantitative analysis of LIBS spectra using ANN 

The intensity of the emission line is affected by a number of factors (sample surface, plasma 

size, plasma temperature, detector response function, laser pulse energy, and atomic variables 

of the transition line) making the relationship between the emission intensity of the element 

and its concentration non-linear. A multivariate calibration approach based on ANN coded in 

MATLAB was applied to overcome non-linearity effects in the spectral data. Prior to the 

quantitative analysis, PCA was applied to the LIBS spectra of the simulate samples to identify 

the outliers i.e., the simulate sample which did not group. On subjecting the spectra collected 

from 72 simulate uranium samples to PCA, three distinct clusters of samples were observed: 

one ranging in concentration between (95 – 513) ppm, the other between (542- 802) ppm and 

the third between (861 – 2025) ppm. Twelve simulate samples were identified as outliers and 

therefore removed from the set of simulate samples before proceeding with the modelling. 

Simulate uranium samples used to build LIBS-ANN calibration model to quantify uranium in 

uranium trioxide sample and uranium mineral ores collected from different regions of Kenya 

are listed in Table 4.4 and Table 4.5 respectively. 

The regression model was developed in MATLAB using feature selection to capture only the 

variables (wavelengths) that influence uranium concentration. Feature selection also assisted in 

reducing data size and removing noisy spectral regions that affected the results (Rai, 2014). The 

model was built for quantification of uranium in simulate (uranium trioxide bound in cellulose) 

and real samples (uranium mineral ores) with 33 and 34 uranium simulate samples respectively. 

The calibration model was trained, validated and tested using 50%, 25% and 25% of the input 

data (total uranium simulate samples) respectively. The best set of weights and bias values were 

obtained in the training phase to bring the network output errors to a minimum. A three-layered 

neural network was developed for quantitative analysis of uranium in simulate and real samples.  

The three layers consist of an input layer, hidden layer and an output layer.  
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Table 4.4: Simulate concentrations of uranium bound in cellulose for determination  

of uranium concentration using uranium lines. 

 

 

Table 4.5: Simulate concentrations of uranium for determination of uranium concentration 

using weak and resonant uranium lines. 

Simulate 
Samples U (ppm) 

Simulate 
Samples U (ppm) 

Simulate 
Samples U (ppm) 

Sample 1 95 Sample 13 423 Sample 25 750 
Sample 2 99 Sample 14 435 Sample 26 770 
Sample 3 126 Sample 15 470 Sample 27 802 
Sample 4 142 Sample 16 483 Sample 28 861 
Sample 5 174 Sample 17 497 Sample 29 904 
Sample 6 190 Sample 18 513 Sample 30 951 
Sample 7 192 Sample 19 533 Sample 31 976 
Sample 8 237 Sample 20 542 Sample 32 999 
Sample 9 284 Sample 21 562 Sample 33 1049 
Sample 10 334 Sample 22 610 Sample 34 1074 
Sample 11 377 Sample 23 619   
Sample 12 394 Sample 24 663   

The conceptual framework for quantitative analysis of the unknown samples is presented in 

Figure 4.7. The back propagation algorithm was used to obtain the best fit for the training set 

with input output pairs after several iterations. The feed forward networks were trained using 

Simulate 
Samples U (ppm) 

Simulate 
Samples U (ppm) 

Simulate 
Samples U (ppm) 

Sample 1 215 Sample 12 802 Sample 23 1402 
Sample 2 290 Sample 13 904 Sample 24 1450 
Sample 3 394 Sample 14 951 Sample 25 1500 
Sample 4 423 Sample 15 976 Sample 26 1554 
Sample 5 483 Sample 16 999 Sample 27 1602 
Sample 6 497 Sample 17 1049 Sample 28 1652 
Sample 7 542 Sample 18 1100 Sample 29 1700 
Sample 8 562 Sample 19 1200 Sample 30 1802 
Sample 9 663 Sample 20 1250 Sample 31 1903 
Sample 10 750 Sample 21 1301 Sample 32 2000 
Sample 11 770 Sample 22 1351 Sample 33 2025 
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the back propagation functions and Levenberg–Marquardt algorithm to obtain least mean 

square errors for non-linear regression. This therefore supported accurate training of the 

network. Internal validation was performed with the help of simulate pellets of known uranium 

concentration (excluded while training the model). The external validation of the model was 

performed by using CRM (RGMIX and IAEA/RL/148). Relative error of prediction (REP) 

determines the prediction accuracy of the model and is given by Equation 4.6 (Dingari et al., 

2012). 

REP(100%) = 366
@
∑ Y567)5858

Y ,@
A83        (4.6) 

where N represents the number of simulate samples in the dataset, 𝑐B[  is the predicted 

concentration and 𝑐) is the actual or reference concentration of the simulate and CRM samples. 
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Figure 4.7: Conceptual framework for ANN Analysis. 
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4.7 Safety Precautions 

The laboratory work involved preparation of different concentrations of uranium pellets by 

mixing the uranium ore concentrates, uranium bearing mineral ores and HBRA soil samples 

with cellulose. Depleted uranium is not classified as a dangerous substance. However, it is 

hazardous if they are in large quantities. All isotopes of uranium are radioactive. A radionuclide 

with a short half-life decays more rapidly and is more radioactive. Since the half-life of uranium 

isotopes is very high, therefore its emission is very low. Also, isotopes of uranium primarily 

emit alpha particles. Therefore, they are harmful or hazardous if ingested or inhaled and through 

skin contact. The radiation emitted by uranium bearing mineral ores and HBRA soil samples is 

generally low and the samples are safe to handle. However, precautionary measures were 

strictly followed by wearing gloves, a face mask and white coat while handling uranium salts, 

uranium bearing mineral ores and HBRA soil samples.  
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Optimization of LIBS for Uranium Trioxide, HBRA Soils and Uranium Mineral 

Ores 

The analytical performance of LIBS is highly dependent on the combination of parameters that 

produce the best output. LPE, integration time gate, laser to sample distance, number of laser 

shots and delay time are some of the many important LIBS parameters whose appropriate 

combination can improve the SNR of determined elemental lines (Ferreira et al., 2009). In this 

study, the best combination of those parameters, that gives the highest signal to noise ratio was 

computed using three uranium lines (385.464 nm, 385.957 nm and 386.592 nm). In the LIBS 

set-up used, the integration time was optimized by the manufacturer. Therefore, the highest 

SNR for LPE, laser to sample distance, delay time and the number of laser shots for uranium 

trioxide, HBRA soil sample (DZHS-19) and uranium mineral ore (SRR-09) was determined to 

optimize the LIBS set-up. The best optimized parameters do not always depend on the highest 

intensity of the emission lines. In certain situations, it is observed that the intensity of the 

background and therefore the noise also increase with an increase in the intensity of the signal. 

Thus, the SNR was computed by considering the ratio of the signal for each of these uranium 

lines at 386.592 nm, 385.957 nm and 385.464 nm to noise for emission lines between 360 nm 

– 367nm, 370 nm – 381 nm and 388 nm - 419 nm to obtain the optimized parameters utilizing 

the experimental set-up in ambient air. The noise was evaluated by averaging about 22 very 

weak emission lines comparable to the background.  
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5.1.1 Influence of laser pulse energy on the intensity of uranium lines 

Laser pulse energy is the optical energy of a laser pulse. The sensitivity of the uranium lines 

with change in the LPE in ambient air was studied by evaluating the ratio of the signals i.e., the 

ratio of the intensity of the uranium emission lines at 385.464 nm, 386.592 nm and 385.957 nm 

to noise. These three uranium lines were selected to study the response of very resonant uranium 

line (385.957 nm), resonant uranium line (385.464 nm) and weak uranium line (386.592 nm) 

to change in LPE in uranium trioxide, HBRA soil (DZHS-19) and uranium mineral ore (SRR-

09) bound in cellulose. The ratio of the signal (uranium lines) to background ratio (SBR) was 

considered to categorize the three uranium emission lines as very resonant, resonant and weak 

uranium line. Uranium line with SBR between 1.4 and 1.8 was categorized as resonant line, 

while that below 1.4 was considered as weak line and above 1.8 as very resonant line. The 

intensity of the three uranium lines with respect to change in LPE in uranium trioxide, uranium 

mineral ore and HBRA soil bound in cellulose are represented in Figure 5.1, Figure 5.2 and 

Figure 5.3 respectively. This relationship can be more distinctly understood from Figure 5.4 

(a), Figure 5.4 (b) and Figure 5.4 (c), where the change in SNR with respect to LPE in uranium 

trioxide, uranium mineral ore and HBRA soil bound in cellulose respectively are shown.  
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Figure 5.1: Influence of laser pulse energy on the spectral lines of uranium in uranium trioxide 

bound in cellulose. 

It was observed that in uranium trioxide sample, the intensity of the three uranium lines at 

385.464 nm, 386.592 nm and 385.957 nm increased linearly until 30 mJ and almost flattened 

between 30 mJ and 40 mJ with a small dip at 32 mJ. The increasing intensity of the uranium 

lines is due to an increase in irradiance with an increase in the LPE and the flattening of these 

uranium line intensities can be attributed to the saturation of the detector. On further increasing 

LPE, the spectral line intensity of the three uranium lines was observed to vary non-linearly 

between 42.5 mJ and 50 mJ, peaking at 42.5 mJ as shown in Figure 5.1. This may be due to the 

optically thick plasma and/ or strong background continuum generated at higher LPE (Gondal 

et al., 2008). As a result, the detector responds non-linearly to the increase in LPE.  The change 

in the spectral intensity of these uranium lines with increase of LPE can be clearly understood 

from the variation of SNR with change in LPE for each uranium line in uranium trioxide sample 

as shown in Figure 5.4 (a). The response pattern of the three uranium lines with change in LPE 

is observed to be the same. 
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Figure 5.2: Influence of laser pulse energy on the spectral lines of uranium mineral ore (SRR-

09). 

In rock samples (SRR-09), the intensity of the three uranium lines (386.592 nm, 385.957 nm 

and 385.464) was observed to increase linearly until 20 mJ. The intensity fell and rose 

alternatively between 20 mJ to 30 mJ and from 30.5 mJ the intensity gradually fell before it 

sharply rose to 40 mJ. Between 40 mJ and 50 mJ, the three uranium lines were again observed 

to increase and decrease alternately with maximum intensity at 45 mJ LPE as illustrated in 

Figure 5.2. The dip in the intensity of the uranium lines before they rise again may be due to 

laser shielding effect or due to self-absorption as a result of which the intensity of the spectral 

lines increases very slowly. The sensitivity of these uranium lines in SRR-09 sample with the 

change in LPE is clear from the response of SNR of the uranium lines with change in LPE as 

seen in Figure 5.4 (b).   
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Figure 5.3: Influence of laser pulse energy on the spectral lines of HBRA soil (DZHS-19) bound 

in cellulose. 

The intensity of the three uranium lines in the soil sample increased linearly with an increase 

in LPE until 17.5 mJ. This could be because the irradiance increased with the increase in the 

pulse energy. The intensity varied non-linearly between 17.5 mJ and 42.5 mJ with an increase 

in LPE and gradually decreased between 42.5 mJ and 50 mJ. The maximum intensity shown in 

Figure 5.3 or the highest SNR shown in Figure 5.4 (c) was observed at 42.5 mJ. The non-linear 

change in intensity of the uranium spectral lines and SNR may be due to the non-linear response 

of the detector to the high energy of the laser. The sensitivity of the three uranium lines due to 

change in LPE can be very clearly understood from Figure 5.4 (c), where the response of SNR 

with increasing LPE has been shown for the three uranium lines.   



 

 

64 

      
  

(a)       (b) 
 

 
(c) 

Figure 5.4: Variation of SNR of the three uranium lines with respect to laser pulse energy in (a) 

39617 ppm of uranium (b) rock (SRR-09) and (c) soil (DZHS-19) bound in cellulose. 

The trend of the three uranium lines in each set of samples is observed to be similar except for 

the uranium line at 386.592 nm, where the change in intensity with increasing LPE is not very 

appreciable. This may be because the uranium line at 386.592 nm is the weakest of the three. 

The composition of uranium trioxide, rock and soil bound in cellulose and the matrix effect 

may be accounted for the difference in response pattern of the intensity of uranium lines with 

respect to change in LPE. Uranium is about 83.22% of uranium trioxide. More cellulose by 

weight had to be added to dilute the concentration of uranium and obtain 39617 ppm of uranium. 
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As a result, the matrix effect is more intense, resulting in more background continuum in 39617 

ppm of uranium sample in comparison to rock and soil samples where the sample (rock or soil) 

to cellulose ratio is 4:1. It may be mentioned that the saturation or the slow increase in the 

uranium line intensities or SNR in uranium trioxide, rock (uranium bearing mineral ore) and 

HBRA soil samples at high energy is either due to the shielding effect of the plasma (where the 

plasma absorbs a part of the energy) or self-absorption (Zhang et al., 2012). 

5.1.2 Influence of delay time on the intensity of uranium lines 

The time between the formation of the plasma and the initiation of emission of plasma is defined 

as delay time. (Zhang et al., 2012). The effect of delay time on the uranium emission lines at 

385.957 nm, 386.592 nm and 385.464 nm in uranium trioxide, uranium mineral ore (SRR-09) 

and HBRA soil (DZHS-19) samples in ambient air were analyzed. Figure 5.5, Figure 5.6 and 

Figure 5.7 show the intensity variation of the three emission lines of uranium with change in 

delay time in uranium trioxide, uranium mineral ore and HBRA soil samples respectively. The 

influence of delay time on the spectral line intensity of the three uranium lines is clear from the 

plot between SNR and delay time for uranium trioxide, uranium ore and HBRA soil samples in 

Figure 5.8 (a), Figure 5.8 (b) and Figure 5.8 (c) respectively. Generally, at very short delay 

time, Bremsstrahlung and recombination result in a strong background continuum while at very 

long delay time, the electron density and the plasma temperature decrease. As a result, the 

presence of trace elements in the sample cannot be detected, reducing the analytical sensitivity 

of the instrument. Therefore, delay time should be neither too short nor too long (Zhang et al., 

2012). 
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Figure 5.5: Influence of time delay on the emission lines of uranium in uranium trioxide bound 

in cellulose. 

