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Abstract

In this project, we investigate the direct sum decomposition of some classes of operators in Hilbert

spaces with the aim of de�ning properties of the direct summands of these

operators.

We show that an arbitrary operator T decomposes into a normal and a completely nonnormal

parts. The properties for which an operator T has nontrivial normal and direct summands are

given. In addition, we study this decomposition of operators in some equivalence classes (similar,

unitarily equivalent, quasisimilar and almost-similar) of operators.

We also investigate the properties of the direct decomposition of a contraction into a unitary and

a completely nonunitary parts. We show that an arbitrary operator T decomposes this way upon

dividing the operator by its norm (re-normalization).
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1 PRELIMINARIES

1.0.1 Introduction

In this project, we study the direct sum decomposition of some classes of operators in Hilbert
spaces. Decomposition of operators is an important tool for operator theory in functional anal-
ysis. The idea of decomposing an operator is to isolate the parts into direct summands of the
operator. As one of many decompositions, direct sum decomposition has been largely deter-
mined by the work of Nagy and Foias [30]. A major result from this work is that any operator
can be decomposed into a direct sum of normal and completely non-normal (c.n.n) parts. More-
over, a contraction can be decomposed into direct sum of a unitary and completely non-unitary
(c.n.u) parts (where any of the direct summands could be missing). Another important discovery
in the decomposition of operators came up from Neumann Wold [40]. The von Neumann-Wold
decomposition of an isometry is where the operator (isometry) decomposes into unitary and
completely non-unitary parts. The c.n.u part in this case is a unilateral shi�. Fuhrmann [12]
proved a similar result that any contraction T ∈ B(H) has a unique decomposition with respect
to the decomposition of H into a direct sum H = H0⊕H1 of reducing subspaces of T such that
T |H0 is unitary and T |H1 is completely non-unitary.
Williams [39] is another Mathematician that has shown important results on decomposition of
operators. He has proved that every operator T is unitarily equivalent to the sum T1⊕T2 where
T1 is normal and T2 is completely non-normal. Moreover, when M is a T2 reducing subspace and
T2 |M is normal, then M = {0}. On hyperinvariance results, Kubrusly [27] has proved that sim-
ilarity preserves non-trivial invariant subspaces while quasisimilarity preserves hyperinvariant
subspaces. He has also shown that if a contraction has no non-trivial invariant subspace, then
it is either a C00, a C01 or a C10 contraction. Duggal and Kubrusly [9] described the completely
non-unitary part of a contraction using the Putnam-Fuglede (PF) Theorem. We investigate the
connection between the direct sum decomposition of a contraction operator and an arbitrary
operator to this decomposition.

1.0.2 Notations, Terminologies and Definitions

Notations

H,H1,K,K1: Hilbert spaces or subspaces of Hilbert spaces over the complex numbers C.
T,T1,T2,A,B: Bounded linear operators.
B(H): Banach algebra of bounded linear operators on H .
T ∗: The adjoint of T .
‖T‖: The operator norm of T .
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B(H,K): The set of bounded linear operators from H to K and equipped with the norm.
‖x‖:The norm of a vector x.
〈x,y〉: The inner product of x and y on a Hilbert Space H .
Ran(T ): The range of an operator T .
Ker(T ): The kernel of an operator T .
M: The closure of subspace M of H .
M⊥: The orthogonal complement of a closed subspace M of H .
M⊕N: The direct sum of subspaces M and N of H .
0 and I: The zero and identity operator on H respectively.
c.n.n: Completely non-normal
c.n.u: Completely non-unitary
l2: Hilbert space of all square summable infinite sequence of complex numbers (C)

Terminologies and Definitions

De�nition 1.0.1. An operator means a bounded (i.e. continuous) linear transformation from H
into K (equivalently, with domain H and range a subset of K).

De�nition 1.0.2. The set σ(T ) = {λ ∈C : λ I−T is not invertible } (equivalently, Ker(λ I−T ) 6=
{0} or Ran(λ I−T ) 6= H) is the spectrum of T .

De�nition 1.0.3. The spectral radius of T is given by r(T ) = sup{|λ | : λ ∈ σ(T )} = max{|λ | :
λ ∈ σ(T )} = limn{‖ T ‖ 1

n}.

De�nition 1.0.4. The numerical range (�eld of values of T ) is denoted byW (T ) = {〈T x,x〉 : x ∈
H,‖x‖= 1}.

De�nition 1.0.5. The point spectrum of T (i.e. the set of all eigenvalues of T ) is de�ned as
σP(T ) = {λ ∈ C : Ker(λ I−T ) 6= {0}}.

De�nition 1.0.6. The continuous spectrum of T (i.e. the set of λ ∈ C where (λ I− T ) has a
densely but unbounded inverse) is de�ned as σC(T ) = {λ ∈C : Ker(λ I−T ) = {0},Ran(λ I−T ) =
H and Ran(λ I−T ) 6= H}.

De�nition 1.0.7. The residual spectrum of T (i.e. the set of λ where (λ I−T ) has an inverse that
is not densely de�ned), is given by σR(T ) = {λ ∈ C : Ker(λ I−T ) = {0} and Ran(λ I−T ) 6= H}.

Remark 1.0.8. We have σ(T ) = σP(T )∪σC(T )∪σR(T ) where the elements in the right are pair-
wise disjoint.

De�nition 1.0.9. A subspace M ⊂H is said to be invariant under an operator T ∈ B(H) if T M ⊆
M (equivalently, if x ∈M⇒ T x ∈M).

De�nition 1.0.10. T is said to have nontrivial invariant subspace if there is a subspace {0} 6=
M 6= H invariant for T .

De�nition 1.0.11. A subspace M ⊆ H reduces an operator T if M is invariant under both T and
T ∗ (equivalently, if both M and M⊥ are invariant under T ).



3

De�nition 1.0.12. An operator is reducible if it has a nontrivial reducing subspace.
An operator T on H is reductive if each invariant subspace of T reduces T .

De�nition 1.0.13. The commutant of T ∈ B(H) is the set of all operators that commute with T ,
denoted by {T}′ = {S ∈ B(H) : ST = T S}.

De�nition 1.0.14. M is a hyperinvariant subspace for T if it is invariant for every operator that
commutes with T .

Remark 1.0.15. If M is an invariant subspace under T ∈ B(H), then relative to the decomposition
H = M⊕M⊥, T can be written as

T =

T |M X

0 Y


where operators X : M⊥→M, Y : M⊥→M⊥ and T |M: M→M. Conversely, if T ∈ B(H) can be
written as

T =

Z X

0 Y


with respect to the decomposition H = M⊕M⊥, then Z = T |M is a part of T . The operator X = 0
if and only if M reduces T . In this case, T is reduced into the orthogonal direct sum of the operators
Z = T |M and Y = T |M⊥ such that T = Z⊕Y .
If {Tk ∈ B(Hk)} is a bounded set of operators, then the direct sum of {Tk} is the operator T ∈ B(H)

: T |Hk= Tk for each k. We denote this by

T =
⊕

k

Tk

De�nition 1.0.16. A direct summand is a restriction of an operator to a reducing subspace of it.

De�nition 1.0.17. A bounded operator T on H is said to be nilpotent if T n = 0 for some positive
integer n.

De�nition 1.0.18. An operator T ∈ B(H) is said to be:
normal if T ∗T = T T ∗.
involution if T 2 = I.
self-adjoint if T ∗ = T .
unitary if T ∗T = T T ∗ = I.
isometry if T ∗T = I.
co-isometry if T T ∗ = I.
projection if T ∗ = T and T 2 = T .
partial isometry if T = T T ∗T (equivalently, if T ∗T is a projection).
symmetry if T = T ∗ = T−1(equivalently, T is self-adjoint unitary).
quasinormal if T (T ∗T ) = (T ∗T )T (equivalently, if T commutes with T ∗T , i.e [T,T ∗T ] = 0).
binormal if (T ∗T )(T T ∗) = (T T ∗)(T ∗T ).
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2-normal if T ∗T 2 = T 2T ∗.
hyponormal if T ∗T ≥ T T ∗ (equivalently, if T ∗T −T T ∗ ≥ 0 (a positive operator).
cohyponormal if its adjoint is hyponormal, i.e, T is cohyponormal if T T ∗ ≥ T ∗T . Obviously, if
T ∈ B(H) is both hyponormal and cohyponormal, then T must be normal.
p-hyponormal if (T ∗T )p ≥ (T T ∗)p, where 0 < p≤ 1.
M-hyponormal if ‖(zI−T )∗x‖ ≤M‖(zI−T )‖, ∀ complex numbers z and ∀ x ∈M ⊂ H and M a
positive number.
quasihyponormal if T ∗2T 2− (T ∗T )2 ≥ 0 (equivalently, if T ∗(T ∗T −T T ∗)T ≥ 0).
paranormal if ‖T x‖2 ≤ ‖T 2x‖ ∀ x ∈ H(equivalently, if ‖T x‖ ≤ ‖T‖‖x‖ ∀ x ∈ H).
k-quasihyponormal if T ∗k(T ∗T −T T ∗T k ≥ 0, for some integer k ≥ 1 and x ∈ H .
p-quasihyponormal if T ∗((T ∗T )p− (T T ∗)p)T ≥ 0.
p,k-quasihyponormal if T ∗k((T ∗T )p−(T T ∗)p)T k ≥ 0, where 0 < p≤ 1 and k is a positive num-
ber.
positive if 〈T x,x〉> 0 for all 0 6= x ∈ H and T is self-adjoint.
dominant if for any λ ∈C corresponds a numberMλ ≥ 1 such that ‖(T−λ I)∗x‖≤Mλ‖(T−λ I)x‖
∀ x ∈ H .
seminormal if it is either hyponormal or cohyponormal (equivalently, if either T or T ∗ is hyponor-
mal). Clearly, every hyponormal operator is seminormal but the converse is not true.
subnormal if it has a normal extension, i.e. if there exists a normal operator N on a Hilbert space
K where H ⊂ K and H is N-invariant and T = N |H .

Remark 1.0.19. From the above de�nitions, we get the following inclusions
Unitary operators ⊆ Isometric operators ⊆ Partial isometries.
Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ Seminormal.

De�nition 1.0.20. An operator T ∈ B(H) is a
le� shi� if T x = y where x = (x1,x2, · · ·) and y = (x2,x3, · · ·).
right shi� if T x = y where x = (x1,x2, · · ·) and y = (0,x1,x2, · · ·).
unilateral shi� if there exists a sequence of (pairwise) orthogonal subspaces {Hn : n≥ 0} such that
H =

⊕
∞
n=0 Hn and S maps each Hn isometrically onto Hn+1.

bilateral shi� if there exist orthogonal subspaces {Hn : n= 0,±1,±2, · · ·} such thatH =
⊕

∞
n=−∞ Hn

and S maps each Hn isometrically onto Hn+1.
contraction if ‖T x‖ ≤ ‖x‖ for every x ∈ H .
scalar if it is a scalar multiple of the identity operator (i.e if T = αI where α ∈ C).

De�nition 1.0.21. A unitary subspace (respectively, normal) in H of an operator T is the maxi-
mum (largest) subspace in H which reduces T to a unitary (normal) operator.

De�nition 1.0.22. T ∈ B(H) is completely non-normal (c.n.n) (pure) if there exist no nontrivial
reducing subspaceM⊂H such that T |M is normal (equivalently, if T has no direct normal summand
or if the normal subspace is {0}).

