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ABSTRACT

Fall armyworm (Spodoptera frugiperda) is an invasive pest that attacks a wide range of plants

(Early et al., 2018) It is especially notorious for attacking one of Africa’s most important

foods: maize which is a source of livelihood and a staple food for millions of people across

the  continent.  (Day et  al.,  2017). Current  approaches  used  in  fall  armyworm monitoring

require  physical presence of an agricultural  expert  (agricultural  extension officer or plant

entomologist)  to  guide  farmers  in  the  identification  of  fall  armyworm damage on maize

leaves.  Without  expert  training,  farmers  could  easily  confuse FAW  attacks  with  other

common maize pests leading to delayed or incorrect intervention measures and can lead to

the  loss  of  an  entire  crop.  Meissle  et  al.  (2010).  In  the  recent  past,  machine  learning

techniques have been applied in pest detection.  (Ebrahimi et al., 2017; Voulodimos et al.,

2018).  Despite  the  potential  benefits  offered  by  current  machine  learning  approaches  in

literature, there lacks a CNN based mobile artifact that offers an easy-to-use alternative to

classify and localize fall armyworm damage on maize leaves in the natural farm environment.

This research compares the performance of two one stage convolutional neural network meta-

architectures to develop a FAW damage detection mobile application. Experimental results

show impressive performance, with the best performing efficientdet lite model achieving a

mean average precision of 85.85% and the best performing yolov4 tiny model achieving a

mean average precision of 82.5%.  
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CHAPTER ONE: INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Fall  Armyworm (Spodoptera  frugiperda)  is  an  invasive  pest  that  attacks  over  350  plant

species. It is native to the tropical and sub-tropical regions of the Americas.  (Early et al.,

2018) but has over the last five years spread to the African continent (initial reports in 2016)

and Asia (initial reports in 2018). The spread and devastating effects of the fall armyworm

attacks have been felt especially in Africa since it attacks maize plants considered a major

staple  food and source of livelihood for millions of farmers in the continent  (Day et  al.,

2017). The food and agriculture organization notes that farmers loose between 20 - 40 % of

their yields to pests and diseases threating the state of food security FAO. (2020). 

Currently FAW monitoring and detection is done through manual based monitoring (farm

scouting)  and  trap-based  monitoring  (pheromone  traps).  Like  many  other  manual  pest

monitoring techniques, these approaches are subjective, delayed and hard to implement at

scale.(Dai et al., 2016; Selvaraj et al., 2019; Thenmozhi & Reddy, 2019) (He et al., 2019).

Lack of prompt action in case of a FAW invasion can lead to loss of an entire crop yield

(Kassie et al., 2020). Researchers have studied different ways computer vision techniques can

be applied in the agricultural discipline  (Ghadge et al., n.d.; Paul et al., 2020; Tian et al.,

2020) Classical image processing and deep learning techniques have been proposed to detect

anomalies in plants.(Ensari et al., 2020; Jayswal & Chaudhari, 2020; J. Liu & Wang, 2021;

Patil  et  al.,  2020;  Rustia  et  al.,  2021;  Syarief  & Setiawan,  2020).  The adoption of  deep

learning approaches in object classification and detection has greatly improved the computer

vision tasks in comparison to traditional image processing techniques  (Voulodimos et  al.,

2018). Existing models lack generalizability when tested in natural environments.  This is

mainly because images used to train the said models are taken on plain backgrounds in a

laboratory setting. (Selvaraj et al., 2019). 

The researcher seeks to develop a convolutional neural network-based solution that provides

timely and accurate FAW  damage  detection on maize leaves.  The proposed solution will

leverage the power of deep neural network and deep transfer learning (C. Tan et al., 2018) to

train and deploy CNN models that  unique distinguish fall  armyworms damage on maize

leaves from infestation by other pests. This research project will compare  two algorithms
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based on one-stage  CNN meta-architectures (Huang et  al.,  2017).  The better  performing

model will be deployed on a mobile application for use in the farm. The resulting artifact will

provide a vital integrated pest management tool for stakeholders in the maize value chain

including farmers, governmental and non-organizational organizations taking keen interest in

integrated pest management strategies against the fall armyworm.

1.2 PROBLEM STATEMENT

Pest  and  diseases  negatively  affect  crop  growth  process  and  the  resulting  yield  that  is

harvested (Cerda et al., 2017). Current approaches used in FAW monitoring require physical

presence  of  an  agricultural  extension  officer  or  plant  pathologist  (farm  scouting  and

inspecting pheromone traps). In addition to that farmer use some empirical knowledge they

have acquired along the way to identify presence of FAW in their farms. Though effective in

some cases, more often than not, it is subjective and prone to errors (Thenmozhi & Reddy,

2019). Without expert training, farmers confuse FAW attacks with other common maize pests

such  as  Cotton  bollworm  (Helicoverpa  armigera)  and  Southern  armyworm  (Spodoptera

eridania). Untimely and Incorrect identification of a pest leads to delayed corrective measures

and can lead to loss of an entire crop (Meissle et al., 2010). 

Previous literature relating to pest identification in computer vision has concentrated more on

pest  classification and estimating population  on pheromone traps.  (Thenmozhi  & Reddy,

2019) (Wang et al.,  2015) proposed a CNN based system to classify 40 classes of insect

species  found  in  the  Xie1,  Xie2  and  National  Bureau  of  Agricultural  Insect  Resources

(NBAIR) datasets.  (Chiwamba et al., 2018) proposed the use of CNN system in embedded

Raspberry Pi in counting the number of FAW moths on a pheromone trap so as to estimate its

population.  Other  techniques  employed  in  pest  identification  are  based  on  combining

traditional image processing techniques and classical machine learning such as histogram of

oriented gradient (HOG) or Scale invariant feature transform and Support Vector Machines.

While these methods show impressive results in pest classification(Fuentes et al., 2017) they

cannot  be generalized in identification of other pests.  The researcher  seeks to extend the

current body of knowledge on the application of CNN based algorithms in pest detection. In

this case the application will target FAW damage on maize leaves. 
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The researcher seeks to investigate the application of one stage convolutional neural networks

in monitoring FAW attacks. This by extension will improve the existing FAW monitoring

techniques. 

