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Abstract

Many actuaries worldwide use Systematic Mortality Risk (SMR) to value actuarial prod-
ucts such as annuities and assurances sold to policyholders. Data availability plays an
essential role in ascertaining the SMR models’ accuracy, and it varies from one country to
another. Incorrect stochastic modeling of SMR models due to paucity of data has been a
problem for many Sub-Saharan African countries such as Kenya, thus prompting modifi-
cations of the classical SMR models used in those countries with limited data availability.
This study aimed at modelling SMR stochastically under the collateral data environment
such as Sub-Saharan African countries like Kenya and then apply it in the current actuar-
ial valuations. This thesis has formulated novel stochastic mortality risk models under the
collateral data setup. Kenya population data is preferably integrated into the commonly
applied stochastic mortality risk models under a 3-factor unitary framework of age-time-
cohort. After testing SMR models on the Kenyan data to assess their behaviours, we
incorporate the Bithlmann Credibility Approach with random coefficients in modeling.
The randomness of the classical SMR models wass modeled as NIG distribution instead
of Normal distribution due to data paucity in Kenya (use of collateral data environment).
The Deep Neural Network (DNN) technique solved data paucity during the SMR model
fitting and forecasting. The forecasting performances of the SMR models were done un-
der DNN and, compared with those from conventional models, show powerful empirical
illustrations in their precision levels. Numerical results showed that SMR models become
more accurate under collateral data after incorporating the BCA with NIG assumptions.
The Actuarial valuation of annuities and assurances using the new SMR offered much
more accurate valuations when compared to those under classical models. The study’s
findings should help regulators such as IRA and RBA make policy documents that protect
all stakeholders in Kenya’s insurance, social protection firms, and pension sectors. For ar-
eas for further research, one can use the BCA approach for Sub-Saharan African countries

with similar demographic characteristics and Hierarchical BCA in SMR modeling.
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Chapter 1

Introduction

In this chapter, we have discussed the background and motivation of the study, actuarial
notations, definitions and terminologies used, the statement of the study’s problem and
objectives, and both general and specific objectives. In addition, we have highlighted the

significance as well as the overall structure of the thesis document.

1.1 Motivation and Background

At the start of this century, systematic mortality risk modeling has been of particular
significance in actuarial valuations, making it a feature in many; British, European, and
American actuarial journals, among many more. Many medical inventions in this century
have made it possible for people to live longer than expected by a drop in their death rates
(reduced SMR) at the older ages. For example, according to WHO reports, in 2018, the
mean life expectancy worldwide increased to 72 years from 68 years in 2010. According
to UN statistics in the Department of Economics and Social Affairs in 2018, a male adult
in Kenya had a mortality rate of 5695 (per 100,000 male adults), which decreased from
9730 in 2004 Raalte (2021).

Many International Organizations such as World Economic Forum and IMF have also
been interested in mortality trends since it affects many countries’ fiscal and monetary
policies, both developed and developing countries Case and Deaton (2017). In SMR,
the company has to correctly determine the number of years in which life is antici-
pated/expected to survive or die to a given age before deciding the monthly pension money
payable to the policyholder. When this is done incorrectly, the pension providers are likely
to pay more, thus decreasing the chances of survival due to an increased probability of

ruin or insolvency rates.

The current mortality tables used in the Kenyan market may not correctly predict the years



an individual retiree may live after attaining a mandatory retirement age of 60. Today,
most insurance companies in Kenya borrow tables from more developed countries like
the United States of America, Sweden, the United Kingdom, and other countries. They
apply scale factors during actuarial product pricing and valuation. Most policyholders
in Kenya often outlive their expected death times since they are borrowed from those
countries with different demographic characteristics reports Authority (2017). This effect

is compounded by decreased systematic mortality risks that cut across all ages and gender.

Many pension and insurance firms, government, and annuity providers often earn period-
ically payable annuities in terms of pension money that their surplus process has bought,
leading to the application of ruin theory methodology in actuarial life valuation defined
by Blake and Hunt (2016). Systematic mortality risk, in many cases, is never easy to
understand, transfer, or even try to manage; however, a life assurance company can apply

financial derivatives as a financial risk hedging.

With most countries experiencing aging populations, mortality risk has been recognized
as among the most common actuarial risks, especially in pension and life assurance math-
ematics, when formulating pension schemes and life products worldwide. Recently, gov-
ernments, insurance companies, social security firms, and pension providers worldwide
have adopted DC schemes to reduce the risks associated with DB schemes as defined
by (Mitchell, 2020) to address reducing global SMR, which is essential in life products
pricing.

Many actuaries have a long tradition of using collateral data when improving SMR es-
timates (Jewell, 1975a). Three main approaches used to accomplish this improvement
include model life tables, mortality laws, and relational methods. During the confronta-
tion with estimating SMR in small populations or populations where mortality data do not
exist for all the age strata, collateral data offers a solution. In these situations, the pop-
ulation data of the sample alone may not be enough to get reasonable estimates of more
than one parameter Bozikas and Pitselis (2020). The condition means collateral data can
be used when substituting for limited data. However, most SMR studies are concerned
only for short periods, and most populations are always open for departures related to

non-death or new group member entrance.

The SMR for people of different ages in life-insured cohorts often constitutes potential
collateral data to all other ages within a similar cohort. To use this information, one must
have an SMR model Party (2015). SMR Models for different populations exist in two
forms, namely deterministic models and stochastic models. Each of these types has var-
ious advantages and disadvantages during modeling and projection. While deterministic
models are simple to use in modeling SMR, they do not consider the market changes,
hence the shortcomings as they do not represent the realities in the market (see literature

review chapter). Most actuaries today use stochastic models since they present realities in

2



the markets, thus leading to correct modeling and pricing of actuarial products beneficial

for policyholders.

Incorporating data from a standard life table to compensate for the scanty deaths in the
extreme ages 1s essential for direct data sets. Incorporating collateral data from a standard
life table can solve the data paucity problem during the modeling of SMR Najafabadi
(2010) and Kim and Jeon (2013). It means the higher the similarity degree between the
study population (Kenya) and the standard (the U.K.), the higher the benefits of its use

during modeling and actuarial products pricing.

Under collateral data, one can use Credibility theory and machine learning techniques
as a solution to data paucity problems. Credibility theory is a topic in actuarial science
that uses mathematical modeling to make decisions purely based on historical data Jewell
(1975b). While actuaries have been using Credibility theory in their lines of duty, two
types of credibility approaches are used when calculating expected risk Buhlmann and
Gisler (2005).

On the other hand, the Biithlmann credibility approach looks at the different variances
experienced across the population to help actuaries decide depending on the different

levels of risks it assesses Ralevi¢ (2020).

Deep learning offers experience rating systems new dimensions in SMR modeling by
considering individual experiences regarding limited population samples collected Odhi-
ambo, Weke, and Ngare (2021). Credibility theory approaches help use data to improve
the estimation accuracy of the conventional models applied in SMR modeling by values,
which are reasonable to the extent of using the historical data when forecasting the future
SMR Hardy and Panjer (1998). These approaches help customize individual policyholder
characteristics according to personal needs, thus increasing actuarial product satisfaction

among sophisticated customers in the 21st century.

Recently, governments, insurance companies, social security firms, and pension providers,
including Kenya, have adopted DC schemes to reduce the risks associated with DB schemes,
as demonstrated by Opoku and Hsu (2019). In many cases, this has been established by
legislation where both DC and DB plans are meant to offer employees adequate finan-
cial means, thus enabling them to retire and keep a particular standard of living lifestyle

during retirement.

If actuaries can model SMR properly, it would be easy to make better projections that
would enable the companies to save money, which is often lost from inaccurate estima-
tions when using models that do not consider the different realities of developing markets.
Ultimately, this would greatly benefit these insurance firms, thus reducing financial losses
that are often experienced today in the world’s economic recession, especially after the
endemic Covid-19 pandemic, as discussed by Blake and Cairns (2021a).



1.2 Actuarial Notations, Definitions, and Terminologies

1.2.1 Actuarial Notations

l4+++ The total number of people who live at a particular age x +¢, where x, t =0,1,2.....
¢Px¢ The probability that an individual of age exactly x will survive to age of (x+1¢) for
allx, r=0,1,2.....