De�nition 1.0.23. A contraction T ∈B(H) is called completely non-unitary (c.n.u) if there exist
no nontrivial reducing subspace M ⊂ H of T on which T acts unitarily (equivalently, if its unitary
part acts on the zero space {0}).
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De�nition 1.0.24. Let H and K be Hilbert spaces, then T ∈ B(H,K) is invertible if it is both
injective (one-to-one) and surjective (onto) (equivalently, if Ker(T ) = {0} and Ran(T ) = K).

Remark 1.0.25. De�nition 1.0.24 is not true in in�nite dimensional Hilbert spaces.

De�nition 1.0.26. Two operators T ∈ B(H) and S ∈ B(K) are
similar (denoted by T ∼ S) if there exist an operator X ∈ B(H,K) such that XT = SX (equivalently,
T = X−1SX or S = XT X−1.
unitarily equivalent (denoted by T ∼= S) if there exist a unitary operator U ∈ B(H,K) such that
UT = SU (equivalently, T =U∗SU or S =UTU∗).

De�nition 1.0.27. An operator X ∈B(H,K) is a quasiinvertible (quasia�nity) if it is an injective
operator with dense range (equivalently, Ker(X) = {0} and Ran(X) = K or Ker(X) = {0} and
Ker(X∗) = {0}. This means that X ∈ B(H,K) is quasiinvertible if and only if X∗ ∈ B(K,H) is
quasiinvertible.

De�nition 1.0.28. An operator T ∈ B(H) is a quasia�ne transform of S ∈ B(K) if there exists
a quasiinvertible X ∈ B(H,K) such that XT = SX .

De�nition 1.0.29. Two operators T ∈ B(H) and S ∈ B(K) are
quasisimilar (denoted by T ≈ S) if they are quasia�ne transforms of each other (equivalently, if
there exist quasiinvertible operators X ∈ B(H,K) and Y ∈ B(K,H) such that XT = SX and Y S =

TY ).

Remark 1.0.30. It is easily veri�ed that similar operators are quasisimilar but the converse is not
true. Additionally, quasisimilarity is an equivalence relation and that T ∗ is quasisimilar to S∗ when-
ever T ≈ S ([1]).

De�nition 1.0.31. Two operators T and S are said to be almost-similar (denoted by T ≈a.s S) if
there exist an invertible operator N such that the following properties hold

T ∗T = N−1(S∗S)N

T ∗+T = N−1(S∗+S)N

De�nition 1.0.32. An operator X ∈ B(H,K) intertwines T ∈ B(H) to S ∈ B(K) if XT = SX .

De�nition 1.0.33. T is densely intertwined to S if there exist an operator with dense range in-
tertwining T to S.

De�nition 1.0.34. The multiplicity of T ∈ B(H), denoted by µ(T ), is the minimum cardinality
of a set K ⊂ H such that

H = ∨∞
n=0T nK

De�nition 1.0.35. A la�ice, L , is a partially ordered set where each pair of elements a,b ∈L

has a least upper bound and a greatest lower bound.
The lattice of all invariant subspaces of T will be denoted by Lat(T ) while for all reducing subspaces
will be denoted as Red(T ).
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De�nition 1.0.36. Polar decomposition of an operator refers to the factorization of an operator
into the product of a partial isometry and a nonnegative operator.

De�nition 1.0.37. Cartesian decomposition of an operator refers to the direct sum decomposition
where every operator T can be written as T = Re(T )+ iIm(T ) such that Re(T ) = 1

2(T +T ∗) and
Im(T ) =− i

2(T −T ∗) are self-adjoint operators.

1.0.3 Convergence and stability

Suppose {Tn ∈ B(H) : n ≥ 1} is a sequence of operators on a Hilbert space H . Then from the
Banach-Steinhaus Theorem (which states that if F is an arbitrary set of bounded linear trans-
formations between Banach spaces X and Y , then supF∈F‖F‖< ∞ whenever supF∈F‖Fx‖< ∞

∀x ∈ X ), the following conditions are pairwise equivalent.

1. supn‖Tn‖< ∞.

2. supn‖Tnx‖< ∞ ∀x ∈ H .

3. supn | 〈Tnx;y〉 |< ∞ ∀x,y ∈ H .

4. supn | 〈Tnx;x〉 |< ∞ ∀x ∈ H .

De�nition 1.0.38. If one of the conditions holds true, then the sequence {Tn;n ≥ 1} is called a
bounded sequence.

Consider the following conditions which are also pairwise equivalent

1. There exists T ∈ B(H) : 〈Tnx;y〉 −→ 〈T x;y〉 as n−→ ∞ ∀x,y ∈ H .

2. There exists T ∈ B(H) : 〈Tnx;x〉 −→ 〈T x;x〉 as n−→ ∞ ∀x ∈ H .

3. The scalar sequence {〈Tnx;x〉 ∈ C;n≥ 1} converges ∀x ∈ H .

4. The scalar sequence {〈Tnx;y〉 ∈ C;n≥ 1} converges ∀x,y ∈ H .

De�nition 1.0.39. If any of the conditions above holds true, then the sequence {Tn;n≥ 1} isweakly
convergent (denoted as Tn

w−−→ T ).

De�nition 1.0.40. The sequence {Tn;n ≥ 1} is strongly convergent(Tn
s−−→ T ) if one of the fol-

lowing equivalent conditions holds true:

1. ∃ T ∈ B(H): ‖(Tn−T )x‖ −→ 0 as n−→ ∞ ∀x ∈ H .

2. {Tnx ∈ H;n≥ 1} converges in H ∀x ∈ H .
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De�nition 1.0.41. A sequence {Tn;n ≥ 1} is uniformly convergent (Tn
u−−→ T ) if it converges

in B(H) (i.e, if ‖Tn−T‖ −→ 0 as n−→ ∞ for some T ∈ B(H)).

Remark 1.0.42. Uniform convergence means convergence in the operator norm.

De�nition 1.0.43. An operator T ∈ B(H) is weakly stable if the power sequence {T n;n ≥ 1}
converges to the null operator (i.e. T n w−−→ 0) or if 〈T nx;y〉 −→ 0 as n −→ ∞ ∀x,y ∈ H or if
〈T nx;x〉 −→ 0 as n−→ ∞ ∀x ∈ H .

De�nition 1.0.44. T is called power boundedwhen the power sequence is bounded (i.e., supn‖T n‖<
∞). An operator T is uniformly stable (T n u−−→ 0) if ‖T n‖ −→ 0 as n−→ ∞.

Theorem 1.0.45. (Fuglede’s Theorem) If T ∈ B(H) is normal and if T S = ST for some S ∈ B(H),
then T ∗S = ST ∗.

Remark 1.0.46. Weak stability, strong stability, uniform stability and spectral radius are related as
follows, according to theGelfand-Beurling formula (lim‖T n‖ 1

n = r(T )≤‖T n‖ 1
n for every n≥ 1),

that is,

r(T )< 1⇐⇒ T n u−−→ 0 =⇒ T n s−−→ 0 =⇒ T n w−−→ 0 =⇒ supn‖T n‖< ∞ =⇒ r(T )≤ 1

We note that strong stability is not preserved under the adjoint operation. Indeed, T is uniformly or
weakly stable if and only if T ∗ is.
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2 LITERATURE REVIEW

The study of the structures and properties of any operator on Hilbert spaces is basically equiv-
alent to the study of its complementary parts, its invariant and hyperinvariant subspaces. One
of the major steps in investigating linear non-normal operators, has been that of finding ways
of decomposing such operators into di�erent parts which are easier to handle. The analysis of
invariant subspaces is an ordinary first step in the a�empt to comprehend the structure of op-
erators. The Jordan form (for finite dimensional operators) and the spectral theorem (for normal
operators) are the fundamental structure theorems that provide decompositions into invariant
subspaces of special kinds.
Several researchers have discovered that in order to study the structures of any operator in
Hilbert spaces, we examine how the operator can be defined by decomposing it into simple forms;
for example, direct sum decomposition, polar decomposition or Cartesian decomposition, with
respect to the separable Hilbert spaces. A separable Hilbert space has its invariant subspaces,
that is, H = H1⊕H2 where H1 is a closed subspace and H2 is the orthogonal complement sub-
space.
In Furuta [13], a subspace H1 of H is invariant under T ∈ B(H) if for every vector {x ∈H1 : T x ∈
H1} and a subspace H1 of H reduces T if H1 and H2 are both invariant under T . The operator T
has a decomposition given as

T1 = T \H1

and
T2 = T \H2

hence T has a direct sum decomposition as

T = T1⊕T2.

As one of many known forms of decompositions, the direct sum decomposition (orthogonal de-
composition) has been largely motivated by Nagy and Foias’ [30] work from which it results that
an arbitrary operator can be decomposed as a direct sum of normal and completely non-normal
parts.
In the literature, many researchers have demonstrated some tremendous work on the decompo-
sition of operators. Williams [39] has shown that every operator T is always unitarily equivalent
to the direct sum T1⊕T2 such that T1 is normal and T2 is completely non-normal (pure). In ad-
dition, if M is a reducing subspace for T2 and T2 |M is normal, then M = {0}.
Nagy and Foias [30] on their theory of contraction operators, proved that a contraction T ∈B(H)

is a direct sum of a unitary part and a completely non-unitary part. This decomposition concurs
with the von Neumann Wold decomposition for isometries, where the pure part in this case
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is a unilateral shi� (Wold [40]). By Duggal [10], the direct sum decomposition decomposes a
bounded linear operator into its normal and pure parts.
Stampfli and Wadhwa [36] proved that a hyponormal operator must be normal if it is similar
to a normal operator. Fuhrmann [12] a�ested a similar result where any contraction T ∈ B(H)

has a unique decomposition relating to the decomposition of H into a direct sum H = H1⊕H2

of reducing subspaces of T where T |H1 is unitary and T |H2 is completely non-unitary. Wu [41]
showed that if T is a contraction with finite defect indices, then T is quasisimilar to an isometry
if and only if the completely non-unitary part is quasisimilar to an isometry.
The open question of the existence of nontrivial invariant subspaces has been studied by some
operator theorists. For instance, Kubrusly [27] has proved that if a contraction has no nontrivial
invariant subspace, then it is either a C00, a C01 or a C10. Kubrusly and Levan [24] proved a simi-
lar result for the class of hyponormal contractions such that if a hyponormal contraction has no
nontrivial invariant subspace, then it is either a C00 or a C10 contraction. Hoover [20] showed
that quasisimilarity preserves the existence of nontrivial hyperinvariant subspaces and Herrero
[19] has proved that quasisimilarity does not preserve full hyperla�ice.
However, despite of all these research on the decomposition of operators, there exist few results
in the literature on the core properties of the pure part of the decomposed operator. There are
also few results which connect the decomposition of a contraction operator into unitary and
completely non-unitary parts to an arbitrary operator. Hence, from the invariant subspace prob-
lem: Does every operator on a (separable) Hilbert space of dimension greater than one have a
nontrivial invariant subspace? there are some questions to-date remain unanswered. For exam-
ple, does every operator decompose into a direct sum? Which classes of operators decompose
into nontrivial direct summands?

