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ABSTRACT 

Vulnerability assessment is critical towards helping policy makers understand and quantify the 

impacts and consequences of climate change. Therefore, this study sought to assess the 

vulnerability of smallholder maize production to adverse climate change impacts in Southern 

Nyanza region. The study data included historical climate data for the period 1983-2016 for 

temperature, and 1988-2018 for rainfall obtained from CHIRTS and CHIRPS daily data 

respectively. Time periods for temperature and rainfall data were different since CHIRTS data 

was only available from 1983-2016. Climate projections for the period 2022-2051 was done 

using data extracted from CORDEX Africa family of models under RCP4.5 and RCP8.5 

emission scenarios. Socioeconomic and biophysical data were sourced from the Ministry of 

Agriculture, Livestock, Fisheries and Cooperatives, Tegemeo Institute of Agricultural Policy 

and Development, Kenya National Bureau of Statistics, and Kenya Institute for Public Policy 

Research and Analysis. The trends and mean shifts of baseline rainfall and temperature were 

statistically significant as depicted by the p-values of Man-Kendall and Pettit’s tests that were 

smaller than the significance level value (α= 0.05). Similarly, all the projections showed a 

general decreasing trend in rainfall, with an increasing significant trend in maximum and 

minimum temperatures. The results of the correlation analysis indicated that there was a 

significant relationship between maize yields and climate variables (maximum and minimum 

temperature, and rainfall) across the various stages of growth of maize. The vulnerability 

indices for the study counties were driven mainly by maize productivity, infrastructural, and 

socioeconomic development levels. Migori County recorded the highest vulnerability (0.72), 

followed by Homabay County (0.48), Kisii County (-0.29), and Nyamira County (-0.74). 

Smallholder maize production in Southern Nyanza region was generally vulnerable to climate 

change owing to the significant increase in temperature. These trends are expected to persist 

into the future, thus increasing the vulnerability of smallholder maize production in Southern 

Nyanza region. The findings of this study will go a long way in helping smallholder farmers 

identify relevant adaptation strategies to help them reduce the vulnerability of maize production 

to adverse climate change effects. The findings of this study will also assist agricultural 

extension officers and other relevant stakeholders in identifying the most vulnerable counties 

to adverse climate change effects, and enable them make recommendations that would support 

the implementation of appropriate climate change policies to cushion smallholder maize 

production systems against adverse climate change effects in order to achieve sustainable 

maize productivity and food security. 
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1 CHAPTER ONE 

1.0 Introduction 

This chapter presents a description of background information to this study, the statement of 

the problem being addressed, the study objectives, justification and the conceptual framework 

that was used in this study.  

1.1 Background information 

In Kenya, agriculture is a key driver of the economy and contributes approximately 31.5% to 

the national GDP and 50% of the country’s total export (Ochieng et al., 2016). Moreover, the 

sector creates 18% of formal jobs, 70% of informal jobs and contributes approximately 65% 

of the County’s total export earnings (Mumo et al.,2018). Similarly, the livelihoods of nearly 

all rural places of Kenya are primarily sustained by agriculture. 

Agricultural production in Kenya is largely carried out in small land holdings of between 0.2 

and 3 hectares. Small-holder farming in Kenya accounts for 78% and 70% of agricultural 

production and commercial agricultural respectively. Small-holder farmers are therefore the 

main stakeholders in the agricultural industry (Salami et al., 2010). Therefore, smallholder 

farming has potential to significantly contribute towards poverty alleviation in Kenya (World 

Bank, 2018). 

83% of Kenya’s land area is occupied by fragile dry lands and receives between 300 and 500 

millimetres of rainfall annually. Despite receiving such low amounts of rainfall, they are prone 

to flooding hence affecting crop farming. Major droughts have been reported to occur every 

decade while the minor droughts occur every four years. Consequently, these droughts have 

continued to spread, thereby hampering agricultural production in the country. As such, climate 

change presents a formidable threat towards Kenya’s agricultural prosperity (Herrero et al., 

2010). 

With the ongoing accelerated global warming rates, the associated climate change impacts are 

presenting formidable threats to human, environmental, and socioeconomic systems of the 

world. Many countries across the globe are currently experiencing increased fluctuations in 

temperature and rainfall characteristics including amounts, distribution and extremes. These 

variabilities have inevitably led to poor, unreliable and occasionally failed food production 

locally and even globally (Ochieng et al, 2016). Moreover, surface temperatures in both land 
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and oceans have increased from 0.650C to 1.060C representing an overall increase of 0.850C 

from the year 1880 to 2012 (Masambaya, 2018).  

Concomitantly, temperatures in Kenya have risen by approximately 10C above the 1960 level 

(Masambaya, 2018). Given the highest sensitivity of agriculture to variation in temperature, it 

is very likely that these conditions will lead to decreased agriculture productivity and 

exacerbate food insecurity nationally, locally and down to household level (Hatfield and 

Prueger, 2015). Changes in climate inevitably lead to undesired ramifications in the agriculture 

sector.  Furthermore, climate change exacerbates climate related disasters particularly droughts 

and floods; increased prevalence of livestock and crop pests and diseases; substantial loss in 

crop yields; and crop failure among others (Jamshidi et al.,2019). 

Globally, it is approximated that 475 million farmers practice small-holder farming, each 

cultivating parcels of land that are less than 2 hectares (Harvey et al.,2018). Similarly, 80% of 

farmers in Sub Saharan Africa are actively involved in small-holder farming, representing 

approximately 33 million small-holder farmers (Pratt et al., 2017). In Kenya, smallholder 

farming is carried out in small parcels of land that do not exceed 3 hectares (Kogo et al.,2021). 

Donatti et al., (2019) affirms that small-holder farmers are severely affected by climate 

variability and change. Therefore, any decline in agricultural productivity will adversely affect 

the small-holder farmers by impoverishing and imposing household food insecurity (Jamshidi 

et al., 2019).  

Worldwide, maize ranks third in consumption, whereas wheat ranks second (Ramirez et al, 

2017). However, in Kenya and Africa, maize ranks first. In this regard, maize is considered as 

the chief source of calories in most parts of Africa (Adhikari et al., 2015). Unfortunately, many 

small-holder farmers in Kenya have continued to experience declines in maize yields due to 

invasion of their crops by crop pests such as fall armyworms which thrive in hot and moist 

climatic conditions (State Department of Crops Development, 2019). Climate change would 

therefore greatly undermine global, regional and local efforts to combat food insecurity and 

poverty due to increased pest infestations following rising temperatures. In Southern Nyanza 

region (Kisii, Nyamira, Migori and Homabay County), rain-fed agriculture significantly 

contributes towards socio-economic development of the region, with the bulk of farming being 

carried out on small-holder farms (less than 2 hectares). Climate change would therefore 

impose and exacerbate existing socioeconomic vulnerabilities of small-holder maize 

production. 
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This study, therefore assessed vulnerability of small-holder maize production to the adverse 

effects of climate change in Southern Nyanza region. 

1.2 Problem Statement 

Climate change continues to adversely affect rain-fed smallholder farming systems in Kenya 

and Southern Nyanza region in particular. Notable climate change impacts in this region 

include declining maize yields, disruptions in cropping seasons’ patterns due to erratic rainfall 

patterns associated with fluctuations in rainfall onset and cessation dates, and overall planting 

seasons for various cereals, including maize. The resultant declines in crop yields and complete 

crop failure in extreme cases is aggravating the vulnerability of smallholder maize farmers, 

thus leading to deterioration of livelihoods and enhancing poverty and food insecurity. 

1.3 Objectives of the Study 

The overall objective of this study was to assess the vulnerability of smallholder maize 

production to the adverse effects of climate change in Southern Nyanza region of Kenya. 

 The specific objectives were to: 

i. Determine the trends and patterns of temperature and rainfall in Kisii, Nyamira, 

Homabay, and Migori County under current (1988-2018) and future climate (2022-

2051) under RCP 4.5 and RCP 8.5 emission scenarios 

ii. Establish the relationship between climate variables and smallholder maize 

productivity in Kisii, Nyamira, Homabay, and Migori County between 1988-2018. 

iii. Determine the vulnerability of smallholder maize production to climate change impacts 

in Kisii, Nyamira, Homabay, and Migori County. 

iv. Develop Vulnerability Index Maps for Kisii, Nyamira, Homabay, and Migori County 

under current climate 

1.4 Research Questions 

i. What are the trends and patterns of temperatures and rainfall in Kisii, Nyamira, 

Homabay, and Migori County for the period 1988-2018? 

ii. How did climate variables affect smallholder maize production in Kisii, Nyamira, 

Homabay, and Migori County over the period 1988-2018? 

iii. What is the extent of vulnerability of smallholder maize production to climate change 

impacts in Kisii, Nyamira, Homabay, and Migori County? 
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iv. How is the vulnerability of smallholder maize production distributed over Kisii, 

Nyamira, Homabay, and Migori County? 

1.5 Justification 

In Africa and Kenya in particular, maize farming is mainly practised on smallholder basis, and 

relies heavily on rainfall. This is also the case in Southern Nyanza region where nearly every 

farmer grows maize (Berazneva et al., 2018). However, with climate change, notable decline 

in maize production has been observed by various studies. According to Thornton et al., (2009) 

crop yields will drop by as much as 10-20% by the year 2050 in Africa, including Kenya. 

Many studies focusing on the influence of climate change on agriculture have been done in 

Southern Nyanza region and Kenya at large (Ochieng et al., 2016; Mugwika, 2019; Ogenga et 

al., 2018). However, none has attempted to assess the vulnerability of smallholder maize 

production. Therefore, vulnerability assessment of smallholder maize production in the study 

area will avail useful information that can be used by relevant stakeholders and policy makers 

in planning and implementing effective climate specific response measures that would enhance 

resilience of smallholder maize production systems.  

Moreover, mapping of vulnerability and its components will stimulate development of 

programs and activities aimed at increasing the resilience of smallholder maize production thus 

shaping policies geared towards achieving local and international sustainable development 

goals on food security and poverty alleviation.  
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1.6 Conceptual Framework 

This study adopted the IPCC 2007 framework for vulnerability assessment in which 

vulnerability was conceptualized as the total adverse impacts to any given system due to 

exposure to hazards. This framework accounted for vulnerability based on exposure, sensitivity 

and adaptive capacity by carefully selecting a group of measurable indicators for each of these 

components (Sharma and Ravindranath,2019).  
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Figure 1: Conceptual Framework 
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2 CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 Introduction  

In this chapter, pertinent literature on previous research works on impacts of climate 

fluctuations and change on agriculture in Kenya and the vulnerability of the sector to the 

adverse climate impacts have been presented. Besides, the various approaches used to assess 

vulnerability, including scenarios used to predict future changes in climate have been 

discussed.  

2.2 Climate Change in Kenya 

With each passing day, losses and damages caused by steady changes in climate are becoming 

more apparent. In Kenya, evidence of climate change and variability manifests in changing 

seasonal patterns and intra-seasonal characteristics. The occurrence of extreme climatic events 

has been increasing. Notably, the severity and frequency of droughts has increased while 

ground water levels and volumes in Lakes and rivers has substantially decreased. 

Consequently, 752 Ha of land have been exposed to anthropogenic degradation due to the 

reduction in water levels in Lake Victoria (Okotto et al., 2018) 

Mean surface temperature in Kenya changed at a rate of 0.150C/decade between 1951 and 2010 

(Ongoma et al., (2018). These researchers also noted that Kenya experienced an upward shift 

in mean (+0.50C), minimum (+0.40C) and maximum (+0.50C) temperatures between 1982 and 

2012 compared to 1951-1981. Consequentially, this led to undesired ramifications such as poor 

agricultural production leading to loss of income, loss of livelihoods and food insecurity. 

Nonetheless, the country has also witnessed a dip in the production of Hydro-electric power as 

well as destruction of ecosystems, wildlife and forest resources with adverse consequences on 

tourism. For instance, the droughts witnessed in Kenya in 2004 and 2009 significantly affected 

a vast majority of Kenyans leading to loss of livestock resources, water and energy rationing, 

reduced industrial activity as well as poor agricultural production. Additionally, the droughts 

experienced in the year 2006 affected approximately 723,000 Kenyans (Bobadoye, 2016; SEI, 

2009). 

Other adverse impacts include disasters related to floods that have resulted into destruction of 

infrastructure and human settlement, agricultural losses, forced migration, and disease 

epidemics that have resulted into mortality and increased cost of health care. The growing 

adverse climate change impacts present great potential to deter and cripple Kenya’s future 
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economic growth and impede the desired sustainable development. For instance, Kenya 

experienced economic losses amounting to USD 1.2 billion, caused by floods in the region in 

1997/98 (SEI, 2009). 

Furthermore, extreme climatic conditions are expected to burden Kenya’s economy causing 

losses estimated at 2% of the Kenyan gross domestic product (SEI, 2009). Therefore, climate 

change and variability are a significant threat towards Kenya’s economic and social 

development agendas, particularly the vision 2030 blueprint and the big four agenda.  

2.3 Climate change and agriculture 

Climate change is currently unequivocal globally with immense ramifications on agricultural, 

natural and human systems. Consequently, these fluctuations in climate have sharply crippled 

efforts towards achieving global food security owing to their adverse impacts on food 

production systems. Subsequently, many sectors including agriculture, have significantly been 

affected by these changes. Moreover, many livelihoods that rely on agriculture have 

deteriorated immensely.  

Furthermore, agriculture contributes significantly to food security and provides a major 

revenue stream in most Kenyan households. For instance, approximately 85% of Kenyan 

households rely entirely on rain for farming (Kogo et al., 2021). Unfortunately, the agricultural 

sector in Kenya continues to be exposed to adverse climate change impacts, thereby making it 

more vulnerable hence destroying means of livelihoods. According to IPCC (2007, 2014), crop 

production is expected to show a decreasing trend due to the projected rise in global 

temperatures. 

Concomitantly, the expected increase in levels of CO2 concentration will increase water use 

efficiency in C4 plants such as maize (Betts et al., 2007). However, despite the increase in water 

use efficiency in maize, it is considered as one of the most vulnerable crops to water stress 

compared to other C4 plants owing to its unique floral structure that contains separate female 

and male structures (Huang et al., 2006). In Kenya and Africa at large, fluctuations in climate 

has caused shortening of the growing season for most cereal crops as well as creating suitable 

warm conditions that have enhanced the spread of crop pests, diseases and weeds (IPCC, 2014). 

Similarly, changes in Kenya’s climate have exacerbated the occurrence of extreme weather 

episodes, particularly floods and droughts, thus hindering the growth of the agricultural sector. 

For instance, between 2008-2009, the Kenyan agricultural sector recorded the lowest reduction 
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in its growth by approximately 6% because of droughts. On the other hand, the floods witnessed 

in 1997/98, 2002, and 2013 reduced Kenya’s agricultural growth by approximately 4% (Kogo 

et al., 2021). 

2.3.1 Crop Production under Changing Climate 

The present fluctuations in climate have severely impacted crop farming. Some of the impacts 

include a decrease and/or complete loss of crop yields as a result water stress for most crops 

such as cereals (Hatfield and Prueger, 2015). Climate change also gives rise to conducive 

conditions for weed infestations and enhances the outbreak of crop pests and diseases, that act 

singly or in combination to limit crop growth and productivity (Cilas et al.,2016). Furthermore, 

climate change due to rising temperatures increase evapotranspiration rates that exacerbate 

water stress. This reduces the ability of crops to produce high yields (Sadras et al.,2016).  

Besides, crops in rain fed farming systems rely on precipitation for moisture, and also depend 

on temperature for conditioning the processes of growth and development. Thus, any slight 

changes in these climatic elements can lead to devastating effects on crop production.  

Likewise, low temperature stress before flowering in wheat plants generally hinders the 

synthesis of starch and sugar, including nitrogen compounds, in the vegetative organs, while 

low temperatures after flowering significantly reduce grain number and the grain filling rate in 

wheat plants. (Liu et al.,2019).  

Frost conditions lead to sterility in wheat plants while excessive heat greatly reduces the grain 

filling period (Liu et al.,2019). Nonetheless, heat stress in most crops affect their flowering 

stage by destroying the viability of pollen, thereby hindering yields. Heat stress also affects the 

physiological processes that take place in crops (Hatfield and Prueger, 2015). 

Although various crops respond differently to heat stress, most of them generally experience a 

decline in leaf area hence low rates of capture of the photosynthetically active radiation and 

increased rates of leaf senescence, thereby leading to decreased crop productivity (Hatfield and 

Prueger, 2015). Similarly, heat stress before or after anthesis in cereal crops dramatically 

reduces grain number and grain weight. (Barlow et al.,2015).  

Furthermore, prevailing high temperatures lead to increased saturation vapor pressure that 

increases evaporative demand of the atmosphere. Under limited soil moisture conditions, plants 

will tend to close their stomata thereby affecting the rate of photosynthesis (Hatfield and 

Prueger, 2015). Since water influences virtually all the morphological and physiological 
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processes in plants, water stress will therefore cause a reduction in the quantity of harvestable 

yield.  

Moreover, changes in climate exacerbate distribution of various crop pathogens, diseases and 

pests, thereby affecting crop production. Variations in humidity and temperature can modify 

fungal growth, insect growth and multiplication, as well as their renewal rates. Ultimately, 

agricultural systems and processes are adversely affected by these agents, thus inhibiting plant 

growth, development and productivity (Cilas et al.,2016). 

