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Abstract 

Prosopis juliflora is a widespread invasive species listed on the Global Invasive Species Database 

(GISD) among the 100 most invasive species in the world. Introduced in Kenya in the 1970s–

1980s, it has spread rapidly and is now found in 2% of Kenya’s landmass (KEFRI, 2020) with the 

ability to double its coverage every 5 years under favourable conditions (IUCN (International 

Union for the Conservation of Nature), 2010). Prosopis juliflora has negative impacts such as loss 

of biodiversity, injury to humans and livestock, and loss of livelihood for the affected communities. 

Its invasive characteristics make it a challenging species to control and eradicate. A Prosopis 

juliflora aboveground biomass map contributes to a better understanding of its spatial distribution 

and helps to inform control and management approaches.  

 

This study aims to evaluate the suitability of LiDAR point clouds to estimate the aboveground 

biomass (AGB) of Prosopis juliflora and subsequently map its AGB distribution. The AGB of 

Prosopis juliflora in 21 sample field plots were estimated using allometric equations. Regression 

models were then fitted over the field estimated AGB and LiDAR metrics to identify the significant 

prediction variables. These were used to model wall-to-wall AGB in the study area. To segregate 

Prosopis juliflora AGB from other vegetation, Sentinel 2 imagery was classified using a random 

forest binary classification.   

 

The results were a Prosopis juliflora AGB map and a predictive model for estimating Prosopis 

juliflora AGB from LiDAR data. The map could help policymakers to develop and implement 

effective control, management, and utilisation measures targeting areas with the highest biomass. 

e.g., as outlined by Adoyo et al., (2021). Uncertainties in the obtained results are due to, among 

others, the choice of allometric equations and classification errors attributable to the mixture of 

Prosopis juliflora with other vegetation species, and the spatial resolution of Sentinel 2 imagery. 
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1 INTRODUCTION 

1.1 Background 

Prosopis juliflora (hereafter simply Prosopis) was widely introduced in Kenya in the 1970s to 

counter the effects of desertification namely tree cover loss, and famine (Choge & Pasiecznik, 

2005). Initially, Prosopis was appreciated for its benefits (e.g., preventing soil erosion, providing 

shade, and a source of food for livestock) but over time, the detrimental effects (e.g., rapid spread, 

forming impenetrable thickets, and thorn injuries) became apparent (Andersson, 2005).  

 

Introduced in dry regions, it has spread to other parts through natural dispersal. Prosopis is now a 

common shrub in the drylands with estimates showing that it makes up to 2% of Kenya’s landmass 

(KEFRI, 2020) 

 

Figure 1-1: Image showing Prosopis (R. Kihungu, Taveta, 30.1.2022) 
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Being a fast-growing and drought-tolerant species, the invasion of Prosopis threatens indigenous 

plants (Muturi et al., 2010) and causes a decrease in productive land area. Further, their thorns can 

injure both humans and animals, and their seeds can sometimes lead to the death of livestock. 

Being a hard species to eradicate, there is a need for control measures that reduce the negative 

impacts while utilizing it as a resource. 

 

One way is by using Prosopis as a source of bio-energy. For this, accurate estimates of biomass 

are required to quantify the expected energy outputs. Maps of Prosopis biomass help to target 

spatial interventions to areas with the highest bio-energy potential. Furthermore, biomass estimates 

help to determine the amount of carbon stored and thus Prosopis carbon sequestration potential at 

a time when carbon markets are emerging and could be another source of income.  

1.2 Problem Statement  

The invasion of Prosopis has degraded productive land, reduced local species, and adversely 

affected communities (Linders et al., 2020). Luckily, the negative social, economic, and ecological 

impacts associated with its spread can be mitigated if it were to be used as a source of biomass 

energy. In this regard, there is a need for robust and efficient methods of quantifying the available 

Prosopis biomass. However, studies about using LiDAR data for mapping Prosopis biomass were 

scarce. This study will contribute knowledge to the estimation of Prosopis biomass as well as the 

determination of the relationship between biomass, and LiDAR point clouds (Ku & Popescu, 

2019). 

1.3 Objectives 

The overall objective was to map the aboveground biomass (AGB) of Prosopis in Taveta. 

 

The specific objectives were namely to:- 

● Identify LiDAR variables with the highest predictive power of Prosopis AGB 

● Assess the accuracy of different variable combinations in estimating Prosopis AGB 

● Generate a map of the AGB of Prosopis in the study area 
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1.4 Justification for the Study 

Over 75% of Kenyan households are dependent on wood fuel, i.e., firewood and charcoal 

(Chidumayo & Gumbo, 2010) with 93.2% of rural households using it as their primary fuel source 

(Ministry of Energy & Clean Cooking Association of Kenya, 2019). The reliance on wood fuel 

has led to the degradation of forested land. In the face of growing demand for sustainable fuel and 

calls for the protection of forests, Prosopis can help bridge the energy gap by utilization for biofuel 

production (Witt, 2010).  

 

AGB is defined as “the dry mass of live or dead matter from tree or shrub (woody plant) life 

forms”(Duncanson et al., 2021).  AGB only accounts for biomass above the ground and does not, 

therefore, include biomass found in the roots (belowground biomass). AGB measurement is 

important for estimating the carbon stock available for use as bioenergy feedstock that emits less 

greenhouse gas pollution into the atmosphere than fossil fuels. Further, mapping Prosopis biomass 

provides valuable information for invasive species management, control, and utilization planning.  

 

This study maps Prosopis AGB using aerial LiDAR scanning data. It develops a baseline map of 

Prosopis AGB in the study area. The results of this study can inform control and management 

strategies by governments including projects aiming to utilize Prosopis to derive an income. 

Further, the methodologies and AGB models can be used to map the biomass of Prosopis occurring 

in other areas beyond the scope of this study.  

1.5 Scope of Work 

This study covers a 58-square-kilometre study area in Taveta, southern Kenya. It involves 

measurement of stem diameter and height of Prosopis occurring in 0.1ha sample field plots; 

computation of Prosopis AGB in the sample plots using allometric equations; development of 

Prosopis AGB estimation models by relating sample plot AGB to LiDAR variables; and 

classification of Prosopis distribution using Sentinel 2 imagery. This study will produce a Prosopis 

AGB distribution map within the study area. 
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1.6 Organization of the Report 

This report is organized into five chapters. Chapter one introduces the topic, gives a background 

of the study, and outlines the objectives and scope of the project. Chapter two reviews previous 

literature on the topic. Chapter three focuses on the materials, data, and methods used to conduct 

the study. Chapter four presents the results achieved and discusses them against previous studies. 

Finally, chapter five presents the conclusions, and gives recommendations and areas for further 

research. 
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2 LITERATURE REVIEW 

2.1 Invasive Species Overview 

Iannone et al., (2021) define invasive species as “a species that (a) is non-native to a specified 

geographic area, (b) was introduced by humans (intentionally or unintentionally), and (c) does or 

can cause environmental or economic harm or harm to humans.” Invasive plant species can survive 

in varied environmental conditions; spread rapidly; and resist pests, predators, or diseases 

(Ratnayake, 2014), eventually becoming established in an area.  

 

The effects of invasive plant species include but are not limited to competition with indigenous 

plants for nutrients, water, and sunlight—eventually replacing indigenous vegetation, reduction in 

productivity of agricultural land, physical injuries to livestock, wildlife, or people, prevention of 

access to natural resources such as water, and alteration of an ecosystems processes and 

composition. Ultimately, invasive species lead to socio-economic losses (Economic and Social 

Impacts | National Invasive Species Information Center, n.d.) and increased poverty in the affected 

communities. Once established and widespread, invasive species become hard to eradicate and 

their impacts on the natural environment and livelihoods become permanent unless mitigated 

through ongoing management (Witt & Luke, 2017). 

 

Kenya has many invasive plants within its borders. Lantana camara (Lantana), Prosopis 

(mesquite), Opuntia ficus indica, and Psidium guajava are the most prevalent dryland invaders 

(Obiri, 2011).  Prosopis, known locally as Mrashia (Taveta), is a tree, sometimes shrub, native to 

South America, Central America, and the Caribbean. The specific origins of the Prosopis species 

found in East Africa are unknown (Pasiecznik et al., 2001). It is one of the most invasive woody 

species in tropical drylands (Pasiecznik, 2018), and is listed on the Global Invasive Species 

Database (GISD) among the most invasive species worldwide. Prosopis has spread widely having 

already invaded 2% of Kenya’s landmass (1.5 million hectares) (KEFRI, 2020) with the ability to 

double its coverage every 5 years under favourable conditions (IUCN (International Union for the 
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Conservation of Nature), 2010). A study by Maundu et al., (2009) found that half the country has 

a 30%, or more, probability of Prosopis invasion.  

 

Prosopis normally grows to a height of 10m but may reach 20m under favourable conditions e.g., 

areas protected from the wind and with a high water table. The biophysical limits for the growth 

of Prosopis are: altitudes 0-1500 m, mean annual temperature of 14-34º C and mean annual rainfall 

of 50-1200 mm. The tree/ shrub can grow in a variety of soils including highly saline and rocky 

soils (World Agroforestry, n.d.). Additionally, Prosopis has small dark green leaves (World 

Agroforestry, n.d.) and an extensive root system which makes it adapted to extreme weather 

conditions such as high temperatures and low rainfall (Ng et al., 2017). Compared to grass, 

Prosopis pods, though palatable,  negatively affect livestock health (Ayanu et al., 2015; Maundu 

et al., 2009). Consequently, Prosopis causes increased pressure on the existing grasslands leading 

to overgrazing, land degradation, and even conflicts (Linders et al., 2020). Moreover, Prosopis has 

been found to have allelopathic effects on other plant species meaning that it inhibits the growth 

of other vegetation around it (Ayanu et al., 2015; Pasiecznik et al., 2001). 