In this project, we establish a connection between direct sum decompositions, invariant and
reducing subspaces of an operator. For example, we demonstrate that any direct sum decompo-
sition of a contraction operator into unitary and completely non-unitary parts can be directly
determined from the direct sum decomposition of an operator into normal and completely non-
normal parts. We show that for any non-zero operator T , the invariant subspace problem is
reduced to the class of contractions (i.e. Does every contraction have a nontrivial invariant sub-
space?).
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3 ON NORMAL AND COMPLETELY NON-NORMAL
SUMMANDS OF AN OPERATOR

In this chapter, we study the decomposition of an operator into a direct sum of its normal and
completely non-normal parts. We investigate the properties of normal and c.n.n summands for
T ∈ B(H). An operator T is classified by properties of its direct summands.
The direct sum decomposition of operator has the property that it transfers invariant subspaces
from the parts (ordinary summands) to the original (decomposed) operator. Other forms of de-
composition such as polar or cartesian decompositions do not have this property.
Every bounded linear operator T on H has an orthogonal decomposition T = T1⊕T2 whereby T1

is normal and T2 is c.n.n. This decomposition is implemented through T restricted to a reducing
subspace. This implies that no restriction or part of T2 to a reducing subspace is normal. Clearly,
either of the two summands may be missing or absent.
Duggal and Kubrusly [9] showed that quasinormality, subnormality and hyponormality all re-
duce to normality in a finite-dimensional se�ing. This shows that such operators will have no
pure (c.n.n) direct summands. We begin with the discussion of the following known result.

Lemma3.0.1. [30] For any operator T ∈B(H), if ‖λ‖= ‖T‖ is an eigenvalue of T thenKer(T−λ I)
is reducing.

Example 3.0.2. For a �nite-dimensional H , eigenvalues of self-adjoint and normal operators areR.
So suppose

T =

1 0

0 0


and let λ = 1. We have

σ(T ) = {0,1}= σP(T )

‖T‖= 1 =| 1 |

Ker(T −λ I) is a reducing subspace of T . ⇒| λ |= ‖T‖. If T is normal, then T ∗T = T T ∗, where
λ ∈ σ(T ),λ ∗ ∈ σ(T ) and T ∗T = ‖T‖2. So if T is invertible, then Ker(T ) is T -invariant. By
extension, if T is invertible, then Ker(T ) is T -reducing. Therefore, H = Ker(T )⊕Ker(T )⊥.

From Lemma 3.0.1, we get the following result.

Corollary 3.0.3. If T is pure or c.n.n and if ‖T‖= r(T ), then there are no eigenvalues λ for which
‖λ‖= ‖T‖.

Remark 3.0.4. We note that σ(T ) = σP(T ) for operator T acting on a �nite dimensional space but
σP(T ) may be empty in an in�nite-dimensional space.
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Example 3.0.5. Let T be a unilateral shift given by T : l2 −→ l2, such that T (v1,v2,v3, ...) =

(0,v1,v2,v3, ...) for every (v1,v2,v3, ...)∈ l2. Assume that λ ∈C is an eigenvalue of T . So there exists
a nonzero eigenvector (v1,v2,v3, ...)∈ l2 such that (0,v1,v2,v3, ...)= λ (v1,v2,v3, ...)= (λv1,λv2,λv3, ...),
so that λv1 = 0 and λvi = vi−1 for each i > 1. If | λ |= 0, then the second condition shows that
v1 = v2 = v3 = ... = 0, a contradiction again! It follows that T (a unilateral shift),does not have
eigenvalues and hence σP(T ) = /0.

Lemma 3.0.6. If T is a normal operator, then σR(T ) = /0.

Proof. Let σR(T ) 6= /0 and suppose λ ∈ σR(T ). But λ ∈ σR(T ) if (λ I−T )−1) exist as a map

bounded or unbounded (i.e. not densely de�ned). This implies that there exists x 6= 0 such that

(λ I−T ∗)x = 0 .................(1)

(λ I−T ) is normal since T is normal. Thus

‖(λ I−T )x‖= (λ I−T ∗)x ∀x ∈ H ................(2)

From equations (1) and (2), we get

‖(λ I−T )x‖= 0 for x 6= 0 or (λ I−T )x = 0 for x 6= 0.

Hence x ∈ σP(T ).
A contradiction since σR(T )∩σP(T ) = /0. Hence σR(T ) = /0.

3.0.1 Direct summands of similar and unitarily equivalent operators

Proposition 3.0.7. [27] If an operator T ∈ B(H) is similar (unitarily equivalent) to a part of an
operator L ∈ B(K), then it is a part of an operator similar (unitarily equivalent) to L.

Proof. Let M be a subspace of K, and L be an operator on K. Suppose M is an invariant for L.

With respect to the decomposition K = M⊕M⊥, we can write L as

L =

L |M X

0 Y


for operators X : M⊥→M, Y : M⊥→M⊥ and L |M: M→M which is a part of L.If T ∈ B(H) is

similar to L |M∈ B(M), then there exists an invertible operator U ∈ B(H,M) such that

T =U−1(L |M)U

Now suppose invertible operator W =U⊕ I : H⊕M⊥→M⊕M⊥ so that

W−1LW =

U−1(L |M)U U−1X

0 Y





12

Thus, W−1LW : H⊕M⊥→ H⊕M⊥ is an operator similar to L for which T is a part, hence

T =W−1LW |H

Remark 3.0.8. We note that W is unitary whenever U is unitary. The next result shows that direct
sums and direct summands are preserved under unitary equivalence only.

Proposition 3.0.9. [27] If an operator T ∈ B(H) is unitarily equivalent to a direct sum L ∈ B(K),
then it is a direct sum itself with direct summands unitarily equivalent to each direct summand of L
(that is, if T ∼=

⊕
k Lk, then T =

⊕
k Tk with Tk

∼= Lk for each k).

Corollary 3.0.10. [27] Every operator unitarily equivalent to a reducible operator is reducible.

Example 3.0.11. Consider the matrix operator

T =

0 1

0 2



on H =R2 =M⊕N. Using the standard basis inR2, we have {

1

0

 ,

0

1

}. Let M = span{

1

0

}
and N = span{

0

1

}.

T M =

0 1

0 2

1

0

=

0

0

 ∈ span{

1

0

}
Therefore M is T -invariant.

T N =

0 1

0 2

0

1

=

1

2

 /∈ span{

0

1

}
⇒ N /∈ Lat(T ). Hence, Lat(T ) = {{0},M,R2}

Now consider T ∗ =

0 0

1 2

. Then by computing

T ∗M =

0 0

1 2

1

0

=

0

1

 /∈ span{

1

0

}
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Therefore M /∈ Lat(T ∗)⇒M is not T -reducing.

T ∗N =

0 0

1 2

0

1

=

0

2

 ∈ span{

0

1

}
Therefore N ∈ Lat(T ∗). Hence, Lat(T ∗) = {{0},N,R2}

So T =

0 1

0 2

 is not reducible since it has no non-trivial subspace i.e.

Red(T ) = {{0},R2} 6= Lat(T ) = {{0},M,R2}

Clearly, T is not reductive and T ∗T 6= T T ∗(not normal).

Remark 3.0.12. Self-adjoint operators must be reducible and reductive. For example orthogonal
projections where Red(T ) = Lat(T ).
Corollary 3.0.10 and Proposition 3.0.9 do not hold under similarity.

Example 3.0.13. Consider the following 3 by 3 matrices representing operators on C3.

T =


1 −1 1

0 0 0

0 1 0

 ,L =


1 0 0

0 0 0

0 1 0

 ,W =


1 0 1

0 1 0

0 0 1

 .

We have that WT = LW , where W is invertible, L is a direct sum such that

L = 1⊕

0 0

1 0


and T is irreducible (since the only one-dimensional T -invariant subspace is not T ∗-invariant).



14

3.0.2 Direct summands of normal and quasinormal operators

Lemma 3.0.14. [37] Let T ∈ B(H1) be a p-quasihyponormal operator and N ∈ B(H2) be a normal
operator. If X ∈ B(H2.H1) has dense range and satis�es T X = XN, then T is also a normal operator.

Proof. By Lemma 3.0.32, T =

T1 T2

0 0

 and N =

N1 0

0 0

 with respect to the decomposi-

tion H1 = Ran(T )⊕Ker(T ∗) and H2 = Ran(N)⊕Ker(N∗) respectively. Since T X = XN and X
has dense range, we have X(Ran(N)) = Ran(T ). Let X1 denotes the restriction of X to Ran(N),

then X1 : Ran(N)→ Ran(T ) has dense range and for every x ∈ Ran(N), we have

X1N1x = XNx = T Xx = T1X1x

so that

X1N1 = T1X1

Since T1 is p-hyponormal by Lemma 3.0.32, there exists a hyponormal operator T̂ corresponding

to T1 and a quasia�nity Y such that T̂1Y = Y T1, where

T̂1 =| T̂1|
1
2V |T̂1|

1
2

with T1 =U | T1 | and T̂1 = |T1|
1
2U |T1|

1
2 . Hence, we have

T̂1Y X1 = Y T1X1 = Y X1N1

Since Y X1 has dense range, T̂1 is normal, and so T1 is normal.Thus the inequality

(T ∗1 T1)
p ≥ (T1T ∗1 +T2T ∗2 )

p ≥ (T1T ∗1 ) = (T ∗1 T1)
p

implies that T2 = 0.Hence T is normal.

Remark 3.0.15. For any arbitrary operator T ∈ B(H), the self-commutator of T ( [T ∗,T ] = T ∗T −
T T ∗) is always self-adjoint and hence normal. We characterize normal and quasinormal operators
using this notion.

Theorem 3.0.16. Let T ∈ B(H) such that T = T1⊕T2 with T1 normal and T2 pure. T is normal if
and only if [T ∗2 ,T2] = 0.

Proof. Suppose T ∈B(H) is normal. Then T ∗T−T T ∗= [T ∗2 ,T2] = 0. Conversely, let [T ∗2 ,T2] =

T ∗2 T2−T2T ∗2 = 0. Since T2 is pure and this holds only if T2 = 0. Hence T ∗T = T T ∗ and therefore

T is normal.
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Remark 3.0.17. Theorem 3.0.16 can be proved easily using the fact that T has no pure part. Recall
that an operator T ∈ B(H) is quasinormal if (T ∗T −T T ∗)T = 0 (equivalently, if it commutes with
T ∗T ).

Theorem 3.0.18. T ∈ B(H) is quasinormal if and only if [T ∗,T ]T = 0.

Proof. The proof follows from imitating Theorem 3.0.16.

Theorem 3.0.19. Every direct summand of a quasinormal operator is again quasinormal.

Proof. Let M be a reducing subspace for T ∈ B(H). Assume that T = T1⊕T2 on H = M⊕M⊥

where T1 = T |M and T2 = T |M⊥ . By quasinormality of T , (T ∗T − T T ∗)T = 0 and writing in

terms of direct summands of T1 and T2, we have,

T ∗T T = (T ∗1 ⊕T ∗2 )(T1⊕T2)(T1⊕T2) = T ∗1 T1T1⊕T ∗2 T2T2 = T1T ∗1 T1⊕T2T ∗2 T2 = T T ∗T

⇒ T ∗1 T1T1 = T1T ∗1 T1 and T ∗2 T2T2 = T2T ∗2 T2 (that is, [T ∗1 ,T1]T1 = 0 and [T ∗2 ,T2]T2 = 0). By Theorem

3.0.18, T1 and T2 are both quasinormal.