2.3.2 Climate change and Maize Production 

Maize, just like any other crop, is extremely sensitive to fluctuations in temperature and 

precipitation. Despite consideration of several factors including farm management and 

technology as being crucial towards enhancing and sustaining maize production, climate 

change still remains the greatest threat to maize farming (Mumo et al.,2018). Furthermore, 

variations in patterns of cold and heat stress spells, wet and dry spells within a cropping season 

would reduce growth rate of maize especially during the flowering phase and thereby reduce 

the accumulation of biomass. Furthermore, the viability of maize pollen decreases significantly 

when exposed to temperatures above 350C (Hatfield and Prueger, 2015). 

Consequently, during the reproductive phase, the viability of maize pollen grains is negatively 

affected since their viability depends on the moisture content of the pollen grains which in turn 

is highly dependent upon the deficit in vapor pressure (Fonseca and Westagate,2005). Jones et 

al (1984) indicated that kernels of maize reduced in size when an increase in temperature from 

300C to 350C occurred during the divisional phase of the endosperm. Furthermore, rainfall 

amounts have continued to decline at a rate of 3.3% per decade, thus catalysing occurrence of 

droughts and drought conditions which eventually stifle maize farming (Kimani, 2017).  

According to Muchow et al (1990), maize yields will increase with an increase in temperature 

up to 290C, beyond which a sharp decline in maize yields would occur. Thus, any temperature 

increases beyond 290C eventually reduces maize yield even under conditions of optimal rainfall 

(Lobell et al., 2011). Similarly, Brown (2009) indicates that any increase in temperature above 

optimal reduces maize yields by approximately 10%. Nevertheless, highland areas will benefit 

from the positive effects of rising temperatures above historical levels, thus enhancing maize 

yields.  
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However, maize production in the low land areas will plummet because of water deficiency, 

and temperature rises beyond current levels that are threatening to overrun crop thresholds of 

temperature which are already high. The high variability in precipitation amounts and 

distribution is a major precursor for water stress and water logging for maize crops leading to 

low yields in quantity and quality, and in extreme cases complete crop failure.  

2.4 Vulnerability of Small-holder Maize farming in Kenya 

Maize farming in Kenya is largely carried out on smallholder basis across the country on farms 

not exceeding one hectare. Farming households depend on the maize grown for both 

consumption and income generation. This presents maize among this segment of society as a 

means of livelihoods. Therefore, the role of smallholder maize farming in fighting food 

insecurity and poverty in Kenya is underscored in this study. For instance, between 2005 and 

2015, smallholder farming was largely responsible for the reduction of poverty levels in Kenya 

and hence improved the living standards of the farming households (World Bank, 2018). 

However, the vulnerability of the smallholder maize farmers has increased due to climate 

related risks particularly floods, crop pests and diseases, and droughts that hamper food 

production while worsening poverty level among households. Moreover, extreme weather 

events witnessed annually in Kenya have inadvertently led to the destruction of critical 

agricultural infrastructure hence increasing the vulnerabilities of smallholder maize farming. 

For instance, floods have led to the destruction of crops, farm roads, irrigation systems, maize 

storage facilities as well as enhancing soil erosion, water logging and leaching of nutrients 

necessary for crop production. Similarly, wet conditions have exacerbated post-harvest losses 

through rotting of the harvested crops as well as enhancing contamination by aflatoxin. On the 

other hand, drought conditions have led to water stress in maize crops hence declining maize 

yields. Consequently, maize yields in Kenya have continued to decline every ten years 

representing a loss of 0.07 tons/ha. This has increased the vulnerability of small-holder maize 

farmers (Mumo et al., 2018) 

Furthermore, there is marked variability in rainfall across agro-ecological zones during the 

planting seasons that in turn influences the varietal choices of maize seeds planted. In western 

and North Rift Valley regions of Kenya, long duration high yielding hybrid maize varieties are 

preferred. On the other hand, the early maturation maize varieties are recommended for farmers 

in dry regions (Mbithi and Huylenbroeck, 2000). 
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Smallholder maize farming in Kenya is usually done through intercropping with other crops, 

notably, legumes such as common beans and cowpeas. This practice enables farmers to derive 

maximum output from their farms as well as enhance their resilience. Moreover, intercropping 

cushions smallholder farmers against risk of crop failure and enhances food security and 

nutrition. However, the high potential regions such as western Kenya and Rift Valley have the 

least intercropping practices (Nying’uro, 2020). 

2.5 Kenya’s Vulnerability to climate Change 

Kenya has continued to experience climate extremes that lead to adverse impacts. Studies 

conducted have integrated land use data, climate data as well as socioeconomic data by utilizing 

geospatial techniques hence making it possible to spatially reveal Kenya’s vulnerability to 

climate change (Mwangi and Mutua, 2015). According to these authors, 47.36% of Kenya is 

sensitive to climate change while only 1.65% of the country has a higher threshold to withstand 

the negative consequences initiated by changes in climate.  

In another study conducted by Marigi (2017) on Kenya’s climate change vulnerability 

assessment, the eastern, northern, south-eastern and the southern part of the Kenyan Coast have 

the highest exposure to negative fluctuations in climate. Similarly, this study observed that the 

southern coast and northern Kenya recorded the highest sensitivity to climate change, and also 

identified northern Kenya as having the least adaptive capacity. Consequently, the southern 

coast and northern Kenya exhibited the highest vulnerability whereas the least vulnerability 

was recorded in Western and Central Kenya.  

2.6 Household Vulnerability Assessment 

Most of the vulnerability assessment studies done in Kenya have mainly focused on macro-

level vulnerability assessment. As such, there is scanty literature on vulnerability assessment 

among households. However, vulnerability assessment among households is highly invaluable 

in obtaining a deep understanding of the extent and depth of a family’s vulnerability, and is 

highly instrumental in shaping local plans and policies. 

In a study by Opiyo et al., (2014) assessing household vulnerability in Kenya’s pastoral 

rangelands, 27% of the households were found to be highly vulnerable, 44% of the households 

were considered moderately vulnerable, whereas 29% exhibited minimal vulnerability. The 

integrated vulnerability assessment approach adopted for the study constituted both internal 

and external stressors that influence the vulnerability of any given system. However, this 
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approach lacks the ability to account for the dynamic changes that are commonly linked with 

vulnerability. To this end, vulnerability at the household level can significantly be reduced by 

improving literacy rates and education in families, having multiple sources of income as well 

as encouraging programmes and policies aimed at empowering women.  

2.7 Vulnerability Assessment 

Vulnerability to climate change is “the degree to which a system is susceptible to, and unable 

to cope with the adverse effects of climate change, including climate variability induced 

extremes, and is viewed as a function of the characteristics, magnitude, and rate of climate 

change and variability to which a system is exposed, its sensitivity, and its adaptive capacity” 

(IPCC, 2007). In agriculture, sensitivity refers to how crops respond to fluctuations in climate 

as manifested in their growth and yields, as well as overall plant development (Mallari, 2016). 

Exposure is “the nature and the degree to which a system is exposed to significant climatic 

variations” (IPCC, 2007). Finally, “adaptive capacity” is “the ability of a system to adjust to 

climate change (including climate variability and extremes) to moderate potential damages, to 

take advantage of opportunities, or to cope with the consequences” (IPCC, 2007).  

There is a robust demand for vulnerability assessments addressing climate change impacts. In 

most studies, vulnerability assessment is considered as an invaluable undertaking that can be 

used to determine the probability and potential of harm to any given ecosystem and human/ 

community as a result of a hazard. Moreover, vulnerability assessments help in understanding 

specific needs of ecosystems, farming systems and communities (Preston et al., 2011). 

2.8 Approaches for Vulnerability Assessment 

The role of vulnerability assessment in shaping current and future planning and policies can 

only be underscored. Moreover, vulnerability assessment provides crucial information that can 

be used in identifying vulnerable groups and thereafter help in offering relevant adaptation 

strategies. In most cases, environmental and socioeconomic factors greatly influence 

vulnerability. The subsections that follow describe some of the approaches used for 

vulnerability assessment. 

2.8.1 Socio economic Approach 

This method uses social, economic, political and institutional changes to compute vulnerability. 

According to this approach, the economic vulnerability of any given region depends on the 

amount of wealth found in that particular region. Additionally, the vulnerability of a given 
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community will be influenced by factors such as the level of their interactions with climate 

sensitive environments, their literacy levels, health status, political power, access to credit, their 

political systems, cultural systems as well as their geographical location (Esperón et al.,2016). 

The socio-economic approach assesses vulnerability by developing a Socioeconomic 

Vulnerability Index. Knowledge obtained from local experts is then used to identify 

vulnerability indicators. Subsequently, weights are assigned to each indicator and thereafter 

used to compute the index (Ahsan and Warner, 2014). In this regard, social vulnerability can 

therefore be defined as the exposure of any given community or individual to external risks 

mostly from adverse changes in climate. Going by this definition, the social vulnerability of a 

particular community or group of individuals can be assessed based on their resilience capacity 

or their ability to adapt to external stressors. However, this approach measures vulnerability 

purely on the basis of social and individual variations. As such, it overlooks the role played by 

biological and physical environmental factors including natural events and disasters in 

influencing variations within and among societies and individuals. 

2.8.2  The Impact Assessment Approach 

The impact assessment approach, also known as the biophysical approach, assesses and 

measures vulnerability based on the impact that natural and environmental calamities have on 

social systems or biological systems (Kaly et al., 1999). This approach assumes that the 

physical-environmental facet of vulnerability largely accounts for climatic harm. For instance, 

the productivity of agricultural systems is largely dependent on climate variables. Therefore, 

climatic shocks can lead to impacts that can severely affect farming systems hence making 

them vulnerable.  

Moreover, the distribution and spread of disease vectors can closely be tied to the biophysical 

dimension of climate change. Nonetheless, biophysical vulnerability can also be assessed by 

adopting a risk-hazard approach. This approach measures vulnerability based on the occurrence 

of hazards in a given area or community. The resulting damages are then quantified by 

developing sensitivity indicators obtained from the hazard analysis (Füssel, 2007). 

In economics, this approach can be used to assess the vulnerability of economies to disasters. 

In engineering, the approach has also been used to estimate the vulnerability of the built 

infrastructure to disasters (Downing et al.,2005). From the foregoing, the impact approach 

largely lays emphasis on how biophysical indicators influence vulnerability. However, despite 
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the numerous advantages of this approach, it is not in sync with the complex dynamics that 

surround climate change vulnerability since it only focuses on the environmental and physical 

dimensions of vulnerability. This approach also ignores the structural and behavioural factors 

that influence vulnerability since it only underscores the impacts of extreme events. 

2.8.3 The Integrated Approach 

According to Cutter et al., (2000), this approach assesses vulnerability by integrating both the 

biophysical and the socioeconomic approaches to vulnerability assessment by systematically 

combining both the socioeconomic and biophysical indicators and thereafter computing a 

vulnerability index.  

Furthermore, this approach has the capacity to account for both the internal and external 

stressors that make a system vulnerable and hence favoured in most studies (Cutter,2003; 

Fussel 2007). However, most of the socioeconomic and the biophysical data has different 

weights and lacks a clear and concise framework of integrating the two data sets (Cutter et 

al.,2000). Moreover, this approach is unable to account for the constant changes that are 

associated with vulnerability. 

2.9 Methods for Climate Change Vulnerability Assessment 

This section presents and discusses the most preferred methods for assessing vulnerability. 

2.9.1 Vulnerability variable assessment method 

Under this method, the welfare loss of the variables under study are assessed in relation to a 

specific set of stressors that the system is exposed to. Examples of variables may include 

agricultural yields and household consumption, while on the other hand, a stressor can include 

climate change. Once all the variables and stressors have been identified, vulnerability metrics 

are then developed to help in assessing the vulnerability of any given location of interest 

(Gbetibouo et al.,2010). This method is mostly favoured in economic and agricultural studies. 

Some generic metrics assess vulnerability by working out the probability that the variables 

identified will cross the set threshold.  

Vulnerability is then assessed depending on how the system responds and adapts to the 

changing conditions subjected to it. However, this method works best for systems that are 

subjected to multiple stressors with multiple variables (Luers et al.,2003) 
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2.9.2 The Indicator Method 

Under this method, vulnerability is quantified by calculating indices, averages or weighted 

averages obtained from a potential set of indicators that are carefully chosen to suit the study 

area (Leichenko and O'brien,2002). This method is favoured in most studies since it is 

applicable at any given scale, i.e., locally or nationally. 

The indicator method can also allow for data aggregation and disaggregation, and hence can 

be used to assess vulnerability at any given scale. This is done by generating composite 

vulnerability indices obtained from weighted or averaged standardized vulnerability variables 

which finally gives us one vulnerability index (Leichenko and O'brien,2002). Moreover, the 

indicator approach relies heavily on the statistics obtained both at the micro and macro levels 

in order to compute the vulnerability indices.  

According to Cutter et al (2000), two approaches can generally be used to compute the 

vulnerability indices. The first approach assumes that all the weights generated are equal hence 

the vulnerability indicators have the same level of significance. The second approach 

recognizes that the vulnerability indicators influence vulnerability differentially hence the need 

to assign them different weights. The weights assigned can be a source of uncertainty during 

the study. In order to overcome this, various methods such as the principal component analysis, 

expert judgment and the fuzzy logic among others can be used to account for the differences 

in weights (Masambaya, 2018).   

However, the indicator approach comes along with certain limitations. For instance, the 

selection of the vulnerability indicators and the subsequent assigning of weights is a highly 

subjective process (Gbetibouo et al.,2010). To this end, this study employed both the indicator 

and integrated method. 

2.10 Climate Projections and Emission Scenarios 

Emission scenarios project global climate based on a consistent set of systematic and internal 

hypothesis determined by the driving forces as well as the relationships they exhibit. 

Concomitantly, the difference between future climate scenarios can be represented well using 

climate projections against the baseline climate using climate models (Rwigi,2014).  

Over the recent past, advances in technology have spurred economic development thus 

intensifying emissions of greenhouse gases hence influencing global climate. Unfortunately, 
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the influence of man on the climate system is projected to intensify into the future, thus causing 

climate uncertainties (Mitchell et al, 1999). 

 However, due to the complexities and difficulties involved in determining the future changes 

in anthropogenic emissions, the IPCC adopted the Representative Concentration Pathways 

(Rwigi, 2014). Representative concentration pathways primarily consist of four pathways, 

namely, RCP2.6, RCP4.5, RCP6.0 and RCP8.5 (IPCC, 2014; Van Vuuren et al.,2011). 

Representative concentration pathways are generated from a collaboration of models such as 

Integrated Assessment Models, Terrestrial Ecosystem Models, Climate Models, as well as 

emission inventory experts. Additionally, the representative concentration pathways have four 

climate scenarios constructed using variables such as energy, aerosols, emission, income and 

population (Van Vuuren et al.,2011), and this provides the basis for climate modelling, in 

climate studies. 

High emission scenario is represented by RCP 8.5. It describes a rising radiative forcing of 

8.5 W/m2 with a CO2 concentration of 1370 ppm by 2100. RCP 6.0 represents a stabilization 

pathway without an overshoot and a radiative forcing of 6 W/m2 and a CO2 concentration of 

850 ppm at stabilization after 2100. RCP 4.5 has a radiative forcing of 4.5 W/m2 and a 

stabilization pathway without an overshoot in CO2 concentration of 650 ppm and stabilization 

just after 2100 (Clarke et al. 2007; Fujino et al., 2006; Riahi et al. 2007). RCP 2.6 represents 

a low emission scenario. Before circling back to 2.6W/m2 by the year 2100, this scenario 

projects the level of Radiative forcing to reach a value close to 3.0W/m2 at CO2 concentration 

of 490 ppm (Moss et al.,2010).  

2.10.1 Trends and patterns in Historical Temperature and Rainfall in Kenya 

This section presents synthesis of the existing literature on the trends and patterns in historical 

temperature and rainfall in Kenya. 

2.10.1.1 Trends and Patterns in Temperature 

Temperature and rainfall are important determinants for any gains and prospects from farming 

systems dependent on rainfall, particularly in Kenya and Sub-Saharan Africa.  

Muhati et al., (2018) noted an annual significant increase in historical mean temperature of 

0.840c for the period 1974 to 2011. These authors used observed daily temperature data for the 

period 1974 to 2011 to determine the trends and patterns in temperature in North Eastern 
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Kenya. The study further noted a decrease in temperature in the 1970s and 1980s, representing 

a decrease of 0.050C and -0.030C respectively per decade. Conversely, the decadal temperature 

rose significantly in the 1990s and 2000s at rates of +0.0130C and +0.070C respectively. 

Temperatures were observed to increase during the historical period 1979 to 2012 in North 

western Kenya (Opiyo, 2014). The study employed the Mann-Kendall trend test to analyze the 

trends and variability in temperature in Turkana, North western, Kenya. The Mann-Kendall 

trend tests revealed positive and statistically significant trends for all seasonal maximum 

temperature values at p< 0.05. Gichangi et al., (2015) assessed Intra-seasonal climate 

variability in semi-arid eastern Kenya. The results revealed increased year-to-year variation in 

annual temperatures. Concomitantly, increased trends in maximum temperature were noted 

during the study period. 

Kaoga et al., (2021) determined the long-term spatial-temporal temperature characteristics in 

Kajiado county. The study employed the STATA statistical package to analyze the trends in 

temperature. The analysis of temperature trends indicated that temperatures increased 

significantly for the period 1983 to 2014 representing an increase of 1.370C. Samwel (2021) 

observed that mean temperature, minimum and maximum temperature in Kisii revealed 

increasing trends. This study employed the Mann-Kendall test statistic to reveal a significant 

upward trend in temperature in Kisii at 95% confidence level for the period 1983-2013. 