 
Figure 5.6: LIBS spectra displaying the effect of time delay on the emission lines of uranium 

in uranium mineral ore (SRR-09) in cellulose. 
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Figure 5.7: Influence of time delay on the emission lines of uranium in HBRA soil (DZHS-19) 

bound in cellulose. 

The emission spectra collected from uranium trioxide sample is illustrated in Figure 5.5, while 

the spectra collected from uranium mineral ore (SRR-09) and HBRA soil (DZHS-19) are shown 

in Figure 5.6 and Figure 5.7 respectively at different delay times. The maximum intensity is 

observed at 2.1 μsec, 0.4 μsec and 0.8 μsec. It was observed that when the delay time was 

increased further, the intensity of the three uranium lines (386.592 nm, 385.957 nm and 

385.464) gradually decreased with the increase in the delay time. This is because an increase in 

delay time cools off the plasma temperature, resulting in the decrease of the electron density. 

On analyzing the SNR of these three lines with respect to the change in delay time in the three 

samples, it was observed that in the case of the uranium trioxide displayed in Figure 5.8 (a), the 

SNR was almost flat before it peaked at 2.1 μsec. This may be because in the uranium trioxide 

the mass of cellulose is comparatively higher than in the uranium mineral ore and HBRA soil 

samples and therefore has more background continuum resulting in lower SNR at low delay 

time. In uranium mineral ore (SRR-09) sample shown in Figure 5.8 (b), the SNR of all the three 
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uranium lines is maximum at 0.4 μsec while in HBRA soil (DZHS-19) displayed in Figure 5.8 

(c) the SNR of the three uranium lines is maximum at 0.8 μsec. Thus, the time delay is in 

accordance with the literature which states that it should be neither too long or too short (Zhang 

et al., 2012). 

 
(a)       (b) 

  

 
(c) 

Figure 5.8: Variation of SNR of the three uranium lines with respect to time delay in (a) 39617 

ppm of uranium trioxide (b) uranium mineral ore (SRR-09) and (c) soil (DZHS-19) bound in 

cellulose. 
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5.1.3 Influence of sample to laser head distance on the intensity of the uranium lines 

When the focal plane of the lens coincides with the sample surface, the lens position is 

considered to be zero.  The sample to laser distance is considered positive when the lens focal 

plane is inside the sample and negative when the lens focal plane is outside the sample. The 

intensity of the uranium emission lines (386.592 nm, 385.957 nm and 385.464 nm) at different 

laser to sample distance for uranium trioxide, uranium mineral ore (SRR-09) and HBRA soil 

(DZHS-19) samples is shown in Figure 5.9, Figure 5.10 and Figure 5.11 respectively. For 

uranium trioxide, the intensity of the uranium lines is maximum at 0.4 cm and then reduces 

with increasing sample to laser head distance. However, for uranium bearing mineral ores 

(SRR-09) and HBRA soil samples (DZHS-19), the intensity of the uranium lines marginally 

increases at 0.5 cm before it begins decreasing with an increase in the distance. This is possibly 

because the irradiance is very high in the vicinity of the focal point, causing a shielding effect. 

The effect leads to plasma-laser interaction and absorption of a portion of the pulse energy by 

the plasma (Zhang et al., 2012). When the sample to laser head distance increases further, the 

diameter of the laser ablation crater gets larger in comparison to the irradiance, thus lowering 

the intensity of the emission lines of interest (Zhang et al., 2012).  
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Figure 5.9: Influence of laser to sample distance on the emission lines of uranium in uranium 

trioxide bound in cellulose. 

 
Figure 5.10: Influence of laser to sample distance on the emission lines of uranium in uranium 

mineral ore (SRR-09). 
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Figure 5.11: Influence of laser to sample distance on the emission lines of uranium in HBRA 

soil (DZHS-19). 

The SNR of the uranium lines with respect to the change in the sample to laser head distance 

for uranium trioxide, mineral uranium mineral ore (SRR-09) and HBRA soil (DZHS-19) is 

shown in Figure 5.12 (a), Figure 5.12 (b) and Figure 5.12 (c) respectively. The SNR of the 

uranium lines at 386.592 nm, 385.957 nm and 385.464 nm is observed to vary in the same way 

as their intensities in uranium trioxide, HBRA soil and uranium mineral ore samples at 0.4 cm, 

0.5 cm and 0.5 cm respectively. 
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(a) (b) 

 

 
(c) 

Figure 5.12: Variation of SNR of the three uranium lines with respect to laser head to sample 

distance in (a) 39617 ppm of uranium trioxide (b) uranium mineral ore (SRR-09) (c) soil 

(DZHS-19) bound in cellulose. 

5.1.4 Influence of number of ablations per laser scans on the intensity of the uranium lines 

LIBS spectra collected from uranium trioxide using the optimized laser energy at 42.5 mJ, 2.1 

µsec delay time and placed at 0.4 cm from the laser head for a different number of ablations 

per laser scan is shown in Figure 5.13. The intensity of the uranium lines is found to directly 
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vary with the number of ablations per shot. The SNR of the three uranium lines for 39617 ppm 

of uranium in uranium trioxide with respect to different number of ablations per scan is 

displayed in Figure 5.16 (a). The highest SNR and intensity of the three uranium lines for 39617 

ppm of uranium in uranium trioxide is observed at 6 laser ablations per scan. The high number 

of ablations may be because the cellulose content is larger than the content of uranium trioxide 

in the sample. Also, the sample being placed at an optimized lens to sample distance, the 

irradiance is very high. In addition to this, with the high number of ablations per scan, the 

diameter of the laser ablation crater gets larger and matter is deposited on the edge of the crater. 

The deposited matter gets reheated and the lifetime and size of the plasma increases (Zhang et 

al., 2012).  

 
Figure 5.13: Influence of number of laser shots on the emission lines of uranium in uranium 

trioxide bound in cellulose. 
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Figure 5.14: Influence of number of laser shots on the emission lines of uranium in uranium 

mineral ore (SRR-09). 

LIBS spectra collected from uranium bearing mineral ores (SRR-09) and HBRA soil (DZHS-

19) samples using the obtained optimized energy, delay time and sample to laser head distance 

for different number of ablations per laser scan is shown in Figure 5.14 and Figure 5.15 

respectively. With the number of ablations per scan increasing, the uranium line intensity is 

observed to initially increase and later decrease. The SNR of the three uranium lines for 

uranium bearing mineral ores (SRR-09) and HBRA soil (DZHS-19) samples with respect to 

different number of ablations per scan is displayed in Figure 5.16 (b) and Figure 5.16 (c) 

respectively. It was observed that SNR and intensity of the three uranium lines are maximum 

at 3 ablations per scan and 4 ablations per scan for uranium mineral ore and HBRA soil samples 

respectively. The increase in number of ablations per scan caused very high irradiance as the 

sample was optimized in the vicinity of the focal point while the reheating of the deposition of 

matter on the edge of the crater resulted in the increased lifetime and size of the plasma. 

However, with further increase in the number of ablations per scan, the laser ablation crater 
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diameter gets larger and the irradiance gets smaller. Thus, the intensity of the uranium lines 

gradually decreases (Zhang et al., 2012).  The response of the uranium lines in uranium trioxide 

sample illustrated in Figure 5.13 differs from that seen in uranium mineral ore and HBRA soil 

sample as illustrated in Figure 5.14 and Figure 5.15 respectively. This may be because the 

uranium trioxide sample contains a high proportion of binder (cellulose) in comparison to the 

SRR-09 and DXHS-19 samples. 

 
Figure 5.15: Influence of number of laser shots on the emission lines of uranium in HBRA soil 

(DZHS-19). 

Thus, the optimized parameters of LIBS for detection of uranium in cellulose were obtained at 

42.5 mJ LPE, 2.1 µs delay time, 0.5 cm lens to sample distance and six ablations per scan. For 

uranium mineral ore (SRR-09) bound in cellulose, the optimized LIBS parameter was obtained 

at 45 mJ with a delay time of 0.4 µs and 0.5 cm lens to sample distance for three ablations per 

scan. The HBRA soil (DZHS-19) sample was found to give the best SNR at 42.5 mJ LPE, 0.4 

µs delay time and 0.5 cm lens to sample distance for four ablations per scan. These optimized 
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parameters were used for qualitative analysis of uranium in uranium trioxide bound in cellulose, 

uranium mineral ore and HBRA soil samples.  

 
(a)       (b) 

 

 
    (c) 

Figure 5.16: Variation of SNR of the three uranium lines with respect to number of laser shots 

in (a) 39617 ppm of uranium trioxide (b) uranium mineral ore (SRR-09) (c) soil (DZHS-19) 

bound in cellulose. 

5.2 Qualitative Analysis 

Qualitative analysis of cellulose, uranium trioxide, HBRA soils and uranium bearing mineral 

ores was performed by setting laser pulse energy, laser head to sample distance, delay time and 
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number of ablations per scan in the LIBS set-up at the optimized values. A representative 

emission spectrum of the sample was obtained by averaging the 50 spectra acquired from 

various spots on the sample surface. 

5.2.1 Qualitative analysis of uranium trioxide, uranium mineral ores and HBRA soils in 

ambient air 

LIBS spectra were collected in ambient air from 39617 ppm of uranium trioxide sample. 

Neutral uranium and singly ionized uranium were detected in the emission spectra from 

uranium trioxide with the aid of NIST database of persistent lines of U(I) and U(II). Table 5.1 

lists all uranium emission lines that were detected in 39617 ppm of uranium trioxide sample 

using the LIBS set-up. These lines listed were used in this study to identify the presence of 

uranium in the uranium mineral ores and HBRA soils collected from various parts of Kenya. It 

was seen that most of the uranium emission lines identified in ambient air utilizing LIBS were 

found to be in the ultraviolet region. Chinni et al. (2009) reported that most of the resonant 

uranium lines are found in ultraviolet (UV) range and the remaining in the visible range. The 

uranium emission lines detected in cellulose and 39617 ppm of uranium trioxide sample are 

shown in Figure 5.17, Figure 5.18, Figure 5.19 and Figure 5.20 (Bhatt et al., 2018). 
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Table 5.1: Prominent uranium lines detected in the emission spectra of uranium trioxide sample 

in ambient air. 

I λ (nm) II  λ (nm) III λ (nm) 
U I 348.936 U I 381.199 U I 404.275 
U I 356.659 U II  383.146 U II  405.004 
U I 358.488 U II  385.464 U II  409.013 
U I 365.915 U II  385.957 U I 415.397 

U II  367.007 U II  386.592 U I 415.665 
U II  378.284 U I 387.104 U II  417.159 

 U II  389.036 U II  424.166 
 U I 394.382 U II  434.169 
  U I 435.574 
  U I 436.205 
  U II 454.363 

  U I 591.539 

 

 
Figure 5.17: Emission spectra of UO3 bound in cellulose and pure cellulose samples in ambient 

air for UV region (340-370) nm.  
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Figure 5.18: Emission spectra of UO3 bound in cellulose and pure cellulose samples in ambient 

air for UV region (370-400) nm. 

         
Figure 5.19: Emission spectra of UO3 bound in cellulose and pure cellulose samples in ambient 

air for visible region (400-428) nm. 
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Figure 5.20: Emission spectra of UO3 bound in cellulose and pure cellulose samples in ambient 

air for visible region (432-456) nm. 

The emission spectra in ambient air from the uranium mineral ores collected from various parts 

of Kenya were analyzed to identify the emission lines of uranium utilizing the LIBS instrument. 

Table 5.2 lists the emission lines of uranium (singly ionized and neutral uranium) detected in 

SRR-09 (South Ruri) sample. Only three of the fifteen uranium lines identified were seen in the 

visible region, while the remaining twelve were in the UV range. The LIBS spectra from South 

Ruri (SRR-09) and cellulose are shown in Figure 5.21, Figure 5.22, Figure 5.23 and Figure 5.24 

(Bhatt et al., 2018). 
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Table 5.2: Prominent uranium emission lines detected in the rock (SRR-09) sample in ambient 

air.  

λ (nm) λ (nm) λ (nm) 
U I 348.937 U I 381.199 U II 405.004 
U I 351.461 U II 383.146 U II 424.166 
U I 356.659 U I 383.963  
U I 358.488 U II 385.464  
U I 365.915 U II 385.957  
U II 367.007 U II 386.592  

 U I 387.104  
 U I 394.382  

 

 
 

Figure 5.21: Emission spectra of an ore (SRR-09) and cellulose samples in ambient air for UV 

region (348-368) nm.  
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Figure 5.22: Emission spectra of the uranium mineral ore (SRR-09) and cellulose samples in 

ambient air for UV region (376-396) nm. 

 
Figure 5.23: Emission spectra of the uranium mineral ore (SRR-09) and cellulose samples in 

ambient air for visible region (400-430) nm.  
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Figure 5.24: Emission spectra of the uranium mineral ore (SRR-09) and cellulose samples in 

ambient air for visible region (432-456) nm. 

The emission spectra of HBRA soil samples collected from various parts of Kenya were studied 

to identify the uranium lines detectable utilizing the LIBS instrument in ambient air. Table 5.3 

shows the uranium emission lines (neutral and singly ionized) identified in North Ruri (NRS-

08) sample in ambient air. Emission spectra of cellulose and NRS-08 with uranium lines are 

displayed in Figure 5.25, Figure 5.26, Figure 5.27 and Figure 5.28.  

Table 5.3: Prominent uranium emission lines detected in soil (NRS-08) sample in ambient air. 

λ (nm) λ (nm) λ (nm) 
U I 348.937 U(I) 381.199 U II 405.004 
U I 351.461 U(II)383.146 U I 415.665 
U I 356.659 U I 383.963 U II 417.159 
U I 358.488 U II 385.464 U II 424.166 
U I 365.915 U II 385.957 U II 454.363 
U II 367.007 U II 386.592  

 U I 387.104  
   U(I)394.382  
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Figure 5.25: Emission spectra of HBRA soil (NRS-08) bound in cellulose and pure cellulose in 

ambient air for UV region (348-368) nm.  

 
Figure 5.26: Emission spectra of HBRA soil (NRS-08) bound in cellulose and pure cellulose in 

ambient air for UV region (376-396) nm.  
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Figure 5.27: Emission spectra of HBRA soil (NRS-08) bound in cellulose and pure cellulose in 

ambient air for visible region (400-430) nm.  

