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Abstract 

The use of cosmetic products for skin colour lightening or bleaching is a common practice 

across the globe. However human health effects associated with mercury in these products 

such as skin cancer and kidney failure have been reported. Conventional techniques used 

in the analysis of mercury such as atomic absorption spectroscopy and mass spectroscopy 

are destructive, time consuming and expensive. Although the energy dispersive X-ray 

fluorescence (EDXRF) spectroscopy method is rapid, non-destructive and requires 

minimal or no sample preparations, it has a high detection limit for mercury and therefore 

quantification of trace levels of mercury below 1ppm is challenging. This is mainly due to 

spectral overlaps, weak mercury fluorescence signals and extreme matrix effects. In this 

work, a novel chemometrics-assisted EDXRF spectroscopy method was utilized to realize 

rapid, direct detection and quantification of both low (< 1 ppm) and high mercury levels 

in skin whitening creams and lotions. 50 simulate (mixture of distilled water and pure 

glycerol) samples spiked with mercury concentrations ranging from a blank sample to 500 

ppm were used for method development. The samples were then analyzed in triplicates 

for 900 seconds using the NeX EDXRF spectrometer set-up. Two chemometric 

techniques namely, principal component analysis (PCA) and artificial neural networks 

(ANNs) were used to perform exploratory analysis of the measured EDXRF spectra and 

quantification of the mercury levels. From PCA, it was found that the spectral data forms 

distinct clusters for both the low and high mercury concentration levels in the 9.6-10.4 

keV Hg Lα and 11.2-12.4 keV Hg Lβ regions. Two ANN Hg concentration models were 

developed, one for ppb concentrations (0-1000 ppb; 30 samples) and the other for ppm 

concentrations (0-500 ppm; 17 samples). The R
2
, RMSEP, LOD and LOQ values for the 

two models were 0.72, 20.6%, 527 ppb, 819 ppb and 0.98, 4.6%, 3 ppm and 11 ppm 

respectively. The ppm model was used to ascertain sample results acquired by utilizing 

the conventional EDXRF method, most of which were closely matching while the ppb 

model established that two of the real samples registered a Hg content equal to 731±151 

ppb. It may therefore be concluded that the chemometrics – EDXRF approach has 

potential for rapid, non-destructive and trace quantitative analysis of mercury compared to 

traditional measurement approaches. The technique is recommended for quality control 

and assurance of consumer products by the relevant regulatory authorities such as the 

Kenya Bureau of standards. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background to the Study 

The use of skin lightening products in the African continent is common because a lot of 

the women crave for a fair complexion free from spots, specks and imperfection, which is 

associated with beauty and youthfulness (Kamakshi, 2011). Most of these skin lighteners 

contain mercury as one of the ingredients but mostly with unspecified quantification and 

labeling (Al-Saleh, 2016). The presence of mercury in skin lighteners has been found to 

suppress the enzyme that produces  melanin in the human body (Murphy et al., 2009). 

Thus, prolonged and extensive exposure to mercury poses a health risk to consumers and  

has been found to cause skin disorders, and in some cases infection to the brain, nervous 

system and kidneys (Mahé et al., 2007). 

A WHO publication on mercury in skin lighteners showed that mercury concentrations 

ranged from 1% to 10%, while other beauty products such as facial lightening creams 

contained concentrations of up to 33%, without the companies selling the products listing 

mercury as one of the ingredients (Campbell et al., 2003; Dlova et al., 2014). The CV 

AAS method has been used to detect and quantify mercury with a detection limit of a few 

ppt (Višnjevec et al., 2014). However, positive interference of spectral signals remains a 

challenge to this technique. ICP MS having an LOD of up to 1 ppt has also been used for 

analysis of mercury but requires special sample preparation and is also expensive (Bailey 

et al., 2003). ICP OES has also been used to detect and quantify mercury in skin 

lightening lotions (Nguyen et al., 1998). However, the method is destructive, has poor 

detection limit and low sensitivity (Eschnauer et al., 1989).  

The XRF spectroscopy method in its various modalities i.e. the EDXRF and the WDXRF 

is a rapid, non-destructive method with minimal or without preparation of sample and can 

be applied in a wide ranging concentration of elements (solid, powder and liquid). In XRF 

spectrometry, the spectral lines are used to identify the elements. Such lines, grouped in 

the series K, L, M, N, etc are the characteristic line series for every element (Antwerpen et 

al., 2006). Light elements produce K line series, middle-ranging elements give rise to K 

as well as L lines, with the heavy ones emitting K, L and M line series (Bote et al., 2009). 
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The choice of an analysis line depends on the sample type, elements present in the 

sample, range of elemental concentration and the conditions for excitation. The L shell 

emits an electron which fills a vacancy in the K shell and thereby producing a Kα line 

radiation. When an electron from the M shell fills the same vacancy in the K shell, a Kβ 

line radiation is obtained, while Kγ line radiation is given out when an electron from the N 

shell fills the vacancy. 

X-ray fluorescence is capable of analyzing quantitatively multi-elemental composition of 

samples in which the detection limits are in ppb range, depending on the sample form and 

spectrometer excitation conditions such as tube conditions and strength of the 

radioisotope source. During analysis, high energy photons strike the target material, 

exciting electrons in the core levels of atoms in the material (Shibata et al., 2009). This 

causes de-excitation through characteristic fluorescent radiation whose energy is used for 

identification based on intensity and elemental concentration in the sample. In XRF 

spectroscopy, incident X-ray photons produce scatter radiation when they interact with 

electrons in atoms of the target element (Wobrauschek et al., 2010). This radiation is 

either Rayleigh (coherent) scattering or Compton (incoherent) scattering. Coherent 

scattering occurs when energy is conserved during collision between the incident beam 

and sample while incoherent scattering is produced when some energy is lost by the 

scattered photons (Marguí et al., 2009). 

However, detection limit, spectral overlaps produced by the L and M series as a result of 

inter- element effects (matrix effects) and weak fluorescence signals for light elements 

with atomic number below sodium (i.e. Z<11) still remain a challenge in this technique 

(Nguyen et al., 1998).  

Spectral complexity caused by matrix effects in the XRF analysis of complex samples 

make spectrum evaluation difficult as well as deconvolution of resultant fluorescence 

intensities into respective concentrations (Wobrauschek et al., 2010). In classical EDXRF, 

the concentration of all elements in the sample must be known in order to deal with matrix 

effects challenge. The use of chemometrics-assisted EDXRF spectroscopy method in this 

work overcame the challenges and attained a direct detection and quantification of trace 

level mercury in varying sample concentrations. Chemometric techniques such as PCA 

and ANNs are robust analytical tools which utilize mathematical, statistical and 

computational methods to reveal hidden relationships in data sets (Luo, 2006; Reinholds 

et al., 2015; Worley et al., 2013). 
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1.2  Statement of the Problem 
Prolonged exposure to unregulated and unquantified mercury levels in creams and lotions 

used for skin lightening poses a health hazard to the product consumers. There is therefore 

need to perform quality assurance tests of the skin lighteners in order to ascertain that the 

mercury content in them does not exceed the World Health Organization limit of 1 ppm, 

(Bose-O’Reilly et al., 2010). Current spectrometric techniques that have been used in the 

detection and quantification of mercury include AAS, AFS and ICP- MS. They have had 

limitations in that they involve wet – chemistry, are destructive to the samples, have poor 

limit of detection and high cost (von Burg, 1995). EDXRF spectroscopy which is rapid 

and nondestructive to the samples has also been used, though challenged by spectral 

overlaps associated with  Kα and Lβ lines of trace level elements as well as a LLD 

(Melquiades et al., 2015), (Antwerpen et al., 2006). In this research a chemometric 

assisted EDXRF technique will be used to overcome the aforementioned challenges 

and also address the problem of unspecified and unquantified mercury levels in skin 

lighteners. 

 

1.3 Objectives of the study 

1.3.1 General objective: 

To perform rapid detection and quantification of mercury levels in skin lighteners 

utilizing a chemometric-assisted EDXRF spectroscopy approach. 

1.3.2 Specific objectives: 

(i) Identify an appropriate skin lightening base matrix material and acquire EDXRF 

spectra from simulate samples spiked with a wide range of mercury 

concentrations. 

(ii) Develop a multivariate chemometric calibration model for mercury quantification 

using the EDXRF spectra obtained from specific objective (i) above. 

(iii) Perform the analysis of a wide variety of skin lighteners obtained from the local 

markets using the chemometric-assisted EDXRF technique to determine their 

mercury content. 

(iv) Compare the predicted mercury concentrations in both the simulate and real 

samples using the developed model with those obtained using conventional 

EDXRF. 
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1.4 Justification and Significance of the Study 

Negative effects caused by the wide spread use of skin lightening products containing 

unspecified and unquantified mercury levels has raised a global health concern (Hamann 

et al., 2014). Poor quality control and lack of proper labeling of the contents in these 

products has been the major challenge. Although a number of spectrometric techniques 

including EDXRF spectroscopy have been used in the determination of mercury, rapid 

and direct analysis of low concentrations i.e. less than 0.1 ppm is still a challenge 

(Orisakwe et al., 2013). In the case of EDXRF, the spectral overlap of the Hg energies 

(9.6 – 12.4 keV) and other trace elements such as Pb and As, complicate the 

quantification of low mercury levels.  

This research work utilizes chemometric techniques namely, the principal component 

analysis (PCA) and artificial neural networks (ANNs) to perform EDXRF spectral 

deconvolution and exploratory data analysis in the model development for rapid, direct 

detection and quantification of mercury levels of both high (> 3 ppm) and low (< 1 ppm) 

mercury levels in skin lighteners. The technique has also overcome the challenge of 

extreme matrix effects and spectral overlaps associated with the conventional EDXRF 

spectroscopy. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview  
The chapter outlines four areas which entail the backbone of this research work. Section 

2.2 unearths prevalence of mercury toxicity in the world while section 2.3 discusses some 

of the spectrometric techniques that have been used previously to analyze skin lighteners. 

XRF spectrometer and analytical chemometric spectroscopy are tackled in section 2.4 and 

2.5 respectively. Quantification modeling of spectral data is finally handled in section 2.6. 

 

2.2 Assessment of mercury levels in skin lighteners around the world 

Elemental mercury, a heavy silvery odorless and volatile element at room temperature 

occurs naturally in uncombined state but can also be obtained mercuric sulfide ore. Its 

relative atomic mass (RAM) is 200.59 g while its atomic number Z=80 and has different 

solubility rates in water at different temperatures in its various forms. Mercury toxicity is 

the human poisoning which depends on the Hg form, exposure rate and the dosage 

(Langford and Ferner, 1999). When absorbed into the body, mercurous and mercuric salts 

damage the gut lining and kidney while methylmercury affects the entire body. Against 

the health risks posed by mercury exposure, a number of investigations to ascertain the 

mercury concentrations in skin lightening creams and lotions as well as other beauty 

products have been carried globally. 

Several studies in Cambodia have found that skin lighteners used contain mercury 

concentrations which exceed 2% (Murphy et al., 2009, 2013). Nine out of the samples 

investigated contained mercury concentrations beyond the recommended 1 ppm limit, 

while five others had concentrations of more than 2%. Those with the label “For export 

only” had much higher mercury concentrations. The same research indicated that 41 other 

skin whiteners were investigated in 2008 by using the same technique and revealed that 

11 out of the 41 samples analyzed contained more than 2% of mercury(Murphy et al., 

2009). Furthermore, labeling of the products ranged from detailed to slight, with some 

without instructions. 
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In America, 45% of skin lighteners collected from 32 countries were analyzed and found 

and found to contain mercury concentrations exceeding 10% (Peltzer et al., 2016), while 

in Europe, 13.8% of the skin lighteners contain mercury concentrations ranging from 30 

µg/g (Peltzer et al., 2016). In Africa, it was established that 100% of all the investigated 

brands in Ghana contained mercury concentrations from 0.01µg/g to 0.549µg/g 

(Amponsah et al., 2014), while 25% of such products in the same country had 

concentrations ranging from 0.02µg/g to 25.7µg/g (Fang, 1995). In Sudan, Ahmed and 

Hamid (2016) confirmed that 52% of the population used the skin lighteners, while in 

Kenya, 70% of the skin lightening creams and lotions (70%) were found to contain 

mercury concentrations ranged 3.7% to 121% (Maina, 1997). 

In a another study conducted by Peltzer et al., (2016) investigating skin lightening 

samples originating from 26 countries found that China, Thailand, Vietnam and Mexico 

contained mercury concentrations ranging 0.01ppm to 1259%, 0.01µg/g to 8,578 ppm, 

0.02 ppm to 355%, 878 ppm to 3,600 %, respectively. In Nepal, beauty products 

contained mercury concentrations of up to 0.112 ppm (Sah and Charitra, 2012), which is 

much lower compared to other Asian countries. Despite a European Union ban on skin 

lighteners Maneli et al., (2016) showed that a third of the tested skin lightening products 

originated from Europe, with 40 percent of the samples containing mercury 

concentrations > 30 ppm . However, none of the investigated products indicated the 

detected Hg content as one of the ingredients. Additionally, a pilot survey of mercury in 

drugs, cosmetics and household products revealed that the cosmetics had high mercury 

concentrations with a large number of them being manufactured in developed countries 

and distributed worldwide via the black market routes, making it hard to monitor and 

control the import and sale of the products (Liang et al., 2013). 