1.3 THE OBJECTIVES

1.3.1. GENERAL OBJECTIVE

Develop a mobile based fall armyworm (FAW) damage detection system using one stage

convolutional neural network meta-architectures.

1.3.2. SPECIFIC OBJECTIVES 

1. Collect field data of images of the damage done by fall armyworm.

2. Compare  the  performance  of  YOLO v4  tiny  and  EfficientDet  lite  CNN  meta  -

architectures. 

3. Develop an android mobile application that detects FAW damage on maize leaves

using one stage convolutional neural network meta-architectures.

1.4 RESEARCH QUESTIONS

1. Can YOLOv4  tiny  or  EfficientDet  lite CNN  algorithms be  used  to develop  an

accurate FAW damage detection model?

2. How  does  the  performance  of  YOLOv4  tiny  and  EfficientDet  lite  CNN  meta-

architectures compare in detecting FAW damage on maize leaves?

3. Can   the aforementioned  model  be integrated into a  mobile application for  FAW

damage detection?

1.4 SIGNIFICANCE OF THE STUDY

The research  proposes  an accurate  and timely  solution for  identifying FAW invasion on

maize leaves. FAW is a serious threat to an already weak food security situation on Africa.

Since it was first reported in the continent in 2016, yearly maize losses due to FAW attacks

are estimated at 9.4% - 66% (Baudron et al., 2019; Day et al., 2017; Kumela et al., 2019). By

using the proposed system in FAW  damage  detection, different stakeholders will  benefit.

First  the  society  at  large  will  enjoy  increased  food  security  and  improve  environmental

conservation. Early detection of FAW helps farmers take corrective actions to protects their
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plants from further destruction (Fuentes et al., 2017). Early detection also ensures that correct

amount and type of pesticides are used, saving the environment from hazardous effects due to

excessive use of pesticides (He et al., 2019).  The research also adds on the efforts of non-

governmental  organizations  such  as  Food  and  Agriculture  Organization  and  Centre  for

Agriculture  and  Bioscience  International  researching  on  integrated  pest  management

solutions  for  dealing  with  the  fall  armyworm and other  pests  (Khatri  et  al.,  2020).  The

research also provides a robust and accurate tool for farmers that helps them reduce economic

losses by detecting FAW invasions early and taking the necessary steps in safeguarding their

crops. Finally, the research benefits computer vision researchers interested in deep neural

network methodologies in pest detection.

1.5 RESEARCH CONTRIBUTION

The research contribution is the proposed approach of using one stage CNN meta-architecture

mainly focused on mobile devices. The application provides an end to end platform that takes

images  as  an  input,  performs object  detection  on  the  images and output  an  image with

bounding boxes and the confidence scores highlighting areas attacked by FAW. The resulting

artifact can be installed on mobile devices and used in the field. This provides a step forward

in incorporating vision-based application in integrated pest management. The artifact works

on devices with diverse camera resolutions and in complex environments such as as varying

backgrounds, natural lighting, camera orientation, illumination etc.

1.6 SCOPE, ASSUMPTIONS AND LIMITATIONS OF THE STUDY

The study’s scope is limited to detecting FAW attack on maize leaves. Other crops attacked

by the FAW pest are not considered. The images used to train and evaluate the models were

taken in Kirinyaga county, Kenya so the application might not generalize well in areas with

different  environmental  conditions.  The  study  will  use  one stage  convolutional  neural

network-based approach to detect presence of fall armyworm on maize leaf images taken in

the natural environment and output an image with bounding box and confidence score around

regions where fall armyworm damage is identified. Future versions and configurations of the

meta-architectures might show varying results from those presented in this paper.

The  researcher  utilizes  commercial  and  open-source  software  packages  and  libraries  in

performing this study and is therefore limited to the capabilities of said tools. The researcher
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will utilize more than one software package/library when deemed necessary to overcome this

limitation.

1.7 ORGANIZATION OF THE RESEARCH THESIS

This thesis includes five chapters. The first chapter gives an introduction of the research, the

problem statement, research objectives and the research contributions. The second chapter

gives  relevant  literature  review  related  to  the  FAW,  computer  vision  techniques  and

algorithms  the  researcher  seeks  to  explore.  Related  works  in  this  research  will  also  be

highlighted. The third chapter covers the research methodology used to train the models and

the approach followed in developing the mobile application. The fourth chapter presents the

results  and  discussion  after  training  and  deploying  the  CNN  models  on  the  mobile

application. Chapter five covers the Conclusion and recommendations for future research.
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CHAPTER TWO: LITERATURE REVIEW

2.1 MAIZE FARMING IN KENYA

Maize remains one of the most important sources of food in Kenya. It doubles up as a staple

food (65% of staple food calories) (Mohajan, 2014) and a source of income to thousands of

small-  and  large-scale  farmers  cultivating  it  around  the  country.  Research  conducted  by

(Edoh Ognakossan et  al.,  2016) highlights  that  the  maize  growing regions  in  Kenya are

subdivided into six main agroecological zones i.e., the lowland tropical (LT) zone, dry mid-

altitude (DM) zone, highland tropics (HT) zone, moist transitional (MT) zone, moist mid-

altitude (MM) zone and finally the dry transitional (DT) zone. It is worth noting that the

maize  yield  /  area  of  cultivation  is  highly  skewed  between  the  six  zones.  The  moist

transitional (MT) and highland tropics (HT) zones produce the highest yield (2.5 tons per ha)

accounting for  50% of  total  maize yield countrywide followed by the moist  mid-altitude

(MM) zone producing (1.5 tons per ha), accounting for 20% of total maize yield and finally

low- land tropics (LT), dry mid-altitude (DM) and dry transitional (DT) zones (1 ton per ha)

accounting for the remaining 30%. 

Figure 1: Agroecological Zones of Kenya

SOURCE: (Groote et al., 2011)
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2.2 COMMON MAIZE PESTS IN KENYA

According to  KARLO, the most  common maize pests  in Kenya are  African Maize Stalk

borers (Busseola fusca), Maize Leafhoppers (Cicadulina spp), Maize Aphids (Rhopalosiphum

maidis),  Bollworms (Helicoverpa armigera) and  Cutworms (Noctuidae). In this section we

will discuss the pests and the common signs of their attacks.