Remark 3.0.20. Theorem 3.0.19 implies that the restriction of a quasinormal operator to a reducing
subspace is always quasinormal.
The following corollary is a consequence of Theorem 3.0.19.

Corollary 3.0.21. Let T ∈ B(H) have direct sum decomposition T = T1⊕T2, with T1 normal and
T2 c.n.n. Then T is quasinormal if and only if T2 is quasinormal.

Corollary 3.0.22. Let T ∈ B(H) be hyponormal where its c.n.n summand has �nite multiplicity.
Then T is quasisimilar to an isometry if and only if its normal summand is unitary and its c.n.n
summand is quasisimilar to a unilateral shift.

Proof. Let T be hyponormal with the decomposition T = T1⊕T2, where T1 is normal and T2

is c.n.n. Suppose that T is quasisimilar to an isometry V = U ⊕ S, where U is unitary and S is

unilateral shift. Thus T1 is unitarily equivalent to U [18, Proposition 3.5] and hence unitary. Since

by assumption T is quasisimilar to V , and by Clary [6] quasisimilar hyponormal operators have

the same spectra, then by [17], ‖ T ‖= r(T ) = r(V ) = 1. Hence, this shows that T2 is quasisimilar

to S.

Corollary 3.0.23. Assume A and B are hyponormal operators. Let the c.n.n summand of A have
�nite multiplicity. If A is quasisimilar to B then their normal summands are unitarily equivalent.

Proof. From Corollary 3.0.22, the result follows easily. Also, the result follows from the fact

that quasisimilar normal operators are unitarily equivalent (Hastings [18], Williams [39]).
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3.0.3 Direct sum of dominant and (p,k)-quasihyponormal operators

The class of (p,k)-quasihyponormal operators was introduced by Kim [23]. These operators are
extension of p-hyponormal, k-quasihyponormal and p-quasihyponormal operators. These oper-
ators share many properties with hyponormal operators. We note that a hyponormal operator
which is similar to a normal operator must be normal. We also note that every hyponormal
operator is dominant.

Corollary 3.0.24. If T ∈ B(H) is dominant with T = T1⊕T2 where T1 is normal and T2 is pure,
then T2 is dominant.

Remark 3.0.25. Corollary 3.0.24 applies to all the subclasses of dominant operators (i.e. hyponor-
mal, M-hyponormal).

Theorem 3.0.26. [23] If T ∈ B(H) is (p,k)-quasihyponormal and S∗ ∈ B(H) is p-hyponormal, and
if T X = XS where X : K → H is an injective operator with dense range(a quasia�nity), then T is
normal unitarily equivalent to S.

Remark 3.0.27. Theorem 3.0.26 implies that a (p,k)-quasihyponormal operator that is a quasia�ne
transform of co-p-hyponormal is always normal.

Proposition 3.0.28. [35] If T ∈ B(H) is hyponormal and S−1T S = T ∗ for an operator S, such that
0 /∈W (S), then T is self-adjoint.

Remark 3.0.29. From the Proposition 3.0.28, we deduce that T is normal since a self-adjoint oper-
ator is normal. We also deduce that if a hyponormal operator is similar to its adjoint, then it must
be normal.

Lemma 3.0.30. [38] If T ∈ B(H) is any operator where S−1T S = T ∗, such that 0 /∈W (S), then
σ(T )⊆ R.

Theorem 3.0.31. [2] If T or T ∗ is p-hyponormal, S is an operator where 0 /∈W (S) and ST = T ∗S,
so T is self-adjoint and hence normal.

Proof. Suppose that T or T ∗ is hyponormal. Since σ(S) ⊆W (S), S is invertible and hence

ST = T ∗S becomes S−1T ∗S = T = (T ∗)∗. By Lemma 3.0.30, we get σ(T ∗) ⊂ R. So σ(T ) =
σ(T ∗) = σ(T ∗)⊂ R. Therefore, the planar Lebesgue measure for p-hyponormal operators T or

T ∗ is zero. It follows that T or T ∗ is normal. T must be self-adjoint since σ(T ) = σ(T ∗)⊂R.

Lemma 3.0.32. [23] If T ∈ B(H) is a (p,k)-quasihyponormal operator, then T has the following
matrix representation

T =

T1 T2

0 T3


with respect to the decomposition H = Ran(T k)⊕Ker(T ∗k), where T1 is p-hyponormal on Ran(T k)

and T k
3 = 0. Furthermore, σ(T ) = σ(T1)∪{0}.

Since for quasihyponormal, we have T ∗2T 2− (T ∗T )2 ≥ 0.
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Theorem 3.0.33. [23] If T is (p,k)-quasihyponormal and S is any operator for which 0 /∈W (S) and
ST = T ∗S, so T is an orthogonal sum of self-adjoint (hence normal) and a nilpotent operator.

Corollary 3.0.34. If T or T ∗ is p-quasihyponormal and S is any operator where 0 /∈W (S) and
ST = T ∗S, so T is self-adjoint and hence normal.

Proof. Let T be p-quasihyponormal, so by Lemma 3.0.32, for k = 1, T has the matrix repre-

sentation

T =

T1 T2

0 0


where T1 is p-hyponormal on Ran(T k) and σ(T ) =σ(T1)∪{0}. Since T1 is self-adjoint and T2 = 0
by Theorem 3.0.31,

T =

T1 0

0 0


is also self-adjoint. Conversely, when T ∗ is (p,k)-quasihyponormal, so by Theorem 3.0.31, T is

self-adjoint and hence normal.

Theorem 3.0.35. (Lowner-Heinz Theorem [21]) If A and B are operators where A≥ B≥ 0 then
Aα ≥ Bα for every α ∈ [0,1].

Theorem 3.0.36. (Hansen’s Inequality [21]) If A≥ 0 and B≤ 1, then (B∗AB)δ ≥ B∗Aδ B for all
δ ∈ (0,1].

Lemma 3.0.37. If T ∈ B(H) is (p,k)-quasihyponormal and M is T -invariant where T |M is an
injective normal operator, then M reduces T .

Proof. Suppose that P is an orthogonal projection of H onto Ran(T k). Since T is (p,k)-

quasihyponormal, we have T ∗k((T ∗T )p−(T T ∗)p)T k≥ 0. Let S=PT |M , then clearly,P((T ∗T )p−
(T T ∗)p)P≥ 0. Put T1 = T |M and

T =

T1 T2

0 T3


on H = M⊕M⊥. Clearly, S = T1, if M = Ran(T k). By assumption that T1 is an injective normal

operator, then we get Q ≤ P for the orthogonal projection Q of H onto M and Ran(T k
1 ) = M,

since T1 has dense range. Hence, M ⊆ Ran(T k) and therefore Q((T ∗T )p− (T T ∗)p)Q≥ 0. By the

Lowner-Heinz and Hansen’s inequalities, we get(T1T ∗1 )
p 0

0 0

= Q(T QT ∗)pQ≤ Q(T T ∗)pQ≤ (QT ∗T Q)p =

(T ∗1 T1)
p 0

0 0
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Since T1 is normal, then by Lowner’s inequality

(T T ∗)
p
2 =

(T1T ∗1 )
p
2 A

A∗ B


Thus, (T1T ∗1 )

p 0

0 0

= Q(T T ∗)pQ =

(T1T ∗1 )+AA∗ 0

0 0


and therefore A = 0 and T T ∗ =

T1T ∗1 0

0 B
2
p

. Since T T ∗ =

T1T ∗1 +T2T ∗2 T2T ∗3
T3T ∗2 T3T ∗3

 It follows

that T2 = 0 and hence T is reduced by M.

Remark 3.0.38. Lemma 3.0.37 implies that

T =

T1 0

0 T3


where T1 = T |M . This implies that T decomposes into a direct sum of non-trivial complementary
parts.

Theorem 3.0.39. [25] Let T ∈ B(H). The following statements are pairwise equivalent
(a) M reduces T

(b) T = T |M ⊕T |M⊥=

T |M 0

0 T |M⊥

 : H = M⊕M⊥→ H = M⊕M⊥

(c) PT = T P, where P =

1 0

0 0

 : H = M⊕M⊥→H = M⊕M⊥ is the orthogonal projection onto

M.

Proof. (a) If M is invariant for T ∈ B(H) and P is the orthogonal projection of H onto M,

generally we get PT P = T P and T =

T1 X

0 T2

.

(b) If M is reducing for T ∈ B(H) and P is the orthogonal projection of H onto M, then generally

T P = PT and T =

T1 0

0 T2

⇒ T = T1 +T2.

Lemma 3.0.40. If T ∈ B(H) is paranormal, then T |M is also paranormal where M is an invariant
subspace.
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Proof. If M is invariant under T , then T has a matrix representation T =

T1 X

0 T2

.Thus

T1 = T |M where T is paranormal.

Let x ∈M be any vector. Then we have

‖T |M x‖2 = ‖T x‖2 ≤ ‖T 2x‖‖x‖= ‖(T |M)2x‖‖x‖

⇒ T |M is paranormal.

Remark 3.0.41. We note that any operator which is M-hyponormal acting on a �nite-dimensional
Hilbert space can be extended to the class of dominant operators. The next result is useful.

Theorem 3.0.42. [29] If T ∈ B(H), then there exists a reducing subspace M ⊂ H (possibly trivial)
where T |M is normal and T |M⊥ is c.n.n. Furthermore, the decomposition is unique and

M =
∞⋂

m,n=0

Ker(T nT ∗m−T ∗mT n) =
∞⋂

m=0

∞⋂
n=0

Ker(T nT ∗m−T ∗mT n)

Remark 3.0.43. Theorem 3.0.42 gives the uniqueness of the decomposition and it is used to prove
the following theorem.

Theorem 3.0.44. Let T ∈ B(H). If K = Ran(T ∗T −T T ∗) is the smallest reducing subspace of T ,
then T |K is the c.n.n summand of T .

Proof. Let K = Ran(T ∗T − T T ∗). By Theorem 3.0.42, T = T1⊕ T2 on M⊕M⊥, given T1 is

c.n.n and T2 is normal. Since [T ∗,T ] = [T ∗1 ,T1]⊕ [T ∗2 ,T
2] and [T ∗2 ,T2] = 0, then clearly K ⊆ M

because M is a reducing subspace of T containing the range of [T ∗,T ]. If K ⊂M (proper), then

T1 itself could further be reduced into T11⊕T12 on K⊕K⊥. But from the de�nition of K we have

[T ∗12,T12] = 0. This is a contradiction since T1 is c.n.n. Hence, K = M.

Special case: If T is normal, then T ∗T −T T ∗ = 0. So, K = Ran(0) = {0} (which is always the

smallest reducing subspace of any operator). If T decomposes as T = T1⊕T2 where T2 is c.n.n

with respect to the decomposition H = M⊕N, then T |N= 0

Proposition 3.0.45. (Wold decomposition [27]) Every isometry is a direct sum of a unitary op-
erator and a unilateral shift.
The following result is a consequence of the Proposition 3.0.45.

Proposition 3.0.46. An isometry is pure (c.n.n) if and only if it is a unilateral shift.

Proof. Let T be an isometry and that T = T1⊕T2, where T1 is normal and T2 is c.n.n. Since

T is an isometry, then T ∗T = I. Let T be pure, then T1 is missing. Hence, T = T2. Thus T T ∗ 6=
T ∗T = I = T ∗2 T2⇒ T ∗T = T ∗2 T2. Hence T is an isometry which is not a co-isometry and therefore

must be a unilateral shift. Conversely, let T be a unilateral shift, then T ∗T x 6= T T ∗x for every

0 6= x ∈M ⊂ H . This implies that T is pure.