 
Figure 5.28: Emission spectra of HBRA soil (NRS-08) bound in cellulose and pure cellulose in 

ambient air for visible region (432-456) nm. 

The emission spectra of uranium trioxide, uranium mineral ore (SRR-09) and HBRA soil (NRS-
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08) samples were analyzed, and it was concluded that not all the emission lines of uranium 

displayed in Table 5.1 were detectable in the emission spectra of the uranium mineral ore (SRR-

09) and HBRA soil (NRS-08) samples. The uranium lines that were not detected in ore and soil 

samples were most likely buried behind the strong background continuum. Table 5.4 lists the 

uranium lines (singly ionized or neutral) detected in the emission spectra of uranium trioxide 

sample, HBRA soil and uranium mineral ores samples from Kenya. Only two of the fourteen 

common uranium lines, U II 405.004 nm and U II 424.166 nm, are in the visible range while 

the rest are in the UV. 

Table 5.4: Prominent emission uranium lines detected in uranium trioxide, uranium mineral 

ores and HBRA soil samples in ambient air. 

 

 

 

 

Uranium emission lines (singly ionized or neutral) detected in uranium trioxide sample 

containing 39617 ppm of uranium can be regarded as NF signatures for detecting of uranium 

hidden in organic binder. These NF signatures listed in Table 5.1 were utilized to detect uranium 

in uranium mineral ores collected from Lake Magadi (LMR-1 and LMR-7), South Ruri (SRR-

14 and SRR-13), and Coast (KH-RK-078 and MH-RK-115). Similarly, HBRA soils from Coast 

(KRK-32-SL and DZHS-15), North Ruri (NRS-15 and NRS-07) and Lake Magadi (LMS-11and 

LMS-2) were analyzed. The gamma radiation exposure in the HBRA area of Kenya is five 

times higher than the global average (Patel, 1991). When the emission spectra of the uranium 

mineral ores and HBRA soil samples were analyzed, it was observed that U II 386.592 nm, U 

II 385.957 nm and UII 385.464 nm were clearly visible. Thus, the presence of uranium in these 

λ (nm) λ (nm) 
U I 348.937 U I 383.963 
U I 356.659 U II 385.464 
U I 358.488 U II 385.957 
U I 365.915 U II 386.592 
U II 367.007 U I 387.104 
U I 381.199 U II 405.004 
U II 383.146 U II 424.166 
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samples was confirmed by the presence of the three significant uranium emission lines. Figure 

5.29, Figure 5.30 and Figure 5.31 demonstrate the presence of NF signatures (386.592 nm 

385.957 nm and 385.464 nm) in the uranium mineral ores from Coast, Lake Magadi and South 

Ruri respectively, while Figure 5.32, Figure 5.33 and Figure 5.34 show those in the HBRA 

samples from North Ruri, Lake Magadi and Coast respectively (Bhatt et al., 2018). 

  
Figure 5.29: Emission spectra of uranium mineral ores from Coast.  
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Figure 5.30: Emission spectra of uranium mineral ores from Lake Magadi.  
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Figure 5.31: Emission spectra of uranium mineral ores from South Ruri.  
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Figure 5.32: LIBS spectra of HBRA soils from Coast.  
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Figure 5.33: LIBS spectra of HBRA soils from Lake Magadi.  
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Figure 5.34: LIBS spectra of HBRA soils from North Ruri.  

5.2.2 Qualitative analysis of uranium emission lines in uranium trioxide, uranium mineral 

ores and HBRA soil samples in helium environment  

The 108,517 ppm of uranium trioxide bound in cellulose was analyzed in a helium (He) 

environment to ensure that the uranium lines observed in the LIBS spectra in ambient air using 

the LIBS set-up were also detectable in the helium environment. This would confirm the 
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emission lines are from uranium. This sample with a very high concentration of uranium was 

used so that the uranium lines identified in ambient air can be observed in He environment also. 

Table 5.5 lists the uranium lines detectable in the uranium trioxide sample in He. It was 

observed that the uranium lines (U I and U II) identified in ambient air utilizing the LIBS set-

up were also seen in the helium environment. The intensity of the uranium lines in helium 

environment was observed to be less intense than that observed in ambient air. This is because 

of the high ionization power of He gas which requires more time to generate electrons, causing 

a delay in the collision between the ions and the neutral atom. In addition to this, the high 

thermal conductivity of the helium gas speeds up the thermal diffusion in He and decays the 

electron density of the plasma and plasma temperature very rapidly. This shortens the life of 

the plasma (Zhang et al., 2012). The LIBS spectra collected from 108517 ppm of uranium 

trioxide sample in helium and the air environment are shown in Figure 5.35, Figure 5.36, Figure 

5.37 and Figure 5.38.   

Table 5.5: Prominent uranium emission lines detected in uranium trioxide sample in helium 

environment. 

 

 
 

 
 

 
 

 
 

 
 

I λ (nm) II  λ (nm) III λ (nm) 
U I 348.936 U I 381.199 U I 404.275 
U I 356.659 U II  383.146 U II  405.004 
U I 358.488 U II  385.464 U II  409.013 
U I 365.915 U II  385.957 U I 415.397 

U II  367.007 U II  386.592 U I 415.665 
U II  378.284 U I 387.104 U II  417.159 

 U II  389.036 U II  424.166 
 U I 394.382 U II  434.169 
  U I 435.574 
  U I 436.205 
  U II 454.363 

  U I 591.539 
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Figure 5.35: Emission spectra of UO3 bound in cellulose in air and helium environment for UV 

region (340-370) nm.  

 
Figure 5.36: Emission spectra of UO3 bound in cellulose in air and helium environment for UV 

region (376-396) nm. 
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Figure 5.37: Emission spectra of UO3 bound in cellulose in air and helium environment for 

visible region (400-428) nm.  

 

Figure 5.38: Emission spectra of UO3 bound in cellulose in air and helium environment for 

visible region (432-456) nm. 
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Table 5.6: Prominent uranium emission lines of rock (SRR-09) sample in helium environment. 

λ (nm) λ (nm) λ (nm) 
U I 348.937 U I 381.199 U II 405.004 
U I 351.461 U II  383.146 U II 424.166 
U I 356.659 U I 383.963  
U I 358.488 U II 385.464  
U I 365.915 U II 385.957  
U II 367.007 U II 386.592  

 U I 387.104  
 U I 394.382  

The emission spectra of uranium mineral ore bound in cellulose were also analyzed in helium 

to identify the emission lines of uranium in helium environment. Table 5.6 shows uranium lines 

(neutral uranium and singly ionized) detected in the LIBS spectra of South Ruri (SRR-09) 

region (a uranium bearing mineral ore) in helium environment. All the uranium emission lines 

detected in air were also visible in the helium environment for the given sample, but with very 

low intensity. The low intensity of the uranium lines in helium is due to the high ionization 

power (about 24.59 eV) and high thermal conductivity of helium gas in comparison to that air 

(Zhang et al., 2012). The emission spectra of SRR-09 (South Ruri) sample in helium and air 

with the neutral and singly ionized uranium lines in the ultraviolet range and visible range are 

shown in Figure 5.39, Figure 5.40, Figure 5.41 and Figure 5.42. 
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Figure 5.39: Emission spectra of the uranium mineral ore (SRR-09) bound in cellulose in air 

and helium environment for visible region (348-368) nm.  

 

 

 

 

 

 

 

 

Figure 5.40: Emission spectra of the uranium mineral ore (SRR-09) bound in cellulose in air 

and helium environment for visible region (376-396) nm.  
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Figure 5.41: Emission spectra of the uranium mineral ore (SRR-09) bound in cellulose in air 

and helium environment for UV region (400-430) nm.  

 
Figure 5.42: Emission spectra of the uranium mineral ore (SRR-09) bound in cellulose in air 

and helium environment for UV region (432-456) nm.  
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HBRA soil samples from various parts of Kenya were analyzed in He environment to analyze 

the uranium emission lines that were observed under this condition and compared with those 

detected in air at atmospheric conditions. The uranium lines (neutral uranium and singly 

ionized) detected from North Ruri (NRS-08) sample in He are listed in Table 5.7. On analyzing 

the emission spectra of the HBRA soil sample in He, it was found that all the emission lines of 

uranium in air were also visible with very low intensity in He also. The low intensity of the 

uranium lines in He is because the electron density and the plasma temperature decay very 

rapidly. The delay in the collision of atoms and ions in He environment also accounts for the 

low intensity of the uranium lines (Zhang et al., 2012). The LIBS spectra of NRS-08 sample  in 

He and air are displayed in Figure 5.43 and  Figure 5.44 for 348-396 nm UV region and Figure 

5.45 and Figure 5.46 for 400-456 nm visible region.  

Table 5.7: Prominent uranium lines in the emission spectra of soil samples (NRS-08) in helium 

environment. 

λ (nm) λ (nm) λ (nm) 
U(I)348.937 U(I) 381.199 U(II)405.004 
U(I)351.461 U(II)383.146 U(I)415.665 
U(I)356.659 U(I)383.963 U(II) 417.159 
U(I)358.488 U(II)385.464 U(II)424.166 
U(I)365.915 U(II)385.957 U(II)454.363 
U(II)367.007 U(II)386.592  

 U(I)387.104  
 U(II)393.202  

 U(I)394.382  
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Figure 5.43: Emission spectra of HBRA soil (NRS-08) bound in cellulose in air and helium 

environment for UV region (348-368) nm.  

 
Figure 5.44: Emission spectra of HBRA soil (NRS-08) bound in cellulose in air and helium 

environment for UV region (376-396) nm.  
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Figure 5.45: Emission spectra of HBRA soil (NRS-08) bound in cellulose in air and helium 

environment for visible region (400-430) nm.  

 
Figure 5.46: Emission spectra of HBRA soil (NRS-08) bound in cellulose in air and helium 

environment for visible region (432-456) nm. 
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The neutral and ionic uranium lines visible in the emission spectra of uranium trioxide, uranium 

mineral ores and HBRA soil samples of Kenya in helium environment are listed in Table 5.8. 

All the uranium lines observed in the spectra of uranium trioxide sample in the helium 

environment are not visible in the spectra collected from SRR-09 and DZHS-19 samples under 

the same conditions. The invisibility of these uranium lines may be because they are buried 

deep under the continuum due to matrix effect arising from the mineral ore of uranium and 

HBRA soil samples. 

 Table 5.8: Prominent emission uranium lines detected in uranium trioxide, the uranium mineral 

ores and HBRA soil samples in helium environment. 

λ (nm) λ (nm) 
U I 348.937 U I 383.963 
U I 356.659 U II 385.464 
U I 358.488 U II 385.957 
U I 365.915 U II 386.592 
U II 367.007 U I 387.104 
U I 381.199 U II 405.004 
U II 383.146 U II 424.166 

 

5.3 Limit of Detection 

The LOD of uranium in cellulose (organic binder) was evaluated using Equation (4.3). The 

standard deviation of background intensity was obtained by computing the standard deviation 

of the uranium line U II 385.957 in cellulose sample (blank matrix). The sensitivity or slope of 

the regression line was calculated by plotting the concentration against area under the uranium 

line U(II) 385.957 as shown in Figure 5.47. The LOD of uranium in cellulose was evaluated at 

76 ppm as shown in Table 5.9 (Bhatt et al., 2018). 
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Figure 5.47: Regression to measure sensitivity (U II 385.957 nm). 

Table 5.9: Limit of detection of uranium. 

 

5.4 Quantitative Analysis of Uranium  

The LIBS instrument was configured at 40 mJ LPE with a delay time of 0.4 µs, single ablation 

per scan and a lens to sample distance of 0.5 cm for quantitative analysis of uranium in 

cellulose. Under these experimental settings, LIBS spectra were collected from uranium 

trioxide, uranium mineral ore and CRMs samples. This was done to make quantification of 

uranium rapid and minimally intrusive while ensuring high SNR. 

5.4.1 LIBS-ANN calibration model for quantitative analysis of uranium in uranium trioxide 

bound in cellulose 

The area covered by the peak of an emission line is a measure of the element’s concentration 

in the sample. However, this line intensity is dependent on the sample surface, plasma size, 
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plasma temperature, detector response function, laser pulse energy and atomic variables of the 

transition line (Noll, 2012). The dependence of the intensity on multiple factors makes the 

relationship between the emission line intensity of the element and its concentration non-linear. 

This non-linearity is very much evident in intensity against concentration of simulate samples 

plot as seen in Figure 5.48. To overcome this non-linearity in the data and quantify trace 

uranium, a multivariate calibration strategy based on ANN was applied. The model was built 

using the variables (348.54917- 454.98643) nm corresponding to the uranium emission lines 

tabulated in Table 5.1 and uranium simulate sample pellets with a concentration ranging from 

215 ppm to 2025 ppm as presented in Table 4.4. The regression model developed for predicting 

the concentration of uranium in the simulate samples for internal validation is shown in Figure 

5.49 (Bhatt et al., 2017). The calibration model was validated internally and externally by 

predicting the simulate samples (not exposed during the training of the model) and the CRM, 

IAEA-RGU-1, Uranium Ore (IAEA/RL/148) respectively. Internal validation was achieved by 

predicting the simulate samples with a REP of 12% and external validation by predicting the 

CRM with a REP of 9% as shown in Table 5.10.  
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Figure 5.48: Variation of intensity with concentration of simulate sample.  

 

Figure 5.49: Regression curve of LIBS-ANN model validated by simulate samples.   
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Table 5.10: Actual and predicted uranium concentration of RGU-1 (400 ppm) using calibration 

models for external validation. 

Model  
Actual 

Concentration (ppm) 
Predicted 

Concentration (ppm) REP (%) 

Uranium lines 400 434 9.0 
 

5.4.2 LIBS-ANN calibration model for quantitative analysis of uranium in the uranium 

mineral ores 

In quest of better accuracy compared to the model presented in the Section 5.4.1, two calibration 

models using resonant and weak uranium lines separately were built. The calibration model 

with better prediction accuracy was used to predict the uranium concentration in uranium 

mineral ores sampled in Kenya.  Most of the emission lines of uranium were detected in the 

UV, region as shown in Table 5.1. Depending on the ratio of the signal to background (SBR), 

the lines were categorized into (i) resonant (SBR greater than 1.4) and (ii) weak lines (with a 

ratio equal or less than 1.4).  Weak and resonant uranium lines utilized for ANN models are 

listed in Table 5.11 (Bhatt et al., 2018). 