 African Maize Stalk borers (Busseola fusca) – They are common and destructive

insect pests that attack maize plants between 3 and 5 weeks old. The moth lays eggs

on the leaves  of  the  youngest  unfolded leaves  which mature into caterpillars  that

spread to nearby crops.

 Maize Leafhoppers (Cicadulina spp) – This is  another common maize pest that

hops  from one  plant  to  another  causing  spread  of  the  maize  streak  virus.  Maize

leafhoppers have two distinct black spots between their eyes and are slender in size.

This  pest  is  especially  dangerous  since  it  can  lead  to  total  yield  loss  unless

intervention measures are taken in a timely manner.

 Maize Aphids (Rhopalosiphum maidis) – Aphids attacks are characterized by sooty

mold  on the  leaves  of  young maize  plants.  The pests  soft  bodied  with  two long

antenna and are bluish-green in color.

 Bollworms (Helicoverpa armigera) – This pest  feeds on a variety of plant parts

including  the  leaves,  flower  and  fruit.  Damage  on  maize  leaves  leads  to  stunted

growth.

 Cutworms (Noctuidae) – Cutworms are caterpillars that damage the maize seedlings

before germinating above the ground level

Figure 2:African Maize Stalk borers & Maize Leafhoppers
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Figure 3:Maize Aphids & Bollworms

Figure 4:Cutworms

2.3. OVERVIEW OF FAW IN KENYA.

Initial reports of FAW in Africa were in Central and West Africa in 2016, later spreading to

sub-Saharan Africa in the same year  (Day et  al.,  2017).  FAW infestation spread quickly

within the continent due to its ability to lay large number of eggs (1500 per female moth),

travel over long distances (100 km per night) and its preference for maize plants which are

widely cultivated. Based on a survey conducted in Ghana and Zambia by (Day et al., 2017),

Fall Armyworm could cause a yield loss of between 8.3 and 20.6 million tons of maize yearly

valued at between $ 2.4 billion and $ 6.2 billion.(Kumela et al., 2019). The estimated the

maize yield losses caused by FAW in Kenya in 2018 stood at about 47%. The Food and

Agriculture Organization defines pest yield loss as a percentage difference between attainable

and actual yield because of pest attacks.(Oerke, 2006). Crop yield losses can be computed
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using  direct  methods,  indirect  methods,  expert  opinions,  farmer  estimates  and  through

community surveys (De Groote et al., 2020). A survey conducted by (De Groote et al., 2020)

shows that in 2017 and 2018 maize yield losses amounted to 37% and 33% of total yield

equivalent to 1 million tons of maize in each of the two years. The destructive nature of FAW

has led to increased interest and support by the government of Kenya through the Technical

Cooperation Project (TCP), Food and Agriculture Organization and the International Maize

and Wheat Improvement Centre. (Padhee & Prasanna, 2019).

Figure 5:Fall Armyworm Status in Africa

Source: Rwamushana (2018)
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Figure 6:Fall Armyworm Status in Kenya

Source: (De Groote et al., 2020)

2.4. FAW LIFE CYCLE

Understanding the FAW life cycle is the basis for developing an effective Integrated Pest

Management  System  against  this  invasive  pest.  (Padhee  &  Prasanna,  2019) clearly

documents  the  FAW life  cycle  which  takes  between  30  and  90  days  depending  on  the

weather conditions. One of the reasons that makes FAW dangerous to the wide variety of

crops it attacks is its high reproduction rate; estimated at 1500 eggs per female moth (Padhee

& Prasanna,  2019).  In  addition,  FAW insects  can  travel  over  long  distances;  about  500

kilometers during its lifetime. The FAW pest goes through four main stages namely eggs,

caterpillar/  larvae,  pupae,  and adult  (moth).  The  first  stage  is  the  egg stage  which  lasts

between 2 and 3 days. The larval stage takes between 14 and 30 days over six instars. FAW

are most  destructive during the 3rd and 4th instars  of  the larval  stage causing extensive

defoliation.  The  pupae  stage  lasts  between  8  and  30  days  depending  on  the  weather

conditions. The final phase is the adult stage that lasts approximately 10 days.
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Figure 7:Fall Armyworm Life Cycle

Source: FAO

2.5. FALL ARMYWORM MONITORING TECHNIQUES.

There are two main techniques currently used to assess whether a farm is infested with fall

armyworm. These techniques are manual monitoring/ scouting and trap-based monitoring/

pheromone traps.

2.5.1 MANUAL FAW MONITORING 

Manual  technique  requires  the  farmer  or  extension  officer  to  physically  scout  the  farm.

Scouting process is done by randomly selecting five points in the farm examining ten maize

plants at each point, inspecting two or three emerging leaves from the funnel for signs of

FAW eggs, small caterpillars, minor pane leaf damage or frass, taking count of the number of

plants in each batch of ten with the FAW attack symptoms mentioned and recording the

information. The information is encoded using 0 and 1 where 1 representing FAW infected

plants and 0 otherwise.

2.5.2 TRAP BASED FAW MONITORING

The trap-based approach uses pheromone trap that attracts male FAW pests. The procedure of

setting up the trap include: 

 Hang the trap at the edge of the field ensuring that it is about 30 cm above the tallest

maize plants to avoid blockage of its entrance by plant leaves. 

 Place the pheromone lure (5 per trap) in the basket compartment on top of the trap and

the insecticidal strip (10 per trap) that kills trapped insects. 
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 Replace the strips monthly and pheromone lure every two months.

Figure 8: Fall Armyworm Pheromone Traps

2.6 COMPUTER VISION IN AGRICULTURE

Computer vision is an interdisciplinary scientific field that seeks to give computers the ability

to visually perceive the real world and gain high level understanding or digital images and

videos  (Sonka et al., 2014). There are various ways computer vision techniques have been

implemented  in  the  agricultural  field.  (Patrício  & Rieder,  2018) explores  how computer

vision and advanced artificial intelligence techniques are combined to form robust precision

agriculture methods in disease detection, grain quality checking and phenotyping in maize,

rice, wheat, soybeans, and barley plants. (Arakeri, 2016) proposes an automated tomato fruit

grading  system based on computer  vision  techniques.  The proposed system achieved  an

accuracy of 96.47% on the task. (Chiu et al., 2020) proposes the use of computer vision based

aerial drones to take high quality images consisting of both RGB and Near- infrared channels

used in plant anomaly detection and semantic segmentation of agricultural patterns. (Zhao et

al., 2020) proposes a ground level mapping and navigation system based on computer vision

algorithm -  (Mesh Simultaneous Localization and Mapping algorithm, Mesh-SLAM) and

Internet of Things (IoT), to generate a 3D farm map. This will be implemented as a multi-

agent  system  consisting  of  ground  level  robots  taking  the  images,  edge  node  system

coordinating the robots and cloud-based system for general management and deep computing
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2.7 ONE & TWO STAGE CNN META-ARCHITECTURES

Convolutional neural networks are deep neural network that performs convolution operations

on images to extract complex patterns that uniquely identify objects in the images. In addition

to the convolution layers, CNN also have pooling and non-linearity layers (Yu et al., 2014).

