
 

UNIVERSITY OF NAIROBI 

 

DEVELOPMENT OF A LOW-COST AUTOMATED MICROCONTROLLER 

BASED WIRELESS GAMMA COLUMN SCANNER PROTOTYPE 

 

 

 

BY 

HENRY KIOKO MUTINDA  

B.Sc. (Hons), Elec. Eng. 

S56/12719/2018 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the 

Degree of Master of Science in Nuclear Science of the University of Nairobi. 

 

© August, 2022 



ii 

 

05-08-2022 

10-08-2022 

DECLARATION 

I declare that this thesis is my original work and has not been submitted elsewhere for 

examination, award of a degree or publication. Where other people’s work or my own 

work has been used, this has properly been acknowledged and referenced in accordance 

with the University of Nairobi’s requirements. 

Henry Kioko Mutinda 

Reg. No.: S56/12719/2018) 

Department of Electrical and Information Engineering 

Faculty of Engineering 

University of Nairobi 

 

Signature        Date …………………………. 

 

This thesis is submitted for examination with our approval as research supervisors: 

   Signature   Date 

Dr. M. I. Kaniu     

Department of Physics  ………………….…  ……………………… 

University of Nairobi 

P.O Box 30197-00100, 

Nairobi, Kenya. 

ikaniu@uonbi.ac.ke 

      

Mr. M. J. Mangala      

Department of Electrical &  …………….…  ……………………… 

Information Engineering 

University of Nairobi 

P.O Box 30197-00100, 

Nairobi, Kenya. 

michael.mangala@uonbi.ac.ke 

12.08.2022

mailto:ikaniu@uonbi.ac.ke
mailto:mgatari@uonbi.ac.ke


iii 

 

DEDICATION 

This thesis is dedicated to my family members who have been my source of 

encouragement and continually supports me financially and spiritually. Special tribute 

also goes to my great friend Henry K. Wambua, for his support, insight and inspiration 

throughout this study. 

  



iv 

 

ACKNOWLEDGEMENT 

I wish to express my sincere gratitude to my research supervisors and friends for their 

support and contribution towards the preparation of this thesis and above all, the almighty 

God. 

Specifically, I thank my supervisors; Dr. Ian Kaniu and Mr. Michael Mangala for their 

invaluable guidance throughout the course of this research studies and for steering my 

interest in the research topic until completion.  

Special thanks to my brothers; Felix and George for their untiring continuous support and 

assistance throughout the study period. 

 

  



v 

 

ABSTRACT 

The aim of this project was to develop and test a microcontroller-based column scanner 

prototype, where data is transmitted wirelessly, stored and displayed on to a handheld 

controller module to show a scan profile of the column in real-time. A laboratory-scale 

scanner prototype was constructed using a wood frame; 1 m length and 0.5 m width and a 

circular acrylic material (diameter 25 cm and radial width 10 cm) that houses a low 

activity source, 114 mCi 
241

Am radiation source (NER-492, S/N: A-377) and Velleman 

K2645 GM detector. The scanner is operated by two 12 VDC geared motors and two-

timing belts to drive the source-detector assembly, in both vertical and horizontal plane, 

along the column frame for preset increment heights of 5-10 cm movements for auto 

counting at the preselected preset time between 1-10s. Current scanning systems are 

limited to only vertical scan movement and cabled. Ultrasonic proximity sensor and 3-

axis accelerometer were used to determine and limit both vertical and horizontal plane 

orientations of source-detector, respectively. The GM detector was connected to a 

microcontroller-based circuit which also controls the movement motors. Four 2.4 GHz 

nRFfl2401 radio modules facilitated wireless communication between the scanner and the 

handheld module within a radius of 100 m. A handheld controller module consisting an 

LCD display screen (3.5” x 2.5”) was used to display the scan configurations and results. 

The software used to run the microcontrollers for both scanners and the handheld module 

was developed using the Arduino IDE, which is an open-source software using C++.  The 

scanner offers the option to operate in both gamma scanning mode and for use in radio 

tracer measurements. In gamma scanning, two modes of operation are possible; automatic 

and manual counting. In radiotracer measurement mode, the detector is maintained in a 

fixed position for counting to assume a typical field radiotracer measurement. Reliability 

and safety features used included: CRC, Limit switch, 3-axis accelerometer and Internal 

watchdog. The model column is an 8” diameter PVC pipe fitted with two 5 cm wide, 6 

mm mild steel rings at 22 cm intervals to represent distillation column and separation 

trays in a typical industrial process setup was tested for faults using the prototype. From 

the scan profile generated in gamma column scanning test, it was possible to locate the 

two separation trays and the simulated malfunction. The obtained results were validated 

through a comparison with the actual physical measurements. For radiotracer experiment, 

the instantaneous introduction and withdrawal of the radioactive source at different time 
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intervals was detected from the profile drawn in real-time display on the LCD screen with 

peaks corresponding to the various time intervals of radioactive source introduction and 

withdrawal. This project has demonstrated the possibility for the adoption of wireless 

control of gamma-based column scanners and wireless data transmissions to increase 

efficiency, minimize personnel exposure through increased operation ranges by 

eliminating cabling, reduced costs of operation, and has the potential to use in the harsh 

industrial environment. However, this prototype is suited only for laboratory 

demonstrations on practical applications of gamma column use in the diagnosis of 

industrial processes.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Industrialization is one of Kenya’s long-term development goals towards the achievement 

of Vision 2030 goals. Currently, the government has identified four areas to invest in, 

branded as ‘The Big Four Agendas’; the manufacturing sector, health, housing and food 

security. The government aims at increasing the GDP share in the manufacturing sector 

from the current 9.2% to 20% by the year 2022. Nevertheless, the potential of application 

of Non-Destructive Nuclear Techniques is not significantly utilized to date (Ngui et al., 

2016).  

The Kenya Government recognizes the role of nuclear science applications as a 

prerequisite for sustainable social and economic development, in general. Nuclear 

applications are widely used in; medicine, manufacturing and industry, agriculture and 

food security, development of water resources, development of energy resources, and in 

research institutions, for various multi-disciplinary studies.  Nuclear technology finds a 

wide range of application in industrial and medical fields; specifically, these include the 

following techniques; Computed Tomography Scan, X-ray radiography, gamma column 

scanning, radiotracer measurements, among others (Kim et al., 2011). 

Gamma scanning technology is usually applied in industries to diagnoses the various 

processes. The method utilizes a radioactive source that emits radiations and a radiation 

detector, which records the density profile. Such industrial processes include; flow 

measurements, process equipment/systems, leakage detection of buried pipelines, 

residence time distributions, isotope hydrology and water resource management, sediment 

transport study, among other uses (Kim et al., 2011). In principle, Gamma column 

scanning is widely employed in the inspection of anomalies involving columns in oil 

refineries and petroleum industries and reactors. These columns may be a tray or packed 

distillation and fractionation towers. In this method, the detector and the sealed source of 

radiation move simultaneously opposite in the same horizontal plane along the column 
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being diagnosed, as shown in Fig.1.1 in which the intensity readouts show the internal 

profile of the column (Froystein et al., 2005).  

 

Figure 1.1: Detector-source arrangement and scan profile (Source: Sanches et al., 2007). 

Analysis of the generated profile through analysis software and comparing it with perfect 

mechanical design can enable one to deduce valuable conclusions about the equipment's 

functionality (Johansen, 2005). Examples include; deformed or displaced separation trays 

and even finer details relating to whether the column is entrained or flooded (Benahmed 

and Alami., 2012). These findings are helpful for process engineers and plant operators 

identify process anomalies, optimize performance, and initiate maintenance operations 

where necessary. Optimized columns are profitable to the company and also yield up to 

standards products. 

The existing gamma scanning systems are made up of a winched system to lower or raise 

the source and detector and a wired communication system to a computer or laptop 

running data logging and analysis software for the recorded radiations (Stoddart, 1979). 

Such systems are manually operated by lowering the source and detector simultaneously 
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with a data logger connected through cabling, which restricts the study to limited 

coverage. In some cases, the environment may be harsh and constrained, thereby 

requiring several assistants to do measurements. This system also requires the person to 

operate within the immediate vicinity, which exposes him/her to the radiations.  

An automated scanning system with wireless data acquisition and control can increase 

efficiency, safety, accuracy, and reliability of data and is easily accessible to the harsh 

environment compared to manual operated systems (Walinjkar et al., 2009). This research 

project aimed at developing a fully automated gamma column scanning system with 

wireless data acquisition and control. This research was motivated by the need for a low 

cost, portable, safe, easy to operate, modular scanner for separation columns with reduced 

cabling and a more flexible and versatile system for radiotracer studies.  

1.2 Statement of the Problem  

The need for online diagnosis of industrial processes is vital for the optimized operation 

of the equipment. The complexity in the design, layout and operation of this process 

equipment necessitates non-destructive testing in real-time validation and investigation of 

the process models. The system currently in use, is cabled in nature. This feature limits it 

to studies in only small coverage. Furthermore, most industrial processes are operated 

under harsh conditions which are hazardous to human health. The current system that 

restricts the researcher close to the vicinity under investigation during study becomes 

unsuitable for long time studies in such circumstances. Radiation safety is highly 

recommended in the handling of radioactive sources. However small it might be, free 

doses should be avoided. The existing system subjects the researchers to long exposure 

time since it is not possible to conduct the investigative studies remotely. Its 

cumbersomeness and manually intensive nature added to the high cost of acquiring the 

equipment proves the existing system to be uneconomical. 

 

1.3 Research Objectives 

1.3.1 Main objective 

This work aimed to design and develop a low-cost microcontroller-based automated 

gamma column scanner head with a wireless data acquisition system. 
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1.3.2 Specific objectives 

(i) To develop a fully automated gamma scanning head system with dual-axis 

movement capabilities; 

(ii) To develop a portable control module with capabilities for data treatment, 

control of the scanning head and detector - source movement. 

(iii) To develop a wireless communication system between the control module and 

the scanner head. 

 

1.4 Justification and Significance of the Study 

Gamma distillation columns are vital in manufacturing industries, especially ones dealing 

with products that require distillation. Regular gamma scanning is required to maintain 

these columns in a good working condition, which helps maintain quality products, reduce 

operational costs, and meet regulatory requirements. Such regulatory requirements are put 

into place to safeguard consumers against bad quality, limit energy consumption and 

safeguard the environment against pollution. Current gamma scanning systems are 

human-intensive, its limited to only one scan line at a time since it can only move 

vertically, simultaneous movement of the source and detector involve several stages of 

scanning which can run into several hours if not days due to need for further analysis 

using computer software. Cabled communication limits the study area, especially in 

radiotracer measurements, while confining the personnel within the vicinity of high 

radiation exposure. There is therefore a need for a microcontroller-based system with 

motorized source and detector movement in dual axis, wireless control and data 

transmission, and real-time scan results. This will significantly increase reliability and 

accuracy, reduce radiation exposure risks, and lower gamma scanning systems and 

operations costs.  

 

1.5 Scope and Limitations of the Study 

In this project, a microcontroller-based lab-scale gamma scanner prototype has been 

designed and constructed. The prototype developed provides for the following salient 

features; motorized vertical and horizontal movement, scan data acquisition, and wireless 
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transmission within a radius of not more than 100 m to a hand-held battery-powered 

control module, data treatment and graphical display on miniature LCD. The prototype 

was designed for only one detector and tested using a low activity radioactive source Am-

241,114 mCi after configuration. The results were acquired compared with the physical 

trays locations and characteristics. 

 

1.6 Organization and Structure of Thesis 

This thesis contains six chapters and an appendix. The design and development of the 

scanner methodology, data acquisition, processing and transmission, system hardware 

design, system control and wireless communication system, software and data treatment is 

discussed in detail in the main chapters. The appendix contains supporting information on 

the code developed to run the systems. Chapter 1 discusses the background of the research 

area, objectives and the scope of the study. Chapter 2 reviews literature with studies done 

on Microsystems and Microprocessor applications, Internet of things, Embedded systems, 

DC motor control and wireless communication networks. Chapter 3 reviews the 

theoretical principles on the existing systems for classical and modern ways of industrial 

gamma scanning, methods and applications, types of gamma radiation detectors, data 

acquisition and signal processing, and various modes of wireless communication Chapter 

4 focuses on the methodologies used in the design, materials/components and 

development of both the hardware and software to produce a reliable system that meets 

the objectives of this project. Chapter 5 primarily provides the results and discussions of 

the prototype developed and validation of the prototype. Chapter 6 concludes the thesis 

with discussion and recommendation drawn from the study. Appendix contain the codes 

of various operations within the system, mainly in; data acquisition and processing, 

control, transmission, display and treatment. 
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 Chapter Overview 

This chapter discusses the literature review of this study which has been divided into 

various sections. Section 2.2 reviews the recent developments of nanotechnology in the 

field of electronics and also focuses on some study cases in the application of 

microprocessors, microelectronics and microsystems while Section 2.3 reviews the 

relevance of the Internet of things and its application in the engineering world. Section 2.4 

describes the technology driving embedded systems and their application. Section 2.5 

winds the chapter by highlighting some case studies and challenges faced using the 

existing system. 

2.2 Microprocessor applications and Microsystems  

Recent developments in wireless data communications, Micro-Electro-Mechanical 

Systems, and digital electronics technology have led to Wireless Sensor Networks' 

adoption in Industrial, Medical, learning and telecommunication fields (Stokic et al., 

2006). Wireless Networks have become one of the most vital technologies in the current 

world with the potential to provide people with a more comfortable life in their work. This 

technology has offered an effective solution to many problems. The rising popularity of 

these wireless networks has motivated many innovations in the engineering field, 

especially in embedded systems. These wireless networks consist of; battery-powered 

sensor module, a processing system for data computations and processing, and a 

subsystem with communication capabilities (Bhagwat et al., 2017).  

In research carried out by the U.S. military in the 1970s, it was found out that wireless 

networks were advantageous over conventional systems used since it offered wide 

coverage, high accuracy and optimal reliability at a relatively lower cost.  However, 

wireless networks experienced some challenges: unreliable wireless communication 

systems, limited power source, and large-scale data deployment. de to control embedded 

systems in machines, the motor vehicle industry, robots, medical devices and other 

gadgets. Microprocessors play a vital role in the fabrication of microsystems. Many 
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microsystems have been integrated in medical instruments, industrial process equipment, 

and security and home appliances. According to D. Wise Kens (2008), microsystems will 

play a pivotal role in improving life in the near future. 

Further, Zhirnov and Cavinlll (2011) elaborate that these systems present a potent tool in 

the arsenal to tackle most problems, especially in health, security, manufacturing, energy, 

environment, and production of food. Microsystems are made of three sections; 

electronics, communication system and sensors. With the rate of advancement in 

Nanotechnology, microsystems will be able to collect data remotely from the physical 

environment, perform computational analysis and transmit information through 

information networks. As microelectronics changed data processing and communications, 

so will microsystems solve challenges of non-electronic systems. 

Wireless Integrated microsystems should be incorporated with nonelectrical components. 

In the study to develop a gas chromatography model, the use of electromechanical 

components and semiconductor in a unit hybrid system improves system functionality and 

makes it adaptable in many areas of application.  

In a study carried out by Piotter (2012), nanotechnology proves to be a promising 

technology in the near future, specifically in automotive engineering. It has found 

applications in IT, Power generation, brown and white goods industries, machine 

production and chemical engineering. Emphasis should be made on enhancing the 

technology and large-scale production of complex microelectronic components. 

Recent developments in the manufacture of meta devices have been done on how to 

configure nonlinear metamaterials to produce meta devices by combining actuation 

systems and quantum materials with meta-atoms. Microelectromechanical systems 

provide crucial platforms to manipulate the effective features of metamaterials and the 

incorporation of great functionalities with metamaterials (Zhao, 2019). 

In bio instrumentation, microcontrollers are used to control leg prostheses, where 

microprocessors are used for feature extraction, projection and classification. The 

microelectronics used in data acquisition and signal processing help in the improvement 

of precision of the leg prostheses (Alberto et al., 2000).  

In a study carried out by Susumu Noda (2008), a band structure of photon can be 

produced in the spectrum of transmission of optics using microsystems. This makes it 
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possible to produce 2D and 3D crystals (Ho et al., 2000). Optical microsystems thus 

contribute a lot to optical communications by the use of integrated optics. As this 

technology develops from a laboratory scale into the industrial world, it will be possible 

to develop optical systems dependent on the waveguide. This will be the driving force in 

the production of integrated micro-optical systems with high-performance features (Lee et 

al., 2006). 

In conclusion, microcontroller-based systems incorporated with actuators are reliably 

functional, consume low power, and are small in size, making them suitable in optical 

telecommunication systems (Dan, 2008). The industry is adopting nanotechnology, and 

many companies and other microsystem scientific groups are rising due to innovations in 

nanotechnology (Pradeep, 2015).  

2.2.1 Optimization of Microprocessors with Respect to Computational paradigms 

For microprocessors to effectively fit in the future development and application of 

artificial intelligence and microsystems, they must be redesigned to ensure Efficiency- 

they must be optimized for low energy use and reduced costs with highly reliable 

performance and comprehensive area coverage. Security proof- this owes to the fact that 

the rising growth in nanotechnology is more susceptible to malicious attacks. 

Extensibility- they should have provisions for extending functionalities, especially for on-

chip peripherals. They should also be configurable into different applications. Therefore, 

in the architecture of microprocessors, a lot of foresight will be required to make them 

future-proof in terms of future trends in their applications while maintaining conformity 

with current applications (Tosiron et al., 2017). 

2.3 Internet of Things (IOT) 

The Internet of things describes the interconnection of unique physical devices to collect 

data and run operations to improve productivity and eliminate data acquisition through 

human interventions. The proliferation of microelectronic technology will lead to a data 

explosion that will raise the cost of transmitting data regarding latency and energy 

consumed by these low power consuming devices. These costs can be reduced through 

edge computations before data transmissions at the nodes to read and utilize the data 

transmitted (Patel et al., 2017). 
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While research has been done on the challenges facing communication in the IoT 

connections, more attention needs to be directed to the computational aspect of IoT 

embedded systems, especially microprocessors in the devices (Adegbija, 2017). To 

produce various microprocessors that are extensible, easy to scale and configure for future 

IoT generation, emphasis should be put on the optimization of microarchitecture and the 

paradigms of computations while in the design of the microprocessors. This will facilitate 

the effectiveness and reliability of edge computations. 