2.2 History and Impacts of Prosopis Invasion in Kenya 

In Kenya, Prosopis was first planted in 1973 to rehabilitate quarries near Mombasa (Esbenshade 

& Grainger, 1980). Thereafter, in the 1980s, Prosopis was planted on a large scale to reclaim desert 

land as part of a dryland rehabilitation scheme in the Tana River and Turkana Districts. The scheme 

was supported by the Food and Agriculture Organization (FAO), and funded by Finland and 

Norway (Pasiecznik et al., 2008). Prosopis was the tree of choice because it is a multipurpose tree 

that can survive poor soils and harsh environmental conditions—where most other species cannot. 

The pods are a source of food for livestock, and sometimes, humans. The wood may be used as a 

source of fuel, for the construction of buildings, or to make furniture (Pasiecznik et al., 2001). 

Further, the trees can add soil nitrogen and are a source of forage for bees (World Agroforestry, 

n.d.). 

 

Due to a lack of knowledge of the future risks posed by this species, the first plantations were 

unmanaged. Prosopis quickly spread through dispersal by animals and water, outcompeting and 

replacing native vegetation, including trees, shrubs, and grass. It is now a major invader in Kenya’s 
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arid and semi-arid lands (ASALs) including Baringo, Bura, Garissa, Mandera, Marsabit, Mwingi, 

Tana river, Taita Taveta, Turkana, and Wajir counties (Petition 466 of 2006 - Kenya Law, 2007).  

 

Initially appreciated for their benefits, over time, the Prosopis invasion has led to negative impacts 

including the loss of grazing land, injuries to both humans and animals, loss of teeth, and eventual 

death of goats. Additionally, their root system allows them to utilize both surface and groundwater 

resources, thus lowering the water table (Dzikiti et al., 2013) and increasing the effects of drought 

(Obiri, 2011). The intended benefits of this invasive shrub have been overshadowed by its negative 

economic and environmental impacts. While it was introduced to diversify livelihoods, only 

utilization as a source of wood has proved profitable but even then, this income is cancelled out 

by a reduction in income from the declining numbers of livestock. Overall, the introduction of 

Prosopis has reduced the resilience of communities to drought (Linders et al., 2020). 

 

Notably, in 2006, harm caused by Prosopis to the environment and livelihoods saw the Ilchamus 

(local community in Baringo County) take legal action against the Government of Kenya (GoK) 

and FAO (Petition 466 of 2006 - Kenya Law, 2007) for introducing the species.  They claimed 

that, among others, Prosopis had robbed them of grazing land, caused harm to livestock and 

humans, blocked roads, and generally, led to huge economic losses. As a result, in 2018, the GoK 

declared Prosopis a noxious weed under the Suppression of Noxious Weeds Act (CAP 325) 

(Kenya Law: CXI No. 2 - 9th January 2009, 2009).  

 

It is important to point out that in some regions of the world, such as Sudan (Laxen, 2007) and 

India (Walter, 2011), the benefits from the utilisation of Prosopis have outweighed the costs, with 

the species even considered sacred in parts of India. The problem in Kenya, therefore, may be a 

lack of knowledge on proper management (Prosopis does not become weedy when properly 

managed), or the introduction of poor genetic Prosopis which is shrubby and has limited value 

(Pasiecznik et al., 2001). 
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2.3 Combating the Prosopis Invasion  

Once they are well established, preventing the further spread of Prosopis is currently deemed 

impossible (Pasiecznik, 2018). This is because its seeds spread easily and remain viable for at least 

40 years. Water flow during the rainy season or flooding events facilitates its widespread dispersal, 

which is made worse by animals that feed on Prosopis pods and thereafter excrete the seeds in 

different environments. 

 

Measures to stop the further spread of Prosopis may entail manual or mechanical control by 

uprooting all the identified trees. However, this method is labour-intensive and expensive, not to 

mention the risks posed by the thorns to the workers involved. In Kenya, Maundu et al., (2009) 

estimated the average cost of clearing Prosopis to be US$227,000 per sq. km (as of 2009). With 

an estimated area of 1.5 million hectares (KEFRI, 2020) suspected to be under Prosopis. invasion, 

manual clearing would be an expensive endeavour. Further, uprooting Prosopis trees on a large 

scale would likely lead to the destruction of the surrounding non-invasive vegetation, or leave the 

soils bare, leading to degradation. 

 

Chemical control by the application of herbicides is another method of controlling the spread of 

Prosopis. Using this method alone, however, is expensive and only effective in restricted zones as 

opposed to large tracts of invaded land. In Kenya, Prosopis mostly exists in extensive tracts of 

unrestricted lands, making this method unfeasible. Further, the widespread use of chemicals may 

pose negative environmental and health effects (Pasiecznik, 2018). 

 

Biological control measures using host-specific insects, mites, or pathogens are an alternative 

measure that can be employed to control the spread of Prosopis. This method has mostly been 

practised in Australia and South Africa. In Australia, it has been more successful (Shackleton et 

al., 2014) than in South Africa (Wilgen et al., 2012; Zachariades et al., 2011) where it has been 

ineffective at stopping the invasion (Wise et al., 2012). While biological methods are suitable for 

expansive areas, they are not widely practised because they may harm native species (Pasiecznik, 

2018), and are expensive to implement (Shackleton et al., 2014). 
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Though mechanical, chemical, and biological attempts to eradicate Prosopis species continue in 

different parts of the world, these have largely been unsuccessful (Pasiecznik, 2018). There is a 

growing consensus that a more feasible method is through utilization for the socio-economic 

benefit of the community: a method known as control through utilization (Shackleton et al., 2014). 

The downside to this method is: (a) encouraging utilization may lead to dependency and hence 

conflict of interest with the goal of eradication, and (b) areas with poor quality species that are 

weedy and thorny will have limited utility (Shackleton et al., 2014). Moreover, the decision to 

utilise Prosopis depends on factors such as its location, economic profitability, and people's 

knowledge and perceptions. People's knowledge and perceptions are, in turn, determined by its 

effect on the people's livelihoods. For instance, pastoralists are more likely to support total 

eradication owing to its harm to their livestock and grazing land while farmers in marginal lands—

where irrigation is impossible—might choose to grow it for charcoal production or other valuable 

wood products (Ayanu et al., 2015; Pasiecznik et al., 2008; Wakie et al., 2016).  

 

In Kenya, the question of eradication or control through utilization is still an ongoing debate 

(Maundu et al., 2009). In the past, the government has launched initiatives to educate communities 

and build their capacity to realize the full potential of Prosopis (KEFRI, 2020; Pasiecznik et al., 

2006; Tuwei et al., 2019). The main utilization methods proposed are charcoal production, pods 

for animal feed and as human food, and energy generation (KEFRI, 2020). Today, charcoal 

production from Prosopis is the most common way of utilizing these stands as it requires little 

initial capital and yields high returns. In Baringo County, the annual income from Prosopis 

charcoal is approximated to be 11 million Kenyan shillings (KEFRI, 2020). That said, in Kenya, 

Prosopis remains underutilized due to a deficiency of suitable knowledge and investment in 

research and development of the most suitable technologies for harvesting and processing 

(Pasiecznik et al., 2015).  

 

There is still no evidence, however, that control through utilization is a successful method for 

reducing Prosopis invasions (Shackleton et al., 2014). On the contrary, Mbaabu et al., (2019) 

found that control through utilization furthers the spread of Prosopis. A finding supported by 

Linders et al., (2020) and Ayanu et al., (2015) who conclude that when cut, Prosopis quickly 

coppices resulting in more cover and smaller stems which are less suitable for fuelwood. Mbaabu 
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et al., (2019) and Linders et al., (2020) recommend the replacement of Prosopis with native trees 

(which have higher quality wood) and grasslands after cutting down. It is worth pointing out that 

while Prosopis helps lower the amount of carbon dioxide (CO2) in the atmosphere, the replacement 

of degraded grasslands with Prosopis is not a good solution as it leads to severe environmental 

and socio-economic problems. Healthy grasslands, on the other hand, can store as much, or even 

more, soil organic carbon than Prosopis (Mbaabu et al., 2020). Generally, countries with large-

scale Prosopis invasions integrate different control and management methods (Mbaabu et al., 

2019; Shackleton et al., 2014). 

2.4 Remote Sensing for Prosopis Mapping 

Given the spatial-temporal variation in Prosopis invasions, spatially explicit management and 

control approaches customized to different invasion rates, scales, and socio-economic conditions 

would ensure greater success (Adoyo et al., 2021). To this end, accurate maps of its spatial 

distribution and quantity (AGB) are needed to aid in the identification of hotspots; determination 

of priority areas; monitoring whether control measures applied are working and predicting spread. 

Remote sensing technologies provide information on Prosopis extent (through land use and land 

cover classification) and carbon densities (through aboveground biomass mapping) (Amara et al., 

2020). 

 

Remote sensing collects data on an object without coming into contact with the object 

(International Organization for Standardization (ISO), 2016). Sensors can be installed on the 

ground, on airborne platforms such as aeroplanes and drones, or spaceborne platforms like 

satellites. Remote sensing data is essential for the detection and estimation of variables related to 

invasive species such as distribution, density, and impacts (Huang & Asner, 2009).  

 

Several factors make remote sensing an efficient tool for invasive species mapping. First, invasive 

species often spread quickly to occupy large tracts of land. Remote sensing enables large-scale 

mapping and monitoring which would not be possible otherwise. Second, the high temporal 

resolution of remote sensing sensors enables regular monitoring of invasive species. Third, remote 

sensing allows for direct measurement of plant characteristics, e.g., crown width and height, in 

remote, vast, and inaccessible areas where fieldwork is unfeasible. The detected plant 
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characteristics can then be extended for the measurement of other characteristics such as biomass. 