+qx: The probability that a person of age exactly x will die between age of x and age of
(x+1¢) forallx, r=0,1,2.....

d,: The exact number of people who are aged exactly x will die between age of x and age
of (x+ 1) where x =1,2.....

1.2.2 Definitions and Terminologies

Systematic Mortality Risk: It is known as the risk of dying earlier than expected.
Force of Systematic Mortality: It is an instantaneous death rate.
Back-Testing: Back-testing is testing a predictive model on specific historical data.

Bootstrapping: Bootstrapping uses random sampling to replace accuracy measures (an
error, variance, prediction error, and confidence intervals, among others) with the sample

estimate.

Model Robustness: Robustness of a model means strength of a statistical model, pro-
cedures, and tests, as per the specific statistical analysis conditions a study aspires to

achieve.

A DB scheme: A scheme where benefits are dependant upon on the amount of money

submitted to the pension firm, last salary, and years worked.

A DC scheme: It is where your employee and employer’s contributions are invested, and

the returns are used to buy a pension plan with benefits at the age of retirement.
Collateral Data: Data from a standardized mortality table.

Artificial Intelligence: Artificial Intelligence is the simulation of statistical processes
under human intelligence by using computer systems machines.

Machine Learning: This is the use of computer algorithms to enhance statistical experi-
ence automatically using data.

Deep Learning: This is a class of ML algorithms, which uses artificial neural networks

with data representation learning and forecasting.



1.3 Statement of the Problem

Actuarial modeling and pricing of life products such as annuities and assurances sold in
Sub-Saharan African countries like Kenya depend on the existing SMR. The accuracy of
SMR depends on the models used and the availability of data during the valuation in the

respective Sub-Saharan countries.

Correct modeling of SMR by life assurance companies, pension firms, and government
agencies determines the prices of these life products sold to customers. During actuarial
pricing of products, overestimating Systsmeatic Mortality Risk will lead to higher rates,

resulting in higher costs, making them expensive and unappealing to Kenyans.

Conversely, a lower estimation of SMR will lead to underpricing of these products, mak-
ing it unsustainable for the companies offering to pay benefits, leading to a higher proba-
bility of ruin and insolvency in the long run. This problem calls for correct modeling and
forecasting of SMR by incorporating modern methods that will help both parties, namely
the companies and policyholders, to have a win-win situation for the growth and satis-
faction of the insurance and pension industry in the Sub- Saharan African countries like

Kenya.

When correct estimations and valuations of life products are done using the Expected
Present Value of assurances and annuities, Kenyans will buy correctly priced annuities
and assurance products that serves their needs. The pricing and reserving of assurances
and annuities products are done using old period-based assumptions; the liabilities under-

estimation is expected because of reduced mortality levels.

Suppose actuaries can improve their estimation methods for systematic mortality risk. In
that case, they can hedge unpredictable financial losses due to poor product development

in Kenyan markets while increasing the number of Kenyans purchasing these products.

1.4 Objectives of the study

1.4.1 General Objective

The study’s general objective is to model Systematic Mortality Risk Stochastically Under
Collateral Data and its Applications in the Valuation of Actuarial products sold in the
Kenyan market.

1.4.2 Specific Objectives

The Specific objectives of the study are to:



1. Model Systematic Mortality Risk Stochastically under the three-factor of Age-

Time-Cohort Structure for Kenyan population.

2. Determine Systematic Mortality Risk by Incorporation of Biihlmann Credibility
Approach into Stochastic Mortality Models for Kenyan population.

3. Forecast Systematic Mortality Risk Under Deep Learning Technique.

4. Determine the Expected Present Value of Assurance and Annuities under the Inte-

grated Biihlmann Credibility Approach for Kenyan population.

1.5 Significance of the Study

By modeling SMR Stochastically under the Age-Time-Cohort Structure for the Kenyan
population, insurance companies can adjust their valuations to deal with the actuarial
(life) products sold within the Kenyan market. In addition, insurance and pension players
develop reasonably priced pension and life products such as annuities and assurances that

work for the Kenyan population.

Incorporating the Biithlmann Credibility Approach helps model SMR for the Kenyan pop-
ulation, and policyholders can adjust policies that protect Kenyans from the insurance
companies that take advantage of the uninformed citizens. In addition, to ensure high
levels of efficiency, the use of Deep Learning techniques when Forecasting SMR is sig-
nificant to levels of precision, thus helping insurance companies keep reserves. Regulators
such as IRA and RBA can check the reserves held by insurance companies to reduce the

firm’s ultimate probability of ruin for higher survival chances in a competitive market.

Using correct SMR is essential for the insurance companies when they price the EPV
of assurance and annuities under the Integrated Biihlmann Credibility Approach for the
Kenyan population. This phenomenon will make the specific insurance company prices
competitive, especially in Kenya, with over 50 companies competing in a market with less

than ten percent insurance coverage.

1.6 The Structure of the Thesis

This doctoral thesis is organized into seven chapters. Chapter 1 introduces the SMR
concept and credibility theory approaches and the benefits of applying the concept to
mortality modeling. In addition, it outlined the importance of proper estimation and man-
agement in today’s financial and actuarial world. It enabled us to look at the general and

specific objectives of the research study.



Chapter 2 reviews the actuarial literature on SMR modeling, ranging from some primitive
deterministic models and stochastic models used for single age and cohort specifications.
We also look at the various gaps identified by the previous researchers and how they were
fulfilled.

Chapter 3 explores the SMR Modeling Under the Age-Time-Cohort structure (3-factor
systematic mortality risk framework) while considering the Kenyan population set-up.
In addition, it looked at the backtesting assumptions on how these mortality models can
behave on a population with data paucity using popular SMR models in actuarial research

areas.

In Chapter 4, we first introduce the mathematical concept of Buhlmann’s credibility to
model mortality risk and compared it to the model considering the randomness assump-
tions. It also looked at the Credibility-based approaches to modeling risk while assuming
that randomness does not follow a normal distribution but a NIG (Normal Inverse Gaus-
sian) statistical distribution, a heavy-tailed distribution. The concept of heavy-tailed dis-
tribution took into consideration such as shocks in the mortality upsurge. We compared
the method with the standard model from the calculated MAPE and RMSE values.

In chapter 5, we forecasted SMR determined Under Deep Learning. We used a simple
CBD Model to Forecast SMR Under DL technique, which is essential in calculating life
assurance products sold within the Kenyan market. We note the difference between our

novel model when compared to the classical models.

In chapter 6, we conducted the actuarial valuation of the products from the projected
mortality rates, including life annuities and life assurance products, while comparing how
different the values compared to conventionally projected mortality rates. Besides, a com-
parison of the classical models is determined in the Kenyan set up with the UK data to
show the levels of accuracy under the CBA incorporation under the different mortality

models in both countries.

In chapter 7, we finally gave general and specific conclusions and recommendations from
the study while expanding room for further research for actuaries, academics, and actuar-

ial science studies researchers who wish to continue with studies of SMR modeling.

We have references and projected complete life tables for Kenyans in the Appendix sec-

tion.



Chapter 2

Literature Review

Modeling human mortality has been vital for many years, starting from the 18th century.
In many cases during ancient times, it was done using primitive mathematical methods
until Gompertz (1825) brought the definition of a force of mortality as an instantaneous
rate of death modeled as an increasing function at an exponential rate. Since then, sev-
eral mortality models have been developed when modeling the death rates of people by
actuaries, statisticians, and demographers. Deterministic models have been used, espe-
cially when modeling the mortality risk worldwide. These deterministic models always
presuppose that the SMR would be constant during the investigation.

According to Cramér and Wold (1935), the duo primitively attempted a mortality projec-
tion and longevity risks by fitting a straight line after studying the Swedish population.
However, the results were primitively unrealistic since they suggested that death rates
converge at a given age, based on statistical convergence theory.

De Moivre (1725), suggested a survival model applied to the study of actuarial science
when modeling population and death rates. He developed a simple mortality law based
on a rectilinear survival function modelled using a uniform distribution, allowing deaths

to be uniform between two distinct ages.