Gaura et al., (2006) proposed the following characteristics to be considered in the design 

of microprocessors to make them fit for wide applications: Intelligence. It should be 

dynamic to changing operation scenarios, Heterogeneity in which the system should offer 

seamless communication with others for efficient data use. Complexity in which it should 

be complex enough to run a wide range of applications. Scalability- since the future IoT 

will be made up of billions of devices, the microprocessor must be area efficient and 

portable. Real-time deadline where it should be stringent like in medical diagnostics. 

Spatial constraints in which they should be fault tolerant and adapt to changing conditions 

of operation. Finally, they should feature Inter-node support in which some execution 

resources are shared to execute duties efficiently. 

2.3.1 Sensors in IoT 

IoT finds wide application in the field of sensors (Sundmaeker et al., 2006). Sensors are 

used in data acquisition, especially in a physical environment like temperature, motion, 

pressure etc. The data of interest acquired using these sensors is subjected to further 

processing and analysis before being converted into a form conceivable by a human. Like 

in sensor fusion, IoT is used to fuse readings from several sensors and create more 

accurate, robust and qualitatively higher data than the raw data. 

Algorithms used in the fusion of sensor is classified into several levels of memory 

intensities depending on the level of operation computations involved. For example, 

aggregation of data using simple computations like addition and mean. It can also involve 

complex applications like handling vector data such as streams of recorded videos from 

multiple sensing systems (Khiter and Khechiba, 2016). Like in medical diagnostics, 

several sensors can automatically monitor physiological parameters like heart beat rate 

and blood pressure using sensors that are not invasive. If IoT is incorporated into 

biomedical equipment like electrocardiography and electromyography machines, data can 



23 

be analyzed without the need to transmit it for analysis in another machine or platform 

(Gubbi et al., 2008). 

2.3.2 Communication in IoT 

According to Chandrakant et al. (2017), communication is common in IoT technology. 

This is due to the fact that its structure is intrinsically connected, and data transfer is 

through interconnected nodes. Some data transfer methods in IoT include Bluetooth and 

Wi-Fi, which follow specific protocols in transmission or communication. The 

communication technology driving data transmission in these systems is the software-

defined radio (SDR). This technology is rapidly taking over the communication area due 

to its compatibility with IoT. This is due to its ability to perform the layer functions, 

which are physical in nature, in software instead of hardware. 

SDR is highly flexible, making it easy to incorporate with other radio functions and bands 

without updating the hardware. It consists of an antenna, ADC and DAC interconnected 

for transmission and receiving data (Barr and Massa, 2006). The input data is then 

subjected to digital signal processing to output information in the required format. 

Typically, algorithms of SDR can be executed in the normal microprocessors; therefore, it 

is easily compatible with many types of the microprocessor, which makes it applicable in 

many fields if communication systems. 

2.3.3 Data Signal processing in IoT 

Image signal processing is vital in many cases involving IoT use. This calls for 

microarchitectures in design of devices that offer efficient processing operations of 

images and other communication data signals (chippa et al., 2013). The recent developing 

IoT applications, such as automatic Number plate and face recognition, involves image 

processing in several forms like detection, recognition, extraction and classification. In 

medical applications, image processing increases the reproducibility of diagnostics of 

diseases, giving the medics quantitative information from archived images. This can 

supplement the data under use by medical specialists (Mort et al., 2016). 

There is a need to equip the portable medical instruments with image processing 

capabilities for quick diagnostics and analysis of scan results for patient condition 

assessment remotely (Bash et al., 2006). For efficient and easy sharing of data by 

researchers, there is a need to embrace some data optimization technologies with 

emphasis made in IoT approach with the context in edge computing since image 
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processing rich in data and memory intensive. Besides, some data processing requires a 

large amount of data storage. 

2.3.4 Data compression 

To guarantee easy retrieval, transmission and analysis of data, several IoT techniques 

have emerged which facilitate the compression of large volumes of process data and 

reduce latency in the transmission and costs as well (Mohan et al., 2012). This is 

motivated by the rapid increase in data transmission while the available communication 

systems have limited bandwidth.  In the edge node, since the storage is limited during 

computations, compression of data helps minimize the storage memory required, 

especially in the IoT, which is constrained in terms of storage resources. 

This data compression can be done using source encoding or channel encoding. However, 

in the case of edge node computing, source encoding is relevant and more applicable than 

channel encoding (Anderson et al., 2012). Compression can be divided into two general 

categories; lossy and lossless. In scenarios where high-level fidelity is required, such as in 

medical imaging, lossless is more suitable. 

2.3.5 Data security 

According to Creinne et al. (2013), the safety and fidelity of data is highly recommended 

and a key consideration in every design of communication system. IoT systems are often 

deployed in potentially harmful areas susceptible to attacks and potential privacy issues in 

many cases. This necessitates security requirements as a fundamental factor to consider in 

order to ensure integrity of data and safety of the devices (Bortolotti et al., 2014). Other 

sensitive applications like in medical equipment may require additional safety features 

from hardware and software to safeguard sensitive data from access to unauthorized 

persons (Koeberl et al., 2014). 

In most designs of these devices, the development of security features is at infant stages. 

There is a need to bridge the existing knowledge gap in the construction features of 

microprocessors. This will ensure that they can incorporate features that support 

algorithms for the execution of operational security requirements without compromising 

the functional integrity of the devices (Stitt et al., 2003). Data encryption is commonly 

used to maintain confidentiality, where an algorithm is used to perform encryption and 

data generation that is only readable once decrypted (Saha, 2006). This encryption 
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algorithm is memory intensive hence the speed of encryption will be determined by the 

available memory access. 

In his conclusion, Tosiron (2014), the Internet of things will take over in many 

applications ranging from medical, industrial, homestead, etc. This will significantly bring 

a constructive transformation in life and the global economy. Its proliferation will lead to 

the generation of huge amounts of data that will require transmission, bringing bottleneck 

competition in the limited bandwidth. To overcome this challenge, IoT electronic devices 

will require to be incorporated with edge computing capabilities with microprocessors and 

algorithms that can compute the data on the edge nodes and interpret. 

 

 

 

2.4 Embedded systems 

In the contemporary world, technology is shifting from developing electrical and 

mechanical rigid solutions to modern challenges. Embedded systems are systems 

incorporated in other systems to increase their efficiency and proves to be at the core of 

every future development in the engineering world (Sukriti, 2009). In almost every 

technological equipment lies an aspect of an embedded system. In a peer-reviewed paper 

published by Oluwole (2015), embedded systems find wide application in the design of 

intelligent cars, buildings, industrial processes, aeronautic gears, and medical, agriculture 

and grid systems. 

In these systems, micro-controllers are embedded in various mechanical and electronic 

components to perform specific tasks through actuators (Steve, 2003). These embedded 

systems control robust electrical and mechanical systems using a microprocessor plugged 

into the circuit. These systems are housed within the systems they control, and being a 

small unique microcomputer, they are programmed to run a predefined function. Since 

they are custom-made for a specific task, their design can be optimized to a small size 

with minimal microelectronic components, reducing the cost (Michael and Anthony., 

2006). 
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Sukritti (2009) classifies embedded systems in two sections; Software and hardware. In 

his argument, the software has more heavy demands than the hardware development since 

it provides the human interface, machine control and data processing. Studies done show 

that in the continent of Africa, the engineering of embedded systems has not been fully 

tapped since no Institution offers it as a main course (Oyetoke., 2015). Nevertheless, this 

field can positively impact oil and gas, medical, finance institutions, aviation etc., if fully 

embraced. 

2.4.1 DC Motor Speed Control 

DC motors find many applications in rolling mills, electric cars and trains, cranes, robots, 

among other uses, due to ease in its speed control to give the performance characteristics 

required for specific tasks (Walced et al., 2012). DC motors are classified into two 

classes; brushed and brushless. It is wise to pick the type which serves you best depending 

on your project requirements. Controllers produce a signal to represent the desired speed 

and maintain the DC motor in that specific speed (Pal et al., 2012). Controllers may 

monitor the motor speed in order to provide feedback for reduction of error; hence the 

name closed-loop system. If not, it is called an open-loop system.  

To control the speed of the DC motor at a fixed supply voltage, speed controllers are used. 

Proportional Integral –Derivative (PID) as a speed control mechanism is commonly used 

due to its robustness to modelling. However, it is limited due to the poor tuning of 

features required to meet the desired design (Hagglund., 1995). According to Emiliano et 

al. (2017), Pulse Width Modulation controllers are more suitable for small DC motors, 

especially for prototypes driven by microcontrollers, since they are easy to program and 

precise. In this mode of control, the speed controller works by varying the input voltage 

supply depending on the duty cycle of the output signal of the PWD. Else, the motor 

speed can also be controlled by instantaneously switching on and off the supply (50-200 

mSecs) depending on motor inertia (Khechiba, 2016). 

2.4.2 Wireless communication network systems 

Wireless communication networks offer a wide range of applications: surveillance 

systems, tracking systems, health, agriculture, and military systems (Bhaskar et al., 2014). 

Due to their outstanding features and limitations, they face various challenges, limiting 

their application and complicating their development. This system requires a middleware 

to link up between sensor hardware and the communication hardware. This middleware 
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will highly revolve around the software layer for the system to meet the design of the 

system and implementation goals. 

In the contemporary world, wireless sensor networks are rapidly taking over the field. 

These networks comprise various micro – sensor nodes in large numbers, and the nodes 

communicate wirelessly like in radio media (Hiren et al., 2014). The sensor nodes can 

function very well even in harsh conditions depending on the environment they are 

deployed. Generally, a wireless sensor network consists of; Field sensors, a data 

processing and aggregation system and wireless communication Sensor nodes are 

connected with sink nodes in remote location wirelessly. These sensor nodes are limited 

in resource, while the sink nodes are more resourceful. When the two nodes are arranged 

together, they can be used to collect and process data through distributed systems. An 

advantage of these networks is that they are highly organized and don’t require starting 

from an external mechanism (Nityananda, 2014). Besides, for the wireless sensor network 

to give a reliable performance, the programmers should develop a matching layer of 

software. The software helps in the management of the resources of the system and the 

performance of the system as a whole. 

2.5 Gamma Column Scanning and Radiotracer Measurements in Industries 

The diagnosis of the process column using the gamma-ray technique plays a vital role in 

troubleshooting and identifying process problems. In his study using a newly generated 

gamma-ray scanning gauge, Khalid et al. (2006) argue that the gamma ray scanning 

technique gives the most precise picture and in real-time of all the other non-destructive 

techniques. According to Alami et al. (2006), more than 40 years ago, this technique has 

offered the following advantages over other techniques; its cost-effectiveness improves 

process efficiency and output in industrial processes and time-saving. 

In a technical report from IAEA (2001), the majority of developed countries that run big 

petrochemical industries have embraced this technique as a means of problem 

identification in distillation columns without disrupting the production processes. El Badri 

et al. (2005), points out the need for African countries to embrace this technology to 

optimize the process installations, especially in petrochemical Industries.  

The success of this technique is attributed to its outstanding capability to give information 

on the column internals non-intrusively, which is not possible with other techniques. 
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Using the gamma ray technique, the measurement system used provides a scan profile and 

is compared visually as per the mechanical design of the column when normally 

operating. In their findings Nourel et al. (2011), regions of abnormalities show differences 

or distortions in the profile obtained are interpreted to indicate the presence of problems in 

the internal structure of the column. This technique can be used to detect various 

abnormalities in distillation columns which include; flooding, weeping, mechanical 

damage, entrainment etc. In such process diagnosis using this technique, interpretation is 

done visually and relies heavily on human judgement; hence this requires experts with 

experience in the field. Sole reliance on human interpretation can be tedious, prone to 

wrong results, time-consuming and expensive expert service costs.  

In conclusion, Ashraf et al. (2011) suggest the potential of automating the technique and 

incorporating pattern recognition software to eliminate human interpretation. He further 

argues that if improvements are made to the existing technique and an integrated gamma 

scanning system actualized, it will enhance productivity and lower operating costs. 

Radiotracer measurements technology has a wide application in wastewater treatment 

plants, mining industry, petroleum and petrochemical industries (IAEA, 2008). In this 

technology, a radiotracer is injected at the inlet of a process, and appropriate detectors 

positioned at critical points and outlet monitor the flow of the radiotracer. The data 

obtained using these detectors, the mixing rates, residence time distribution and flow rate 

measurement, can be determined (Dawi, 2010). This information helps in decision making 

that will lead to process optimization, pollution reduction, energy-saving and improved 

product quality (Farooq et al., 2003). 

In practice, radiotracers can be used in large scale industrial processes, unlike 

conventional tracers which are constrained by their interference with industrial processes. 

In wastewater treatment, radiotracers offer an efficient way of assessing the effectiveness 

of the treatment units before discharging to the environment. In a study carried out by 

Wendy (2019) on the Dandora wastewater treatment plant in Kenya, a Radiotracer 

measurement confirmed that there were flow abnormalities and the pond was not effective 

for anaerobic wastewater treatment. However, the challenge faced was that the data 

acquisition system provided for a limited number of detectors, and the cabled nature of 

the system confined them to a small study area. 
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In another study carried out in Kenya by Gitau (2019) in assessing flow dynamics of 

clinker in the cement industry, through radiotracer technology, the functionality of the 

clinker was found to be at optimum since no flow abnormality like bypassing was traced. 

This is evidence that radiotracer technology is effective and has a wide application. 

However, the environment was harsh, and the system's nature constrained them within the 

immediate vicinity, which was unfriendly. 

This project sought to close the gaps of the existing system in the following ways; 

Automation of detector-source movement in Vertical and lateral directions whereby an 

electromechanical movement drive unit was identified to be an effective tool in realization 

of the movement. This unit composed of a timing belt, Ultrasonic sensor, two 12VDC 

motors and 3-axis accelerometer, all controlled by a microcontroller.  

Introduction of a wireless data transmission mechanism- To achieve this, radiofrequency 

mode of communication was identified due to the availability of the RF modules. These 

RF modules include a pair of 2.4 GHz nRFfl2401 radio modules and a pair at 433MHz 

frequency Radio module. The communication was powered by the microcontrollers.  

Introduction of a highly portable handheld device for data processing and treatment to 

replace data logger and laptop. In the development of this gadget, the following 

components were identified for use due to their compatibility; TFT LCD screen, keypad 

and Microcontroller. 

 



30 

CHAPTER THREE 

THEORETICAL FRAMEWORK 

3.1 Chapter Overview 

This chapter discusses the basis of the study in which Section 3.2 discusses classical and 

modern Gamma column scanning method. Section 3.3 discusses data handling process 

while Section 3.4 focus on digital data processing using Nibras system. 

3.2 Methods Used in Gamma Column Scanning    

3.2.1 Classical Gamma Column Scanning Method 

This is the basic gamma column scanning method in industry, in which, the source and 

detector are winched on top of the column and connected to a pulley system with a 

handle. By turning the handle, the source and detector are moved downwards or upwards 

simultaneously. The turns of the pulley system control the movement distance. The 

combination, source and detector, are also lowered to the elevations of interest in the 

column, for example, where a tray is located as per the technical specifications. The 

detector is connected to a logging system that continuously displays the number of counts 

per second throughout the scan progress.  Resultant counts per second at each elevation 

are recorded and later plotted against elevation values to represent the column internal 

(Bao et al., 2002). 

The operation of the classical scanning involves one or two people lowering the source 

and detector, one person recording readings and another person determining the best 

elevation as per drawings (Jaafar, 2005). At best, the scanning can be carried out by three 

persons. This introduces errors especially positioning and reading out, and exposes 

operators to the harsh conditions in the column location. Extra work is also involved in 

manually plotting the counts or manually entering the data to a plotting software. 

3.2.2 Modern Gamma Scanning 

Modern gamma scanning techniques attempt to solve shortcomings experienced using 

classical scanning techniques and makes the process as less human-involving as possible. 

The bare minimum attempt is to eliminate manual data readouts and plotting by dividing 

the system into two modules; one that controls the source and detector movement while 
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acquiring scan data. Another one receives the data and conducts scan interpretation. This 

is done by connecting the detector setup to a computer using appropriate software. During 

source and detector movement, data is transmitted via a cable to a computer loaded with 

plotting software, which automatically draws the recorded count per second versus 

elevation (Laraki, 2006). 

To reduce errors due to human operated movement of the source and detector, the 

winched pulley mechanism is replaced by a motor-driven winch system. This motor-

driven system is controlled from the connected computer, which is loaded with data 

acquisition and control software. As the source and detector move up or down the column 

side, the real-time plot of the counts per second at the specific elevations is generated. The 

motor-driven system consists of a gear mechanism that is machined to fineness to allow 

known movement length per revolution from which elevation is calculated. In some 

instances, rotary encoders are added to the drive unit to increase reliability. Motors used 

in the drive units include servo motors, dc geared motors or stepper motors chosen as per 

the system design (Gurashan et al., 2006). 

Programmable Logic Controllers (PLCs) have been used to control the movement of drive 

motors through electric motor drivers (Bora et al., 2012). This has dramatically increased 

the reliability and efficiency of gamma scanners as the system can be operated for longer 

durations and scans carried out multiple times to provide comparisons. The addition of 

sensors in the scan systems has increased security as malfunctions and extremes can be 

detected and acted upon as the scan takes place, preventing damage or malfunctions. The 

communication between the movement PLC system and the control computer or laptop is 

usually cabled. 

There have been attempts to have a visual 2-Dimensional analysis of columns based on 

the received counts per second. This involves a data synthesis software that reconstructs 

received data into graphical representation that is easy to analyse compared to graphical 

plots for the same parameters. These graphical representations are derived using higher-

order mathematical functions and complex reconstruction software, which can also detect 

other types of tray properties like liquid holdup levels and the nature of packings 

(Haraguchi et al., 2018). 
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3.2.3 Gamma Radiation Detectors  

Gamma-ray photons are electromagnetic radiations and can interact with them through 

various processes such as photoelectric effect, Compton scattering, pair production and 

Raleigh scattering. Gamma-ray detection involves ionization where the photons release its 

energy to the electrons it is interacting with. These ionized electrons create a chain of 

collisions with other electrons in the matter. This collision energy is collected and used to 

represent a ray. The collection of this energy is either using a proportional counter like a 

solid-state semiconductor or indirectly using a scintillator detector (Diehl, 2001). The 

output from such detectors is usually an electrical pulse which is proportional to the 

amount of energy collected by the detector. The common types of gamma-ray detectors 

are Gas-filled detectors, Scintillation detectors and Solid-state detectors.  