From the surveyed literature, it is clear that skin lighteners can have extreme mercury 

levels, much higher than the US-FDA limit of 1 ppm. Continued use and long exposure to 

these products is unsafe due to mercury accumulation in the kidney and liver. Therefore, 

assessment of mercury and other toxic elements such as arsenic and cadmium in skin 

lighteners and other beauty products is necessary and should be done regularly and 

intensified in especially African countries where the practice is rampant. For this to be 

effective, rapid and accurate methods that are portable are required to assist regulatory 

authorities in the inspections (i.e. quality assurance and control) of these products.  
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2.3 Spectroscopy techniques used in the analysis of skin lighteners 

2.3.1 A Survey of conventional spectroscopy methods  

The use of skin lighteners containing unquantified and unregulated levels of mercury as 

one of the ingredients has raised a global concern due to the health complications 

associated with prolonged exposure to mercury (Chan, 2011; Murphy et al., 2015). A 

number of spectrometric techniques have been used to assess the extent of the human 

health effects in regard to the wide spread and the prolonged use of these products. Table 

2.1 highlights the conventional techniques, as well as their advantages and limitations. 

Sah and Charitra (2012) used ICP-MS to investigate the health challenge associated with 

mercury in skin whiteners. It was found that the advantage is that the technique can be 

used for very fine metal detection ranging from lithium to uranium. However the 

limitations are that it requires special sample preparation and it is more expensive 

compared to the other techniques (Hattendorf and Günther, 2000). Voegborlo, et al., 

(2014) used a CV AAS with an automatic mercury analyzer to determine the mercury 

levels as well as the hydroquinone contained in some skin lightening creams. The 

advantage of CV AAS is that it requires little operator interaction, offers detection limit of 

a few parts per trillion, fast, has simplicity and robustness. However, positive interference 

of spectral intensities and low sensitivity remain a challenge in this technique (Nguyen et 

al., 1998).  
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Table 2.1: Conventional techniques for mercury identification and quantification. 

TECHNIQUE ADVANTAGES LIMITATIONS REFERENCE 

CV AAS -Offers detection limit of a few 

parts per trillion 

-Requires little operator 

interaction 

-Has robustness 

-Positive interference is a 

problem 

 

(Jacimovic and 

Horvat, 2004) 

XRF -Requires limited solid sample 

preparation 

-Has low running costs 

-Easily portable 

-Has low detection limit 

-The analyzer and substrates 

are affected by humidity or 

temperature 

-Has interferences caused by 

elements other than the metal 

of interest 

(Kalnicky and 

Singhvi, 2001) 

ICP MS -Has detection limit of up to 

1ppt 

-Used for very fine metal 

detection ranging from Lithium 

to Uranium 

-Require special sample 

preparation 

-More expensive compared to 

other techniques 

-Has poor sensitivity 

(Bailey et al., 

2003) 

ICP OES -Has a variety of sample 

introduction methods 

-Has a high atomizing 

temperature ranging from 

6000K to 10,000K 

-Detects just one emission 

frequency at a time 

-Has poor detection limits 

-Has low sensitivity 

(Eschnauer et 

al., 1989) 
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2.3.2 X-ray fluorescence spectroscopy  

The XRF spectroscopy method offers good precision and accuracy and can be applied 

over a wide range of elements (Na to U) (Brouwer, 2006; Revenko, 2018). In addition, it 

is an atomic spectroscopy technique where the type and content of the elements in a 

variety of samples (liquid, solid and gas) can be fingerprinted and determined by 

recording and measuring the energy and intensity of the generated characteristic X-ray 

fluorescence due to the irradiation of the sample under study by a primary X-ray source.  

However, XRF spectra have spectral overlaps, weak fluorescence signals and extreme 

matrix effects (Jacimovic and Horvat, 2004; Pessanha et al., 2009; Rousseau, 2006). The 

invention of modern ways of detection, optics as well as X-rays sources has 

revolutionized EDXRF spectroscopy with respect to their accurate measurements and 

precision. An example is the micro-x-ray fluorescence based on single or polycapillaries 

which are optical elements. Internal reflection of x-rays takes place in a tube with thin 

walls, resulting in a focused beam of high intensity (Wobrauschek et al., 2010). Excitation 

geometries such as GIXRF,  TXRF, GIXRF and GEXRF are commonly applied in layer 

and impact characterization (Grinyer et al., 2007; Wobrauschek et al., 2010a). Other 

sources are XRFEL, LCL, XANES utilized in identifying the elemental state in terms of 

its chemical composition and EXAFS useful in the establishment of the  number of 

coordination as well as the atomic distance in the neighborhood (Mahé, 2014).  

During the analysis of samples by the EDXRF spectroscopy for example, both full and 

partial spectral peaks are displayed. The full ones represent the elemental concentration 

and composition of the samples while the partial ones give the concentration of a 

particular element (Bennun et al., 2002). The various peak heights or intensities 

comprising the full spectra represent the respective elements contained in the samples 

(qualitative analysis) while the peak areas give the elemental concentrations in the analyte 

(quantitative analysis). Given that each element depicts a unique characteristic spectral 

intensity (signatures), it is therefore easy to identify the element of interest from a given 

sample (Kamagaju et al., 2016). The count rate in background and peak radiations is 

taken into account due to the fact that the peak varies directly with time while background 

counts increase with time. MDLs are lowered as analysis time is increased. For laboratory 

instruments, analysis time per sample ranges from 200 seconds to 1000 seconds in direct 

correlation with the improvement on the MDLs (Wobrauschek et al., 2010). Thus, 
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improvement on MDLs for the EDXRF is achieved by increasing the irradiation time per 

sample particularly for low concentration samples of the element of interest. 

The method has been used widely in the analysis of mercury in skin lighteners (Hamann 

et al., 2014; Murphy et al., 2015); in both studies, a handheld XRF analyzer was used to 

realize the analysis of bulk samples (549 and 676, respectively).  

 

This indicates the applicability of the method in rapid assessments of skin lighteners, 

especially in its portable form. However, the detection limit of the EDXRF technique has 

been reported to be 3 ppm (Maina, 1997), making it difficult for the detection of mercury 

in samples with lower concentrations such as those with concentrations ranging 1 – 2.9 

ppm (> 1 ppm regulatory limit).  

2.4  Utility of chemometrics in analytical spectroscopy 

Chemometrics, a chemical method based on statistics and mathematics gives complete 

information through the analysis of acquired data and is suitable for multivariate analysis 

of data obtained from complex sample matrices. These methods are capable of extracting 

relevant chemical properties from spectral data and can be utilized for quick and reliable 

analyses (Luo, 2006). The main reason for using chemometrics in analytical spectroscopy 

is to reduce spectral noise, identify outliers and deal with spectral interferences to attain 

multivariate calibration (Einax, 2005; Nolan, 2005; Rutan, 1996). The common 

chemometrics models used in data analysis are PCA, PCR, ANNs, GA, SVMs and PLSR 

(Luo, 2006; Reinholds et al., 2015). These models are mainly used for curve resolution, 

prediction, pattern recognition and image analysis.  

In recent work based on extending the capabilities of the conventional EDXRF approach 

utilizing multivariate chemometric techniques, rapid and direct analysis of various 

complex matrices (i.e. soil, lubricating oils and human tissues) has been achieved with 

varied success (Angeyo et al., 2012; Kaniu et al., 2012; Okonda et al., 2017; Sichangi et 

al., 2018). In 2011 Kaniu et al used chemometrics assisted EDXRFS spectroscopy 

approach for direct and quick analysis of macro and micro soil nutrients otherwise known 

as soil quality indicators. In their method, they used the EDXRF spectrometry technique 

to investigate the x- ray scatter peaks which were non-invasively acquired from soils to 

develop a calibration strategy for quantitative analysis of SQIs in modeled clay soils.  
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The study utilized PCA for compression of spectral data and pattern recognition as well as 

PLSR and ANNs to build a calibration and quantitative analysis strategy. This approach 

enabled the XRF method to display its potential in spectral data analysis and assessment 

of chemical soil indicators in a fast and reliable way. 

Angeyo et al., (2012) dealt with one of the greatest challenges associated with XRF 

technique in direct trace analysis of complex matrices. Using PLS together with EDXRF 

spectrometry lubricating oils were analyzed rapidly (200 s).  

The method managed to give quality assurance in the analysis of liquid samples with 

complex matrices given that the outcome for those containing heavy as well as low-Z 

metal ingredients was good and promising. Okonda et al., (2017) used calibration strategy 

involving ANN model and PCR to directly and rapidly analyze samples containing trace 

bio metals in model soft tissues. This hybrid nested approach gave a better and reliable 

outcome in the determination of trace bio-metals. 

Sichangi et al., (2018) used a robust chemometrics assisted EDXRF spectroscopy 

approach to accurately determine in a direct and rapid way, the cancer biomarker trace 

metals contained in soft tissues of the body. This method overcame the challenge 

associated with the EDXRF spectroscopy technique in direct characterization and 

diagnosis cancerous tissues through the analysis of bio-metals. In the study, spectral data 

were preprocessed by using wavelet transform, independent component analysis and PCA 

before developing hybrid multivariate chemometric calibration models namely, ANN and 

PLS that were used to establish the bio-metals contained in thin body tissues. 

2.4.1  Exploratory analysis of spectral data 

Principal component analysis (PCA), one of the multivariate chemometric techniques 

gives a clear outline of spectral data in a reduced dimensional space by performing data 

dimension reduction, modeling, outlier detection, pattern recognition as well as 

calibration. It performs its tasks by grouping spectra using latent variables with the largest 

scores variance (Herve et al, 2018). The dataset for PCA comprise a matrix in which the 

rows represent channels for spectral energies while the columns give fluorescence 

corresponding to sample concentrations (Kaniu et al., 2012).  

2.4.2 Preprocessing of spectral data 

It is the pretreatment of spectral data which involves mathematical manipulation of the 

data before it is analyzed. This is chiefly done in order to do away with unnecessary 
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variation and thus reduce the amount of data, prevent undesired effects brought about by 

varying scales in the data, change the data and make it useful for future analysis and 

finally keep adequate information in the data for attaining goals of interest. Data 

preprocessing is achieved via data reduction which involves smoothing, mean centering 

/auto scaling, data distribution change, normalization as well as data transformation 

(Kaniu et al., 2011). 

2.4.3 Quantification modeling of Spectral data 

In addition, a number of neural network models of different types have been developed in 

recent qualitative and quantitative spectral analyses by using chemometric tools in XRF 

spectrometry such as PCA and ANNs (Büchele et al, 2019). By imitating the biological 

neural network in the human brain ANNs can perform data calculation and at the same 

time carry out knowledge representation of the dataset. Common models include Hopfield 

networks, adaptive resonance theory (ART) networks, Kohonen networks and backward 

error propagation (BEP).  Out of all, the mostly used  is the backward error propagation 

algorithm, which has played a major role in utilization of neural networks to solve 

problems globally in real life situations (Luo, 2006). The backward error propagation 

model which is usually trained by making use of the supervised learning and considering 

the error-correction learning rule consists of three layers, namely the input, the hidden and 

the output layers.  

In a neural net model, the transfer function usually used is a sigmoid function. In practice, 

during the multivariate calibrations, development of a reliable neural net structure has to 

be carried out, clearly outlining the hidden layers in terms of the number and size. The 

hidden layers, with their number and size  are  mainly useful in determining the model’s 

properties and its ability to solve problems with nonlinearities (Gershenson, 2003). In 

fitting continuous functions, one hidden layer is sufficient whereas two of them are 

capable of addressing discontinuous functions (Büchele et al., 2019). A neural net with 

limited hidden nodes is incapable of dealing with complicated systems due to its linear 

estimation while the one with a number of hidden nodes gives estimation by overfitting 

the results.  

The problem is eliminated by reducing these nodes to a number equal to or less than one 

in excess of the input nodes. Finally, an artificial neural net model is usually developed by 

training it using three datasets, i.e. the training, the test and the validation data sets (Luo, 

2006). The XRF technique (discussed in Section 2.3.2) has challenges of low resolution 
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and detection limits. EDXRF spectroscopy technique in particular has a challenge in the 

detection and quantification of mercury due to the line series emitted by other trace 

elements (Clevenger et al.,2017). Thus, mercury as a heavy element radiates line series L 

and M, which in some cases are found to overlap with similar spectra from arsenic and 

lead, making it difficult for the method to distinguish between the two elements. The 

present study seeks to overcome the challenges of low resolution, low detection limit 

(currently, 3 ppm for EDXRF) and spectral overlaps produced by the L and M series as a 

result of matrix effects by using a chemometrics-assisted EDXRF spectroscopy approach.  
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CHAPTER THREE 

THEORETICAL BACKGROUND 

3.1 Overview 
In this chapter, the Sim Base Matrix identification in section 3.2 and Utility of 

Chemometrics in EDXRF Spectroscopy (Section 3.3) are discussed. Section 3.3 outlines 

Multivariate chemometric tools i.e PCA and ANN used in this work as well including 

their use in chemometric modeling of the EDXRF spectra. In addition, the XRF 

Spectrometer (Section 3.4), EDXRF Spectrometry (Section 3.5) and Interaction of X-ray 

with Matter (Section 3.6) are also tackled.  

3.2 The Sim Base Matrix Identification 

In a research on Transdermal Kinetics of a Mercurous Chloride beauty cream by Palmer et al., 

2000, Cosmetic industry mainly utilizes glycerol-water mixture an aqueous base formulation for 

the products. Glycerol, a trihydroxy sugar alcohol with three carbon atoms and three 

hydroxyl groups makes it an organic polyol compound which is readily miscible with 

distilled water. The main role of the glycerol in the products is to disrupt lipid and protein 

structure by decreasing the barrier function of the stratum corneum resulting in increased 

skin permeability. Water, a commonly used ingredient in the base formulations enhances 

penetration on the skin and therefore increasing its permeability. Environmental 

conditions such as hydration among others, influences the water content in the skin, 

causing hydration.   