Finally, remote sensing provides long-term archives which can be utilized to map and monitor the 

spread of invasive species.  

2.4.1 Optical Remote Sensing for Prosopis Mapping 

Several optical sensing systems have been used to study the distribution of Prosopis. Specifically, 

archive imagery collected by Landsat satellites since the 1970s (Garner, 2015) has been 

extensively utilised in Africa. In Somalia, Tilahun & Asfaw, (2012) modelled the expansion rate 

of Prosopis using Landsat ETM+ satellite imagery. Rembold et al., (2015) mapped the national 

scale Prosopis invasion in Somaliland using Landsat 8 imagery in conjunction with ground 

observation data. They used probability thresholds on a maximum likelihood classifier to 

determine the presence or absence of Prosopis. Prosopis distribution mapping in West Somaliland 

using a combination of Landsat 8 imagery, ground truth data, and spectral measurements was 

undertaken by Meroni et al., (2017). They used random forest classification on imagery acquired 

at different times (wet season, dry season and a combination of the two) and different spatial 

resolutions (30m original imagery and 15m pansharpened imagery). The combination of wet and 

dry season images performed slightly better than dry season images while pansharpening 

minimally increased accuracy.   In Ethiopia, Ayanu et al., (2015) analyzed the spread of Prosopis 

from 2000 to 2013 using Landsat ETM+ and ASTER imagery while Haregeweyn et al., (2013) 

used Landsat imagery to analyse the invasion rate in Amibara District from 1973 to 2004.  Berg et 

al., (2013) used multiresolution satellite imagery, i.e., Landsat and MODIS, to map the extent, 

canopy density, spreading trends, and areas susceptible to invasion of Prosopis in South Africa. 

The invasion of Prosopis in Sudan’s Kassala plain was studied by Hoshino et al., (2012) using 

Landsat  TM imagery for species detection and distribution and PALSAR radar data to examine 

their effect on soil moisture content.  In Kenya, Muturi et al., (2010) used Landsat imagery and 

field data to estimate Prosopis invasion trends in the Turkwel Riverine Forest ecosystem (Turkana 

County) between 1995 and 2006.  Mbaabu et al., (2019) used multispectral, multitemporal and bi-

seasonal Landsat images to study the spatial trends of Prosopis in Marigat and their impacts on 

land cover and livelihoods. 
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Designed to build a virtual constellation with Landsat (Wulder et al., 2015), the launch of the 

Copernicus Sentinel 2 mission in 2015 avails high temporal, spatial, and spectral resolution 

imagery, further facilitating studies on the spread and distribution of Prosopis. Ng et al., (2016) 

used Sentinel 2 data to detect and map Prosopis in the Tarach water basin, Turkana, Kenya using 

the same classification scheme as Rembold et al., (2015). They used dry season image bands and 

applied a random forest classifier in the R environment. Besides the raster bands, they also input 

the Normalized Difference Vegetation Index (NDVI) and an elevation model to improve the 

classification results. They reported a 99% classification accuracy which they contend might be 

lower due to the lack of a separate validation dataset. In Ethiopia, Ahmed et al., (2021) evaluated 

the performance of various invasive species distribution predictive models (e.g., random forest, 

support vector machine and generalized additive model) using Sentinel 2-derived radiometric 

indices and biophysical variables. Specifically, they evaluated model performance when applied 

to predicting Prosopis distribution. The performance of the random forest model was very high 

highlighting its importance in invasive species distribution prediction. In Marigat sub-County, 

Baringo, Kenya, object-oriented random forest Prosopis classification using Sentinel 2 and 

Pléiades imagery was undertaken by Ng et al., (2017). In addition to the image bands, they also 

used vegetation indices and texture information to improve the classification. They found that 

while higher spatial resolution Pléiades imagery enables classification at a higher level of detail, 

the higher spectral resolution of Sentinel 2 imagery enables better detection and differentiation of 

different vegetation types.  

 

Within Taita Taveta County, Kenya, few attempts have been made to study the Prosopis invasion 

using remote sensing data. Maundu et al., (2009) mapped Prosopis distribution in Kenya using 

information obtained from herbarium specimens and field data. They found that Tsavo National 

Park (located in Taita Taveta County) was one of the areas facing rapid Prosopis invasion 

facilitated by animal droppings as pastoralists traversed the area in search of pasture. This study 

utilized field data and not remote sensing techniques.  Muturi, et al., (2012) focused on the 

distribution of Prosopis species in Kenya. In addition to noting that Taveta was under intermediate 

threat of invasion, they found that Prosopis Chilensis was the most likely Prosopis species in 

Taveta and not Prosopis juliflora as earlier thought. Other research looked into the 
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commercialization of Prosopis products (KEFRI, 2020). However, mapping of Prosopis biomass 

using remote sensing techniques has not been achieved for Taveta. 

2.4.2 LiDAR for AGB Estimation 

Light Detection and Ranging (LiDAR) is an active remote sensing method which utilizes a laser 

scanner to emit light as a transmitted laser to target objects on the Earth’s surface and record the 

reflected signals. In this way, it measures ranges (distances) from the sensor to the target objects.  

The resulting LiDAR point cloud data are used to create 3-dimensional elevation models and for 

depicting vegetation structure which is useful for extracting characteristics like tree height, 

diameter, and crown width (Ku & Popescu, 2019). The use of LiDAR sensors installed on an 

airborne platform such as an aircraft is known as Airborne Laser Scanning (ALS) (Hansen et al., 

2015). 

 

ALS has emerged as an accurate method for aboveground biomass estimation, producing better 

results than radar and optical remote sensing methods (Zolkos et al., 2013). AGB estimation using 

ALS is normally done through a combination of field sampling, allometric models, and LiDAR 

metrics (Zolkos et al., 2013). This is usually a three-stage procedure. First, allometric models are 

used to compute sample field plot biomass. Second, sample plots are used to derive relationships 

between ALS metrics and tree characteristics measured in the field. Finally, such relationships are 

used to compute AGB estimates from ALS data (Næsset, 2002).  

 

Although still inconclusive, in some cases, combining optical, radar, and LiDAR sensors leads to 

more accurate AGB models whose values are closest to field observations (Zolkos et al., 2013). 

The integration of LiDAR and aerial imagery has been used to derive biomass maps for multiple 

vegetation types like multi-use savannah landscapes (Amara et al., 2020), forest landscapes (Chen 

et al., 2012), and dense tropical submontane rainforests (Hansen et al., 2015). Contrary to other 

studies, (Zhao et al., 2021) found that high-resolution multi-spectral imagery performed better than 

LiDAR. It should be noted however that this study used UAV-LiDAR as opposed to ALS. 



 

14 

 

2.4.2.1 LiDAR Models Used in AGB Estimation and Accuracy Assessment 

LiDAR metrics describe the distribution of trees in a stand and are important for AGB estimation. 

Examples of ALS variables commonly used to predict biomass are canopy height metrics such as 

mean, median and skewness, canopy density variables, LiDAR return characteristics, etc. (Chen 

et al., 2012; Hansen et al., 2015). Generally, ALS variables used to predict biomass vary depending 

on the vegetation type: canopy density variables in dense tropical submontane rainforests (Hansen 

et al., 2015), laser penetration variables in tropical lowland forests (Phua et al., 2017), median 

height of the LiDAR canopy model for tall, high biomass, tropical forests (Réjou-Méchain et al., 

2015).  

 

(Ku & Popescu, 2019) applied both LiDAR data and aerial imagery in comparing different 

methods of estimating Prosopis AGB. They found that in addition to a raster CHM, the maximum 

height was important to the determination of Prosopis AGB.  Amara et al., (2020) extracted height 

and canopy cover metrics—at a 3.5m threshold—for the determination of the AGB of woody 

plants in a Kenyan savannah. A two-variable LiDAR model was found optimal for AGB estimation 

whereby the predictors used were the percentage of all returns above 3.5 m and the minimum 

elevation of the first returns above 3.5 m. LiDAR return height distribution and canopy cover 

variables extracted by (Heiskanen et al., 2019) in an Afromontane landscape were found 

significant for AGB estimation. More specifically, they found that a two-variable model containing 

canopy cover and density metrics and canopy height was the most optimal for AGB prediction in 

a non-stratified forest environment.    

 

It is important to evaluate LiDAR AGB models to ensure the accuracy of predicted AGB values 

(Valbuena et al., 2017). Various methods are applied in assessing and selecting the optimal LiDAR 

AGB model. Regression models fit between LiDAR variables and field plot AGB estimates are 

used to show which relationships are significant and the nature of these relationships. The null 

hypothesis is that there is no relationship between the LiDAR variable and field plot AGB. One of 

the results of regression analysis is the p-value. This is used to assess whether the LiDAR variable 

is significant or not.  A p-value less than the significance level means that the null hypothesis is 

false and the LiDAR variable is significant.  
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Where there is no independent dataset for the accuracy assessment of regression equations, cross-

validation is usually used (Næsset, 2002). Cross-validation entails the removal of one dataset at a 

time and fitting the model to the remaining datasets. The fitted model is then used to predict the 

removed dataset. Leave-one-out cross-validation (LOOCV) accuracy statistics such as mean 

difference, root mean square error (RMSE), pseudo coefficient of determination (R2), and mean 

absolute difference can then be used to assess the prediction methods. (Amara et al., 2020; 

Heiskanen et al., 2019). Additionally, regressing predicted AGB as the independent variable (x-

axis) against observed AGB as the dependent variable (y-axis) and checking whether these follow 

the 1:1 line can also be used for model assessment (Valbuena et al., 2017).  