2.10.1.2 Trends and Patterns in Historical Rainfall 

Between 1950 and 2012, Lodwar exhibited a positive but insignificant rise in its total annual 

rainfall (Opiyo, 2014). The study further revealed slight negative seasonal trend in rainfall for 

the MAM rainfall season and slight positive trend in OND rainfall for period 1950 to 2012.  

Ayugi et al., (2016) noted that Kenya has experienced a significant decline in rainfall trends 

between 1971 and 2010. Trend analysis of rainfall in Kisii for the period 1983-2013 revealed 

lack of increasing or decreasing trends in rainfall as the computed p value from the Mann-

Kendall test statistic of 0.590 was greater than the significance level value of p< 0.05 (Samwel, 

2021). 

2.10.1.3 Trends and Patterns in Projected Rainfall and Temperature under RCP 4.5 and 

RCP 8.5 in Kenya. 

Ongoma (2017) forecasted increasing rainfall over the entire region of East Africa, with the 

increases of rainfall being higher during OND compared to MAM rainy season under the RCP 
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4.5 and RCP 8.5 emission scenarios. However, the increase in rainfall was insignificant. This 

implies that the projected wetting under RCP 8.5 will be greater than under RCP 4.5.  

Consequently, the 21st century is projected to exhibit temperature increase in relation to the 

20th century. As such, temperatures are projected to rise by +0.20C and +0.50C every decade 

for the period 2006 to 2100 under the RCP4.5 and RCP8.5 scenarios respectively. Northern 

Kenya is expected to experience the highest warming (Ongoma, 2017). 

Projections done using CMIP5 model show that Northern Kenya will exhibit an increase in 

annual and decadal rainfall. The seasonal increase in rainfall will be higher during the OND 

season under both RCP4.5 and RCP8.5 scenarios (Muhati, 2018). These results corroborate 

with those of the study by Ongoma et al., (2017) that also noted higher increases in OND 

seasonal rainfall than the MAM seasonal rainfall. 

2.10.2 Relationship between Climate Variables and Maize Production 

Rainfall and temperature are critical in influencing crop yields particularly around the tropical 

areas (Mumo et al., 2018). These authors further noted that most crops grown within the tropics 

are extremely sensitive to temperature hence extreme fluctuations in temperature will adversely 

impact their yields.  

Cereal crops are projected to experience a 10% decline in yields for every 10C increase in 

temperature except in the high latitude areas (Mumo et al., 2018; Lobell, 2011). The study by 

Lobell (2011) further projects that the present farming land under optimum rain-fed conditions 

or drought conditions in East Africa is projected to decrease by 65%. East Africa is projected 

to lose 40% of maize yields by the end of the 21st century. Jones and Thornton (2003) further 

projected a 10-20% decrease in crop yields in Africa by the year 2055. This decline in crop 

yields is attributed to limited growing season length, heat stress, increased water and moisture 

stress, and high pests, diseases and weeds prevalence as a result of increasing temperatures 

(Mumo et al., 2018; Ziska et al., 2011). 

Rise in global average temperatures will increase crop yields particularly in the highland areas 

and adversely impact yields in the lowland areas due to increased water and moisture stress. 

The timing of crop stress is crucial if gains are to be realized in crop yields (Mumo et al., 2018). 

Within the tropical regions, maize crop usually grows close to its threshold temperature of 

between 28- 320C (Schlenker and Roberts, 2009; Conway, 2009). As such, maize is extremely 

sensitive to any slight rise in temperature not coupled by an increase in rainfall amounts. 
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2.11 Climate Change Vulnerability in Smallholder farming in Africa  

Smallholder farming in Africa continues to deteriorate as a result of being exposed to climate 

risks and stressors such as droughts and floods. In this regard, many smallholder farmers have 

witnessed a decline in crop yields (Derbile et al.,2022). Nonetheless, the vulnerability of the 

smallholder farmers is greatly influenced by their farming systems and number of stressors and 

risks that they are exposed to. Therefore, smallholder farmers that have diverse systems of 

farming and higher levels of exposure to risks, coupled with poor access to farming resources 

are considered the most vulnerable (Williams et al., 2018). 

Smallholder farming in Africa ranks as the most vulnerable owing to the erratic rainfall patterns 

received in the region (IPCC,2014). Moreover, smallholder farming in Africa completely relies 

on rainfall for farming, hence any slight changes in precipitation significantly affects 

smallholder farming. However, smallholder farmers that have higher adaptive capacity tend to 

exhibit very low vulnerability (Hitayezu et al., 2014). Similarly, fluctuations in climate 

severely impact smallholder farming in rural Africa owing to the prevailing low rates of 

adaptive capacity (Mashizha,2019). 

Consequently, the vulnerability of smallholder farming in Africa is highly influenced by social, 

economic and demographic factors. As such, strong economies increase the resilience of 

farmers. Conversely, poverty-stricken farmers have very limited opportunities and resources 

hence rendering them vulnerable. (Dumenu et al.,2020). 

Kanchebe et al., (2022) notes that smallholder maize production in Africa is severely affected 

by droughts, high temperatures, and floods respectively. The drought conditions lead to 

excessive heat which in turn discourages farmers from carrying out their farming activities. 

Moreover, the high temperature conditions lead to drying and wilting of crops, thus affecting 

their farming income. Additionally, high temperatures also lead to bush fires which eventually 

destroy crops.  
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3 CHAPTER THREE  

3.0 DATA AND METHODOLOGY 

3.1 Introduction 

This chapter presents methods and data that were utilised to address the specific study 

objectives, including a description of the location of the area of study. The description of the 

area of study is first presented.  

3.1.1 Area of Study 

South Nyanza consists of four counties namely, Kisii, Nyamira, Homabay and Migori. Kisii 

County is located in South Nyanza region between latitudes 0º 40’ South and 38.4’ South, and 

longitudes 34º 34’ East and 46º 61” East (Kisii County Government, 2018). The annual rainfall 

received in Kisii County is approximately1500mm. Conversely, the ranges of maximum and 

minimum temperature are 210C-300C, and 150C-200C respectively.  The average household 

farm size in Kisii County is approximately 0.5 ha, indicating that the farming population in the 

County is predominantly smallholder (Wamalwa et al, 2016). Most of the smallholder farmers 

mainly grow maize, beans, vegetables, fruits such as bananas and avocados, tea and coffee, 

sorghum and sweet potatoes.  

Nyamira County lies between latitudes 0º 30' and 0º 45' South, and longitude 34º 45' and 35º 

00' East with an altitude that ranges between 1,250-2,100 metres above sea level. The County 

receives up to 2,100 mm of rainfall annually. Farmers mainly grow tea, coffee, fruits, 

sugarcane, sweet potatoes, maize, beans, pyrethrum, sorghum and vegetables (Momanyi, 

2016). 

Homabay County lies between latitude of 0o 15’ South and 0o 52’ South, and longitudes 34o 

East and 35o East. It covers approximately 4,267.1 Km2 including the water surfaces (Ongeko 

et al.,2017). The County experiences both short and long rainy seasons and with elevation of 

1146 m above sea level (Ogenga et al.,2018). Homabay residents are predominantly fishermen 

and smallholder farmers growing maize, cassava, millet, and sunflower.  

Migori County lies between latitude 1o24’ South and 1o40’South and longitude 34o East and 

34o 50’East with an estimated land and water area of 2,596.5 km2. Farmers in this County grow 

sugar cane, maize, sweet potato, tobacco, sunflower, cassava, and beans, among other crops. 

(Migori County Government, 2018).  
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Figure 2 shows the geographical location of the area of study. 

 
Figure 2: Area of study 

3.2 Types and Sources of Data 

This section presents the data types used in this study with their sources. Data on climate is 

first presented. 

3.3 Climate Data 

Due to scarcity and inconsistency of observed climate data in the study counties, climate data 

that were used in this study were obtained from satellite derived estimates. Data for daily and 

monthly rainfall were obtained from CHIRPS with a resolution of 0.05° for the period 1988-

2018, whereas daily and monthly minimum and maximum temperature were acquired from 

CHIRTS at a resolution of 0.05° for the period 1983-2016. Observed data from Kisii 

Meteorological Station were used to validate the satellite estimates from CHIRPS and CHIRTS 

platforms.  
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3.3.1 Climate Hazard Group Infrared Precipitation with Stations (CHIRPS) 

CHIRPS rainfall data was used for climate analysis and to validate the model outputs gridded 

at a resolution of 0.05ºx0.05º. CHIRPS is a global dataset that spans from 50N to 50S, with 

a resolution of 0.05º. This data was obtained from the “IGAD Climate and Application Centre 

(ICPAC)”. Four stations were used represented in Counties and due to scarcity of data in the 

area of study, available data from Kisii Meteorological station were used to validate the satellite 

estimates for both rainfall and temperature. Table 1 indicates the stations used in the study, 

their locations, and the distribution of data. 

Table 1: Coordinates of Meteorological Study Stations used in the area of study 

No. 

Station Identification Location Distribution 
Missing 

Range 

(%) Name Code Lat. Lon. Elev. (m) Start End Length (yrs.) 

1. 

KISII MET 

Station. 9034088 0.67S 34.77E 1649 1981 2018 37 3.2% 

2. NYAMIRA - 0.56S 34.94E 1960 1981 2018 37 - 

3. MIGORI - 1.06S 34.47E 1377 1981 2018 37 - 

4. HOMABAY - 0.53S 34.46E 1194 1981 2018 37 - 

 

3.3.2 CHIRTS 

This study used CHIRTS daily temperature data for climate analysis. CHIRTS data were also 

obtained from the “IGAD Climate and Application Centre (ICPAC)” . CHIRTS is also a global 

data set that comprises daily minimum and maximum temperatures covering areas ranging 

from latitudes 60S to 70N, and has a high resolution of 0.05ºx0.05º. 

3.3.3 Climate Projection Datasets 

This study used Coordinated Regional Downscaling Experiment (CORDEX) to simulate 

scenarios based on the four distinct Representative Concentration Pathways (RCPs) described 

in chapter 2 of this dissertation. CORDEX was preferred for this study since it accounts for the 

local forcing which influence climate change at a local scale. In order to simulate climate 

change between 2022 and 2051, this study employed the RCP4.5 and RCP8.5 to represent the 

medium stabilization and high emission scenarios respectively. Furthermore, RCP 4.5 and RCP 

8.5 allowed for a comparison to be made between scenarios where there are climate change 
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policies to curb climate change and a scenario where there are no climate change policies, 

mitigation and adaptation measures (Van Vuuren et al.,2011). A list of the CORDEX-Africa 

General Circulation Models extracted over a box covering the area of study is indicated in 

Table 2 below. 

Table 2: Global Climate Models used with CORDEX 

Model 

Maximum Temperature Minimum Temperature Rainfall 

Correlation 

Coefficient RMSE 

Correlation 

Coefficient RMSE 

Correlation 

Coefficient RMSE 

CNRM 0.38 1.7 0.35 2.2 0.33 89.8 

CSIRO 0.51 1.1 0.38 1.4 0.18 96.2 

ICHEC 0.42 1.4 0.31 1.8 0.26 90.4 

CCCma 0.36 2.2 0.24 3.3 0.12 100.7 

MOHC 0.43 1.6 0.34 2.6 0.18 99.6 

MPI 0.39 1.3 0.18 1.9 0.21 102.9 

MIROC 0.26 2.6 0.28 2.5 0.16 100.9 

IPSL 0.41 1.9 0.27 2.8 0.12 103.8 

 

CNRM model mimicked well the observed rainfall and was therefore selected to provide for 

climate projections. CSIRO on the other hand performed well in simulating historical 

temperature and was therefore used to provide future climate projections over the area of study. 

The simulations from both models were done for the period 2022 to 2051. 

3.3.4 Maize Yield Data 

Data on the annual maize yield between 1988-2018 was obtained from the “Ministry of 

Agriculture, Livestock, Fisheries and Cooperatives”. 

3.3.5 Satellite Imagery Data 

The Imagery acquired for this research was obtained from Landsat 5, Landsat 7 and Landsat 8 

satellites. The imagery used were for the year 1986, 2001 and 2018. The Images were 

downloaded and pre-processed; geographically corrected and layer-stacked (band 

compositing) using Google Earth Engine (GEE). Table 3 below depicts the specifications of 

the satellite platform used and images acquired for this study. 
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Table 3: Landsat Imagery Specifications  

 

3.3.6 Data on Indicators 

This section contains all the vulnerability indicators that were used in this study. 

3.3.6.1 Exposure Indicators         

Exposure indicators for this study included the rates of change of warming, frequency of floods 

and droughts, land use and land cover, and the rate of change in rainfall. Rate of change of 

temperature and rainfall was determined using the Sen Slope Estimator. Baseline rainfall data 

for each station was analysed using Standardized Precipitation Index so as to obtain the 

frequency of floods and droughts. Thereafter, the results were compared against the 

Standardized Precipitation Index value table so as to identify values that correspond to floods 

and droughts.  

3.3.6.2 Adaptive Capacity Indicators 

Adaptive capacity indicators used included: rate of literacy, farm income, farm assets, 

percentage of farmers in farm organizations, percentage of farmers who save money, income 

from other sources including farming, household net income, percentage of farmers who access 

credit, proximity to “National Cereals and Produce Board” depots, proximity to markets, 

distance to tarmac roads, utilisation of inorganic fertilizers and hybrid seeds, and levels of 

irrigation. These indicators were obtained from “Tegemeo Institute of Agricultural Policy and 

Development (TIAPD)”. 

LANDSAT IMAGERY SPECIFICATIONS 

Sensor Year of imagery 

Spatial 

Resolution 

Spheroid and 

Datum UTM Zone 

False colour band 

combination 

Landsat 5 TM 1986 30m WGS 1984 36 South 4,3,2 

Landsat 7 ETM+ 2001 30m WGS 1984 36 South 4,3,2 

Landsat 8 OLI-TIRS 2018 30m WGS 1984 36 South 7,6,4 
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3.3.6.3 Sensitivity Indicators 

In this study, sensitivity indicators comprised demographic and ecological indicators. 

Demographic indicators included rural population density, percentage of farmers planting 

maize and the percentage of people living in hardcore poverty. Ecological indicators included 

area of land under maize farming, annual maize yields, and the percentage dependency on 

rainfall. Sensitivity indicators  were obtained from the “Ministry of Agriculture, Livestock, 

Fisheries and Cooperatives (MOALFC)”, the “Kenya Institute for Public Policy Research and 

Analysis (KIPPRA)”, the “Kenya National Bureau of Statistics(KNBS)”, and “Tegemeo 

Institute of Agricultural Policy and Development (TIAPD)”. Table 4 indicates the variables 

and the indicators used in this study to compute “Exposure, sensitivity and adaptive capacity” 

indices.
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Table 4: Variables and indicators used to compute Exposure, Sensitivity and Adaptive Capacity Indices 

Components of 

Vulnerability 

Vulnerability 

Indicators 

Indicator 

Description/Measurement 

Functional Relationship between the 

indicators used and vulnerability Sources of Data 

Exposure 

Extreme climate events 

 

Frequency of occurrence of 

floods and droughts (Number 

of floods and droughts) 

High frequency of floods and droughts, 

denotes high vulnerability and vice versa Standard Precipitation Index (SPI) 

 

Climate change 

Rate of change of maximum 

temperature (1983-2016) 

The higher the rate of change of maximum 

temperature, the higher the vulnerability Sen Slope Estimator 

Rate of change of minimum 

temperature (1983-2016) 

The higher the rate of change of minimum 

temperature, the higher the vulnerability Sen Slope Estimator 

Rate of change of rainfall 

(1988-2018) 

The higher the rate of change of rainfall, 

the higher the vulnerability Sen Slope Estimator 

Sensitivity 

Population density 

Number of people per square 

km 

The higher the density, the higher the 

vulnerability Kenya National Bureau of Statistics 

% of farmers who 

depend on rainfed 

agriculture 

% Of farmers who depend 

entirely on rainfall for farming 

The higher the %, the higher the 

vulnerability 

Tegemeo Institute of Agricultural 

Policy and Development 

Hardcore poverty rates 

(%) 

Number of people living in 

extreme/abject poverty 

The higher the %, the higher the 

vulnerability Kenya National Bureau of Statistics 

Total area under maize 

production Acres 

The higher the area, the lower the 

vulnerability 

“Ministry of Agriculture, Livestock 

Fisheries and Cooperatives” 

Quantity of maize 

harvested per acre Kilogram/acre 

The higher the yield, the lower the 

vulnerability 

Ministry of Agriculture, Livestock 

Fisheries and Cooperatives. 

Total annual maize 

production 

 Kilograms 

The higher the yield, the lower the 

vulnerability 

Ministry of Agriculture, Livestock 

Fisheries and Cooperatives 

Farmers who practise 

maize farming (%) Percentage (%) 

The higher the %, the higher the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Adaptive 

Capacity 

Use of chemical 

fertilizers Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Irrigation rates 

 Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Distance to NCPB 

 Kilometres 

The longer the distance, the higher the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Distance to farm 

markets Kilometres 

The longer the distance, the higher the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

% of farmers in farming 

groups Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

% of maize farmers that 

use improved seeds  Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

% of farmers with 

savings account Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Rate of Literacy Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

 

% of maize farmers 

who access credit Percentage (%) 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Remittances Kenya Shillings 

The higher the %, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Value of farm assets Kenya Shillings The higher the value, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Total farm land holding  Acres 

The larger the land holding, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 
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Total net off-farm 

income 

Income generated from other 

activities other than agriculture 

in Kenya Shillings 

The higher the income, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Net Farm Income 

Income generated from 

agricultural activities except 

maize farming in Kenya 

Shillings 

The higher the farm income, the lower the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Distance (in Km) from 

homestead to a 

motorable road 

 

Kilometres 

The longer the distance, the higher the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 

Distance (in Km) from 

homestead to a tarmac 

road Kilometres 

The longer the distance, the higher the 

vulnerability 

“Tegemeo Institute of Agricultural 

Policy and Development” 
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3.4 Sample Selection and Sampling Procedure 

The study counties were selected using purposive sampling while considering the level of 

smallholder maize production in the region. Availability of Data was also used to select the 

area of study. 