3.3 Utility of chemometrics in EDXRF spectroscopy 

 Chemometrics is an analytical tool which utilizes mathematical, statistical and 

computational methods to reveal hidden relationships in data sets (Reinholds et al., 2015). 

In addition, it can also be used to obtain robust results from a large data set. The common 

chemometrics models used in data analysis are principle component analysis (PCA), 

Artificial Neural Networks (ANNs), Genetic Algorithms (GA), Support Vector Machines 

(SVMs) and partial least squares regression (PLSR) (Luo, 2006). These models are 

mainly used for curve resolution, prediction, pattern recognition and image analysis. 
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In EDXRF spectral analysis, PCA and ANNs as Multivariate chemometric tools for 

spectral data evaluation entailing data preprocessing, exploratory data analysis and 

supervised learning have been used to carry out data deconvolution, accurate prediction of 

new samples with high robustness and efficiency (Wold and Eriksson, 2001). 

Determination of linear relationships as well as nonlinear ones with good robustness is 

possible by the ANNs technique. (Nagata et al, 2006). The main purpose for multivariate 

calibration is to establish the relationships between a response y-variable and several x-

variables.  

3.3.1 Principal Component Analysis (PCA) 

It is an unsupervised method used in exploratory data analysis (EDA) in which training 

data set is not required. PCA is a chemometric tool which gives a 2-D description of 

spectral data in a reduced multi-dimensional space by identifying outliers and reducing 

data dimension through extraction of the relevant information (Worley et al., 2013). To 

transform a given data set, the equation below is used: 

         𝑋 = 𝑇. 𝑃′ + 𝐸                                                                                 (3.1) 

where T is the scores matrix with n rows, which gives the relationship among the samples, 

calculated as (n x A). P’ is the loading matrix with p columns, given as (A x p), where A 

is the hidden dimension for the principal components useful in complete description of the 

entire information contained in the given data.  

 During principal component analysis, the graphical interface (scores and loadings plots) 

and the 2-D scatter plot display covariance between the samples, providing a data 

overview and quantitative information from PC scores. Objects clusters and patterns 

including outliers are identified with ease in the PC scores plot enabling exploration of 

unexpected and expected trends in the data. The loadings line plots explain the essence of 

original variables in each PC which could be useful in the reduction of quantitative 

differences that lead to trends or clusters in the data and thereby identify elements that 

result in the spectra peaks. The PC scores give sample differences or similarities by 

outlining the patterns in terms of data structure. The sample location in terms of 

coordinates along every PC is given by scores for the corresponding samples. 

Interpretation of the information contained in a certain PC is explained by using the 

loadings plot while scores along the PC depicts the sample characteristics.  
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For example, scores closely positioned along the same PC describe sample similarity 

based on qualitative and quantitative information. On the other hand, loadings plot 

explains sample correlations in a data structure in such a way that every variable displays 

a loading on every PC. The variability of a variable over the data points as well as its 

contribution to a particular PC are both given by the loadings. Loadings range between -1 

and +1 because geometrically, they are cosines of angles between the variables and 

corresponding PC. Large loadings are as a result of small angles, implying a strong 

relationship between the PC and variable. 

3.3.2 Artificial Neural Networks (ANNs) 

This is a chemometric model built by utilizing a given data set whose purpose is to predict 

the outcome of unknown samples. Before use, the ANN model is first of all trained, tested 

and validated by using an appropriate number of simulate samples (Luo, 2006). Training 

is the process by which a neural net model responds to the input information or its spectra 

and concentration values by modifying the weights and bias terms through unsupervised 

or supervised learning. In the unsupervised learning the model is unaware of the error it is 

bound to make due to the fact that it has no knowledge of the correctness of a given 

output for a particular input.  

In supervised learning, the training process is controlled by an external agent which 

analyses the final output of the model and continues to change the weights in case it does 

not agree with the correct value (Reinholds et al., 2015). To achieve a thoroughly trained 

model, tuning is done by adjusting the number of hidden layers as well as the nodes per 

layer. Validation dataset comprising new samples whose spectral data and concentration 

is already determined is used to assess the developed model’s performance. However, the 

disadvantages are that it is time consuming due to its trial-and-error approach given that a 

nonlinear technique is applied to linear data.  

A trained model, regarded as simulated structure or designed model is one with the least 

zero error, capable of giving solutions in cases where noise or nonlinearities are contained 

in a given data.  Modeling steps include data preparation, model building, evaluation and 

prediction. In data preparation, the data is classified, loaded into the R software, 

preprocessed and then validation dataset created. The model is built by choosing the input 

layer, number of hidden layers including their respective nodes as well as the output layer 

(Jalali-Heravi and Kyani, 2004).  
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Evaluation involves assessing the accuracy in the predictions on the validation dataset by 

using the model. Accuracy, as used in multivariate calibration refers to the correlation 

between the measured and predicted values determined by the calibration model it is 

usually calculated as the root mean square error of prediction (RMSEP) using the 

equation  

                                               
2 1/2[ ( ' ) / ]referenceRMSEP y y n                                 (3.2) 

where y’ represents the predicted sample concentrations and n the number of 

calibration samples. 

 

The modeling steps are outlined as shown in Fig. 3.1, while the neural net model 

architecture is shown in Fig. 3.2. 

 

                                    Figure 3.1: Flow chart showing modeling steps 

  

        Figure 3.2: Neural network model architecture. 
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This is a neural net structure consisting of several nodes interconnected via directional 

links. Every node is a processing unit with the relationship represented by the links 

between connected nodes and can be changed, because the output depends on related 

parameters which are modifiable. An ANN model has power to compute and process 

information through its massive parallel distributed structure and also possesses the ability 

to learn and therefore to generalize. The capability of the ANN model to produce correct 

outputs for new inputs that were otherwise not encountered during the process of learning 

is referred to as generalization. For an ANN model the most important property is its 

environmental learning ability based on real-life experiences and aimed at improving the 

performance of the model through the process of learning. Iteration is the process through 

which an ANN model learns about its environment by applying adjustments to its 

connection weights. After every iteration during the learning process, it is important to 

note that the neural net becomes more acquainted to its environment.  

Each sample data for the training of an ANN is made up of the input X (n) and the 

corresponding output y. The function which is used to calculate the output from the input 

vector comprise two parts in which the first one calculates the net input while the other 

one transforms this net input into a nonlinear output. Calculation of the net input (Netj) is 

based on the equation below (Luo et al., 1997): 

                                         Netj = 

1

m

i

wjixi


                                  (3.3) 

The artificial neurons’ weights wji are related to the actual synapse strengths of the neural 

network   between the axons sending the signals and the projections of the neurons 

receiving them. The transfer function f (u), which is basically a sigmoid function is given 

by: 

                                                        
1

( )
(1 )u

f u
e




                                                 (3.4) 

This function node j to produce an output given as: 

                                                             ( )j jOUT f Net                                           (3.5) 
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Another transformation is done to get to get an output (OUTk), represented by: 

                                                                                    ( )k kOUT f Net                                                                  (3.6)            

This output of node k obtained from the last layer is then compared with various sample 

concentrations (Yk) and the corresponding error in the training dataset using the equation: 

                                                      ( )k KY F OUT +E                                                     (3.7) 

Where F is the training function of the neural net model and E the calibration error. The 

complexity of actual neurons is never taken into account when modelling artificial 

neurons. This is because such neurons are basically made up of inputs which are 

multiplied by the respective signal strengths (weights) and then calculated by using a 

mathematical function which eventually determines the activation of the neuron. ANNs 

process information by combining artificial neurons given that  higher input signals of an 

artificial neuron  produce stronger input signals (Büchele et al., 2019). For particular 

inputs, the desired output can be achieved by varying the weights of an artificial neuron 

through different computations based on the input signals.  

When we have an ANN with many neurons to the tune of hundreds or thousands, it would 

complicate the process of determining the necessary weights by counting. However, 

methods which could be used to make adjustments to the ANN weights through learning 

or training may be utilized for the purpose of attaining the necessary output from the 

network (Reinholds et al., 2015). ANNs differ in functions used, the values of acceptance, 

the structure, the learning algorithms such as the back propagation, etc. Backpropagation 

Algorithm is used in layered feed-forward ANNs in which the arrangement of the 

artificial neurons is in form of layers which fire their signals “forward”, and then transfer 

the errors backwards (Luo, 2006). The input signals received by the network are from 

neurons in the input layer while the neurons in the output layer produce the output signals.  

The backpropagation method makes use of supervised learning by which the algorithm is 

provided with input and output signals of interest for the network to compute and finally, 

the error which is the difference between the actual and expected results is then 

computed. Supervised learning deals with training spectral data chosen from a grouped 

dataset to make a multilayer model with three clear characteristics. The first one 

comprising neurons in the hidden layer which are neither in the output nor in the input 
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layers but make the neural net model to learn and tackle problems with complications. 

Secondly, the nonlinearity displayed in the neural network which is differentiable while 

the third characteristic depicts the model’s ability to display a higher order of connectivity 

due to its network. In supervised learning, an ANN model is trained and made to learn 

through back-error propagation based on the input and output data (Grieken et al, 2002). 

Learning through back error propagation involves forward and backward propagations. In 

forward propagation, an input vector is injected into the network and propagates the 

neurons as signals one at a time, making them emerge at the other end of the network as 

output signals (Carlos et al, 1996).  

The error for a neuron is determined by comparing the calculated output and the expected 

outcome. During the backward propagation, the error obtained from the output neuron is 

fed into the network and propagated backwards. In the process, the slope for each neuron 

in a given layer is calculated and then the weights of the synapses allowed to change 

accordingly. The backpropagation algorithm reduces the error until the time when the 

ANN model learns about the data used for training. Training starts with weights which are 

randomly picked and repeatedly adjusted until a minimum error is attained (Gershenson, 

2003). The backpropagation algorithm is generally taken as the summation of the product 

of the x- inputs and their respective weights (w jt) as per equation (3.8) below and it is 

also the activation function of the artificial neurons in ANNs. 

 
0

( , )
n

t
Aj x w XtWjt


                                                                                       (3.8) 
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3.4 The X-Ray Fluorescence (XRF) Spectrometer 

This is a tool used for the qualitative and quantitative analysis of a sample in order to 

establish the elements in the sample irrespective of the chemical composition. X-ray 

fluorescence spectroscopy is a method which is useful in the determination of different 

concentrations or chemical composition in various samples. (Marguí et al.,2014). It works 

on the principal of X-ray excitation in which high energy X-rays from a source irradiate 

elements in a sample making them emit characteristic X-rays, on which the radiation 

energy produced is dependent in accordance with the Mosley’s equation,  

𝐸 = 𝐾(𝑍 − 𝑆)                                                                                                              (3.9) 

 

In this equation, the constants K and S rely on spectral line series while the atomic 

number of the element is represented by Z. This method is fast, accurate and non-

destructive which is usually used in determination of solid and liquid sample 

concentrations such as metals, cement, oils, polymer, food substances, pharmaceuticals, 

water and waste materials. This technique however has challenges associated with matrix 

effects and poor detection limits for low atomic elements (Z<13), (Marguí et al., 2009;  

2014). Two XRF instruments in use are EDXRF and the WDXR spectrometers. The latter 

is based on Bragg’s law 

2𝑑𝑆𝑖𝑛𝜃 = 𝑛𝜆,                                                                                                              (3.10) 

in which the diffraction of single crystal or synthetic multilayer uses a characteristic angle 

to detect X-rays of particular wavelength while the former uses a solid-state detector for 

detecting the fluorescence of the characteristic X-rays. EDXRF, for which the elemental 

range is from Na to U is more popular for laboratory applications as compared to 

WDXRFS whose range is from Be to U. However, count rate limitation and low energy 

resolution are the main disadvantages of the EDXRF, resulting in its reduced precision 

and accuracy (Antwerpen and Clapera, 2006).  

In EDXRF spectroscopy, analysis is based on the principle of linear correlation that exists 

between sample concentrations and fluorescent X-ray intensities emitted by the present 

elements. In practice, there exists a nonlinear relationship between the concentrations and 

intensities for a specific sample due to the matrix or elements in the analyte. Since 1960, 

technological evolution has resulted into the present-day compact light weight EDXRF 



22 
 

designs which are electrically cooled. These, including the air-cooled low power X-ray 

tubes are suitably utilized as hand held spectrometer tools, an improvement from the 

former Liquid nitrogen cooled solid state detectors, nuclear electronics and small 

computers. More advanced spectrometers which have very low detection limits (MDLs), 

though very expensive, are the TXRF) and the Synchrotron radiation types (Wobrauschek 

et al., 2010). In an ordinary EDXRFS, the crystal of the detector which is made of Silicon 

drifted with Lithium Si(Li) disperses the energy radiation and also counts the 

corresponding photons resulting into a spectrum consisting of intensity versus energy of 

the characteristic sample radiation (Çevik et al., 2003).  