3.2.4 Principles of Radiotracer Measurements  

A tracer is a substance whose properties can be used to identify another product. 

Radiotracer involves the application of radioactive isotopes or gamma-ray emitters in 

tracing operations. This application is divided into sealed applications where the isotope 

does not make contact with the material or system being analyzed, while radiotracers 

applications make contact with the material or medium (Alami and Bensitel, 2012).  

Radiotracer application has been successful in industrial setups. This is attributed to the 

active radioactive materials unique properties when used in tracing applications which 

cannot be achieved by standard industrial investigation techniques (Margrita, 1983). The 

unique properties of radioactive tracers like the ability to be detected through walls, ease 

of analysis and high sensitivity stand out among other tracing choices.  

In radiotracer application, a tracer is injected at the inlet of a flow system as shown in Fig 

3.1. Using a suitable detector outside the system outlet walls, emitted gamma-rays from 

the tracer are detected and recorded as flow occurs inside the system. Detected 

concentration versus time curve at the outlet is drawn. Based on Resident Time 

Distribution (RTD) concept, which is a density probability distribution for a particle 

entering and leaving the system, experimental residence time distribution E(t) can be 

calculated using the equation shown below; 

𝐸(𝑡) =
𝐶𝑇(𝑡)

∫ 𝐶𝑇(𝑡)𝑑𝑡
∞

0

       (3.1) 
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From this equation, ta, which is the time it takes from injection at the inlet to detection at 

the outlet, can be calculated.  

 

Figure 3.1:  Radiotracing operation (Source: Alami and Bensitel, 2012). 

3.2.4.1 Flowrate measurement 

Based on Allen’s method, also known as the two peaks methods, flow rates in pipes can 

be determined. This method involves an injection of small gamma emitter source quantity 

in the process channel and external detection at the outlet to detect its arrival. The transit 

time between the first and the second impulse is used to calculate average flow speed, 

which can be converted to volumetric flow (Shen et al., 2012). Fig.3.2 (a) shows the 

tracer injection points while Fig.3.2 (b) the corresponding profile generated, where the 

regions of peak indicate the outlet points. The time taken between the time of tracer 

injection can also be calculated in determination of residence time of process. 
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Figure 3.2(a): Radiotracer application in flow measurement and (b): Scan profile for pulse 

velocity flow measurement (Source: Alami and Bensitel, 2012). 

3.2.4.2 Leak detection 

Leaks are undesirable as they cause product losses and also contamination. Their 

presence, magnitude and location can be determined using radiotracer application. To 

determine the presence of a leak in a system, like a pipeline, or any suitable flow setup, 

the amount of detected radiation outside the system confines represents a leak. A detector 

at the end of the system can be used to quantify the radioactivity losses in the line. A 

common technique used in buried pipes is the “pig technique”. In this technique, a 

radiotracer is pumped into the pipeline, followed by a detector and a data logger 

assembled into a ‘pig’. As the pig moves inside the pipe, since the leak location has the 

tracer on the outside walls of the pipe, this radiation is picked up by the pig hence locating 

the leak. This method can detect leaks of even 0.1litre per minute (IAEA,2009). Fig 3.3 

shows the buried pipe and tracer injection points and the corresponding scan profile which 

indicates the peaks corresponding to the points of leakage in the pipe. 
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Figure 3.3: Leak detection using radiotracer (Source: Alami and Bensitel, 2012). 

3.2.4.3 Determination of Short-Circuits in a Reactor 

Short-circuits are quick fluid circulations in a system rather than flows. Injected tracer 

followed by detection shows a residence time distribution (RTD) with abnormalities 

indicated by a narrow peak over the primary initial response as shown in Fig 3.4 (Barati et 

al., 2019). Short-circuit ratio (∝) can be calculated using the formula below; 

∝=
𝐴

𝐴+𝐵
        (3.2) 

where A and B are the respective total curve areas. 

 

Figure 3.4: Short-circuit determination using radiotracer (Source: Alami and Bensitel, 

2012). 
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3.3 Data Acquisition and processing in Measuring Systems  

Data acquisition involves reading electrical signals from a particular type of sensor into a 

processing unit, including a computer or a microprocessor. In any measuring system, a 

sensor forms the primary element. A sensor interfaces the system with the environment 

and provides an output that is relative to the measurand. Data acquisition starts with the 

measurement using a sensor coupled with a transducer. The transducer converts a 

measurable physical quantity into an electric signal which can be passed to a signal 

conditioner (Gyorki, 2004).  

Signal conditioning refers to converting a signal produced by a transducer into a form that 

an analogue-to-digital converter can measure. Signal conditioning includes amplification, 

filtration, property isolation, current-to-voltage conversion as well as voltage-to-current 

conversion. An Analogue-to-digital converter (ADC) receives the conditioned signal and 

converts it from the raw form (analogue) to a form that a microprocessor or a computer 

can process (digital).  An analogue signal is usually presented in the form of a continuous 

time-varying nature, while a digital signal is in the form of digital numbers. A digital 

number uses finite resolution steps to represent an input voltage (Bhagwat et al., 2017).  

ADC resolution is based on the number of bits representing the digital number, which is 

an n-bit resolution of 1 part in 2
n
. Types of ADCs include; Parallel converter, which uses 

a reference voltage at the full scale in the input and a resistor combination in series. These 

types of converters are very fast, with speeds of up to 500MHz (Madhvi et al., 2015).  

Successive approximation ADC uses a digital-to-analogue converter and a single 

comparator. Voltage-to-frequency ADC converts a voltage at the input to a pulse output 

of a particular frequency. Integrating ADC utilizes the integration technique using a 

capacitor to determine the input voltage and output accurately. The difference between 

these types of ADCs is their resolution, operation speed and accuracy.   

3.3.1 Data Signal Sampling 

For an ADC to accurately convert the signal, sampling has to be done. Signal sampling is 

the process of acquiring several signal readings at regular intervals during which 

conversion occurs. Nyquist sampling theorem states that if the frequency of a signal is 

less than the cut-off frequency fc, the signal’s information can be obtained by sampling at 

2fc (Gyorki, 2004).  
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According to Bentley (2008), sampling takes an approximate shape to that of the analogue 

signal to provide aliasing where a high-frequency signal is converted into a low-frequency 

signal. Modern ADCs operate at sampling ranges of between 5 to 10 times the signal's 

highest frequency to fulfil the Nyquist sampling theorem and guarantee accurate 

conversion.   

During signal sampling, there are high chances that the digital value of that signal will be 

discrete just above the particular value of the analogue signal at that point or a discrete 

value just below the analogue signal value. This phenomenon is called quantization and 

comes into play due to the conversion of the continuous analogue signal into several 

discrete values. To avoid this, the ADC can be set up to shift the signal’s least significant 

bit (LSB) to be within plus or minus 0.5 LSB as compared to being between 0 and 1 of the 

LSB (Kim et al., 2011). 

3.3.2 Noise in Data Signals 

Measuring systems are prone to noise. The typical noise sources can come from 

electromagnetic interference, electronic noise, noise from the mains power supply, to 

noise caused by high-frequency digital circuits. Noise can also be caused by unwanted 

variables at the physical measurement environment, such as vibrations (Marin-Palomo et 

al., 2017).  

Eliminating sources of noise at the measurement source is most effective compared to 

elimination before processing.  Though certain noise levels are inevitable in an electrical 

circuit, the levels and vulnerability can be reduced. Some of the noise reduction 

techniques in data acquisition include proper noise-proof design, use of digital filters, 

earthing, protection of the signal line through shielding, separation of power and signal 

lines and use of software-based noise elimination techniques. Software techniques have 

routines that can detect noise and act upon the signal to guarantee integrity. Such 

techniques are more flexible, cost less, and suited for low frequency (James, 1997).  

After digitizing a data signal, noise can be eliminated using mathematical approaches 

such as Fourier Transforms to provide a filtered and smooth signal. This takes place in 

three steps; the signal is subject to a Fourier transform; the signal’s amplitude is then 

multiplied by the desired frequency response in the frequency domain. The signal is then 

subjected to inverse Fourier transform to restore it to the time domain. A digital filter can 
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adjust itself to any frequency response eliminating phase errors (Nureni andYekini, 

2015).).  

3.3.3 Data Transmission 

3.3.3.1 Guided Data Transmission 

Guided data transmission uses a cabled medium to guide data signals to a destination. 

Cabled medium involves binding data in the cabling system throughout the transmission 

period. Common types of guided transmission included; twisted pair cables consisting of 

multiple wires twisted together, optical fibre that uses the principle of internal refraction 

of light and coaxial cable, consisting of a copper core cable and braided conductor noise 

(Ketheeswaren, 2009). Guided mediums of data transmission are affected by noise, length 

of cables and environmental conditions which wear off the cables. 

3.3.3.2 Wireless Data Transmission 

Data transmission is necessary in modern measuring systems due to decentralization and 

the need for remote monitoring. This has led to the development of telemetry systems 

capable of transmitting information in two directions, enabling cross-communication 

between systems over a long distance. Data transmission follows a set of rules commonly 

referred to as a protocol that differs from one transmission mode to another. Protocols 

ensure data is received at a rate that does not overwhelm the transmitter and the required 

integrity.  

Wireless transmission systems use serial data transfer where all the data bits are 

transferred each bit at a time in a single path chain structure (PM). In serial transmission, 

bit rate R is used to refer to the number of bits transferred per second, the maximum being 

1200bits per second (James, 1997).  

To initiate a wireless communication protocol between two systems, the process starts 

with handshaking. This is the process where a device indicates its readiness to receive or 

transmit data or any other state so as to initiate the next action. Handshaking aims to 

facilitate a synchronized and orderly data transfer. Modes of wireless data transmission in 

measuring systems include Bluetooth, Wi-Fi, Radio Frequency Broadcasting, Satellite 

Communication and Cellular Communication (Madhvi et al., 2015).   
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3.3.3.2.1 Radio Frequency communication 

Radiofrequency communication occupies the 3 kHz to 1GHz bandwidth. Transmission 

occurs through antennas, and propagation is in all directions meaning that any receiving 

antenna in the range can receive the signal from any other transmitting antenna. Through 

Frequency Modulation (FM) or Amplitude Modulation (AM), which involves encoding 

information, radio waves can be used to transmit voice, video and data. Once received, 

demodulation is carried out to recover the original data in the wave. Radio frequencies are 

divided into bands that comprise different transmission frequencies. This project uses the 

very high or ultrahigh band with frequencies of between 30 MHz and 30 GHz (Wireless 

technologies and the national information infrastructure, 1995).  

Radiofrequency is affected by attenuation, noise interference and refraction if travelling 

for long distances. Despite these challenges, radiofrequency is widely used in radio 

broadcasting and industrial wireless communication due to its reliability over short 

transmission distances and cheap infrastructure (Nureni, 2015). 

3.3.3.2.2 Microwave Communication 

Microware communication uses the line-of-sight principle where the transmitter and 

receiver must be visible to each other. Microwaves operate in the 1GHz to 300GHz 

bandwidth. During operation, the microwave can be focused into a narrow beam. A pair 

of unidirectional antennas cannot be affected by another pair that is unidirectional. 

Microwave transmission is used in bulk data transfers for large systems.  Microwave 

communication has several advantages: the antennas are usually short due to the high 

transmission frequency, has a high data capacity, and the antennas occupy small areas. 

This communication model has several disadvantages: attenuation by solid objects suffers 

from reflectance by surfaces, suffers from diffraction around solid objects, and is refracted 

by the atmosphere (Kirchhoff et al., 2006). 

3.3.3.2.3 Bluetooth communication 

Bluetooth communication, first developed in early January 2000, revolutionized wireless 

communication. This communication technology allows two or more synchronized 

devices to communicate with each other without the use of cables. Operating at a 2.4GHz 

frequency spectrum, Bluetooth can transmit data at the rate of 172kilobites per second. In 

a Bluetooth communication setup, the hosting device is normally referred to as the master 

while the connecting device is referred to as the slave.   
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A network of Bluetooth devices or systems is referred to as a piconet; two piconets form a 

scatternet, essentially a cluster of Bluetooth networks. Communication in Bluetooth starts 

with an inquiry to establish identity, paging to form a connection and then a full 

connection where the data transfer takes place (Madhvi et al., 2015).  

3.3.4 Digital Signal Processing 

Upon reception, a digital signal is subjected to the processing according to user needs. 

Digital signal processing starts with noise elimination; after this a signal is subjected to 

non-linear processing. In non-linear processing, the data obtained from ADC is subjected 

to nonlinear operations to convert the data to the respective domain. Domains in digital 

signal processing include time domain, space domain and frequency domain.  Time-

domain represents the signal in a one-dimension format while space and frequency 

domains present signal in multi-dimensions (Bora and Sarma, 2012).  

To present a signal in time or space domain, digital filters are used, which are usually 

designed using mathematical models. Frequency domain signals are obtained by 

subjecting the signal to a Fourier transform which converts time and space into magnitude 

and direction each respective frequency processed.  

3.4 Nibras Data Acquisition Systems 

The Nibras data acquisition system is an instrument used to acquire data and treatment 

during gamma scanning. It has been helpful since 2013 and is associated with software for 

processing data obtained during scanning exercise. This system can run in count mode or 

soft mode. The count mode uses a rotary switch where you can set the count time between 

6 seconds to 10 minutes. In the backside, it has two ports for BNC connecters for detector 

and signal checking. The front side has a pushed bottom and an LCD display to show the 

radiation intensity for each step during scanning process (Benahmed and Alami, 2012). It 

consists of four batteries of 1.5V, after which the system cannot run more until recharged. 

Two batteries of 1.5V are used to supply a 3V converter for direct current (DC), as shown 

in Fig.3.5. 
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Figure 3.5: Nibras System circuit (Source: Benahmed and Alami, 2012). 

The high voltage output of the converter and is used to power the detector. This data 

acquisition system is based on a microprocessor at 20MHz (Bora and Sarma., 2012). It 

has a Liquid crystal display connected to a notebook, as shown in Fig.3.6. 

 

Figure 3.6: Nibras System display (Source: Benahmed and Alami, 2012). 
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A clock module is incorporated to control the acquired data. The system is connected to a 

PC using coaxial cables, as shown in Fig.3.7 from which it is operated while the detector 

and source is moved simultaneously by two individuals. If there are no power outlets in 

the column, it becomes hard to set the scanning and cumbersome.  

 

 

Figure 3.7: PC connection for Nibras system (Source: Benahmed and Alami., 2012). 

From the Nibras system, it is evident that the system cannot run without the PC connected 

since the software which initiates the data acquisition is installed in the PC. It therefore 

becomes easy for the scanning process if the persons doing the scan on top of the column 

are the ones to initiate the acquisition system. Also, to reduce the long cable connections 

between the computer, data logger and detector, it could be necessary to have wireless 

transmission of the acquired data during scanning exercise. This makes the acquired data 

safer and fast in terms of transmission and reduces mistakes due to poor coordination 

between the expertise. 
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CHAPTER FOUR 

METHODOLOGY 

4.1 Chapter Overview 

This chapter discusses the development of the system from design to its operation. It is 

divided into several sub-sections. Section 4.2 brings out the design and construction 

layout of the system and discusses the conceptualized initial model of the scanner, and the 

final model of the scanner developed. Section 4.3 discusses the components used and the 

various circuits and component connections.  

4.2 System Design and Construction  

In this study, the design and construction of the automated gamma scanning system 

prototype model approach assumed, as shown in Fig. 4.1. 

 

Figure 4.1: Outlook of the conceptualised automated gamma scanning system prototype. 
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The system consists of three modules: the scanner head, which consists of the components assembled for control of detector-source dual-axis 

movement and scanning; the communication module, which consist of the radio frequency transmitters and receivers and the controller module. 

The system configures the scan input parameters for display of scan profiles, as shown in Fig.4.2. 

 

Figure 4.2: Block diagram of the designed gamma scanning system prototype. 
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The Scanner head module consists of three main functional units; source-detector unit, 

electromechanical movement drive unit and the communication unit and operated by two 

12 VDC geared motors. All these units are connected to the Arduino Mega for control and 

scanning. The drive unit consists of a belt-driven motor system for vertical and horizontal 

plane movement and an ultrasonic sensor used to determine vertical distance. The 

communication modules are used to transmit bi-direction scan data between the controller 

module and the scanner module.  

 

The control module consists of an LCD display screen (3.5” x 2.5”) for displaying scan 

parameters and results. It has a five-button keypad for the input of commands and a pair 

of 2.4 GHz nRFfl2401 radio modules for transmission and receiving radio units. Two 

radio modules reduce latency, making the system as accurate as possible since no data is 

lost during acquisition and transmission. 

 

The physical system was modelled using SolidWorks® design software to conceptualize 

its operation. Fig. 4.3 shows the initial conceptualized design of the scanner head, which 

was later redesigned to add a second stand in the support frame to distribute the weight of 

the scanner equally. 

  

 

Figure 4.3: The conceptualised graphical model of the physical system. 
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The actual frame constructed used to support the Scanner unit is shown in Fig. 4.4. It was 

constructed using a 2ʺ×1ʺ wood frame, 1 m in length and 0.5 m in width.  

 

 

 

Figure 4.4:  Scanner frame assembly unit.  
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4.3 Components used in the designed system development  

To transform the conceptualized system into a real functional system, the following 

materials and components whose specifications are highlighted in detail were used in this 

study. Figs. 4.5 and 4.6 show the schematic diagrams for the Scanner head and handheld 

control modules respectively. They represent the power and signal circuitry inter-

connections of the components used in the system. Since the components consume 

different power, they are supplied each with the required voltage supply.  

 

Figure 4.5: Schematic diagram of scanner head module components. 
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Figure 4.6: Schematic diagram of handheld control module components. 