3.5 Methodology for Data Analysis 

This sub-section presents in detail the methods that were utilized to address the specific 

objectives of this study. Methods used to assess trends in historical climate is first presented. 

3.5.1 Determination of the Trend in the Climate Variables 

Trends in the climate series were determined by timeseries analysis. This involves plotting data 

against time, and is a crucial process since it helps to detect trends, periodicities and cycles 

including seasonality (Rwigi, 2014).  

The non-Parametric Mann-Kendall Test was used to determine the trend in the historical 

climate data in order to tackle problems that could arise due to data skewness (Mondal et al, 

2012) and data that is randomly distributed. The assumptions made in this analysis was that the 

data used was randomly distributed and independent (Partal and Kahya, 2006).  

The trend test was performed on a time series of n data values, with Ti and Tj as two data sub 

sets (i= 1, 2, 3..., n) and (j= i+1, i+2, i+3…. n). Values within the data were considered as 

ordered time series for evaluation purposes. The Mann-Kendall Statistic S was computed using 

equations 1 and 2. 

S= ∑  𝑛−1
𝑡=1 ∑  𝑛

𝑗=𝑖+1 Sign (Tj-Ti) ……………………………………………...…..……. Eqn (1) 

Sign (𝑇𝐽-𝑇𝐼)={

1 𝑖𝑓(𝑇𝐽 − 𝑇𝐼) > 0

0 𝑖𝑓(𝑇𝐽 − 𝑇𝐼) = 0

−1 𝑖𝑓(𝑇𝐽 − 𝑇𝐼) < 0

……………………………………………...……...Eqn (2) 

Where; 𝑇𝐽 = annual values in jth years and 𝑇𝐼 = annual values in ith years, and j>i 

The value of S was then interpreted to give the trend. For instance, S> 0 indicated increasing 

trends in the time series data, values of S< 0, indicated decreasing trends in the time series data, 

while S= 0, indicated that there was no trend in the time series data (Partal and Kahya, 2006). 

The computed p-values of the Mann-Kendall test were then compared to the significance level 
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value of α= 0.05. The trend was considered statistically significant if the p-values of the Mann 

Kendall test were less than 0.05 significance value. 

3.5.2 Determination of Rate of Change of the Climate Variables 

Rate of change of climatic data was determined using the Sen Slope Estimator, a non-

parametric method developed by Sen in the year 1968. The slope of the linear trend was 

computed so as to establish rate of change of the climate variables per unit time (Gocic, 

andTrajkovic,2013) as given by equation 3.  

f (t) =Qt+ K ……………………………………..........................................................Eqn (3) 

where Q =slope of the trend line, t is time and K is the constant 

Equation 4 was used to obtain the slopes for all the pairs of data used as a measure for the 

parameter Q in equation 3.  

𝑄𝑖 =
𝑥𝑗−𝑥𝑘 

𝑗−𝑘
  ………………………………………………………………………. Eqn (4) 

Where 𝑄𝑖 is the slope of all data pairs, i=l, 2…..N, and j>k 

The number of slopes needed to estimate Qi was determined using equation 5. 

𝑁 =
𝑛(𝑛−1)

2
       ……………………………...………………………………………. Eqn (5)     

N=the number of slopes needed. 

Upon ranking the N values of Qi in equation 5, the Sen’s Slope estimator was computed using 

equation 6. 

Q={

𝑄𝑁

2

  𝑁 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑄𝑁

2⁄  + 𝑄𝑁+2
2⁄ )  𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

……………………………………...……………. Eqn (6) 

Where Q is the Sen’s Estimator of Slope, N is odd means the N value is not divisible by two, 

whereas N is even, refers to N value divisible by two. 
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3.5.3 Standardized Precipitation Index (SPI) 

Rainfall data from each County was analysed using the three-month Standardized Precipitation 

Index (SPI) program developed by the World Meteorological Organization so as to obtain the 

frequency of floods and droughts. Subsequently, the results obtained from the above analysis 

were compared to the SPI values in Table 5 in order to identify dry and wet periods within the 

data (Svoboda et al., 2012). Normal rainfall ranged between -1 and +1. Values above +1 

depicted floods whereas values below -1 indicated drought. Table 5 presents the standardized 

precipitation index values that were used in this study. 

Table 5: Standardized Precipitation Index Values 

2.0 + Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 

3.5.4 Determination of the relationship between climate variables and maize 

productivity 

The degree and nature of the relationship between climate variables and maize yields was 

determined using the Spearman’s correlation coefficient,  𝝆 , that ranges between -1 to 1, 

computed using equation 7 (Zhao et al., 2015). 

𝝆 = 𝟏 −
∑ 𝑫𝟐𝒏

𝒊=𝟏

𝒏(𝒏𝟐−𝟏)
……………………………………………………..…………………. Eqn (7) 

Where: D is the difference between the paired ranks, and n is the number of paired ranks 

The Spearman’s correlation coefficient, 𝝆 , was then interpreted to give the nature of the 

relationship between maize yields and climate variables. Where, 𝝆 =0, there was no association 
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between the study variables, where  𝝆 = -1 or +1, means there was a perfect monotonic 

relationship, thus implying that each of the variables was a perfect monotone function of the 

other.  

3.6 Determination of Change in Climatic Parameters in Climate Records 

Points of change in the climate data sets were identified using the Pettit test owing to its high 

sensitivity to breaks in any given data set. This method was used to compute parameter Ut, as 

given by equations 8 and 9 (Pohlert, 2016). 

Ut= ∑  𝑡
𝑖=1 ∑  𝑛

𝑗=𝑡+1 Sign (Xt-Xj) …………………….………............................………. Eqn (8) 

Sign (Xt-Xj) ={

1 𝑖𝑓 (𝑥𝑡 − 𝑥𝑗) > 0

0 𝑖𝑓(𝑥𝑡 − 𝑥𝑗) = 0 

−1 𝑖𝑓 (𝑥𝑡 − 𝑥𝑗) < 0

……………………………………………...…… Eqn (9) 

Where, 𝑿𝒕 and 𝑿𝒋 are the sequential data values, and T is the number of the recorded data, t 

and j are coefficients of the sequential data values. 

Equations 8 and 9 were used to detect a single change point in climate series with continuous 

data. The null hypothesis that was tested was H0: the variables follow one or more distributions 

that have the same location parameters against the alternative hypothesis 𝐻1: there is an 

existence of change point. 

The data series was divided into two parts. In the first part, it was assumed that a series of 

baseline data X1, X2……Xn had a change at point t, and associated with a distribution function 

F1(x). The second part of the time series, xt+x1, xt+x2, xn was considered to have a distribution 

function, F2(x). The test statistic and the confidence level (𝝆) for a sample length, n was 

computed using equation 10 and 11 (Pohlert, 2016). 

K=Max|𝑈𝑡 |……………………………………………………………………… Eqn (10) 

The change point of the series is located at KT, provided that the statistic is significant. The 

significance of probability of KT is approximated for p ≤ 0.05 using equation 11. 

𝜌 = 𝑒𝑥𝑝(
−𝐾

 𝑛2+𝑛3
) ……………………………………………………………..………. Eqn (11) 
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Where 𝜌 = test statistic 

The result from equation 11 above was used to compute the probability value in equation 12 

that was used to test for the significance of the difference between the two data sets. 

p=1-𝜌……………………………………………………………………………. Eqn (12) 

where p, is the required probability value. A p-value greater than 0.05 was considered to 

indicate a significant change in the climatic data sets. 

3.7 Analysis of Satellite Images 

The pre-processed images were loaded onto ArcGIS software where image classification was 

undertaken. Supervised classification method was used to categorise the satellite images. 

Additionally, the satellite images that were taken during the study period were ascertained by 

coming up with two classes for each Land Use and Land Cover unit using the maximum 

likelihood classification method (Sisodia et al.,2014) using equation 13. 

P(i|ω) = 
𝑝(𝜔|𝑖)𝑝(𝑖)

𝑝(𝜔)
……………………………………………………………………. Eqn (13) 

Where, i is class, ω is a feature vector, P(i|ω), is the likelihood function, 𝒑(𝒊) is the Probability 

that class i will occur in the study area, and 𝒑(𝝎) is the probability that ω will be observed and 

was computed using equation 14. 

𝑝(𝜔)=∑  𝑀
𝑖=1  𝑝(𝜔|𝑖)𝑝(𝑖)  ……………………………………………..… Eqn (14) 

Where M is the number of classes, 𝒑(𝝎) is a standardization constant that ensures that 

∑  𝑴
𝒊=𝟏  𝒑(𝝎|𝒊)𝒑(𝒊) adds to 1.  

Nonetheless, the rule set by equation 15 was used to allocate pixel x to class i. 

 

X ϵ I, if 𝑝(𝜔|𝑖)> 𝑝(𝑗|𝜔) given j≠I …………………………………………….….... Eqn (15) 

The maximum likelihood method assumes that data distribution in a given class i, was in 

tandem with the multivariate Gaussian distribution. In the instances where the probability 

values of the pixels were less than the limits set by the pixels, the pixels were considered 
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unclassified. Each pixel was attached to a class that had the maximum likelihood. Finally, land 

use and land cover were classified using ERDAS Imagine 10 and Arc GIS 10. The trends in 

Land Use and Land Cover were analysed using nine classes as illustrated in figure 3. 
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Figure 3: LULC for the years 1986 (a), 2001 (b) and 2018 (c) over the area of study 

 

                      

 

 

(a) 

(a) 

(b) 

(c) 
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3.8 Determination of Vulnerability Index for the Study area 

Any increase in vulnerability due to increase in the value of indicators was normalized using 

equation 16. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑=
𝑋𝑖𝑗−𝑚𝑖𝑛𝑥𝑖𝑗

𝑚𝑎𝑥𝑋𝑖𝑗−𝑚𝑖𝑛𝑋𝑖𝑗
 ……………………………..…………………………….. Eqn (16) 

Where: 

Xij is the value of the ith indicator for the jth County 

On the other hand, any reduction in vulnerability caused by a decrease in a given indicator was 

normalized using equation 17. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑=
𝑚𝑎𝑥𝑥𝑖𝑗−𝑥𝑖𝑗

𝑚𝑎𝑥𝑥𝑖𝑗−𝑚𝑖𝑛𝑥𝑖𝑗
……………………………………………………..….…. Eqn (17) 

Where Xij represented the value of the i
th 

indicator for the jth County. 

Principal Component Analysis (PCA) was then performed so as to rank the data by assigning 

unequal weights to each of the indicators using the standard deviation and mean of each 

indicator for normalization. A given group of N variables (  𝒂𝟏𝒋
#

    to  𝒂𝑵𝒋
#

 ) was normalized 

using a similar approach to that of Masambaya (2018) given by equation 18. 

𝑎1𝑗=

𝒂𝟏𝒋
# −𝒂𝟏

#

𝒔𝟏
# …………………………………………………………………………...Eqn (18) 

Where, 𝒂𝟏
#

  is the mean of the region and 𝒔𝟏
# is the standard deviation of the region 

The selected variables were expressed by linearly combining a set of the main components as 

shown in equation 19. 

𝑎1𝑗=𝑣11𝐴1𝑗+𝑉12𝐴2𝑗+…………….𝑉1𝑁𝐴𝑁𝐽,  J=1…………………...………………….……...Eqn (19) 

𝑎𝑁𝑗=𝑣𝑁1𝐴1𝑗+𝑉𝑁2𝐴2𝑗+……………...𝑉𝑁𝑁𝐴𝑁𝐽, ..... …………………...………………….……. Eqn (20) 

Where, A’s are the components, V’s are the coefficients of each component for each variable 

used and a1j, is the first principal component from a set of N variables (attributes) of each 

region, j, and aNj, is the Nth principal component. 
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Principal Component Analysis (PCA) was used to determine the first principal component 

(a1J) which basically represented variables with the highest variance obtained through a linear 

combination. A second principal component was determined so as to account for the other 

maximum variance. The PCA method, provided a theoretical solution in the equation (R-𝜆𝑛1) 

𝑣𝑛=0, for 𝑣𝑛 and 𝜆𝑛.The Matrix R in the equation showed how each variable correlated 

with the nth component. A solution to this equation gave rise to the values of  𝜆𝑛 presented as 

the typical root of R and the associated Eigen vectors Vn. The final estimates were then 

obtained by scaling the Eigen Vectors and thereafter obtained a sum of their square to obtain 

the total variance. 

The scoring factors from the model were recovered by inverting the system presented in 

equation 19. This yielded a set of estimates for each of the N components 

𝐴1𝑗=𝑓11𝑎 +𝑓12𝑎2𝑗+……………...𝑓1𝑁𝑎𝑁𝐽,……………………………………….……….... Eqn (21) 

𝐴𝑁𝑗=𝑓𝑁1𝑎 +𝑓𝑁2𝑎2𝑗+……………..𝑓𝑁𝑁𝑎𝑁𝐽,…………………………………….…………....Eqn (22) 

The f’s are the factor scores. Following Deressa (2010), the first principal component, 

expressed in terms of the original variables, was considered as an index for each region in the 

study counties presented in equation 23. 

𝐴1𝑗=

𝑓11(𝒂𝟏𝒋
# −𝒂𝟏

#) 

𝒔𝟏
#  +……..

𝑓1𝑁(𝒂𝑵𝒋
# −𝒂𝑵

# ) 

𝒔𝑵
# .……………………………….Eqn (23) 

The normalized values of each component variables were multiplied by their respective PCA 

weights. Consequently, the products were added together and divided by the total weight of the 

variables under each component as presented in equations 24 to 26. 

𝑆𝐶=
∑ 𝑃𝑖 𝑌𝑆

𝑗
𝑖=1

∑ 𝑃1  
𝑗
𝐼=1

………………………………………………………………………..…...Eqn (24) 

𝐸𝐶=
∑ 𝑃𝑖 𝑌𝐸

𝑗
𝑖=1

∑ 𝑃1  
𝑗
𝐼=1

…………………………………………………….……………………...Eqn (25) 

𝐴𝐶 𝐶=
∑ 𝑃𝑖 𝑌𝐴𝐶

𝑗
𝑖=1

∑ 𝑃1  
𝑗
𝐼=1

……………………………………………………………………...... Eqn (26) 
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Where, Ec = exposure of the County, Sc =sensitivity of the County, ACc= adaptive capacity 

of the County, YAC, YS and YE = Standardized values of variables, namely, adaptive capacity, 

sensitivity and exposure in that order, and Pi = weight of the indicators. 

The vulnerability index of the County (VIc) was then computed by obtaining the sum of Ec 

and Sc and then subtract the adaptive capacity (ACc) as shown in equation 27. 

𝑉𝐼𝐶=
𝐸𝐶+𝑆𝐶 

−(1−𝐴𝐶𝐶 )

3
 ………………………………………….…………………………... (27) 

Where;  

VIc is the vulnerability index of the County, ACc is the adaptive capacity of the County, Sc is 

the sensitivity of the County, while Ec is the exposure of the County. 

To obtain a more valid vulnerability index, the vulnerability index obtained in equation 27 was 

normalized as shown in equation 28 to get a final value that range between 0-5 (Masambaya, 

2018). 

𝑉𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑=5(
𝑉𝐼−𝑉𝑚𝑖𝑛

𝑉𝐼𝑚𝑎𝑥 −𝑉𝐼𝑚𝑖𝑛
) ………………………………………………...…………. (28) 

The resultant vulnerability in equation 28 was normalized on a scale of 0-5 and thereafter used 

to characterize vulnerability in each County as categorized in Table 6.  

     Table 6: Categorization of Vulnerability 

No. Normalized VI Category 

1 4≤𝑉𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑<5 Very high 

2 1≤𝑉𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑<2 Low. 

3 0≤𝑉𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑<1 Very low 

 

The resulting categories of vulnerability in each County were then used to generate a 

vulnerability index map. The vulnerability indicators were statistically developed by different 

methods highlighted in the various sections discussed under section 3.4, and the different 

indicators mathematically combined to develop an index map. Spatial analysis function of the 

Geographical Information System (GIS) tool was used to draw spatial maps, which were 
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overlaid with the different indices to determine the geographical location of the most vulnerable 

areas and their exposure to climate hazards. 
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4 CHAPTER FOUR 

4.1 RESULTS AND DISCUSSION 

4.2 Introduction 

This chapter presents results of the analysis of the specific objectives of this study and their 

discussion. It details the trends and mean shifts of baseline and projected climate; correlation 

coefficients between weather variables and annual maize yields, “exposure, sensitivity, 

adaptive capacity” and vulnerability indices for the study counties. 

4.3 Validation of the CHIRPS and CHIRTS datasets 

A comparison between the observed baseline climate and the satellite data was done for both 

rainfall and temperature for Kisii Meteorological station between 1981 to 2018 for rainfall and 

1983-2016 for temperature. Table 7 indicates the relationship between satellite datasets with 

the observed station data for Kisii Meteorological station. 