Gompertz (1825) suggested a Geometric Progression that encompasses mortality risk af-
ter a given age. He argued on the physiological grounds that intensifying mortality gained
similar proportions in an equal age interval, which gave rise to a progressive force of
mortality or instantaneous death rate. However, he argued that mortality rates were expo-
nential between ages 20 and 70 with overestimation for over 80 years, which might not be

realistic in the modern world, especially with new medical development and innovations.

William Makeham, in his research study Makeham (1860), did extend the Gompertz

(1825) model by adding a constant number to it for more modeling precision. He im-



proved Gompertz’s law by introducing a constant and exponentially increasing force of
mortality component, thus making causes of death from two reasons: chance and natu-
ral deterioration. His model gave a good estimation due to lifestyles experienced at the

beginning of the 20th century.

The weaknesses of both the Gompertz and Makeham models were improved Hald (1981),
emphasizing an individual model. The author demonstrated systematic mortality in dif-
ferent stages of life, namely young, middle, and old age. He suggested that mortality
declines exponentially after survival for the first five years. The models’ second part il-
lustrated a mortality increase at young-adult ages from different lifestyle habits such as
youth exuberance, drug abuse, exposure to diseases, and accidents from excess drinking,

careless driving, and other factors affecting mortality to a greater extent.

In the research of Perks (1932), the author did a linear generalization regression (a logistic
regression model) of the Gompertz curve that gave an excellent fit to the mortality risks
over an adult’s lifetime. It was a way of solving the problem or shortcoming of the number
of parameters used to estimate the mortality and longevity risks. Heligman and Pollard
(1980) provided a curve with a good fit for all ages when dealing with mortality rates.
The model calculates the chance that a given individual at a certain age will die within the

next birthday from the current age.

In the most recent actuarial literature of stochastic mortality modeling, many researchers
have proposed numerous methods to capture different populations’ mortality models. Two
American demographers in their publication Lee and Carter (1992) did propose modeling
as well as mortality risks forecasting of the aggregate population characteristics of the
USA through decomposition of the mortality into specific age-period parameters in what

is popularly known as a two-factor mortality model.

As a Lee and Carter (1992) model extension, Cairns, Blake, and Dowd (2006) designed a
model that works for higher ages under a two-factor model for the mortality rate modeling
and forecasting procedures to smooth the precision of the model developed with cohort

effects.

As a follow-up, Tsai and Yang (2015a) did an extension to include cohort effect in the
Lee-Carter method to ensure that forecasting results were not overestimated during mod-
eling, whereas Plat (2009) had a proposal of a model that can combine the conventional
model to characteristics of Cairns, Blake, and Dowd (2006) and a new stochastic ap-
proach dimension. Despite many variants and extensions of Lee and Carter (1992), many
researchers have been inspired today by looking for ways of improving the model by

introducing extra parameters analysis.

(Hyndman and Ullah, 2007) had applied functional data analysis with penalized regres-

sion splines within their framework of modeling mortality and fertility rates using op-



erational data. In addition, (Hatzopoulos and Haberman, 2009)proposed an approach to
mortality modeling that operates under the Generalized Linear Models framework with

parameterization before forecasting the estimated parameters.

On the other hand, Hatzopoulos and Haberman (2011) did an extension of the Hatzopou-
los and Haberman (2009) approach by incorporating the cohort effects in a dynamic ap-
proach while assessing how the different cohorts behave and affect the mortality risk of

the different population samples under a similar study.

In the last couple of years, several studies have been done to make a comparison of mor-
tality models of many countries depending on dataset characteristics. Booth and Tickle
(2008) compared the precision of the forecast through the five Lee-Carter extensions
method applying data harvested from ten of the first-world countries. Shang, Booth, and
Hyndman (2011) had extended the mortality models for higher accuracy levels through
comparison by applying ten techniques afterward, incorporating data from a chosen four-

teen countries to compute mean life expectancy.

Additionally, Blake and Cairns (2021b) compared fitting and forecasting of different types
of typically applied stochastic models and performed performance analysis for the mortal-
ity fluctuations of the US, England, and Wales. The models from Hunt and Blake (2021)
had various benefits and shortcomings from the dataset, where they were tested to identify

the best that works well during estimation and forecasting.

Gaille (2012) had an application of Lee and Carter (1992) model and the Heligman-
Pollard models by modeling Swiss people’s mortality rates. In addition, the author com-
pared the forecasts on financial future pension liabilities on the sides of actuaries practic-
ing in the industry and scholars who develop the models for usage in their practicality and

respective measurement abilities.

Raalte (2021) made comparison of the forecasts attained from the Lee and Carter (1992)
model and the extensions within the correct forecasts found from statistical inferences
within developed countries. The author calculated the differences for a particular case of
the Dutch population in the expected complete life expectations being realized from the

Dutch population.

Hatzopoulos and Haberman (2015) proposed the dynamic parametric model doing the
framework of GLM modeling as a tool used to analyze the cohort survival function of
mortality for Scandinavian countries such as Norway, Sweden, Finland, and Denmark.
The cohort effect affects the quality estimation parameters estimated from the mortality

model applied.
(Van Berkum, Antonio, and Vellekoop, 2016) study analyzed the multiple structural changes

impact when modeling based on a considerable data scale after filling the models on Bel-

gian and Netherlands male data while analyzing how it affects the quality of the model
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used during modeling. Maccheroni and Nocito (2017) did a backtesting on the forecast-
ing Lee and Carter (1992) performance and the Cairns, Blake, and Dowd (2006) models

on the Italian data to determine how the specific dataset behaves when modeled.

By taking a given divergence approach to Lee and Carter (1992) variants and their ex-
tensions, mortality modeling is applied to credibility theory as an alternative approach,
especially when dealing with populations with data limitations. Based on credibility the-
ory applied in actuarial practice, which aims at modeling the periodic flow of limited
mortality data, especially for exact age, applying information that originates from a spe-

cific range of age span Buhlmann and Gisler (2005).
Hardy and Panjer (1998) applied empirical Bayes credibility as a theoretical basis for risk

measures linked with mortality risk for life assurance firms. The author applied Bayesian

credibility to solve poor forecasting problems of the mortality risk from the models.

Salhi, Thérond, and Tomas (2016) had a proposal of a credibility approach where they
reviewed parameters that fit the Makeham mortality curve, a deterministic model for
modeling mortality to determine the behavior when forecasting the expected trends for
a specific period. Schinzinger, Denuit, and Christiansen (2016) proposed a multivari-
ate credibility model evolutionary for mortality enhancement rates, describing the joint

mortality dynamics in different countries’ populations.

Hardy and Panjer (1998) proposed a Bayesian non-parametric model used in those smaller
populations and multi-dimensional data when modeling mortality rates at the same con-
sidering a stable mortality table benchmark of a large and developed population serving
as the prior information in the data. By applying an adaptive smoothing approach based
solely on a local likelihood, similarly, Salhi and Thérond (2018) had a proposal on the
existing methodology of adjusting the graduated mortality table numbers. It was based
on the credibility techniques and giving essential highlights on the benefits of applying
credibility approaches in pricing life assurance, pension plans, and annuity products for

individuals.

Li and Lee (2005) did propose an approach of a two-step procedure when modeling mor-
tality risk dynamics for more than one population by extending the Lee and Carter (1992)
to include coherent forecast of mortality risks for different populations. Many contribu-
tions are found in actuarial literature, where many researchers have made massive contri-
butions that regard mortality modeling for multi-dimensional populations. Li and Hardy
(2011) had an assumption of a linear relationship between the base population of the
time-varying index and many other common populations when estimating mortality while

developing ways to hedge the SMR.

Hunt and Blake (2021) made a proposal of a Bayesian framework that can mutually model

two simultaneous populations while making comparisons of the standard mortality mod-

11



els commonly applied by actuaries and demographers today. Hatzopoulos and Haberman
(2013) did a presentation of a coherent structure of mortality risk modeling and forecast-
ing under the Generalized Linear Model structure for mortality dynamics analysis apply-
ing global data from the HMD website and finally made a comparison on the different

mortality risk dynamics.