20

Example 3.0.47. Suppose H = l2 (space of all square-summable sequences) and S the shift operator
(unilateral shift) such that S(x1,x2, ...) = (0,x1,x2, ...).
Then ‖Sx‖= ‖x‖ ∀ x∈ l2. Since S∗ is the left shift operator, thus we get S∗(S(x)) = S∗(0,x1,x2, ...) =

(x1,x2, ...) = x.
Conversely, we have S(S∗(x)) = S(x2,x3, ...) = (x2,x3, ...) 6= x. Hence S∗S 6= SS∗ =⇒ S is not normal
(non-normal isometry). In fact SS∗ = P, where P is a projection and P 6= I i.e S∗S = I 6= P = SS∗.
Thus, a unilateral shift operator is hyponormal but not normal (i.e. it has no normal direct summand).

Remark 3.0.48. Proposition 3.0.46 implies that any pure isometry is a unilateral shift or a direct
sum of unilateral shifts.

Corollary 3.0.49. [36] Let T ∈ B(H) is hyponormal. If T is similar to a normal operator, then T is
normal.

Proof. Let T be hyponormal and T = T1⊕T2, where T1 is normal and T2 is c.n.n. T2 is absent if

T is similar to a normal operator. Suppose T = X−1NX such that N is normal. Then N = N1⊕N2

(where N2 = 0 or absent). Thus,

XT = NX

X(T1⊕T2) = (N1⊕N2)X

XT1⊕XT2 = N1X⊕N2X .

Equating the summands, we get XT1 = N1X and XT2 = N2X
Let T ∼ N. By normality T ∗T = T T ∗, then

(T1⊕T2)
∗(T1⊕T2) = (T1⊕T2)(T1⊕T2)

∗

T ∗1 T1⊕T ∗2 T2 = T1T ∗1 ⊕T2T ∗2 .

By hyponormality, T ∗T ≥ T T ∗,

T ∗1 T1⊕T ∗2 T2 ≥ T1T ∗1 ⊕T2T ∗2 .

Corollary 3.0.50. [36] Let T ∈ B(H) and TW = WN where N is normal and W is any non-zero
operator in B(H). Then T has a non-trivial invariant subspace.

Remark 3.0.51. Corollary 3.0.50 applies to quasia�ne transforms of all reducible operators with
a �nite-dimensional direct summand.

Corollary 3.0.52. [10] Let A ∈ B(H1), B ∈ B(H2) and X ∈ B(H2,H1) be such that AX = XB. If
either A is a pure dominant operator or B∗ is a pure M-hyponormal operator, then X = 0.
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Theorem 3.0.53. An operator T ∈ B(H) is k-quasihyponormal if and only if

T =

T1 T2

0 T3


with respect to the decomposition H = Ran(T k)⊕Ker(T ∗k), where T ∗1 T1−T1T ∗1 ≥ T2T ∗2 and T k

3 = 0.

Proof. The result follows easily from Lemma 3.0.32.

Corollary 3.0.54. If T is k-quasihyponormal and the spectrum of T has zero Lebesgue measure,
then T is a direct sum of normal and nilpotent operators.

Proof. From the hypothesis,

T =

T1 T2

0 T3


and the spectrum of T1 is of zero area measure. Hence, T1 is normal and thus T2 = 0. Therefore,

T =

T1 0

0 T3


where T1 is normal and T k

3 = 0. This shows that T3 is nilpotent.

Alternatively
Let discrete set of M = {a1,a2, ...} and σ(T ) = {λ1,λ2, ...}. Then Lebesgue measures, µ(M) = 0
and µ(σ(T )) = 0. Thus

T =

T1 A

0 T2


on M⊕M⊥, where T1 and T2 are diagonal components and square matrices. We have T1 : M −→
M. Similarly, T2 : M⊥ −→M⊥. By Normalization, we get σ(T1) = {λ1,λ2, ...} and

T1 =


λ1 0

λ2

0 .
.
.


⇒ T1 is normal.

Remark 3.0.55. It is obvious the direct summand T3 is c.n.n. Also, every diagonal matrix must be
normal.
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Corollary 3.0.56. If T is k-quasihyponormal and the spectrum of T has zero Lebesgue areameasure,
and Ker(T )⊂ Ker(T ∗) (equivalently, Ker(T )∩Ran(T ) = {0}), then T is normal.

Proof. Let T satis�es all the conditions in Corollary 3.0.54. Then T = T1⊕ T3 where T1 is

normal. If T k
3 = 0 and T3 6= 0, then Ran(T )∩Ker(T ) = {0}. Thus, T3 = 0 and T = T1⊕0 which

is normal.

3.0.4 Decomposition for quasitriangular operators

De�nition 3.0.57. An operator T ∈ B(H) is called quasitriangular if there exists an increasing
sequence {Pn}∞

n=1 of �nite rank (orthogonal) projections such that Pn −→ I (strongly, n−→ ∞) and
‖T Pn−PnT Pn‖ −→ 0 as n−→ ∞ (see [19], [32]).

Theorem 3.0.58. [20] If A is c.n.n and reductive, and if T commutes with A, then T is quasitrian-
gular.

Proof. Let A be reductive, then AT = TA. So T is reductive and thus each T -invariant sub-

space is reducing. Hence, each invariant subspace of T is also T ∗-invariant subspace. Suppose

λ is an eigenvalue for T ∗ such that Mλ = Ker(λ I− T ∗). This shows that Mλ is T ∗-invariant

and A∗-invariant. Hence, Mλ is hyperinvariant for T ∗ and therefore reduces T . Now let T be

nonquasitriangular and let M be the span of all eigenvectors of T ∗. We have M reduces T and

T |M is diagonal. Thus T |M⊥ is nonquasitriangular. But T ∗ |M⊥ must have an eigenvector. This

is a contradiction. Hence T is quasitriangular.

Remark 3.0.59. Theorem 3.0.58 is not generally true for all reductive operators. The following
example illustrates this fact.

Example 3.0.60. Consider a 3× 3 matrix T =


0 0 0

0 0 0

1 0 0

 and two projections of rank 1, P onto

< 0,1,0 > and Q onto < a,b,0 > , where |a|2 + |b|2 = 1 and a is small (but 6= 0). Suppose P is
invariant under T and Q is nearly invariant under T . If R = P∨Q, then ‖T R−RT R‖ = 1. It can
be shown that

P =


0 0 0

0 1 0

0 0 0

 ,Q =


|a|2 ab∗ 0

a∗b |b|2 0

0 0 0

 ,R =


1 0 0

0 1 0

0 0 0

 ,

‖T P−PT P‖= 0,‖T Q−QT Q = |a|,‖T R−RT R‖= 1.

Corollary 3.0.61. Every reductive operator T ∈ B(H) is quasitriangular.

Proof. Let T be reductive. Then T = T1⊕T2 where T1 is normal hence quasitriangular and T2

is c.n.n which commutes with itself. By Theorem 3.0.58, then T is quasitriangular.
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3.0.5 Direct sum decomposition of 2-normal operators

Proposition 3.0.62. [33] Let T ∈ B(H) have the direct sum decomposition T = T1⊕ T2 relative
to the decomposition H = H1⊕H2. If T is a 2-normal operator (i.e, T ∈ [2N]), then each direct
summand Ti, i = 1,2 is 2-normal.

Proof. Let T ∗T 2 = T 2T ∗. From a simple operator multiplication, we get T ∗T 2 = T ∗1 T 2
1 ⊕T ∗2 T 2

2
and T 2T ∗ = T 2

1 T ∗1 ⊕T 2
2 T ∗2 . Since T ∈ [2N], we get T ∗1 T 2

1 ⊕T ∗2 T 2
2 = T 2

1 T ∗1 ⊕T 2
2 T ∗2 . By equating

the respective direct summands, we have T ∗1 T 2
1 = T 2

1 T ∗1 and T ∗2 T 2
2 = T 2

2 T ∗2 . Thus Ti ∈ [2N], i =
1,2.

Remark 3.0.63. Nzimbi, Pokhariyal and Khalaghai [33] have shown that the converse of Proposi-
tion 3.0.62 is also true.

Corollary 3.0.64. Let T ∈ B(H) be 2-normal and T = T1⊕T2, where T1 is normal and T2 is pure.
Then T2 is 2-normal.

Proof. Follows from Proposition 3.0.62.

Remark 3.0.65. Corollary 3.0.64 shows that T normal implies 2-normal.
Additionally, T normal implies that T ∗ is normal i.e. From T ∗T − T T ∗ = 0 and taking adjoints,
T ∗(T ∗)∗− (T ∗)∗ = 0. This implies that T ∗ is normal.

Proposition 3.0.66. [33] Let T be a normal operator. Then T is 2-normal.

Proof. T ∗ is normal since T is. Hence

T ∗T 2 = (T ∗T )T = (T T ∗)T = T (T ∗T ) = T (T T ∗) = T 2T ∗.

Remark 3.0.67. In general, the converse of Proposition 3.0.66 does not hold.

Example 3.0.68. Normal ⊂ 2-normal.

Suppose T =

0 0

1 0

 . From a simple matrix calculation, it shows that T is 2-normal but not normal

(in fact, T is pure in this case). This implies that a 2-normal operator T decomposes as T = T1⊕T2

where T1 is normal and T2 is c.n.n and any of these summands could be missing.

Remark 3.0.69. If T is normal and AB = 0, but neither A nor B = 0, we don’t conclude (A,B = 0).

Example 3.0.70. Let A =

0 1

0 0

 ,B =

0 2

0 0

. Then

AB =

0 1

0 0

0 2

0 0

=

0 0

0 0

 .
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�estion:
If T and T ∗ are quasinormal, is T normal?

Proposition 3.0.71. IfT ∈B(H) is a 2-normal and quasinormal operator and injective onRan([T ∗,T ]),
then T is normal.

Proof. As T is 2-normal and quasinormal, it shows that T ∗T 2 = T 2T ∗ and (T ∗T −T T ∗)T = 0
⇒ T is normal.

Example 3.0.72. By Proposition 3.0.71, an operator which is both 2-normal and quasinormal has
no non-zero c.n.n direct summand. If T is the unilateral shift on l2, then T has an in�nite matrix

representation T =


0 0 0 . . .

1 0 0 . . .

0 1 0 . . .
...

...
... . . .

 .

A simple calculation shows thatT is quasinormal but not 2-normal. Also, T ∗T−T T ∗= diag(1,0,0, · · ·) 6=
diag(0,0,0, · · ·). Hence T is not normal.

Remark 3.0.73. We note that the 2-normality or quasinormality conditions in Proposition 3.0.71
can not be dropped.
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4 ON UNITARY AND COMPLETELY NON-UNITARY
SUMMANDS OF A CONTRACTION OPERATOR

In this chapter, we investigate the decomposition of a contraction operator into a direct sum
of unitary and completely non-unitary parts (c.n.u). We also study the properties of the c.n.u
summands of a contraction.
We relate a contraction T to a pair of operators A andV such that A denotes a positive contraction
while V an isometry. Similarly, the operators A∗ and V∗ denote the respective positive contraction
and isometry associated with the operator T ∗.
For every contraction T ∈ B(H), there exists operators A and A∗ on H that are the strong limits
of {T ∗nT n;n≥ 1} and {T nT ∗n;n≥ 1} respectively.