 

4.3.1 Arduino Mega 

Arduino being an open-source microcontroller hardware and software platform was 

preferred in this project due to its easy use. It was programmed to function as a standalone 

system able to communicate with another system. It was capable of reading inputs and 

controlling output parameters. The board was assembled on a prototyping board, and its 

programming environment downloaded. Arduino Mega used is based on an Atmega2560 

microcontroller chip (see specifications in Table A1.1 in Appendix I). 

4.3.2 DC Geared Motors 

In this project, two DC motors were used. They are made up of an armature whose 

movement was initiated by poles created by supplied power via brushes at one end. They 

were capable of producing either high-speed rotations or high torque rotation or in 
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combination depending on the need. To increase the motor’s torque, a series of gears was 

connected to the motor’s output shaft making the motor geared. This gearbox reduced the 

motor's speed to a manageable value while increasing torque (Warren, 2011). The speed 

reduction for the DC geared motors was in a gear ratio of a 100:1, which means that the 

motor output shaft spin 100 times for the gearbox output shaft to make one complete 

revolution. These DC motors were used to move the scanner setup and down and in a 

circula rmotion.  Based on TL value of 1.5kg.cm, a 12V DC Geared Motor with 100rpm 

and 2Kg.cm torque was selected for the project, providing a safety margin of 0. 5Kg.cm 

torque. 

4.3.3 A 3.5” Thin Film Transistor LCD Screen 

The choice of the display screen used in this project was based on the need for a TFT 

module that is compatible with an Arduino Mega and large enough to display a graph 

with clarity. This led to the selection of the 3.5” TFT LCD screen, which operated on 5V 

DC, has a micro-SD card module and has a resolution of 480x320 with a refresh rate of up 

to 50Hz.  

4.3.4 nRFL2401 Radio Module 

An nRFL2401 radio module was operated at 2.4GHz-2.4835GHz ISM radio band. To 

initiate communication with this radio module from a microcontroller, Serial Peripheral 

Interface (SPI) was used based on the module’s operation modes as per available 

configuration registers based on the First In First Out order (Mahbub, 2019). The 

module’s baseband protocol was based on packet transfer communication which 

supported several modes like manual operation and advanced autonomous mode. For 

modulation, the nRF24L01 module used the GFSK module, which allowed the user to 

configure several parameters such as data rate and frequency channel output. This module 

was capable of transmitting data at a rate of 2Mbps and concurrently executing Cyclic 

Redundancy Checks to detect data transmission errors. (See specifications for the radio 

module presented Table A1.3 in Appendix I).  

 4.3.5 433 MHz Transceiver and Receiver Pair Module 

This module consisted of a radio frequency transmitter and receiver, which operated as a 

pair at 433MHz frequency using Amplitude Shift Keying. To transmit data, the 

transmitter subjected the data through an HT12E encoder before transmitting. This 

encoder converted parallel data into serial for transmission. The receiver then decoded the 
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data received using an HT12D decoder into signal data which was easy to process. 

(Ahmed et al., 2006). Specifications for the 433 MHz transmitters and receiver are 

presented in Tables A1.4 and A1.5, respectively in Appendix I.  

4.3.6 MPU6050 3- Axis Accelerometer 

An accelerometer uses electromechanical interactions to determine plane acceleration 

forces. The MPU6050 3-Axis Accelerometer used, contained a proof mass and sensing 

plate with support circuitry. As the acrylic assembly changed orientation, the proof mass 

moved and consequently causing a change in capacitance due to gravitational pull, which 

was amplified by the support circuitry to generate a voltage signal. A I2C communication 

protocol was used for communication between the accelerometer and the microcontroller 

to transmit digitized outputs of the resultant orientation value. Values for X (roll), 

Y(pitch) and Z(yaw) axis orientation can be obtained from the digitized values (ECEE, 

2020). 

4.3.7 Ultrasonic Proximity Sensor 

Based on the radar principle, an ultrasonic sensor was used to determine the proximity of 

thedetector-source in vertical movement, along the column height during gamma scanning 

operations. This principle involved the transmission of a signal at a high frequency and 

determining the distance depending on duration of the echo. The sensor reading was then 

used to generate the scan profile. The frequency used is usually beyond the audible range 

by human beings. The Ultrasonic sensor used could measure up to distances between 2 

cm and 500cm with high accuracy. 

4.3.8 Power supply  

Two power supply modules, namely, 230V AC to 12V DC stepdown power supply and 

12V to 5V DC buck converter, were used in this project.  The step-down power supply is 

made up of a stepdown transformer, power conditioning capacitors, diodes, and variable 

potentiometer to adjust the output.  The buck converter based on LM2596 power supply 

IC stepped down supplied voltage from 40V DC to a variable value between 12V and 5V 

DC. This was suitable for supplying the various loads in the system (see Table A1.6 in 

Appendix I). 

4.3.9 Velleman K2645 Geiger Muller Detector 

The Velleman K2645 GM kit was used for detecting nuclear radiations. It has a buzzer 

that beeped whenever radiation was detected; more beeping indicated high radiation 
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levels. This kit was powered by a 9V battery and had a current consumption of 200µA. 

Incident radiation rays on the GM tube caused a high current which biased the transistor 

circuit producing a beep. For this project, a voltage divider circuit was added across the 

buzzer circuit to form the detector circuit (Fig. 4.7).  

 

Figure 4.7: (a) Voltage divider schematic, (b) Velleman K2645 GM 

(Source:https://www.velleman.eu/products/view/?country=nl&lang=en&id=9091). 

4.3.10 DC Motor driver 

An L298N driver module was used in this project to control the rotation speed and torque 

in DC motors. Using Pulse Width Modulation, which involves controlling the on and off 

duration of a power pulse, the required speed and torque of the DC geared motor used in 

this project, was achieved.  

4.3.11 A Limit switch 

A limit switch is a simple switch that is used as a position sensor when the electrical 

contacts are closed. Limit switches are made in two types: the Normally Closed (NC) 

type, where the contacts are closed when not pressed and the Normally Open (NO) type, 

where the contacts remain open when not pressed. Use and application vary depending on 

the type of switch and whether it has a lever or not (Warren, 2011). In this project, a 

normally closed switch was used to limit the detector-source assembly in the vertical 

movement. 

4.3.12 Circular acrylic detector-source assembly    

The detector-source assembly is a circular acrylic material (dia 25 cm and radial width 10 

cm), that houses a low activity source, 114 mCi 
241

Am radiation source (NER-492, S/N: 

A-377) and Velleman K2645 GM detector. It was designed to slide along the vertical axis 
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guided by the vertical system support frame and consists of a hollow cuboid with rollers 

for smooth movement (see Fig. 4.7). 

For source-detector rotation movement along the horizontal axis, the setup uses acrylic 

material for support, which was cut to precision using a laser CNC machine. The scanner 

is operated by two 12 VDC geared motors and two-timing belts to drive the source-

detector assembly, in both vertical and horizontal plane, along with the column frame for 

preset increment heights of 5-10 cm movements for auto counting at a preselected preset 

time between 1-10 s. 

The scanner head consists of the components assembled to control the detector –source 

dual-axis movement and scanning. Other features include; Ultrasonic sensor, 3-axis 

accelerometer, source and GM detector, all connected to a microcontroller-based circuit 

housed inside air-cooled ABS plastic inspection box and mounted on top of the scanner’s 

frame. 
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Figure 4.7: Design sketch of the Circular acrylic assembly. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Chapter Overview 

This chapter discusses the results obtained in several sections. Section 5.2 discusses the 

hardware structure of the developed prototype system, software development and the 

system validation and reliability. Section 5.3 elaborates the system configuration for 

Gamma column scanning and the scanned profiles and closes the chapter with radiotracer 

configuration and the scan profile. 

5.2 Overview of the developed prototype system 

5.2.1 Scanner head system 

The Gamma Scanner head prototype was constructed using a wood frame; 1 m length and 

0.5 m width and a circular acrylic material (dia 25 cm and radial width 10 cm) that houses 

a low activity source, 114 mCi 241Am radiation source (NER-492, S/N: A-377) and 

Velleman K2645 GM detector as shown in fig.5.1. The scanner is operated by two 12 

VDC geared motors and two-timing belts to drive the source-detector assembly, in both 

vertical and horizontal plane, along with the column frame for preset increment heights of 

5-10 cm movements for auto counting at a preselected preset time between 1-10s. 
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Figure 5.1: Constructed Scanner Head Features assembly – top view.  

 

The GM detector was connected to a microcontroller-based circuit, as shown in Fig.5.2, 

which also controls the movement motors. Four 2.4 GHz nRFfl2401 radio modules 

facilitated wireless communication between the scanner and the handheld module within a 

radius of 100 m. 
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Figure 5.2: Scanner Head circuitry component layout. 

 

5.2.2 Control Module system 

A handheld controller module consists of an LCD screen (3.5” x 2.5”), Arduino Mega, 5 

tactile push-button keypads, and an interface system. An nRF24L01 module for receiving 

data and a 433MHz module was connected to the Arduino to create the Radiofrequency 

transmission system, as shown in Figs 5.3 - 5.6. The control module assembly was housed 

in an ABS plastic enclosure (5”x3”) and aesthetics with an extruding battery power 

connection USB port on the shorter side.  
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Figure 5.3: Wireless controller circuitry component layout.  

  

Figure 5.4: Keypad buttons component layout. 
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Figure 5.5: Keypad buttons electrical design circuit. 

 

Figure 5.6:  Constructed Wireless Handheld Control module.  
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5.2.3 Software Development 

The system’s software development was done for the; scanner and for the controller 

modules. The development of this code was done using the Arduino Integrated 

Development Environment, an open-source software using C++. For the scanner, the 

state-machine coding technique was used.  The system’s operation was configured into 

states which are dependent on user predetermined actions and user commands as shown in 

Fig. These states are described as follows:  

1) eFirstTime: This is a type of gamma automatic mode that is executed the first 

time the command is received. In this state, the scanner is moved to the home 

position before scanning starts and all parameters are reset as in Appendix I. 

2) eCyclic: This is a gamma automatic scanning mode that repeatedly executes the 

scan based on travel distance and pause time. During this state, scan parameters 

are transmitted to the wireless controller for plotting, as in Appendix II. 

3) eMovingHomeDown: When the scanner moves to the bottom home position, 

10cm from the base as in Appendix III.  

4) eMovingHomeUp: When the scanner moves to the upper home position 70cm 

from the base as described by appendix IV. 

5) eIdle: When the system is done with any particular scan, and no command is 

received (Appendix V). 

6) eGammaManual: Executes gamma manual mode commands of movement and 

transmitting scan parameters to the remote for plotting, as shown in Appendix VI.  

7) eRadioTracer: When the user configures the system in radiotracer operation 

mode as shown in Appendix VII. 



60 

 

Figure 5.7: State machine coding flowchart for the developed system. 

 

In the background mode, angle, proximity, and radiation sensor readings are sampled into 

arrays and smoothened by averaging to remove errors and in readiness for transmission 

when a mode requires data like radiotracer gamma mode.  Radio commands are scanned 

every 1/16th of a second to ensure no command is missed and if any command is 

received, it is analyzed and executed. Fig. 5.8 describes the flowchart of software 

execution for the Scanner module /Control module / User interaction. 
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Figure 5.8: Software execution for scanner head/control module/user flowchart. 
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For the handheld wireless controller, the commands for checking user input via the 

keypad, were programmed to be executed in a loop. This enabled transition into various 

screens where parameters were captured and transmitted to the scanner and scan 

parameters received, analyzed, and plotted. Received scan data was also logged to the SD 

card for future retrieval. Fig. 5.9 describes the flowchart for the Control module / User 

interaction.  

 

 

Figure 5.9: Software execution for operator/control module flowchart. 
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5.2.4 Scanner Data Acquisition 

The scanner head movement was operated by two 12 VDC geared motors and two-timing 

belts to drive the source-detector assembly in both vertical and horizontal plane and the 

column frame for preset increment heights of 5-10 cm movements for auto counting at a 

preselected preset time between 1-10s.  For the detector, the voltage divider was 

connected to an interrupt pin on the Arduino where pulses were detected, initiating an 

interrupt service routine which added up the number of pulses and stored these values in a 

buffer. 

The Scanner position readings were sampled every 1
16⁄  s

-1
 and stored in an array that 

held 16 values, irrespective of orientation. For transmission or execution of a command, 

an average of the current 16 values was done, returning a ‘smoothened’ value.   

 

5.2.5 Scanner Data Transmission  

After acquisition for a preset time, the stored buffer data was serialized and then 

converted into a character array that is then automatically transmitted via the nRF24L01 

module to the wireless controller. The procedure is implemented using specific software 

codes developed in C++ for the Arduino platform (Fig.5.10).  For example, DS:100.0; 

RD:150; AG:30.0; to represent a height of 100 cm, 150 counts per second- and 30-

degrees’ orientation. 
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Figure 5.10:  Sample of scanner data serialization code. 

 

5.2.6 Data Treatment in Control module: Reception, Buffing, Arraying and Plotting  

The control module was by default idle when no scan and no command was received. 

During scanning, the presence of data on the nRF24L01 radio module was continuously 

checked. If data was available, it was subjected to CRC checks and read into a string 

before being stored on the EEPROM from where it was re-read for processing.  

Since data stored in the EEPROM is in string form, it was read and individual parameters 

extracted depending on the keyword, such as RD, to imply radiations. After extraction, 

data was converted into an integer and stored into respective cyclic buffer arrays awaiting 

final extraction for plotting and display. To display or plot the data on the 3.5” TFT 

screen, values were read from the arrays using a common pointer to ensure the right data 

relation, for example, to ensure height corresponds to the respective counts/second before 

plotting.  

Plotting the scan profile on the screen was carried out after obtaining the right data for the 

arrays and plugging the values into a tailored function. This function translated data into 
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pixel position and coloured that position. Points were connected as the scan progressed, 

values read, and pixels coloured, creating a continuous line.  

5.2.7 System Validation for Reliability and Safety  

Several features have been incorporated in the design and development of this system for 

the safety of operation. These include the following: In order to guarantee a reliable and 

robust system, several features were incorporated in the design and development of this 

system. The operation of a microprocessor was run by the software uploaded on it, which 

defined the operations between specified states. By programming the system, it ensured 

user inputs, sensor readings, and defined triggers, are the only means of changing between 

the various states, which guaranteed seamless operation.  This ensured no distraction 

while in operation.  

A watchdog timer was incorporated into microcontrollers to trigger a reset, if not serviced 

periodically through the execution of a servicing command. This prevented any 

unexpected hanging in the system due to faults during operations. 

To guarantee data integrity during the radio frequency transmission, Cyclic Redundancy 

Checks (CRC) were done whenever data was received before use (Doherty, 2020). CRC 

involved subjecting data to a polynomial function to generate a checksum which changed 

if there was any data change. By carrying out a CRC execution before and after 

transmission and comparing the two values, errors in data could be detected. In software 

development, a CRC function was carried by the nRF24L01 modules before transmission 

and after reception to ensure data integrity (Doherty, 2020).  

In this study, an HC-SRO4 ultrasonic sensor was used to measure the vertical distances 

moved by the source-detector assembly during gamma column scanning for distances 

between 0 cm and 100 cm. Prior to measurements, the HC-SRO4 ultrasonic sensor was 

calibrated. Calibration of the sensor involved obtaining actual measurements and 

comparing them with the respective sensor readings. The data was analysed for 

correlation using Microsoft Excel.  

The MPU-6050 Accelerometer was programmed to limit the extend of circular movement 

and avoid 360 degrees’ rotation of the scanner, which potentially risks twisting and 

tangling cablings. In this study, rotation was limited to between 0
o
 and 180

o,
 reducing the 

risk of damage. 
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There exists a great risk of moving the detector- source assembly beyond the preset limits 

due to operator error and motor errors. To avoid this, limit switches were installed at the 

topmost, corresponding to 80 cm and bottom-most part (10 cm) of the detector-source 

rail, and interrupts movement when the switch is enabled.   

Prior to measurements, the HC-SRO4 ultrasonic sensor was calibrated. Calibration of the 

sensor involved obtaining actual measurements using tape measure and comparing them 

with the respective sensor readings at defined positions along the height of the scanner 

head. The data was the used to plot a graph of tape measurements against sensor reading 

at the corresponding heights. The graph was analyzed for correlation using Microsoft 

Excel, and from line of best fit a correlation equation was obtained (see Fig. 5.11). 

 

Figure 5.11: HC-SRO4 -Ultrasonic sensor calibration. 

The resultant equation that is coded in the scanner software for correcting all values read 

by the sensor is; 

Acccurate Reading(CM) = (1.18 ∗ Sensor Reading) + 7.31     (5.1) 

This Accurate Reading (CM) value is used in plotting scan profiles. 
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Percentage error of the sensor = 23% 

This obtained equation of data fit was incorporated in the developed code for the scanner 

software for correction of all sensor readings to read actual values of detector-sources 

distances.  

5.3 Test Results 

5.3.1 Gamma column scanning setup 

In this study, the model column was an 8” diameter PVC pipe fitted with two 5 cm wide, 

6 mm mild steel rings at 10 cm intervals; the bottom tray is positioned at 23cm mark 

while the upper tray is positioned at 50cm mark. An 8cm wide wooden piece was placed 

at 37cm mark to represent a simulated malfunction within the distillation column. The set 

up shown in Fig.5.12 represents distillation column and separation trays in a typical 

industrial process and was tested for faults using the prototype. The handheld gadget 

shown in Fig.5.13 was used as data logger and to control the scanner head movement. 
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Figure 5.12:  Scanner head system outlook with the model column. 
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Figure 5.13: The developed wireless handheld controller module. 

5.3.1.1 Gamma Scanning System Configuration and Laboratory Measurements  

After boot up, the system was configured for measurements via the wireless controller and 

prompted user to select either of the operation modes available for radiotracer or gamma 

scanning measurements (see Fig. 5.14). In this case, Gamma operation mode was 

selected. Under Gamma mode, the system prompted you to select either to run in 

automatic Gamma scanning mode or manual. Under automatic mode, the scanning 

parameters which included desired pause time and travel distance were entered as shown 

in Fig.5.15, while under manual mode, it was possible to move the scanner up or down 

remotely during the scan process depending on the preset conditions. 
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Figure 5.14: Menu options display for mode on the wireless controller. 
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Figure 5.15: Menu options display for parameter selection on the wireless controller. 