Deep learning models can be trained to perform classification, detection, or segmentation

tasks  (Howard  et  al.,  2018;  Tuggener  et  al.,  2018).  Convolutional  neural  networks  that

perform object detection can be further subdivided into one stage and two stage architectures

(J.  Liu & Wang,  2021).  Both CNN meta-  architectures  are  used to  classify and localize

regions of interest in the image. Examples of one stage detectors are You Only Look Once

(YOLO) algorithm (J.-W. Chen et al., 2021) Single Shot Multi-Box Detector (SSD) (W. Liu

et al., 2016) and EfficientDet  (M. Tan et al., 2020) while those under the two stage meta-

architecture are Faster Region Based Convolutional  Neural  Networks (Faster RCNN)  (X.

Chen  & Gupta,  2017),  Region-based  Fully  Convolutional  Network  (R-FCN)  (Dai  et  al.,

2016).

2.7.1. ONE STAGE META-ARCHITECTURE

One stage CNN meta-architecture algorithms combine the region proposal and bounding box

regression phases into one stage approached as a simple regression process. The detectors

assign  class  probabilities  and  bounding  box  coordinates  together  hence  reducing  the

computational complexity and the resulting detection time (M. Tan et al., 2020). One stage

detector  can  be used  for  mobile  and embedded systems devices  with  low computational

capacity. (Qin et al., 2019).

Figure 9: One Stage Meta-architecture
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Source: (Kemajou et al., 2019)

2.7.2. TWO STAGE META-ARCHITECTURE

The first phase of the two stage CNN meta-architectures comprises of the Region Proposal

Network which uses features from the backbone /  feature extractor to identify regions of

interest in the image. Regions of interest are identified by comparing the intersection over

union between object proposals and annotated ground truth. Object proposals that achieve a

score equal or higher than the predetermined threshold is  then considered for the second

phase.   In the second phase of the two-stage detection network, the regions of interest (ROI)

previously identified are classified and corresponding bounding boxes assigned. Two stage

detectors  have  higher  accuracy  than  one  stage  detectors  but  take  longer  due  to  the

computational complexity associated with each stage. (Soviany & Ionescu, 2018)

Figure 10: Two Stage Meta-architecture

Source: (Kemajou et al., 2019)

This  research  explored  the  performance  of  two  algorithms,  from  the  one-stage  meta-

architecture.  Since  the  model  will  be  deployed on a  mobile  phone,  the  researcher  chose

YOLOv4 tiny and EfficientDet lite which are optimized for this task. (Nguyen et al., 2020).

The two algorithms are discussed below.

2.7.3 YOLOv4 TINY AND EFFICIENTDET LITE CNN ALGORITHMS

2.7.3.1. EFFICIENTDET LITE 
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EfficientDet lite are mobile friendly object detection algorithms based one stage CNN meta-

architecture.  Efficentdet  framework  has  been  optimized  to  minimize  this  limitation.

EfficientDet uses BiFPN to optimize the backbone. In addition, it utilizes compound scaling

techniques to uniformly scale the width, depth, and resolution its three main components i.e.,

the  backbone,  feature  networks  and  classification/  bounding  box  prediction  network

concurrently. (Nguyen et al., 2020)
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Figure 11: EfficientDet Architecture

Figure 12: EfficientDet Performance on COCO Dataset

2.7.3.2. YOLOv4 TINY

YOLOv4 tiny, which is a compressed version of YOLOv4, is a state of the art one-stage

object  detection  algorithm.  Since  this  research  aims  at  coming  up  with  a  model  that  is

optimized for mobile devices, YOLOv4 tiny was a perfect candidate. With fewer parameters

in its architecture, the training and inference time is greatly reduced, an advantage for mobile

and edge devices which have limited computational power capabilities. It consists of two

YOLO heads and 29 pretrained convolutional layers. Although its accuracy is less than its

parent algorithm (YOLOv4), the inference time is better. The average precision of the model

is 22%, 40.2% AP50 as compared to 43.5%, 65.7% AP50 in YOLOv4. (Jiang et al., 2020)
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Figure 13: YOLOv4 Architecture

Figure 14: Yolov4 tiny Performance on COCO Dataset

2.8 RELATED WORK

Researchers in  the field of  computer  vision have  attempted to  develop machine learning

based  pest  detection  systems  for  different  pests  and  following  diverse  approaches.  This

section discusses some of the previous research done on the subject.

(Ebrahimi et al., 2017) proposed the use of support vector machines with different kernel

functions to detect and classify thrips pests in strawberry plants as an alternative solution for

traditional manual insect identification methods. The proposed system would be used for real
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time pest management in greenhouses. The pest identification process would be conducted by

an agricultural  robot with a mounted camera. The images would be sent to a web server

where the model developed using support vector machine would conduct the predictions. The

research yielded impressive results with the best detector having a percentage error of less

than 2.25%. This approach however required the researchers to design the SVM based on

hand crafted features such as Hue, Saturation, and color indexes. The approach is less reliable

and  adaptable  when  generalizing  it  to  detection  of  another  pest  using  machine  vision

Voulodimos et al. (2018)

(Ateya, 2018) proposed an internet of things approach for detecting FAW pupa in the soil.

The  research  used  a  combination  of  DH11  sensors  to  collect  temperature  and  humidity

parameters and machine learning model to predict presence of FAW pupa in the soil. The

model used forward propagation artificial neural networks to combine data from the sensors

and feedback from fall  armyworm to monitor  and alert  uses of  possible FAW pupa and

initiate FAW corrective measures. The system achieved an accuracy of 82.06%. Though the

researcher used artificial intelligence approach in monitoring the same pest discussed in this

research, the research proposed does not follow a vision-based approach in the prediction of

FAW in maize.