2.4.2.2 Uncertainty in LiDAR AGB Estimation 

LiDAR AGB estimates usually involve using field measurements to calibrate the remote sensing 

data. Even though LiDAR AGB modelling results can be relatively accurate, AGB estimates are 

not free of errors. The errors arise from uncertainties involved during various steps. One source of 

error is the measurement of sample tree heights in areas with dense canopies. It is not only difficult 

to distinguish the highest point on a specific tree but also one may be forced to stand close to the 

tree when measuring the height using a clinometer as opposed to the recommended distance away 

from the base of the tree. Besides, but related to height measurement, another source of error is the 

selection of a height-diameter (HD) model to infer the heights of trees whose height was not 

measured directly in the field. Here, variations may occur depending on the HD model used. 

Developing local HD models as opposed to using generic models may reduce this error (Réjou-

Méchain et al., 2017).  

 

Sample sizes are another source of uncertainty. ALS model errors usually decrease with increasing 

sample sizes because they are less affected by edge effects and GPS positioning errors (Zolkos et 

al., 2013). Edge effects can however be mitigated by using circular plots which have a smaller 

circumference to area ratio. That said, it is difficult to establish large field plots in areas with dense 

vegetation or rugged terrain. Further, larger plots increase the inventory costs. Thus, there is a need 

for a cost-benefit analysis to balance precision and costs(Næsset, 2002). The size of field 

observation plots in the tropics usually ranges between 0.1 and 1.0 ha (Hansen et al., 2015) with 

the minimum plot size dependent on the type of LiDAR used (Zolkos et al., 2013).  
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Another source of error is the choice of the AGB allometric model. The accuracy of estimated 

biomass is dependent on the underlying accuracy of the allometric models used to extrapolate 

ground estimates to LiDAR metrics (Chave et al., 2004; Duncanson et al., 2017). In turn, the 

accuracies of allometric models depend on the sample sizes, their spatial distribution, and the 

environmental conditions of the sample areas (Duncanson et al., 2017). Specifically, the 

development of shrub allometric models calls for greater sample sizes because they are 

characterized by irregular shapes resulting in varying biomass for a given stem diameter 

(Roxburgh et al., 2015). Generally, locally derived species-specific allometric equations are 

preferred because they are perceived to be more accurate than regional, generalized allometric 

models (Duncanson et al., 2017; Roxburgh et al., 2015). Nevertheless, Roxburgh et al., (2015) 

point out that using a generic model—like those developed by Chave et al., (2014) which are 

applicable across the tropics (Duncanson et al., 2017)—may yield acceptable results while 

outperforming species-specific models in terms of cost-effectiveness and applicability to a wide 

range of species. 

 

In field plots where the tree stands have achieved maximum height, LiDAR-derived canopy height 

models have less explanatory power on AGB and may instead underestimate biomass in such field 

plots (Hansen et al., 2015). According to (Duncanson et al., 2017), this may be addressed by 

creating allometric models based on terrestrial laser scanning data, which estimates individual tree 

volumes as opposed to traditional field sampling of diameters and heights.  

 

Finally, diameter measurement errors, uncertainty in wood density values, and coregistration 

errors between the LiDAR point cloud and sample field plot positions may further contribute to 

uncertainty in AGB estimates. According to Réjou-Méchain et al., (2017), the choice of allometric 

model is the main contributor to AGB error, followed by the choice of HD model. 

2.5 Allometric Models for Prosopis AGB Estimation 

Direct harvesting and weighing of individual shrubs or trees is the most exact method of biomass 

estimation. However, such estimation methods are destructive, time and labour-consuming, and 

impracticable for extensive or remote areas. Indirect estimation using allometric models is, 
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therefore, often used whereby representative samples are harvested and weighed, and their AGB 

is related to easily measured attributes like stem diameter and height. Although their initial 

development and validation can be expensive, allometric models are an efficient and cost-effective 

method for large-scale estimation of AGB in new sites when constructing new allometric models 

is not possible (Duncanson et al., 2021; Roxburgh et al., 2015).  

 

In Kenya, several allometric models exist for Prosopis biomass estimation. Maghembe et al., 

(1983) estimated Prosopis biomass in one of the earliest Prosopis plantations in the country. They 

sampled eleven 6-year-old Prosopis trees grown under plantation conditions. Sample diameters 

ranged from 4.9 cm to 31.7 cm with heights ranging between 7.1m and 19.7 m. The result was 

four linear allometric equations for predicting the biomass of tree components namely the leaves, 

stem, large branches and small branches. The total biomass is the sum of these components.  

Allometric models for estimation of Prosopis in naturally occurring stands were computed by 

Muturi et al., (2012) through destructive sampling. The field plots were 0.1ha in size and located 

in arid areas of Katilu, and Nadapal, with additional sites in Marigat and Bura, used for validation. 

With Taveta also being an arid area, these allometric models could be used for AGB estimation.  

 

However, some differences are noted. First, the Nadapal site is located in a riverine site with a 

microclimate that could be significantly different from the Taveta study site. Second, the basal 

diameter (D30) range of the trees used to develop the model was between 2.6cm and 18.5cm. The 

Taveta study site, on the other hand, has significantly bigger Prosopis trees with basal diameters 

of up to 73.2cm. According to (Duncanson et al., 2017, 2021), extrapolating beyond the limits of 

the sample diameters used to create the allometric model could introduce bias. Additionally, 

differences in the frequency distribution of tree sizes used in the construction of allometric models 

and the sample increase uncertainty in the estimated biomass (Roxburgh et al., 2015). Lastly, most 

Prosopis tree samples used in the allometric model development branched above D30 whereas for 

the Taveta samples, most trees branch below D30.  

 

 

 



 

18 

 

The recommended equation by Muturi et al., (2012) shows a logarithmic linear relationship 

between basal diameter and Prosopis biomass. To compute Prosopis AGB, Linders et al., (2020) 

modified this equation into a power model which they hypothesized fit the data from Muturi et al., 

(2012) best. Prosopis is mostly a multi-stemmed plant (Maghembe et al., 1983). Muturi et al., 

(2012) did not explore the effect this has on the allometric model. Kyuma et al., (2018) sought to 

fill this gap by destructively sampling 128 trees. They developed power and curvilinear allometric 

models for estimating the biomass of multi-stemmed Prosopis trees. The study, however, does not 

explore allometric models for Prosopis trees with over three stems. Further, the study does not 

show the diameter-height distribution of the samples used in model construction. 
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3 MATERIALS AND METHODS 

3.1 Study Area 

The study site is a 58 sq. km area located in the Taveta sub-county approximately 100 km from 

Voi on the Voi-Taveta-Arusha (A23) road. The study site falls within Taita Taveta County which 

is considered an arid and semi-arid (ASAL) region. The County can be divided into three zones: 

the highlands or mountainous areas of Taita hills, Taveta at the foot slopes of Mount Kilimanjaro 

(the location of our study area), and the lowlands which comprise Tsavo National Parks and 

rangelands. Taveta experiences two rainy seasons occurring in March-June and October-December 

with an average annual rainfall of 350nm-750nm and temperatures ranging between 21-38˚C 

(NEMA, n.d.). 

 

Figure 3-1:  Overview of the study area. The red outer bound shows the extent of the 58 sq. km study area while the green dots 

show the sample plots. 
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The site is mainly covered by ASAL vegetation of grasslands, woodlands, and shrublands, with 

savannah species like Acacia sp. found in areas with a high water table. Over 90% of Taveta’s 

rural population use firewood while the rest use kerosene and (or) charcoal. The demand for 

fuelwood (firewood and charcoal) is approximated to be 41,000 tonnes annually leading to 

deforestation and increasing fuelwood prices (NEMA, n.d.). 

3.2 Data Sources and Tools 

3.2.1 Data Sources 

These include: 

● Field plot sample data  

● Aerial imagery and LiDAR data 

● Sentinel 2 imagery 

Table 3-1: Sentinel 2 image bands used in this study 

Band Central Wavelength (nm) Resolution (m) 

Band 1 – Coastal aerosol 443 60 

Band 2 – Blue 490 10 

Band 3 – Green 560 10 

Band 4 – Red 665 10 

Band 5 – Vegetation Red Edge 705 20 

Band 6 – Vegetation Red Edge 740 20 

Band 7 – Vegetation Red Edge 783 20 

Band 8 – Near InfraRed  842 10 

Band 8a – Vegetation Red Edge 865 20 

Band 11 – Short Wave InfraRed 1610 20 

Band 12 – Short Wave InfraRed 2190 20 
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3.2.2 Tools 

Table 3-2: Tools used in the study 

Activity Tools 

Orientation and recording of field observations 

 

• Handheld GPS 

• Digital map e.g., Google Maps 

• Field forms  

Establishment of the sample plots 

 

• GNSS base and rover 

• Measurement tape (30 m) 

• Compass 

• Metallic pegs to mark plot centre points 

Measurement of diameter and tree height 

 

• Callipers  

• Levelling staff for tree heights of up to 5m 

• Hypsometer for tree heights above 5m 

Photographic recording • Digital camera, or phone with a camera 

 

3.2.3 Data Collection 

3.2.3.1 Field  Plot Measurements 

Field data for 21 circular sample plots were collected during the dry season between January and 

March 2022. Prosopis occurs in various forms ranging from large trees with a single stem to multi-

stemmed trees to a shrubby form, as shown in Error! Reference source not found..  Apart from 

size, Prosopis canopy structure varies from dense to sparse. The plots were selected subjectively 

to encompass variation in the density and size of Prosopis in the study area—which explains the 

irregular distribution of the sample plots (Figure 3-1).  
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D 
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Figure 3-2: Examples of Prosopis forms encountered in the field. (A) Tree with large main stem; (B) multi-stemmed tree; (C) 

coppiced tree; (D) dense shrubs; (E) sparse shrubs (R. Kihungu, March 2022) 

A sample plot comprised a main plot of 0.1ha in size (17.84m radius) and four subplots of 0.01 ha 

(5.64m radius) following the Land Degradation and Surveillance (LSDF) sample plot design 

(Figure 3-2). A similar plot layout has been used in earlier studies in the region (e.g., Amara et al., 

2020).  
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Figure 3-3: Image showing the field plot layouts (Heiskanen et al., 2013) 

The centre of the main plot is positioned using differential Global Navigation Satellite System 

(dGNSS) measurements using a base station on a known point and a rover at the centre of each 

field plot. The data was recorded for over 30 minutes with a logging rate of 1 second. The antenna 

height was approximately 3.0 m for most plot centre points. Trimble GPS Pathfinder software was 

used to post-process centre point coordinates. The maximum standard deviation of the collected 

measurements was 0.6 metres. The computed centre point coordinates were used to register the 

plots. 17.84 m buffers were created around the centre points corresponding to circular plots of size 

0.1ha.   