Li, Zhou, and Hardy (2015) did a generalization of a single-population mortality risk
model in diverse probable ways to fit two or even more populations before measuring

them based on individual risk before applying the hedging of longevity products.

Credibility Mortality modeling offers an opportunity for actuaries to improve their mod-
els, thus offering them a chance to value the life assurance products much easier without
too many challenges as experienced in the past number of years as illustrated in the book
Buhlmann and Gisler (2005) and Jewell (1975b). In addition, Levantesi and Pizzorusso
(2019) did an application of machine learning techniques to systematic mortality risk

modeling and forecasting.

(Tsai and Lin, 2017a) made an application of the concept of Biihlmann’s credibility to
mortality data of three countries, namely Japan, the US, and the UK, at the same time
making a comparison on the quality of the estimates from the conventional model. Tsai
and Lin (2017b) had also published a paper within the same year that integrated Biihlmann
credibility approach into the Lee and Carter (1992) model to enhance the precision of
the mortality models from the new novel approach, the linear relational model of liner

regression approach to credibility theory during mortality modeling.

Cairns, Blake, and Dowd (2006) model is a simple way of enhancing its forecasting per-
formance during prediction for a dataset for the UK, assuming that the randomness of the
model follows a Gaussian distribution. Recent actuarial science contributions of model-
ing mortality risk under a credibility incorporated framework were demonstrated by Tsai
and Lin (2017b) and Tsai and Zhang (2019), in Tsai and Lin (2017b) paper, where the
authors integrated the Biihlmann credibility approach to mortality data of the three coun-

tries, namely Japan, the US, and the UK.

According to the study Tsai and Zhang (2019), the authors did the Bithlmann credibility
approach integration into the Lee and Carter (1992) model, the Cairns, Blake, and Dowd
(2006) and Tsai and Yang (2015b) models to improve individual predictability when pre-

dicting performance and precision for the US dataset.

Based on the previous studies, we have brought in the concept of 3-factor SMR modeling,
the BCA approach to SMR modeling, and the deep learning technique in SMR prediction.
All these novel methods are aimed at improving the existing modelling for more accurate
results than the classical models, meaning that we have better estimates that will make the

SMR more precise during actuarial modelling and valuation.
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Chapter 3

Systematic Mortality Risk Modeling

Under Three-Factor Structure

In this chapter, we introduce the novel modelling concept of Systematic Mortality Risk
Modeling Under the three-factor of Structure of Age-Time-Cohort using three popular
classical SMR models. We determine the behavior of the classical stochastic Mortality
Risk Models under the Kenyan setup and test whether the characteristics still hold despite
the data paucity challenges. We define the classical SMR models, fit them in Kenyan data
to estimate parameters before testing for Robustness properties, and then use Information

Criteria when selecting the most parsimonious model.
We forecast the SMR under Classical models and analyze results showing that paucity
of data affects the forecasted behavior of SMR. Results show that SMR fits the Kenyan

population setup well compared to a two-factor model.

3.1 Stochastic Mortality Risk Models

This section defines the popular classical stochastic mortality models for modeling SMR;

Definition 3.1.1. Let u(x,7) be a stochastic mortality model in which the natural loga-
rithm of a time series, especially of age-specific death rates, equals the sum component of
age-specific and a part of a time-varying parameter product Lee and Carter (1992) defined
as;

W1(x,1) = 0+ Buks +e(x,1) (3.1.1)

where o, describes the mortality pattern of age-specific group, k; time-trend of mortality
index model levels, 3, shows the increase in mortality of a person aged x and e(x,¢) is an

error term following a White Noise with mean of pt = 0, with variance of 2.
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x=1,23....... wandt =1,2,3,........ n

Since the model does not fully 1dent1fy its parameters, it necessitates the needs of con-
straints of Z By =1 and Z ki =

x=1 t=

Definition 3.1.2. Let u(x,7) be a two-factor stochastic model that uses the logit trans-
formation of mortality risk instead of the natural logarithms in systematic mortality risk
modeling Cairns, Blake, and Dowd (2006) defined as;

w(x,t) = otk + ol Pi? (3.1.2)
where the Oc)gl) =1and oéz) = (x —X) are the parameter assumptions.
The equation (3.1.2) can be rewritten under parameter assumptions to become;

w(e,t) =k + (x -2k (3.1.3)

(2)

It is much easier to estimate the parameters of ¢’ which is just the (x —X) as the observed
variables minus the expected number of the variables. To consider the effects of cohort in
a given population, the model is simplified as;

ut) = oKD + 6@k + @l
With the above assumptions of parameters taking the forms; ocjgl)

(3)

= 1,0@52) = (x—X) and

o’ = 1,the equation becomes;
w(xt) =k kP =7 +w te(xr) (3.1.4)
with w,(i)x as the cohort effect and e(x,t) as the error term.

Definition 3.1.3. Let i (x,7) be a stochastic mortality model expressed by Tsai and Yang
(2015a) be given as;

wx,t) = m(mx,0) =k + xVim ((mx,t, — 1)) +e(x,1) (3.1.5)

(3)

In mortality modeling, we apply the constraint )of w,—, = 0 to prevent presenting the
problem of identifiability during both estimation la:nld forecasting process and where x =
1,2,3,....n, and t = 1,2,3....m denotes the base year while the parameters K,(O) and K,(l)
are obtained as the regression coefficients from In(m(x,#)) on a line of In(m(x,z — 1)) for

values t = 1,2,3,.....m . It satisfies the precondition of the value;

:I'—*

In(m(x;,1)) (3.1.6)

~ 1o &
04 Zkt(l) ; In(m(x;,t, — Z In(m(x;,t)

i=1
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fori=1,2,.....n.

The following are the popular reviewed stochastic mortality models used in actuarial stud-

ies:

Name of the Model Mathematical Formula Notation
Lee and Carter (1992) U(x,t) = o+ Bk +e(x,t) A
Cairns, Blake, and Dowd (2006) U(x,1) = kt(l) + kt(z) (x—X)+e(x,1) B
Tsai and Yang (2015a) U(x,1) = K'Z(O) + Kt(])ln(m(x7 ty—1))+e(x,1) C

Table 3.1: Summary of Popular Stochastic Mortality Models

In this study, we use these mortality models tabulated in Table 3.1 since they are among
the top models that many actuaries use today when modeling SMR Case and Deaton
(2017).

3.2 Force of Systematic Mortality

Proposition 3.2.1. Let 1 (x,t) be force of systematic mortality risk defined as an instan-
taneous survival rate for a personal life aged exactly x, then its future lifetime is given
by

W(x,1) = }%‘) Vx,t>0
where tpy is the survival probability and f (t) being the future lifetime distribution of
SMR.

Proof: The derivation of force of systematic mortality risk is as follows,

<K<t+A,60=0/K>t
U(x,t)= lim P|— =1t An /K>

3.2.1
A —0 A[ ( )

1

u(x,t) = A,th>O Ztlpx

From the definition of ;py, it is possible to define it in terms of [, where the value of

Px = l*f’ and 0 is the force of interest. We rewrite the equation in this way;

w(x,t) = lim 1 {l” f} (3.2.2)

By introducing %: 1 on both sides of the equation (3.2.2) with a negative before rear-

ranging to take the form of a derivative form;

u(x ) —1 =limy 04 [l);j — 1}
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Wit —1=—+ lim {

A (3.2.3)

lx A —0

lx - lx—i—t}

It is simple to make pt(x,¢) the subject in the above equation (3.2.3) as;

ueen) =1 (25) 4 ()
l/
wx,t)=1-— (x—“)
lx+t

Wit =1- (i&“ig) (3.2.4)

where the value of s’ (x+1) is the derivative of the survival functions of a life aged x +1¢
and s(x+1) are the survival functions of a life aged x +¢, the I}, is the derivative of the
L4+, which are the number of individuals surviving at a specific age x+¢. From derivation
of force of systematic mortality, it is important to use the formula when calculating the

value of ;p as;

z ~ [u(es)ds
tPx = ( x;—t) =e ¥ dt
X

Expressing this PDF as a future lifetime of x in terms of force of systematic mortality risk

as;

t_Px : ,t Z 0
uy =4 o F (3.2.5)

0 elsewhere

Hence, the proof.