Table 7: Validation Coefficients 

Parameter Correlation coefficient (r) 

Rainfall 0.65 

Maximum Temperature 0.72 

Minimum Temperature 0.69 

 

Rainfall had a correlation coefficient (R2) of 0.65 (65%), whereas maximum and minimum 

temperature had a correlation coefficient (R2) of 0.72 (72%) and 0.69 (69%) respectively. The 

correlation coefficients were good hence CHIRPS rainfall and CHIRTS temperature data can 

be used in the study area. 

4.4 Trends and Patterns of Baseline and Future Climate 

The trends and patterns of observed rainfall and temperature for the baseline (1988-2018) and 

future (2022-2051) under RCP4.5 and RCP8.5 emission scenarios are contained in this section.  

4.4.1 Baseline Trends for the Annual Rainfall  

Figure 4 presents the mean shifts in total annual rainfall for the period 1988-2018 for Homabay, 

Kisii, Migori and Nyamira Counties respectively. Homabay, Kisii, Migori and Nyamira 

Counties exhibited an upward/ increasing mean shift in annual rainfall for the baseline period 

(1988-2018). All the study counties depicted an increasing trend in the total annual rainfall. 
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Figure 4: Mean shifts in annual rainfall for Homabay, Kisii, Migori and Nyamira (1988- 2018). 
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Figure 5 presents the baseline Trends in annual rainfall for Homabay, Kisii, Migori and 

Nyamira counties.  

  

 

Figure 5:Baseline Trends in annual rainfall for Homabay, Kisii, Migori and Nyamira  

Over the period 1988-2018, all the four counties experienced increasing trends in annual 

rainfall totals. This implies increasing prospects for agricultural activities including maize 

production. 
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Figure 6 presents the mean shift in MAM rainfall for Homabay, Kisii, Migori and Nyamira 

counties.  

  

  

Figure 6: Baseline Mean shifts in MAM rainfall for Homabay, Kisii, Migori and Nyamira 

Over the baseline period, Homabay, Kisii, Migori and Nyamira counties experienced 

increasing mean shift during MAM rainfall season for the period 1988-2018, implying 

increasing MAM total rainfall. 

Figure 7 presents trends in MAM seasonal rainfall in Homabay, Kisii, Migori and Nyamira 

counties.  
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Figure 7: Baseline Trends in MAM rainfall for Homabay, Kisii, Migori and Nyamira  
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Homabay, Kisii, Migori and Nyamira counties exhibited increasing trends in MAM rainfall 

season for between 1988 to 2018. 

Figure 8 presents the mean shift in June-July-August (JJA) rainfall season for Homabay, Kisii, 

Migori and Nyamira counties. 

 

 

 

Figure 8: Baseline Mean shifts in JJA rainfall for Homabay, Kisii, Migori and Nyamira 
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Homabay, Kisii, Migori and Nyamira experienced an upward mean shift in JJA total seasonal 

rainfall for the period 1988-2018.   

 

Figure 9 presents the trends in mean JJA rainfall for Homabay, Kisii, Migori and Nyamira 

counties. 
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Figure 9: Baseline Trends in mean JJA seasonal rainfall for Homabay, Kisii, Migori and 

Nyamira. 
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Homabay, Kisii, Migori and Nyamira experienced increasing trends in mean total JJA rainfall 

for the period 1988-2018, implying increased wetness and prospects for crop production during 

this season.  

Figure 10 presents the mean shift in total rainfall for OND rainy season in Homabay, Kisii, 

Migori and Nyamira counties. 

 

 

 

 

 

 

 

 



49 

 

 

 

 

 

Figure 10: Baseline Mean shifts in OND rainfall for Homabay, Kisii, Migori and Nyamira 

Homabay, Kisii, Migori and Nyamira experienced an upward shift in OND rainfall totals for 

the period 1988-2018, implying that OND rainfall was increasing during this period. This 

observation agrees with the findings of Ongoma and Chen (2017) that indicate increasing 

trends in OND rainfall amounts across East Africa.  
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The corresponding trend lines for total rainfall amounts for Homabay, Kisii, Migori and 

Nyamira are presented in Figure 11. 

 

 

Figure 11: Trends in mean OND rainfall for Homabay, Kisii, Migori and Nyamira. 

As with the shifts in the mean total rainfall, all the study counties (Homabay, Kisii, Migori and 

Nyamira) depicted increasing trends in mean total OND rainfall. 

Table 8 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in mean 

total annual and seasonal rainfall for Homabay, Kisii, Migori and Nyamira counties. 
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Table 8: Characteristics of baseline rainfall for Homabay, Kisii, Migori and Nyamira 

Station  Season 

Mean Rainfall 

(mm) Score 

p- value (MK 

test)  

p- value  

(Pettit’s Test) 

Sens 

Slope 

Value 

Kisii 

  

  

  

MAM 687.3 106 0.104 0.324 4.2 

JJA  387.4 94 0.150 0.396 2.5 

OND  504.8 142 0.029 0.226 6.1 

Annual 1921.0 194 0.003 0.026 14.6 

Nyamira 

  

  

  

MAM 662.7 112 0.085 0.010 3.9 

JJA  387.6 70 0.285 0.507 1.7 

OND  499.4 142 0.029 0.166 6.7 

Annual 1859.8 178 0.006 0.226 12.6 

Migori 

  

  

  

MAM 560.1 50 0.448 0.673 1.1 

JJA  188.2 64 0.329 0.422 1.1 

OND  401.0 100 0.125 0.507 4.5 

Annual 1383.9 88 0.178 0.396 5.8 

Homabay 

  

  

  

MAM 519.0 118 0.070 0.371 2.7 

JJA  211.6 192 0.003 0.026 3.0 

OND  350.7 158 0.015 0.262 6.0 

Annual 1326.0 236 0.000 0.004 12.0 

 

Kisii station recorded the highest mean annual rainfall (1921mm), mean seasonal (MAM) 

rainfall (687.3mm) and mean seasonal OND rainfall (504.8mm) among all the study counties, 

with the highest rate of change of +14.6mm/year. Migori County recorded the least rate of 

change in MAM and JJA season rainfall of 1.1mm/year. The station also recorded the least 

mean seasonal rainfall in JJA of 188.2mm.  
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Homabay station exhibited increasing trends in the mean annual and seasonal rainfall for JJA. 

The trends and mean shifts of baseline rainfall were statistically significant as depicted by the 

p-values of Pettit’s and Man-Kendall tests, that were less than the significance level value (α= 

0.05). The station had statistically significant trend in its OND seasonal rainfall based on p-

values of the Man-Kendall test (0.015) that was less than the significance level value (α= 0.05). 

However, the mean shift in OND rainfall was statistically insignificant based on the p-value of 

the Pettit’s test (0.262) that was greater than the significance level value (α= 0.05). 

Kisii station recorded statistically significant increase in the trend and mean shift of annual 

rainfall based on the p-values of Pettit’s (0.010) and Man-Kendall test (0.003), that were less 

than the significance level value (α= 0.05). 

Generally, all the study counties indicated increasing trends in the annual, MAM, JJA and OND 

seasonal rainfall.  These findings also concur with those of Ayugi et al (2016). Moreover, all 

the study counties recorded an increase in mean MAM seasonal rainfall. Increasing rainfall 

trends in MAM and OND seasons in all the study counties increase the prospects for crop 

production, due to enhanced rainfall and moisture availability for crop growth, development 

and productivity. 

4.4.2 Baseline Trends for Minimum Temperature 

Figures 12 and 13 present the trends and mean shift in minimum temperature for Homabay, 

Kisii, Migori and Nyamira counties for the period 1983-2016. Temperature data used for the 

study was only available for the period 1983-2016 
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Figure 12: Trends in mean annual minimum temperature for Homabay, Kisii, Migori and 

Nyamira. 
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Figure 13: Mean shifts in mean annual minimum temperature for Homabay, Kisii, Migori and 

Nyamira. 

Annual mean minimum temperatures across the study counties indicate an increasing trend and 

an upward shift in mean annual minimum temperature for the period 1983-2016. The 

increasing trends and mean upward shifts in annual minimum temperatures imply increasing 

mean annual minimum temperatures. 
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Figure 14 presents the trends in mean MAM minimum temperatures for Homabay, Kisii, 

Migori and Nyamira counties for the period 1983-2016.  

 

 

Figure 14: Trends in mean MAM minimum temperature for Homabay, Kisii, Migori and 

Nyamira. 
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Homabay and Migori exhibited increasing trends in mean seasonal minimum temperature 

during MAM rainy season for the period 1983-2016, signifying increasing minimum 

temperatures in MAM season. However, Kisii and Nyamira exhibited a decreasing trend in 

mean seasonal minimum temperature during MAM season. 

Figure 15 presents mean shifts in MAM season mean minimum temperature for Homabay, 

Kisii, Migori and Nyamira counties for the period 1983-2016.  

 

 
Figure 15: Mean shifts in MAM season mean minimum temperature for Homabay, Kisii, 

Migori and Nyamira for the baseline period 1983 to 2016. 
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Homabay experienced an upward mean shift in the mean MAM minimum temperatures. On 

the contrary, Kisii, Migori and Nyamira exhibited a downward mean shift in the mean MAM 

minimum temperature.  

Figure 16 presents the trends in mean JJA seasonal minimum temperature for the study counties 

for the period 1983-2016.  

 

 

Figure 16:Trends in mean JJA minimum temperature for Homabay, Kisii, Migori and Nyamira 

for the baseline period 1983 to 2016. 
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. All of the study counties exhibited increasing trends in mean JJA minimum temperatures. 

This implies rising mean JJA minimum temperatures for Homabay, Kisii, Migori and Nyamira 

counties for the period 1983-2016.  

Figure 17 presents the mean shifts in mean JJA minimum temperature for Homabay, Kisii, 

Migori and Nyamira counties for the period 1983-2016.  

 

 

Figure 17: Mean shifts in JJA season mean minimum temperature for Homabay, Kisii, Migori 

and Nyamira for the baseline period 1983 to 2016. 
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An upward mean shifts in mean JJA minimum temperatures across the study counties was 

depicted, signifying increasing minimum temperatures during JJA season in Homabay, Kisii, 

Migori and Nyamira counties for the period 1983-2016.  

Figure 18 presents the trends in mean OND minimum temperature for Homabay, Kisii, Migori 

and Nyamira counties for the period 1983-2016.  

  

  

Figure 18: Trends in mean OND minimum temperature for Homabay, Kisii, Migori and 

Nyamira for the baseline period 1983 to 2016. 
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Homabay, Kisii, Migori and Nyamira stations depicted increasing trends in mean OND 

minimum temperatures, implying rising mean minimum temperatures in OND season for the 

period 1983-2016.  

Figure 19 presents the mean shifts in OND minimum temperature for Homabay, Kisii, Migori 

and Nyamira counties for the period 1983-2016.  
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Figure 19:Mean shifts in OND season mean minimum temperature for Homabay, Kisii, Migori 

and Nyamira for the baseline period. 

Kisii, Migori and Nyamira counties exhibited an upward mean shift in OND season minimum 

temperatures, signifying rising minimum temperatures. Conversely, Homabay County showed 

a downward shift in OND season minimum temperatures. 
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Table 9 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in mean 

annual and seasonal Minimum Temperature for Homabay, Kisii, Migori and Nyamira counties. 

Table 9: Characteristics of Baseline Minimum Temperature for Homabay, Kisii, Migori and 

Nyamira stations. 

Station Season 

Mean 

Tmin(°C) Score 

p- value 

(MK test) 

p- value 

(Pettit’s Test) 

Sens 

Slope 

Value 

Kisii 

 

 
 

MAM 17.45 -17 0.81251 0.366 -0.001 

JJA 15.61 291 0.00002 0.366 0.029 

OND 17.30 103 0.13051 0.140 0.011 

Annual 16.78 235 0.00052 0.007 0.016 

Nyamira 

 

 
 

MAM 16.17 -47 0.49529 0.281 -0.003 

JJA 14.26 301 0.00001 0.002 0.027 

OND 15.77 107 0.11609 0.092 0.010 

Annual 15.39 195 0.00403 0.024 0.015 

Migori 

 

 
 

MAM 20.24 15 0.8356 0.602 0.002 

JJA 18.54 265 0.0001 0.005 0.025 

OND 20.66 169 0.0128 0.092 0.018 

Annual 19.91 243 0.0003 0.012 0.018 

Homa Bay 

 

 
 

MAM 25.45 45 0.5142 0.634 0.006 

JJA 24.30 227 0.0008 0.018 0.019 

OND 25.84 -43 0.5335 0.555 -0.004 

Annual 25.30 77 0.2599 0.151 0.004 

 

Homabay and Migori exhibited increases in minimum temperatures at the rates of between 

0.0040C/year and 0.0180C/year for the period 1983-2016. The rates of increase of between 

+0.0020C/year for Migori and +0.0060C/year for Homabay were observed. Kisii and Nyamira 

depicted decreasing trends in mean MAM minimum temperatures, signifying decreasing mean 

minimum temperatures at rates of between -0.0010C/year for Kisii and 0.0030C/year for 

Nyamira during MAM season. All the study counties exhibited increasing minimum 

temperatures during OND at the rates of between +0.010oC/year and 0.0190C/year for the 

period 1983-2016. On the contrary, Homabay station depicted a downward mean shift in OND 

minimum temperature at a rate of -0.004oC/year for the baseline period 1983 to 2016. 
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Kisii, Nyamira and Migori counties exhibited increasing trends and upward shifts in mean 

annual minimum temperatures for the period 1983-2016. These increasing trends and upward 

shifts in mean annual minimum temperatures were statistically significant owing to the smaller 

p-values of the Man-Kendall test and Pettit’s test compared to the significance level value (α = 

0.05). 

The observed increasing trends and upward shift in JJA season mean minimum temperatures 

for Nyamira, Homabay and Migori counties were statistically significant, given that the p-

values of the Man-Kendall test and Pettit’s test statistics were smaller compared to the 

significance level value of 0.05. Kisii County exhibited a statistically significant trend line in 

mean JJA minimum temperature owing to the smaller p-value of Mann-Kendall test compared 

to the significance level value of 0.05. 

4.4.3 Baseline Trends for Maximum Temperature 

This section presents results for the trends and shifts in mean maximum temperature for 

Homabay, Kisii, Migori and Nyamira counties between 1983-2016. Figure 20 presents trends 

in annual maximum temperature for the study stations for the period 1983-2016.  
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Figure 20: Trends in mean annual maximum temperature for Homabay, Kisii, Migori and 

Nyamira stations. 

All counties exhibited rising trends in mean annual maximum temperatures, signifying 

increasing annual maximum temperatures for the period 1983-2016. Increasing maximum 

temperature will inevitably reduce the growth duration of maize crops thus reducing yields. 

Moreover, rising maximum temperature will enhance evapotranspiration, thus limiting the 

availability of moisture necessary for plant growth and development. 
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Figure 21 presents the shifts in mean annual maximum temperatures for the period 1983-2016.  

 

 

Figure 21: Shifts in mean annual maximum temperatures for Homabay, Kisii, Migori and 

Nyamira stations for the historical period 

All the study counties depicted an upward shift in mean annual maximum temperature between 

1983 and 2016.  

Figure 22 presents the trends in mean MAM maximum temperature for Homabay, Kisii, Migori 

and Nyamira counties for the baseline period 1983-2016.  
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Figure 22: Trends in mean MAM maximum temperature for Homabay, Kisii, Migori and 

Nyamira stations for the historical period 1983 to 2016. 

Homabay, Kisii, Nyamira and Migori counties exhibited increasing trends in mean MAM 

maximum temperature for the period 1983-2016, signifying rising mean maximum 

temperatures in the MAM season. This will decrease yields because of the negative effects of 
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rising maximum temperature through enhanced evapotranspiration rates, including reduction 

in leaf area, thus inhibiting maize growth and development. Consequently, this will cause food 

insecurity since maize is their staple food. 

Figure 23 presents the shifts in mean MAM maximum temperature for the study stations for 

the period 1983-2016.  

 

 

Figure 23: Shifts in mean MAM maximum temperature for Homabay, Kisii, Migori and 

Nyamira stations for the baseline period. 

All the study counties experienced an upward shift in mean maximum temperature during 

MAM season, implying rising mean MAM maximum temperatures for the period 1983-2016.   
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Figures 24 and 25 present the trends and shifts in mean JJA maximum temperatures for the 

period 1983-2016 respectively. 

 

 

Figure 24: Trends in mean JJA maximum temperature for Homabay, Kisii, Nyamira and 

Migori stations for the baseline period 
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Maximum temperatures depicted an increasing trend, signifying increasing mean JJA 

maximum temperatures for the period 1983-2016.  

 

 

Figure 25: Shifts in mean JJA maximum temperature for Homabay, Kisii, Migori and Nyamira 

for the baseline period. 
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Maximum temperature for Homabay, Kisii, Migori, and Nyamira depicted an upward mean 

shift during the JJA season for all the study counties, signifying increasing mean JJA maximum 

temperatures for the period 1983-2016.  

Figures 26 and 27 present the trends and shifts in mean OND maximum temperatures for the 

period 1983-2016 respectively. 
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Figure 26: Trends in mean OND maximum temperatures for Homabay, Kisii, Migori and 

Nyamira stations for the baseline period. 
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Figure 27: Shifts in mean OND maximum temperatures for Homabay, Kisii, Migori and 

Nyamira stations for the baseline period. 

All the counties exhibited rising trends and upward shifts in maximum temperatures during 

OND season for the period 1983-2016, signifying rising mean maximum temperatures during 

this season.  
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Table 10 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in mean 

annual and seasonal Maximum Temperatures for Homabay, Kisii, Migori and Nyamira 

counties. 