3.5 Energy Dispersive X-Ray Fluorescence Spectrometry 

It is a technique used to analyze a sample qualitatively and quantitatively in order to 

determine the elements present, ranging from sodium (Na) to uranium (U) in a wide range 

of sample concentrations. The versatility of this technique emanates from its ability to 

provide rapid, non-destructive multi-elemental analyses of low sample concentrations in 

parts per million (Wobrauschek et al., 2010a). The fluorescent X-rays are analyzed 

qualitatively by using the Moseley’s law/ equation                                          

                                                  2

2 2

1 2

1 1
(Z ) ( )xE RhC

n n
                                                        (3.11) 

where 𝐸x is the characteristic x-rays energy, 𝑅, which is equal to 1.09737 × 10
7
 m

-1
, 

represents the Rydberg constant, ℎ , the Planck’s constant is equal to 6.6262 × 10
−34

 J⋅s 

and 𝐶, the photons velocity is equal to 3.0 x 10
8
 m/s. 𝑍 and σ represent the atomic 

number and the shielding constant respectively while 𝑛1 and 𝑛2 are the corresponding 

energy series.  

 

In this case, the detection of the fluorescent x-rays can be done and their spectrum  of 

intensity against energy displayed, from which the peak locations are used to establish the 

various  elements contained in the sample (Reinholds et al., 2015). During quantitative 

analysis, the percentage number of energies or peak heights hitting the detector at equal 

energy level are utilized in the quantitative determination of each sample element. 

When the incident radiation energy is very high, it ejects an innermost electron from its 

atomic orbital and as a result, an electron from the outer shell drops into the vacancy to 

fill the hole left behind. By this transition a radiation of characteristic energy (X-ray 

fluorescence) is emitted and as a result, a fluorescence detector detects it. The radiation 
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energy required to ouster an innermost electron corresponds to every element and 

therefore is the emitted energy resulting from the transition. A transition of an electron 

from the L shell into the K shell is termed a Kα transition, while an electron falling from 

the M shell into the K shell is a Kβ transition. Line spectra which are categorized in series 

such as K, L, M, N etc., result from electron transitions released from different higher 

levels to the same shell (Wobrauschek et al., 2010a). 

 

 

When an empty space in a K shell is filled by an electron from the L shell Kα line 

radiation is obtained but when an electron from the M shell fills this space, it results in a 

Kβ line radiation. In the same way, the Lα line radiation is obtained when the space in the 

L shell is filled by an electron from the M shell, and if filled by an electron from the N 

shell, we get the Lβ line radiation. However, an Lγ line radiation is obtained if this 

vacancy is filled by an electron from the O shell (Melquiades et al., 2015) . The K, L and 

M series are the characteristics of every element. 

Light elements produce K lines only, mid-range ones emit both K and L series while K, L 

and M series are produced by the heavy elements. EDXRF spectrometers convert 

characteristic X-rays into electrical signals by using a semiconductor material 

detector (Silicon-Lithium drifted detector). The signals produced are captured by 

the spectrometer's electronics and then transmitted to PC or internal electronics 

where they are analyzed and displayed. 

 

The EDXRF analysis principal works on a process of direct excitation through which 

sample atoms are excited by incident photons from external sources, which may be a 

radioactive source, a synchrotron beam or an X-ray tube to produce primary fluorescence. 

Alternatively, indirect excitation, in which secondary fluorescence is produced by 

particles (electrons) emanating from direct excitation or any other secondary processes in 

the sample may also be used (Grieken et al., 2002). X-ray, an electromagnetic radiation 

with wave-particle duality is emitted when high-energy particles strike the sample atoms. 

XRF spectrometry makes use of the primary X-ray emissions or other photonic particles 

for excitation of the sample atoms which results in secondary fluorescence useful for 

analyzing the composition of the material.  

 
17 
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During direct or indirect excitation of a sample, the emitted electron is replaced by 

another electron from an outer atomic shell resulting in X-ray fluorescence, otherwise 

referred to as characteristic X-rays which correspond to particular energy level by a given 

element. For example, when an electron is ejected from the K shell of a manganese atom, 

another electron from the L shell of the atom moves to replace it, releasing 5.894 keV of 

energy. In an EDXRF spectrometer, the characteristic X-rays are converted into electrical 

signals by a detector. The signals are digitalized by electronics in the spectrometer and 

then sent to a PC for analysis and display (Yao et al., 2015). 

EDXRF spectrometers work on the fact that the energy of the X-ray photon directly 

correlates to the detector’s signal pulse height which corresponds to the wavelength.  

The fluorescent X-rays are detected and displayed as a spectrum of intensity versus 

energy, from which the peaks’ location depict the elements present in the sample 

(qualitative analysis) while the peak heights reveal the quantity of every element in the 

sample (quantitative analysis). 

 

3.6 Interaction of X-rays with matter 

When an X-ray beam strikes a sample material it interacts with the sample atoms through 

photoelectric effect, coherent (Rayleigh) scattering or incoherent (Compton) scattering. In 

elements with high atomic number, photoelectric effect occurs when the photon energy is 

large enough to create a vacancy by ejecting an electron from one of the inner shells, 

resulting in characteristic fluorescence in the form of X-rays. The created vacancy may 

also de-excite an atom leading to ejection of Auger electrons, a common occurrence with 

low atomic number elements.  

Coherent or incoherent scattering is dependent on composition of the sample and the 

photon energy. In a sample the target element is identified by the measurement of 

corresponding wavelength or energy. The attenuation of the X-rays beam intensity is via 

the sample in the aforesaid processes and takes place in accordance with the following 

law, expressed in exponential form: 

                        𝐼(𝐸) = 𝐼𝑜(𝐸) exp(−[µ(𝐸)𝜌𝑥]),                                                           (3.12) 

from which Io (E) is the original beam intensity, I(E) the beam intensity after travelling a 

sample distance x, ρ the sample density while µ(E) represents the attenuation coefficient 

of the sample mass. The  properties influencing scattering processes as well as MDLs in 

an EDXRF are the sample thickness and the atomic number (Marguí et al., 2014).  
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Three parts to consider for the proper working of an EDXRF spectrometer are the source 

of the beam of X-rays, the spectrometer’s beam geometry and type of the detector. The 

source of the X-rays may be a tube of X-rays, a radioisotope emitting gamma rays from 

decaying radioisotope or fluorescence x-rays produced by the disintegrating material. 

Emission of a lower intensity beam than one from the X-ray tube as well as common 

isotopes with long half-lives are the disadvantages. The advantages are stable intensity 

source and that electric power source is not required. 

 However, radioisotope sources are commonly used in light instruments for field work. 

(Murphy et al.,2012). Synchrotron radiation, another X-ray source is ideal for an EDXRF 

because the preferred energy with ideal brilliance can be obtained  and confined as well, 

by focusing it in the electron plane or positron orbit, making it suitable for use in the 

reduction of scattered radiation which in turn minimizes background radiation 

(Wobrauschek et al., 2010).  

In a beam spectrometer geometry, the triaxial arrangement of the beams (All at 90 degrees 

to each other) makes the x-ray beam linearly polarized, reducing scattering on the 

secondary target and thereby reducing background radiation. This arrangement minimizes 

the detection limits for a variety of elements. The third part is the type of detector, which 

may be liquid Nitrogen cooled or Silicon- Lithium drifted, the most widely used type. 

Other detectors are mercury-iodide detectors, high purity detectors and SDD, the latter 

being of poor efficiency due to its thin crystal dimension. 

 

3.6.1 Radiation scattering 

Scattering occurs when photons incident on a sample bounce away after hitting an 

electron. The photon loses some little energy to the loosely held electron which depends 

on the angle of incidence (Grieken et al., 2002). This type of scattering is known as 

Compton (incoherent) scattering in which the energy of the scattered photon is given by: 

                   
1 (1 cos )

oh
h




 


 
 ,                                                                               (3.13) 

where  

oh  is the energy of the incident photon while 
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For very small energies, 
2

o oh M C    

 

Thompson’s scattering cross section for electromagnetic radiation on an electron is given 

by the equation: 

                           

2

2(1 cos )
2

oTH
rd

d


 


                                                                            (3.15) 

When photons bombard electrons strongly bound to the sample atoms, Rayleigh 

(coherent) scattering occurs. The electrons struck oscillate at the same frequency as that of 

the striking photon and thereby producing radiation at the same frequency (Yao, et al., 

2015). For this type of scattering, the differential equation for the cross-section is 

presented as: 

 
2. (q, z)R THd d

F
d d

 


                                                                                    (3.16) 

Where   Rd

d




  represents the differential Rayleigh cross-section while THd

d




 is the 

Thomson scattering cross-section per electron, referred to as the probability for scattering into unit 

solid angle per electron per unit incident flux.  F (q, z) is the factor for the atomic form of element 

Z, corresponding to the momentum transfer and q = sin (θs /2) /λ, the square form factor which is 

proportional to Z
2 

for the atom. λ represents the incident photon wavelength while θs is the 

scattering angle. 

The energy of the scattered photon is determined by the scattering angle and the incident photon’s 

energy as per the equation below: 

 

 
1 (1 cos )

o

s

E
E

 


 
                                                                                 (3.17) 

oE  accounts for the incident photon’s energy,
2/ Mo oE C    while s  represents the 

scattering angle which takes any value between 0 and 180
o 
(Grieken et al., 2002). 

The radiation incident on the surface is slowly absorbed by the sample and at a layer of 

thickness t below the surface, the remaining fraction of the intensity ( )t oI    is given by the 

Lambert-Beer law: 
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                                  ( ) ( )exp[ ( ) (csc ')]t o o o s o sI I t                                            (3.18)           

where  

( )s o   is the specimen’s mass attenuation coefficient 

o  the specimen’s wavelength and s  the specimen’s density. 

For angle of incidence 
' the path length travelled by the beam is given by 

                                                    
'csct                                                                        (3.19) 

The attenuation coefficient for the sample mass for elements j in the sample is the 

numerical sum of the product of each of the n elements present and their respective 

fractional mass Wj, according to the equation below (Grieken et al., 2002): 

 
1

( ) [ ( ) Wj]
n

s o j o

j

   


                                                                            (3.20) 
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CHAPTER FOUR 

MATERIALS AND METHODS 

4.1 Overview 

In this chapter, instrumentation of EDXRF spectroscopy as well as the establishment of a 

suitable base matrix used in this work for simulate samples preparation has been 

discussed. Development of ANN models for chemometric assisted EDXRF spectroscopy 

has been outlined. Acquisition of optimum sample volume, analysis time and EDXRF 

spectra has also been handled in this chapter. The multivariate chemometric tools used to 

perform EDXRF spectral deconvolution and exploratory data analysis included PCA and 

ANNs (Luo, 2006; Reinholds et al., 2015).  

4.2 Instrumentation of EDXRF Spectroscopy 

An EDXRF Spectrometer, one of the forms of XRF spectrometers is an analytical tool 

used for qualitative and quantitative analysis of the elements present in a sample. Figure 

4.1 below illustrates the EDXRF schematic arrangement and instrumentation: 

 

 

Figure 4.1: EDXRF Schematic Instrumentation 

 

In this research, Rigaku NEXCG model of the EDXRFS was used to perform spectral 

analysis of liquid samples containing Hg concentrations from blank to 500000 ppb. The 

use of secondary target excitation rather than conventional direct excitation improved its 

sensitivity. Excellent spectral resolution and very high-count rate ability was achieved by 

using a high-performance SDD.  
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The system’s hardware consists of the excitation source, basically an x-ray tube with 5 kV 

anode potential difference and a 50 W power, high performance SDD, a sample changer 

(38cm in diameter) having 15 position automatic sample changer external PC computer 

system. 

The spectrometer operation was done procedurally by preheating it first for about 40 

minutes before the experiment to increase the tube pressure, produce gradual flow to 

protect the light pipe and thereby achieving a higher stability. Initialization, necessary for 

calibrating channel magnification was the next step, during which a silver (Ag) sample 

was stimulated and the magnification adjusted to achieve the system’s hardware best 

working condition. Air, the correct and suitable condition for this work such as air, was 

used. Finally, elemental determination through qualitative and quantitative analysis of the 

EDXRF sample spectral data from the PCs was carried out. 

 

4.3 Base Matrix candidate identification 

Preliminary investigation involved carrying out an EDXRF spectra for pure honey, 

glycerol, olive oil and glycerol-distilled water mixture in order to establish the suitable 

base matrix for use in this work. EDXRF spectra for two different skin lighteners was also 

taken and the dataset for the six spectra saved in an excel csv file. A directory containing 

this data was imported into the R software code for principal component analysis. Fig. 4.2 

below captures the four samples used for this investigation: 
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(a) Glycerol Matrix (b) Olive oil matrix 

  

(c) Pure  honey matrix (d) Glycerol mixed with distilled water 

 

 

Figure 4.2: The base matrix samples 

 

Glycerol, a colorless, odorless and viscous liquid at room temperature is non-toxic in low 

concentrations. Its other names are glycol alcohol, glycerin or glycerine (Quispe et al. 

2013). The empirical formula is C3H8O3 while its structural formula is C3H5 (OH)3.  

Glycerol, a trihydroxy sugar alcohol with three carbon atoms and three hydroxyl groups 

makes it an organic polyol compound. It has several structures but the simplest is shown 

below: 
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Figure 4.3: Glycerol structure 

Pure glycerol has a melting point of 17.8
o 

C and boiling point of 290
o 

C. It is hygroscopic 

compound which makes it useful in cosmetics because it retains water and prevents the 

substance from drying out. Another property is that glycerol is miscible with water due to 

the fact that the polyol groups form hydrogen bonds with molecules of water(Sarkar et al. 

2002). 