Table 5.11: Weak and resonant uranium lines utilized for ANN models. 

I Weak II Resonant 
U I 348.937 U II 367.007 
U I 365.915 U II 385.464 
U II 378.284 U II 385.957 
U II 383.146  
U I 383.963  
U II 386.592  
U I 387.104  
U I 394.382  
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Uranium concentrations between 95 ppm – 1074 ppm as shown in Table 4.5 and the uranium 

lines listed in Table 5.11 were used to build the model using the resonant and weak uranium 

lines, respectively. The ANN models were trained, validated and tested  using 50%, 25% and 

25% of the input datasets, i.e., 34 uranium simulate samples, respectively. The back propagation 

algorithm was used in the training phase to obtain the best set of weights and bias values so that 

the output errors are minimized. The validation set determined the accuracy of the network. 

Internal validation of the model was performed by using simulate samples of a known 

concentration of uranium that were hidden during the training of the model. The calibration 

models utilizing resonant and weak emission lines of uranium predicted uranium concentration 

in the simulate samples with a REP of 14% and 18% respectively. Figure 5.50 and Figure 5.51 

represent two regression models which predicted the concentration of uranium in the simulate 

samples using weak and resonant respectively for internal validation. The models using 

resonant and weak emission lines of uranium were further externally validated by predicting 

uranium concentration in CRM, IAEA-RGU-1, Uranium Ore (IAEA/RL/148). Calibration 

models utilizing resonant and weak emission lines of uranium predicted the concentration of 

uranium in the CRM with REP of 9.75% and 4.25% respectively, as shown in Table 5.12. The 

prediction accuracy of the calibration model utilizing resonant uranium emission lines was 

found to be better for internal validation than that of the calibration model using weak uranium 

lines. In the case of external validation, the model utilizing weak uranium emission lines 

performed better than the model utilizing resonant emission lines of uranium. The power of the 

calibration model, using weak uranium lines, to quantify uranium with a high level of prediction 

accuracy demonstrates the robustness of ML enabled LIBS. As a result, the calibration model 

based on weak uranium lines was used to predict the unknown uranium content of Kenya’s 

uranium mineral ores. Table 5.13 summarizes the predicted uranium concentration in the 

uranium mineral ores (Bhatt et al., 2018). 
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Figure 5.50: Regression curve of LIBS-ANN model using weak uranium lines validated by 

simulate samples.  

 
Figure 5.51: Regression curve of LIBS-ANN model using resonant uranium lines validated by 

simulate samples. 
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Table 5.12: Actual and predicted uranium concentration of RGU-1 (400 ppm) using calibration 

models for external validation. 

Model  
Actual 

Concentration 
(ppm) 

Predicted 
Concentration 

(ppm) 
REP (%) 

I. Weak uranium lines 400 417 4.25 
II. Resonant uranium lines 400 439 9.75 

 

Table 5.13: Predicted concentration of uranium in uranium mineral ores using LIBS-ANN 

model (weak uranium lines).  

* BDL means below detection limit 

Although LIBS-ANN models using weak and resonant uranium lines could predict the uranium 

concentration in the CRM, RGU-1 (400 ppm of U) with good prediction accuracy, it failed to 

predict the low uranium concentration in RGUMIX (101 ppm of U). The above model was 
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therefore rebuilt by changing the internal parameters (the percentage of the input data used to 

train, test and validate the model, number of neurons, number of iterations and the number of 

epochs between displays) of the model and validated using a low concentration CRM, 

RGUMIX, with 101 ppm of uranium in addition to RGU-1 (400 ppm of U). Internal validation 

of the model was performed using the simulate samples that were not exposed to the model 

during training and external validation using CRMs namely RGMIX and IAEA-RGU-1, 

Uranium Ore. The calibration model utilizing resonant and weak uranium lines predicted 

uranium concentration in the simulate samples with a REP of 18.64 % and 17.67% respectively. 

Figure 5.52 and Figure 5.53 represent regression models for internal validation using weak and 

resonant uranium emission lines respectively. The model utilizing weak uranium lines predicted 

the concentration of uranium in RGU-1 and RGMIX with REPs of 2.25% and 2.97% 

respectively, whereas the model utilizing resonant lines predicted uranium concentrations in 

the same CRMs with REP of 4.22% and 69.31% respectively. The prediction accuracy of the 

two models is presented in Table 5.14. With the addition of the second CRM, RGMIX, the 

prediction accuracy of the calibration model using weak lines was further improved. Although 

the prediction accuracy of the model utilizing resonant lines for RGU-1 increased from 9.76% 

to 4.22%, the model was unable to predict the low uranium concentration in RGMIX. The 

inability of this calibration model to predict low uranium concentration may be due to the 

limited sensitivity of the resonant uranium lines at low concentration. Thus, the calibration 

models utilizing weak and resonant uranium lines were observed to predict the concentration 

of uranium in the simulate samples with very good accuracy.  
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Figure 5.52: Regression curve of LIBS-ANN model using weak uranium lines and validated by 

simulate samples.  

 
Figure 5.53: Regression curve of LIBS-ANN model using resonant uranium lines and validated 

by simulate samples.  
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Table 5.14: Actual and predicted uranium concentration of RGU-1 (400 ppm) and RGMIX (101 

ppm) using the calibration models for external validation. 

Model 
Actual 

Concentration 
(ppm) 

Predicted 
Concentration 

(ppm) 
REP (%) 

I. Weak uranium lines     400 391 2.25 
II. Resonant uranium lines 400 417 4.25 
III. Weak uranium lines 101 104 2.97 
IV Resonant uranium lines 101 171 69.31 

 

The ANN models utilizing weak uranium and resonant uranium lines were further employed to 

predict uranium concentrations as low as 82 ppm. Emission spectra collected from 108517 ppm 

of uranium, 82 ppm of uranium and cellulose are shown in Figure 5.54. The emission spectrum 

of 108517 ppm of uranium sample helped us to identify the region of interest, i.e., the region 

where the uranium lines are clearly visible. The spectrum collected from 82 ppm of uranium 

sample was observed to have a strong background continuum in this region of interest. 

Although the spectrum collected from the 82 ppm uranium sample did not have visible uranium 

lines, the calibration model using weak uranium lines could successfully quantify trace 

uranium.  The calibration model using weak uranium lines predicted 82 ppm of uranium with 

a REP value of 4.88 % and that employing resonant lines predicted uranium concentrations 

with a REP of 65.85% as shown in Table 5.15.  This may be accounted for by the fact that the 

weak uranium lines are more sensitive to a very small change in concentration, in contrast to 

the resonant uranium lines. The low sensitivity of the resonant lines may be responsible for the 

poor prediction accuracy of the model using resonant lines at low uranium concentration. Thus, 

multivariate techniques have the ability to extract information, uranium lines in this case, buried 

under the continuum for quantitative analysis.  
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Table 5.15: Predicted uranium concentration of the calibration models for external validation. 

 
 

 
Figure 5.54: Emission spectra of 108,517 ppm, 82 ppm of uranium bound in cellulose and 

cellulose. 
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The calibration model using weak uranium lines was now employed to predict the uranium 

concentration in mineral ore samples collected from different regions of Kenya. Table 5.16 

shows the uranium concentration in the mineral ore samples as predicted by this calibration 

model utilizing weak uranium lines. On comparing the predicted concentration of uranium in 

uranium mineral ores utilizing the two calibration models in Table 5.13 and Table 5.16, it was 

observed that five samples (SRR-09, SRR-13, SRR-14, KH-RK-080 and MH-RK-115) are 

predicted below the detectable limit, i.e., below 76 ppm as per the later calibration model, while 

the concentration of KH-RK-071 is maximum at 1000 ppm. The concentration of LM-R2, LM-

R8 and KH-RK-101 predicted using the latter model is quite close to that predicted using the 

former calibration model. Thus, the potential of the calibration model (using weak uranium 

lines) to quantify low concentrations of uranium with a high level of accuracy reveals the 

robustness of ML enhanced LIBS. 

Table 5.16: Predicted concentration of uranium using LIBS-ANN model (weak uranium lines).  

 
* BDL means below detection limit 
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5.5 Exploratory Analysis 

The LIBS spectrum reveals a unique chemical signature of a material called its geochemical 

fingerprint. This fingerprint can be employed to characterize similar geological samples from 

different locations. The composition of the Earth’s crust is horizontally and vertically 

heterogeneous. Therefore, the minerals deposited within the crust of the earth reflect the 

inherent geographic heterogeneity (Hark et al., 2012). Thus, PCA was performed on the 

samples from different regions of Kenya to establish the relationships among the explanatory 

variables.  

5.5.1 Exploratory analysis of HBRA soils  

PCA was applied to the entire emission spectra (200-980) nm collected from HBRA soil 

samples to avoid elimination of any factor that may be responsible for formation of the pattern 

that relates to their geographical locations. The PC scores of the principal components PC-1 

and PC-2 for the entire LIBS spectra are shown in Figure 5.55. The PCA score plot showed that 

the first two PCs, PC1 (67%) and PC2 (18%), account for 85% of the total variance. The HBRA 

samples obtained from the various regions of Kenya – Coast, Lake Magadi and North Ruri were 

found to form three clusters based on their origins. Figure 5.56 represents the PC1 and PC2 

loading spectrum, which reveals that the attribution of the HBRA samples to their origins is 

closely associated to the REE, namely titanium (Ti), dysprosium (Dy), promethium (Pm), 

holium (Ho), samarium (Sm) and praseodymium (Pr) besides elements like barium (Ba), 

strontium (Sr), cobalt (Co), uranium (U), thorium (Th) and scandium (Sc) (Bhatt et al., 2017).  
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Figure 5.55: PC scores plot of PC-1 and PC-2 for the spectral data acquired from HBRA soil 

samples (200-980) nm.  

 
 
Figure 5.56: Loadings plots for PC1 and PC2 for HBRA soil samples using (200-980) nm. 
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A 3D score plot is also presented for the entire spectral region, as shown in Figure 5.57. The 

HBRA soil samples  were seen to group into three distinct clusters relating to their geological 

origins in the 3D score plot.  The three PCs, namely PC1 (67%), PC2 (18%) and PC3 (5%) in 

the 3D score plot, contributed to 90% of the total variance.  

 
 
Figure 5.57: PC scores plot of PC1 (67%), PC2 (18%) and PC (5%) for the spectral data 

acquired from HBRA soil samples (200 – 980) nm. 

5.5.2 Exploratory analysis of uranium mineral ores 

PCA was applied to selective spectral region to identify the spectral region contributing to the 

pattern formation, which is related to their geolocations. Uranium being the NF signature, four 
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spectral regions containing emission lines of uranium were identified, which are given in Table 

5.16 (Bhatt et al., 2018): 

(i) uranium lines in the spectral range (345.02 - 379.97) nm (Set I)  

(ii) uranium lines in the spectral range (380.01 - 399.97) nm (Set II)  

(iii) uranium lines in the spectral range (400.04 - 460.99) nm and (588.04 - 594.00) 

(Set III)  

(iv) all uranium lines in the spectral range (345.02 - 460.99) nm and (588.04 - 

594.00) nm (Set I, Set II and Set III).  

Figure 5.58, Figure 5.59, Figure 5.60 and Figure 5.61 show the PCA scores for the four regions: 

(i) Set I, (ii) Set II, (iii) Set III and (iv) Set IV respectively (Bhatt et al., 2018). 

 
 

Figure 5.58: PC scores plot of PC-1(79%) and PC-2(17%) for the spectral data acquired from 

uranium mineral ores using U lines (345-380) nm. 
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Figure 5.59: PC scores plot of PC-1(92%) and PC-2 (6%) for the spectral data acquired from 

uranium mineral ores using U lines (380-400) nm. 

 
Figure 5.60: PC scores plot of PC-1 (60%) and PC-2 (35%) for the spectral data acquired from 

the uranium mineral ores using all U lines (400 - 460) nm and (588-594) nm. 
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Figure 5.61: PC scores plot of PC-1 (60%) and PC-2 (35%) for the spectral data acquired from 

uranium mineral ores using all U lines (345.02 - 460.99) nm and (588.04 - 594.00) nm. 

The established pattern using four spectral regions was analyzed and it was concluded that the 

best pattern which related the uranium mineral ores of Kenya (Coast (KH-RK, MH-RK), Lake 

Magadi (LM) and South Ruri (SRR)) to their geographical locations was achieved using all U 

lines (345.02 - 460.99) nm and (588.04 - 594.00) nm (set IV) in 2D score plots as seen in Figure 

5.61 (Bhatt et al., 2018). A 3D score plot for this spectral region is shown in Figure 5.62. The 

uranium bearing mineral ores were seen to cluster into three distinct groups that related to their 

geological origin in the 2D and 3D score plots.  The 3D score plot displayed the first three PCs, 

namely PC1 (60%), PC2 (35%) and PC3 (3%). Thus, the 2D PC score plot contains 95% of the 

total spectrum information, while the 3D plot contains 98% of the complete spectral 

information. The samples grouped equally well in the 2D and 3D score plots. This shows that 
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the first two PCs contributed immensely to the grouping of the samples into three distinct 

groups. 

 
Figure 5.62: PC scores plot of PC-1 (60%), PC-2 (35%) and PC-3 (2%) for the spectral data 

acquired from uranium mineral ores using all U lines (345.02 - 460.99) nm and (588.04 - 

594.00) nm. 

The loadings plot for PC1 and PC2 shown in Figure 5.63 and Figure 5.64 depicts that element 

like titanium (Ti), thorium (Th), calcium (Ca), strontium (Sr), sodium (Na), and REE, namely 

neodymium (Nd), praseodymium (Pr), scandium (Sc), terbium (Tb), samarium (Sm) and 

promethium (Pm) are mostly responsible for the attribution of the mineral ores (uranium) of 

Kenya to their geographical locations (origin). Uranium was found to have no contribution to 
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the source attribution of the uranium mineral ores. This finding was further supported by the 

PC scores plot of PC-1 and PC2 obtained by omitting the uranium emission lines listed in Table 

5.1 from the spectral region (345.02 - 460.99) nm and (588.04 - 594.00) nm as seen in Figure 

5.65. It may be pointed out that while the samples continued to cluster into three distinct groups, 

the total spectral information content in the PCA score also remained unchanged at 95% (PC1 

(60%) and PC2 (35%)). This further confirmed that the uranium lines had absolutely no 

contribution to the established pattern in the score plot. It was therefore concluded that the 

presence of uranium in uranium mineral ores of Kenya is closely related to the presence of REE 

(Pm, Pr, Nd, Sc, Tb and Sm) and Thorium (Bhatt et al., 2018).  