 

Within the main plot, basal stem diameter was measured at 30cm height from the ground (D30) 

using a calliper or tape. Trees with a diameter >= 10cm were identified and their stem diameter 

and species were recorded. The diameter at breast height (DBH, 1.3 m from the ground) was also 

measured for trees with D30>=18cm or any other species other than Prosopis. The height of trees 

with the minimum, median, and maximum D30 in the main plot was measured and recorded. 

Height was measured using a 5 m levelling staff held vertically and read to the highest point of the 

tree. The height of trees exceeding 5 m was measured using a Suunto hypsometer.  

 

Within the subplots shrubs with a D30 of between 2.5cm and 10cm were counted (for both 

Prosopis and other species). Here, height and D30 were only measured and recorded for the 

median shrub. The dominant species was recorded and any other species were noted. Other 

characteristics such as dead trees, dense vegetation, deforestation, charcoal burning, etc., observed 
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within the field plots were also recorded. Here, woody vegetation with D30>=10cm are called 

trees. 

Table 3-3: Summary of tree and shrub field plot data collected 

Summary of Plot Data 

 No. of 

stems 

D30 (cm) DBH (cm) H (m) 

  Min Mean Max Min Mean Max Min Mean Max 

Trees D30 ≥10 cm 557 10.00 16.22 73.20 4.70 12.78 75.10 3.60 7.76 18.00 

Shrubs 

(2.5cm≤D30<10cm) 

1310 2.50 4.96 9.00 NA NA NA 1.80 4.58 13.00 

3.2.3.2 LiDAR and RGB-NIR Data  

LiDAR and red, green, blue and near-infrared (RGB-NIR) imagery were collected concurrently 

on 17th February 2022 during the dry season. The imagery and LiDAR data were collected using 

Leica RCD30 and Leica ALS60 sensors, respectively mounted on a Cessna aircraft. The point 

density was approximately 3 points/sq.m.  

This data was collected by Ramani Geosystems, Kenya, in conjunction with the University of 

Helsinki. LiDAR point cloud bare earth points were identified and used to create a digital terrain 

model (DTM). Relative height values above the ground were obtained by subtracting the DTM 

from the LiDAR point cloud. In vegetated areas, this relative height can be considered as the 

canopy height while in open areas and gaps between vegetation, the height is close to zero and 

hence represents the bare earth (Næsset, 2002). One of the challenges in mapping the bare earth in 

vegetated areas is that the number of LiDAR ground points affects the accuracy of the DTM and 

hence the extracted CHM (Réjou-Méchain et al., 2015). As such, extra flight lines were included 

in the areas with sample plots to maximize increased ground hits. The RGB-NIR imagery was 

orthorectified and had a spatial resolution of 0.1 m. All datasets were projected in UTM 37South, 

on WGS84 ellipsoid. 
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3.2.3.3 Sentinel-2 Imagery 

European Space Agency’s (ESA) Sentinel-2 mission provides open access to earth observation 

data at a high spatial as well as temporal resolution (Ng et al., 2017). Sentinel-2 constellation 

comprises two satellites i.e., Sentinel-2A and Sentinel 2B with approximately 5 days revisit time. 

Each satellite has 13 bands ranging from the visible to the short-wave infrared portion of the 

electromagnetic spectrum with a maximum spatial resolution of 10m (Sentinel-2 - Missions - 

Sentinel Online - Sentinel Online, n.d.). In this study, data acquired between March 2021 to March 

2022 were used.  

3.2.3.4 Classification Training Data 

Training data for classification of Prosopis invaded areas consisted of field plot locations and 

additional sites extracted from 10cm spatial resolution aerial imagery. It was necessary to 

complement the field plot data with photo-interpreted polygons to increase the size of the training 

data. Training data was selected such that only areas with pure stands and dense Prosopis cover 

were used. This was done to reduce the effects of mixed pixels on the classification. Sites digitized 

from high-resolution aerial imagery were informed by observations during fieldwork. Aside from 

Prosopis invaded areas, polygons covering different LULC classes were also digitized (Table 3-

5).  

Table 3-4: Land use land cover (LULC) classes in the study area 

ID LULC  Description 

1 Agricultural/ Mixed Vegetation A combination of crops, trees, shrubs, etc., that exist in a stand. 

2 Bare land Areas with little or no vegetation (exposed soil) 

3 Builtup Areas with human settlements 

4 Prosopis  Areas invaded by Prosopis  

5 Tarmac Tarmac road 

 

The training data were digitized in Quantum GIS (QGIS) and consisted of 71 spatial polygons 

indicating the presence or absence of Prosopis and the LULC class.  
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Table 3-5: Extract of training data attribute table 

fid class Prosopis 

1 Prosopis TRUE 

2 Prosopis TRUE 

3 Prosopis TRUE 

4 Prosopis TRUE 

5 Prosopis TRUE 

6 Prosopis TRUE 

7 Prosopis TRUE 

8 Prosopis TRUE 

9 Prosopis TRUE 

10 Prosopis TRUE 

11 Tarmac FALSE 

12 Tarmac FALSE 

13 Tarmac FALSE 

14 Bare FALSE 

3.3 Aboveground Biomass Estimation  

3.3.1 Estimating Field Plot AGB  

Sample plot Prosopis AGB was first computed using the species-specific allometric equation by 

Muturi et al., (2012):  

𝐿𝑛 (𝐴𝐺𝐵) =  0.2933𝐷30 –  0.03 

(3.1) 

However, this equation was found to overestimate AGB heavily outside the range of D30 values 

used when the model was developed. Kyuma et al., (2018) also found that predictions from this 

model do not match field observations.  Therefore, other allometric equations from previous 

literature were used to estimate AGB depending on the stem diameter and species. 
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For Prosopis trees and shrubs with D30<18.5 cm, an allometric equation by Linders et al., (2020) 

which is based on data from Muturi et al., (2012) was used:  

𝐿𝑛 (𝐴𝐺𝐵) =  −10.672 +  8.71 ×  𝐷30^0.2 

(3.2) 

AGB of Prosopis trees with D30≥18.5 cm, and other tree species D30≥10 cm was estimated using 

(Chave et al., 2014) equation 4:  

𝐴𝐺𝐵 =  0.0673 × (𝜌 ×  𝐷𝐵𝐻^2 ×  𝐻) ^0.976 

(3.3) 

Other shrub species with D30 between 2.5 cm and 10cm, Conti et al., (2019): 

𝐴𝐺𝐵 =  𝑒𝑥𝑝(−2.869 +  2.584 ×  𝐿𝑛 (𝐷30))  

(3.4) 

Where:  

AGB = Above-ground biomass in kilograms (kg) 

D30 = Diameter measured 30cm from the ground (cm) 

ρ = Species-specific wood density (g/cm3) 

DBH = Diameter measured 1.3m from the ground (cm) 

H = Height (m) 

 

DBH, tree height (H), and species-specific wood density (ρ) are required for equation 3.1. Since 

DBH was only measured for sample trees, their average DBH/D30 ratio was used to estimate DBH 

for all trees with D30>=10cm. An average DBH/D30 ratio of 0.844 was used. To infer the height 

of trees that were not directly measured, sample trees D30 and H were used to fit a local height-

diameter model by employing the modelHD function in the R BIOMASS package (Réjou-Méchain 

et al., 2017).  

 

ModelHD fits four different models to the data and outputs the residual standard error (RSE), 

average bias, and the residual standard error of the log models as shown in  Table 3-6 below.   
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Table 3-6: Tree height modelling results based modelHD function. 

Model RSE RSElog Average_bias 

1.      log1 2.761864 0.3309373 0.000802307 

2.      log2 2.789708 0.333839 0.002379401 

3.   weibull 2.813087 NA 0.02961977 

4. michaelis 2.862254 NA -0.026231735 

 

Log 1 model was selected because it had the highest accuracy (lowest root square error (RSE)) and 

minimum average bias. Figure 3-4 compares the different models and also shows the selected 

model.  

  

Figure 3-4: Comparison of different HD models (left) and the selected log 1 model (right) 

Species-specific wood density was retrieved using the ‘getWoodDensity’ function in the R 

BIOMASS package (Réjou-Méchain et al., 2017). The function estimates wood density from 

different datasets including the global wood density database (Chave et al., 2009; Zanne et al., 

2009) based on the recorded tree genus and species. Species-specific wood density was obtained 

for 22 different tree species. Trees whose species were unknown were assigned the average wood 

density of the known species.  

 

Thereafter, the total biomass for trees with a diameter >=10cm in a sample plot was obtained by 

summing up individual tree AGB values. Total shrub AGB was obtained by multiplying the stem 

count in a plot by the estimated AGB of each stem. Total plot-level AGB was the sum of trees and 
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shrubs AGB. The final plot AGB was converted to Mg ha−1. Further, plot-level AGB was divided 

into Prosopis only and other species AGB. 