(Rustia et al., 2021) proposed the use of convolutional neural networks in classification and

detection of 4 pests on pheromone traps in different green houses. The proposed approach

aimed at solving the tedious task of estimating pest population by manually counting the

number of pests on a pheromone trap. To achieve this, the research proposed the use of a

wireless imaging device on an embedded system to count the number of pests of interest on

the sticky traps. It is worth noting that the research used separate networks for classification

and detection arguing that doing so would ease incorporation of additional pests in the future.

The research achieved an F1 score of 92%. Though this research adopted a convolutional

neural network approach on real natural environment, it did not detect or classify pests on

plant leaves in near real time.  (Sun et al., 2018) also adopted a deep learning approach for

detecting and classifying pests on pheromone traps.
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2.8.1 SUMMARY OF GAPS IN LITERATURE

Related work Year Author Findings Gaps

Vision-based  pest

detection based on

SVM classification

method

2017 (Ebrahimi et al.,

2017)

-SVM  based  image

processing  used  to

detect  thrips  in

strawberry plants

-  Dataset  collected

in  natural

environment

-  Images  used  in

pest  classification

collected  using  an

automated

agricultural robot

- Uses Hand crafted

features  making  it

hard to generalize

Fall  army-worm

prediction  model

on the  maize  crop

in  Kenya:  an

internet of  things

based approach

2018 (Ateya, 2018) -  FAW detection  at

pupa stage

-FAW  model

prediction  results

send  on  SMS  and

system dashboard

-  ANN  predicts

presence  of  FAW

based  on  IOT

sensors  rather  than

vision-based

approach

Automatic

greenhouse  insect

pest  detection  and

recognition  based

on a cascaded deep

learning

classification

method.

2021 (Rustia  et  al.,

2021)

-  CNN  based

approach  in

detection  insects  on

pheromone traps

-Sticky traps have a

standardized  color

which  provides  a

uniform background

- Static background

and  camera  on

embedded  wireless

imaging device.
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2.9 CONCEPTUAL MODEL

Figure 14 contains the main components of the conceptual model. The device camera will be

used to take pictures of the maize leaf. The image will be analyzed to determine if it contains

any signs of FAW. The image is then input into the CNN model where image preprocessing

and model inference occurs. In case the leaf has manifestations of fall armyworm attack the

model outputs the image, bounding boxes around the infested regions as well as confidence

scores for each object detection. If not, the CNN model returns an image with on bounding

boxes or labels.  The feedback generator  generates the view that will be displayed on the

mobile application user interface.

Figure 15: CNN Model Training Conceptual Model
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Figure 16: CNN System Conceptual Model (with selected algorithm)

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 INTRODUCTION.

This  chapter  highlights  the  research  methodology employed in  developing a  CNN-based

FAW damage detection system. It describes the methods used in data collection, CNN model

training,  and  testing  as  well  as  design,  development,  and  deployment  on  the  mobile

application.

3.2 STUDY SET UP

This research followed a quantitative methods approach. To understand the nature of FAW

attacks on maize plants, the researcher interacted with an entomologist from KARLO Embu

branch between the 1st and the 10th of October 2021. The researcher gave an overview of the

research aim how he planned to address it. In addition to understanding the nature of FAW

attacks, the entomologist accompanied the researcher during data collection. This was critical

to  ensure  the  images  captured  had  signs  of  FAW damage.  This  also  informed  the  data

annotation exercise that was conducted later where FAW damage was categorized as being in

the early stages or late stages depending on the extent it was damaged. High quality images

are vital during the training and testing phases of the CNN models. 

3.3 RESEARCH DESIGN

The research followed an experimental research design approach. This approach was chosen

since the researcher intended to compare the performance between the chosen models. The
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experiment was conducted on 10 datasets each containing 100 images. The choice of the

CNN meta-architecture was the independent variable while the model performance (mean

average  precision)  was  the  dependent  variable.  Previous  studies  have  implemented  this

experimental design to compare the performance of different algorithms. (Carranza-García et

al.,  2020) used  experimental  research  design  to  compare  the  performance  of  four  CNN

algorithms; RetinaNet, FCOS, and YOLOv3, and Faster R-CNN). (Asad & Bais, 2020) also

used  experimental  research  design  to  compare  the  performance of  deep  learning  meta-

architectures like SegNet and UNET and encoder blocks like VGG16 and ResNet-50.

3.4 DATASETS

3.4.1 DATA COLLECTION

The images used to train the model were collected directly by the researcher. The researcher

took the images using a Samsung A750 2018 mobile phone. The image resolution was (5664

x 3184). The researcher collected 1000 images of maize leaves affected by FAW infestation

from five farms in Gichugu constituency, Kirinyaga county Kenya between the 1st and the

10th of October 2021. To ensure accuracy of the data collection process, the researcher sought

the help of an entomologist from KARLO Embu branch in identifying maize leaves infested

by FAW and distinguishing them from those attacked by other maize pests. The researcher

then split  the  images  into  10  datasets  each  containing  100 images  using  simple  random

sampling method. After that, the researcher performed data annotation on each image using

the open-source software called LabelImg. The annotated regions fell under two categories:

Early FAW Infestation and Late FAW Infestation and saved in the PASCAL VOC format.