Lemma 3.2.1. Let €9 be the complete expectation of life and be of the form of [ ;pxdt for
0

x,t>0.Then e} = [, e~ Jom(xs)ds gy

Proof. By applying the expectation of life rule, we have; 0

ejjz/o t f(t)dt

Substituting equation (3.2.5), we have;

ey :/ t X ¢ pxd(x,1)dt
0

We then integrate the expectation of life equation using integration by parts as;
Let u =t and dv =; pyu(x,t)
du=dt and v = —;p,
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Using integration by parts, we get;
— /0 t X pxld(x,1)dt = [—t x,px]go—i—({,pxdt =ef = ({tpxdt

but the probability that one person aged x surviving up to an age of x +¢ can be written

as a summation of the force of systematic mortality over the given period of life.
e
0

Hence, the lemma is proved.

Proposition 3.2.2. Let e, be the curtate expectation of life and be of the form of 'Y, (px
=1

for all value of x =0,1,2,...,00. Then e, will be Y 1py = (l“ﬁl'”%””ﬁ'").
=1

X

Proof. From the theoretical definition of curtate expectation of life, we have;

e, =1 <(lx+1)l)((q)c+1)) +2 ((1x+2)l(%c+2)> +3 ((1x+3)l)(:1x+3)> + ...

X

= % {(lx-H )(‘Ix—i-l) + 2(lx+2)(qx+2) + 3(lx+3)(qx+3) + }
- % {(Ler1)(@rr1) + 20 2) (qura) +3(Les3) (Ga3) + o}
1 { (1) (@) + (les2) (@ee2) + (b3 (Gors) + o]+ }
8 [(Let2)(@x+2) + (he3) (gx3) + o] + [(Ler3) (Gt 3) + -]
€x :% {lx-i-l + L2+ L3+ }

We obtain the results as follows;
e, — (lx+1+lx+2+lx+3+-~-> s
=

i = ex =) tPx-
* =1

Hence, the proof. L]

3.3 The Age-Time-Cohort Modeling Framework of SMR

3.3.1 Introduction

Generally speaking, actuaries today focus on modern model development methods, which
could help estimate future SMR trends of different populations. Going in the similar di-
rection of Rutherford, Lambert, and Thompson (2010) and Hunt and Blake (2020), im-
proved the concept of Age-Time-Cohort (ATC) characterization scheme for the prevail-
ing models in the SMR measurement research. This makes the concept of ATC mortality
modeling vital since it is a three-factor mortality modeling instead of a one or two-factor

modeling procedure in terms of accuracy and simplicity in analyzing the results.
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We have organized the rest of this chapter in the following way. Section (3.4) describes
fitting these models, whereas Section (3.5) shows some findings of the mortality projec-
tion for each classical model. The findings compared with those from the conventional
studies are tabulated in Section (3.4). In the end, Section (3.6) shows concluding remarks

from the analyzed results based on the Kenyan data.

3.3.2 The Age-Time-Cohort Mortality Modeling

Definition 3.3.1. Let d(x,7) be the total number of observed deaths between age x and ¢
while 0(x,t) be the central population exposed to these deaths (at the midpoint of year 7).
We have approximated the initial population exposures through Qo(x,t) ~ G(X, t) +
%d (x,t ) Thus, we get a single year death probability at age x defined as q(x,t ) =
glo%zt)) whereas death rate m(x, t ) = gg’;; Blake and Cairns (2021b) made a UDD
assumption and a constant force of systematic mortality risk between any two consecutive

integer ages under ATC structure.

A stochastic AT C model can resemble a response random variable that is well-defined as a
single-year death probability ¢g(x,7) or the consistent force of systematic mortality p(x,7)
to be the best predicting estimate, which is dependent upon the ages from on age x = x
X2, X3....Xp—1,Xp , tiMe t = t1,17,13..., 1,1, 1, and cohort effects (a person aged x year of

birth) w = #; — X, 00 —Xp—1,13 — Xp—2, ..., ty—1 — X2, — x1 for a given set of population.

Definition 3.3.2. Let A(x,¢) be the ATC framework defined as;
N 2l 0
At =t Y B+ By, (33.1)
=1

where A (x,?) is the link function that changes the measure of systematic mortality risk into
an appropriate modeling form, @, is the non-dynamic age function, which is responsible

)

for expressing the general mortality shape by age, ﬁ)gj )k,(j is the set of K age-time terms,

which determines the mortality trends with k,(j ) indicating the general mortality pattern
with time whereas BX(J ) showing the mortality change patterns across ages.

The function /3,50) Y(1—x) 1s denoted as age-cohort term, whilst ¥,_,) = %, is capturing the
)

effects of every person at a given year of birth w and ﬁx(o modifies the general cohort

effect across all ages.

Several factors need to be considered when selecting the response variable, which the
link function of A(x,) transforms it and depends on the mortality data representation.
We can assume that numbers of deaths experienced in a particular population denoted by

D(x,t) follows a Binomial distribution random variable at age x to age (x+1) year having
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parameters (8°(x,t),q(x,t)). From the Binomial distribution of E(D(x,t)/0°(x,t)) =
g(x,1), it is easy to apply the initial exposures of 6°(x,z). With the assumption that the
random variable D(x,t) follows a Poisson distribution having parameter (0 (x,7)p(x,t)),
it is easy to obtain the mean (expected value of deaths) as E(D(x,7)/0(x,t))= p(x,t) ,

where the central exposures used is 0 (x,7).

From the assumption of the Binomial distribution and the logit expression used in defining

the probability of death as well as link function taking the form of A (x,7) =logit ¢(x,?)

= log (1226(7;)1)) , whereas for a Poisson distribution, the total deaths number experienced

will be assumed to be A (x,7) =log p(x,t). According to Hunt and Blake (2020), we group
the models as Generalized non-linear since it has a presence bi-linear term of f,k; in the

model.

3.3.3 Data Integrity and the Assumptions

Let the number of deaths observed during the study be d(x,7) whereas the central ex-
posures 6(x,t) for the Kenyan dataset. To achieve model consistency during modeling
comparisons, all models must possess the same statistical distribution assumptions, and
modeling results need to use similar mortality measures proposed by Haberman and Ren-
shaw (2011).

Thus, we assume that total deaths follows Binomial probability distribution using the link
function of A (x,7) =logit ¢(x,#). During this study, we use those ages from 60 and 100
since most Kenyans retire at the age of 60 and live henceforth until death while enjoying
the retirement benefits in the form of annuities payable as long as a life aged x is still then
alive. We back-test the model using the Kenyan population complete life table data to

determine their reliability.

Additionally, Blake and Cairns (2021b) had pointed out that data reliability of all cohort
parameters estimated from ¥, ) or %, that solely depends on the total observations made
for every birth year. Before doing any analysis, we repeated the same procedure while
excluding those cohorts with less than five to nine observations since our Kenyan datasets
have shorter periods. It excludes more than six cohorts that may be excessive to offer an

optimal balance of the Kenyans between the fitting model and forecast its behavior.

While this model choice will provide similar fitting results compared to a case where
fewer cohorts are excluded, resulting in reasonable forecasts, which prevent over-fitting
the effects of the cohort.
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3.3.4 Back-Testing of Age-Time-Cohort Mortality Models

From Table 3.1, all deaths in these models are assumed to be following a Binomial sta-
tistical distribution with A (x,7) = logitq(x,t). For purposes of diagrammatic illustrations,

we denote the SMR models using letters as also shown in Table 3.1.

3.4 Mortality Model Fitting

In the ATC model fitting section, we fit our models after estimating the respective pa-
rameters of the different mortality models. We estimate model’s A parameters using the
method of SVD in the OLS context of fitting, whereas model B and C are minimized
through the deviance of the respective predictor structure. From the method proposed
by Brouhns, Denuit, and Vermunt (2002), we estimate age, time, and cohort parameters

through maximizing the likelihood functions of the respective models.