3.3.2 Calculating LiDAR Metrics 

To derive LiDAR metrics, LiDAR point clouds within the bounds of each field plot were extracted 

and analysed in two approaches. The first extracted user-defined plot level metrics of maximum 

height, mean height, the standard deviation of height, percentile heights (10th, 25th, 50th, 75th, 90th, 

and 95th), and canopy cover and density metrics (first echo cover index, all echo cover index and 

afci). These were calculated with a 0.3 m height threshold. 0.3 m matches the height at which stem 

diameters were measured while at the same time removing ground points or points hitting grass 

and other low-lying vegetation. Error! Reference source not found. shows the user-defined 

metrics extracted. 

Table 3-7:User-defined LiDAR metrics 

User-defined metric Description 

zmax Maximum return height 

zmean Mean return height 

zsd Standard deviation of return height 

zq10, zq25, zq50, zq75, zq90, zq95 10th, 25th, 50th, 75th, 90th, and 95th percentile 

(quantile) of the return height distribution 

fci (first echo cover index) Proportion of canopy hits above a 0.3 m height 

threshold. Fraction of first and single canopy echoes.  

(fci = (∑Singlecanopy + ∑Firstcanopy) / ∑SingleAll + 

∑FirstAll)) 

aci (all echo cover index) All echo types above the height threshold 0f 0.3 m (aci 

= ∑Allcanopy / ∑All) 

afci All returns above the height threshold divided by the 

first returns 

The second approach extracted standard metrics predefined by the ‘stdmetrics’ function in lidR 

package (Roussel et al., 2020, 2022) within R-studio. Standard metrics include statistical metrics 

like the mean, standard deviation, median, skewness, and kurtosis of the LiDAR heights and 

intensity; canopy height and intensity metrics computed as percentiles of the observed heights and 

intensities respectively; and canopy density metrics. Canopy density metrics usually divide the 

point clouds into 10 equal vertical intervals or slices and derive the cumulative percentage of return 
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heights and intensities in each interval (See more details in (Woods et al., 2008)). A total of 54 

standard metrics were extracted (Error! Reference source not found.). Similar metrics have been 

used in other studies (Amara et al., 2020; Heiskanen et al., 2019). 

Table 3-8: Standard metrics extracted 

Standard metric Description 

zmax Maximum return height 

zmean Mean return height 

zsd Standard deviation of return height 

zskew Skewness of return height 

zkurt Kurtosis of return height  

zentropy Measure of the randomness of the return height 

pzabovezmean Percentage of returns above zmean 

pzabove2 Percentage of returns above 2m 

zq5, zq10, zq15, …, zq95 5th, 10th, 15th, …, and 95th percentile (quantile) of return height distribution 

zpcum1, zpcum2, zpcum3, …, zpcum9 Cumulative percentage of return height in the 1st, 2nd, 3rd,…, and 9th interval when return heights are 

divided into 10 equal intervals  

itot Sum of return intensities 

imax Maximum return intensity 

imean Mean return intensity 

isd standard deviation of return intensity 

iskew Skewness of return intensity 

ikurt Kurtosis of return intensity 

ipground Percentage of return intensity from ground points 

ipcumzq10 Percentage of intensity returned by points below the 10th percentile of height 

ipcumzq30 Percentage of intensity returned by points below the 30th percentile of height 

ipcumzq50 Percentage of intensity returned by points below the 50th percentile of height 

ipcumzq70 Percentage of intensity returned by points below the 70th percentile of height 

ipcumzq90 Percentage of intensity returned by points below the 90th percentile of height 

p1th Percentage of 1st returns 

p2th Percentage of 2nd returns 

p3th Percentage of 3rd returns 

p4th Percentage of 4th returns 

p5th Percentage of 5th returns 

pground Percentage of returns classified as ground points 



 

31 

 

3.3.3 Modelling Sample Plot AGB With LiDAR Metrics 

Modelling was carried out in two steps. First, the ‘regsubsets’ function in leaps package (Miller, 

2020) within R-Studio was used to fit linear regression models to user-defined and standard 

metrics. The function used different combinations of the extracted metrics as the predictor 

variables and total AGB and Prosopis AGB as the response variables. The function selects a small 

subset of predictor variables which provide good predictions of the response variable. In this study, 

two sets of the best combination of 1, 2, and 3 predictor variables were extracted for both total and 

Prosopis AGB. The function also returned the adjusted coefficient of determination (adjusted R2) 

of the variable combinations.  

Second, the ‘lm’ function in R was used to fit linear regression models between the predictor and 

response variables. The result was a summary containing key information like the residual standard 

error, multiple and adjusted R2, the F-statistic and the p-value. Models containing variables with a 

level of significance p<0.05 were discarded.  

3.3.4 Accuracy Assessment 

Leave-one-out cross-validation (LOOCV) method was used to evaluate how well the models 

perform by comparing predicted with observed AGB. LOOCV is a suitable evaluation method 

where the dataset contains too few observations for splitting into training and testing. LOOCV 

works by using all but one observation for model training and then applying the resulting model 

to predict the AGB of the observation that was left out. The process was iterated over every 

observation such that each had a predicted AGB value. The following evaluation statistics between 

observed and predicted biomass were then computed: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − ŷ𝑖)

𝑛
𝑖=1

𝑛

 

(3.5) 

𝑅2  =  1 −  
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − ȳ)2𝑛
𝑖=1

 

(3.6) 

𝑅𝑀𝑆𝐸𝑟 =  
𝑅𝑀𝑆𝐸

ȳ
× 100
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(3.7) 

where, 

RMSE = Root mean square error 

R2 = Coefficient of determination.  

RMSEr = Relative root mean square error 

y = Measured AGB 

ŷ = Predicted AGB 

ȳ = Mean of predicted AGB 

n = Number of observations 

Scatter plots of predicted vs observed AGB were also made to aid in model evaluation. Models 

that seemed to underestimate or overestimate AGB were discarded. 

3.4 Land Use and Land Cover Mapping Using Sentinel-2 

Imagery 

The classification was undertaken to determine Prosopis invaded areas and separate them from 

other vegetation. 

3.4.1 Sentinel-2 Image Pre-Processing 

Sentinel-2 satellite imagery for the period March 2021 to March 2022 was used for modelling. 

Specifically, 10m bands 2, 3, 4, and 8, 20m bands 5, 6, 7, 8A, 11, 12 and 60m bands 1 and 9 were 

applied. The bands were resampled to 10m spatial resolution. Annual metrics, namely annual 

median, 25th percentile (Q1), 75th percentile (Q3) and interquartile range (Q3-Q1) computed for 

all the bands.  

Vegetation indices have been shown to enhance model performance (Immitzer et al., 2016; Ng et 

al., 2017). To increase the sensitivity of the imagery to different vegetation types, the annual 

metrics (described above) of vegetation indices Two-band Enhanced Vegetation Index (EVI2), 



 

33 

 

Green Ratio (GR), Red Edge Normalized Difference Vegetation Index (RENDVI), and Green 

Normalised Difference Vegetation Index (GNDVI), were retrieved: 

𝐸𝑉𝐼2 =  2.4 × 
𝑛𝑖𝑟 −  𝑟𝑒𝑑

𝑛𝑖𝑟 +   𝑟𝑒𝑑 +  1

 

(3.8) 

𝐺𝑅 =  
𝑔𝑟𝑒𝑒𝑛

𝑟𝑒𝑑
 

(3.9) 

𝑅𝐸𝑁𝐷𝑉𝐼 =  
𝑅𝐸2 − 𝑅𝐸1

𝑅𝐸2 + 𝑅𝐸1

 

(3.10) 

𝐺𝑁𝐷𝑉𝐼 =  
𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛

𝑛𝑖𝑟 + 𝑔𝑟𝑒𝑒𝑛

 

(3.11) 

where nir is near-infrared band 8, red corresponds to band 4, green to band 3, RE1 to vegetation 

red edge band 5, and RE2 to vegetation red edge band 6. 

The annual metrics were computed in Google Earth Engine and stacked into a 10m image 

composite. 

3.4.2 LULC Classification 

To predict the spatial distribution of Prosopis in the study area, a random forest model was fitted 

and validated using spatial cross-validation (Brenning, 2012). Random forest has been applied in 

various Prosopis classification problems and usually achieves good accuracies (Ahmed et al., 

2021; Mbaabu et al., 2019; Meroni et al., 2017; Ng et al., 2016, 2017). In this study, the predictor 

set consists of Sentinel-2 bands annual metrics, vegetation indices annual metrics as well as ALS-

based 10m resampled CHM, totalling 64 raster layers. The model was trained on a labelled set of 

71 polygons indicating Prosopis and non-Prosopis classes.  

In the study area, Prosopis occurred as pure; mixed with other natural trees or (and) shrub species, 

or mixed with agriculture. Mixed stands presented difficulties in spectrally separating Prosopis 

from the other species. Therefore, this classification only broadly classifies Prosopis. This study 

used a binary classification scheme with probability thresholds (Rembold et al., 2015). Pixels were 
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thus considered as not infested if their probability of belonging to class Prosopis was lower than 

the set thresholds. The threshold was fixed at 0.3. This threshold value ensured that pixels with 

few Prosopis trees—either in mixed or sparse stands—were classified as invaded. 

3.4.3 Validation of the Classification 

The model was validated using 10-fold cross-validation, i.e., 100 iterations of spatially segmented 

test datasets to reduce the effects of spatial autocorrelation and derive accuracy metrics of the 

model predictions (Kohavi, 2001). Given the relatively small sample size of our reference dataset, 

a validation approach utilizing data not used for training was not applicable as no additional ground 

data were available (Meroni et al., 2017). The model set-up and cross-validation were implemented 

in the R software package mlr3 (Lang et al., 2019). 