Table 10: Characteristics of Baseline Maximum Temperatures for Homabay, Kisii, Migori and 

Nyamira 

Station  

Season Mean Tmax 

(°C) 

Score p- value (MK 

test)  

p- value 

(Pettit’s Test) 

Sens Slope 

Value 

Kisii 

  

  

  

MAM 27.6 152 0.026 0.145 0.023 

JJA  25.8 179 0.008 0.043 0.021 

OND  27.7 65 0.343 0.888 0.009 

Annual 27.3 249 0.000 0.003 0.015 

Nyamira 

  

  

  

MAM 26.4 131 0.054 0.190 0.020 

JJA  24.4 159 0.019 0.057 0.020 

OND  26.3 55 0.423 0.888 0.007 

Annual 26.0 239 0.000 0.000 0.015 

Migori 

  

  

  

MAM 30.0 137 0.044 0.134 0.018 

JJA  28.8 193 0.004 0.029 0.019 

OND  30.7 81 0.236 0.570 0.016 

Annual 30.1 249 0.000 0.006 0.017 

Homa Bay 

  

  

  

MAM 31.2 147 0.030 0.197 0.025 

JJA  30.1 191 0.005 0.035 0.024 

OND  31.6 33 0.635 1.090 0.006 

Annual 31.2 211 0.002 0.013 0.016 
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Maximum temperatures increased in all the three seasons (MAM, JJA, OND) and annually in 

all the study counties at rates of between 0.0060C/year and 0.0250C/year. The increasing trends 

and upward shifts in JJA and annual maximum temperatures were statistically significant for 

all the study counties, given that the p-values for the Man-Kendall and Pettit’s test statistics 

were less than the significance level value of 0.05. Kisii, Migori and Homabay counties 

exhibited statistically significant trends in mean MAM maximum temperatures, given that the 

p-values of the Man-Kendall test statistics were less than the significance level of 0.05. 

Increasing mean maximum temperatures will adversely affect the soil-water balance 

parameters hence negatively impact maize growth, development and the resultant yields. These 

would exacerbate the vulnerability of maize production by small-holder farmers to the adverse 

impacts of climate change within the study counties. 

4.5 Trends and Patterns in the Projected Climate based on RCP4.5 and RCP8.5 

Emission Scenarios 

This section describes the trends and patterns in projected climate under RCP 4.5 and RCP 8.5 

emission scenarios. 

4.5.1 Validation of the Skill of CORDEX Models used for projecting future climate 

Table 11 presents the correlation coefficients and the root mean square error that formed the 

basis for assessing the skill of the CORDEX models in simulating rainfall and temperature in 

Homabay, Kisii, Migori and Nyamira counties. 

Table 11:Correlation and root mean square error for CORDEX models in simulating rainfall 

and temperature in Homabay, Kisii, Nyamira and Migori counties 

Model 

Maximum Temperature Minimum Temperature Rainfall 

Correlation 

Coefficient RMSE 

Correlation 

Coefficient RMSE 

Correlation 

Coefficient RMSE 

CNRM 0.38 1.7 0.35 2.2 0.33 89.8 

CSIRO 0.51 1.1 0.38 1.4 0.18 96.2 

ICHEC 0.42 1.4 0.31 1.8 0.26 90.4 

CCCma 0.36 2.2 0.24 3.3 0.12 100.7 

MOHC 0.43 1.6 0.34 2.6 0.18 99.6 

MPI 0.39 1.3 0.18 1.9 0.21 102.9 

MIROC 0.26 2.6 0.28 2.5 0.16 100.9 

IPSL 0.41 1.9 0.27 2.8 0.12 103.8 
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The CSIRO model gave rise to the highest correlation coefficients between the observed and 

the forecasted climate elements and least mean square error in simulating maximum and 

minimum temperature, hence having the best skill in simulating temperature. Therefore, 

CSIRO model temperature outputs were used to assess the trend and shifts in the projected 

temperature for the period 2022-2051 under both RCP4.5 and 8.5 emission scenarios.  CNRM 

model had better skill in simulating precipitation compared to the rest of the CORDEX models. 

Consequently, CNRM model outputs for rainfall were used to assess the trend and shifts in 

future rainfall for the period 2022-2051 under both RCP4.5 and 8.5 emission scenarios. 

4.5.2 Projected Minimum Temperature based on RCP4.5 emission scenario 

Figure 28 presents the trends in projected minimum temperature under RCP4.5 emission 

scenario for Homabay, Migori, Kisii and Nyamira counties. 
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Figure 28: Trends of projected annual minimum temperature for Homabay, Kisii, Nyamira and 

Migori stations. 

Under RCP4.5 emission scenario, all the four study counties of Homabay, Kisii, Nyamira and 

Migori exhibit increasing trends in the projected annual minimum temperature. This is 

expected to increase daily average temperature in future, thus increasing vulnerability of small 

holder maize farming in all the four counties.  
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Figure 29 presents the shifts in projected annual minimum temperature for Homabay, Kisii, 

Migori and Nyamira counties under RCP4.5 emission scenarios. 

 

 

Figure 29: Shifts in projected annual minimum temperature for Homabay, Kisii, Migori and 

Nyamira stations. 
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The projected annual minimum temperatures depicted upward shifts in the means of the annual 

minimum temperatures in all the study counties of Kisii, Homabay, Nyamira and Migori.  

Table 12 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in 

projected mean annual and seasonal minimum temperature based on RCP 4.5 Emission 

Scenario for Homabay, Kisii, Migori and Nyamira Counties respectively. 

Table 12: Characteristics of projected minimum temperature based on RCP 4.5 Emission 

Scenario 

Station  

Season Mean 

Tmin(°C) 

Score p- value 

(MK test)  

p- value) 

(Pettit’s Test) 

Sens Slope Value 

Homa Bay 

  

  

MAM 26.9 159 0.0048 0.0087 0.0421 

JJA  26.2 233 0.0000 0.0011 0.0591 

OND  26.9 37 0.5207 1.3440 0.0074 

Annual 26.8 205 0.0003 0.0057 0.0399 

Kisii 

  

  

MAM 18.9 157 0.0044 0.0397 0.0340 

JJA  17.5 241 0.0000 0.0024 0.0627 

OND  18.3 69 0.2251 0.7617 0.0095 

Annual 18.2 185 0.0010 0.0499 0.0334 

Migori 

  

MAM 21.7 130 0.0213 0.1284 0.0335 

JJA  20.3 233 0.0000 0.0015 0.0637 

OND  21.6 -5 0.9431 1.2190 -0.0014 

Annual 21.3 161 0.0043 0.0446 0.0336 

Nyamira 

  

  

  

MAM 17.8 165 0.0034 0.0130 0.0476 

JJA  16.1 241 0.0000 0.0002 0.0608 

OND  16.9 45 0.4325 1.0680 0.0098 

Annual 16.9 217 0.0001 0.0037 0.0428 
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Minimum temperatures are projected to increase based on CSIRO model projections under 

RCP 4.5 emission scenario for all the seasons in the four study counties at rates of between 

0.00740C/year and 0.06370C/year, except for OND season in Migori County, where minimum 

temperatures are projected to decrease at a rate of -0.00140C/year. 

The projected increasing trend and upward shift in MAM, JJA and annual minimum 

temperatures were statistically significant, given that the p-values of Mann-Kendall and Pettit’s 

tests statistics were less than the significance level of α=0.05. The trend and shift in OND 

minimum temperatures were statistically insignificant. 

4.5.3 Projected Maximum Temperatures based on RCP4.5 emission Scenario 

Figure 30 presents the trends in projected maximum temperature based on CSIRO projections 

under RCP4.5 for Homabay, Kisii, Migori and Nyamira counties. 
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Figure 30: Trends in projected maximum temperatures under RCP 4.5 emission scenario for 

Homabay, Kisii, Migori and Nyamira. 

Annual maximum temperatures are projected to have increased trends based on CSIRO model 

projections under RCP4.5 emission scenario. This implies increasing temperatures in 

Homabay, Kisii, Migori and Nyamira counties. The increase in maximum temperatures is 
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expected to accelerate evapotranspiration hence reducing the amount of moisture needed for 

maize production. 

Figure 31 presents the shifts in the projected annual maximum temperature for Homabay, Kisii, 

Migori and Nyamira counties under RCP4.5 emission scenario. 

 

 

Figure 31: Shifts in projected annual maximum temperature under RCP4.5 for Homabay, Kisii, 

Migori and Nyamira. 
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All the study counties depicted an upward shift in the mean projected annual maximum 

temperatures based on CSIRO model projections under RCP4.5 emission scenario thus 

implying increased vulnerability of smallholder farming systems. 

Table 13 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in 

projected mean annual and seasonal Maximum Temperature under RCP 4.5 Emission Scenario 

for Homabay, Kisii, Migori and Nyamira counties. 

Table 13: Characteristics of Projected Maximum Temperature under RCP 4.5 Emission 

Scenario for Homabay, Kisii, Migori and Nyamira. 

Station  Season 

Mean 

Tmax(°C) Score 

p- value (MK 

test)  

p- value  

(Pettit’s 

Test) 

Sens Slope 

Value 

Homa Bay 

  

  

MAM 32.2 117 0.0385 0.0314 0.0507 

JJA  31.7 251 0.0000 0.0001 0.0563 

OND  32.8 -97 0.0868 0.1284 -0.0269 

Annual 32.4 167 0.0031 0.0528 0.0306 

Kisii 

  

  

MAM 28.6 137 0.0153 0.0314 0.0486 

JJA  27.6 247 0.0000 0.0002 0.0486 

OND  28.9 -63 0.2687 0.1954 -0.0172 

Annual 28.5 183 0.0012 0.0558 0.0334 

Migori 

  

  

MAM 31.1 111 0.0497 0.0952 0.0446 

JJA  30.5 253 0.0000 0.0001 0.0566 

OND  31.9 -97 0.0868 0.0904 -0.0362 

Annual 31.3 153 0.0067 0.1107 0.0279 

Nyamira 

  

  

  

MAM 27.4 111 0.0497 0.0623 0.0487 

JJA  26.1 247 0.0000 0.0002 0.0589 

OND  27.5 -67 0.2390 0.2644 -0.0214 

Annual 27.2 173 0.0022 0.0773 0.0333 

 

Maximum temperatures are projected to increase in MAM and JJA seasons and also annually 

in all the study counties at rates of between 0.02790C/year and 0.05890C/year based on CSIRO 

model projections under RCP4.5 emission scenario. On the contrary, maximum temperatures 

are projected to decrease in all the study counties during OND season at rates of between -

0.01720C/year and -0.03620C/year. The decrease in maximum temperature during the OND 

season is expected to enhance retention of soil moisture, hence enhancing maize growth and 

development. The trends and shifts in MAM and JJA maximum temperatures for Homabay 
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and Kisii counties were statistically significant based on the p-values of the Man-Kendall and 

Pettit’s tests statistics that were less than the significance value of 0.05.  

All the study counties depicted statistically significant trends in their MAM, JJA and annual 

maximum temperatures, given that the p-values of the Man-Kendall test were less than the 

significance level of 0.05. Migori and Nyamira counties had statistically significant trends and 

shifts in maximum temperatures during JJA season, based on their smaller p-values of the Man-

Kendall and Pettit’s tests compared to the significance level of 0.05. During the OND season, 

all the study counties had statistically insignificant trends and shifts in the mean maximum 

temperatures. 
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4.6 Projected Rainfall based on RCP4.5 Emission Scenario 

Figure 32 presents the trends in projected annual rainfall based on CNRM model projections 

under RCP4.5 emission scenario for Homabay, Kisii, Migori and Nyamira counties. 

  

  

 

Figure 32:Trends in projected annual rainfall under RCP4.5 for Homabay, Kisii, Migori and 

Nyamira. 

Homabay, Kisii and Migori counties depicted decreasing trends in the projected annual rainfall 

based on CNRM model projections under RCP4.5 emission scenario, implying declining 
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annual rainfall. On the contrary, Nyamira county exhibited a rising trend in projected annual 

rainfall. Decreasing rainfall in Homabay, Kisii and Migori counties imply a decrease in soil 

moisture which in turn negatively affects smallholder maize farming. On the other hand, 

increasing annual rainfall in Nyamira county will enhance prospects for maize farming. 

Figure 33 presents the shifts in projected annual rainfall based on CNRM model under RCP4.5 

for Homabay, Kisii, Migori and Nyamira Counties. 

 

 
Figure 33: Shifts in projected annual rainfall under RCP4.5 for Homabay, Kisii, Migori and 

Nyamira 
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Homabay, Kisii and Migori counties exhibited downward shifts in projected annual rainfall 

under RCP4.5 emission scenario. Nyamira depicted an upward mean shift in projected annual 

rainfall.  

Table 14 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in 

projected mean total annual and seasonal rainfall under RCP4.5 for Homabay, Kisii, Migori 

and Nyamira counties. 

Table 14: Characteristics of projected rainfall under RCP4.5 for Homabay, Kisii, Migori and 

Nyamira. 

Station  

Season Mean 

Rainfall 

(mm) 

Score p- value 

(MK test)  

p- value  

(Pettit’s 

Test) 

Sens Slope 

Value 

Homa Bay 

  

  

MAM 422.4 -57 0.318 0.505 -2.3 

JJA  203.3 85 0.134 0.311 3.7 

OND  200.0 18 0.762 1.093 0.3 

Annual 1132.2 6 0.929 1.466 0.8 

Kisii 

  

  

MAM 581.0 -89 0.116 0.081 -5.7 

JJA  292.5 93 0.101 0.214 5.2 

OND  407.8 10 0.872 1.019 0.4 

Annual 1665.5 -14 0.817 1.319 -1.2 

Migori 

  

  

MAM 388.4 -153 0.007 0.019 -6.0 

JJA  161.3 95 0.094 0.243 3.4 

OND  310.3 -18 0.762 0.559 0.7 

Annual 1184.4 -64 0.261 0.378 -4.3 

Nyamira 

  

  

MAM 562.3 -95 0.094 0.056 -4.2 

JJA  323.8 121 0.032 0.195 6.5 

OND  329.7 70 0.218 0.254 1.8 

Annual 1606.9 14 0.817 1.044 1.6 

 

All the study stations are projected to experience decreasing rainfall during MAM season at 

rates of between -2.3mm/year and -6mm/year. Decreasing rainfall amounts during the main 

growing season (MAM) will exacerbate the sensitivity of maize production to the adverse 

impacts of climate change within the study counties. The trends and shifts in the projected 
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MAM rainfall for Migori are statistically significant given that the p-values of Man-Kendall 

and Pettit’s tests statistics that are less than the significance level of 0.05. 

However, the decreasing trends and shifts in the projected JJA, OND and annual rainfall are 

not statistically significant based on the p-values of Man-Kendall and Pettit’s tests statistics 

that are larger than the significance level of 0.05. This implies that the decline in rainfall in the 

JJA and OND season will be inconsequential and insignificant with regard to smallholder 

maize production. 

4.7 Trends and Patterns of Projected Climate Based on RCP 8.5 Emission Scenario 

This section presents the trends and patterns of projected rainfall and temperature based on 

RCP8.5 Emission Scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

4.7.1 Projected Maximum Temperatures based on RCP8.5 emission scenario. 

Figure 34 presents the trends in projected annual maximum temperatures under RCP8.5 

emission scenario for Homabay, Kisii, Migori and Nyamira Counties. 

   

  
Figure 34: Trends in projected annual maximum temperature based on RCP8.5 for Homabay, 

Kisii, Migori and Nyamira 
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All counties exhibited rising trends in annual maximum temperatures based on RCP8.5 

emission scenario, implying rising annual maximum temperatures.  

Figure 35 presents the shifts in forecasted annual maximum temperature under RCP8.5 for 

Homabay, Kisii, Migori and Nyamira Counties. 
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Figure 35: Shifts in projected annual maximum temperature based on RCP8.5 for Homabay, 

Kisii, Migori and Nyamira 

All the study counties depicted an upward shift in the annual maximum temperatures based on 

RCP8.5 emission scenario.  

Table 15 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in 

projected mean annual and seasonal maximum temperature based on RCP 8.5 emission 

scenario for Homabay, Kisii, Migori and Nyamira Counties. 
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Table 15: Characteristics of projected maximum temperature based on RCP 8.5 emission 

scenario for Homabay, Kisii, Migori and Nyamira. 

Station  

Season Mean 

Tmax(°C) 

Score p- value 

(MK test)  

p- value 

(Pettit’s test)  

Sens Slope 

Value 

Homa Bay 

  

  

MAM 32.2 103 0.0688 0.0952 0.0409 

JJA  31.9 275 0.0007 0.0003 0.0585 

OND  32.9 99 0.0804 0.1053 0.0447 

Annual 32.6 219 0.0001 0.0026 0.0395 

Kisii 

  

  

MAM 28.5 117 0.0385 0.0658 0.0431 

JJA  27.7 293 0.0000 0.0002 0.0678 

OND  29.0 81 0.1535 0.1284 0.0400 

Annual 28.7 197 0.0005 0.0062 0.0395 

Migori 

  

  

MAM 31.0 95 0.0935 0.1347 0.0410 

JJA  30.6 281 0.0000 0.0001 0.0607 

OND  31.9 95 0.0935 0.1284 0.0433 

Annual 31.4 193 0.0006 0.0053 0.0375 

Nyamira 

  

  

MAM 27.3 101 0.0744 0.0658 0.0435 

JJA  26.2 293 0.0000 0.0002 0.0648 

OND  27.6 93 0.1007 0.1053 0.0471 

Annual 27.3 213 0.0002 0.0024 0.0395 

 

 



92 

 

Under RCP 8.5 emission scenario, maximum temperatures is projected to increase in all the 

seasons for all the study counties at rates between 0.03750C/year and 0.06780C/year. The 

increasing trends and upward shifts in the annual and JJA maximum temperatures were 

statistically significant, given that the p-values of Man-Kendall and Pettit’s tests statistics were 

less than the significance level of 0.05. The projected increase in maximum temperature will 

exacerbate water stress, hence increase sensitivity of maize production within the study 

counties to adverse changes in climate. Consequently, smallholder maize production is 

expected to decline, since the rise in temperature will negatively impact maize production by 

increasing water stress, hence reducing biomass production, and eventually reduce maize 

yields. 