(Carreira et al., 2015) 
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Figure 17: Late and Early FAW Infestation Annotated Images

3.4.2 DATA SELECTION AND DISTRIBUTION

After deriving 10 datasets from the total 1000 images and conducting data annotation, the

images in each dataset were split into training, validation, and test sets. The train, validation

and test splits are indicated in Table 1 below. This applied to each of the 10 datasets in this

research

Table 1: Train, Validation, Test Split

Training Set Validation Set Test Set Total

Dataset 80 10 10 100

Split % 80% 10% 10%

3.4 MODEL TRAINING AND TESTING

3.4.1 MODEL TRAINING

The researcher trained efficientdet lite04 and yolov4 tiny models for each dataset described

above.  Due  to  the  computational  requirements  of  training  a  CNN model,  the  researcher

trained both models in Google Colab using the GPU hardware accelerator provided on the

platform.  To  further  reduce  the  training  time,  the  researcher  implemented  deep  transfer

learning for  both  algorithms.  The pretrained model  weights  initialized  when training  the

models were used to train the COCO dataset. (Lin et al., 2014). The researcher followed the
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procedure proposed by  (Jiang et al.,  2020) to train the YOLOv4 tiny models. Efficentdet

lite04 model was trained according to the procedure proposed by (M. Tan et al., 2020)

3.4.2 MODEL PERFORMANCE EVALUATION

The  researcher  used  mean  average  precision  to  evaluate  the  performance  of  both  CNN

models. Mean Average Precision (mAP) is a popular metric used to measure the performance

of  object  detection  algorithms.  To  compute  mean  average  precision,  one  must  compute

precision, recall and Intersection over Union (IoU). Object detection algorithms predict both

the location of an object in an image and the class it belongs to. Intersection over Union

computes the overlap between the predicted bounding boxes and the ground truth annotated

bounding  boxes.  On  the  other  hand,  Precision  computes  correctly  classified  positive

predictions  as  a  ratio  of  all  positive  predictions  while  recall  computes  how  the  model

correctly identifies true positives. Average Precision is computed to find the area under the

precision-recall curve while mean Average Precision is the average of all computed Average

Precision values. The formulas for calculating Intersection over Union, Precision and Recall,

Average Precision and Mean Average Precision as shown below
Equation 1: Precision and Recall
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Equation 2: Intersection Over Union

Equation 3: Average Precision
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Equation 4: Mean Average Precision

3.5 SOFTWARE DEVELOPMENT METHODOLOGY

Due  to  the  limited  time  required  to  develop  the  project,  the  researcher  used  the  rapid

application development  SDLC methodology.  RAD model  is  an incremental  model  used

when short development cycles are required. The development cycle has five phases namely,

analysis  and  quick  design,  prototype  cycles  (Develop,  Demonstrate,  Refine),  testing  and

finally deployment. (Geambaşu et al., 2011). During the analysis and quick design phase, the

researcher conducted unstructured interviews with five farmers on the approaches they used

to  scout  for  FAW infestation in  their  farms.  The researcher  also conducted  unstructured

interview  with  an  entomologist  on  FAW  attack  patterns  within  Kirinyaga  county.  The

information  gathered  from  both  farmers  and  the  entomologist  guided  the  researcher  in

coming up with user requirements and other specifications relevant to the project. System

modeling (Business Modeling, Data Modeling, Process Modeling) was also performed during

the analysis and design phase.  (Chrismanto et al., 2019). During the prototype cycles, the

developer rapidly develops prototypes which were continuously refined based on feedback

from the client / user. After coming up with a satisfactory product, the researcher deployed

the model on the mobile application. The suitability of this methodology to this project was

validated by three reasons. This project needed to be developed in extremely short time frame

i.e. less than 3 months which fit well with the provisions of the RAD model. Secondly, user

requirements were identified in the beginning of the project. This meant that an incremental

model  would be effective.  Finally,  it  allows for component-based construction where the

developer focuses on one component at a time then integrates the system. This allowed the

researcher  to  develop  the  CNN model  and  the  mobile  application  concurrently  and  test

different modules according to their functionality.
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Figure 18: Rapid Application Development

3.6 ETHICAL CONSIDERATIONS.

When conducting the research, the researcher observed various ethical considerations. Before

commencing  any  data  collection,  the  farmers  and  entomologists  were  informed  on  the

objectives of the study and the data that would be collected. This was a way of seeking

consent before commencing the data collection process. The images needed in training the

model were collected from local farms where no endangered species were present therefore

no special permits were required to accomplish that. Confidentiality was observed throughout

the research process. 
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CHAPTER FOUR: SYSTEMS DESIGN AND ARCHITECTURE

This section explores the process followed to design and develop the FAW damage detection

mobile  application.  It  highlights  the  interconnection  between  various  components  and

interactions using UML diagrams.

4.1 REQUIREMENTS ANALYSIS

This subsection will provide the user requirements for the proposed fall armyworm damage

detection  mobile  application.  Both  functional  and  non-functional  requirements  will  be

outlined. A combination of the research objectives covered in the first chapter and the user

requirements will highlight different requirements that will be addressed in this research.

4.1.1 FUNCTIONAL REQUIREMENTS

Functional requirements specify what the system is required to do regarding inputs, outputs,

and  system  behavior.  The  proposed  system  which  will  be  implemented  on  a  mobile

application  has  a  user  interface  and  API  module,  libraries  and  services.  The  functional

requirements identified in this research include:

a) The system should allow a user to take an image within the application

b) The system should be able to accurately perform FAW damage object detection on

preset images. 

c) The system should be able to accurately perform FAW damage object detection on

images taken by the mobile camera

d) The system should be able to display bounding box, class, and confidence score on

the user interface.

4.1.2 NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements are the properties the system should have. The most common

non-functional requirements include architecture standards, coding standards, response time,

processing time, query & reporting time among others. The non-functional requirements need

to be addressed to provide excellent user experience / boost user satisfaction. The following

non-functional requirements were identified for the FAW damage detection application:

a) Usability – the system interface should be easy to learn and perform the required

functions
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b) Reliability – the system should be able to perform its required functions in a reliable

and consistently manner without failure.

c) Maintainability – the system should be easy to manage, find and fix bugs to match

user requirements.

d) Response time – the system should display object detection results within 10 seconds

after submitting the image.

4.2 SYSTEM ARCHITECTURE

The purpose of the system architecture is to provide an overview of how system components

are  interconnected  and  the  communication  going  on  between  them.  The  goal  being  the

achievement  of  the  intended  system  functionalities.  Figure  19  below  shows  the  system

architecture proposed for this research. It shows the flow of data after taking a maize leaf

image using the device camera to the display of object detection results on the application’s

user interface.

Figure 19: System Architecture

First,  the system user will take a maize leaf image within the mobile application using a

camera enabled device and submit it for further processing. On the mobile application, the

image  is  uploaded  and  undergoes  preprocessing  after  which  it  is  object  detection  is

performed. If the model’s confidence level of detected objects are above a preset threshold,

the application API displays the results on the application user interface otherwise they are

discarded.
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4.3 SYSTEM BEHAVIOR MODELING

In this subsection we will discuss how system behavior modeling was used to model user

requirements above. The main actor in the system is the farmer who will use the application

in the farm to access fall armyworm damage. 