5.3.1.2  Results of Gamma Column Scan measurements  

After running the test to scan the model column, a scan profile was generated in real time 

and the scan results stored as a file copy in the handheld module. The data of the archived 

file copy of results of gamma column scan data in Microsoft Excel file format obtained 

during Gamma column scanning exercise using the developed system was used to plot a 

profile of radiation intensity received against the height of model column using 

MATLAB. A screenshot of the scan profile drawn on the TFT miniature screen in real 

time was taken and compared with the scan profile generated with MATLAB as shown in 

Fig. 5.16.  
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Figure 5.16: MATLAB vs LCD column profile plots. 

5.3.1.3 Observation and Discussion 

From both scan profiles generated, the two 5 cm wide, 6 mm mild steel rings representing 

the separation trays were identified.  The first tray was located between 23 cm and 28 cm, 

and the second tray between 50 cm and 55 cm along the column model. It was also 

possible to identify the location of the 8 cm piece of wood representing the simulated 

column malfunction at a height of 37 cm. The location of these trays and malfunction was 

identified at the regions of low radiation count rates which represented areas of high 

density. The results were then validated through comparison with actual physical 

measurements of the column model. Repeated measurements at the different control 

module distances from the scanner showed the same results. These repetitive similar 

results at varying distances verified high accuracy, reliability and consistency of the 

system. 

In general, high accuracy of the scan profile has been achieved. The following were 

observed of the system; system proved to be reliable for use in gamma column scanning, 

wireless communication has been effective through the use of radiofrequency, 
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Automation was possible through remote-controlled motorized movement, data was 

stored automatically for future retrieval and reference, data analysis in real-time and dual-

axis movement were possible. 

5.3.2 Radiotracer Configuration for Laboratory Measurements 

When powered on, the control requires approximately 30s to boot. Two options are 

thereafter available for selection; radiotracer and gamma operation modes. Upon selecting 

the radiotracer option on the control module, the system was automatically configured for 

radiotracer measurements mode. It displays an X-Y axis window on the LCD screen, 

where a profile of counts vs time begins to plot. For this study, the assumption is that the 

detector is fixed. In this test, a radiation emitting source was instantaneously introduced to 

and withdrawn from the detector three times at different intervals of time. A stop watch 

was used to monitor the time intervals at which the introduction was done.  

After the instantaneous introduction and withdrawal of the radioactive source at different 

time intervals, a screenshot of the profile drawn in real-time display on the LCD screen 

was taken as shown in Fig.5.17 (a) and the data of the archived file copy of results, in 

Microsoft Excel file format, which was stored in an SD card during the study, used to plot 

a profile using MATLAB as shown in Fig.5.17 (b). 
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Figure 5.17: (a) Radiotracer scan simulation results on display and (b) Scan profile of 

radiotracer data using MATLAB. 

From observation and comparison of the two profiles generated, three spikes 

corresponding to the three introduction and withdrawal of the radioactive source are 

observed to happen at 23sec, 73sec and 120sec marks consecutively in the horizontal axis. 
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These precisely matches the time intervals at which the introduction was done as recorded 

on the stop watch. This has demonstrated the possibility of using three or more detectors 

located at various positions in a radiotracer scanning measurement with this module and 

obtain reliable results. 

In general, gamma column scanning technique has significantly contributed to effective 

on-line diagnosis of distillation columns in many industrial processes. In many scanning 

systems in use, the data is transmitted from the detector to the detection circuitry by use of 

coaxial cable. This data is transmitted as an analog signal. Being a guided medium, data 

transmission by coaxial cable are affected by noise, length of cables and environmental 

conditions which wear off the cables. This consequently leads to distortion of information. 

Wireless data transmission is necessary in modern measuring systems due to 

decentralization and the need for remote monitoring. This has led to the development of 

telemetry systems capable of transmitting information in two directions, enabling cross-

communication between systems over a long distance while maintaining high degree of 

data integrity. 

Data integrity in this project has been achieved by converting analog detector output into 

digital signal before transmission. This data in turn is subjected to Fourier transformations 

to ensure no variance before and after transmission. Use of radio frequency wireless 

transmission has seen elimination of interference which occurs in guided data 

transmission. This helped maintain data accuracy over distances beyond 100m. The 

detector -source movement for these existing systems has been manually done or 

mechanically driven. This calls for increased manpower and consequently increasing the 

cost of the exercise with increased chances of human error. With modern electro-

mechanical systems, its possible to have an automated drive system with great torque and 

high precision capabilities. To reduce the manpower and its costs due, this project 

embraced nanotechnology through replacement of non-electronics with microsystems 

which has provisions for control from programmed micro-controller. This automated 

Electro-mechanical movement drive system facilitated detector-source movement in 

horizontal and vertical orientations with increased positioning accuracy. 

The components used in the existing system are big in size with low performance 

capabilities. Modern technology, has seen the production of microelectronics with robust 

performance capabilities. In this project, the circuitry systems were developed using 
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components produced in the nanotechnology world. This resulted into substitution of the 

data logger and laptop with a highly portable handheld gadget, which has the capability to 

perform all the operations of the data logger and laptop combined.  

In conclusion, this system has realized an improved performance, precision, data 

transmission and processing and movement automation. This has resulted to reduced cost 

of running, manpower and time, and highly portable system with increased accuracy over 

the existing system. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

At a total cost of approximately KSHs. 70,000, the following was achieved; a gamma 

scanning head system was constructed with capabilities for dual-axis movement, vertical 

and horizontal, using motors and timing belts. Movement in both axes was controlled 

wirelessly via the handheld control module. In general, there was an instantaneous 

response in the system following the issuance of commands.  

Using the selected nRF24L01 and 433MHz radio frequency communication modules, 

there was instant data transmission between the handheld controller and the scanner. The 

choice and use of a pair of radio frequency communication modules for one-way 

communication increase the system reliability as data can be transmitted in a full-duplex 

mode without delays during the transition in the case of one pair.   

The use of wireless communication in gamma scanning operation increased flexibility as 

the wireless handheld controller works on a 4.5V power bank or battery. Since the 

controller has a 3.5” TFT LCD, which displays configurations, scan profiles and 

parameters, data treatment and representation is done using one microcontroller, which is 

cheap and robust. Data Cyclic Redundancy (CRC) checks and storage were added to 

increase reliability as errors in data can be detected and discarded. The movement of the 

scanner was executed from the wireless controller by pressing the respective travel 

direction buttons. This eliminates the need for more than one person carrying out the scan 

and uses computer software for plotting scan profiles.  

6.2 Recommendations  

This project was limited to testing the possibility of integrating microcontroller-based 

wireless data transmission, motorized scanner movement control and plotting of gamma 

scan data. Development can be carried out to have cloud-based data storage for retrieval 

using a GSM enabled module.  
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Since the system has proved to be reliable with one detector, a more advanced system 

with provisions for more detectors can be developed and also incorporate a 

communication network that is more reliable in transmissions beyond a radius of 100m. 

Since the interpretation of scan profile was left to human interpretation, artificial 

intelligence and machine learning algorithms can be added to the controller software. This 

will enable a machine-based decision on scan results in real-time as the scan is carried 

out, eliminating human errors and delays brought in by profile analysis after scanning.  
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APPENDICES 

Appendix I: Components Specifications 

Table A1.1: Arduino Mega Specifications 

Feature Details 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage recommended) 7-12V 

Input Voltage (limits) 6-20V 

Digital I/O Pins 54 (14 PWM) 

Analog Input Pins 16 

DC Current per I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 256 KB (8 KB used by bootloader) 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

 

Table A1.2: 12V DC motor Specifications (Source: Warren, 2011) 

Parameter Value 

Power rating 1.31W 

Operating Voltage 12VDC 

Rated Current (No Load) 300mA 

Mechanical Output (Torque) 2000 g.cm 

Nominal Tolerance Torque 2.0 kgf-cm 

Momentary (Max) Tolerance 

Output 3.5 kgf-cm 

Speed 100rpm 

Efficiency 65% 
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Table A1.3:  nRFL2401 Specifications (Source: Brendan, 2020)  

Parameter Value 

RF transceiver Module 2.4GHz 

Operating Voltage 3.3V 

Nominal current 50Ma 

Transmission range 200 feet 

Operating current 250mA 

Communication Protocol SPI 

Baud Rate 250Kbps – 2Mbps 

Channel Range 125 

Maximum Pipelines/node 6 

 

Table A1.4:  433 MHz RF Transmitter Module Specifications (Source: Ahmed et al., 

2006) 

Parameter Value 

Modulation Mode ASK 

Working Voltage 3V to 12V 

Working Current 9mA to 40mA 

Operating Frequency 315MHz to 433MHz 

Transmission power 25mW 

Resonance SAW 

Data transmission rate 10Kbps 

Transmission range 90Meters in open areas 

 

Table A1.4: 433MHz RF receiver module specifications (Ahmed et al.,2006) 

Parameter Value 

Modulation Mode ASK 

Working Voltage 5.0V 

Working Current 5.5mA 

Operating Frequency 315MHz to 433MHz 

Bandwidth 2MHz 

Sensitivity -100dBm at 50Ω 

Data transmission rate 10Kbps 
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Table A1.5: Power supply rating calculation 

Component No 

Current Rating 

(A) 

Cumulative 

Current(A) 

12V DC Geared Motor 2 0.3 0.6 

433MHz RX Radio Module 1 0.0055 0.0055 

nRFL2401L Radio Module 1 0.05 0.05 

LEDs 6 0.01 0.06 

MPU-6050 Accelerometer 1 0.01 0.01 

HC-SR04 Ultrasonic Sensor 1 0.02 0.02 

Total Current 0.7455 
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Appendix II: System Booting and Distance Reading 

void loop() { 

  //1. check all sensors 

  serviceSensors(); 

  //2. check if any new commands and process them 

  serviceCommands(); 

  //3. check for any state follow on state transitions 

  runStateTransitions(); 

  //4. Reset the internal watchdog  

  wdt_reset();} 

Distance reading 

// ---------------------------------------------------------------------------  

// Calculate a ping median using the ping_timer() method. 

const static unsigned int DistanceSensorAveragingPeriodSeconds = 1; 

const static unsigned int paramDistanceISRFrequencyHz = 16;//5 

const static unsigned int DistanceSensorSampleSize = 

(paramDistanceISRFrequencyHz*DistanceSensorAveragingPeriodSeconds); 

static unsigned int DistanceSamples[DistanceSensorSampleSize] = {0}; 

//unsigned long ulCurrentDistanceAverage = 0; 

long duration; 

float distance;float fDistance = 0.0; 

void setupDistanceSensor() { 

  //define and initialise inputs 

    if (bDistanceEmulation == true) {}  

  else {  pinMode(TRIGGER_PIN, OUTPUT); 

       pinMode(ECHO_PIN, INPUT); 

    }}void sampleDistanceSensor() { 

  static int sampleIndex = 0; 

  //if index reaches array size set to zero again 

  if ( sampleIndex == DistanceSensorSampleSize ) { 

    // getDistanceReading();  //calculate avg distance when array is full. 

    sampleIndex = 0; } 

 DistanceSamples[sampleIndex] = getDistancesampleIndex ++; 

// Serial.println(sampleIndex); 

} 

//call from anywhere to get latest smoothed value 

float getDistanceReading() { 

//wdt_reset(); 

  float currentDistanceReading = 0.0; 

  float EmulatedCurrentDistanceReading = 80.0; 
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  float currentDistanceAverage = 0.0; 

  int counterff; 

  unsigned long ulCurrentDistanceAverage = 0; 

   

  if (bDistanceEmulation == true) { 

     EmulatedCurrentDistanceReading = 80; 

  }  

  else { 

        //compute the current average ADC level 

    for (int i = 0; i < DistanceSensorSampleSize; i++) { 

     // wdt_reset(); 

        currentDistanceReading += DistanceSamples[i]; 

        } 

       // wdt_reset(); 

    currentDistanceAverage = ceil((float)currentDistanceReading / (float)DistanceSensorSampleSize); 

  currentDistanceAverage = (1.18*currentDistanceAverage)+7.31;   //equation to compensation for detector 

location 

 ulCurrentDistanceAverage = currentDistanceAverage; 

 } 

wdt_reset(); 

return ulCurrentDistanceAverage; 

} 

float getDistance() { 

// Clears the trigPin 

//Serial.println("was here"); 

wdt_reset(); 

digitalWrite(TRIGGER_PIN, LOW); 

delayMicroseconds(2); 

// Sets the trigPin on HIGH state for 10 micro second 

digitalWrite(TRIGGER_PIN, HIGH); 

delayMicroseconds(10); 

digitalWrite(TRIGGER_PIN, LOW); 

// Reads the echoPin, returns the sound wave travel time in microseconds 

duration = pulseIn(ECHO_PIN, HIGH); 

distance= duration*0.034/2; 

wdt_reset(); 

return distance;  
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Appendix III: Obtaining Scanner Orientation 

const static unsigned int AngleSensorAveragingPeriodSeconds = 1; 

const static unsigned int paramAngleISRFrequencyHz = 16; 

const static unsigned int AngleSensorSampleSize = 

(paramAngleISRFrequencyHz*AngleSensorAveragingPeriodSeconds); 

static unsigned int AngleSamples[AngleSensorSampleSize] = {0}; 

#include <Wire.h>  // Wire library - used for I2C communication 

const int MPU = 0x68; // MPU6050 I2C address 

float AccX, AccY, AccZ; 

float GyroX, GyroY, GyroZ; 

float accAngleX, accAngleY, gyroAngleX, gyroAngleY, gyroAngleZ; 

float roll, pitch, yaw; 

float AccErrorX, AccErrorY, GyroErrorX, GyroErrorY, GyroErrorZ; 

float elapsedTime, currentTime, previousTime; 

int c = 0; 

void setupAngleSensor() { 

  if (bAngleEmulation == true) { 

  } 

  else { 

    Wire.begin();                      // Initialize comunication 

    Wire.beginTransmission(MPU);       // Start communication with MPU6050 // MPU=0x68 

    Wire.write(0x6B);                  // Talk to the register 6B 

    Wire.write(0x00);                  // Make reset - place a 0 into the 6B register 

    Wire.endTransmission(true);        //end the transmission 

    // Call this function if you need to get the IMU error values for your module 

    // calculate_IMU_error(); 

    delay(20); 

  } 

} void sampleAngleSensor() { 

static int sampleIndex = 0; 

 

 

 

   //if index reaches array size set to zero again 

    if ( sampleIndex == AngleSensorSampleSize ) { 

      sampleIndex = 0;} 

    //add sample to array 

    AngleSamples[sampleIndex] = readSensor(); 

  delay(20); 
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    //incrememnt index for next time 

    sampleIndex ++;} 

//call from anywhere to get latest smoothed value 

float getAngle() { 

   wdt_reset(); 

  unsigned long currentAngleReading = 0; 

  float currentAngleAverage = 0.0; 

  if (bAngleEmulation == true) { 

    currentAngleAverage = 10;  }  

  else {     

    //compute the current average ADC level 

    for (int i = 0; i < AngleSensorSampleSize; i++) { 

     // wdt_reset(); 

        currentAngleReading += AngleSamples[i]; } 

    currentAngleAverage = ceil((float)currentAngleReading / (float)AngleSensorSampleSize); } 

wdt_reset(); 

return currentAngleAverage;} 

float readSensor(){ 

    float fCurrentDistanceAngle = 0.0; 

   wdt_reset(); 

    Wire.beginTransmission(MPU); 

    Wire.write(0x3B); // Start with register 0x3B (ACCEL_XOUT_H) 

    Wire.endTransmission(false); 

    Wire.requestFrom(MPU, 6, true); // Read 6 registers total, each axis value is stored in 2 registers 

    //For a range of +-2g, we need to divide the raw values by 16384, according to the datasheet 

    AccX = (Wire.read() << 8 | Wire.read()) / 16384.0; // X-axis value 

AccY = (Wire.read() << 8 | Wire.read()) / 16384.0; // Y-axis value 

 

 

   AccZ = (Wire.read() << 8 | Wire.read()) / 16384.0; // Z-axis value 

    // Calculating Roll and Pitch from the accelerometer data 

    accAngleX = (atan(AccY / sqrt(pow(AccX, 2) + pow(AccZ, 2))) * 180 / PI) - 0.58; // AccErrorX ~(0.58) 

See the calculate_IMU_error()custom function for more details 

    accAngleY = (atan(-1 * AccX / sqrt(pow(AccY, 2) + pow(AccZ, 2))) * 180 / PI) + 1.58; // AccErrorY ~(-

1.58) 

   // wdt_reset(); 

    // === Read gyroscope data === // 

    previousTime = currentTime;        // Previous time is stored before the actual time read 

    currentTime = millis();            // Current time actual time read 

    elapsedTime = (currentTime - previousTime) / 1000; // Divide by 1000 to get seconds 
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    Wire.beginTransmission(MPU); 

    Wire.write(0x43); // Gyro data first register address 0x43 

    Wire.endTransmission(false); 

    Wire.requestFrom(MPU, 6, true); // Read 4 registers total, each axis value is stored in 2 registers 

    GyroX = (Wire.read() << 8 | Wire.read()) / 131.0; // For a 250deg/s range we have to divide first the raw 

value by 131.0, according to the datasheet 

    GyroY = (Wire.read() << 8 | Wire.read()) / 131.0; 

    GyroZ = (Wire.read() << 8 | Wire.read()) / 131.0; 

    // Correct the outputs with the calculated error values 

    GyroX = GyroX + 0.56; // GyroErrorX ~(-0.56) 

    GyroY = GyroY - 2; // GyroErrorY ~(2) 

    GyroZ = GyroZ + 0.79; // GyroErrorZ ~ (-0.8) 

    // Currently the raw values are in degrees per seconds, deg/s, so we need to multiply by sendonds (s) to 

get the angle in degrees 

    gyroAngleX = gyroAngleX + GyroX * elapsedTime; // deg/s * s = deg 

    gyroAngleY = gyroAngleY + GyroY * elapsedTime; 

    yaw =  yaw + GyroZ * elapsedTime; 

    fCurrentDistanceAngle = lround (yaw); 

    updateCurrentDistanceValueToEEPROM(fCurrentDistanceAngle); 