Corollary 3.4.1. Let £ (0) be the log-likelihood for models from A, B, and C consider-
ing the Binomial distribution assumptions as given Villegas, Kaishev, and Millossovich
(2015), then,

C O(x,t)—6 0° X,t
L(®> = Vg’ta).XJ {@*ln(6087t)) + [60<x’t) _@] *ln<90(0&;)7t)®) +in < (@ ) > }

where d(x,1)=0,d(x,t) = ©, and 6°(x,1) is the initial exposure of the population, whereas

f~Y(u) denoting the specific inverse link function f~'(u) = logit u and u is the ATC struc-

ture.

Therefore, the mean deaths for every (A, B, and C) models is given as follows;

A

0 =0%x,1)f~ ! (A(x,t)), which is replaced to yield

A

K N
6 =0"(x,1)f" (ax+ Y Bk +ﬁ§°>n,_x>> (3.4.1)
j=1

With K =1 for, N =2 for A,C and K = 2 for B, and the respective prior weights denoted
by @(x,t) and can take a value O for the weight of the excluded data-cell and 1 for the

inclusive data-cell.

During fitting models A, B, and C, we follow the assumption of Poisson with A (x,#) =
log u(x,1), since the models have been adjusted from the conventional studies to get the
exact estimates of parameters. Furthermore, using the given periods and shown in Figures

(3.4.1-3.4.3) determined robustness of estimates of the used parameters
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By obtaining MLEs of the estimates with the Binomial distribution assumption for A, B,
and C models respectively, for Kenyan males and females aged 60 years to 100. Upper
lines matches to the estimates of parameters for the fitted during, whereas lower lines for
the same period. From the diagram, we get the explanatory variations on the parameter

estimates.

On the fitting of the data to the model, we start with model A, which is fitted as illustrated

below as follows:
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Figure 3.4.1: o, Bx(l) and K,(I) parameters estimates for males (blue top panels) & females
(red bottom panels) for personal ages fitted from 2010 to 2022 for Model A

The estimates of o, in (Figure 3.4.1) above demonstrates an approximately linear upward
trend in mortality for both males and females. Both ﬁ)gl) and K,(l) show a downward trend,

which shows the general decline in mortality among both males and females.

21



(1)
B - k(l)t
=3 L g
dg ]
2 W 12
swle ] |
ds
o =
e -« =i
oo @ sSqe
“
W % ko b Bo Bo qbo 2810 2012 2614 o2bie 2bis 2020 2022 2b10 2b12 2014 2008 2his 2020 2002
Age Year Cahort
i A = | W e \
o | = \ Y |
A '\ | M1 A
A A RV \\ 1 "“ ‘f/ -‘\\
=} / | \ | I
g AMANY \ g2 V'V
2 o A \,\ w 33 \ "‘“ \"'\\vﬁ A
i A 2 \ A 1V
,// N ' \\ \ \ b L \‘ ‘wF /‘"Jh\
TN N e \\ i | Vi
S ) A ] oy 1% !
ERvA Y| i
R s
ol \ - \ 1s
g =
= T T i T T J T T T T T T T T T T T T
40 50 60 70 80 90 100 2010 2012 2014 2016 2018 2020 2022 2010 2012 2014 2016 2018 2020 2022

Figure 3.4.2: o, [3)51) and K‘t(])

Year

Cohort
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On the fitting of the data to the model, we start with model B, which is fitted as illustrated

in Figure (3.4.2)
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3.4.1 Parameter Estimation and Robustness Property

The estimates of o, in Figure 3.4.1 illustrates an approximately linear upward trend for
SMR models for both genders. The same trend is almost similar for genders in models
A, B, and C as shown in the Figures 3.4.2 to 3.4.3.

The kt(l) estimates will always decrease in all mortality models, which indicates a general
mortality index improvement for males and females over the specified time. For all the
three models, which incorporate the cohort parameter, we cannot interpret that the model

estimates cannot depend on the parameter estimations. It includes possible k,(z)

parameters
interactions with respective corresponding effects of age. More precisely, cohort estimates

of B (Figure 3.4.2), and C (Figure 3.4.3) are showing an upward trend in its increase.

As shown by Blake and Cairns (2021b), the robustness of the model is an important
model’s property that shows the sensitivity of estimates of parameter changes to the range
of respective fitted data. It means that the parameter estimates need not change expres-
sively whenever fitting data into a much shorter data range. Subsequently, probable inade-
quate robustness for a specific model does have a meaning of sensitivity to changes during
the fitted data period while questioning the correctness of the use during projections or

even many common applications, which independently rely on them.

Nevertheless, using a fitting range with fewer data may lead to a sudden increase in the
number of ﬁ}l) for female estimates as illustrated in (bottom-left panel of Figure 3.4.4)
while remaining unchanged even whenever the model is repeated for fitting bearing in
mind fewer cohorts that should be excluded. On the other hand, models B (Figure 3.4.5)
and C (Figure 3.4.6) appear to have the highest level of robustness for both males and

females.
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Figure 3.4.4: A: The Estimated parameters of ., k,(l) , Bx(l) for Males fitted aged 20-100
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Figure 3.4.5: B: kt(l) , [ix(l) ,kt(z)and Yv—x estimated parameters for Males, aged 60—100
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Figure 3.4.6: C: kt(l) , ﬁ)gl)and Yv—x estimated parameters for Males aged 60—-100

3.4.2 Diagnostics of Goodness of Model’s Fit

The residual differences between the fitted and observed data depend primarily on the
chosen statistical distribution under the assumption and measuring the goodness of fit of
the corresponding SMR model. Cupido, Fotheringham, and Jevtic (2021) in the study
discussed that insufficient randomness, especially in the residuals patterns, can show the

model’s incapability to capture the precise age, time, and effects of cohorts.

Definition 3.4.1. Let Z(®,®) under Binomial Distribution assumption that deaths be of
residual deviance for every model defined as follows;
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7(0,0) = ZDeviation (x,1) (3.4.2)
Vx,t

~

A 0(x.f)—
where Z(©, ©) - L2, (@ x In(2)+[6°(x,1) — O] x m(%)) ,d(x,1)=0.d (x,t) =

0, and 6°(x,¢) is the initial exposure of the specified population. We obtain the standard-
ized deviation defined as;

S 0.5
P D 1 1
ics = sign(©,0) x ( evia ;;’” r )> (3.4.3)
With weights @, ; in (3.4.3) are defined as;
D(©,0
o= (g) (3.4.4)
\%

with v that expresses the model’s degrees of freedom during modeling (the total number
of the observations less number of the parameters a model has during estimation) and D
is Deviation.The respective diagnostics of goodness of different SMR Models are fitted

as;
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Figure 3.4.7: A: Residuals of Deviance for males (top consoles) & females (bottom con-
soles) for duration 2010-2020 from ages 60—100 for Kenya

Figure 3.4.7 show how residuals differences for Model A in the Kenyan population.
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Figure 3.4.8: B: Residuals of Deviance for males (top consoles) & females (bottom con-
soles) for duration 2010-2020 from ages 60—100 for Kenya

Figure 3.4.8 show how residuals differences for Model B in the Kenyan population.
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Figure 3.4.9: C: Residuals of Deviance for males (top consoles) & females (bottom con-
soles) for duration 2010-2020 from ages 60—100 for Kenya

Figure 3.4.9 show how residuals differences for Model C in the Kenyan population.
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3.4.3 Information Criteria for Parameters

In general, with more parameters, it is possible to achieve a better fit. From the findings
of Haberman and Renshaw (2011) that offered a substitute approach to addressing the
assumption is to chastise the model parameters from the AIC method as in Akaike (1974)
as well as BIC Brunton and Kutz (2022), which is the information criterion used for
every model. Moreover, derivation of the Akaike criterion correction called the AIC(c)
that works well when dealing with smaller samples was developed by Hurvich and Tsai

(1989) and applied in statistical sample data by Burnham and Anderson (2004).