 
Figure 5.63: Loadings plots of PCA scores (370-400) nm.  

  



 

 

123 

 

Figure 5.64: Loadings plots of PCA scores (400-460) nm. 

 

Figure 5.65: PC scores plot of PC1 (60%) and PC2 (35%) for the spectral data acquired from 

uranium mineral ores excluding the U lines (345.02 - 460.99) nm and (588.04 - 594.00) nm. 
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In addition to the four spectral regions mentioned above, PCA on the complete spectrum (200 

– 980) nm was performed. Although the samples were grouped into patterns which related to 

their origin utilizing the entire spectral range, the first two PCs were found to contain only 87% 

of the total variance, as seen in the 2D plot in Figure 5.66 and 93% for the first three PCs, as 

seen in the 3D plot in Figure 5.67. This is because the noise content in  the complete spectrum 

(200 - 980) nm was significantly larger than that in selective spectral regions. As a result of 

these findings, it was concluded that spectral feature selection can be very important in 

removing noise and retaining relevant information in PC scores. Thus, PCA performed on 

spectral feature selection reduces noise and aids in identifying the spectral region and elements 

responsible for sample attribution (Bhatt et al., 2018).  

 

Figure 5.66: PC scores plot of PC1 (60%) and PC2 (27%) for the spectral data acquired from 

uranium mineral ores (200 – 980) with PC1 (60%) and PC2 (27%). 
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Figure 5.67: PC scores plot of PC1 (60%), PC2 (27%) and PC (6%) for the spectral data 

acquired from uranium mineral ores (200 – 980) nm. 

5.6 Qualitative Analysis using LRM 

The LRM with lasers at 532 nm and 785 nm  was used to study the position of the Raman bands 

associated with the uranium molecules and the different ions in the uranium compounds, 

namely uranium chloride, uranium trioxide, uranium nitrate and uranium sulphate bound in 

cellulose, using each of these lasers. A mixture sample prepared by adding uranium chloride, 

uranyl nitrate and uranium trioxide in cellulose, a sample prepared by adding the four uranium 

compounds (uranium chloride, uranium trioxide, uranium nitrate and uranium sulphate), 
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uranium mineral ores and HBRA soil samples were qualitatively analyzed using LRM with a 

785 nm laser. Averaging a large number of spectra aids in obtaining high quality spectra even 

when a single spectrum contains very little signal. Therefore, a total of 20 spectral data points 

were collected with an exposure time of 10 s and 10 accumulations from each sample and 

averaged to obtain a single spectrum.   

5.6.1 Qualitative analysis of molecular bands in uranium compounds bound in cellulose  

To eliminate the background noise and fluorescence, Raman spectra from samples prepared as 

explained in Section 4.4.2 using lasers at 532 nm and 785 nm were first preprocessed using 

Unscrambler software (ver 10.5) by applying DT, SNV, baseline offset, smoothing and de-

resolve the spectra. The pre-processing steps eliminated fluorescence background and noise 

without eliminating any important information from the spectra. The Savitzky-Golay approach 

was applied for smoothing. Figure 5.68 and Figure 5.69 show the spectra acquired using lasers 

at 532 nm and 785 nm respectively. The spectra obtained from the uranium compounds using 

lasers at 532 nm and 785 nm were analyzed to determine the Raman scatter bands associated 

with each uranium molecule. The Raman spectrum using a 532 nm laser is displayed in the 

range of 200 cm-1 to 1200 cm-1 while the Raman spectrum using a 785 nm laser is displayed in 

the range of 100 cm-1 to 1300 cm-1 as the band of interest for this study lies between 200 cm-1 

and 1200 cm-1. The Raman bands associated with cellulose were observed at 1120 cm-1, 1090 

cm-1, 477 cm-1, 458 cm-1 and 380 cm-1 (Agarwal et al., 2010). These bands were seen using 

lasers at 785 nm and 532 nm. The Raman bands associated with cellulose were recorded to 

identify cellulose molecules in uranium mineral ore samples and HBRA soil samples. Table 

5.17 and Table 5.18 summarize the Raman scatter bands identified in each uranium compound 

using lasers at 532 nm and 785 nm and the assignments of the respective bands. Raman spectra 

of uranium trioxide show the U-O stretching bond at 836 cm-1 and 840 cm-1 utilizing lasers of 

532 nm and 785 nm respectively. The Raman spectra of uranium chloride acquired using a laser 
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at 785 nm indicate bands at 848 cm-1 and 860 cm-1 associated with the UO2Cl+ molecule (Lu et 

al., 2015; Dargent et al., 2013). However, using a laser 532 nm, only one band at 847 cm-1 was 

observed. This could be due to the fact that laser 532 nm is unable to excite the uranium 

compounds bound in cellulose as much as laser 785 nm. The presence of the UO2Cl+ band in 

the uranium chloride sample was due to the oxidation of uranium chloride caused by laser 

irradiation. The Raman scatter band linked with UO3NO3+ in uranyl nitrate using both lasers 

was seen at 862 cm-1, whereas the Raman scatter bands corresponding to the nitrate group were 

identified at 1034 cm-1 and 1049 cm-1 using laser at 785 nm. In addition to this, a few more 

Raman scatter bands were identified using lasers at 532 nm and 785 nm at 1072 cm-1 and 1010 

cm-1 which are most likely related to the nitrate ion. The Raman scatter band corresponding to 

UO2(SO4) was observed at 867 cm-1 and 866 cm-1 in uranyl sulphate using lasers at 785 nm and 

532 nm respectively. The band associated with the sulphate ion was at 1050 cm-1 using lasers 

at 532 nm and 785 nm. Besides this, a band at 1040 cm-1 was identified using both the lasers, 

and the band was attributed to the sulphate ion. The Raman bands related to uranium molecules 

and the different ions in the uranium compounds using the two lasers, 532 nm and 785 nm, 

show that almost all the bands seen using laser 785 nm were also seen using 532 nm at around 

the same position with very minimal Raman shift, except for the UO2Cl+ molecule at 860 cm-1 

and the nitrate band at 1034 cm-1 and 1049 cm-1.  
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Figure 5.68: Raman spectra from the uranyl nitrate, uranyl sulphate, uranium chloride and 

uranium trioxide using 532 nm laser. 
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Table 5.17:  Assignment of Raman bands in uranium compounds using laser 532 nm. 

Speciation  Band Assignment 
 

This work 
(cm-1) 

Literature 
(cm-1) 

Reference 
 

Uranium Chloride (UO3) 
U-O U-O stretching 

band 
840 846 (Palacios and Taylor, 2000) 

Cellulose  1094 1096 (Agarwal et al., 2010)  
 

 1120 1120 (Agarwal et al., 2010) 

Uranyl Sulphate (UO2SO4.3H2O) 
UO2SO4   866 860 ± 2 (Lu et al., 2015)  
  753 As per this 

study 
Unidentified 

SO42-  1050 1048 (Lu et al., 2015)  
 1040  As per this 

study 
Unidentified 
 

Cellulose  1094 1096 (Agarwal et al., 2010)  
 

 1124 1120 (Agarwal et al., 2010)  

Uranyl Nitrate (UO3(NO3)2.6H2O) 
UO3NO3+  UO22+symmetric 

stretch 
862 876 (Palacios and Taylor, 2000)  

NO3-    1072 As per this 
study 

Unidentified 

Cellulose  1094 1096 (Agarwal et al., 2010) 

Uranium Chloride (UCl3) 
UO2Cl+  860 866 ± 2 (Lu et al., 2015);  
    (Dargent et al., 2013) 
   848 841 (Dargent et al., 2013)  
Cellulose  454 458 (Agarwal et al., 2010)   
  1094 1096 (Agarwal et al., 2010)  
 

 1120 1120 (Agarwal et al., 2010)  

Cellulose  
 380 380 (Agarwal et al., 2010)   
 450 458 (Agarwal et al., 2010)  

 
 1090 1096 (Agarwal et al., 2010) 

 
 1120 1120 (Agarwal et al., 2010) 
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Figure 5.69: Raman spectra from the uranyl nitrate, uranyl sulphate, uranium chloride and 

uranium trioxide using 785 nm laser. 

  

204 
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Table 5.18: Assignment of Raman bands in uranium compounds using laser 785 nm. 

Speciation 
 

Band 
 Assignment 

This work 
(cm-1) 

Literature 
(cm-1) 

Reference 

Uranium Trioxide (UO3) 
U-O U-O stretching 

band 
840 846 (Palacios and Taylor, 2000) 

Uranyl Sulphate (UO2SO4.3H2O) 

UO2SO4   867 860 ± 2 (Lu et al., 2015) 
  753 As per this study Unidentified 
SO42-  1050 1048 (Lu et al., 2015) 
  1040 As per this study Unidentified  

 122 As per this study Unidentified 
U-O  203 As per this study Unidentified 
Uranyl Nitrate (UO3(NO3)2.6H2O) 
UO3NO3+  UO22+symmetric 

stretch 
862 876 (Palacios and Taylor, 2000) 

NO3-   NO3- symmetric 
stretch 

1034 1034 (Palacios and Taylor, 2000)  
 

Free NO3- (ν1) 1049 1047 (Lu et al., 2015) 

  1010 As per this study Unidentified 
 

 1072 As per this study Unidentified 
U-O  194 As per this study Unidentified 
Uranium Chloride (UCl3) 
UO2Cl+  860 866 ± 2 (Lu et al., 2015);  
    (Dargent et al., 2013) 
 U-O  848 841 (Dargent et al., 2013) 
   204 As per this study Unidentified 
Cellulose 
 

 198 As per this study Unidentified 
  380 380 (Agarwal et al., 2010) 
 

 458 458 (Agarwal et al., 2010)  
 1090 1096 (Agarwal et al., 2010) 

 
 1120 1120 (Agarwal et al., 2010) 

  477 As per this study Unidentified 
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5.6.2 Qualitative analysis of molecular bands in a sample prepared with a mixture of three 

uranium compounds bound in cellulose.  

Raman spectrum collected from the sample prepared by adding uranyl nitrate, uranium chloride 

and uranium trioxide bound in cellulose using laser 785 nm is shown in Figure 5.70. This 

sample was analyzed to study the impact of mixing the three uranium compounds position 

(uranyl nitrate, uranium chloride and uranium trioxide) on the Raman bands associated with the 

three uranium compounds. The displayed spectrum is between 100 cm-1 and 1200 cm-1. 

 

Figure 5.70: Raman spectra using a 785 nm laser from a sample prepared by adding uranyl 

nitrate, uranium chloride and uranium trioxide in cellulose. 

Although the spectrum appears to be noisy even after pre-processing of the spectrum, multiple 

Raman scatter bands were observed in the spectral range lying between 840 cm-1 to 870 cm-1. 
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The noisy nature of the spectrum may account for the matrix effect arising due to the larger 

proportion of the cellulose in comparison to uranium compounds in the pellet. Raman scatter 

band identified at 843 cm-1 may be associated with U-O stretching band at 846 cm-1 or UO2Cl+ 

at 841 cm-1, Raman band at 852 cm-1 and 857 cm-1 may be related to UO2Cl+ at (866 ± 2) cm-

1, and Raman band at 861 cm-1 and 868 cm-1 may be related to UO3NO3+ at 876 cm-1. The 

Raman scatter bands at 1039 cm-1 and 1044 cm-1 may correspond to NO3- (symmetric stretch) 

at 1034 cm-1 and free NO3- at 1047 cm-1 respectively, while that at 1094 cm-1 may be related to 

cellulose at 1096 cm-1. Thus, the Raman band corresponding to uranium molecule for the 

sample with three uranium compounds (uranyl nitrate, uranium chloride and uranium trioxide) 

bound in cellulose lies in the range of (850 to 867) ± 15 cm-1.  

5.6.3 Qualitative analysis of molecular bands in a sample prepared with a mixture of four 

uranium compounds bound in cellulose  

Figure 5.71 depicts the Raman spectrum collected from a sample made by combining four 

uranium compounds – uranyl nitrate, uranyl sulphate, uranium chloride and uranium trioxide. 

The displayed range of the Raman spectrum obtained using laser 785 nm is between 100 cm-1 

and 1200 cm-1. The bandwidth corresponding to the different uranium molecules in Figure 5.71 

appears to be broadened in comparison to that observed in the Raman spectrum collected from 

the sample prepared by adding uranyl nitrate, uranium chloride and uranium trioxide bound in 

cellulose. The overlapping of the distinct bands associated with each uranium molecule 

(UO3NO3+ at 876 cm-1, UO2SO4 cm-1 at (860±2) cm-1, UO2Cl+ at (866±2) cm-1 and 841 cm-1 

and U-O at 846 cm-1) in the mixed sample may explain the broadening of the Raman scatter 

band. On preprocessing the Raman scatter band using MATLAB as mentioned in Section 4.6.2, 

two distinct Raman scatter bands at 832 cm-1 and 863 cm-1 were observed as shown in Figure 

5.72. The Raman scatter band observed at 832 cm-1 are associated with U-O at 846 cm-1 or 

UO2Cl+ at 841 cm-1 and the Raman band observed at 863 cm-1 may be associated with either 
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UO2Cl+ at (866±2) cm-1 or UO2SO4  at (860 ± 2) or UO3NO3+ at 876 cm-1. The Raman scatter 

bands associated with the various anions (NO3- at 1047 cm-1 and SO42- at 1048 cm-1) in the 

mixed sample are difficult to distinguish because they lie so close to each other. Raman scatter 

bands corresponding to the uranium molecules were clearly visible in the preprocessed Raman 

spectrum seen in Figure 5.72.  Therefore, it is concluded that utilizing a laser with λ = 785 nm, 

the scatter band corresponding to uranium varies in the range of (840 to 867) ± 15 cm-1. These 

Raman bands can be used in the detection of uranium molecules in uranium ore concentrates 

concealed in an organic matrix such as cellulose (Bhatt et al., 2017).  