   // Serial.println(yaw); 

    return yaw; } 

float readDistance() { 

  float fCurrentDistance = 0; 

  getCurrentDistanceValueFromEEPROM(fCurrentDistance); 

  return fCurrentDistance; 

} 
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Appendix IV: Scanner State Transitions 

boolean bNotifiedFaultState = false; 

boolean bStartCyclic  = false; 

//process any state transitions that should occur due to events in the FuelPoint 

//    unsigned long ulParamPT; 

//    unsigned long ulParamTD; 

 

void runStateTransitions() { 

    wdt_reset(); 

  //switch to radiotracer mode 

  if (gState == eRadioTracer ) { 

    digitalWrite(UPLED_PIN, HIGH); 

    digitalWrite(DOWNLED_PIN, HIGH); 

    digitalWrite(TXLED_PIN, HIGH); 

    digitalWrite(MODELED_PIN, HIGH); 

  } 

  //if we are scanning (obviously in the automatic mode, check on the scan progress 

  if (gState == eFirstTime) { 

    if ( CheckFirstScanProgress(true) == true) { // && (checkStopPoint()== true ) 

      CheckFirstScanProgress(false); 

      // Serial.println("Done with first scan but moving to the next position"); 

      initialiseScannerReporting(true); 

      gState = eCyclic; 

    } 

    // sendGMData(true); 

  } 

  if (gState == eGammaManual) { 

    //  wdt_reset(); 

    digitalWrite(UPLED_PIN, LOW); 

    digitalWrite(DOWNLED_PIN, LOW); 

    digitalWrite(TXLED_PIN, HIGH); 

    digitalWrite(MODELED_PIN, HIGH); 

    gState = eGammaManual; 

  } 

  if (gState == eCyclic) {  

    // Serial.println("eCyclic");  

    if (checkStopPoint() == false) { 

      moveScannerUp(); 

     // moveScannerUpBits(); 

      // delay(300); 
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      //stopMovement(); 

      //sampleDistanceSensor(); 

    } 

    if (checkStopPoint() == true) { 

      stopMovement(); 

      CyclicScan(true); 

      if ((CheckCyclicScanProgress() == false)) { 

        CyclicScan(true); 

      } 

      if ((CheckCyclicScanProgress() == true)) { 

        initialiseScannerReporting(true); 

        checkStopPoint(); 

      } 

    } 

    if (ulNextPausePoint > ulMaxDistance) { 

      stopMovement(); 

      gState = eIdle; 

    } 

  } 

  if (gState == eMovingHomeUp ) { 

    digitalWrite(UPLED_PIN, HIGH); 

    digitalWrite(DOWNLED_PIN, HIGH); 

    digitalWrite(TXLED_PIN, HIGH); 

    digitalWrite(MODELED_PIN, HIGH); 

    float fDist = getDistanceReading(); 

    if ((fDist >= 65 ) || (digitalRead(LIMITSWITCH_PIN) == HIGH)) { 

      stopMovement();  

 

 

  if (gState == eMovingHomeUp) { 

        gState = eIdle; 

      } 

    } 

    else { 

      moveScannerUp(); 

    } 

  } 

  if (gState == eMovingHomeDown ) { 

    // Serial.println(getDistanceReading()); 



97 

    digitalWrite(UPLED_PIN, HIGH); 

    digitalWrite(DOWNLED_PIN, HIGH); 

    digitalWrite(TXLED_PIN, HIGH); 

    digitalWrite(MODELED_PIN, HIGH); 

    float fDist = getDistanceReading(); 

    if ((fDist <= 15 ) || (digitalRead(LIMITSWITCH_PIN))) { 

      stopMovement(); 

      if (gState == eMovingHomeDown) { 

        gState = eIdle; 

      } 

    } 

    else { 

      //      Serial.print("Distance="); Serial.println(getDistanceReading()); 

      moveScannerDown(); 

    } 

  } 

 

  if (gState == eIdle ) { 

    digitalWrite(UPLED_PIN, LOW); 

    digitalWrite(DOWNLED_PIN, LOW); 

    digitalWrite(TXLED_PIN, LOW); 

    digitalWrite(MODELED_PIN, LOW); 

  } 

  return; 

} 

/** 

   Returns the current controller state 

 

  

*/ 

State getState() { 

  return gState; 

} 

/** 

   Returns the controller state corresponding to the sState parameter 

   @param sState String representation of a state. 

   @param eState enumeration of the state per global state definition 

   @return true if the conversion was sucessful 

*/ 

bool getStateFromString(String sState, State &eState) { 
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  if (sState == "RT") { 

    eState = eRadioTracer; 

  } 

  else if (sState == "FR") { 

    eState = eFirstTime; 

  } 

  else if (sState == "MP") { 

    eState = eMovingHomeUp; 

  } 

  else if (sState == "MD") { 

    eState = eMovingHomeDown; 

  } 

  else if (sState == "GM") { 

    eState = eGammaManual; 

  } 

  else if (sState == "CC") { 

    eState = eCyclic; 

  } 

  else { 

    eState = eIdle; 

    return false;  } 

  return true; 
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Appendix V: Scanner Movement 

#include <AFMotor.h> 

unsigned long ulParamPauseTime = 5000; 

unsigned long ulParamTravelDistance = 200; 

unsigned long ulParamMD = 0; 

unsigned long ulParamPT = 0; 

float fParamTD = 0.0; 

float fParamPT = 0.0; 

unsigned long ulScanType = 0; 

String sParamTD = ""; 

boolean bFirstScanStarted = true; 

float currentDistanceAverage = 0.0; 

bool bReset = false; 

boolean bFirstScan = true; 

boolean LimitState = true;         // variable for reading the limitswitch status 

int Scan = 1; 

boolean iResetState = true; 

boolean iLastResetState = true; 

boolean iStartState = true; 

boolean iLastStartState = true; 

float ulNextPausePoint = 0; 

float ulNextNextPausePoint = 0; 

static uint32_t time_now = 0; 

unsigned long ulMaxDistance = 70; 

void setupMotors() { 

  pinMode(EN_A, OUTPUT); 

  pinMode(IN1, OUTPUT); 

  pinMode(IN2, OUTPUT); 

  pinMode(IN3, OUTPUT); 

  pinMode(IN4, OUTPUT); 

  pinMode(EN_B, OUTPUT); 

  pinMode(LIMITSWITCH_PIN, INPUT); 

  pinMode(PWRLED_PIN, OUTPUT); 

  pinMode(UPLED_PIN, OUTPUT); 

 

 

  pinMode(DOWNLED_PIN, OUTPUT); 

  pinMode(TXLED_PIN, OUTPUT); 

  pinMode(MODELED_PIN, OUTPUT); 

  //digitalWrite(PWRLED_PIN, LOW); 
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  digitalWrite(UPLED_PIN, LOW); 

  digitalWrite(DOWNLED_PIN, LOW); 

  digitalWrite(TXLED_PIN, LOW); 

  digitalWrite(MODELED_PIN, LOW); 

  stopMovement();} 

void executeGammaScannerAutoMode(bool bStartCyclic) { 

  if (bStartCyclic == true) { 

    // checkStopPoint(); 

    Serial.println("CYclicl"); 

  } 

  if  (bStartCyclic == false) 

  { 

    // initialiseScannerReporting(); 

    Serial.println("out"); 

  } 

} 

bool CheckFirstScanProgress(bool bStartFirstScan) { 

  iStartState = bStartFirstScan; 

  fParamPT = getPauseTimeParam(fParamPT); 

  time_now = millis(); 

  if ( time_now - iScanStartTime <= getPauseTimeParam(fParamPT)) { 

    return false; 

  } 

  else { 

    Serial.println("First scan is done"); 

    return true; 

  } 

  //initialiseScannerReporting(true); 

  //  return true; 

} 

 

bool CheckCyclicScanProgress() { 

  

  if (CyclicScan(true) == false) { 

    return false; 

    //Serial.println("Scan goin on"); 

  } 

  else  { 

    //   Serial.println("scan is done,moving to the next point"); 

    return true; 
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    //initialiseScannerReporting(true); 

  } 

} 

bool CyclicScan(bool bStartCyclic) { 

  if ( millis()  - iScanStartTime <= fParamPT) { 

   // sendGMData(true); 

    //delay(500); 

    //wdt_reset(); 

    // Serial.print("Cyclic Scan Progress = "); Serial.println(millis()  -iScanStartTime); 

    return false; 

  } 

  else { 

    return true; 

  } 

} 

bool checkStopPoint() { 

  fParamTD =  getTravelDistanceParam(fParamTD);  // from EEPROM 

  //sampleDistanceSensor(); 

  setSampleDistanceFlag(); 

  delay(30); 

  float fDistance = getDistanceReading(); 

  if ((ulNextPausePoint) > ulMaxDistance) { 

    stopMovement(); 

  } 

  if (fDistance >= ulNextPausePoint) { 

    Serial.print("stopped at: "); Serial.println(fDistance); 

    initialiseFirstTimeScannerReporting(true); 

    return  true; 

    initialiseScannerReporting(true); 

 

  } 

  return false; 

  //return false; 

} 

void executeManualMode() 

{ 

  gState = eGammaManual; 

} 

void initialiseScannerReporting(bool bReset) { 

  //reporting variables 
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  float fDistance = getDistanceReading(); 

  iResetState = bReset; 

  Serial.println("resetting params."); 

  ulNextPausePoint = (fDistance + getTravelDistanceParam(fParamTD)); 

  Serial.print("Current Distance = "); Serial.println (fDistance); 

  Serial.print("next pause = "); Serial.println(ulNextPausePoint); 

  if ( ulNextPausePoint > ulMaxDistance) { 

    Alert_Tone(); delay(100); Alert_Tone(); 

    gState = eIdle; 

  } 

} 

void initialiseTimeScannerReporting(bool bReset) { 

  //reporting variables 

  gState = eCyclic; 

  float fDistance = 0.0; 

  iResetState = bReset; 

  iScanStartTime = millis(); 

} 

void initialiseFirstTimeScannerReporting(bool bReset) { 

  //reporting variables 

  gState = eFirstTime; 

  float fDistance = 0.0; 

  iResetState = bReset; 

  iScanStartTime = millis(); 

} 

void stopScanner() { 

 

  digitalWrite(IN3, LOW); 

  digitalWrite(IN4, LOW); 

  digitalWrite(IN1, LOW); 

  digitalWrite(IN2, LOW); 

} 

void moveScannerUpBits() { 

  digitalWrite(UPLED_PIN, HIGH); 

  digitalWrite(DOWNLED_PIN, LOW); 

  analogWrite(EN_B, 230); 

  digitalWrite(IN3, HIGH); 

  digitalWrite(IN4, LOW); 

  Beep(); 

  delay(70); 
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  analogWrite(EN_B, 0); 

  digitalWrite(IN3, LOW); 

  digitalWrite(IN4, LOW); 

  delay(30); 

 // setSampleDistanceFlag(); 

  //  sampleDistanceSensor(); 

  //  delay(100); 

  //Serial.println(getDistanceReading()); 

  // delay(50); 

  

} 

void moveScannerUp() { ///use EN_A, 255 , IN3 &IN4 

  //Serial.println(getDistanceReading()); 

  analogWrite(EN_B, 240); 

  digitalWrite(IN3, HIGH); 

  digitalWrite(IN4, LOW); 

  digitalWrite(UPLED_PIN, HIGH); 

  digitalWrite(DOWNLED_PIN, LOW); 

  Beep(); 

} 

void moveScannerDown() { 

  getDistanceReading(); 

  digitalWrite(DOWNLED_PIN, HIGH); 

  digitalWrite(UPLED_PIN, LOW); 

  analogWrite(EN_B, 150);  

  digitalWrite(IN3, LOW); 

  digitalWrite(IN4, HIGH);  //REVERT 

  delay(5); 

} 

void moveScannerRight() {  

  digitalWrite(DOWNLED_PIN, LOW); 

  digitalWrite(UPLED_PIN, LOW); 

  analogWrite(EN_A, 255); 

  digitalWrite(IN1, LOW); 

  digitalWrite(IN2, HIGH); 

  Beep(); 

  // Serial.println("right"); 

} 

void moveScannerLeft() { 

  digitalWrite(DOWNLED_PIN, LOW); 
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  digitalWrite(UPLED_PIN, LOW); 

  analogWrite(EN_A, 255); 

  digitalWrite(IN1, HIGH); 

  digitalWrite(IN2, LOW); 

  // Serial.println("left"); 

  Beep(); 

} 

bool stopMovement() 

{ 

  analogWrite(EN_B, 0); 

  analogWrite(EN_A, 0); 

  digitalWrite(UPLED_PIN, LOW); 

  digitalWrite(DOWNLED_PIN, LOW); 

  digitalWrite(IN3, LOW); 

  digitalWrite(IN4, LOW); 

  digitalWrite(IN1, LOW); 

  digitalWrite(IN2, LOW); 

  return; 
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Appendix VI: Data Receiver and Utility Checks 

#include <SPI.h> 

#include "nRF24L01.h" 

#include "RF24.h" 

#include "printf.h" 

 

char cad[100]; 

int i=0; 

 

/*************  USER Configuration *****************************/ 

RF24 radio(34,37);                       // Set up nRF24L01 radio connected on SPI bus plus pins 34 and 37 

unsigned long timeoutPeriod = 3000;     // Set a user-defined timeout period.  

/***************************************************************/ 

const uint64_t pipes[2] = { 0xABCDABCD71LL, 0x544d52687CLL };   // Radio pipe addresses for the 2 

nodes to communicate. 

byte data[40] = {"_2,20,440,20,0,1"};                           //Data buffer 

volatile unsigned long counter; 

unsigned long rxTimer,startTime, stopTime, payloads = 0; 

bool transferInProgress = 0; 

unsigned int TX=1,RX=0,role=1,lastrole=0,SKIP=2,RXPRINT=3,RXDUMP=4; 

unsigned int offset=0; 

 

char inData[50]; 

int newmessage = 0; 

String sRxBufferRadio = ""; 

 

 

void setupRemote() { 

  setupTXRadio(); 

  setupRXRadio(); 

} 

 

void setupTXRadio() 

{ 

  //  Serial.begin(9600);  // Debugging only 

    if (!driver.init()){ 

         Serial.println("Receiver init failed"); 

         } 

         else { 

             Serial.println("Receiver Initialized Success"); 
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          } 

} 

 

void setupRXRadio() { 

  printf_begin(); 

  radio.begin();                           // Setup and configure rf radio 

  radio.setChannel(1);                     // Set the channel 

  radio.setPALevel(RF24_PA_HIGH); 

  radio.setDataRate(RF24_250KBPS); 

  //radio.setDataRate(RF24_2MBPS); 

  radio.setAutoAck(1);                     // Ensure autoACK is enabled 

  radio.setRetries(2,15);                  // Optionally, increase the delay between retries. Want the number of 

auto-retries as high as possible (15) 

  radio.setCRCLength(RF24_CRC_16);         // Set CRC length to 16-bit to ensure quality of data 

  radio.openWritingPipe(pipes[0]);         // Open the default reading and writing pipe 

  radio.openReadingPipe(1,pipes[1]); 

  radio.startListening();                 // Start listening 

  radio.powerUp();                        //Power up the radio 

 

  Serial.println(F("**------ REMOTE STARTED****************")); 

 

} 

void showData(void) 

{ 

      printf("Data: "); 

      for(int i=0; i<sizeof(data); i++){ 

         if(isprint(data[i])) 

 

 

printf("%c", data[i]); 

      } 

      printf("\n\r"); 

} 

 

 bool ReadRF(){  

       if(radio.available()){ 

        bDataPresent = true; 

        radio.read(&data,sizeof(data));                    //Read any available payloads for analysis 

        showData();   
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      writeMessageStringToEEPROM(data); 

      return bDataPresent; 

     } 

     bDataPresent = false; 

     return bDataPresent; 

   } 

//Extracts the radiations parameter from the received message string and stores it in the array 

void exParamRD(String sMessage, unsigned long &ulParamRD) { 

  String sParamName = "RD"; 

  String sParamValue = ""; 

    int iParamNameIndex = sMessage.indexOf(sParamName); 

  if ( iParamNameIndex > -1 ) { 

    int iStartOfValueIndex = sMessage.indexOf(":", iParamNameIndex); //parameter value starts after the : 

    if ( iStartOfValueIndex > -1 ) { 

      int iEndOfValueIndex = sMessage.indexOf(".", iParamNameIndex);       //and ends with the ; 

      if ( iEndOfValueIndex > - 1 ) { 

        sParamValue = sMessage.substring(iStartOfValueIndex + 1, iEndOfValueIndex); 

      }} } 

  ulParamRD =  sParamValue.toInt(); 

        GBL_TdataNewPtr_RD++; 

  if (GBL_TdataNewPtr_RD>324) GBL_TdataNewPtr_RD=0;   //increment pointer and wrap it back to zero 

if needed 

     GBL_Tdata_RD[GBL_TdataNewPtr_RD]=ulParamRD;  //Store the sample into the trend array); 

     Xaxiscounter = GBL_TdataNewPtr_RD; 

} 

 

 

//Extracts the Distance parameter from the received message string and stores it in the array 

void exParamDS(String sMessage, unsigned long &ulParamDS) { 

  String sParamName = "DS"; 

  String sParamValue = "";   

  int iParamNameIndex = sMessage.indexOf(sParamName); 

  if ( iParamNameIndex > -1 ) { 

    int iStartOfValueIndex = sMessage.indexOf(":", iParamNameIndex); //parameter value starts after the : 

    if ( iStartOfValueIndex > -1 ) { 

      int iEndOfValueIndex = sMessage.indexOf(";", iParamNameIndex);       //and ends with the ; 

      if ( iEndOfValueIndex > - 1 ) { 

        sParamValue = sMessage.substring(iStartOfValueIndex + 1, iEndOfValueIndex); 

      } 

    } 
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  } 

         ulParamDS =  sParamValue.toInt(); 

           GBL_TdataNewPtr_DS++; 

    if (GBL_TdataNewPtr_DS>320) GBL_TdataNewPtr_DS=0;   //increment pointer and wrap it back to 

zero if needed 

      GBL_Tdata_DS[GBL_TdataNewPtr_DS]=lroundf(ulParamDS);  //Store the sample into the trend array 

      Serial.println(ulParamDS); 

} 

 

//Extracts the angle parameter from the received message string and stores it in the array 

void exParamAG(String sMessage, unsigned long &ulParamAG) { 

  String sParamName = "AG"; 

  String sParamValue = "";  

  int iParamNameIndex = sMessage.indexOf(sParamName); 

  if ( iParamNameIndex > -1 ) { 

    int iStartOfValueIndex = sMessage.indexOf(":", iParamNameIndex); //parameter value starts after the : 

    if ( iStartOfValueIndex > -1 ) { 

      int iEndOfValueIndex = sMessage.indexOf(";", iParamNameIndex);       //and ends with the ; 

      if ( iEndOfValueIndex > - 1 ) { 

        sParamValue = sMessage.substring(iStartOfValueIndex + 1, iEndOfValueIndex); 

       // return true; 

 

} 

    }  } 

      ulParamAG =  sParamValue.toInt(); 

       //  Serial.println(ulParamDS); 

           GBL_TdataNewPtr_AG++; 

    if (GBL_TdataNewPtr_AG>320) GBL_TdataNewPtr_AG=0;   //increment pointer and wrap it back to 

zero if needed 

      GBL_Tdata_AG[GBL_TdataNewPtr_AG]=lroundf(ulParamAG);  //Store the sample into the trend 

array 

 

} 

 

//Extracts the scan duration parameter from the received message string and stores it in the array 

void exParamTS(String sMessage, unsigned long &ulParamTS) { 

  String sParamName = "TS"; 

  String sParamValue = ""; 

 

  int iParamNameIndex = sMessage.indexOf(sParamName); 
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  if ( iParamNameIndex > -1 ) { 

    int iStartOfValueIndex = sMessage.indexOf(":", iParamNameIndex); //parameter value starts after the : 

    if ( iStartOfValueIndex > -1 ) { 

      int iEndOfValueIndex = sMessage.indexOf(";", iParamNameIndex);       //and ends with the ; 

      if ( iEndOfValueIndex > - 1 ) { 

        //parameter exists, return true 

        sParamValue = sMessage.substring(iStartOfValueIndex + 1, iEndOfValueIndex); 

       // return true; 

   ulParamTS = sParamValue.toInt(); 

   GBL_TdataNewPtr_TS++; 

    if (GBL_TdataNewPtr_TS>320) GBL_TdataNewPtr_TS=0;   //increment pointer and wrap it back to zero 

if needed 

      GBL_Tdata_TS[GBL_TdataNewPtr_TS]=(ulParamTS);  //Store the sample into the trend array 

} 

/**Takes a string value and returns its floating point numerical value. e.g, "19.9" -> 19.9 

   @param sParam Value to be converted to a numerical value. 