4.3.1 USE CASE DIAGRAMS

Use case diagrams provide a graphical representation of possible ways the user will interact

with  the  system  by  showing  the  actors,  use  cases  and  how  they  relate.  Use  cases  are

represented using unified modeling language.  The primary actors in the proposed system

were the farmer referred to as the user and the system. 

Figure 20: Use Case Diagram

4.3.2 USE CASE NARRATION

This is the textual narration of the events that occur when a user interacts with the proposed

system. 
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Table 2: Upload Image use case narration

# Use Case Primary Actor Pre-Condition Post Condition

1 Upload

Image

Farmer User must have a

smartphone with a

camera  and  the

FAW  detection

mobile

application

Image  successfully  uploaded  to

the system

       

Main Success Scenarios

Course of Events System Actions

a) User  navigated  to  the  mobile

app home page

b) User  clicks  on  the  take  image

button

c) User  submits  the  image  by

clicking on the OK button

System uploads the image to the model for inference.

Alternative Course of Events

The user does not take an image

Table 3: View Dashboard use case narration

# Use Case Primary

Actor

Pre-Condition Post Condition

2 View

Dashboard.

Farmer User must be on the mobile

application user interface

User can view the dashboard
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Main Success Scenarios

Course of Events System Actions

 User navigated to dashboard

page

System takes user to dashboard page

Alternative Course of Events

Table 4:Perform Object Detection use case narration

# Use Case Primary Actor Pre-

Condition

Post Condition

3 CNN  Model

Inference.

System Client  device

has a camera 

Object  Detection  successfully

performed on the image

       

Main Success Scenarios

Course of Events System Actions

a)  System  receives  image  as  input

parameter

b) Model  conducts  preprocessing,

performs  object  classification  and

localization

c) System  outputs  the  results  to  the

user

a) The system performs object detection

Alternative Course of Events

b) System receives image of healthy maize leaves and does not perform any object detection

task.

c) System receives  image containing  maize  leaves  infested  by  other  pests  and does  not
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perform any object detection task.

4.3.3 SEQUENCE DIAGRAMS

Sequence diagrams will illustrate the sequence of messages between the objects. After the

CNN model is trained and integrated on the mobile application, the application user (farmer)

will take an image of a maize leaf in the farm and upload it. The image is the input parameter

for the model. It undergoes data preprocessing before model inference occurs. The model

inference results; that is class and bounding box are added on the image then displayed on the

user interface as illustrated in the figure below

Figure 21: Sequence Diagram

4.4 PROCESS MODELING

4.4.1 CONTENT DIAGRAM

This is a model describing the interaction between the fall armyworm detection system and

the  immediate  external  entities  (farmer).  Figure 22 below shows the  message  exchanged
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between the two entities. The farmer takes maize leaf image and submits it and views the

detection results from the FAW damage detection system.

Figure 22: Context Diagram

4.4.2 LEVEL 1 DATA FLOW DIAGRAM

The level 1 data flow diagram provides a more detailed depiction of the content diagram. It

highlights the constituent parts of the FAW damage detection system. After the farmer takes

the image, it undergoes preprocessing before object detection is performed. The CNN model

then analyzes the image, identifying regions of interest and assigning bounding box and class

predictions to those that were above the preset threshold. The detection results are then fed

into the feedback generator that includes the detection results and the original image. The

output image is then viewed by the farmer.
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Figure 23: Level 1 Data Flow Diagram

4.5 SYSTEM IMPLEMENTATION

4.5.1 MOBILE APPLICATION

The mobile application used in this research was adopted from google object detection code

lab. To meet the user requirements identified, the user interface was modified by adjusting

the application dashboard name. However, the object detection capability of the application

was added during this research. The mobile application was developed using Java and Kotlin.

The researcher used android studio arctic fox 2020.3.1 integrated development environment.

The object detection capability was added on the main activity file. The module Gradle script

was also updated by adding the TensorFlow lite library on the dependencies section. 

4.5.2 CNN MODEL TRAINING AND TESTING

The models were trained using python programming language on google colab. This was to

overcome the computational limitations of the researcher’s computer. Google colab offers

GPU hardware accelerators which speeds up the training process. In developing the CNN

model, transfer learning was applied for both algorithms. By downloading pretrained weights

used in the COCO dataset competition, the training time was greatly reduced. After training,

the models were tested using the test images and the performance of the two models across
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10 datasets the results were recorded, and the better performing algorithm was converted to a

TensorFlow lite model.

4.5.3 SYSTEM TESTING 

The researcher used three test  cases to access the functionality of the mobile application.

These tests were:

a) Does the application allow a farmer to take a picture?

b) Does the application allow a farmer to upload the picture captured in the first test

case?

c) Does the application return object detection results to the farmer?

4.5.4 CNN MODEL DEPLOYMENT ON MOBILE APPLICATION

 After identifying the better performing algorithm, the tflite model was incorporated on the

mobile application. The model itself was added to the assets folder while the code was added

to the main activity kit file. TensorFlow object detection API was also included in the Gradle

script as one of the dependencies.
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CHAPTER FIVE: RESULTS, EVALUATION AND DISCUSSION

5.1 INTRODUCTION

This chapter discusses the results and main findings observed during the research for the

development of a fall armyworm damage detection system using CNN. This is in line with

the research objectives and methodology described in prior chapters. The main aim of the

study was the develop a fall armyworm damage detection system using convolutional neural

networks, compare the performance of two one stage CNN meta-architectures and develop a

mobile application that can be used in the field.

5.2 CONVOLUTIONAL NEURAL NETWORK TRAINING

5.2.1 YOLOv4 TINY PERFORMANCE

Following the model training method proposed in chapter three, the YOLOv4 TINY model

was trained on all 10 datasets and the performance evaluated. The model was trained using

deep transfer learning over 6000 training iterations. The mean average precision for each

dataset is shown below. The best performing model had an accuracy of 82.5% and the worst

performing one had an accuracy of 24.1%.