4.3.1 Spectra analysis for candidate skin lightening base matrices 

To identify the correct base matrix candidate for simulate samples preparation, EDXRF 

spectra were obtained from pure honey, glycerol and olive oil (see Fig. 5.1). It was noted 

that both the glycerine and pure honey have closely related characteristics different from 

those for olive oil. This is because they are equally viscous, organic in nature and are 

readily miscible with water. 

 

 

Figure 4.4: EDXRF scatter plot for the base matrices 
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The scatter plot was used in the description of the candidate skin lightening base matrices 

because it displayed discriminatory characteristics that distinguished the three matrices. 

The difference between olive oil and the other two matrices is confirmed in the PC plot 

shown in fig. 5.2 below. 

 

A PCA for the EDXRF spectral data was also done for further investigation, incorporating 

glycerol and water mixture, as well as real skin lightening samples (see Fig. 4.5).  

 

Figure 4.5: PCA analysis results for candidate base matrices 

 

All the four base matrix samples and the two skin lighteners were fully described by a 

total variance of 56% in the two PCs. The positive side of PC1 as well as the negative side 

of PC2 fully explained the properties of the two skin lighteners while the glycerol-

distilled water mixture was described by negative sides of both PC1 and PC2. Pure honey 

and glycerol were fully described by positive of PC2 and the negative of PC1. Olive oil 

was described by the positive of the two PCs. However, the clustering of the two skin 

lighteners and the glycerol-distilled water mixture on the negative side of PC2 unveiled 

lots of similar properties and characteristics found in them.  
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This confirms that the manufacture of skin lighteners makes use of base formulations 

which are mainly a mixture of glycerol and distilled water as already established 

previously (Breternitz et al., 2008; Dnil et al., 2019; Palmer et al., 2000). 

In the cosmetics industry, glycerol is used as a moisture control reagent and also to 

enhance the texture of creams and lotions. It is a widely used cosolvent and vehicle in 

aqueous formulations such as creams and lotions (Quispe et al., 2013). One of its two 

major effects is that it solvates skin protein alpha-keratin and occupy the hydrogen 

bonding sites, causing a reduction in tissue binding of the penetrating substance. It also 

decreases the barrier function of the stratum corneum by disrupting lipid and protein 

structure, making the skin more permeable (Palmer et al., 2000) However, the key 

function of glycerol in creams and lotions is to act as a viscosity enhancer and to retard 

evaporation.  

Water, a commonly used penetration enhancer in beauty products increases skin 

permeability, making the absorption of mercury into the skin much easier. Humidity, 

among other conditions in the environment influences the water content in the skin, 

causing hydration. In this regard therefore a homogeneous solution, basically a glycerol-

distilled water mixture was chosen and used in this study as the base matrix owing to its 

function in skin lightening creams and lotions. 

4.4 Simulate samples preparation and analysis 

Mercury chloride (HgCl2) and glycerol (C3H8O3) were used. Organic Analar grade 

glycerol was mixed with distilled water in a ratio of 1:1 and used as the base matrix 

(solvent) for the inorganic mercuric salt. 

The relative formula mass for the mercuric salt is 271.50g while its percentage purity 

(Assay) is 99.5%. The relative atomic mass for mercury is 200.59g. Thus, the mass of 1g 

of mercury in the mercuric salt was given by: 

 
271.50

200.59
g =1.353507153g.  

This mass corresponds to an assay of 99.5%. Hence, the mass corresponding to an assay 

of 100% is equal to: 

100
1.3535071539

99.5
x   = 1.3603g. 



34 
 

The 1.3603g was weighed in a chemical balance and dissolved in 1000ml solvent and the 

mixture shaken well to obtain a homogeneous mixture as the stoke solution. 

The formula below was used for serial dilution of the simulate samples: 

𝐶1𝑉1 = 𝐶2𝑉2                                                                            (4.1) 

Where C1 was the concentration of the stoke solution, V1 the dilution volume from the 

stoke solution, C2 the required concentration in ppm and V2 was the dilution volume 

taken from the glycerol/distilled water solution and put in a volumetric flask (VF). 

To prepare 100ppm, 10ml was drawn from the stoke solution and diluted with the solvent 

using the 100ml VF. Similarly, 10ppm was prepared by drawing 10ml from the 100ppm 

solution and diluted with the solvent using the 100ml VF. The Hg concentrations in the 

ppb level were prepared in a similar way by using some selected ppm concentrations to 

serve as the stoke solutions. Fifty simulate samples were prepared and three EDXRF 

spectral data for each, abbreviated as SA, SB and SC obtained. 

 Table 4.1: Simulate sample concentrations 

S/No. Hg Concentrations(ppb) S/No. Hg Concentration (ppm) 

1 5 26 0.1 

2 10 27 0.5 

3 15 28 0.87 

4 20 29 0.925 

5 25 30 1 

6 35 31 2 

7 40 32 3 

8 50 33 5 

9 62 34 8 

10 70 35 10 

11 80 36 12 

12 87 37 15 

13 120 38 17 

14 130 39 20 

15 148 40 26 

16 180 41 30 

17 220 42 38 

18 300 43 45 

19 366 44 50 

20 400 45 60 

21 440 46 100 

22 550 47 200 

23 630 48 250 

24 710 49 300 

25 800 50 500 
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Detection capability for most spectrometers is enhanced by using longer running times in 

order to improve on the excitation of electrons from the K and L shells in the element of 

interest (Wobrauschek, et al, 2010). In this regard, EDXRF spectra for samples with Hg 

concentrations of blank, 10 ppb, 35 ppb and 62 ppb was taken at different irradiation 

times ranging from 25 sec to 1500 seconds in order to establish the optimum analysis time 

for the samples.  

 

 

Figure 4.6: Spectral data acquisition time 

 

The counts seem to correlate with the Hg concentration in a given sample, i.e, the higher 

the concentration the higher the counts. Thus, 62ppb sample displays the highest counts 

than the others. Below 650sec. the EDXRF detector is unable to give distinct counts for 

the samples. However, it is clear that from 700sec. onwards, all the samples give different 

counts at different corresponding times. Very distinct counts for all the concentrations is 

clearly noted at 900sec. The increased exposure time improved the detection capability of 

the spectrometer and therefore increasing the excitation of electrons from the k-shell in 

the element of interest (Wobrauschek, et al, 2010). 
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4.5 Sample volume for analysis 

Sample volumes ranging from 0.5 ml to 2.5 ml were run in the EDXRF spectrometer and 

a graph of total counts versus the sample volume fitted in order to establish and optimize 

the sample volume for analysis. 

 

Figure 4.7: Curve for Optimum sample volume 

 

From the plot therefore, it is clear that the optimum sample volume is 2ml. This was used 

during the spectral analysis of all the samples in the study. 

 

4.6 Real Samples Preparation and Analysis 

Eight different skin lighteners were sampled along River Road in Nairobi (Kenya) and old 

town in Mombasa (Kenya). One gram (1g) from each sample was weighed in the sample 

cups using a chemical balance and analyzed in the EDXRF spectrometer. Out of the eight 

samples, three of them registered high levels of Hg content while the rest had nothing 

detected, implying that their Hg concentrations were below the spectrometer’s LOD of 

3ppm. 

From each of the five samples with undetected Hg content, 1g was weighed and put in 

separate test tubes containing 10 ml of the base matrix used during simulate sample 

preparation and thoroughly shaken to produce a homogeneous mixture. Two millilitres 

(2ml) from each sample were analyzed twice to produce ten different spectra.  
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Spectral data consisting of the ten spectra classed into groups A and B, colour coded blue 

and red respectively was saved in a csv file. A PCA analysis for this data was done on the 

R software code and the resulting PCs used to validate the developed ANN model. 

4.7 Multivariate Chemometric analysis of EDXRF spectra 

Simulate and real spectral data were auto-scaled, mean centered and normalized before 

chemometric analysis in order to remove unnecessary information from the original data 

matrix. Multivariate chemometric analysis i.e. PCA and ANNs were then performed on 

the data by utilizing the R-software code for both. 

In this work, EDXRF spectral data matrix consisting of 4097 energy channels was used 

with back-error propagation to perform multivariate calibration of mercury 

concentrations. In order to eliminate some irrelevant information and reduce the number 

of variables, feature selection method was employed on the entire data in which only the 

Hg Lα (70 channels) and Lβ (80 channels), within the spectra range 9.6 - 12.4 keV, were 

considered. After feature selection, the new data were orthogonalized by applying 

principal component analysis (PCA) whereby PC scores were obtained and optimized to 

get the first 2 PCs used as input data for the development of an artificial neural net model 

utilizing Hg concentrations (ppb). Another ANN model entailing Hg concentrations 

(ppm) was also developed in the same procedure by applying PCA on spectral data within 

the Hg Lα region (9.6 keV to 10.4 keV) and used to ascertain the results attained by using 

the conventional EDXRF spectrometer. 

4.7.1 Data Preprocessing 

A data frame consisting of 91 spectra out of which a blank sample and 30 simulate sample 

triplicates with Hg concentrations from 5 ppb to 1000 ppb within the ROI for the energies 

ranging from 9.606 keV to 12.4 keV was prepared and used to train and develop a neural 

net model for the Hg concentrations in ppb. The sample concentrations were classed into 

three groups, different colours   assigned as shown below and the data saved in an excel 

csv file for principal component analysis. 

        Table 4.2: Classed Hg concentrations (ppb) 

GROUP NO. Hg CONCENTRATION (ppb) COLOR 

1 0-87 Blue 

2 100-440 Green 

3 500-1000 Red 
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Another data frame comprising 52 spectra for a blank sample and 17 simulate sample 

triplicates with Hg concentrations from 0.1 ppm to 30 ppm within the same ROI but in the 

L-alpha region for the spectral energies ranging from 9.6 keV to 10.4 keV was also 

prepared, used to train and develop a second neural net model for Hg concentrations 

(ppm). This model was used for the purpose of comparing its results and validating those 

obtained by utilizing the conventional EDXRF spectrometry. The sample concentrations 

were classed into three groups, different colours assigned as shown below and the data 

saved in an excel csv file for principal component analysis. 

Table 4.3: Classed Hg concentrations (ppm) 

GROUP NO. Hg CONCENTRATIONS (ppm) COLOR 

1 0-1 Blue 

2 2-12 Green 

3 15-30 Red 

 

4.7.2 Spectra Analysis by PCA 

A directory containing a data made up of the 91 simulate sample spectra in the excel data 

file was imported into the R software code and used to perform PCA in R based on 

spectral and single value decomposition. Out of the 4097 energy channels in the matrix, 

the ROI for the energies ranging from 9.6 – 12.4 keV was chosen. This is the region 

depicting the Hg L-alpha line series (9.6 – 10.4 keV) and L-beta line series (11.4-12.4 

keV). Data normalization, cleansing and standardization was also done in order to reduce 

matrix effects associated with the sample spectra. 

4.7.3 Training ANN Models for Hg concentrations in ppb and ppm. 

This was done by utilizing EDXRF spectral data with back-error propagation to perform 

multivariate calibration of mercury (Hg) concentrations. To eliminate some irrelevant 

information and reduce the number of variables, feature selection method was employed 

on the entire data in which only the Hg Lα (70 channels) and Lβ (80 channels), within the 

spectra range 9.6 - 12.4 keV, were considered. After feature selection, the new data were 

orthogonalized by applying PCA whereby PC scores were obtained and optimized to get 

the first 2 PCs used as input data for the model development. Before utilizing the R 

software code to develop and train the ANN model from the Hg concentrations in ppb, a 

new column for the sample concentrations was created in the PC scores and the resulting 

data saved as a csv file.  
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The data used in this case comprised 91 spectra from which 64 were used for model 

calibration (training) and 27 as the test data frame. Modeling steps included data 

preparation, model building, evaluation and prediction. In data preparation, the data was 

classified, loaded into the R software, preprocessed and finally validation dataset created. 

The model was built by choosing the input layer, number of hidden layers including their 

respective nodes as well as the output layer. Evaluation involved getting the predictions 

on the validation dataset, using the model and calculating the RMSEP. Finally, prediction 

was done on the test data by using a code in the R software.  

Some of the statistical information for the model were utilized in determining LOD and 

LOQ as per the equations below:  

LOD = 3×(Std error for slope)/slope                                                                                         

(4.3) 

LOQ =10×(Std error for slope)/Slope                                                                                        

(4.4) 

 

A second ANN model was built in the same procedure by using the 52 sample spectra for 

Hg concentrations (ppm). Out of this data, 36 spectra were used for training the model 

while 16 spectra for testing it. The developed model was utilized to validate the results 

obtained by the use of the conventional EDXRF spectroscopy. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Overview 

This chapter discusses the principal component analysis for the samples used to establish 

the suitable base matrix used in this research work. It also handles EDXRF simulate 

samples results, multivariate chemometric analysis of the obtained results, development of 

the ANN models as well as EDXRF results for the real samples. 

5.2 EDXRF Spectra Analysis Results for Simulate Samples 

 

5.2.1 Hg ROI Results for simulate samples  

Selected sample spectra were used to establish the region of interest (ROI) for Hg. Below 

are the results: 

 

Figure 5.1: Spectra plot for simulate samples 

 

Within the ROI, photon energy for Lα line series ranges from 9.598 keV to 10.4 keV 

while for the Lβ line, it ranges from 11.2 keV to 12.6 keV. The above peaks, confirm that 
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samples with higher Hg concentrations display greater peak intensities for each of the line 

series. (Antwerpen, et al, 2006). 