Figure 5.71: Raman spectra from a sample prepared by mixing uranyl nitrate, uranyl sulphate, 

uranium chloride and uranium trioxide using a 785 nm laser. 
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Figure 5.72: Preprocessed Raman spectra from a sample mixture of uranium trioxide, uranium 

chloride, uranyl sulphate and uranyl nitrate using 785 nm laser. 

5.6.4 Qualitative analysis of molecular bands in HBRA soil samples bound in cellulose  

HBRA soil samples were analyzed using LRM (785 nm) to study the presence of uranium 

molecules. Raman spectra collected from the HBRA soil samples of Kenya, namely Coast 

(DZHS-01), North Ruri (NRS-08) and Lake Magadi (LMS-09) are shown in Figure 5.73. The 

Raman spectra were subjected to pre-processing techniques using MATLAB as mentioned in 

Section 4.6.2, to eliminate the fluorescence and background noise from the spectra prior to the 

qualitative analysis. The assignment of each band in the HBRA sample is clearly mentioned in 

Table 5.19. Raman scatter bands corresponding to uranium molecules were identified at 844 

cm-1, 859 cm-1 and 874 cm-1 in the spectra collected from Coast (DZHS-01) and Lake Magadi 

(LMS-09) while uranium molecules at 844 cm-1 and 874 cm-1 were observed in the Raman 
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spectra of North Ruri (NRS-08). The Raman band at 844 cm-1 may be associated with the U-O 

or UO2Cl+ while those at 859 cm-1 and 874 cm-1 are more likely to be linked with UO3SO4 and 

UO3NO3+ respectively, as listed in Table 5.18. The Raman bands at 1085 cm-1, 1081 and 1080 

in Lake Magadi, North Ruri and Coast samples respectively are due to cellulose.  The Raman 

scatter band observed at 1043 cm-1 in Lake Magadi and North Ruri samples is associated either 

with NO3- or SO4-2 ions. Also, the Raman bands at 1037 cm-1 and 1052 cm-1 in the Coast sample 

indicate the possible presence of nitrate and sulphate ions respectively. Therefore, from the 

qualitative analysis of Lake Magadi, Coast and North Ruri samples, it is inferred that the 

samples possibly contain uranyl nitrate, uranyl chloride and uranyl sulphate molecules. The 

presence of uranyl chloride in Lake Magadi can be justified by the fact that Lake Magadi is a 

natural salty water lake and, therefore, the presence of chloride ions in the soil sample from this 

region is very much expected. The proximity of the Coast samples to the Indian Ocean supports 

the presence of chloride ions in the Coast samples.  
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Figure 5.73: Raman spectra using 785 nm from HBRA soils of Kenya (a) Coast (DZHS-01), 

(b) North Ruri (NRS-08) and (c) Lake Magadi (LMS-09). 
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Table 5.19: Assignment of Raman bands in HBRA soil samples 

Raman shift 
(cm-1) 

Band Assignment Literature 
(cm-1) 

Reference 

Lake Magadi (LMS-09) 

844 U-O stretching  846 (Palacios and Taylor, 2000) 
 UO2Cl+ 841 (Dargent et al., 2013)  

859 UO2SO4 860 ± 2 (Lu et al., 2015) 

874 UO22+ symmetric stretch 876 (Palacios and Taylor, 2000) 

1043 Free NO3- (ν1) 1047 (Lu et al., 2015) 
 SO4-2  1048 (Lu et al., 2015) 

1052 SO4-2  1048 (Lu et al., 2015) 

1085 Cellulose 1096 (Agarwal et al., 2010) 

North Ruri (NRS-08) 

844 U-O stretching  846 (Palacios and Taylor, 2000) 
 UO2Cl+ 841 (Dargent et al., 2013)  

874 UO22+ symmetric stretch 876 (Palacios and Taylor, 2000)  

1043 Free NO3- (ν1) 1047 (Lu et al., 2015) 
 SO4-2 1048 (Lu et al., 2015) 

1081 Cellulose 1096 (Agarwal et al., 2010) 

Coast (DZHS-01) 

844 U-O stretching  846 (Palacios and Taylor, 2000)  
 UO2Cl+ 841 (Dargent et al., 2013)  

859 UO2SO4 860 ± 2 (Lu et al., 2015) 

874 UO22+ symmetric stretch 876 (Palacios and Taylor, 2000)  

1037 NO3-  1034 (Palacios and Taylor, 2000) 

1052 SO4-2  1048 (Lu et al., 2015) 

1080 Cellulose 1096 (Agarwal et al., 2010) 
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5.6.5 Qualitative analysis of molecular bands in uranium mineral ores bound in cellulose  

LRM (785 nm) was used to analyze the uranium mineral ores (uranium) and assign various 

bands to the uranium molecule and the anion. Raman spectra of these rock samples from Kenya, 

namely South Ruri (SRR-09) and Lake Magadi (LMR-3) are shown in Figure 5.74. The Raman 

spectra collected from the rock samples were very noisy and therefore were subjected to pre-

processing techniques  using MATLAB as stated in Section 4.6.2, to eliminate the noise and 

fluorescence arising due to the matrix. The band assignment in the rock samples are 

summarized in Table 5.20. The Raman spectra collected from samples from South Ruri (SRR-

09) and Lake Magadi (LMR-3) were observed to have bands associated with uranium molecules 

at 843 cm-1, 853 cm-1, 867 cm-1 and 869 cm-1. The bands at 843 cm-1 and 853 cm-1 may be 

associated with U-O (846 cm-1) or UO2Cl+ (841 cm-1 ) and that at 869 cm-1 is likely to be 

associated with UO2SO4 (860 ± 2 cm-1 ) or UO2Cl+ (866 ± 2 cm-1). The band at 1042 cm-1 and 

1044 cm-1 are likely to be associated with SO4-2 or NO3- ions while that at 1083 cm-1 is due to 

cellulose as mentioned in Table 5.18. Thus, indicating the probable presence of uranium 

sulphate, uranyl chloride and uranium nitrate in the rock samples. The presence of uranyl 

chloride in the Lake Magadi samples can be justified by the fact that Lake Magadi is a natural 

salty water lake. Therefore, the presence of chloride ions in the samples from this region is very 

likely.  
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Figure 5.74: Raman spectra using 785 nm from uranium mineral ores of Kenya (a) Lake Magadi 

(LMR-3), (b) South Ruri (SRR-09). 
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Table 5.20: Assignment Raman bands in uranium mineral ore samples. 

Raman shift 
(cm-1) 

Band Assignment Literature 
(cm-1) 

Reference 

South Ruri (SRR-09) 

843 U-O stretching 846 (Palacios and Taylor, 2000)  
UO2Cl+ 841 (Dargent et al., 2013) 

853 U-O stretching 846 (Palacios and Taylor, 2000) 

869 UO2SO4 860 ± 2 (Lu et al., 2015) 

 UO2Cl+ 866 ± 2 (Lu et al., 2015; Dargent et al., 2013) 

1042 SO4-2 1048 (Lu et al., 2015)  
Free NO3- (ν1) 1047 (Lu et al., 2015) 

1083 Cellulose 1096 (Agarwal et al., 2010) 

Lake Magadi (LMR-3) 

843 U-O stretching 846 (Palacios and Taylor, 2000)  
UO2Cl+ 841 (Dargent et al., 2013) 

853 U-O stretching 846 (Palacios and Taylor, 2000) 

867 UO2SO4 860 ± 2 (Lu et al., 2015) 

 UO2Cl+ 866 ± 2 (Lu et al., 2015; Dargent et al., 2013) 

1044 SO4-2 1048 (Lu et al., 2015)  
Free NO3- (ν1) 1047 (Lu et al., 2015) 

1083 Cellulose 1096 (Agarwal et al., 2010) 
 

5.7 Distribution of Uranium Molecules using LRM 

Uranium trioxide bounded in cellulose mimics a perfect scenario of uranium trafficking in a 

hidden condition. LRM was employed to analyze the detectability of a 150 ppm pellet of 

uranium trioxide embedded in cellulose. When the sample surface was examined using the 

built-in microscope, certain portions appeared slightly yellowish in color while the rest of the 

surface appeared to be colorless as seen in Figure 5.75. Raman spectra acquired from the 

yellowish portion of the sample suggest the existence of a U-O band at 840 cm-1 as shown in 
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Figure 5.75  Figure 5.75 (a). On the other hand, the Raman spectra obtained from the non-

yellow region of the sample reveal the absence of any such band in the spectra as can be seen 

in Figure 5.75 (b). As illustrated in Figure 5.75 (a), the intensity of uranium band (U-O) from 

the yellowish portion of the sample grew linearly with increasing total exposure time (number 

of accumulations times exposure duration). The intensity of the Raman band is observed to be 

maximum when the number of accumulations (NA) is 10 and the exposure time (ET) is 10 s. 

The occurrence of yellow traces on some sections of the sample surface and its absence on the 

remaining part of the surface may be explained by the fact that the uranium compounds do not 

mix homogenously with cellulose (Bhatt et al., 2017).  

 
    (a)        (b) 

Figure 5.75: Raman spectra using 785 nm laser from (a) yellow traces (b) non-yellow region 

on 150 ppm of uranium sample surface. 
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5.7.1 Distribution of uranium molecule (150 ppm of uranium) in uranium compound 

concealed in cellulose using spectral imaging  

To facilitate the detection of uranium, spectral imaging at 50 locations was conducted with 10 

accumulations and an exposure time of 10s on the 150 ppm uranium sample. Figure 5.76 (a) 

represents the 50 spots on the sample surface from where the Raman spectra were collected, 

and Figure 5.76 (b) displays the Raman spectra recorded from these 50 locations in 150 ppm of 

uranium sample. Since the study was about uranium detection, the R-band was assigned to 

(830.849 to 841.484) cm-1 collected from a 150 ppm uranium sample. The STR Data Collection 

and Mapping Software was used to determine the distribution of the uranium molecule. The 

dark region in the 3D-XYZ image and the 2D-XY image in Figure 5.76 (c) and Figure 5.76 (d) 

respectively reflects the absence of the assigned R-band while the red region indicates the 

presence of a uranium molecule.  It may be mentioned that the region with very little trace of 

redness or deep red squares, as observed in Figure 5.76 (c) and Figure 5.76 (d), respectively, 

suggests a very low level or presence of the molecule of interest. This spectral imaging 

approach may detect uranium molecules as low as 150 ppm of uranium by designating a color 

to the Raman scatter band (840 to 867) ± 15 cm-1. However, identifying the anion component 

of the molecule is difficult because the bands associated with the sulphate and nitrate are quite 

close to each other and may even overlap at times (Bhatt et al., 2017). Thus, spectral imaging 

has the potential to detect uranium molecules concealed in an organic binder by designating a 

color to the Raman scatter band lying between (840 to 867) ± 15 cm-1. Each square box in the 

bar distribution in Figure 5.76 (d) represents the distribution of uranium at two successive spot 

points. Hence, there are 25 square boxes for each of the 50 spots in the bar distribution.  
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(d) 

 
Figure 5.76 (a): 50 spots on the sample surface (b) Raman spectra collected from 50 spots using 

785 nm laser with R-band assigned to (830.849 to 841.484) cm-1 (c) 3D distribution of uranium 

compound on 150 ppm of uranium sample surface and (d) 2D distribution of uranium 

compound on 150 ppm of uranium sample surface. 

  

!

!
!

(a) 

(b) 

(c) 
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5.7.2 Distribution of uranium molecule in three different layers of uranium chloride bound in 

cellulose using spectral imaging  

Spectral imaging was performed with a step size of 25 µm along the X and Y direction and 

movement points of 2 units along the X and Y direction on different layers of uranium chloride 

(899 ppm of uranium) sample to obtain the distribution of uranium in the different layers of the 

sample. Spectral imaging was performed at 49 spots on three different layers i.e., on the sample 

surface, at 0.5 µm deep from the sample surface and 1 µm deep from the surface of the sample 

with an exposure time of 3 s and 3 accumulations. The exposure time and the number of 

accumulations were reduced to shorten the total time required for spectral imaging, thus making 

the process rapid while obtaining the distribution of uranium through the layers. Raman spectra 

collected from 147 spots were preprocessed in Unscrambler X 10.4 using techniques as 

mentioned in Section 4.6.2. R-band was assigned to (821.355-870.912) cm-1 and the 

distribution of uranium molecule was acquired using the STR Data Collection and Mapping 

Software. The 2D-XY surface and bar distribution of uranium on the sample surface i.e., at x = 

0 are shown in Figure 5.77 (a) and (b) respectively, while the 2D-XY surface and bar 

distribution at x = -0.5 µm deep inside the sample are shown in Figure 5.78 (a) and (b) 

respectively. The 2D-XY surface and bar distribution of the uranium molecule at a depth of x 

= -1 µm inside the sample are shown in Figure 5.79 (a) and (b) respectively. The 49 square 

boxes in the bar distribution Figure 5.77 (b),  Figure 5.78 (b) and Figure 5.79 (b) represent the 

49 spot positions at x = 0, x = -0.5 µm and x = -1 µm respectively. Raman spectra were collected 

from these 147 spot positions of the sample. The red regions in Figure 5.77 (a), Figure 5.78 (a) 

and Figure 5.79 (a) and the red squares in Figure 5.77 (b), Figure 5.78 (b) and Figure 5.79 (b) 

indicate the presence of uranium molecules at the specific positions on the sample surface and 

at different layers of the sample from where the spectra have been collected. The change in the 

red color from bright red to a darker shade of red indicates the distribution of uranium from 
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very high to low. Thus, the dark region in Figure 5.77 (a), Figure 5.78 (a) and Figure 5.79 (a) 

and the dark red squares in Figure 5.77 (b), Figure 5.78 (b) and Figure 5.79 (b) indicate the 

absence of uranium molecule on the sample surface, at x = -0.5 µm and x = -1 µm inside the 

sample. Thus, showing that the uranium molecule is not uniformly distributed in the sample. 

 
(a)                                                                          (b) 

Figure 5.77: Distribution of uranium using 785 nm laser with R-band assigned to (821.355-

870.912) cm-1 at x = 0 (sample surface) (a) 2D-XY surface and (b) 2D-XY bar. 