3.5 Generation of the Prosopis AGB Map 

A regular grid with each cell size 30 × 30 m corresponding to the sample plot size of 0.1 ha (1000 

m2) was generated. The grid covered the entire 58 sq. km study area. LiDAR metrics were 

extracted within each grid cell.  Thereafter, AGB within each grid cell was computed using the 

selected regression model resulting in a wall-to-wall AGB map over the study area. The LULC 

map was used to mask out non-Prosopis areas to remain with a Prosopis AGB map. 
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4 RESULTS AND DISCUSSIONS 

4.1 Sample Plot AGB From Allometric Models 

Equation (3.1) by Muturi et al., (2012) produced unrealistically high biomass values for larger 

trees. The observed bias may have been caused by extrapolating beyond the maximum diameter 

of the allometric model sample data (Duncanson et al., 2017, 2021). While Linders et al., (2020) 

model seemed to have less bias than Muturi et al., (2012), it still overestimated AGB for stems 

with D30>18.5 cm.  

Since the locally derived species-specific allometric models seemed to overestimate AGB for 

larger trees, general allometric models were applied. Specifically, Chave et al., (2014) equation 4 

was applied for trees with D30 > 18.5cm. This is because its estimated AGB for smaller stems 

seemed to compare well with the results from Linders et al., (2020) model, but without 

overestimating the AGB of larger trees. Equation (3.4) by Conti et al., (2019) was used for 

estimating the AGB for shrubs of other species. In this case, Chave et al., (2014) allometric model 

was not applied because it was constructed from larger tree samples and may therefore be biased 

against smaller shrubs. Conti et al., (2019) model, on the other hand, is a shrub-specific allometric 

model. Figure 4-1 compares the results obtained using different allometric models. 
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Figure 4-1: Comparison of different allometric models used in the study 

The total estimated AGB was approximately 733Mg/ha with the highest plot-level estimate of 

130Mg/ha. Tree-level AGB was lower than that obtained from trees with comparable diameters in 

Maghembe et al., (1983). This could be because the stands in Maghembe et al., (1983) were 

managed plantations as opposed to naturally occurring stands in this study. Other possible reasons 

could be differences in the Prosopis species (Muturi et al., 2010; Pasiecznik et al., 2001), and 

environmental variations. Plots with high biomass values were observed in dense Prosopis stands 

located in largely agricultural areas whereas plots with lower biomass were located in the drier 

areas with little agricultural activity. While field plots were selected so that the dominant species 

was Prosopis, most plots also comprised other tree and shrub species which contributed to the total 

AGB. The total Prosopis AGB was 600 Mg/ha (approximately 82% of the total AGB). 

Table 4-1: Summary of estimated AGB based on field data 

AGB (Mg/ha) 

 Min Mean Max Total 

Total AGB 3.396 34.893 130.299 732.753 

Prosopis AGB 1.431 28.580 117.858 600.184 
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Some plots had a lower percentage (less than 50%) of Prosopis AGB. This may be due to a large 

population of shrubs of other species within the field plots. 

Table 4-2:  Estimated plot-level AGB based on field data 

PlotID Total AGB (Mg/ha) Prosopis AGB (Mg/ha) % Prosopis AGB 

1 9.945 9.945 100% 

2 43.780 43.780 100% 

3 8.969 8.639 96% 

4 19.743 19.156 97% 

5 21.608 15.357 71% 

7 25.301 18.166 72% 

8 68.900 58.823 85% 

9 3.396 3.169 93% 

10 15.875 13.192 83% 

10B 36.682 36.365 99% 

11 130.299 117.858 90% 

12 27.154 12.552 46% 

13 27.083 26.607 98% 

14 5.146 5.067 98% 

15 30.972 11.944 39% 

16 11.509 8.858 77% 

17 58.775 57.316 98% 

19 46.730 44.230 95% 

21 99.281 69.836 70% 

P1 4.890 1.431 29% 

P4 36.716 17.894 49% 

 

Besides the use of general allometric models, uncertainties in the above-computed field-plot level 

AGB estimates may be due to the estimation of height (H) using the H-D model, and DBH 
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estimation from sample measurements. These uncertainties could be reduced by using site-specific 

allometric equations or sampling the whole population which is beyond the scope of this study.   

4.2 LiDAR Metrics 

Generally, LiDAR height metrics had the strongest explanatory power on sample plot AGB. The 

height metric with the strongest explanatory power was zq50 which appeared in 9 out of the 12 

models considered (Table 4-6). Canopy cover metrics and LiDAR intensity metrics also seemed 

to increase the explanatory power of height metrics on AGB.  

The explanatory power of canopy cover metrics may be because an increase in canopy cover 

signifies more dense vegetation and thus higher AGB. For LiDAR intensity, the explanatory power 

may be due to the difference in intensity returned by vegetation vis-a-vis that returned by other 

surfaces like bare ground. 

Overall, the best performing variable combination was the 3-variable combination of 

zq50+zq10+pground with an adjusted R2 of 0.947 and RSE of 7.461. Using the model combination 

of zq50+zq10 alone yielded a lower adjusted R2 of 0.909 and an RSE of 9.742. Therefore, pground 

increased model accuracy possibly because less ground returns equal more dense vegetation and 

thus higher AGB. The next best variable combinations were zq50+zq10+aci and zq50+ipground 

with an adjusted R2 of 0.925 and 0.930, respectively. While one variable models showed good 

performance, the inclusion of additional variables increased their explanatory power. For both 

user-defined and standard metrics, it was noted that models containing zq10+zq50 generally 

performed better (Table 4-6).  

4.3 Model Evaluation 

Using LOOCV accuracy statistics, Prosopis-only models yielded higher RMSE with the highest 

being zq35+zpcum9 with RMSE of 14.9 Mg/ha (42.7% of the mean AGB). This may be because 

LiDAR point clouds comprise returns from all vegetation found within the field plot and not just 

from Prosopis. Nevertheless, total AGB models can be applied for modelling total AGB in the 

study area. A land use land cover map showing Prosopis invaded areas can then be used to 

distinguish Prosopis AGB. 
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Model performance was also analysed by plotting predicted AGB against measured AGB and 

checking whether they follow the 1:1 line. While one variable model variables zq50 and zq60 

showed good performance and did not consistently under- or over-estimate AGB, models with 

more variables had increased R2 and lower RMSE and were thus preferred.   

Models zq50+zq10, zq50+zq10+aci, zq50+ipground, and zq10+zq50+pground were then used to 

compute AGB in the study area. In the resulting maps, the model that had an intensity variable, 

namely zq50+ipground, predicted AGB even on bare land, contradicting the expectation of zero 

AGB in such areas Furthermore, the model exhibited higher AGB than other models pointing to 

the fact that it was overestimating AGB. The reason for this may be because ground points also 

have a LiDAR intensity, and so the calculation of AGB will return a value even where there is no 

vegetation and AGB is expected to be zero.  An alternative would be to use a LiDAR intensity 

threshold to remove lower values.  However, this was not possible because the LiDAR intensity 

in the dataset was not calibrated (Kim et al., 2009). AGB map predicted using zq50+zq10+aci 

contained artefacts. Model variable aci is sensitive to the density of the underlying point clouds 

which may have caused the artefacts. For this reason, the model zq50+zq10+aci was discarded. 

Model variable pground showed some sensitivity to biomass with an inverse relationship where 

areas with fewer detected ground points had higher biomass while areas with more ground points 

had lower biomass. This is because detection of fewer ground points signifies denser vegetation 

and thus generally high biomass. However, for plots with lower biomass, there is no clear 

relationship between detected ground points and AGB. Further, using detected ground points may 

be misleading because Prosopis shrubs tend to be densely vegetated making it challenging for 

ground point detection. Such shrubs could thus be interpreted to have a higher AGB than well-

spaced trees which allow detection of numerous ground points. Even though model 

zq50+zq10+pground exhibited the highest R2 of 0.920 with an RMSE of 8.92Mg/ha (25.6% of the 

mean AGB), pground could be misleading and this model was therefore rejected. 
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Figure 4-2: Measured AGB vs. Percentage of ground returns 

Model zq50+zq10 did not contain any artefacts in the resulting AGB map and variables zq10 and 

zq50 show a strong relationship with AGB (Figure 4-3). While zq10 seems to be similar for plots 

with a low AGB, it generally increases with increasing AGB. Model zq10+zq50 was thus the best 

performing model and it was used for AGB estimation in the larger study area.  
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Figure 4-3: Measured AGB vs. LiDAR variables zq10 and zq50 
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Table 4-3: Linear regression model fit summary statistics and corresponding LOOCV evaluation results 

 Total AGB (Dependent Variable) Prosopis AGB 

Predictive Model 

 

Adjusted 

R2 

RSE 

(Mg/ha

) 

F P-

Valu

e 

RMSE 

(Mg/ha

) 

RMSEr 

(%) 

R2 Models Adjusted 

R2 

RSE 

(Mg/ha

) 

F P-

Valu

e 

RMSE 

(Mg/ha

) 

RMSEr 

(%) 

R2 

User-

defined 

metrics 

zq50 0.890 10.68 163.5 <0.01 12.1 34.7 0.851 zq50 0.871 10.23 136.6 <0.01 14.7 42.1 0.829 

zq50+zq10 0.909 9.742 100.7 <0.01 11.2 32.1 0.873 zq50+aci Models were rejected because aci and afci were found not statistically 

significant at p<0.05 

zq50+zq10+aci 0.925 8.841 83.1 <0.01 10.7 30.7 0.885 zq50+aci+afci 

Standard 

metrics 

zq60 0.893 10.55 167.9 <0.01 12.1 34.7 0.852 zq50 0.871 10.23 136.6 <0.01 14.7 42.1 0.829 

zq50+ipground 0.930 8.555 133.2 <0.01 9.84 28.2 0.902 zq35+zpcum9 0.910 8.584 101.5 <0.01 14.9 42.7 0.823 

zq10+zq50+pground 0.947 7.461 119 <0.01 8.92 25.6 0.920 zq5+zq60+ikurt 0.927 7.689 86.11 <0.01 13.8 39.5 0.871 
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Figure 4-4: Scatter plots of measured vs, predicted AGB 
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4.4 Classifying Prosopis using Sentinel-2 Imagery 

The classification results are presented in Figure 4-5. The overall accuracy achieved was 

approximately 86% which is comparable to that achieved by Ng et al., (2017). The probability that 

a pixel was assigned to class Prosopis was also output. Areas characterized by large, homogeneous 

patches of Prosopis invasion have high probabilities while sparsely vegetated and non-

homogeneous areas have lower probabilities, similar to findings by Ng et al., (2017). 