The EDXRFS results were analyzed by using a univariate approach from which an 

intensity versus Hg concentrations data plot was obtained as shown below: 

 

 

Figure 5.2: Plot for spectral Intensity Vs Hg concentrations (ppm) 

 

The highly scattered points indicated that there was a very poor correlation between the 

spectral intensity and Hg concentrations proving the univariate approach to be an 

unsuitable method for analysis of the EDXRF spectra. In addition, detection of 2 ppm and 

below was a challenge to the conventional EDXRF spectrometer due to its limit of 

detection which was 3 ppm. Therefore, it was found necessary to employ a multivariate 

approach in the analysis of the non-linear data. 

 Consequently, two artificial neural network models were developed in this study and 

used for direct detection and quantification of Hg levels (ppb and ppm) both in simulates 

and real samples. 
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5.3 Results of EDXRF Spectra Data Analysis and Modelling Using 

 Multivariate Chemometric Techniques 

Full EDXRF sample spectra consisting of 4097 channels [0 - 40.8 keV] was obtained. 

However, feature selection method was applied in the reduction of number of variables, 

aimed at eliminating all the irrelevant information. Thus, the Hg Lα (70 channels) and Lβ 

(80 channels) within the ROI spectra range 9.6 - 12.4 keV were considered. After feature 

selection, the reduced data were orthogonalized by principal component analysis (PCA) 

and four of the resulting principal component (PC) scores later used in this work as the 

input nodes for the ANN model. 

5.3.1 PCA Results for Hg concentrations (ppb) 

A directory containing data matrix made up of 91 simulate sample spectra for the sample 

concentrations (ppb) in excel data file was imported into the R software code and used to 

perform PCA in R based on spectral and single value decomposition. The results are 

displayed in figure 5.3 below: 

 

        Figure 5.3: PC Scores plot for Hg concentrations (ppb)  
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       Figure 5.4: The loadings plot for Hg concentrations (ppb) 

The two PC scores were fully explained by a total variance of 17.2% with the negative of 

PC1 describing most of the blue colored samples having Hg concentrations from 0-87 

ppb. A mixture of most of the green and red cored groups were explained by the positive 

of PC2. Poor clustering of the samples was experienced during the analysis due to the 

matrix effect, a challenge which was corrected by using the X-ray scatter technique. A lot 

of spectral information for groups two and three is explained by the positive side of PC1 

while the negative of the same PC contain some little information about the samples.  

5.3.2 The ANN modeling results for the ppb Data 

The model architecture consisted of 2 PCs as the input nodes, two hidden layers having 

2nodes and 3 nodes respectively and finally two output layers with 1 node each as shown 

below:    
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   Figure 5.5: Trained Model architecture used in this work 

The 2-PC scores as input data enhanced efficient reduction of the net architecture 

through lowering the number of nodes and weights in the input layer and thereby 

increasing the speed of the training phase. Optimization of the input layer was done by 

reducing the PCs associated with the smallest eigenvalues.  

Several runs were done on the R software code during the model development until a 

reliable model with an RMSEP of 20.6% was obtained. The developed model is as 

displayed in figure 5.7 below;  

 

Figure 5.6: The ANN Model used for quantification of Hg concentrations (ppb). 

Most of the points especially those above 200 ppb were scattered away from the linear fit 

implying that there was a high variability in the spectral data and a lower correlation. 
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Samples with Hg concentrations below 200 ppb showed little spread but most of them 

were highly correlated. However, the model had an R-squared value of 0.72, an RMSEP 

of 20.6% and an LOD equal to 527 ppb.  

The developed ANN model was used to detect and quantify the Hg concentrations for the 

test data; table 5.1 below gives the results: 

Table 5.1: Sample results by using the developed ANN model for Hg concentrations (ppb) 

Known Hg conc (ppb) Predicted Hg conc (ppb) 

500 < 527 

550 721±149 

180 < 527 

130 < 527 

50 < 527 

0 < 527 

15 < 527 

25 < 527 

87 < 527 

710 763±157 

800 640±132 

710 < 527 

35 < 527 

400 < 527 

440 < 527 

   62 < 527 

15 < 527 

148 < 527 

400 < 527 

 

Hg concentrations for three samples were detected by the model while the rest had 

concentrations below the model’s detection limit. 

Table 5.2 below is a summary of the calculations which include other key statistical 

information: 

      Table 5.2: ANN Model statistics for Hg concentrations (ppb) 

STRUCTURE MODEL RMSE R
2
 VALUE MODEL 

LOD (ppb) 

MODEL 

LOQ (ppb) 

2:2:3:1 20.6% 0.72 527 819 
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5.3.3 PCA analysis Results for Hg concentrations (ppm) 

A data matrix made up of 52 simulate sample spectra for Hg concentrations (ppm) 

contained in a directory and stored in an excel data file was imported into the R software 

code, used to perform PCA in R and produced the following results: 

 

Figure 5.7: PC Scores plot for Hg concentrations (ppm) 

The loadings plot obtained for the L-alpha peak region (9.6-10.3 keV) within the ROI is 

as per figure 5.8 below: 

 

Figure 5.8: The Loadings plot for Hg concentrations (ppm) 
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There was a total variance of 97.5% for the two PCs which described correlation of the 

sample concentrations fully. Samples with the lowest Hg concentrations (0-1ppm) were 

clustered to the extreme end of negative PC1 while those with the highest concentrations 

(15-30ppm) on the extreme of the positive side of the same PC. The ones with Hg 

concentrations from 2-12 ppm scattered on both the positive and negative sides of the two 

PCs. Samples with 10 ppm and 12 ppm lay on the positive of PC1 while the rest in this 

group lay on the negative of PC1. However, all the sample concentrations were fully 

described by the positive and negative sides of both PC1 and PC2. 

 

5.3.4 The ANN modeling results for the ppm dataset 

The architecture used for model training and development consisted of a 2-PC input layer, one 

hidden layer with three nodes and a one node output layer as per the figure below:  

 

 

Figure 5.9: Trained model architecture for the ppm concentrations 
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The 2-PCs input data enhanced efficient reduction of the net architecture 

through lowering the number of nodes and weights in the input layer and thereby 

increasing the speed of the training phase. Several runs were done on the R software code 

during the model development until a reasonable model with an RMSEP of 4.6% was 

realized.  

The developed model is as shown in figure 5.10 below;  

 

Figure 5.10: The ANN model used for quantification of Hg concentrations (ppm) 

 

The high correlation between the predicted and known Hg concentrations depicted a good 

model based on the fact that it had an R squared value of 0.98, an RMSEP of 4.6% and a 

limit of detection equal to 3 ppm, as shown in Table 5.3. 

Table 5.3: ANN model statistics for Hg concentrations (ppm) 

STRUCTURE MODEL RMSE R
2
 VALUE MODEL 

LOD (ppm) 

MODEL 

LOQ (ppm) 

2::3:1 4.6% 0.98 3 11 

 

 

Validation of the developed model for the predicted versus the measured Hg concentrations was 

done utilizing the test data set and the results displayed in Table 5.4 below were obtained: 
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Table 5.4: Sample results by using the developed ANN model for Hg concentrations 

(ppm) 

known Hg conc (ppm) predicted Hg conc (ppm) 

0.4 < 3 

20 19.5±0.9 

0.3 < 3 

15 15.5±0.7 

12 13.4±0.6 

26 27.2±1.3 

1 < 3 

3 2.9±0.13 

20 19.5±0.16 

0.1 < 3 

5 < 3 

 

5.3.5 ANN Model Results for Real Samples 

Capability of the developed model was validated by using real samples spectra and the R 

software. The results obtained are as shown in Table 5.5. 

Table 5.5: Real samples analysis results by using the ANN model for Hg concentrations 

(ppb) 

S/NO SAMPLE NAME SAMPLE CODE Hg CONC. (ppb) 

    

1 BIO LIGHT CREAM BIO. L < 527 

2 EXTRA WHITE EW < 527 

3 QEI LOTION QEI. L < 527 

4 GEL LOTION GEL. L                                    731±151 

5 REAL WHITE R. W 731±151 

 

Out of the five samples, had their Hg concentration below the detection limit for the 

model while two had their concentration detected within the model’s quantification error 

of plus or minus 151 ppb. From the above results, it was noted that the developed neural 

net model was capable of detecting and quantifying very low Hg content in real samples 

(less than 2 ppb) as opposed to the conventional EDXRF method which could only detect 

a concentration of up to 3,000 ppb as the lowest.  
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5.4 EDXRF Results for Simulate and Real Samples  
 

5.4.1 Analysis results of the simulate samples  

Table 5.6 below gives EDXRF results for the 30 samples. Three spectra for each, 

including one from a blank sample were also obtained and later utilized in model 

development. 

                Table 5.6: EDXRF Simulate samples results (ppm) 

S/NO. SIMULATE 

CONC. 

EDXRF 

RESULTS 

 

S/NO. SIMULATE 

CONC. 

EDXRF 

RESULTS 

 

1 0.1 NOT 

DETECTED 
12 26 29.3 

2 1 ’’ 13 30 29.7 

3 2 ’’ 14 38 39 

4 3 2.94 15 45 54 

5 5 3.94 16 50 50.2 

6 8 9.08 17 60 63.5 

7 10 9.98 18 100 103 

8 12 13.9 19 200 202 

9 15 15.7 20 250 252 

10 17 19.5 21 300 302 

11 20 19.95 22 500 505 

 

The detected Hg concentrations closely matched the simulate concentrations implying that 

stoke solution and series dilution was well done without ruling out the spectrometer’s 

ability to accurately detect various concentrations. According to the results, the 

conventional EDXRF used had an LOD of 3ppm and therefore, none of the sample 

concentrations below this detection limit was detected by the spectrometer. However, all 

the spectral data for sample Hg concentrations in the ppb range were saved in a csv file 

and used for chemometric data analysis as well as in the development of ANN model for 

these concentrations. 

 

5.4.2 Analysis results of real samples (pastes) 

EDXRF results for the eight different skin lighteners analyzed are presented in Table 5.7. 
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Table 5.7: EDXRF paste samples results 

S/NO SAMPLE NAME CODE Hg CONC. (ppm) 

1 BIO LIGHT CREAM BIO. L NOT DETECTED (ND) 

2 EXTRA WHITE CREAM EWC ND 

3 GEL LOTION GL ND 

4 QEI LOTION QL ND 

5 REAL WHITE RW ND 

6 CHANDNI CREAM CHAND. 393 

7 FOREVER WHITENING CREAM FOR. WC 2810 

8 HIJJAB CREAM HIJJ. 8000 

 

Out of the eight samples analyzed, three of them registered high levels of Hg content 

while the rest had nothing detected, implying that their Hg concentrations were below the 

spectrometer’s LOD of 3 ppm. 

5.4.3 Analysis results of real samples (liquids) 

Spectral data consisting of ten spectra from the five samples with undetected Hg content, 

classed into groups A and B, colour coded blue and red respectively was saved in a csv 

file. A PCA analysis for this data was done on the R software code to get the following 

results: 

 

Figure 5.11: PC  scores plot for real samples 
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Figure 5.12: Loadings plot for real samples 

  

It was found that 73% of the spectral energies regarding Hg concentrations for all group B 

samples (red) and some group A samples (blue) lying on the positive side of PC1 were 

fully explained. Only two samples from group A lay on the negative side of PC1. PC2 

explained 9.7% of one group A sample and all group B samples lying on the positive side. 

Little information for three group A samples on the negative side of PC2 was given.  

In this plot, all group B samples displayed high spectral energies as compared to most of 

group A samples, implying a high possibility of Hg content. A file containing two PCs 

from the ten spectra was imported into the R software. Detection and quantification of Hg 

present in the real samples was done by using the developed ANN model to assess and 

validate its performance. Below are the results.  
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5.5 Comparison Between Conventional EDXRF and ANN model Results 

The Hg concentrations (ppm) for the simulate samples were analyzed utilizing the 

developed ANN model and the results compared with those acquired by direct detection 

using the conventional EDXRF spectrometer. Table 5.8 below shows the tabulated results. 

Table 5.8: Comparison between conventional EDXRF and ANN model results for sim 

samples data (ppm) 

SIMULATE Hg 

CONCENTRATION 

(ppm) 

CONVENTIONAL EDXRF 

RESULTS (ppm) 

 

ANN MODEL RESULTS (ppm) 

0.1 NOT DETECTED < 3 

1 ’’ < 3 

2 ’’ < 3 

3 2.94 2.9±0.13 

5 3.94 < 3 

12 13.9 13.4±0.6 

15 15.7 15.5±0.7 

20 19.95 19.5±0.9 

26 29.3 27.2±1.3 

 

From the results, the model predictions closely match the ones attained through direct 

detection by the conventional EDXRF spectrometer. The samples which registered results 

less than 3ppm (the ANN model’s LOD) were those having Hg concentrations less than 3 

ppm. However, the sim sample with Hg concentration of 5 ppm registered a result of < 3 

ppm by the model, implying that it could have been an outlier.  