Definition 3.4.2. Let the Information Criteria denoted as AIC, BIC, and AIC(c) for the
models; A, B, and C respectively be defined as;

2h;(hi+1 . ~
AlCmaer—i(¢) = AICodei—i+ (ﬁ) with AIC,oge1_; = 2hi — 2InL;

and
BICinoder=i = (li’l n)h; — Zlnﬁi

where the I, is defined as the MLE and 4; are the number of parameters that has been
determined by each of the 3 models while n is the sum number of observations during the

parameter estimation and i = A, B or C respectively.

When AIC, BIC, and AIC(c) respectively values are smaller, the model offers better fitting
after estimations. For all the model’s A, B, and C, Table 3.2 shows how these parameters

fit in the respective SMR models for males, and Table 3.3 shows for females, respectively.

Males
Model Log Likelihood AIC BIC AIC(c)
A -3522.925 6112.242(3) 6182.565(3) 6106.242(3)
B -3245.225 6066.925(2) 6108.236(2) 6096.110(2)
C -3672.345 6045.556(1) 6099.540(1) 6066.665(1)

Table 3.2: The Log Likelihood and BIC, AIC(c), and AIC values (order of ranking within
brackets) of the SMR models for males

Females
Model Log Likelihood AIC BIC AIC(c)
A -4140.832 7238.485(3) 7462.553(3) 7116.120(3)
B -4142.235 7219.182(2) 7455.431(2) 7109.956(2)
C -4099.485 7215.151(1) 7439.728(1) 7099.566(1)

Table 3.3: The Log Likelihood and BIC, AIC(c), and AIC values (order of ranking within
brackets) of the SMR models for females.
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Model C is on top using the BIC male results, followed by B, and A is third, whereas both
AIC as well as AIC(c) male rankings concur. It is essential to note that BIC penalizes
model parameters stronger than AIC(c) and AIC. Also, All the information criteria concur
with A in terms of rank order for females. Unexpectedly, A models grasp the worst criteria
ranking for both males and females, which indicates that cohort effect must account for

male as well as female SMR modeling in Kenya.

3.4.4 Testing for Likelihood-Ratio

In Table 3.4 and 3.5, respectively, it is simple to observe that all models, A, B, and C,
are different from others in unique ways. We use the LR test. With three tested models
with their respective statistics illustrated for both males and females in Tables 3.4 and 3.5,

respectively.

The LR statistic is given by W/R= 2In (é—?) , where L, is the MLE of the overall model
and L; of the nested model, whereas WX is approximated as a y? distribution, with
(np —ny) degrees of freedom, where n, are the degrees of the overall model and n; of
the nested model. The null hypothesis is rejected for every pair of models in a level of

significance o, as WK > x(znz_nl), o that has a p-value of 1 — Fx(znz_nl) (‘I’LR).

From the testing results, we confirm information criteria rankings, signifying that our
models with less parameters fit on Kenyan data and are better than the more parsimonious

SMR models.

Table 3.4: LR test statistics for General models (Hp) within Specific models (H;) for

Males
Hjy: General Model | H|: Standard Model LR of Degrees of | p-Value
Test Statistic | Freedom
A B 694.135 42 <0.0001
B C 594.535 45 <0.0001
C A 995.138 65 <0.0001

Males
Females
Hy: General Model | H;: Standard Model LR of Degrees of | p-Value
Test Statistic | Freedom
A B 1259.455 42 <0.0001
B C 1095.735 45 <0.0001
C A 859.568 65 <0.0001

Table 3.5: LR test statistics for General models (Hp) within Specific models (H;) for
Females
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3.5 Systematic Mortality Risk Projection

This subsection estimates the future mortality rates using models A, B, and C, for both
males and females. Methods of projections are built on the extrapolation of the cohort
with time (period) parameters for every model fitted on Kenyan mortality data. Accord-
ing to Currie (2016), selecting the best time series model can help in appropriate mortality
modeling capable of reflecting both time(period) and cohort effects for a particular pop-
ulation with different characteristics. A comparative study was done by Hunt and Blake
(2021) and Haberman and Renshaw (2011) modeled period indices through a multivariate

random walk having both drift as well as cohort indices using univariate ARIMA models.

In this specific case, we have chosen the correct univariate ARIMA model for every cohort
index and the period over a wide range of our models, Choi (2001), Dickey and Fuller
(1979) and unit root tests, as well as the information criteria values. To be more specific,
the selection was based on the general performance of time series against the penalized
scores of AIC, BIC, and AICc. If one prefer simpler time series models on the parsimony
illustrates the discordance issues in between the criteria values. Thus, k;’s in models A,
B, and C, are presumed to be independent of the equivalent W;_. for every of the SMR
model, following correspondingly univariate ARIMA(p,d,q) processes that takes on the

forms;

(1= 01Z— 92> —..9,2") (1 = Z) ke = S+ (1 + HZ+ HZ> + ...+ 8,29 e(t)
(3.5.1)
(1= ¢[Z— 037> — .0, 2°) (1= Z) Wy—e = &'+ (1 + 0| Z+ 9 Z° + ...+ 9)29) €' (¢)
(3.5.2)
where Z¢ is a time lag operator (sometimes called back-shift operator), which shifts
data d periods back, 8’ and & are known as constant drift parameters, ¢{,¢, ..., ¢”, and
01,9, ..., ¢, are known as the auto-regressive coefficients having ¢, # 0, q)]’, =0, where as
V1,02, ..., Oy and 9, B, ..., ¥, are the MA parameters with ¥, # 0,9, # 0 and the values
of e(t) and €'(r) are the White Noises.

Tables 3.6 and 3.7 present the chosen ARIMA models for both time (period) and cohort
indices for both genders (males and females), respectively. For all models of mortality,
time indices are presumed to be modeled as identically and independently distributed.
In addition, remember that A and C do not integrate a cohort index as in the classical
models. The two time series equations (3.5.1) and (3.5.2) were simulated after producing
500 trajectories for the future values of the specific period lActh and the cohort Wmﬂ,x

indices, where s = 1,2,3, - - -, 20 are the predicting horizon years.

Definition 3.5.1. Let logit§y ;,+s be the future simulated mortality values extracted using

the following information be;
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N s
logitgy i, +s = O+ .):1 ﬁx( )k£:1LS+Wn+S,x
1=
which can also be defined as follows;

LNORG!
O+ 'Zl ﬁx kln +5+Wn+x7x
e =

Qxty+s = (3.5.3)

g0
o+ Y Br ktn+s+Wn+s7x
I+e =t
where 1,= 2020 is the previous year of the fitting time and logitqgy s, 1s the logit trans-

formation of future death probabilities for every exact age x for A, B, and C models.

We extracted both short-term forecast errors for males and females during 2010-2020 for
A, B, and C models. For comparison and extrapolation, the fitted jump-off rates have
been used before using actual rates for the year 2010, shown in Table 3.9. The results are
then applied from the Kenyan Mortality data. Measures show that models A, B, and C,
resulted in better forecasts for both males and females (ranking order in brackets), either

through actual or fitted jump-off rates.

Particularly, when fitted values are used, models A and C differentiate for both males and
females, whereas for actual rates, C is dominant for males while B outperforms others for
females. The error measures produced the higher values of errors for A, and C, which
indicates cohort effects in both gender mortality indices, which cannot be illustrated by

model B and probable over-fitting behavior of C.

Males
Model o K
A ARIMA(0,0,1) -
B | ARIMA(1,0,1) with drift | ARIMA(I,1,1) with drift
C ARIMA(1,2,1) -

Table 3.6: ARIMA(p,d,q) models for the time index k& ,i = 1,2,3 of males in SMR
models.

Females
Model i K
A ARIMA(0,2,2) _
B ARIMA(0,0,1) with drift | ARIMA(2,1,0) with drift
C ARIMA(1,2,1) -

Table 3.7: ARIMA(p,d,q) models for the time index kt(i) ,i=1,2,3 of females in SMR
models
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Model W;_.for Males W;_. for Females
A ARIMA(1,1,0) ARIMA(1,1,1)
B ARIMA(1,1,1)  ARIMA(2,1,1)
C ARIMA(1,1,0)0 ARIMA(1,1,0)

Table 3.8: ARIMA(p,d,q) models for the cohort index W,_. of female and male SMR
models

It is vital to calculate the predictive power of these SMR models to measure the errors in
between the recorded and predicted values for a similar period. For the initial three out-
of-sample for projection years (f, = 2020,s = 1,2,3,...), where we applied the Kenyan
mortality data, forecast precision of models, A, B, and C has been determined through
getting the average of the MAE as well as the MAPE values over the four years for ages
between 60 to 100.