Table 5: YOLOv4 TINY mAP

# DATASET 1 2 3 4 5 6 7 8 9 10

mAP % 60.0 63.6 58.7 50.2 24.1 32.6 49.5 82.5 43.0 69.6

5.2.2 EFFICIENTDET LITE PERFORMANCE

The efficientdet lite model was trained over 100 iterations.  The best performing model had

an accuracy of 85.85% and the worst performing one had an accuracy of 29.3%.

Table 6: EfficientDet lite04 mAP

#

DATASET 

1 2 3 4 5 6 7 8 9 10

mAP % 54.04 67.89 55.61 45.85 85.85 42.11 29.30 57.10 55.09 56.53
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5.3 QUANTITATIVE RESULTS

The two algorithms chosen in this study are optimized for mobile devices / edge devices.

(Jiang et al., 2020; Nguyen et al., 2020). To compare the performance between the algorithm

the  researcher  used  paired  samples  t-test.  This  approach  has  been  implemented  in  other

studies to compare the performance of two algorithms trained on the same dataset. (Patel &

Chatterjee, 2016). The experiments null hypothesis was that there is no statistical difference

between  the  mean  mAP  of  the  models  while  the  alternative  hypothesis  is  that  there  is

statistical difference between the mean mAP of the models

Null Hypothesis: There is no statistical difference between the performance of efficientdet

lite model and yolov4 tiny model

Alternate Hypothesis: There is statistical difference between the performance of efficientdet

lite model and yolov4 tiny model

The researcher used SPSS software to compute the paired t-test. The alpha value was 0.05

and the degrees  of freedom were 9.  The Null  Hypothesis  was that there is  no statistical

difference between the performance of the models while the alternative hypothesis is that

there is statistical difference between the performance of the models. The figures below show

the  results  from the  statistical  tests.  The two dependent  variables  in  this  study were the

yolov4 tiny CNN algorithm and the efficientdet lite CNN algorithm. Both algorithms were

trained and tested on each of the 10 datasets used in this research.

Figure 24: Paired Sample Statistics

The mean mAP for the efficientdet lite4 algorithm was 53.38 (N=10) while the mean for the

yolov4 tiny algorithm was 54.937 (N=10).  The means of  the efficientdet  lite  model  was

higher than that of the yolov4 tiny model. 
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Figure 25: Paired Samples Correlations

Figure 26: Paired Sample Differences

Figure 26 shows the experimental results of the  paired samples t-test. The mean difference

between the two algorithms is 1.557. The researcher observed a wide standard deviation of

24.34 showing a wide variability from the mean value. The t statistic from the experimental

results was .0202 and the significance value of 0.844. The p value is greater than 0.05. This

means that we failed to reject the null hypothesis. Therefore, we can conclude based on the

results that there is no statistical difference between the mAP values of efficientdet lite model

and yolov4 tiny model. 

5.4 SYSTEM PROTOTYPE TESTING

This  subsection  discusses  the  test  cases  used  to  access  the  functionality  of  the  mobile

application. It includes the test cases, their level of importance and the test results
Table 7: Test Case Results

TEST CASE IMPORTANCE TEST RESULTS

Does the application allow a

farmer to take a picture?

HIGH The  farmer  successfully

took  a  picture  of  a  maize

leaf.

Does the application allow a

farmer to upload the picture

captured in the first test case

HIGH The  farmer  successfully

uploaded the picture on the

application

Does  the  application  return

object  detection  results  to

the farmer?

MEDIUM The farmer observed object

detection results if there was

FAW damage on the maize
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leaves.

Figure 27: Sample Mobile Application Screenshot

Figure 28: Sample Screenshots of FAW Damage Object Detection
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5.5 PERFORMANCE COMPARISION WITH PREVIOUS STUDIES.

Other  CNN  based  systems  have  been  proposed  in  pest  detection.  To  the  best  of  our

knowledge the proposed system is the first that focuses on FAW damage on plant leaves it

invades. The proposed system utilizes one stage CNN model on mobile device to access the

damage on maize leaves. The researcher also looked at other studies conducted on this field

and summarized how the proposed system performed against others. The proposed system

performs  comparatively  well  considering  no  data  augmentation  was  performed  and  the

dataset used to train and test the model was small compared to the other two studies.

Table 8: Performance Comparison with other Studies

Proposed By Architecture Pest Classification /

Pest Detection

 Best  Performing

mAP

This research Efficientdet lite Pest Detection 85.85%

This research Yolov4 - tiny Pest Detection 82.5%

Fuentes (2017) SSD Pest Detection 85.10%

Lippi (2021) YOLO Pest Detection 94.5%
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CHAPTER SIX: CONCLUSION AND RECOMMENDATION

6.1 CONCLUSION

This research study aimed at developing a mobile based fall armyworm damage detection

system using one stage convolutional neural networks. From the reviewed literature, there is

little research on CNN based fall armyworm damage detection system specifically tailed to

mobile or edge devices. Upon completion of this project, all the objectives set were met. The

researcher was able to collect maize leaf images in 5 farms within Kirinyaga county. The

images were used to train and test the performance of the yolov4 tiny and efficientdet lite

CNN models. Experimental results showed that efficientdet lite performed better than the

yolov4 tiny model. To test the statistical significance between the mean performance of the

two algorithms, the researcher used two tailed paired t-test. Hypothesis testing results showed

that there is no statistical significance between the two algorithms that belong to the same

class of one stage CNN meta-architectures. However, the researcher observed that the mean

performance of the efficientdet lite models was higher than that of the yolov4 tiny models

making  it  a  better  choice  for  the  intended  task  in  this  research.   The  best  performing

efficientdet model had a mAP of 85.85% which is impressive for object detection task. This

model was integrated on a mobile application for use in the farm. The successful training and

deployment of the models led to achievement of the objectives set out in chapter one. It is

hoped that the artifact developed in this study will be a vital integrated pest management tool

in the fight against fall armyworm.

6.2 RECOMMENDATIONS

In view of this study the researcher has the following recommendations

1. The developed models and tools can be extended in detecting FAW infestation on

other plants or an entirely different pest.

2. The mobile application can incorporate  Spatial data to facilitate easy monitoring of

locations experiencing rampant FAW infestation and take the necessary measures to

contain the infestation.

3. Develop an iOS equivalent of the android application that can be used for integrated

pest management.
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