 

Table 5.9 compares the real samples results obtained by using the ANN models with those 

by Conventional EDXRF.  
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Table 5.9: Comparison between Conventional EDXRF and ANN model results for real 

samples 

S/NO REAL SAMPLE 

NAME 

EDXRF 

RESULTS 

PPM MODEL 

RESULTS 

PPB MODEL 

RESULTS 

1 BIO LIGHT 

CREAM 

NOT 

DETECTED 

NOT 

DETECTED 

(ND) 

< 527 

2 EXTRA WHITE 

CREAM 

NOT 

DETECTED 

ND < 527 

3 GEL LOTION NOT 

DETECTED 

ND 731±151 

4 QEI LOTION NOT 

DETECTED 

ND < 527 

5 REAL WHITE NOT 

DETECTED 

ND 731±151 

6 CHANDNI 

CREAM 

393 ppm ND NOT 

DETECTED 

 7 FOREVER 

WHITENING 

CREAM 

2810 ppm ND NOT 

DETECTED 

8 HIJJAB CREAM 8000 ppm ND NOT 

DETECTED 

 

Real samples were analyzed by using the conventional EDXRF and the developed 

models. Only samples with Hg concentrations above the spectrometer’s LOD of 3 ppm 

were detected as per table 5.9 above. Samples having Hg concentrations far much below 3 

ppm but above the ppb model’s LOD of 527 ppb were also detected. These results display 

the model’s capability and accuracy implying that it is a reliable tool for future utility in 

quantitative and qualitative analysis of beauty care products to ascertain the Hg content in 

them and give quality assurance. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 Conclusions 

This research used suitably prepared simulate samples whose base matrix was identified 

by carrying out an EDXRF spectra analysis and PCA on several matrices. A mixture of 

glycerol and distilled water was chosen and used as the base matrix for this work after 

carrying out an investigation on several base candidate matrices; namely, pure honey, 

olive oil, glycerine and glycerine-distilled water mixture. Glycerol and water have 

commonly been used as the base formulations during the manufacture of the skin 

lightening creams and lotions due to the key functions they play in these beauty care 

products. 50 simulate samples spiked with varying Hg concentrations ranging from 5 ppb 

to 500 ppm were prepared using a mixture of glycerol and distilled water in a ratio of 1:1 

as the base matrix. EDXRF spectra for the 50 samples was taken in triplicates, utilized in 

training and developing two artificial neural net models, one for Hg concentrations (ppb) 

and the other for ppm concentrations by employing PCA and ANNs as multivariate 

chemometric tools for exploratory data analysis. 

The success of chemometric-assisted EDXRF spectroscopy was attained by developing 

the ANN models which were trained, tested and validated for rapid, direct detection and 

quantification of low mercury levels in skin whitening creams and lotions collected from 

various markets in Kenya. The ANN model developed for the ppb concentrations had an 

R-squared value of 0.72, an RMSEP of 20.6%, a limit of detection equal to 527 ppb and a 

limit of quantification of 819 ppb. When used for qualitative and quantitative analysis of 

the real samples, two out of the five samples tested were each found to contain 731±151 

ppb of mercury, a value much lower than the recommended value of 1000 ppb by the 

WHO. This value (731 ppb) was also lower than the LOD of 3 ppm for the conventional 

EDXRF spectrometer used in this research, confirming the model’s reliability and 

accuracy for quality assurance and control of the beauty care products. 
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The second developed ANN model for Hg concentrations (ppm) was used to ascertain the 

sim samples results acquired through direct detection by using the conventional EDXRF 

tool for the purpose of comparing the results. It was found that most of the artificial neural 

net model results closely matched those by the aforesaid spectrometer given that the 

trained and developed ANN model had an R squared value of 0.98, an RMSEP of 4.6%, a 

limit of detection equal to 3ppm and a limit of quantification equal to 11 ppm. 

 

6.2 Recommendations 

The success and the results of this novel work proved that low Hg concentrations, much 

lower than the WHO’s recommended value of 1ppm do exist in most of the beauty care 

products and therefore endangering the health of the users after a prolonged exposure due 

to continuous accumulation of small amounts of Hg in their bodies. Development of ANN 

models for chemometric assisted EDXRF spectroscopy based on multivariate 

chemometric approach in spectral data analysis is highly recommended for rapid, direct 

detection and quantification of low Hg content (ppb) in the beauty care products to give 

quality assessment, control and assurance to the users. 

However, this research had challenges associated with exposure to Hg toxicity, 

acquisition of the beauty care products due to their expense and accessibility because they 

are sold in the black market. There was also a plan to ascertain the neural net model’s 

results using the mass spectrometer which never materialized after failing to get one in 

good working condition. I recommend that the mass spectrometer be utilized for future 

validation of the capability and accuracy of such models developed in related research 

work. 
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APPENDICES 
 

Appendix 1: Simulate sample preparation pictograms 

 

                                    

                                        Figure A 1.1: Pure glycerol and flasks                           

                        

                                                                                   

 

                                Figure A 1.2: Sample cups and prepared samples 

                          

                              Figure A 1.3: The EDXRFS sample changer 



63 
 

Appendix 2:  Real samples  
   

 

 

 

 

 

 

                       Figure A 2.1: The analyzed real samples 

 

                             

                       Figure A 2.2: Some diluted real samples 
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Appendix 3: R-Scripts for the Multivariate Analysis 

Techniques 
 

R-Script for PCA analysis of Hg concentrations (ppb) 
 

library(ChemoSpec) 

library("FactoMineR") 

library(dplyr) 

# # Load dataset 

# spec2=read.csv("musau_900s_ppb_simulates_classed.csv",check.names=FALSE) 

# # Subtraction of blank matrix 

# analspec2 <- sweep(spec2[,3:91],1,spec2[,2]) 

# write.infile(analspec2,file="musau_900s_ppb_simulates_classed_wblank.csv", sep = 

",")  

 

# Reading the matrix data file stored in the working directory 

# sample coding: ppb -> simulated samples with ppb concentrations, ppm -> simulated 

samples with ppm concentrations, 

# real -> skin lightening products bought from the market, bl -> blank samples 

spec <- matrix2SpectraObject(gr.crit = c("ppb1", "ppb2", "ppb3"), gr.cols = c("blue", 

"green", "red"), 

                             freq.unit = "Energy (keV)", 

                             int.unit = "Photons count", 

                             descrip = "Mercury Spectra", in.file = 

"musau_900s_ppb_simulates_classed_ver2_matrix_cor.csv", 

                             out.file = "mydata", chk = TRUE,  sep = ",", dec = ".") 

# Summarizing the data 

sumSpectra(spec) 

# Plotting the full EDXRF spectra 

plotSpectra(spec, 

            main = "Full EDXRF Spectra", 

            which = c(1,14,37), 
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            yrange = c(-0.25,3600), 

            offset = 800, 

            lab.pos = 10) 

# Feature selection: Select the mercury (Hg) peaks region of interest (ROI): 9.6 - 12.4 

keV 

roispec <- removeFreq(spec, rem.freq = spec$freq > 12.3 

                      | spec$freq < 9.7) 

 

# Feature selection: Mercury (Hg) L_alpha peak 9.6 - 10.3 keV 

roispec1 <- removeFreq(spec, rem.freq = spec$freq > 10.3 

                       | spec$freq < 9.7) 

# Feature selection: Mercury (Hg) L_beta peak 11.5 - 12.3 keV 

roispec2 <- removeFreq(spec, rem.freq = spec$freq > 12.3 

                       | spec$freq < 11.5) 

# Feature selection: Mercury (Hg) L_alpha & L_beta peaks 9.6 - 10.3 & 11.5 - 12.3 keV 

roispec3 <- removeFreq(roispec, rem.freq = roispec$freq > 10.3 

                       & roispec$freq < 11.5) 

# Plotting the Hg ROI spectra for ppb samples 

plotSpectra(roispec3, 

            main = "Mercury ROI Spectra - ppb concentrations", 

            which = c(10,30,50,60,80), 

            yrange = c(0.4,1.5), 

            offset = 0.15, 

            lab.pos = 1.8) 

# Normalizing the Hg ROI spectra 

roispec_norm<-normSpectra(roispec) 

roispec1_norm<-normSpectra(roispec1) 

roispec2_norm<-normSpectra(roispec2) 

roispec3_norm<-normSpectra(roispec3) 

# Plotting the normalized partial (ROI) spectra 

plotSpectra(roispec3_norm, 
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            main = "Normalized ROI Spectra - ppm", 

            which = c(10,30,50,60,80), 

            yrange = c(0,1), 

            offset = 0.2, 

            lab.pos = 10.5) 

# PCA analysis of the Hg ROI spectra spectra 

pca<-c_pcaSpectra(roispec_norm,  

                  choice = "autoscale",  

                  cent = TRUE) 

plotScores(roispec_norm, pca,  

           main ="Hg ROI (9.6 - 12.4 keV): Mat Eff Corrected by X-ray Scatter",  

           pcs = c(1,2),  

           ellipse = "none",  

           tol = "none") 

abline(h=0,v=0) 

plotLoadings(roispec_norm, pca, 

             main = "Hg ROI (9.6 - 12.4 keV): Mat Eff Corrected by X-ray Scatter", 

             loads = c(1, 2), 

             ref = 89, 

             tol = "none") 

# To check pca outliers 

diagnostics <- pcaDiag(roispec1, pca, 

                       pcs = 2, 

                       plot = "OD") 

# Scree plot 

plot(pca, type = "l") 

 

#Saving the PCA Scores Data 

pca_scores <- pca[["x"]] 

write.csv(pca_scores,"./pca_results/pca 

results_musau_ppb_data_HgLa&Lb_matrix_corrected_30.03.21.csv") 
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# summary & output of pca results 

summary(pca) 

res <- summary(pca) 

write.infile(res, 

             file="./pca_results/all pca 

results_musau_ppb_data_HgLa&Lb_matrix_corrected_30.03.21.csv", sep = ",") 

 

Training Algorithm for the ANN Model with Hg concentrations (ppb) 

# Script for performing ANN for Julius Musau EDXRF Spectral dataset for Hg Peaks 

(PCA results) 

# Spectra range: 9.6 - 12.4 keV 

# #evtools::install_github("bips-hb/neuralnet") 

# library(devtools) 

source_url('https://gist.githubusercontent.com/fawda123/7471137/raw/466c1474d0a505ff

044412703516c34f1a4684a5/nnet_plot_update.r') 

library(neuralnet) 

library(dplyr) 

library(caret) 

#grid::current.viewport() 

##Setting the seed so that we get same results each time we run the  neural nets again 

set.seed(100) 

# Load dataset 

data = read.csv("2PCs_NN data_pca results_matrix effects 

corrected.csv",check.names=TRUE) 
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data <- data[sample(nrow(data)), ] # Shuffle data 

head(data, 3) 

####  For looking at Structure of EDXRF spectra data 

str(data) 

#apply(data,2,function(x) sum(is.na(x))) 

# EDA to help understand how data is distributed 

#par(mfrow=c(2,2)) 

#plot(data$PC1, data$ppb_conc, cex=1) 

#plot(data$PC2, data$ppb_conc, cex=1) 

#plot(data$PC3, data$ppb_conc, cex=1) 

#plot(data$PC4, data$ppb_conc, cex=1) 

# Random sampling 

samplesize = 0.80 * nrow(data) 

#set.seed(100) 

index = sample( seq_len ( nrow ( data ) ), size = samplesize ) 

# Create training and test set 

datatrain = data[ index, ] 

datatest = data[ -index, ] 

## Scale data for neural network 

maxValue <- apply(data, 2, max)  
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minValue <- apply(data, 2, min) 

data_scaled<-as.data.frame(scale(data,center = minValue, 

                             scale =maxValue-minValue)) 

# creating scaled training and test set 

trainDF<-data_scaled[index,]  

testDF<-data_scaled[-index,] 

#trainDF <- as.matrix(trainDF, byrow=TRUE) 

#trainDF <- t(trainDF) 

allVars<-colnames(data)  

predictorVars<-allVars[!allVars%in%"ppb_conc"] 

predictorVars<-paste(predictorVars,collapse = "+") 

form=as.formula(paste("ppb_conc~",predictorVars,collapse = "+")) 

neuralModel<-neuralnet(formula =form, 

                       data =trainDF, 

                       hidden = c(2,2), 

                       lifesign.step = 1000, algorithm = "rprop+", err.fct = "sse", 

                       act.fct = "logistic", 

                       linear.output = TRUE) 

plot(neuralModel,rep = "best") 

# plot(neuralModel,col.hidden = 'darkgreen',      



70 
 

#      col.hidden.synapse = 'darkgreen', 

#      show.weights = T, 

#      information = T, 

#      fill = 'lightblue') 

#Neural Network optimization 

ctrl <- trainControl(method="cv", number=10) #Cross validation method, other methods 

available 

gridNN <- expand.grid(layer1 = c(2:7), 

                      layer2 = c(2:6),  

                      layer3 = c(0:2)) #Change to suitable number of layers and neurons 

#Train the NN - Caret training function using the NN algorithm in Neuralnet 

NN <- train(form, 

            data = trainDF,  

            trControl = ctrl,  

            method = "neuralnet",  

            tuneGrid = gridNN) 

#summary of training, the best model being the one with the lowest RMSE 

print(NN) 

predNN <- predict(NN, newdata = testDF[,c(2:3)])*(max(data$ppb_conc) - 

min(data$ppb_conc)) +  

  min(data$ppb_conc) 
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plot(datatest$ppb_conc, predNN, col='blue', pch=16, ylab = "predicted Hg conc (ppb)",  

     xlab = "known Hg conc (ppb)") 

abline(0,1) 

Hg_values <-cbind(datatest$ppb_conc, predNN) 

colnames(Hg_values) <- c("known Hg conc (ppb)","predicted Hg conc (ppb)") 

write.csv(Hg_values, file = "./Results/2pcs_NN results_pca matrix effects corrected.csv") 

RMSE.neuralModel = (sum((datatest$ppb_conc - predNN)^2) / nrow(datatest)) ^ 0.5 

save(NN, file = "./Results/2pcs_NN model_ppb matrix corrected.rda") 