4.0.1 Some classes of contractions and quasisimilarity

Remark 4.0.1. We recall that if A = A∗ = 0, then contractions T and T ∗ are strongly stable. If
A = I, then a contraction is an isometry. If A = A∗ = I it is unitary.
Moreover, if A commutes with T , then it is a projection. If T is a normal contraction then A = A∗.
The reducing subspace for T is the subspace Ker(I−A)∩Ker(I−A∗).
If A is invertible, then T is similar to the isometryV . In addition, T is similar toV and again similar
to a unitary operator if A and A∗ are invertible.

We let C0· be the class of all strongly stable contractions while C·0 be the class of all adjoints
which are strongly stable contractions. Let C1· and C·1 be the classes of all contractions for
which T nx and T ∗nx do not converge to zero respectively,∀x ∈ H .
A contraction T ∈C0· if and only if A = 0 and T ∈C1· if and only if Ker(A) = {0}. Thus,

T ∈C00⇐⇒ A = A∗ = 0.

T ∈C01⇐⇒ A = 0,Ker(A∗) = {0}.

T ∈C10⇐⇒ Ker(A) = {0},A∗ = 0.

T ∈C11⇐⇒ Ker(A) = Ker(A∗) = {0}.

Remark 4.0.2. A unitary operator is a C11-contraction.
Every isometric operator is a contraction.
Every unitary is invertible.

Proposition 4.0.3. [27] Suppose T is a contraction such that T ∗nT n s−−→A. The following properties
characterize operator A.
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1. 0≤ A≤ I where A is positive contraction.

2. ‖ T nx ‖−→‖ A
1
2 x ‖ as n−→ ∞, ∀x ∈ H .

3. T ∗nAT n = A for every n≥ 1.

4. ‖ A
1
2 T nx ‖=‖ A

1
2 x ‖, ∀x ∈ H and every n≥ 1.

5. (I−A)T n s−−→ 0, (I−A
1
2 )T n s−−→ 0.

6. ‖ AT nx ‖−→‖ A
1
2 x ‖ as n−→ ∞, ∀x ∈ H .

7. ‖ A ‖= 1 whenever A 6= 0.

8. AT 6= 0 and TA 6= if A 6= 0.

9. Ker(A) = {x ∈ H : T nx−→ 0}.

10. Ker(I−A) = {x ∈ H :‖ T nx ‖=‖ x ‖,∀n≥ 1}.

Remark 4.0.4. Properties (9) and (10) in Proposition 4.0.3 imply that the subspaces Ker(A) and
Ker(I−A) are T -invariant. The following proposition is useful.

Proposition 4.0.5. [27] Ker(A−A2) = Ker(A)⊕Ker(I−A).

Proof. Since Ker(A)∪Ker(I−A) ⊆ Ker(A−A2) and Ker(A) ⊥ Ker(I−A) (since A is self-

adjoint), then

Ker(A)⊕Ker(I−A)⊆ Ker(A−A2).

Conversely, since Ker(A−A2) is A-invariant, then it reduces A. Hence

A = A0⊕A1

where A0 = A |Ker(A−A2 and A1 = A |Ker(A−A2)⊥ .

Since A is a projection on Ker(A−A2) (for 0≤ A0 and A0 = A2
0), thus

Ker(A−A2) = Ker(A0)⊕Ker(A0)
⊥ = Ker(A0)⊕Ker(I−A0)⊆ Ker(A)⊕Ker(I−A)

where the inclusion is trivially showed once Ker(A0) ⊆ Ker(A), Ker(I−A0) ⊆ Ker(I−A) and

Ker(A)⊥ Ker(I−A).

Proposition 4.0.6. [27] If a contraction is quasisimilar to a unitary operator, then it is of classC11.

Proof. Let T ∈ B(H) be a contraction, U ∈ B(K) a unitary operator such that XT = UX
and YU = TY where X ∈ B(H,K) and Y ∈ B(K,H) are quasiinvertible operators, then XT n =

UnX and Y ∗T ∗n = U∗nY ∗ for every n ≥ 1. Hence, if x ∈ H is such that limn−→∞T nx = 0, then

limn−→∞UnXx = 0. Thus Xx = 0 so that x = 0. This implies that Ker(A) = 0. Dually (replacing U
by U∗ and X by Y ∗), Ker(A∗) = {0}. So, if a contraction T is quasisimilar to a unitary operator,

then Ker(A) = Ker(A∗) = {0} ⇒ T ∈C11.
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Remark 4.0.7. The converse of Proposition 4.0.6 holds true, that is, every C11-contraction is qua-
sisimilar to a unitary operator.

�estion: If a contraction T is similar to a unitary operator U , does it mean that T is unitary?
The answer is NO. There exists non-unitary operators similar to a unitary operator. Recall that
T ∈ B(H) is unitary if T is invertible and ‖T‖ ≤ 1 and ‖T−1‖ ≤ 1.

Corollary 4.0.8. If T is a contraction for which A 6= 0 and A∗ 6= 0, then either T has a non-trivial
hyperinvariant subspace or T is a scalar unitary operator.

Proof. If Ker(A) = Ker(A∗) = {0}, then T is a C11-contraction and it either has a non-trivial

hyperinvariant subspace or it is a scalar unitary. If Ker(A) 6= {0}, then Ker(A) is a non-trivial

hyperinvariant subspace for T . We know that Ker(A) 6= H since A 6= 0. Dually, if Ker(A∗) 6= {0},
then Ker(A∗) is a nontrivial hyperinvariant subspace for T ∗. Thus, Ker(A∗)⊥ is a non-trivial

hyperinvariant subspace for T .

4.0.2 On decomposition of contractions

Kubrusly [27] has proved the largest reducing subspace for a contraction on which it is unitary.
This is known as the Nagy-Foias-Langer decomposition for contractions.

Theorem 4.0.9. (Nagy-Foias-Langer decomposition [27, Theorem 5.1])
Let T be a contraction on a Hilbert space H and

M = Ker(I−A)∩Ker(I−A∗)

where M is a reducing subspace for T . Moreover, the decomposition T =U⊕C on H = M ⊕M⊥

is such that U = T |M is unitary and C = T |M⊥ is a c.n.u contraction.

Proof. We recall that Ker(I−A) = {x ∈ H :‖ T nx ‖=‖ x ‖,∀n ≥ 1}, which is an invariant

subspace for T . Hence

M = {x ∈ H :‖ T nx ‖=‖ T ∗nx ‖=‖ x ‖,∀n≥ 1}

is a subspace of H (intersection of subspaces is a subspace) that reduces T since Ker(I−A) and

Ker(I−A∗) are invariant for T and T ∗ respectively, hence their intersection is both T and T ∗-
invariant. Therefore (T |M )nx = T nx and (T |M )∗nx = T ∗nx so that

‖ (T |M )nx ‖=‖ (T |M )∗nx ‖=‖ x ‖
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, ∀x ∈M and every n≥ 1. Thus T |M is unitary on M . Suppose U is unitary on and a reducing

subspace for T , then

‖ (T |U )nx ‖=‖ (T |U )∗nx ‖=‖ x ‖

(T |U )nx = T nx

(T |U )∗nx = T ∗nx

⇒‖ T nx ‖=‖ T ∗nx ‖=‖ x ‖

∀x ∈ U and n ≥ 1⇒ U ⊆M . Hence M is the largest reducing subspace for T on which it is

unitary. Therefore, T |M⊥ is completely non unitary (i.e, it has no unitary direct summand).

Remark 4.0.10. Nagy-Foias-Langer decomposition holds for isometries since isometries are con-
tractions. We note that the restriction of an isometry to a reducing subspace is also an isometry. Thus
from the decomposition T =U ⊕C, C stands for a c.n.u isometry. The following result is important
and it is used to prove that a c.n.u isometry is a unilateral shift.

Proposition 4.0.11. Every c.n.u coisometry is strongly stable (i.e, if T is a c.n.u isometry then
A∗ = 0).

Proof. Let T be an isometry on H . Then A∗ = TA∗T ∗ ⇒ T ∗A∗ = A∗T ∗ (for T ∗T = 1 since

T is an isometry). Since A∗ = A2
∗, then Ker(I−A∗) = Ran(A∗). In addition, A = I since T is an

isometry and so Ker(I−A) = H . Moreover, Ker(I−A)∩Ker(I−A∗) = {0} since isometry T is

c.n.u by Nagy-Foias-Langer decomposition. Hence, Ran(A∗) = {0}. Similarly, A∗ = 0.

Remark 4.0.12. Proposition 4.0.11 on coisometry can be extended to cohyponormal contractions
since isometries are indeed hyponormal contractions.

Theorem 4.0.13. Every c.n.u cohyponormal contraction is strongly stable.

Proof. (see [27], pg 83).

Remark 4.0.14. An isometry is pure (c.n.n) if it has no normal isometry as a direct summand. But
a normal isometry is indeed a unitary operator. Hence, a pure isometry is a c.n.u isometry which in
turn implies it is a unilateral shift.

Corollary 4.0.15. (von Neumann-Wold decomposition [27], Corollary 5.6) If T is an isometry
on H , then Ker(I−A∗) is a reducing subspace for T . Additionally, the decomposition

T =U⊕S+

on H = Ker(I−A∗)⊕Ker(I−A∗)⊥ is such thatU = T |Ker(I−A∗) is unitary and S+ = T |Ker(I−A∗)⊥

is a unilateral shift.
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Proof. Since T is an isometry (i.e, A = I), then T is a contraction where Ker(I − A) = H
⇒ Ker(I−A)∩Ker(I−A∗) = Ker(I−A∗). Applying Nagy-Foias-Langer decomposition for con-

tractions with M = Ker(I−A∗), then T |M is unitary and T |M⊥ is a c.n.u isometry on M⊥ which

implies is a unilateral shift.

Remark 4.0.16. From Corollary 4.0.15, we can deduce that any isometry T ∈ B(H) is either:
(i) a unitary operator (c.n.u part is absent).
(ii) a unilateral shift (unitary part is absent).
(iii) a direct sum of a unitary operator and a unilateral shift operator.
The next result shows that unilateral shifts can be extended to arbitrary isometries if bilateral shifts
are substituted by unitary operators.

Lemma 4.0.17. Every unitary operator is a part of isometry.

Proof. Let T be an isometry on H . By the decomposition T = U ⊕ S+ on H = M⊕M⊥ for

subspace M ⊂ H that reduces T ; such that U is unitary on M and S+ is a unilateral shift on M⊥.

But S+ is part of a bilateral shift S acting on Hilbert space K containing M⊥. Hence, with respect

to the decomposition K = M⊥⊕U where U = K	M⊥,

S =

S+ X

0 Y


where X : U −→M⊥ and Y : U −→ U . Now consider the unitary operator W = U ⊕ S acting

on M⊕K. With respect to the decomposition (M⊕K) = M⊕M⊥⊕U , then

W =


U 0 0

0 S+ X

0 0 Y


so that T is a part of W . In fact,

T =U⊕S+ =W |M⊕M⊥=W |H .

Proposition 4.0.18. If a contraction T = T1⊕ T2, where T1 and T2 are unitary, then T must be
unitary.