 

4.7.2 Projected Minimum Temperatures based on RCP8.5 emission scenario. 

Figure 36 presents the trends in the forecasted annual minimum temperature under RCP8.5 for 

Homabay, Kisii, Migori and Nyamira Counties. 
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Figure 36: Trends in projected annual minimum temperature based on RCP8.5 emission 

scenario for Homabay, Kisii, Migori and Nyamira. 

All the study counties depicted increasing trends in the forecasted annual minimum 

temperature under RCP8.5 emission scenario, signifying rising minimum temperatures. Figure 

37 presents the shifts in the projected annual minimum temperatures based on RCP8.5 for 

Homabay, Kisii, Migori and Nyamira Counties, 
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Figure 37: Shifts in projected minimum temperatures based on RCP8.5 for Homabay, Kisii, 

Migori and Nyamira. 

Under RCP8.5 emission scenario, all the study counties will experience an upward mean shift 

in the projected minimum temperature.  
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Table 16 presents the Mann-Kendall test statistics and Sen’s slope values for the trends in 

projected mean annual and seasonal minimum temperature based on RCP8.5 emission 

scenarios for Homabay, Kisii, Migori and Nyamira Counties. 

Table 16: Characteristics of projected minimum temperature based on RCP8.5 emission 

scenario for Homabay, Kisii, Migori and Nyamira 

Station  

Season Mean 

Tmin(°C) 

Score p- value (MK 

test)  

p- value  

(Pettit’s 

Test) 

Sens Slope 

Value 

Homa Bay 

  

  

MAM 27.0 189 0.0008 0.0100 0.0496 

JJA  26.5 253 0.0000 0.0006 0.0711 

OND  27.2 205 0.0003 0.0016 0.0536 

Annual 27.0 285 0.0000 0.0001 0.0575 

Kisii 

  

  

MAM 18.8 197 0.0005 0.0107 0.0459 

JJA  17.7 275 0.0000 0.0005 0.0736 

OND  18.5 186 0.0010 0.0024 0.0432 

Annual 18.4 275 0.0000 0.0003 0.0504 

Migori 

  

  

MAM 21.6 163 0.0038 0.0231 0.0437 

JJA  20.6 235 0.0000 0.0007 0.0670 

OND  21.8 175 0.0019 0.0046 0.0544 

Annual 21.5 263 0.0000 0.0002 0.0522 

Nyamira 

  

  

MAM 17.8 201 0.0004 0.0071 0.0514 

JJA  16.3 275 0.0000 0.0005 0.0697 

OND  17.2 199 0.0004 0.0010 0.0566 

Annual 17.1 273 0.0000 0.0002 0.0570 
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Under RCP8.5 emission scenario, minimum temperatures will increase in all seasons across 

the study counties at rates of between 0.04320C/year and 0.07360C/year. JJA season will 

experience the highest rates of increase in minimum temperature for all the study counties at 

rates of between 0.06700C/year and 0.07320C/year. The increasing trends and upward shifts in 

the projected minimum temperatures in all the seasons are statistically significant based on the 

smaller p-values of Man-Kendall and Pettit’s tests compared to the significance level of 0.05. 

The increase in minimum temperatures will increase the daily average temperatures, hence 

reducing prospects for smallholder maize production in all the study counties. 
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4.7.3 Projected Rainfall under RCP 8.5 Emission Scenario 

Figure 38 presents trends in projected annual total rainfall under RCP 8.5 emission scenario 

for Homabay, Kisii, Migori and Nyamira Counties. 

 

 
Figure 38: Trends in annual total rainfall based on RCP8.5 for Homabay, Kisii, Migori and 

Nyamira. 
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Under RCP8.5 emission scenario, the projected annual total rainfall exhibit decreasing trends 

for all the study Counties. Figure 39 presents the shifts in the projected annual total rainfall 

under RCP8.5 emission scenario. 

 

 
Figure 39: Shifts in annual total rainfall based on RCP8.5 for Homabay, Kisii, Migori and 

Nyamira. 
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Homabay, Kisii, Migori and Nyamira exhibit a downward shift in annual total rainfall under 

RCP8.5 emission scenario. Table 17 presents the Mann-Kendall test statistics and Sen’s slope 

values for the trends in projected mean total annual and seasonal rainfall based on RCP 8.5 

emission scenario for Homabay, Kisii, Migori and Nyamira Counties. 

Table 17: Characteristics of projected rainfall based on RCP 8.5 emission scenario for 

Homabay, Kisii, Migori and Nyamira. 

Station  

Season Mean 

Rainfall 

(mm) 

Score p- value 

(MK test)  

p- value 

(P test) 

Sens Slope 

Value 

Homa Bay 

  

  

MAM 413.1 43 0.454 1.044 1.6 

JJA  185.7 -21 0.721 1.044 -0.4 

OND  310.2 -35 0.544 0.578 -1.5 

Annual 1084.579 -65 0.3 0.423 -4.2 

Kisii 

  

  

MAM 573.9 -25 0.669 0.740 -1.5 

JJA  320.9 79 0.164 0.740 3.4 

OND  498.1 27 0.643 0.378 1.1 

Annual 1679.3 -15 0.803 -1.191 -1.2 

Migori 

  

  

MAM 444.1 5 0.943 0.676 0.2 

JJA  167.2187 57 0.3 0.676 1.7 

OND  432.0 -31 0.592 0.899 -1.2 

Annual 1238.3 -45 0.432 0.636 -3.5 

Nyamira 

  

  

  

MAM 537.1 41 0.475 1.168 1.2 

JJA  319.1 31 0.592 1.168 1.4 

OND  469.8 5 0.943 1.319 0.3 

Annual 1557.3 -9 0.887 0.852 -0.2 
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Homabay, Migori and Nyamira counties depicted increasing trends in MAM total rainfall. 

However, Nyamira and Kisii Counties exhibited increasing trends in JJA and OND rainfall. 

The observed trends and mean shifts in rainfall are statistically insignificant, given that the p-

values of Man-Kendall and Pettit’s tests statistics are greater than the significance level of 0.05.  

Increasing rainfall during MAM and OND seasons will increase the prospects for maize 

production in the affected Counties. 

4.8 Comparison between Baseline and Projected Climates  

This section presents a comparison between the baseline and projected climates under both 

RCP 4.5 and RCP 8.5 emission scenarios. 

4.8.1 Maximum Temperature 

Table 18 presents the change in maximum temperature from the baseline level under RCP 4.5 

and RCP 8.5 emission scenarios for Homabay, Kisii, Migori and Nyamira Counties. 
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Table 18: Comparison between the baseline and future maximum temperatures due to climate 

change. 

Station  Season Baseline RCP 4.5 RCP8.5 

 Change 

RCP4.5 - 

Baseline 

RCP8.5 - 

Baseline 

Kisii MAM 27.6 28.5 28.6 0.9 1 

  JJA  25.8 27.6 27.7 1.8 1.9 

  OND  27.7 28.9 29.0 1.2 1.3 

  Annual 27.3 28.5 28.7 1.2 1.4 

Nyamira MAM 26.4 27.4 27.3 1 0.9 

  JJA  24.4 26.1 26.2 1.7 1.8 

  OND  26.3 27.5 27.6 1.2 1.3 

  Annual 26.0 27.2 27.3 1.2 1.3 

Migori MAM 30.0 31.1 31.0 1.1 1 

  JJA  28.8 30.5 30.6 1.7 1.8 

  OND  30.7 31.9 31.9 1.2 1.2 

  Annual 30.1 31.3 31.4 1.2 1.3 

Homa Bay MAM 31.2 32.2 32.2 1 1 

  JJA  30.1 31.7 31.9 1.6 1.8 

  OND  31.6 32.8 32.9 1.2 1.3 

  Annual 31.2 32.4 32.6 1.2 1.4 
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Maximum temperatures are projected to increase in all seasons under both RCP 4.5 and RCP 

8.5 emission scenarios across the study counties. The rise in maximum temperature under RCP 

8.5 emission scenario will be greater compared to RCP 4.5. The JJA season will experience the 

highest change in maximum temperature of between 1.60C and 1.90C by the year 2051, 

compared to the other seasons for all the study counties under RCP 4.5 and RCP 8.5 emission 

scenarios. Maximum temperatures will rise by 0.90C and 1.90C by the year 2051 under RCP 

4.5 and RCP 8.5 respectively. Increasing temperatures will negatively affect the soil-water 

balance, with severe impacts on maize crop growth, development and productivity due to the 

water scarcity caused by the associated high evapotranspiration rates. Crops will likely face 

increased water/moisture stress during their growth and development phases. These will 

exacerbate the vulnerability of the maize production systems.  

4.8.2 Rainfall 

Table 19 compares baseline rainfall and projected rainfall under RCP4.5 and RCP 8.5 emission 

scenarios for Homabay, Kisii, Migori and Nyamira Counties. 
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Table 19: Comparison between baseline rainfall and projected rainfall based on RCP 4.5 and 

RCP 8.5 emission scenarios. 

Station  Season Baseline RCP 4.5 RCP8.5 

 Change 

RCP4.5 - 

Baseline 

RCP8.5 - 

Baseline 

Kisii MAM 687.3 581.0 413.1 -106.3 -274.2 

  JJA  387.4 292.5 185.7 -94.9 -201.7 

  OND  504.8 407.8 310.2 -97.0 -194.5 

  Annual 1921.0 1665.5 1584.6 -255.5 -336.4 

Nyamira MAM 662.7 562.3 537.1 -100.4 -125.6 

  JJA  387.6 323.8 319.1 -63.7 -68.5 

  OND  499.4 329.7 469.8 -169.7 -29.7 

  Annual 1859.8 1606.9 1557.3 -253.0 -302.6 

Migori MAM 560.1 388.4 444.1 -171.7 -116.0 

  JJA  188.2 161.3 167.2 -26.9 -21.0 

  OND  401.0 310.3 302.0 -90.7 -99.0 

  Annual 1383.9 1184.4 1238.3 -199.6 -145.7 

Homa Bay MAM 519.0 422.4 413.1 -96.6 -105.9 

  JJA  211.6 203.3 185.7 -8.3 -25.9 

  OND  350.7 200.0 310.2 -150.7 -40.4 

  Annual 1326.0 1132.2 1084.6 -193.8 -241.4 
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Rainfall will decline in all seasons across all the counties. Under RCP 4.5 emission scenario, 

rainfall will change by between -8.3mm and -255.5mm by the year 2051. The decline in rainfall 

under RCP 8.5 emission scenario will be greater compared to RCP 4.5. Under RCP 8.5 

emission scenario, rainfall will change by between -21mm and -336.4mm by 2051. The 

decrease in rainfall will be greater on annual basis and during the MAM season. Decreased 

rainfall during MAM season will increase the sensitivity of maize production to adverse climate 

change impacts, thus decreasing the prospects for maize crop production during this season. 

4.8.3 Minimum Temperature 

Table 20 compares the baseline minimum temperature and the projected minimum temperature 

under RCPs 4.5 and 8.5 emission scenarios for Homabay, Kisii, Migori and Nyamira Counties. 
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Table 20: Comparison between baseline minimum temperature and projected minimum 

temperature based on RCP 4.5 and RCP 8.5 emission scenarios. 

Station  Season Baseline RCP 4.5 RCP8.5 

 Change 

RCP4.5 - 

Baseline 

RCP8.5 - 

Baseline 

Kisii MAM 17.4 18.8 18.9 1.4 1.5 

  JJA  15.6 17.5 17.7 1.9 2.0 

  OND  17.3 18.3 18.5 1.0 1.2 

  Annual 16.8 18.2 18.4 1.4 1.6 

Nyamira MAM 16.2 17.8 17.8 1.6 1.6 

  JJA  14.3 16.1 16.3 1.8 2.1 

  OND  15.8 16.9 17.2 1.1 1.4 

  Annual 15.4 16.9 17.1 1.5 1.7 

Migori MAM 20.2 21.6 21.7 1.4 1.5 

  JJA  18.5 20.3 20.6 1.8 2.1 

  OND  20.7 21.6 21.8 0.9 1.1 

  Annual 19.9 21.3 21.5 1.4 1.6 

Homa Bay MAM 25.5 26.9 27.0 1.5 1.5 

  JJA  24.3 26.2 26.5 1.9 2.2 

  OND  25.8 26.9 27.2 1.1 1.3 

  Annual 25.3 26.8 27.0 1.5 1.7 
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Under both RCPs 4.5 and 8.5 emission scenarios, projected minimum temperatures will rise in 

all the seasons by between 0.90C and 2.20C by the year 2051 across the study counties. JJA 

season will experience the greatest increase in minimum temperature of between 1.80C and 

2.20C by 2051. OND season will experience the least increase in minimum temperature of 

between 0.90C and 1.40C by 2051. The change in minimum temperature will be higher under 

RCP 8.5 emission scenario compared to RCP 4.5 emission scenario. This will be the case 

because of the low “business as usual (BAU)” mitigation pathways under RCP 8.5 emission 

scenario.to abate global warming. Under RCP 8.5 emission scenario, minimum temperatures 

will rise by 1.10C to 2.20C by 2051. Increasing minimum temperatures during MAM and OND 

seasons will present favourable conditions for optimum maize crop production, with optimum 

rainfall conditions.  

4.9 Relationship between Annual Maize Yields and Observed Climate variables 

Table 21 presents the spearman’s correlation coefficients between observed study climatic 

parameters and maize yields during the maize seedling, vegetative, flowering and fertilization, 

and grain filling and maturation phases in Homabay, Kisii, Migori and Nyamira Counties 

during the MAM rainfall season.  
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Table 21:  Spearman's Correlation Coefficients for the MAM Season 

County Climatic parameter 

Seedling 

Growth 

P-

value 

Vegetative 

Growth 

P-

value 

Flowering & 

Fertilization 

P-

value 

Grain 

filling & 

Maturity 

P-

value 

Homabay 

Maximum 

temperature/Yield -0.07 0.7 0.03 0.89 -0.19 0.32 0.07 0.73 

 

Minimum 

temperature/Yield 0.09 0.64 0.08 0.66 -0.22 0.24 0.11 0.59 

 

Rainfall/Yield 0.01 0.97 0.08 0.65 0.06 0.76 -0.18 0.32 

Kisii 

Maximum temperature 

/Yield -0.30 0.11 -0.28 0.14 -0.09 0.65 -0.32 0.09 

 

Minimum 

temperature/Yield 0.11 0.56 0.01 0.96 -0.03 0.87 0.06 0.74 

 

Rainfall/Yield 0.30 0.10 0.19 0.30 0.33 0.07 0.14 0.44 

Migori 

Maximum temperature 

/Yield -0.18 0.36 -0.04 0.85 -0.33 0.08 -0.39 0.04 

 

Minimum 

temperature/Yield 0.10 0.60 0.32 0.09 -0.22 0.26 -0.12 0.52 

 

Rainfall/Yield 0.08 0.66 0.03 0.87 0.04 0.83 0.09 0.64 

Nyamira 

Maximum temperature 

/Yield -0.28 0.14 -0.12 0.54 -0.12 0.54 -0.09 0.66 

 

Minimum 

temperature/Yield -0.01 0.94 0.06 0.75 -0.05 0.79 -0.12 0.54 

 

Rainfall/Yield 0.30 0.11 0.00 0.98 -0.17 0.37 0.01 0.94 

 

Maximum temperature during seedling stage exerted negative but insignificant influence on 

maize yields across the study counties at the p=0.05 significance level. Maximum temperature 

during the vegetative stage resulted into decreased maize yields in all Counties except in 

Homabay, where an increase though insignificant was found. Maximum temperature reduces 
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the rate at which maize nodes and leaves appear, hence reducing maize yields. During 

flowering and fertilization stage, maximum temperature depressed maize yields in all the study 

counties, although the associated correlation coefficients were statistically insignificant at the 

P=0.05 level. This is because high temperatures during the flowering and fertilization stage 

reduce the viability of maize pollen grains, hence reducing the potential maize yields. During 

the grain filling and maturity stage, maximum temperature depressed maize yields in all 

Counties, except in Homa Bay County where an increase, though statistically insignificant was 

noted.  

There was a statistically significant negative correlation coefficient (-0.39) between maximum 

temperature and maize yields during grain filling and maturity stage in Migori County. There 

was a statistically significant positive correlation coefficient (0.32) between minimum 

temperature and maize yield during vegetative growth, and a statistically significant negative 

correlation between minimum temperature and maize yield during flowering and fertilization 

stage (-0.22) in Migori County. The most statistically significant correlation between rainfall 

and maize yields was realized during flowering and fertilization (0.33) and seedling growth 

(0.30) in Kisii County. The most significant correlation coefficient in Nyamira County was 

between maximum temperature and maize yields during seedling growth, which resulted into 

poor sprouting of maize seedlings hence reducing maize yields. 

4.10 Vulnerability of Small-holder Maize farming to impacts of climate change 

All the indices that were used to assess vulnerability of small-holder maize farming in each 

County are presented in this section. Negative indices showed a decline in the vulnerability 

components. Conversely, positive indices indicated an increase in the vulnerability 

components.  
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4.10.1 Sensitivity Indices 

Table 22 presents the sensitivity indices for Migori, Homabay, Nyamira and Kisii counties. 