## Prediction using neural network 

predict_testDF <- neuralnet::compute(neuralModel, testDF[,c(2:3)]) 

predict_testDF <- (predict_testDF$net.result * (max(data$ppb_conc) - 

min(data$ppb_conc))) +  

  min(data$ppb_conc) 

plot(datatest$ppb_conc, predict_testDF, col='blue', pch=16, ylab = "predicted Hg conc 

(ppb)",  

     xlab = "known Hg conc (ppb)") 

abline(0,1) 

Hg_values <-cbind(datatest$ppb_conc, predict_testDF) 

colnames(Hg_values) <- c("known Hg conc (ppb)","predicted Hg conc (ppb)") 

RMSE.neuralModel = (sum((datatest$ppb_conc - predict_testDF)^2) / nrow(datatest)) ^ 

0.5 
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R Script for PCA analysis of Hg Concentrations (ppm) 
 

library(ChemoSpec) 

library("FactoMineR") 

library(dplyr) 

# Load dataset 

# spec2=read.csv("musau_900s_ppb_simulates_classed.csv",check.names=FALSE) 

# # Subtraction of blank matrix 

# analspec2 <- sweep(spec2[,3:91],1,spec2[,2]) 

# write.infile(analspec2,file="musau_900s_ppb_simulates_classed_wblank.csv", sep = 

",")  

# Reading the matrix data file stored in the working directory 

# sample coding: ppb -> simulated samples with ppb concentrations, ppm -> simulated 

samples with ppm concentrations, 

# real -> skin lightening products bought from the market, bl -> blank samples 

spec <- matrix2SpectraObject(gr.crit = c("ppm1", "ppm2", "ppm3"), gr.cols = c("blue", 

"green", "red"), 

                             freq.unit = "Energy (keV)", 

                             int.unit = "Photons count", 

                             descrip = "Mercury Spectra", in.file = 

"musau_900s_ppm_simulates_classed_0 - 30ppm.csv", 

                             out.file = "mydata", chk = TRUE,  sep = ",", dec = ".") 

# Summarizing the data 

sumSpectra(spec) 

# Plotting the full EDXRF spectra 

plotSpectra(spec, 

            main = "Full EDXRF Spectra", 

            which = c(1,14,37), 

            yrange = c(-0.25,3600), 

            offset = 800, 

            lab.pos = 10) 
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# Feature selection: Select the mercury (Hg) peaks region of interest (ROI): 9.6 - 12.4 

keV 

roispec <- removeFreq(spec, rem.freq = spec$freq > 12.3 

                      | spec$freq < 9.7) 

# Feature selection: Mercury (Hg) L_alpha peak 9.6 - 10.3 keV 

roispec1 <- removeFreq(spec, rem.freq = spec$freq > 10.3 

                       | spec$freq < 9.7) 

# Feature selection: Mercury (Hg) L_beta peak 11.5 - 12.3 keV 

roispec2 <- removeFreq(spec, rem.freq = spec$freq > 12.3 

                       | spec$freq < 11.5) 

# Feature selection: Mercury (Hg) L_alpha & L_beta peaks 9.6 - 10.3 & 11.5 - 12.3 keV 

roispec3 <- removeFreq(roispec, rem.freq = roispec$freq > 10.3 

                       & roispec$freq < 11.5) 

# Plotting the Hg ROI spectra for ppb samples 

plotSpectra(roispec3, 

            main = "Mercury ROI Spectra - ppb concentrations", 

            which = c(10,30,50,60,80), 

            yrange = c(0.4,1.5), 

            offset = 0.15, 

            lab.pos = 1.8) 

# Normalizing the Hg ROI spectra 

roispec_norm<-normSpectra(roispec) 

roispec1_norm<-normSpectra(roispec1) 

roispec2_norm<-normSpectra(roispec2) 

roispec3_norm<-normSpectra(roispec3) 

# Plotting the normalized partial (ROI) spectra 

plotSpectra(roispec3_norm, 

            main = "Normalized ROI Spectra - ppm", 

            which = c(10,30,50,60,80), 

            yrange = c(0,1), 

            offset = 0.2, 
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            lab.pos = 10.5) 

#---------------------------------------------------------------------------------- 

# PCA analysis of the Hg ROI spectra spectra 

pca<-c_pcaSpectra(roispec1_norm,  

                  choice = "autoscale",  

                  cent = TRUE) 

plotScores(roispec1_norm, pca,  

           main ="Hg L_Alpha Peak (9.6 - 10.3 keV): Normalized Spectra",  

           pcs = c(1,2),  

           ellipse = "none",  

           tol = "none") 

abline(h=0,v=0) 

plotLoadings(roispec1_norm, pca, 

             main = "Hg L_Alpha Peak (9.6 - 10.3 keV): Normalized Spectra", 

             loads = c(1, 2), 

             ref = 51, 

             tol = "none") 

# To check pca outliers 

diagnostics <- pcaDiag(roispec_norm, pca, 

                       pcs = 2, 

                       plot = "OD") 

# Scree plot 

plot(pca, type = "l") 

#Saving the PCA Scores Data 

pca_scores <- pca[["x"]] 

write.csv(pca_scores,"./pca_results/pca 

results_musau_ppm_data_HgLa_normalized_25.04.21.csv") 

# summary & output of pca results 

summary(pca) 

res <- summary(pca) 

write.infile(res, 
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             file="./pca_results/all pca 

results_musau_ppm_data_HgLa_normalized_25.04.21.csv", sep = ",") 

 

 

Training Algorithm for ANN model with Hg concentrations (ppm) 
 

# Script for performing ANN for Julius Musau EDXRF Spectral dataset for Hg Peaks 

(PCA results) 

# Spectra range: 9.6 - 12.4 keV 

#devtools::install_github("bips-hb/neuralnet") 

#library(devtools) 

#source_url('https://gist.githubusercontent.com/fawda123/7471137/raw/466c1474d0a505f

f044412703516c34f1a4684a5/nnet_plot_update.r') 

library(neuralnet) 

library(dplyr) 

library(caret) 

#grid::current.viewport() 

##Setting the seed so that we get same results each time we run the  neural nets again 

set.seed(100) 

# Load dataset 

data = read.csv("2PCs_NN data_pca results_ppm la 

normalized.csv",check.names=TRUE) 

data <- data[sample(nrow(data)), ] # Shuffle data 

head(data, 3) 

####  For looking at Structure of EDXRF spectra data 

str(data) 

#apply(data,2,function(x) sum(is.na(x))) 

# EDA to help understand how data is distributed 

#par(mfrow=c(2,2)) 

#plot(data$PC1, data$ppm_conc, cex=1) 

#plot(data$PC2, data$ppm_conc, cex=1) 

#plot(data$PC3, data$ppm_conc, cex=1) 
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#plot(data$PC4, data$ppm_conc, cex=1) 

 

# Random sampling 

samplesize = 0.80 * nrow(data) 

#set.seed(100) 

index = sample( seq_len ( nrow ( data ) ), size = samplesize ) 

# Create training and test set 

datatrain = data[ index, ] 

datatest = data[ -index, ] 

## Scale data for neural network 

maxValue <- apply(data, 2, max)  

minValue <- apply(data, 2, min) 

data_scaled<-as.data.frame(scale(data,center = minValue, 

                             scale =maxValue-minValue)) 

# creating scaled training and test set 

trainDF<-data_scaled[index,]  

testDF<-data_scaled[-index,] 

 

#trainDF <- as.matrix(trainDF, byrow=TRUE) 

#trainDF <- t(trainDF) 

 

allVars<-colnames(data)  

predictorVars<-allVars[!allVars%in%"ppm_conc"] 

predictorVars<-paste(predictorVars,collapse = "+") 

form=as.formula(paste("ppm_conc~",predictorVars,collapse = "+")) 

neuralModel<-neuralnet(formula =form, 

                       data =trainDF, 

                       hidden = c(3), 

                       lifesign.step = 1000, algorithm = "rprop+", err.fct = "sse", 

                       act.fct = "logistic", 

                       linear.output = TRUE) 
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plot(neuralModel,rep = "best") 

# plot(neuralModel,col.hidden = 'darkgreen',      

#      col.hidden.synapse = 'darkgreen', 

#      show.weights = T, 

#      information = T, 

#      fill = 'lightblue') 

#Neural Network optimization 

ctrl <- trainControl(method="cv", number=10) #Cross validation method, other methods 

available 

gridNN <- expand.grid(layer1 = c(1:3), 

                      layer2 = c(0:2),  

                      layer3 = c(0:1)) #Change to suitable number of layers and neurons 

#Train the NN - Caret training function using the NN algorithm in Neuralnet 

NN <- train(form, 

            data = trainDF,  

            trControl = ctrl,  

            method = "neuralnet",  

            tuneGrid = gridNN) 

#summary of training, the best model being the one with the lowest RMSE 

print(NN) 

predNN <- predict(NN, newdata = testDF[,c(2:3)])*(max(data$ppm_conc) - 

min(data$ppm_conc)) +  

  min(data$ppm_conc) 

plot(datatest$ppm_conc, predNN, col='blue', pch=16, ylab = "predicted Hg conc (ppm)",  

     xlab = "known Hg conc (ppm)") 

abline(0,1) 

Hg_values <-cbind(datatest$ppm_conc, predNN) 

colnames(Hg_values) <- c("known Hg conc (ppm)","predicted Hg conc (ppm)") 

RMSE.neuralModel = (sum((datatest$ppm_conc - predNN)^2) / nrow(datatest)) ^ 0.5 

#save(NN, file = "./Results/2pcs_NN caret model.rda") 

#Prediction using neural network 
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predict_testDF <- neuralnet::compute(neuralModel, testDF[,c(2:3)]) 

predict_testDF <- (predict_testDF$net.result * (max(data$ppm_conc) - 

min(data$ppm_conc))) +  

  min(data$ppm_conc) 

plot(datatest$ppm_conc, predict_testDF, col='blue', pch=16, ylab = "predicted Hg conc 

(ppm)",  

     xlab = "known Hg conc (ppm)") 

abline(0,1) 

Hg_values <-cbind(datatest$ppm_conc, predict_testDF) 

colnames(Hg_values) <- c("known Hg conc (ppm)","predicted Hg conc (ppm)") 

write.csv(Hg_values, file = "./Results/2pcs_NN results_ppm la peak normalized.csv") 

RMSE.neuralModel = (sum((datatest$ppm_conc - predict_testDF)^2) / nrow(datatest)) ^ 

0.5 

save(neuralModel, file = "./Results/2pcs_NN model_ppm la peak normalized.rda") 

 

 

R script for calculating the LoD and LoQ for the ANN model with Hg 

concentrations (ppb). 
 

# Script for Calculating LoD & LoQ on Measurements Predicted by ANN Model 

data<- read.csv("2pcs_NN results_ppm la peak normalized_lod.csv") 

library(dplyr) 

library(chemCal) 

m <- lm(predicted ~ actual, data = data) 

## Limit of detection  

lod.din <- lod(m, alpha = 0.01, beta = 0.5, method = "din") 

round(lod.din$predicted, 2) 

## Limit of quantification 

loq <- loq(m, alpha = 0.01) 

round(loq$predicted, 4) 

#### Plotting Measurements with Error Bars 

stats1 <-group_by(data, actual) %>%  
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  summarise( 

    count = n(),  

    mean = mean(predicted , na.rm = TRUE), 

    sd = sd(predicted , na.rm = TRUE) 

stats1 <- as.data.frame(stats1) 

x<-stats1$actual 

y<-stats1$mean 

y.sd <- stats1$sd 

plot(x, y, ylim=c(0,25), xlab="Predicted Hg (ppm) Concentrations", 

     ylab="Actual Hg (ppm) Concentrations", 

     main="ANN Model Perfomance on Simulate Samples: Test Set", 

     pch=16, cex=1.1) 

 

# Add error bars 

arrows(x0=x, y0=y-y.sd, x1=x, y1=y+y.sd, code=3, angle=90, length=0.1) 

abline(0,1) 

 

Script for calculating LoD and LoQ for the ANN model with Hg 

concentrations (ppm) 

# Script for Calculating LoD & LoQ on Measurements Predicted by ANN Model 

data<- read.csv("2pcs_NN results_ppm la peak normalized_lod.csv") 

library(dplyr) 

library(chemCal) 

 

m <- lm(predicted ~ actual, data = data) 

 

## Limit of detection  

lod.din <- lod(m, alpha = 0.01, beta = 0.5, method = "din") 

round(lod.din$predicted, 2) 

 

## Limit of quantification 
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loq <- loq(m, alpha = 0.01) 

round(loq$predicted, 4) 

 

#### Plotting Measurements with Error Bars 

stats1 <-group_by(data, actual) %>%  

  summarise( 

    count = n(),  

    mean = mean(predicted , na.rm = TRUE), 

    sd = sd(predicted , na.rm = TRUE) 

  ) 

 

stats1 <- as.data.frame(stats1) 

x<-stats1$actual 

y<-stats1$mean 

y.sd <- stats1$sd 

 

plot(x, y, ylim=c(0,25), xlab="Predicted Hg (ppm) Concentrations", 

     ylab="Actual Hg (ppm) Concentrations", 

     main="ANN Model Perfomance on Simulate Samples: Test Set", 

     pch=16, cex=1.1) 

# Add error bars 

arrows(x0=x, y0=y-y.sd, x1=x, y1=y+y.sd, code=3, angle=90, length=0.1) 

abline(0,1) 

 

 