 
(a)                                                                          (b) 

Figure 5.78: Distribution of uranium using 785 nm laser with R-band assigned to (821.355-

870.912) cm-1 at x = -0.5 µm (a) 2D-XY surface and (b) 2D-XY bar. 
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(a)                                                                          (b) 

Figure 5.79: Distribution of uranium utilizing 785 nm laser with R-band assigned to (821.355-

870.912) cm-1 at x = -1 µm (a) 2D-XY surface and (b) 2D-XY bar. 

5.7.3 Distribution of uranium in a sample with a mixture of uranium chloride, uranyl nitrate, 

uranyl sulphate and uranium trioxide concealed in cellulose using spectral imaging  

Spectral mapping was performed on 50 spots with a step size of 25 µm along X and Y direction 

and movement points of 2 units along X and Y direction on the sample surface containing the 

four uranium compounds (uranyl nitrate, uranyl sulphate, uranyl chloride and uranium trioxide) 

using laser 785 nm. The exposure time was set to 5 s and the number of accumulations to 5 for 

the spectral mapping. The spectra collected from these 50 points were preprocessed in 

MATLAB using techniques as mentioned in Section 4.6.2 to remove the fluorescence and noise 

arising from the matrix and isolate the uranium molecules at 832 cm-1 and 863 cm-1 so that the 

bandwidth of each uranium molecule can be identified and recorded. The uranium molecules 

at 832 cm-1 and 863 cm-1 were seen to have a well-defined bandwidth between (819.499 to 

857.409) cm-1 and (851.409 - 877.849) cm-1 respectively. The red band was assigned to 

(819.499 to 857.409) cm-1 and the green band to (851.409 - 877.849) cm-1 to obtain the 
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distribution of the uranium molecule at 832 cm-1 and 863 cm-1respectively. The 2D surface and 

2D bar distribution of the uranium molecule at 832 cm-1 collected from these 50 spots were 

obtained using STR Data Collection and Mapping Software and are seen in Figure 5.80 (a) and 

Figure 5.80 (b) respectively, while that for the uranium molecule at 863 cm-1 are displayed in  

Figure 5.81 (a) and Figure 5.81 (b) respectively. In Figure 5.80 (b) and Figure 5.81 (b), each 

square box in the bar distribution represents the distribution of uranium at two consecutive spot 

positions. As a result, 25 square boxes are observed for the 50 spots recorded in the bar 

distribution.  

 

(a)                                                                          (b) 
Figure 5.80: Distribution of uranium molecule at 832 cm-1 utilizing laser 785 nm on the sample 

surface (a)2D-XY surface and (b)2D-XY bar. 

The black region in Figure 5.80 (a) and the dark squares in Figure 5.80 (b) indicate the absence 

of the uranium molecule at 832 cm-1 while the red region and red squares in Figure 5.80 (a) and 

Figure 5.80 (b) respectively indicate strong presence of the molecule. The very dark red colored 

square immediately below the red square in Figure 5.80 (b) indicates very little presence or 

concentration of the uranium molecule at 832 cm-1. 
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(a)                                                                          (b) 
Figure 5.81: Distribution of uranium molecule at 863 cm-1 utilizing laser 785 nm on the sample 

surface (a)2D-XY surface and (b) 2D-XY bar. 

Similarly, the dark green region in Figure 5.81 (a) and the deep green squares in Figure 5.81 

(b) indicate the absence of uranium molecule at 863 cm-1. The green region in Figure 5.81 (a) 

and green squares in Figure 5.81 (b) represent the presence of uranium molecule (863 cm-1). It 

may be mentioned that the squares in Figure 5.81 (b) where the intensity of green is reduced, 

thereby giving it a deep green shade, indicates the presence of very little uranium molecule at 

863 cm-1. Thus, with prior qualitative analysis of the spectrum, the presence of uranium 

molecule and its respective bandwidth can be identified so that the colored band is assigned to 

each molecule very precisely to obtain the distribution of the respective molecule.  

5.7.4 Distribution of uranium molecules in HBRA soil using spectral imaging  

Spectral mapping from 50 spots with a step size of 25 µm along X and Y directions and 

movement points of 2 units along X and Y directions was carried out on the Coast region’s 

HBRA soil (DZHS-01) sample’s surface to study the distribution of uranium molecules. The 

number of accumulations and exposure time were set to 5 and 5 s respectively, to obtain the 
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spectral mapping of the HBRA sample’s surface. As seen in Figure 5.73, uranium molecules, 

namely 844 cm-1, 859 cm-1 and 874 cm-1 were identified during the qualitative analysis of the 

Raman spectra collected from this sample. The Raman scatter band at 844 cm-1 is probably 

associated with the U-O or UO2Cl+ while those at 859 cm-1 and 874 cm-1 are likely to be 

associated with UO2SO4 and UO22+ symmetric stretch respectively. The bandwidth for each of 

these uranium molecules was recorded from the Raman spectra. The Raman scatter band 

between (845.6745-858.0517) cm-1 was assigned a red color to obtain the distribution of 

uranium molecules at 844 cm-1. Green color was assigned to the Raman scatter band between 

(858.0517-872.1604) cm-1 to acquire the distribution of the uranium molecule at 859 cm-1. The 

distribution of the uranium molecule at 874 cm-1 was obtained by assigning blue color to the 

Raman scatter band between (872.1604-882.7164) cm-1. The assignment of red, green and blue 

color to (845.6745-858.0517) cm-1, (858.0517-872.1604) cm-1 and (872.1604-882.7164) cm-1 

respectively, to the Raman spectra collected from 50 different spots is shown clearly in Figure 

5.82. The distribution of the uranium molecules at 844 cm-1, 859 cm-1 and 874 cm-1 was 

obtained in the region where the spectral mapping was performed using STR Data Collection 

and Mapping Software. The 2D surface distribution of the uranium molecules at 844 cm-1, 859 

cm-1 and 874 cm-1 is shown in Figure 5.83 (a), Figure 5.84 (a), and Figure 5.85 (a) respectively, 

and the 2D bar distribution of 844 cm-1, 859 cm-1 and 874 cm-1 is shown in Figure 5.83 (b), 

Figure 5.84 (b), and Figure 5.85 (b) respectively. The square boxes seen in Figure 5.83 (b), 

Figure 5.84 (b), and Figure 5.85 (b) represent the distribution of the molecule of interest at the 

two consecutive spot positions in the mapped region. Thus, 25 square boxes are observed in the 

bar distribution of the molecules. The intensity of the three colors assigned to the respective 

uranium molecules displays the distribution of each uranium molecule. The reduced brightness 

of each color (red or green or blue) indicates the low presence of the respective uranium 

molecule of interest.  
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Figure 5.82: Assignment of color bands to the Raman spectra collected from 50 spots on the 

soil (DZHS-01) sample using 785 nm. 

The red color region in Figure 5.83 (a) and red square box (second position in the third row 

from the top) in Figure 5.83 (b) indicate strong presence of uranium molecule at 844 cm-1 while 

the black region in Figure 5.83 (a) and the dark red square boxes (fifth position in the second 

and third row from the top) in Figure 5.83 (b) indicate the absence of the molecule. In the 2D 

surface and bar distribution of uranium, the decrease in the intensity of the red color relates to 

the very little presence of the uranium molecule of interest. Thus, it is observed that, except for 

the square box in the second position of the third row from the top, the presence of the molecule 

at 844 cm-1 is comparatively less at all the other positions on the sample surface. The deep red 

or brownish color of square boxes means that there is no uranium molecule at 844 cm-1 in those 

spot positions .  
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(a)                                                                          (b) 
Figure 5.83: Distribution of uranium molecule at 844 cm-1using laser 785 nm on HBRA soil 

sample surface (DZHS-01) (a) 2D-XY surface and (b)2D-XY bar. 

In Figure 5.84 (a), the green region indicates the presence of the uranium molecule at 859 cm-1 

while the dark region indicates the absence of the molecule. The green squares (second and 

fifth position in the first row, fifth position in the second row, second, third and fourth position 

in the third row and first position in the last row from the top) in the bar distribution of the 

uranium molecule in Figure 5.84 (b) represent the specific spot position on the sample’s surface 

where the uranium molecule is present. Regions or squares, where the intensity of green is less 

show that there is little presence of the uranium molecule. Thus, the uranium molecule at 859 

cm-1, which is probably associated with UO2SO4, is observed to be largely present in the HBRA 

soil sample. 
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(a)                                                                          (b) 
Figure 5.84: Distribution of uranium molecule at 859 cm-1 using laser 785 nm on HBRA soil 

sample surface (DZHS-01) (a)2D-XY surface and (b) 2D-XY bar. 

The blue region in the mapped region in Figure 5.85 (a) indicates the presence of the uranium 

molecule (874 cm-1) on the sample surface, while the dark regions indicate the absence of the 

uranium molecule of interest. The absence of the uranium molecule (874 cm-1) is indicated by 

the deep blue colored square boxes (fifth in the first row, fourth in the second row and first in 

the third row from the top) in the bar distribution of the uranium molecule presented in Figure 

5.85 (b), while bright blue colored square boxes (first, third and fourth position in the first row, 

fifth in the second row, second, third and fourth in the third row and first position in the fourth 

row from the top) indicate the presence of the uranium molecule. The square boxes with the 

intensity of bright blue reduced indicate that there is very little presence of the uranium 

molecule in those spots. 
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(a)                                                                          (b) 

Figure 5.85: Distribution of uranium molecule at 874 cm-1using laser 785 nm on HBRA soil 

sample surface (DZHS-01) (a) 2D-XY surface and (b) 2D-XY bar. 

The distribution of the three uranium molecules suggests the dominant presence of the uranium 

molecule at 874 cm-1 (associated with UO22+ symmetric stretch), followed by the molecules at 

859 cm-1 (UO2SO4) and 844 cm-1 (U-O stretching or UO2Cl+) in the HBRA soil sample. It is 

therefore concluded that the uranium molecules at 859 cm-1 and 874 cm-1 largely contribute to 

the uranium content in the HBRA soil sample from the Coast (DZHS-01). 

5.7.5 Distribution of uranium molecules in uranium mineral ore using spectral imaging  

LRM was used to perform spectral mapping on the mineral ore of uranium (SRR-09) sample’s 

surface with a step size of 25 µm along X and Y directions and movement points of 2 units 

along X and Y directions to study the distribution of uranium molecules. The spectral mapping 

was obtained by setting the exposure time and the number of accumulations to 5 s and 5 s, 

respectively. As seen in Figure 5.74, uranium molecules, namely at 843 cm-1, 853 cm-1 and 869 

cm-1 were identified during the qualitative analysis of the Raman spectra collected from this 

sample. The Raman scatter band at 843 cm-1 is probably associated with the U-O stretching or 
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UO2Cl+, while that at 853 cm-1 is likely to be associated with U-O stretching. The band at 869 

cm-1 is likely to be associated with UO2SO4 or UO2Cl+ symmetric stretch. The bandwidth was 

noted for each of these uranium molecules from the Raman spectra of the sample. red, green, 

and blue colors were assigned to the Raman scatter band between (840.3323-850.9543) cm-1, 

(850.9543-859.789) cm-1 and (859.789-875.6532) cm-1 to obtain the distribution of uranium 

molecules at 843 cm-1, 853 cm-1 and 867 cm-1 respectively, in the mapped region. The 

assignment of red, green, and blue color to (840.3323-850.9543) cm-1, (850.9543-859.789) cm-

1 and (859.789-875.6532) cm-1 respectively, to the 50 spectra collected from the respective spots 

is shown in Figure 5.60. The STR Data Collection and Mapping Software was used to obtain 

the distribution of the uranium molecules at 843 cm-1, 853 cm-1 and 867 cm-1. The 2D surface 

distribution of the uranium molecules at 844 cm-1, 853 cm-1 and 867 cm-1 is shown in Figure 

5.87 (a), Figure 5.88 (a), and Figure 5.89 (a) respectively, and the 2D bar distribution of 843 

cm-1, 853 cm-1 and 867 cm-1 is shown in Figure 5.87 (b), Figure 5.88 (b), and Figure 5.89 (b) 

respectively. The square boxes in Figure 5.87 (b), Figure 5.88 (b), and Figure 5.89 (b)  represent 

the distribution of the molecule at two consecutive spot positions from where the spectra were 

collected. The distribution of the molecules is interpreted by the intensity of the color. The 

decrease in the intensity of the color (red or green or blue) assigned to the specific Raman 

scatter band refers to the lower presence of the uranium molecule. 
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Figure 5.86: Assignment of color bands to the Raman spectra collected from 50 spots on the 

uranium mineral ore (SRR-09) sample using 785 nm.  

The presence of red color in Figure 5.87 (a) and red square boxes (first in the first row and 

second in the fourth row from the top) in Figure 5.87 (b) indicate the presence of the uranium 

molecule at 844 cm-1 while the dark regions in Figure 5.87 (a) and dark red squares (third and 

fourth position in the first row, fourth position in the second row, second position in the third 

row and fourth position in the fourth row from the top) in Figure 5.87 (b) indicate the absence 

of the molecule. It may be noted that the change in the intensity from bright red to a deeper 

shade of red in the 2D surface and bar distribution plot relates to the decrease in the presence 

of the uranium molecule at 843 cm-1.  
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(a)                                                                          (b) 

Figure 5.87: Distribution of uranium molecule at 843 cm-1using 785 nm laser on uranium 

mineral ore sample’s surface (SRR-09) (a) 2D-XY surface and (b)2D-XY bar. 

The green region in Figure 5.88 (a) indicates the presence of the uranium molecule at 853 cm-

1 while the dark region indicates its absence. The green squares in the bar distribution of the 

uranium molecule (third and fifth in the second row and first, second and fourth in the fifth row 

from the top) in Figure 5.88 (b) indicate the presence of the uranium molecule 853 cm-1, 

whereas the dark green square boxes (fifth position in the first row, second and fifth position in 

the third row and first, fourth and fifth in the fourth row from the top) indicate the absence of 

the molecule. The square boxes with a less bright shade of green indicate a low presence of the 

molecule. The uranium molecule at 853 cm-1, which is likely to be associated with U-O 

stretching, is observed to be largely distributed in the lower part of the mapped region. 
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(a)                                                                          (b) 

Figure 5.88: Distribution of uranium molecule at 853 cm-1 using 785 nm laser on uranium 

mineral ore sample’s surface (SRR-09) (a) 2D-XY surface and (b) 2D-XY bar. 