Table 22: Sensitivity Indices 

County Sensitivity Index 

Migori  -0.55 

Homabay  0.34 

Nyamira 1.22 

Kisii 1.42 

 

Kisii County had the highest sensitivity index (1.42) whereas Migori County recorded the least 

sensitivity (-0.55), with Homa Bay and Nyamira Counties having sensitivity indices of 0.34 

and 1.22 respectively.   

The high sensitivity recorded in Kisii County is attributed to the County’s high population 

density of 958 people/km2 compared to Migori County with a population density of 427 

people/km2. In addition, Kisii County had the highest percentage of farmers (100%) practising 

rain-fed maize farming and the highest rates of poverty (7.5%). Conversely, Migori County 

with the least sensitivity had the lowest poverty rate (3.6%) and 98.7% of its farmers practicing 

rain-fed maize farming compared to Nyamira (99.8%) and Homa Bay (99.1%).  These 

observations agree with those of Yoo et al., (2011), who concur that areas with high population 

densities tend to show high levels of sensitivity to fluctuations in climate. Therefore, areas with 

high population densities dependent on rain-fed socioeconomic activities such as Kisii County 

will be more vulnerable to the adverse impacts of climate change.  

Since small-holder maize farming in Kisii County is purely rain-fed, maize production in this 

County is therefore highly sensitive to climate change impacts. Conversely, Migori County 

experienced the least sensitivity owing to its least proportion of farmers (98.7%) depending on 

rain fed maize production, and the highest percentage of farmers practicing irrigated maize 

farming (1.3%). Generally, maize farming is extremely sensitive to fluctuations in climate, thus 
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fluctuations in climate variables, particularly temperature and rainfall, affect maize production 

(Lobell et al., 2011).  

Figure 40 presents the sensitivity map for the area of study.  

 

 
Figure 40: sensitivity index map for the study Counties. 

The map categorizes Kisii and Nyamira as Counties in Southern Nyanza region characterized 

by very high sensitivity to the adverse changes and impacts in climate. This is largely 

influenced by high population densities in the two Counties and highest dependency on rain 

fed socioeconomic activities. On the other hand, the sensitivity in Homa Bay and Migori 

Counties were classified as moderate and very low respectively owing to their low population 

densities, lower rates of poverty as well as lower dependency on rain fed socioeconomic 

activities.  
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4.10.2 Exposure Indices 

The exposure indices for the study Counties including frequency of occurrence of dominant 

extreme climate/hazardous events are presented in Table 23. Negative exposure indices 

indicated a decrease in exposure levels whereas positive exposure indices implied an increase 

in exposure levels. 

Table 23: Exposure Indices 

County Exposure Index Dominant climate hazards 

Drought Floods 

Nyamira -1.56 3 10 

Kisii -1.08 4 10 

Homabay 0.6 5 6 

Migori 2.25 6 11 

 

Migori County presented the highest exposure index while Nyamira County exhibited the least 

exposure index of -1.56, followed by Kisii (-1.08) and Homa Bay (0.60). The least exposure 

index in Nyamira County is closely tied to its low frequency of droughts (3) and floods (10). 

The highest frequency of floods and droughts in Migori County accounted largely for its 

highest exposure index. The exposure indices generally reflect how the various Counties are 

exposed to hazardous climate variables particularly extreme temperature and rainfall events 

that manifest in frost and heatwaves, and droughts and floods for temperature and rainfall 

respectively. In as much as Homabay County had a lower number of floods (6) compared to 

Nyamira (10), it still had a higher rate of change in Maximum temperature of 0.016oC/year 

compared to the change in Maximum temperature of 0.015oC/year in Nyamira County. This 

warming is likely to have exacerbated drought conditions due to enhanced evapotranspiration 

rates, thus increased exposure of the County to drought conditions. Conversely, Migori County 

had the highest exposure index of 2.25, arising from the highest observed number of floods 

(11) and droughts (6) associated with the highest rate of change in both maximum temperature 

(0.0170C/year) and minimum temperature (0.0180C/year).   
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Figure 41 presents the exposure index map for the study Counties. 

 
Figure 41: Exposure Index Map 

The results in Figure 41 classified the exposure in Migori County as very high, whereas Homa 

Bay County was categorized as moderately exposed. Therefore, Migori County stands a greater 

risk of exposure to extreme climate events, particularly droughts and floods. Conversely, 

exposure in Kisii and Nyamira County was classified as very low, implying minimal exposure 

to adverse climate conditions.  

4.10.3 Adaptive Capacity Indices  

Table 24 presents the adaptive capacity indices for each of the study Counties. Negative 

adaptive capacity indices indicate lower adaptive capacity levels whereas positive adaptive 

capacity indices implies higher adaptive capacity levels. 

Table 24: Adaptive Capacity Indices 

County Adaptive Capacity Index 

Homa Bay -0.5 

Migori -0.46 

Kisii  1.21 

Nyamira 1.89 
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Nyamira County exhibited the highest adaptive capacity of 1.89, followed by Kisii County 

(1.21), Migori County (-0.46) and finally Homa Bay County with the least adaptive capacity (-

0.50). Across the study Counties, small-holder maize farming in Nyamira County is better 

adapted to fluctuations in climate because of farmers’ adoption of improved technologies and 

farming practices involving use of improved seeds, chemical fertilizers, and pesticides. The 

percentage of small-holder maize farmers who use improved maize seeds (75%) and chemical 

fertilizers (96.1%) was highest in Nyamira County compared to the rest of the study Counties. 

These technologies increase maize yields and also help in managing crop pests and diseases, 

and hence strengthening the adaptive capacity of the maize production (Fadina, and 

Barjolle,2018). However, Nyamira County had the lowest quantity of maize produced since it 

had the lowest area under maize cultivation relative to the rest of the Counties.  

Nonetheless, Nyamira County had the highest percentage of small-holder farmers (62.8%) who 

operated saving bank accounts, thus enabling them to easily access agricultural financing. This 

translates into higher capacity of these farmers to respond to negative impacts of climate 

change. In addition, increased savings and access to agricultural financing generally enhances 

the ability of smallholder farmers to access and purchase better seed varieties, fertilizers and 

other agrochemicals, in addition to improving their livelihoods.  

Furthermore, markets in Nyamira County are also situated closer to the farmers (1.82km) 

compared to other Counties in the study area such as Kisii (2.14km), Migori (2.32), and Homa 

Bay (2.38km). This implies that farmers in Nyamira travel the shortest distance to access farm 

inputs including seeds and fertilizers, as well as to deliver their farm produce to the market. 

Moreover, shorter distances to markets allow farmers to conveniently sell their farm produce 

by cutting down on transportation costs, thereby boosting their revenue (Hassan and 

Nhemachena, 2008).  
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Figure 42 presents the adaptive capacity index map for the study Counties. 

 
Figure 42: Adaptive Capacity Index Map 

The adaptive capacity in Nyamira County was categorized as very high while that of Kisii 

County was categorized as high.  As such, smallholder maize farming in Nyamira and Kisii 

Counties is well adapted to withstand the adverse impacts of changes in climate. Conversely, 

Migori and Homa Bay Counties were classified as having very low adaptive capacities thereby 

increasing their vulnerability. 
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4.10.4 Vulnerability Index  

Table 25 presents the vulnerability indices of the study counties. 

Table 25: Vulnerability Indices   

County Vulnerability Index 

Nyamira -0.74 

Kisii -0.29 

Homa Bay 0.48 

Migori 0.72 

 

Migori County recorded the highest vulnerability index of 0.72 followed by Homa Bay County 

(0.48), Kisii County (-0.29) and Nyamira County (-0.74). These results indicate that Counties 

that generally had low adaptive capacities and high exposure levels such as Migori and Homa 

Bay tended to exhibit higher vulnerability levels than those that had low exposures and higher 

adaptive capacities such as Nyamira and Kisii Counties.  

Counties that had low adaptive capacities such as Homa Bay (-0.5) and Migori (-0.46) recorded 

the highest values of vulnerability index and hence were generally more vulnerable. Therefore, 

small-holder maize farmers in these Counties are highly prone to suffer from unexpected 

climate change related shocks such as extremes of weather and climate, specifically floods and 

droughts, long-term and short-term shifts in mean annual rainfall and temperature, as well as 

seasonal variations in the amounts of rainfall received (Challinor et al., 2007).  

Although Migori County had the least sensitivity score of -0.55, it exhibited the highest 

vulnerability index owing to its highest levels of exposure and lowest adaptive capacity that 

compounded to give rise to this effect. Counties such as Nyamira and Kisii that had higher 

sensitivity indices also exhibited higher adaptive capacity indices, signifying high levels of 

preparedness for impending hazards and hence lowering their vulnerability to adverse climate 

change impacts. Kisii and Nyamira Counties had higher sensitivity indices of 1.42 and 1.22 

respectively, and high adaptive capacity indices of 1.21 (Kisii) and 1.89 (Nyamira). Thus, 

exposure and sensitivity are two closely related characteristics of any given system that are 

nearly inseparable (Smit and Wandel, 2006).  
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This study, therefore, reveals that small-holder maize farming is most vulnerable to adverse 

climate change impacts in Migori County (0.72) and least vulnerable in Nyamira County (-

0.74) due to the relative differences in the degree of warming of the counties that gave rise to 

different levels of drying arising from enhanced evapotranspiration rates. Migori County 

recorded the highest rate of increase of maximum temperature (0.0170c/year) and minimum 

temperature (0.0180c/year). Consequently, the highest exposure index in Migori County 

implies that small-holder maize farming in Migori stands a greater risk of being adversely 

affected by climate change through enhanced water scarcity/stress. This is consistent with 

various studies that confirm that maize farming is highly fragile to changes in climate variables, 

particularly temperature (Muchow et al., 1990; Liu et al., 2008; Lobell et al., 2011) 
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4.11 Land Use and Land Cover change for the study area  

The Land Use and Land Cover change for the classification images for 1986, 2001, and 2018 

are presented in Figure 43. 

 

Figure 43:  LULC for the years 1986, 2001 and 2018 for the area of study 

 

It is evident in this study that the increase in population coupled with the farming-based 

livelihood and the demand for produce in response to the needs of the growing population have 

reduced the area under natural vegetation (Forests, wooded grassland and open grassland) and 

the subsequent increase in built-up areas, and both largescale and small-scale farming. Open 

water surfaces have been decreasing due to the rapid increase in invasive species of Water 

hyacinth (Eichhornia crassipes) in L. Victoria. This has increased the area under wetland 

vegetation in the study Counties.  
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Figure 44 presents the percentage area coverage of each of the LULC class in 1986.  

 

Figure 44: Percentage Area Coverage for each LULC class in 1986 

During the base year (1986), forests were shown to cover 30,003.84 Ha that corresponded to 

only 3% of the total land area. Wooded Grassland constituted 119,326.95 Ha translating into 

11% of the total land cover, while Open Grassland covered 183,707.37 representing 18% of 

total land cover. Largescale Farmlands covered 17,628.48 Ha representing 2%, while Small-

scale Farmland covered 39,8175.30 Ha, representing 38% of total land area. Vegetated 

Wetlands covered 19,825.65 Ha, equivalent to 2% of the land area. Open Water sources 

covered 218,196.00 Ha representing 21%. The built-up Area constituted 19,489.95Ha, 

representing 2% while bare land covered 27,877.50 Ha, representing 2% of the total land area. 
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Figure 45 shows the area coverage for each LULC Class in 2001. 

 

Figure 45: Percentage Area coverage for each LULC Class in 2001 

Due to changing anthropogenic activities, the areas under various LULC in 2001 indicate 

variations in land areas across LULC classes covered. Small-scale farmland experienced a 

drastic increase in the land area covered (471,512.52 Ha) above that of 1986, representing 48% 

of the total land area. The 10% increase is tantamount to 73,337.22 Ha in actual land area 

conversion to smallholder farming. This is in stark contrast to the decrease in forest area over 

the baseline to 19,567.89 (2%) in 2001. This implies that deforestation was done in favor of 

land conversion to arable land use in response to the growing demand of the land resource by 

the rapidly growing population. Alongside forests, acreage under both Wooded Grassland and 

Open Grassland areas experienced a reduction in their land areas in 2001 relative to the same 

areas in 1986. These could have also constituted sources of the additional arable lands in the 

study Counties. However, there were other natural land uses that did not show significant signs 

of either degradation or rehabilitation. For instance, vegetated wetland covered 23,445.63 Ha 

in 2001 compared to 19,825.65 Ha in 1986, signifying positive restoration effort. However, 

despite this increase in vegetated wetland, most likely from management of water hyacinth 

encroachment, the area covered by wetland in both years still remained at 2% of the total land 

area. 
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In 2018, the area coverage for each LULC Class also changed as shown in Figure 46.  

 

Figure 46: Percentage Area Coverage for each LULC class in 2018 

The area under small-scale farmland increased from 471,512.52 Ha (48%) in 2001 to 

511,688.18 Ha (51%) in 2018. This 3% increase in area coverage translated to 40,175.66 Ha 

from 2001 to 2018, and 113,512.88 Ha increase from the original LULC coverage in 1986. 

Moreover, the area under small-scale farmland increased by over half the total land area in the 

area standing at 51%. Conversely, the area under forest and open grassland decreased in 2018. 

Forest area coverage decreased by 1% of its area to stand at 12,679.11 Ha compared to 

19,567.89 Ha in 2001. On the other hand, the proportion of open grassland decreased from 

15% in 2001 to 8% in 2018, representing an equivalent decrease from 151,255.17 Ha in 2001 

to 81,277.83 Ha in 2018. This was the largest reduction in LULC acreage under all classes over 

the years. 

The areas under Wooded Grassland and Bare land exhibited variability in LULC. Both 

experienced a decrease in 2001 and an increase in 2018. These changes are attributed to the 

maize crop farming practices of the study Counties that involved leaving large tracts of land 

fallow in between years to allow for soil fertility regeneration, and also for breaking pest and 

diseases cycles.  
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Open Water surfaces continued to decrease in the same way as between 1986 and 2001. The 

period 2001 to 2018 experienced a 1% decrease in the LULC class that translated to an absolute 

decrease of 22,917.15 Ha. Nevertheless, vegetated wetlands increased by 1% over the same 

period, pointing at continued invasion of water hyacinth in Lake Victoria and other wetland 

areas in the study Counties. 

4.12 Vulnerability Index Map for the Study area 

Figure 47 presents a vulnerability map for the study Counties. 

 

Figure 47: Vulnerability Index Map for study Counties 

Migori and Homa Bay Counties recorded the highest normalized vulnerability indices of 5 and 

4.17 respectively. On the other hand, Kisii County had a normalized index of 1.54 and hence 

was categorized as having low vulnerability, whereas the vulnerability of Nyamira County with 

the lowest normalized index of 0, was categorized as having very low vulnerability among all 

the Counties studied. The vulnerability index map generated herein indicates that Counties that 

have low adaptive capacities coupled with higher levels of exposure to climate hazards tend to 

have very high vulnerability levels with regard to the adverse climate change impacts. 

Similarly, Counties that have high adaptive capacities and lower levels of exposure to climate 

hazards tend to generally have low to very low levels of vulnerability. This is attributed to the 

fact that areas that have high adaptive capacities are better placed in terms of resources and 

technology to respond to the adverse climate change impacts. 
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5 CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This chapter presents major conclusions and recommendations drawn for the key results of this 

study.  

5.2 Conclusion 

All the study Counties experienced significant increasing trends and mean shifts in baseline 

rainfall and temperature. Similarly, all the projections show a general decreasing trend in 

rainfall, with an increasing significant trend in maximum and minimum temperatures. Current 

vulnerability of smallholder maize production in Southern Nyanza is expected to persist, with 

prospects of increasing in the future, owing to the steady increase in annual and seasonal 

minimum and maximum temperatures, and declining rainfall which inadvertently affect soil 

water balance through increased evapotranspiration. 

Maize yields in the study counties of southern Nyanza region are strongly influenced by the 

variability in climate variables (maximum and minimum temperature, and rainfall) observed 

during the various growth stages of the maize crop.  

The vulnerability indices of maize production varied across the study counties and were 

influenced by their levels of exposure, adaptive capacity and sensitivity. Counties that had high 

exposure and sensitivity indices, coupled with lower adaptive capacity indices recorded the 

highest vulnerability indices. In contrast, counties that had higher adaptive capacity indices and 

low exposure indices recorded the lowest vulnerability indices.  

5.3 Recommendations  

Based on the conclusions of this study, the following recommendations are made: 

• The county governments in southern Nyanza region, in collaboration with the national 

government should enact and enforce water harvesting and use policies for irrigated 

agriculture to adapt maize production systems to drought and other water stress related 

impacts associated with climate change, for improved and sustainable crop yields. 

• With the projected decline in annual and seasonal rainfall amounts, and the subsequent 

increase in both maximum and minimum temperatures, there is need for the county 

governments in Southern Nyanza region to invest in research aimed at breeding early 
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maturation, drought tolerant, and efficient water use maize varieties for increased and 

sustainable maize productivity.  

5.4 Suggestions for future work 

• Future vulnerability assessment studies should be cascaded down to household/ farm 

level to capture the differentiated levels of sensitivity, exposure and adaptive capacity 

across the Nyanza region. 

• Future research should address future vulnerability of smallholder maize production, 

taking into consideration socioeconomic, biophysical and climate data in the midterm 

(2022-2051) and long term (2052 to 2100). 
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