*/ 

float getFloatingPointNumericalValue(const String sParam) { 

  return sParam.toFloat(); 

} 

/** 

   Takes a string value and returns its integer numerical value. e.g, "19" -> 19 

   @param sParam Value to be converted to a numerical value. 

*/ 

long getIntegerNumericalValue(const String sParam) { 

  return sParam.toInt(); 

} 

 

Appendix VII: Gamma Chart Plotting Code 

void PlotGammaAUTOTrendChart(int xStart, int yStart, int xEnd, int yEnd, int Horiz_GridSize, int 

Vert_GridSize, float DataAcqPeriodMs, float TotalPlotMs) { 

  for (int i = 0; i < GBL_TdataSize; i++) { 

    GBL_Tdata_RD[i] = NoData; //random(600,700); 

    GBL_Tdata_TS[i] = NoData; //random(600,700); 

    GBL_Tdata_DS[i] = NoData; //random(600,700); 

  } 

  //========== Variables and Constants we use to plot data to the screen ================= 

  int PriorX = NoData; 

  int PriorY = NoData; 
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  //Define Just the Trend Graph Plot Area & Boundary Check Limits 

  int xGraphStart = xStart;        //Accommodate room for Vert-Axis Labels on Left Side of grid 

  //int xGraphStart=xStart+52;          //Accommodate room for Vert-Axis Labels on Left Side of grid 

  //int xGraphStart=xEnd-int(18*float(Horiz_GridSize)); 

  int xGraphStart2 = xEnd - int(17.5 * float(Horiz_GridSize)); 

  int yGraphTop = yStart; 

  int xGraphSize = xEnd - (xGraphStart) - 100; 

  int xGraphSize2 = xEnd - (xGraphStart2) - 100; 

  int yGraphSize = yEnd - yGraphTop - 22; //Accommodate room for Horz-Axis Labels on bottom of grid 

  int yGraphBottom = yGraphTop + yGraphSize; //y-TopLimit is the same as yStart; y-Bottom Limit = 

Bottom of graph - (Character Ht + 3) 

  int xGraphLeft = xGraphStart2; 

 

  int xGraphRight = xGraphStart + xGraphSize; 

  int NumPointsToPlot = xGraphRight - xGraphLeft; //NumPointsToPlot on the graph 

  float MilliSecPerPixel = TotalPlotMs / NumPointsToPlot; //Used for Horz Scaling 

  float PlotTimeVsDataTimeRatio = (TotalPlotMs / NumPointsToPlot) / DataAcqPeriodMs;  //Calc 

PlotTimeRatio 

 

  int X, Y; //Coordinates of points to plot 

 

  //Define Trend_variables to hold starting coordinates and Scan Min/Max values 

  int TxStart, TyStart; //General purpose "X,Y Text-Starting-Coordinates" for use within this routine 

 

 

 

    float Tmax, Tmin, Tstep; //Reserve and Initialize variable to hold the Max & Min values we are currently 

plotting  

 

  int numV_lines = xGraphSize / Horiz_GridSize; 

  float vGridSpacing = float(xGraphSize) / float(numV_lines); 

  int numH_lines = yGraphSize / Vert_GridSize - 1; 

  float hGridSpacing = float(yGraphSize) / float(numH_lines); 

 

  //Define variables needed during data scanning to find max, min, and average. 

  int ScanMax = 100; 

  int ScanMin = 0; 

  float Yrange = 10.; 

  float Yavg = ScanMax; 

  int TdataPlotPtr; 
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  //===== Scan TrendData array to find min and max data values for the points we will be showing 

  for (int i = 0; i < NumPointsToPlot; i++) { 

    TdataPlotPtr = GetDataPointer(i, PlotTimeVsDataTimeRatio); //Get the new data pointer 

    if (TdataPlotPtr > 0) { //Error check...Did we get a valid pointer value returned? 

      if (GBL_Tdata_RD[TdataPlotPtr] != NoData) { //Only look at valid data entries 

        if (ScanMax == NoData) {      //If this is the first data point we've found, set ScanMax and ScanMin to 

that value 

          ScanMax = GBL_Tdata_RD[TdataPlotPtr]; 

          ScanMin = ScanMax; 

        } 

        if (GBL_Tdata_RD[TdataPlotPtr] > ScanMax) ScanMax = GBL_Tdata_RD[TdataPlotPtr]; //Update 

ScanMax and ScanMin values as needed 

        if (GBL_Tdata_RD[TdataPlotPtr] < ScanMin) ScanMin = GBL_Tdata_RD[TdataPlotPtr]; 

      } 

    } 

  } 

  Yavg = float(ScanMax + ScanMin) / 2.; //Calc the average value 

  // 

  //=====BEGIN AUTO SCALING ALGORITHM 

  // 

  // Here is where we select the correct vertical scale based on Largest and Smalled temps found in data scan 

  // This is where we determine the vertical plot-scaling we will be using 

 

 

 

 

  switch (ScanMax - ScanMin) { 

 

    case 0 ... 100:  //Range = 5.6-10.0 DegC P-P, 18.0 DegF 

      Yrange = 100.; 

      Tmax = 100; 

      Tstep = 10; 

      Tmin = Tmax - Yrange; 

      break; 

  } 

 

#ifdef DiagPrintEnabled 

  DiagPrint("       Post Scaling-scan, MAX=", Tmax, ","); DiagPrint(" MIN=", Tmin, ""); DiagPrint(" 

Range=", Tmax - Tmin, ""); DiagPrintln(" Avg=", Yavg, ""); 

#endif 
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  //Set axis font and then make the plot area background to grey... 

  //TODO // myGLCD.setFont(SanSerif_8x14); 

  tft.setFont();  //Select default font just in case... TODO Remove this backup code 

 

  //Paint Graphics Plot area background Color 

 

  tft.fillRect(xGraphStart2, yGraphTop, xGraphSize2, yGraphSize, GBL_Graph_BG); 

 

  int H_Adjust = 2; 

  const int GridLineColor = BLACK; 

  for (int i = 0; i < numH_lines + 1; i++) { 

    int Vert_Axis_Lbl_Wdth = 28; 

    tft.drawFastHLine(xGraphStart2, yGraphTop + i * hGridSpacing, xGraphSize2, GridLineColor); 

    if (i % 2 == 0) { //Make every other line a slightly wider. Is "i" an EVEN number? 

      //Yes i==EVEN, draw a single-wide line 

      tft.drawFastHLine(xGraphStart2, yGraphTop + i * hGridSpacing + 1, xGraphSize2, GridLineColor); 

    } 

  } 

  //===== DRAW VERTICAL GRID 

 

  

  H_Adjust = 2; //Minor fixed hori-offset determined empirically 

 

 

 

  for (int i = 0; i < numV_lines + 1; i++) { //Draw Single-Wide Grid Line 

    tft.drawFastVLine(xGraphStart + i * vGridSpacing, yGraphTop, yGraphSize, GridLineColor); 

    if (i % 2 == 0) { //Make every other line a slightly wider.  Is "i" an EVEN number? 

      //Yes i==EVEN, draw a second line to make it double-wide line 

      tft.drawFastVLine(xGraphStart + i * vGridSpacing + 1, yGraphTop, yGraphSize, GridLineColor); 

    } 

  } 

  //====== PRINT VERTICAL AXIS LABELS 

  float Grid_Ymax = -10000.; 

  float Grid_Ymin = 10000.; 

  tft.setTextColor(WHITE, GREY); //Foreground,Background text color 

  tft.setFont(&FreeSans9pt7b); 
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  for (int i = 0; i < numH_lines + 1; i++) { 

 

    TxStart = xStart + 1; 

 

 

    float GridLabel = (Tmax - i * Tstep); //Grid Label value  

    int DisplayedValue = GridLabel; 

    //Determine X-starting coordinate of label 

 

    TxStart = xStart + 1 + 8; 

 

    TyStart = yGraphTop + 6; 

    TxStart = xStart + 1; //This eliminates the centering-stuff in the above switch()... 

    tft.setCursor(TxStart, TyStart + i * hGridSpacing); 

    String NewText; 

    NewText = String(GridLabel, 1);    // 1 decimal point of precision... 

 

    tft.fillRect(2, TyStart + i * hGridSpacing + 2, xGraphStart2 - 2, -(getTextHeight(NewText) + 2), 

TFT_BLACK); 

 

 

    tft.print(NewText); 

    tft.setCursor(TxStart, 25); 

    tft.print("(CM)"); 

    //Find Graph Max and Min values (in DegC) 

if (GridLabel > Grid_Ymax) Grid_Ymax = GridLabel; 

    if (GridLabel < Grid_Ymin) Grid_Ymin = GridLabel; } 

  //Capture and scale Y Min/Max Grid values so we can plot things properly 

  Grid_Ymin = Grid_Ymin * 10; 

  Grid_Ymax = Grid_Ymax * 10; //This is needed because incoming data is in 10ths of a degree C 

#ifdef DiagPrintEnabled 

  // DiagPrint("   Grid_Ymin=",Grid_Ymin,", "); 

  // DiagPrintln("Grid_Ymax=",Grid_Ymax," "); 

#endif 

 //====== PRINT NEW HORIZONTAL AXIS GRAPH LABELS 

  int H_GridLabel = 1; 

  float H_GridLabel_F = 0.0; 

  float H_GridPeriodHrs_F = GBL_TotPlotHrs / (numV_lines - 1); 

  DateTime now = rtc.now(); 

  int TOD_StartMinute = 1; 
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  int LargestHourValue = 0; 

  tft.fillRect(xGraphLeft, ScrnHeight - 2, xGraphSize2, -(ScrnHeight - yGraphBottom - 2), TFT_BLACK); 

  int MaxTime = 300; 

  int TStep = 50; 

  for (int i = 0; i < 7; i++) { 

//TOD_StartMinute=TOD_StartMinute+10; 

float GridLabelX = (MaxTime - i * TStep); //Grid Label value ( 

    int DisplayedValue = GridLabelX; 

    //Determine X-starting coordinate of label 

    while (GridLabelX > 1000) { 

      GridLabelX = 1000; 

    } 

    while (GridLabelX < 0) { 

      GridLabelX = 0; //Range limit value to stay in 0-180 Hour range 

    } 

    TxStart = xStart + 1 + 8; 

 

 

 

  TyStart = yGraphTop + 6; 

    TxStart = xStart + 1; //This eliminates the centering-stuff in the above switch()... 

    String NewXText; 

    NewXText = String(GridLabelX, 0);    //1 decimal point of precision... 

 

    tft.setCursor(350 - (i * 2 * vGridSpacing) - getTextWidth(NewXText) / 2, yEnd - 1); 

    tft.print(NewXText); //xGraphRight 

 

    tft.setTextColor(WHITE, GREY); //Foreground,Background text color 

    tft.setFont(&FreeSans9pt7b); 

    tft.setTextSize(1); //Make is 1X sized 

    tft.setCursor(370, yEnd - 1); 

    tft.print("(C/Sec)"); 

  } 

 

 

  GBL_CurDisplayHours = LargestHourValue; //Remember this value so other routines can dectect a 

change 

  String TrendText = String(LargestHourValue, DEC); 

 

  TrendText += "Scan Height(CM) vs Counts/Sec"; 
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  TrendText += " "; 

  //Now more or less center the text inside of the grid area; This is an approximation based on mono-spaced 

characters... 

  //Get Width of the printed text string,,, 

  int TrendTextWidth = getTextWidth(TrendText); 

  //Center Text in GRAPH region 

  int X_TrendText = xGraphLeft + xGraphSize2 / 2 - TrendTextWidth / 2; //Calculate Starting X-coord to 

center the text string (about 31 Characters) 

  X_TrendText = constrain(X_TrendText, xGraphLeft, xGraphRight - TrendTextWidth); //Make sure we're 

in-bounds 

  tft.setFont(&FreeSans9pt7b); 

  tft.setTextSize(1); //Make is 1X sized 

  int16_t X_erase, Y_erase, dX_erase, dY_erase; 

 

tft.getTextBounds(TrendText, X_TrendText, yStart + 20, &X_erase, &Y_erase, &dX_erase, &dY_erase); 

//Clear background where label will be to get rid of grid lines 

  uint16_t const B_Spc = 3; //B_Spc (in pixels) = extra boarder space around text to be sure enough 

background has been cleared 

  tft.fillRect(X_TrendText, 20, dX_erase + 2 * B_Spc, dY_erase + 2 * B_Spc, GBL_Graph_BG); //Make 

text background GREY 

  tft.setCursor(X_TrendText + 8, 37); 

  tft.setTextColor(WHITE); 

  tft.print("Scan Height(CM) vs Counts/Sec"); //Print graph label 

  tft.setCursor(400, 15); 

  tft.setTextColor(WHITE); 

  tft.print("GammaA"); //Print graph label 

  int CurMarkerX = NoData; 

  int CurMarkerY = NoData; 

  GBL_TdataNewPtr_RD = 0; 

  Plot_Gamma_AUTO_OvrView_Buttons(TFT_BLUE, TFT_WHITE); 

  Menu = 8;  while (Menu == 8) { 

    //Listen to buttons for Abort==== 

    ReadRF(); 

    getMessageStringFromEEPROM(sMessage); 

    if (digitalRead(MenuExitPB_Pin) == HIGH) 

    { driver.send("-setST TY:4;PT:0;TD:0;", 27); 

      driver.waitPacketSent(); 

      tft.fillScreen(BLACK); 

      Display_MODE_SELECTION_Screen(TFT_LIGHTGREY); 

      //Abort_Warning();  } 
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    //========== PLOT ACTUAL TREND DATA POINTS TO SCREEN 

    if (bDataPresent == true) { 

      exParamRD(sMessage, ulParamRD); 

      exParamDS(sMessage, ulParamDS); 

      exParamAG(sMessage, ulParamAG); 

      PlotGammaAutoChart(); 

    }  } 

  //========== End Screen Plotting} 

Appendix VIII: Plotting Radio Tracer Chart Points 

void PlotRTracerChart() { 

  int PointColor = GBL_Outdoor_Temp_FG; 

  Serial.print ("Pointer value: "); Serial.println(Xaxiscounter); 

  X = Xaxiscounter + 54; 

  Serial.print ("X value: "); Serial.println(X); 

  y_pos_x = GBL_Tdata_RD[Xaxiscounter]; 

  Serial.print("Y Value: "); Serial.println(y_pos_x); 

  if (X > 368) { 

    driver.send("-setST TY:4;PT:0;TD:0;", 28); 

    driver.waitPacketSent(); 

    delay(100); 

  } 

  if ( y_pos_x != NoData) { 

    // Serial.println(X); 

    Y = map(y_pos_x, 0, 500, 290, 42); 

    Y = constrain (Y, 42, 291); //Final check to keep XY point inside the define graph area 

    if (X > 55 && X < 375) { 

      tft.drawLine(PriorXval, PriorYval, X, Y, PointColor); 

      tft.drawLine(PriorXval, PriorYval + 1, X, Y + 1, PointColor); //Thicken line in Y 

      PriorYval = Y; 

      PriorXval = X; 

    } 

  } 

  else { 

    PriorXval = 0; 

    PriorYval = 0; 

  } 

} 

 

Appendix IX: Detector Code 
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//radiation counts variables 

volatile uint32_t nCounts = 0;   //incremented by interrupt from radiation counts 

uint32_t nTargetCounts = 0; //number of Counts we should get to when dispensing fixed folume 

uint32_t nNewCounts = 0;    //Counts received since last report from radiation counts 

uint32_t nLastCounts = 0;   //Counts received at last radiation counts report 

uint32_t lastMeasurementTime = 0;   //Counts received at last radiation counts report 

uint32_t pulseIntervalMillis = 0; //calculated time between Counts 

const uint32_t reportIntervalMilliseconds = 1000; //time between radiation reports 

uint32_t currentRadiations = 0; 