 

Figure 4-5: Random Forest classification results 

A 0.3 threshold was applied to the classification results such that resulting in a classification map 

had only two classes: Prosopis invaded and non-invaded (Figure 4-6). Pixels below the threshold 

value were considered non-invaded. 
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Figure 4-6: Classification results after applying the 0.3 probability threshold 

The area to the west which lies at a lower elevation and is predominantly agricultural is highly 

invaded. The reason for this may be that it is classified as a seasonal swamp according to Kenya 

1:50000 topographic map sheet 188/3. Pasiecznik et al., (2001) observed that in dry coastal areas, 

Prosopis tended to grow well in areas with a high water table.  

Prosopis has been found to initiate invasions along water sources, on abandoned farms and in 

urban areas (Muturi et al., 2010; Ng et al., 2016; Rembold et al., 2015). Drainage lines were created 

using a 30m resampled DTM (see 3.2.3.2) and overlaid on the classification map (Figure 4-7).  
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Figure 4-7: Drainage lines overlaid on classification results 

Prosopis invasion was apparent along drainage lines, especially on the drier eastern side of the 

study area. The distribution of Prosopis seems to be more affected by water availability than 

abandoned farmlands like in Muturi et al., (2010). Similar findings have been reported by Ng et 

al., (2016). Rembold et al., (2015), on the other hand, mainly detected Prosopis in both built-up 

areas and water courses. 

4.4.1 Variable Importance 

Figure 4-8 shows the importance of variables used in the classification. The 25th percentile of 

Sentinel 2 band 5 (Vegetation Red Edge) was the most important for the classification. The CHM 

ranks 8th in importance. For the vegetation indices, the 75th percentile of GNDVI and RENDVI 

rank 6th and 7th respectively. Amongst the 15 most important features, three were located in the 

visible region (band 2,3, and 4), three in the Red Edge band (band 5), three in the coastal and 
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aerosol band (band 1), and three in Shortwave InfraRed region (bands 10 and 11). The remaining 

three spots were taken up by vegetation indices and the CHM.  

 

Figure 4-8: Variable importance indicating which input parameters have the greatest effect on the classification 

4.5 Prosopis AGB Map 

The best-performing model was used to produce a wall-to-wall AGB of the study area. Since the 

fitted model had a negative intercept, areas lacking in biomass had negative predicted values. 

These were set to 0. The Prosopis classification map (Figure 4-6) was resampled to 30m spatial 

resolution and used to mask out non-invaded areas to produce a Prosopis AGB map of the study 

site. AGB ranged from 0 to 313 Mg/ha.  
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Figure 4-9: Predicted Prosopis AGB in the study area 
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4.6 Discussion of the Results 

4.6.1 Prosopis AGB from LiDAR 

The results of this study revealed that LiDAR data is a practical method for estimating Prosopis 

AGB. Specifically, LiDAR height variables were found to perform best. However, it is important 

to note that LiDAR heights are based on the premise that taller trees generally exhibit higher 

biomass. But for trees which have achieved maximum heights, height distribution metrics may be 

a poor predictor for AGB as they may underestimate the biomass in such stands (Hansen et al., 

2015). 

The LiDAR point density used in this study is variable. It is likely that the uneven distribution of 

points has affected the variable coefficients and thus introduced errors in the wall-to-wall 

predictions. On the other hand, in practical applications, there is unlikely to be regular point 

distribution due to the overlap between adjacent stripes to minimize gaps. Thus, the differences 

between the sample plot and predicted values in this study may be an accurate depiction of what 

might be expected in practical applications.  

4.6.2 Prosopis Classification  

Both dry and wet season Sentinel 2 images were used for classification. Multiseasonal images have 

been found to increase classification results because they provide additional information on 

Prosopis phenology (Meroni et al., 2017). Nevertheless, dry season images have also proved 

equally adequate for Prosopis classification (Berg et al., 2013; Wakie et al., 2016) based on the 

assumption that compared to other vegetation species, Prosopis is usually the most 

photosynthetically active. 

Prosopis was challenging to classify because, in some areas, it does not occur as a pure stand but 

is mixed in with other vegetation. Further, Prosopis presents in different forms ranging from 

shrubs to large trees and from dense to sparse vegetation depending on the environmental 

conditions. In both cases, the spectral response of a pixel will be a mix of sparse vegetation and 

soils or mixed species. Ultimately, the pixel value is highly influenced by the predominant land 

cover class leading to poorer classification results as compared to a pure Prosopis pixel. This may 

be mitigated by the use of higher spatial resolution imagery for classification (Ng et al., 2017).  
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Another challenge is that Prosopis may have similar reflectance with other vegetation making it 

harder to distinguish. As such, the collection of spectral signatures using field spectrometers would 

probably provide vital information for improving the classification since Prosopis is typically 

greener than native species during the dry season (Rembold et al., 2015).  With that being said, in 

some cases, spectral measurements could still prove unhelpful in locations where Prosopis is dry 

and native species are green due to proximity to water resources. For example, in Meroni et al., 

(2017), dry Prosopis and healthy Acacia Spp. were found to have similar spectral reflectance.  

A further limitation is that given the 10m spatial resolution of the Sentinel 2 imagery used, 

Prosopis occurring as single trees and shrubs distributed across the landscape were not detected. 

Prosopis was mainly detected in areas where it occurred in dense thickets (similar to limitations 

in Ayanu et al., (2015)). One more reason for the observed classification difficulties is that there 

were fewer reference data in areas with heterogeneous species distribution. That said, even with 

adequate reference data, the spatial resolution of Sentinel 2 imagery may have still been a limiting 

factor because the size of Prosopis reference polygons could be smaller compared to the resolution. 

Smaller reference polygons also imply fewer reference pixels for model training. The classification 

results are therefore better in areas with Prosopis as the dominant species. It is important to keep 

the above limitations in mind while interpreting the classification results. 

Still, the maps show the potential of Sentinel 2 imagery for Prosopis classification even in 

heterogeneous areas at the stand level—as opposed to at the individual tree level (Immitzer et al., 

2016). The classification is thus suitable for determining areas with established Prosopis invasions 

versus areas with sparse or mixed invasions, or those in the initial stages of invasion. The 

classification map may be utilized to identify areas that should be prioritized for Prosopis control 

and management as well as monitoring. 

The feature importance shows the value of Sentinel 2 red-edge and shortwave infrared bands for 

vegetation species classification (Immitzer et al., 2016). The red edge part of the electromagnetic 

spectrum is important for the detection of vegetation chlorophyll content (Ku & Popescu, 2019), 

Given that Prosopis is evergreen throughout the year, the importance of band 5 is not surprising.  

Unlike in Ng et al., (2017), the Green Ratio index (GR) was not among the most important features 

for Prosopis identification.  
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Prosopis was mainly detected along water courses and low-lying regions where water from higher 

elevations drains. These results confirm that Prosopis competes with native vegetation for water 

resources. Further, that watercourses are a major transportation route for Prosopis seeds 

(Pasiecznik et al., 2001) likely explains the high presence of Prosopis in the agricultural area on 

the western side of the study area.  
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5 CONCLUSIONS, RECOMMENDATIONS AND AREAS FOR FURTHER 

RESEARCH 

5.1 Conclusions 

In this study, LiDAR variables were extracted and used to predict the AGB of naturally occurring 

Prosopis in the study area. Upon accuracy assessment, the best results were achieved by using a 

model with height distribution metrics namely the 10th percentile (zq10) and 50th percentile (zq50) 

of height. On accuracy assessment, the resulting model had an R2 of 0.873 and RMSE of 

11.3Mg/ha (32.1% of the mean). This model was used to generate a Prosopis AGB map of the 

study area. These results demonstrate the effectiveness of LiDAR for AGB mapping of Prosopis.  

5.2 Recommendations 

The density of LiDAR points used in this study varied across the landscape which may have 

affected the LiDAR variables selected. Using LiDAR data with even distribution of point clouds 

should be considered in the future. The accuracy assessment could be improved by evaluating the 

level of overfitting of the sample data by computing the sum of squares ratio (SSR). The number 

of field plots sampled in this study is fairly small. The study could further be improved by 

incorporating more sample plots to cover areas with varying terrain, and vegetation types hence 

improving the model. Further, the collection of more sample plots could avail additional data for 

LiDAR model evaluation improving the reliability of the resulting AGB map. 

5.3 Areas for Further Research 

Allometric equations are a major source of uncertainty in biomass estimation (Zolkos et al., 2013). 

In this study, a lack of Prosopis allometric models that capture large Prosopis trees such as those 

found in Taveta was a limitation, pointing out a potential area for further study.  

Combining LiDAR data with optical remote sensing data has been shown to increase the accuracy 

of AGB predictive models (Zolkos et al., 2013). The contribution of optical remote sensing when 

integrated with LiDAR data for Prosopis AGB is an area for further investigation.  
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