Proof. Let T = T1 ⊕ T2. Since both T1 and T2 are unitary, we have T ∗1 T1 = T1T ∗1 = I and

T ∗2 T2 = T2T ∗2 = I. Thus,

T T ∗ = (T ∗1 ⊕T ∗2 )(T1⊕T2)
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= T ∗1 T1⊕T ∗2 T2

= T1T ∗1 ⊕T2T ∗2

= T T ∗ = I⊕ I = I.

Remark 4.0.19. The following theorem is useful in decomposing a contraction with A(or A∗) being
a projection.

Theorem 4.0.20. ([27], Theorem 5.8) Assume T is a contraction on H . If A = A2, then

1. T = G⊕S+⊕U , where G, S+ andU represent a strongly stable contraction acting on Ker(A), a
unilateral shift acting on Ker(I−A)∩Ker(A∗), and a unitary acting on Ker(I−A)∩Ker(A∗)
respectively. In addition, if A = A2 and A∗ = A2

∗, then

2. T = B⊕S−⊕S+⊕U , where B is a C00-contraction on Ker(A)∩Ker(A∗ and S− is a backward
unilateral shift on Ker(A)∩Ker(I−A∗).

3. Furthermore, if A = A∗, then T = B⊕U.

Proof. Assume T is a contraction on H . If A = A2
, then from Proposition 4.0.5 we get H =

Ker(A)⊕Ker(I−A). From properties (9) and (10) in Proposition 4.0.3, the subspaces Ker(A) and

Ker(I−A) are T -invariant and T -reducing. So we get the decomposition

T = G⊕K

on H = Ker(A)⊕Ker(I−A)where G = T |Ker(A) is strongly stable contraction on Ker(A) while

K = T |Ker(I−A) is an isometry on Ker(I−A). But by von Neumann-Wold decomposition

K =U⊕S+

on Ker(I−A) = M⊥⊕M where U = K |M is a unitary operator acting on M and S+ = K |M⊥
is a unilateral shift acting on M⊥. Additionally, by Proposition 4.0.3 property (10), M = {x ∈
Ker(I−A) :‖ K∗nx ‖=‖ x ‖,∀n ≥ 1}. We note that K∗nx = T ∗nx ∀x ∈ Ker(I−A) and n ≥ 1, for

Ker(I−A) reduces T and K = T |Ker(I−A). Hence M = {x ∈ Ker(I−A) :‖ T ∗nx ‖=‖ x ‖,∀n≥ 1},
so that

M = Ker(I−A)∩Ker(I−A∗).

Thus K |M= T |Ker(I−A)∩Ker(I−A∗). From the decompositions above we get T ∗ = G∗⊕S∗+⊕U∗ on

H = Ker(A)⊕M⊥⊕M. It follows that M⊥ = Ker(I−A)	M ⊆ Ker(A∗) ⊆ Ker(A)⊕M⊥ since

S∗n+
s−−→ 0. Therefore Ker(I−A)∩Ker(A∗)⊆ Ker(I−A)∩ (Ker(A)⊕M⊥) = M⊥ ⊆ Ker(I−A)∩

Ker(A∗). Hence

M⊥ = Ker(I−A)∩Ker(A∗)
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and thus K |M⊥= T |Ker(I−A)∩Ker(A∗) which concludes proof of (1). Now suppose Ker(A) 6= {0}
and let operator A′∗ on Ker(A) be the strong limit of {GnG∗n;n≥ 1}. We note that A∗ = A′∗⊕0⊕ I
and (I−A∗) = (I−A′∗)⊕ I⊕ 0 on H = Ker(A)⊕M⊥⊕M. Hence Ker(A∗) = Ker(A′∗)⊕M⊥ ⊆
Ker(A)⊕M⊥

=⇒ Ker(A′∗) = Ker(A∗)∩Ker(A)

and

Ker(I−A∗) = Ker(I−A′∗)⊕M ⊆ Ker(A)⊕M

=⇒
Ker(I−A′∗) = Ker(I−A∗)∩Ker(A).

Next, assume that A∗ = A2
∗ (in addition to A = A2

), then A′∗ = A
′2
∗ . Thus from Proposition 4.0.5

we get Ker(A) = Ker(A′∗)⊕Ker(I−A′∗). By properties (9) and (10) in Proposition 4.0.3, both

subspaces Ker(A′∗) and Ker(I−A′∗) are invariant for G∗, so they reduce G. Hence we get the

decomposition

G = B⊕S−

on Ker(A)=Ker(A′∗)⊕Ker(I−A′∗)where B=G |Ker(A′∗)=T |Ker(A∗)∩Ker(A) and S−=G |Ker(I−A′∗)=

T |Ker(I−A∗∩Ker(A) =⇒ B is a C00-contraction acting on Ker(A)∩Ker(A∗ and S− is a strongly stable

coisometry acting on Ker(A)∩Ker(I−A∗) (again from Proposition 4.0.3 (9) and (10) properties).

Hence S− is a c.n.u coisometry, and therefore its adjoint is a c.n.u isometry (a unilateral shift).

This completes proof of (2). We know if A = A∗, then A = A2
and hence the result in (3).

Remark 4.0.21. The decompositions in (1), (2) and (3) in Theorem 4.0.20, trivially imply that
A = A2, A = A2 and A∗ = A2

∗ ; and A = A∗ respectively.

4.0.3 Nature of direct summands of some c.n.u contractions

Remark 4.0.22. The following result is useful in giving and proving conditions under which a p-
quasihyponormal contraction is normal. We note, by [13], the class of p-quasihyponormal operators
is contained in the class of paranormal operators.

Theorem 4.0.23. The c.n.u summand of a paranormal contraction is of class C·0.

Remark 4.0.24. From Theorem 4.0.23, we have T n = (T1⊕T2)
n = T n

1 ⊕T n
2 . Thus, T ∗n2 −→ 0 as

n−→ ∞ (i.e T ∗2 is strongly stable). The following is a consequence of Theorem 4.0.23.

Corollary 4.0.25. If T is a paranormal contraction and T ∗n = T ∗n1 ⊕T ∗n2 . Then T n
1 and T ∗1 do not

converge to 0. Hence T1 ∈C11.

Claim: If T = T1⊕T2 is a paranormal contraction where T1 is unitary and T2 is c.n.u, T2 is also
paranormal.

Proposition 4.0.26. If T ∈ B(H) is a normal contraction, then the c.n.u part of T is of class C00.
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Proof. Let T be normal and T = T1⊕T2, where T1 is unitary and T2 is c.n.u. Then we have

T ∗nT n = T nT ∗n for every n ≥ 1 (by induction). By Theorem 4.0.23, T2 is of class C·0. It remains

to show that T2 is of class C0·. Since T2 is of class C·0, then ‖T ∗n2 ‖ −→ 0. Moreover, since T is

normal A = limnT ∗n2 T n
2 = limnT n

2 T ∗n2 = A∗ = 0. Hence T2 ∈C00.

Remark 4.0.27. We note that Proposition 4.0.26 follows from the fact that T has the Putnam-
Fuglede (PF) property (i.e, T and T ∗ have PF-property i� A = A∗) (Nzimbi, et.al [31]).

Corollary 4.0.28. Assume T is a contraction on H . If T has no non-trivial invariant subspace, then
it is either aC00-contraction, aC01-contraction such that ‖ A∗x ‖<‖ x ‖ ∀x∈H , or aC10-contraction
such that ‖ Ax ‖<‖ x ‖ ∀x ∈ H .

Proof. Assume T is a contraction on H . When {0} 6= Ker(A−A2) 6= H , then Ker(A−A2) is a

non-trivial invariant subspace for T . Dually, if {0} 6= Ker(A∗−A2
∗) 6= H , then Ker(A∗−A2

∗) is a

non-trivial T ∗-invariant subspace. Hence, Ker(A∗−A2
∗)
⊥

is a non-trivial invariant subspace for

T . This implies that there are 4 cases where T has no non-trivial invariant subspace.

1. Ker(A−A2) = {0} and Ker(A∗−A2
∗) = {0}.

2. Ker(A−A2) = {0} and Ker(A∗−A2
∗) = H.

3. Ker(A−A2) = H and Ker(A∗−A2
∗) = {0}.

4. Ker(A−A2) = H and Ker(A∗−A2
∗) = H.

For case (1) it is impossible. In fact, from Proposition 4.0.5 we get Ker(A) = Ker(A∗) = {0}.
Equivalently, it means that T is a C11-contraction (But a C11-contraction has a non-trivial invari-

ant subspace whenever dim(H)> 1).

If Ker(A∗−A2
∗) = H , then T ∗ = G (a strongly stable contraction) by Theorem 4.0.20 since T ∗ has

no non-trivial invariant subspace and thus no shift and no unitary as direct summands.

If Ker(A−A2) = {0}, then Ker(A) = {0} and Ker(I−A) = {0} by again Proposition 4.0.5. Hence,

case (2) means T is a C10-contraction such that ‖ Ax ‖<‖ x ‖ ∀x ∈ H (recall, Ker(I−A) = {x ∈
H :‖ Ax ‖=‖ x ‖}.
Dually, case (3) implies that T is a C01-contraction such that ‖ A∗x ‖<‖ x ‖ ∀x ∈ H . Finally, if

Ker(A−A2) = Ker(A∗−A2
∗) = H , then by Theorem 4.0.20 we have

T = B⊕S−⊕S+⊕U.

Hence T =B which is of classC00, since S−, S+ andU clearly have non-trivial invariant subspaces.

Therefore, case (4) leads to a C00-contraction.

Proposition 4.0.29. If A ∈ B(H) is a normal contraction and B ∈ B(H) is similar to A, then the
c.n.u summand of B is of class C00.
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Proof. Let A=A1⊕A2 where A1 is unitary and A2 is c.n.u be a normal operator. From previous

results we have T2 ∈C00. Let B = B1⊕B2 be similar to A, so B2 ∈C00.

B = X−1AX = X−1(A1⊕A2)X

B1⊕B2 = X−1A1X⊕X−1A2X

B1 = X−1A1X

and

B2 = X−1A2X ∈C00

Bn
2 = (X−1A2X)n = (X−1A2X)(X−1A2X) · · ·(X−1A2X) = X−1An

2X −→ 0

Thus An
2 −→ 0⇒ Bn

2 −→ 0. It remains to show that B2 ∈C0·

B2 = X−1A2X

B∗n2 = X∗A∗n2 X−1∗.

But A∗n2 −→ 0, thus B∗n2 −→ 0. Hence B2 ∈C00.

Remark 4.0.30. By replacing similarity with either unitary equivalence or quasisimilarity, Propo-
sition 4.0.29 holds.

Lemma 4.0.31. [9, Lemma 1] If A is a normal contraction such that An is normal for any integer
n≥ 2, then there exists direct sum decompositions H =Hn⊕Hp and An =A |Hn is a normalC11⊕C00

type contraction and Ap = A |Hp is a pure C00-contraction.

Remark 4.0.32. We note that if a contraction is pure then it must be c.n.u but the converse is not
generally true.

Example 4.0.33. Consider the matrix T =

0 1
2

1
2 0

 . Then T 2 =

1
4 0

0 1
4

, T n −→

0 0

0 0

 as

n−→ ∞. Therefore, T ∈C0·. Clearly, T ∗T ⇒ T ∈C·0. Thus T ∈C0·∩C·0 =C00⇒ T ∈C00 and T
is normal. Hence, not all C00-contractions are pure. Equivalently, there is no C00-contraction with a
unitary part. Thus a pure C00-contraction is c.n.u.