 

(a)                                                                          (b) 
Figure 5.89: Distribution of uranium molecule at 867 cm-1using 785 nm laser on uranium 

mineral ore sample’s surface (SRR-09) (a) 2D-XY surface and (b) 2D-XY bar. 

The blue region in Figure 5.89 (a) strongly suggests the presence of the uranium molecule (867 

cm-1) on the sample surface, while the dark regions in the Figure suggest its absence. The 
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presence of the uranium molecule (874 cm-1) is indicated by the bright blue square boxes (third 

and fifth in the first row and third and fourth in the second row from the top) in Figure 5.89 (b). 

The deep or dark blue colored square boxes (fourth in the first row, first, second and fifth in the 

second row, fourth and fifth in the third row, first, second and fifth in the fourth row and third 

and fifth in the fifth row from the top) indicate the absence of the molecule. The squares, which 

are neither bright blue nor very dark blue, indicate very little presence of the uranium molecule 

at 867 cm-1. 

From the distribution study of uranium molecules on the mineral ore of uranium samples, it is 

concluded that the uranium molecule at 853 cm-1 (associated with U-O stretching) was the most 

dominant among the three. This was followed by the molecules at 843 cm-1 (U-O stretching or 

UO2Cl+) and 867 cm-1 (UO2SO4 or UO2Cl+) in the mineral ore of the uranium sample. Thus, 

the study points out that the uranium content in the mineral ore of the uranium sample from 

South Ruri (SRR-09) is largely due to the presence of the uranium molecules at 853 cm-1 and 

843 cm-1. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

This work displays the potential of ML assisted laser-based spectroscopy (LIBS and LRM) and 

spectral imaging (LRM) to perform rapid qualitative, quantitative, and exploratory analysis of 

the uranium ore surrogates (uranium mineral ores and HBRA soil samples), under concealed 

conditions without compromising the sample’s integrity.  

6.1 Conclusion 

Analysis of uranium trioxide, uranium mineral ores and HBRA soil samples using LIBS 

revealed that the uranium emission lines identified in each of these samples in ambient air were 

also visible in the respective samples in the helium environment. Also, all the uranium emission 

lines visible in the uranium trioxide sample in ambient air and helium were not visible in the 

uranium ore surrogates under the same condition. This may be on account of the continuum 

arising due to the matrix effect of uranium mineral ores and HBRA soil samples.  The U II 

386.592 nm, U II 385.957 nm, U II 385.464 nm and U II 383.164 nm were identified as NF 

signatures of uranium for rapid detection of trace uranium in cellulose, soil and rock samples 

utilizing LIBS in ambient air  (Bhatt et al., 2017).  

The LOD of uranium in cellulose in ambient air was computed at 76 ppm using U II 385.957 

nm (Bhatt et al., 2018). A multivariate calibration strategy was built in ANN (back-propagation 

algorithm) using all the uranium lines, identified in the qualitative analysis of uranium trioxide, 

to quantify trace uranium. The model was validated internally with simulate samples (not 

exposed during the training of the model) at REP = 12% and externally with CRM, IAEA-

RGU-1, Uranium Ore (IAEA/RL/148) at REP = 9%. 

Two calibration models were successfully developed using weak and resonant uranium lines. 

The model utilizing weak lines mimics a typical NF scenario that predicted the concentration 

of uranium in the RGU-1 (400 ppm) at 417 ppm and REP = 4.25%. The uranium content in the 

CRM was predicted by the calibration model utilizing resonant uranium lines to be 439 ppm 
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with a REP of 9.75%. The calibration model utilizing weak uranium lines predicted the uranium 

content in mineral ores sampled in Kenya to be between (103 – 837) ppm (Bhatt et al., 2018).  

The REP of the calibration model utilizing the weak uranium lines significantly improved for 

RGU-1 (400 ppm of uranium) from 4.25% to 2.25%, when the model was validated using 

RGMIX (101 ppm of uranium) in addition to the RGU-1. This may be because the weak lines 

are very sensitive to the slightest change in the concentration of uranium. The calibration model 

using weak uranium lines predicted uranium concentration in RGMIX  and RGU-1 at 104 ppm 

(REP = 2.97%) and 391 ppm (REP = 2.25%), respectively, while the model utilizing resonant 

uranium lines predicted at 171 ppm (REP = 69.31%) and 417 ppm (REP = 4.25%) respectively. 

The low sensitivity of the resonant lines to change at low concentrations of uranium may 

account for the high REP of the model. This ANN model using weak uranium lines successfully 

predicted the simulate sample with 82 ppm of uranium at 85 ppm (REP = 4.88 %). The 

calibration ANN model utilizing weak uranium lines predicted uranium concentration ranging 

from (112 - 1000) ppm in the uranium mineral ores.  Thus, ML techniques coupled with LIBS 

demonstrated its robustness in exploiting and extracting qualitative and quantitative 

information under practical NF scenarios.  

PCA was performed on the entire LIBS spectra recorded from HBRA soil samples in Kenya, 

which were grouped into three clusters based on their origins. The loading plots for the first 

two PCs demonstrated that the source attribution of the HBRA soil samples is closely associated 

with the REE, particularly Ti, Dy, Pm, Ho, Sm and Pr as well as elements such as Sr, Co, U, 

Th and Sc (Bhatt et al., 2017). PCA was also performed on the mineral ores of Kenya using the 

complete LIBS spectra and spectral feature selection. In the 2D and 3D PC score plots, the 

pattern developed utilizing PCA on the LIBS spectra clearly displayed three clusters (Coast, 

Lake Magadi and South Ruri). The three groups or clusters correspond to their origin (mineral 

mines). Aside from Th, the loading plot revealed REE (Pm, Pr, Nd, Sc, Tb and Sm) were 

considerably responsible for the attribution of the uranium mineral ores. It was observed that 
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PCA using spectral feature selection reduced noise to a great extent while retaining relevant 

information. In the preliminary investigation, PCA can assist in retracing or attributing 

unknown samples by using a library comprising fingerprints of uranium mineral ores collected 

from various parts of Kenya (Bhatt et al., 2018).  

The Raman bands associated with uranium molecules and different ions in uranium compounds 

(uranyl nitrate, uranyl sulphate, uranyl chloride and uranium trioxide) were studied using the 

LRM multi-photon laser (l = 532 nm, 785 nm). The study revealed that almost all the bands 

identified using the laser at 785 nm were also seen using the laser at 532 nm at around the same 

Raman shift, except for the UO2Cl+ molecule and the nitrate band. NF signatures were 

identified at 865 cm-1, 868 cm-1, 861 cm-1 and 848 cm-1 for uranyl nitrate, uranyl sulphate, 

uranyl chloride and uranium trioxide respectively. Analysis of HBRA soil samples using LRM 

indicates the presence of uranium molecules at 844 cm-1, 859 cm-1 and 874 cm-1 in Coast 

(DZHS-01) samples, 844 cm-1 874 cm-1 in North Ruri (NRS-08) samples, and 844 cm-1, 859 

cm-1 and 874 cm-1 in Lake Magadi (LMS-09) samples.  Uranium bearing mineral ores analyzed 

using LRM revealed uranium molecules at 843 cm-1, 853 cm-1 and 869 cm-1 in the Lake Magadi 

(LMR-3) sample and 843 cm-1, 853 cm-1 and 867 cm-1 in the South Ruri (SRR-09) sample. The 

Raman scatter band related to uranium compounds varied between (840 cm-1 - 867cm-1) ± 15 

cm-1. It is concluded that LRM can be utilized to detect uranium molecules when uranium 

compounds are trafficked under concealed conditions in cellulose (Bhatt et al., 2017). 

The distribution of uranium molecules (844 cm-1, 859-1 and 874 cm-1) in an HBRA (DZHS-01) 

soil sample using LRM revealed the dominant presence of the uranium molecule at 874 cm-1 

(associated with UO22+ symmetric stretch), followed by the molecule at 859 cm-1 (UO2SO4) and 

844 cm-1 (U-O stretching or UO2Cl+). Spectral mapping was also performed to obtain the 

distribution of uranium molecules (843 cm-1, 859-1 and 867 cm-1) in the mineral ore sample. 

The study demonstrated that uranium content in the sample was primarily due to the presence 
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of the uranium molecule 853 cm-1 (associated with U-O stretching), followed by the molecules 

at 843 cm-1 (U-O stretching or UO2Cl+) and 867 cm-1 (UO2SO4 or UO2Cl+).  The distribution 

of uranium molecules in HBRA soil and uranium mineral ores samples therefore revealed the 

sequence of dominance of uranium molecules in the samples. 

The main goal of NF analysis is to characterize nuclear and radiological materials (uranium in 

this case). The NF signatures (elemental as well as molecular) identified in this study can be 

used to create a library for uranium detection. Handheld LIBS and LRM with this built-in 

library of elemental and molecular NF (uranium) signatures can be developed to detect uranium 

hidden in organic compounds at airports and sea-ports. The algorithm developed to quantify 

uranium can also be included in the handheld LIBS to offer preliminary findings on the uranium 

content in the seized material. When uranium is detected, the material can be brought to the NF 

laboratory for further investigation to shed light on its origin. NF analysis cannot be completed 

successfully without international collaboration among different countries. The NF signatures 

of uranium mineral ores gathered from various geographical locations through international 

collaboration can be utilized to build a library. With the help of this library, PCA combined 

with LIBS can be used to characterize an unknown NRM to its origin (mine). These instruments 

can be installed at airports and seaports to prevent the illicit trafficking of uranium under 

concealed conditions  in organic binders (cellulose) (Bhatt et al., 2017). 

This study demonstrated that ML assisted laser-based (LIBS and LRM) spectroscopy and 

spectral imaging (LRM) have the potential to not only perform rapid, direct and minimally 

intrusive qualitative and quantitative analysis of trace uranium, but also aid in the source 

attribution of uranium ore surrogates and distribution of uranium molecules through the 

different layers of the samples. Such analysis will allow the seized material to be traced back 

to its source, thereby bolstering the country’s national security. These techniques have the 

potential to be enhanced for in-field NF analysis (Bhatt et al., 2017). 
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6.2 Recommendations and Future Prospects 

The calibration model in ANN using uranium lines reported in this work should be further 

improved using uranium compounds with lower uranium content. The low uranium 

concentration of uranium compounds will help in preparing simulate uranium samples by 

adding cellulose, but not beyond 30% of the sample mass. The low uranium concentration will 

necessitate a lower quantity of organic binder, cellulose, in this study, which in turn will help 

in minimizing the matrix effect arising from the cellulose matrix in the simulate samples. This 

is likely to improve the regression of the calibration model to a great extent, and therefore the 

overall prediction accuracy of the model.  Furthermore, for the method’s application, simulate 

samples with concentration at regular interval of 50 ppm is recommended to improve the 

efficiency and predictive accuracy of the model.  

Study of REE, especially Pr, Nd, Sc, Tb, Dy, Ho, Pr, Pm, Sm and Ti, which were observed to 

contribute to the attribution of the uranium mineral ores and HBRA soil samples of Kenya, is 

highly recommended. As rare earth elements remain unaltered all through the nuclear fuel 

cycle, study of these elements will help in establishing their relationship with uranium and shed 

light on the history of the sample. The relationship between REE and uranium can be utilized 

to develop proxy signatures for uranium detection. In addition to this, a study on the REE 

pattern of the uranium bearing mineral ores and HBRA soil samples from various locations in 

Kenya can be used to develop a national library. The library can be utilized to retrace an 

unknown sample to its origin using the REE pattern.  

Knowledge of the phase composition of the uranium sample, i.e., the U/O ratio, can determine 

the degree of enrichment of uranium. Thus, a study of the U/O ratio in uranium oxides using 

uranium standards in the Argon environment is recommended to determine the oxide phase of 

an unknown sample and therefore, the enrichment level of uranium in the unknown sample. 
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The analysis in the argon environment will confirm that the oxygen emission line came from 

the uranium sample and not from the oxygen in the air. 

Study of more uranium compounds using LRM is recommended to identify the Raman scatter 

bands associated with various uranium molecules.  This study can help to create a database, 

that can be utilized to identify the uranium molecule present in each sample during preliminary 

investigation. It is suggested that research be conducted on the micro-crystallinity and 

stress/strain of uranium concentrates in connection with the various stages of the nuclear fuel 

cycle. The study will greatly contribute to the characterization of the sample. 

Successful completion of the above recommendation can narrow down the current limitations 

of rapid, direct, and non-invasive analytical methodology for detection and microanalysis of 

NRM. The outcome of the research is expected to add great value in the field of NF analysis. 

The developed methodology is expected to speed up the process of investigations or analysis 

and therefore help in monitoring the porous border of Kenya. Additionally, it could prove useful 

in combating illicit trafficking of NRM and fighting against nuclear terrorism that may employ 

IND and/ or RDD. Rapid and non-invasive methodology can help nuclear forensics analysts to 

rapidly analyze several samples at a time and draw conclusions on their nature, source 

attribution, intended use, and mode of production, thus strengthening the nuclear security of the 

country. 
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APPENDICES 
 

A.1:  RGMIX-1, IAEA-RGU-1 and Certificate of Irradiation for IAEA- RGU-1, Uranium 

Ore used as Synthetic Standard for model validation in ANN. 

                              
 

 
 

RGMIX and IAEA-RGU-1 
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A.2: Uranium Trioxide for preparation of simulate uranium pellets bound in cellulose for 

training and internal validation of the model in ANN. 

 

 
 

Uranium Trioxide (UO3 (I5 86)) 
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A.3: Persistent lines of neutral uranium from NIST database.  
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A.4: Persistent lines of singly ionized uranium from NIST database.  
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A.5: LOD of uranium using U II 386.592 nm and U II 383.146 nm.  

 

 
Figure A.1: Regression to measure sensitivity of U II 386.592 nm. 

Table A.1: Limit of detection of uranium. 

Wavelength of the spectral lines 
(nm) Standard Deviation (s) Sensitivity (m) LOD=(3s)/m 

U(II) 386.592 0.0165 0.0001 495 
 

 
 
Figure A.2: Regression to measure sensitivity of U II 383.146 nm. 
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Table A.2: Limit of detection of uranium. 

Wavelength of the spectral lines 
(nm) Standard Deviation (s) Sensitivity (m) LOD=(3s)/m 

U(II) 383.146 0.0274 0.0002 411 

A.6: Back-Propagation Algorithm in ANN using MATLAB.  
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