 

void setupRadiationSensor() { 

 

  pinMode(SIGN_PIN, INPUT); 

  attachInterrupt(digitalPinToInterrupt(SIGN_PIN), countsInterrupt, RISING); 

} 

 

 

float ObtainRadiations() 

{ 

  wdt_reset(); 

  //  uint32_t currentRadiations = 0; 

  if (bDetectorEmulation == true) { 

    currentRadiations = random (750,970); 

  } 

  else { 

    if ( millis() >lastMeasurementTime + reportIntervalMilliseconds) { 

      //flow rate 

      currentRadiations = nCounts ; 

     // return currentRadiations; 

//      Serial.println(currentRadiations); 

      nCounts = 0; 

      lastMeasurementTime = millis(); 

    } } 

  if (currentRadiations >=950){ 

    currentRadiations = 950; 

  } 

  //updateCurrentRadiationValueToEEPROM(currentRadiations); 

//  Serial.println(currentRadiations); 

  wdt_reset(); 

 // Serial.println(currentRadiations); 
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  return currentRadiations;} 

//initialise radiation counts variables before a scan 

void initialiseDetector() { 

  nCounts = 0; 

  nNewCounts = 0; 

  nLastCounts = 0; 

  CountsIntervalMillis = 0; 

  lastMeasurementTime = millis();} 

/* radiation counts code */ 

void countsInterrupt() { 

  //low to high transition! 

  nCounts++; 

} 

Send data 

   void sendGMData(bool bIsHeartbeat) 

{    

  wdt_reset(); 

  String statusMsg = ""; 

     if (bIsHeartbeat == true) { 

      float fDist = getDistanceReading(); 

      float fAngle = 0; 

      statusMsg += "DS:" + String(fDist);  //Distance "DS" getDistance 

      statusMsg += ";RD:" + String(ObtainRadiations()); //Radiatoin count/sec "RD" 

      statusMsg += ";AG:" + String(fAngle); 

      statusMsg += ";"; 

      statusMsg.toCharArray(ConvStatusMsg, 25);//convert serialdat the the msg char array 

       wdt_reset(); 

      radio.writeFast(&ConvStatusMsg,25); 

      delay(30); 

      Serial.println(statusMsg); 

     wdt_reset(  } 

Appendix X: nRFL2401 and 433MHz RF Code 

#include <SPI.h> 

//#include "nRF24L01.h" 

#include "RF24.h" 

//#include "printf.h" 

/*************  USER Configuration *****************************/ 

RF24 radio(42,44);                        // Set up nRF24L01 radio on SPI bus plus pins 7 & 8 
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unsigned long timeoutPeriod = 3000;     // Set a user-defined timeout period. With auto-retransmit set to 

(15,15) retransmission will take up to 60ms and as little as 7.5ms with it set to (1,15).                     // With a 

timeout period of 1000, the radio will retry each payload for up to 1 second before giving up on the 

transmission and starting over 

/***************************************************************/ 

const uint64_t pipes[2] = { 0xABCDABCD71LL, 0x544d52687CLL };   // Radio pipe addresses for the 2 

nodes to communicate. 

byte data[32] = {"_2,20,440,20,0,1"};                           //Data buffer 

volatile unsigned long counter; 

unsigned long rxTimer,startTime, stopTime, payloads = 0; 

//bool TX=1,RX=0,role=0, transferInProgress = 0; 

bool transferInProgress = 0; 

unsigned int TX=1,RX=0,role=1,lastrole=0,SKIP=2,RXPRINT=3,RXDUMP=4; 

unsigned int offset=0; 

 

 //pinMode(TXLED_PIN, OUTPUT); 

// pinMode(TXLED_PIN, OUTPUT); 

  

boolean bAutomaticMode = false;      //Boolean to indicate if system is on automode or manual mode 

boolean bManualMode = true;       //Boolean to indicate if system is on automode or manual mode 

unsigned long ulParamOperationMode = 1;             //Config parameter that is used to set bAutomaticMode 

boolean bStartAutomaticModeOperation = false; 

String sOperationMode = " "; 

//sets the system operation mode 

void setOperationMode() { 

  if (ulParamOperationMode == 1 ) { 

    bAutomaticMode = true; 

    bStartAutomaticModeOperation = true; 

    StartAutomaticModeOperation();  

 

 

  } else { 

    bAutomaticMode = false; 

    bManualMode = true; 

  }} 

 void radioData(){ 

   } 

String checkForOperationMode() { 

  if (ulParamOperationMode == 1 ) { 

   return "1"; 
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  } else { 

   return "2"; 

  } 

} 

 

void StartAutomaticModeOperation(){ 

    if (bStartAutomaticModeOperation == true ) { 

      String sPauseTime; 

      String sTravelDistance; 

     // String scanStatus = executeGammaScannerAutoMode(sPauseTime,sTravelDistance); 

    bStartAutomaticModeOperation = false; 

  } 

} 

 

 

void setupTXRadio() { 

 // printf_begin(); 

  radio.begin();                           // Setup and configure rf radio   

  role = TX; 

  radio.setChannel(1);                     // Set the channel 

  radio.setPALevel(RF24_PA_HIGH); 

  radio.setDataRate(RF24_250KBPS); 

  //radio.setDataRate(RF24_2MBPS); 

  radio.setAutoAck(1);                     // Ensure autoACK is enabled 

  radio.setRetries(2,15);                  // Optionally, increase the delay between retries. Want the number of 

auto-retries as high as possible (15) 

  radio.setCRCLength(RF24_CRC_16);         // Set CRC length to 16-bit to ensure quality of data 

 

 

  radio.openWritingPipe(pipes[1]);         // Open the default reading and writing pipe 

  radio.openReadingPipe(1,pipes[0]); 

  radio.stopListening();//  if (role == RX) 

  radio.powerUp();                        //Power up the radio 

  Serial.println(F("*** RADIO STARTED IN TX MODE****************")); 

 

} 

void setupRXRadio() 

{ 

  //  Serial.begin(9600);  // Debugging only 

    if (!driver.init()){ 
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         Serial.println("Receiver init failed"); 

         } 

         else { 

         Serial.println("Receiver Initialized Success") }} 

Appendix XI: Command Checking and Execution. 

 

String sFaultCode = "None"; 

#include <RH_ASK.h> 

//#include <SPI.h> // Not actualy used but needed to compile 

//boolean bSampleDistanceFlag = false; 

// pinMode(2, OUTPUT); 

RH_ASK driver; 

char cad[50]; 

int pos = 0; 

byte message[50]; 

//    byte messageLength = sizeof(message); 

byte buf[50]; 

byte buflen = sizeof(buf); 

//called to check for any incoming messages on the 433MHz radio 

void serviceCommands() { 

  String sCommandUSB = GetRadioCommand(); 

  if (sCommandUSB != "") { 

    processCommandUSB(sCommandUSB); 

  } 

} 

String GetRadioCommand() 

{ 

  byte messageLength = sizeof(message); 

  String sRxBufferRadio = ""; 

  String sReceivedCommand = ""; 

  sRxBufferRadio.reserve(35); 

  if (driver.recv(message, &messageLength)) 

  { 

    for (int i = 0; i < messageLength; i++) 

    { 

      // sRxBufferRadio = (char)message; 

      //sReceivedCommand = sRxBufferRadio; 

      //Serial.println(messageLength); 

      //Serial.write(message[i]); 
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      delay(50);  

      //Serial.println(message[i]);Serial.println(" "); 

      //delay(2000); 

      char inChar = (char)message[i];          // read a byte and cast as a character 

      if ( inChar == '-') {                       // if the incoming character is a newline the message is complete 

        //if (gbNewCommand == false) {              // If the last message has been acknowledged (not pending 

processing) 

        // Serial.println("start of a new message"); 

        int startChar = sRxBufferRadio.indexOf('-'); // Finds the start character for a message (an exlamation 

mark). If any crap on the serial port was added to the buffer before this, we will ignore it. 

        if (startChar > - 1) { 

          sReceivedCommand = sRxBufferRadio.substring(startChar + 1);  //Start character present, remove all 

characters upto and including it 

        } 

        else { 

          sReceivedCommand = sRxBufferRadio;                // No start character, assign message to instruction 

variable 

        } 

        //} 

        sRxBufferRadio = "";                           //wipe the receive buffer 

      } 

      // 

      else {                                    // If the character is not a newline character then message is incomplete 

        sRxBufferRadio += inChar;                      // add the char to the receive buffer 

        sReceivedCommand = sRxBufferRadio;; 

      } 

    } 

    Serial.println(sReceivedCommand); 

  } 

  return sReceivedCommand; 

} 

//process commands received over the serial port from Fuel Point Manager 

void processCommandUSB(String sCommand) { 

 

  //get the instruction part of the command (which API message is it) 

  String sInstruction = getInstruction(sCommand); 

  // boolean bSampleDistanceFlag = false; 
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  //set_config command 

  if ( sInstruction == SETSCANTYPE_INSTRUCTION ) { 

    String sScanTypeConfigString = getParameter(sCommand); 

    applyReceivedScanTypeConfigString(sScanTypeConfigString); 

    return; 

  } 

  //get_config command 

  if ( sInstruction == GETSETSCANTYPE_INSTRUCTION ) { 

    sendCommandSuccessResponse(GETSETSCANTYPE_COMPLETED + getScanType()); 

    return; 

  } 

  //get the instruction part of the command (which API message is it) 

  // status instruction 

  if ( sInstruction == STATUS_INSTRUCTION ) { 

    // getStatus(false); 

    //  sendRadioData(true); 

    sendGMData(true); 

    return; 

  } 

  //scanner instructions 

  if ( (sInstruction == MOVE_UP_INSTRUCTION) && (getDistanceReading() < 75)) { 

    moveScannerUp(); 

    delay(250); 

    stopMovement(); 

    return; 

  } 

  if ( sInstruction == MOVE_DOWN_INSTRUCTION && (getDistanceReading() > 12)) { 

    moveScannerDown(); 

    delay(100); 

    stopMovement(); 

    return; 

  } 

  if ( sInstruction == MOVE_RIGHT_INSTRUCTION ) { 

    moveScannerRight(); 

    delay(100); 

    stopMovement(); 

    return; 

  } 

  if ( sInstruction == MOVE_LEFT_INSTRUCTION ) { 

    moveScannerLeft(); 
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    delay(100); 

    stopMovement(); 

    return; 

  } 

  if (( sInstruction == MOVE_HOME_UP_INSTRUCTION ) && (getDistanceReading() < 74)) { 

    gState = eMovingHomeUp; 

    // moveScannerHome(true); 

    return; 

  } 

  if (( sInstruction == MOVE_HOME_DOWN_INSTRUCTION ) && (getDistanceReading() > 10)) { 

    gState = eMovingHomeDown; 

    // moveScannerHome(true); 

    return; 

  } 

  if ( sInstruction == ABORT_SCAN_INSTRUCTION ) { 

    stopMovement(); 

    return; 

  } 

  //watchdog reset instruction 

  if ( sInstruction == KPWD_RESET ) { 

    resetSystemWatchdog(); 

    sendCommandSuccessResponse(KPWD_RESET_MESSAGE); 

    return; 

  } 

  //timeout watchdog instruction 

  if ( sInstruction == KPWD_TIMEOUT ) { 

    timeoutSystemWatchdog(); 

    sendCommandSuccessResponse(KPWD_TIMEOUT_MESSAGE); 

    return; 

  } 

  if (sInstruction == CONTROLLER_STATUS_INSTRUCTION) { 

    delay(300); 

    sendCommandSuccessResponse(CONTROLLER_STATUS_UPDATE_MESSAGE + gsState[gState]); 

  } 

  //set serial data to EEPROM 

  if ( sInstruction == ABORT_AUTO_SCAN_INSTRUCTION ) { 

    sendCommandSuccessResponse(EEPROM_SERIAL_SET_COMPLETED); 

  } 

  /* 

    //return serial data 
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    if ( sInstruction == EEPROM_SERIAL_GET ) { 

      sendCommandSuccessResponse(EEPROM_SERIAL + getKpcId()); 

      return; 

    } 

    //delete serial data from EEPROM 

    if ( sInstruction == EEPROM_SERIAL_DELETE ) { 

      deleteKpcIdFromEEPROM(); 

      setupKpcId(); 

      sendCommandSuccessResponse(EEPROM_SERIAL_DELETE_COMPLETED); 

      return; 

    } 

  */ 

  //fault codes 

  if ( sInstruction == FAULT_CODE_INSTRUCTION ) { 

    if (sFaultCode != "None") { 

      sendCommandSuccessResponse(FAULT_CODE_MESSAGE + sFaultCode); 

    } else { 

      sendCommandErrorResponse(ERROR_NO_FAULT, "Failed to get a fault code"); 

    } 

    return; 

  } 

  //else instruction process based on controller's state 

  switch (gState) { 

 

    case eCyclic: 

      if (sInstruction == ABORT_SCAN_INSTRUCTION) { 

        gState = eIdle; 

      } 

      else { 

        sendCommandErrorResponse(ERROR_STATE_INVALID_COMMAND, "Invalid command " + 

sInstruction + " received in " + gsState[gState] + " state"); 

      } 

      break; 

    case eRadioTracer: 

      if (sInstruction == ABORT_SCAN_INSTRUCTION) { 

        gState = eIdle; 

      } 

      else { 

        sendCommandErrorResponse(ERROR_STATE_INVALID_COMMAND, "Invalid command " + 

sInstruction + " received in " + gsState[gState] + " state"); 
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      } 

      break; 

      /*       case eIdle: 

        //set_config command 

        if ( sInstruction == SETGAMMAMODECONFIG_INSTRUCTION ) { 

          String sGammaModeConfigString = getParameter(sCommand); 

          //Attempt to apply the config string from app. If all parameters are ok, they will be applied. Else the 

default values will be used 

          //and an alert will be raised for each invalid/missing parameter. 

          applyReceivedGammaModeConfigString(sGammaModeConfigString); 

          gState = eGammaManual; 

        } 

            break; */ 

  } 

  wdt_reset(); 

} 

//extract the instruction from the command 

String getInstruction(String sCommand) { 

  String sInstruction = ""; 

  int indexOfSpace = sCommand.indexOf(' '); 

  //if no space then the instruction is simply the command 

  if (indexOfSpace == -1) { 

    sInstruction = sCommand; 

  } else {  

    sInstruction = sCommand.substring(0, indexOfSpace); 

  } 

  if (DEBUG_OUTPUT) { 

    Serial.println("Parsed instruction " + sInstruction); 

  } 

  return sInstruction; 

} 

//extract the paramater from the command 

String getParameter(String sCommand) { 

  //bSampleDistanceFlag = false; 

  String sParameter = ""; 

  int indexOfSpace = sCommand.indexOf(' '); 

  //if no space then the instruction is simply the command 

  if (indexOfSpace == -1) { 

    sParameter = ""; 

  } else { 



127 

    sParameter = sCommand.substring(indexOfSpace + 1); 

  } 

  if (DEBUG_OUTPUT) { 

    Serial.println("Parsed parameter " + sParameter); 

  } 

  return sParameter; 

} 

//prints the command success response 

void sendCommandSuccessResponse(String successMessage) { 

  Serial.println(successMessage); 

} 

//prints the command error response code and creates an alert for the error 

void sendCommandErrorResponse(String errorCode, String errorMessage) { 

  Serial.println(INSTRUCTION_ERROR_MESSAGE + errorCode); 

  //  sendAlert(errorCode, errorMessage); 

} 

Appendix XII: EEPROM code 

#include <EEPROM.h> 

 

const static uint32_t eepromAddr_messageString           = 100;    

 

/** 

  Writes the sMessage string to EEPROM at address eepromAddr_messageString, and also updates the 

length of the string to EEPROM. 

  @param sMessage The value to be written to EEPROM 

*/ 

void writeMessageStringToEEPROM(String sMessage) { 

  int iNextWriteAddress = eepromAddr_messageString; 

  for (int i = 0; i < sMessage.length(); i++ ) { 

    eepromWrite(iNextWriteAddress, sMessage.charAt(i)); 

    iNextWriteAddress++; 

  } 

  //Write null characters at each index after the last config string index up to the last config string allocated 

index 

  while (iNextWriteAddress < eepromAddr_messageString + 50) { 

    eepromWrite(iNextWriteAddress, 0); 

    iNextWriteAddress++; 

  } 

} 

 



128 

 

/** 

  Reads the value of the  string in the EEPROM and assigns it to the variable referenced by sMessage 

pointer. 

  @param sMessage A pointer to the variable to be assigned with the value read from the EEPROM 

*/ 

void getMessageStringFromEEPROM(String &sMessage) { 

  String sMessageFromEEPROM = ""; 

  int iStartReadAddress = eepromAddr_messageString; 

  for (int i = iStartReadAddress; i < iStartReadAddress + 50 ; i++ ) { 

    char cNextChar = (char)EEPROM.read(i); 

    if (cNextChar == 0) { 

      break; 

    }  

    else { 

      sMessageFromEEPROM += cNextChar; 

    } 

  } 

  sMessage = sMessageFromEEPROM; 

   // Serial.println(sMessage); 

} 

 

/** 

   Utility method that accepts any data type and writes the data to EEPROM. 

   @param iAddressToWrite address to write the data value 

   @param a reference to the data to write to EEPROM 

*/ 

template <class T> int eepromWrite(int iAddressToWrite, const T& value) { 

  const byte* p = (const byte*)(const void*)&value; 

  unsigned int i; 

  for (i = 0; i < sizeof(value); i++) { 

    EEPROM.update(iAddressToWrite++, *p++); 

  } 

  return i; 

} 

/** 

   Utility method that reads data written in the EEPROM 

   @param iAddressToRead address to start reading the data value from 

   @param value a reference to the variable where the read value will be assigned. 

*/ 

template <class T> int eepromRead(int iAddressToRead, T& value) { 
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  byte* p = (byte*)(void*)&value; 

  unsigned int i; 

  for (i = 0; i < sizeof(value); i++) { 

    *p++ = EEPROM.read(iAddressToRead++); 

  } 

  return i; 

 

 