Example 4.0.34. Consider thematrix T =

0 1
2

0 1
2

, T 2 =

0 1
4

0 1
4

 . ThenT ∗T =

0 0
1
2

1
2

0 1
2

0 1
2

=0 0

0 1
2

 . By mathematical induction, T n =

0 1
2n

0 1
2n

 −→
0 0

0 0

 = 0. Therefore, T ∈ C0·,

T ∗2 =

0 0
1
2

1
2

0 0
1
2

1
2

 =

0 0
1
4

1
4

. Thus, T ∗n −→

0 0

0 0

 ⇒ T ∈ C·0. Hence, T is a C00-

contraction and so T has no unitary part i.e T is c.n.u.
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Remark:
Not normal does not necessarily mean c.n.n. For instance, from Example 4.0.34 we have T ∗T =0 0

0 1
2

, T T ∗ =

1
4

1
4

1
4

1
4

. So T ∗T 6= T T ∗ (not normal).

Lemma 4.0.35. [9] Let T be a C11-contraction on H and U be a unitary operator on K. If there
exists an injective operator X : H −→ K such that XT =UX , then T is quasisimilar to the unitary
operator U |XH⊂K .

Proof. As T is a C11-contraction, so it is quasisimilar to a unitary operator U , hence the as-

sertion follows.

Remark 4.0.36. Every unitary operator is of class C11. However, there are C11-contractions which
are not normal (and hence, not unitary).

Example 4.0.37. We�nd a contraction T such that T n and T ∗n do not converge to 0 and T ∗T 6=T T ∗.

Consider the matrix operator T =

1 1

0 0

. Then T 2 =

1 1

0 0

1 1

0 0

 =

1 1

0 0

. Therefore,

T n−→

1 1

0 0

 6=
0 0

0 0

= 0. So T n does not converge to 0⇒ T ∈C1·. Similarly, T ∗=

1 0

1 0

,

T ∗2 =

1 0

1 0

. Therefore, T ∗n −→

1 0

1 0

 6=
0 0

0 0

 = 0⇒ T ∈C·1. Hence T ∈C11 but T is

not normal.

Corollary 4.0.38. A non-unitary C11-contraction is similar to a unitary operator if it is invertible.

Proof. Let a c.n.u T ∈C11 be such that T = X−1UX , for which U is unitary and let T be not

invertible. Then this is contradiction since the right hand side is invertible while left hand side is

not.

4.0.4 Summands of partial isometry, normal and subnormal partial isometries

Theorem 4.0.39. Let T ∈ B(H). Then T is a quasinormal partial isometry if and only if T is the
orthogonal (direct) sum of an isometry and zero.

Proof. Let T be a partial isometry and quasinormal, thus T = PT = T P, such that P = T ∗T
is the projection on M = Ran(| T |). Hence the space M reduces T and T |M is an isometry. This

implies that T = S⊕0 where S is an isometry. Conversely, let T = S⊕0, where S is an isometry.

Then

T ∗T T = (S∗S⊕0)(S⊕0) = S⊕0 = T = (S⊕0)(S∗S⊕0) = T T ∗T.
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Theorem 4.0.40. [13] Let T ∈ B(H). Then

1. T is normal partial isometry if and only if T is the direct (orthogonal) sum of a unitary operator
and zero.

2. T is subnormal partial isometry if and only if T is the direct (orthogonal) sum of an isometry
and zero.

Proof. (1) As T ∗T = T T ∗ and Ker(T )⊥ coincides with Ran(T ) and hence T |Ker(T )⊥ is unitary,

then T =U⊕0 on Ker(T )⊥⊕Ker(T ). The converse proof is trivial.

(2) When T is subnormal, so T is hyponormal (i.e, T ∗T ≥ T T ∗). Therefore Ker(T )⊥ ⊃ Ran(T ).
This implies that Ker(T )⊥ is invariant under T , and thus reduces T . It is obvious that T |Ker(T )⊥ is

an isometry, thus T = S⊕0 on Ker(T )⊥⊕Ker(T ), where S is an isometry. The converse follows

from [13, §2.6.2].

4.0.5 Unitary and c.n.u summands of almost similar contractions

The following results are due to [32].

Proposition 4.0.41. Let A∈ B(H) such that A is almost similar to an isometry T . Then the unitary
and c.n.u summands of A are isometric.

Proof. By the von Neumann-Wold decomposition, if T is an isometry, then T = S+⊕U , such

that U is unitary and S+ is the forward shift (unilateral shift). Since A ≈a.s T , there exists an

operator N where

A∗A = N−1[(S+⊕U)∗(S+U)]N

= N−1(S∗+S+⊕U∗U)N

= N−1(I⊕ I)N.

Now, let A = A1⊕A2, then A∗A = (A∗1A1⊕A∗2A2) =⇒ (A∗1A1⊕A∗2A2)≈ I⊕ I. From this equation,

we have that A∗i Ai≈ I, i= 1,2. This implies that there exists N where N−1IN = I. Hence A∗i Ai = I.

Therefore, the direct summands of A are isometric.

Remark 4.0.42. The following results from Proposition 4.0.41

Corollary 4.0.43. If an operator A ∈ B(H) is such that A∗ is almost similar to a c.n.u coisometry,
then A has no unitary direct summand.
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Proof. Let A = A1⊕ A2. Applying the proof of Proposition 4.0.41, we get that the direct

summands of A are unitary. But the c.n.u part of an operator cannot be unitary. Thus A1 = 0 or

A1 acts on the null space {0}. Hence A has no unitary direct summand.

Remark 4.0.44. An operator which is unitarily equivalent to a unitary operator has no c.n.u direct
summand [32, Corollary 2.13].

Proposition 4.0.45. If A,B ∈ B(H) are contractions such that A ≈a.s B and B is c.n.u, then A is
c.n.u.

Proof. From Nagy-Foias-Langer decomposition, we have B =U ⊕C on H = H1⊕H2, where

U = B |H1 is the unitary part of B and C = B |H2 is the c.n.u summand of B. Since B is c.n.u, the

unitary direct summand U is missing or H1 = {0}. Without loss of generality, we let B =C. Then

A∗A = N−1(B∗B)N = N−1(C∗C)N. This shows that A∗A is similar to C∗C (that is, A∗A ≈ C∗C).

Now let A = A1⊕A2, where A1 is unitary and A2 is c.n.u. Thus, (A∗1A1⊕A∗2A2) ≈ C∗C. This is

true if and only if direct summand A1 is missing⇒ A = A2.Therefore A is c.n.u.

Corollary 4.0.46. If A ∈ B(H) is normal, then A≈a.s A∗.

Proof. From the fact that AA∗ = A∗A = N−1(AA∗)N = N−1(A∗A)N and A+A∗ = A∗+A =

N−1(A+A∗)N = N−1(A∗+A)N, the result follows.

Remark 4.0.47. In general, the converse of Corollary 4.0.46 does not hold. The following example
illustrates this fact.

Example 4.0.48. Consider A =

0 0

1 0

 and N =

0 1

1 0

. By matrix calculation, we get A∗A =

N−1(AA∗)N and A∗+A = N−1(A+A∗)N⇒ A≈a.s A∗, but A is not normal.

Theorem 4.0.49. (Foguel decomposition [27, Theorem 7.3]) Suppose T is a contraction on H and
set

Z = {x ∈ H : 〈T nx;y〉 −→ 0,n−→ ∞,∀y ∈ H}

is a reducing subspace for T . Moreover, the decomposition

T = Z⊕U

on H =Z ⊕Z ⊥ given as Z = T |Z is a weakly stable contraction whereasU = T |Z ⊥ is a unitary
operator.

Proof. see [1,pg 104].

De�nition 4.0.50. A unitary operator is absolutely continuous when its constant spectral mea-
sure is absolutely continuous relative to Lebesgue measure on the unit circle.
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Corollary 4.0.51. Any c.n.u contraction is weakly stable.

Proof. As Z ⊥ ⊆M = {x ∈ H : ‖T nx‖ = ‖T ∗nx = ‖x‖∀n ≥ 1}, then M⊥ ⊆ Z ⊥⊥ = Z =

Z ⊆ H . Thus, if M⊥ = H (i.e, when T is a c.n.u contraction), then Z = H . This implies that T
is weakly stable.

Remark 4.0.52. The converse of the above result is not true (i.e there exists weakly stable unitary
operator). Therefore, Foguel decomposition is not unique unlike Nagy-Foias-Langer decomposition.
For example, a bilateral shift is weakly stable and unitary, including any direct summand of it.
According to the above corollary, each direct part of a bilateral shift (itself included) that is similar
to a c.n.u contraction is weakly stable.
Each unitary operator is uniquely the orthogonal sum of a singular unitary and an absolutely contin-
uous unitary. In addition, if a unitary operator is a direct part of a bilateral shift then it is absolutely
continuous.
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5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this project, we have seen that every linear operator acting on a Hilbert space can be expressed
as a direct sum decomposition of normal and completely non-normal operator (and that either
direct summand may be missing). Likewise, every contraction operator can be expressed as a
direct sum decomposition of a unitary part and a completely lion-unitary part.
We have shown conditions under which some higher classes of operators are normal. For in-
stance, in Theorem 3.0.26 it has been shown that a p-quasihyponormal operator which is a quasi-
a�ine transform of a normal operator is normal. Similarly, we have seen in Lemma 3.0.37 that
an operator decomposes into a direct sum of nontrivial normal and c.n.n (complementary) parts,
if the operator is (p,k)-quasihyponormal in which the restriction of the operator to an invariant
subspace is injective and normal.Furthermore, in Proposition 3.0.46, using Example 3.0.47, we
showed that an isometry is pure (c.n.n) if and only if it is a unilateral shi�. A result showing that
any linear operator T that is 2-normal, quasinormal and injective on Ran([T ∗,T ]) has no c.n.n
part. The c.n.u part of a contraction operator has been investigated. For example, in Proposition
4.0.26, we have shown that the c.n.u. part of an operator which is similar to a normal contraction
is of class C00.
Chapter 4 is a special case of chapter 3. For instance, the results in Corollary 3.0.22 and Lemma
4.0.31 cut across chapters 3 and 4.

5.2 Recommendations

Decomposition of operators is applicable in the study of mathematical systems theory. It is
easier to study the parts of a system than the entire ’complicated’ system. For example, Let
T,S ∈ B(H) decompose as T = T1⊕T2 and S = S1⊕ S2 respectively where T1,T2,S1,S2 are the
direct summands of T and S.
�estion 1
If S,T are similar, what can we say about the direct summands of both T and S? Is it true that
T1 is similar to S1 and T2 similar to S2?
�estion 2
How is σ(T ) related to σ(T1) and σ(T2)? Is it true that
1. σ(T ) = σ(T1)∪σ(T2)?
2. σ(T )⊆ σ(T1)∪σ(T2)?
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In our research , we were able to show that if two operators of finite multiplicity are hyponormal
and are quasisimilar, then their normal parts are unitarily equivalent. However, we were unable
to conclude that quasisimilar hyponormal operators have quasisimilar pure parts. Hence, more
research on this problem is recommended. In addition, we were able to show that each direct
part of a bilateral shi� similar to a c.n.u contraction is weakly stable. However, we did not
conclude whether the absolutely continuous unitary operator is the only weakly stable operator.
Therefore, further research on this is also recommended.
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