Definition 3.5.2. Let error measures be calculated as follows;

1 4 100
MAE = G - ) 100 354
mean 4(100 — 60+ 1) s:Z’lx—Zé() (%c,2020+s %c,2020+5> * ( )
while the
1 d W (f?x 202045 — qx 2020+s>
MAPE = ’ ’ * 100 (3.5.5)
AT 4(100 — 604 1) S:leg‘o qx,2020+s

From the above two equations, namely (3.5.4) and (3.5.5), we can determine the expected
values of MAE and MAPE that measure the forecasting period 2020-2050 using either

actual or fitted jump-off rates for both genders (males and females).

Males Females
Male-Fitted Jump Off Rates Fitted Jump Off Rates
Error A B C Error A B C
MAE ean 0.332(3)  0.262(1)  0.281(2) MAEean 0.239(2)  0.255(3) 0.229(1)
MAPEcqn,  11.832(3) 10.450(1) 10.842(2) MAPE can 8.328(3) 7.035(2) 6.834(1)
Actual Jump Off Rates Actual Jump Off Rates
Error A B C Error A B C
MAE ean 0.265(3)  0.248(1)  0.256(2) MAEean 0.239(3)  0.226(2) 0.217(1)

MAPE e, 10332(3)  9.232(1)  9.838(2) MAPEpean  9.950(3)  8.922(1) 9.436(2)

Table 3.9: Expected values (grading order in brackets) of MAPE and MAE of the predict-
ing period 2010-2020 using fitted jump-oft rates for Kenyans

The long-term systematic mortality risk projections for a horizon ahead of 30 years were
determined using actual jump-off rates for the ten mortality risk models, which incorpo-

rated 500 simulation trajectories of the chosen period and cohort indices.
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Figures (3.5.1-3.5.2) shows that A, B, and C forecasts appear to be improbable for both
males and females since fans at age 90 are markedly narrower than at age 60. Additionally,
B fans at age 80 show a weak but not substantial increase for both males and females,
whereas fans at age 90 show some declining fluctuations. Alternatively, parsimonious
model B performs well in general for both males and females. In conclusion, female fans
of model A are narrower age 80 and 90 than at 60 and showing an unrealistic increase at
older ages. Predictions are linked to the predictable cohort effect thus exhibiting a strong,

vertical, and linear trend in between cohort years from 2010 - 2020.

3.5.1 Assessment of Parameter Risks

For those countries with limited data experience like Kenya, however, bootstrapping tech-
niques can be used when addressing the effect of risk parameters. Thus, we exploited the
benefits of a residual bootstrapping method when assessing the parameter uncertainty in

the mortality projections for the three models.

Figures 3.5.1-3.5.2 illustrates for both males and females the 95% prediction intervals for
the death probabilities at ages x = 60, x = 80, and x = 100 for models A, B, and C fitted
to Kenyan data for ages 60—100 of the time 2010-2050.

The past rates are denoted using thick dots while solid lines indicate the corresponding
fitted rates, while dot-dashed lines showing the 95% confidence intervals, including the
unpredictability of the parameter. For the projection period of 2010-2050, dashed lines in
the diagram represent the central forecast values, while dot lines show the 95% prediction
intervals, which excludes parameter uncertainty. In addition, the dot-dashed lines showing

the 95% prediction intervals levels for parameter unpredictability.

Figure 3.5.1 is also showing evidence of parameter unpredictability in the time of pro-
jection for males (left panels) of models B (age 90) and C (ages 70 and 90). In addition,
parameter variability is seen for females of the same models (right panels). An improbable
upward trend for C at age 80 and 90 indicates the model’s unsuitability when forecasting

female mortality at higher ages.
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Figure 3.5.1: Long-term SMR prediction of A, and B models fitted from 2010 to 2020 and
projections from 2020 to 2050 for ages 60 to 100 for both males & females for confidence
levels of 50%, 80% and 95% intervals of prediction respectively
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Figure 3.5.2: Long-term SMR prediction of C models fitted from 2010 to 2020 and pro-
jections from 2020 to 2050 for ages 60 to 100 for both males & females for confidence
levels of 50%, 80% and 95% intervals of prediction respectively
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3.6 Analysis and Results

This section summarizes the fitting and prediction results of this analysis and findings to
compare the matching results from the classical mortality studies. This study proves that
all the SMR models effectively captured the time effects for both males and females. It is
vital to notice that the most parsimonious model is B. It did not capture well the cohort
effects as demonstrated in the right panels of males and females scatter plots in terms
of their residual deviance in Figures 3.4.8. Moreover, model A seems insufficient when
capturing the effects of age, particularly for females (left consoles as shown in Figures
(3.4.7).

Moreover, AIC and AIC(c) scores concur since models A and B do outperform in ordered
ranking for males, whereas BIC rankings C is on top, B follows, and A is third. All mea-
sured values show that C comes out first, B second, and A follows for females. Models A
and B have the worst criteria ranking for both genders, lacking a cohort term to consider

in Kenyan male and female SMR modeling.

SMR projections got from the three models as illustrated for both genders in Figures
(3.5.1) and (3.5.2). Through plotting, results depict that long-term forecasts from models
A, B, and C seem to be undependable for both males and females since figures at age 90
are conspicuously narrower than at age 60. In addition, model A for females shows an
improbable increase in SMR at ages 70 and 90. Nevertheless, forecast accuracy measures
of Table 3.6 and Table 3.7 suggest that models B and C produce better short-term forecasts

for both males and females.

Parameter inconsistency is also observed in model B for females. Similarly, the improba-
ble upward trend for A at age 70 and 90 raises questions about the suitability of this model

when forecasting the mortality of females in Kenya.

A comparative analysis is done from the three stochastic SMR models of a standard ATC
structure for males and females in Kenya. The fitting behavior of every model was cal-
culated using BIC, AIC, and AIC(c), respectively, and the likelihood ratio test and the
respective forecasting results were presented. The models, B, and C for males and B and
A for females, were differentiated for their fitting performances during mortality model-
ing. For the Kenyan case, a cohort effect was determined from data taken when choosing

the most appropriate model for modeling SMR.
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Figure 3.6.1: A(up) and B(down) for females(right) & males(left)
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Figure 3.6.2: C model for females(right) & males(left)

Finally, the plots from Figures 3.6.1 and Figure 3.6.2 demonstrates the overall evolution

of death numbers for every of the SMR model under the ATC structure.

35



Chapter 4

Biuhlmann Credibility Approach
Incorporation into Systematic Mortality

Risk Modeling

In this chapter, we integrated the Bithlmann credibility approach into SMR modeling. We
introduced the Bithlmann Credibility model description and applications in SMR model-
ing. We do model modification on the classical SMR models under 3-factor modelling
described in Chapter 3 by proposing to model the randomness of the Stochastic Mortality
models as NIG distribution (heavy-tailed distribution) since the randomness of the clas-
sical models does not exhibit the Gaussian assumptions in the Kenyan setup due to data
paucity.

We measured MAPE, RMSE, and reduction ratios of the three mortality models under
Bithlmann’s credibility approach to Kenyan mortality data. We explain the empirical
illustration using the Kenyan data for males and females, then presented with forecasting
performances of Biihlmann credibility. The models are calculated with the measures of
MAPE and RMSE before fitting.

We noted the new predicting capabilities of the SMR models under the Bithlmann credi-
bility approach from the risk measures. We did a comparison between these three models

by conducting an actuarial valuation.

4.1 Biihlmann Credibility Model Description

Let consider a risk i that generates random losses for the historical data of m recent deaths

in our case are available and indexed by j . The total deaths experienced for i the risk is
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determined based on the expected deaths that exist during a specified period in mortality
studies see Klugman, Panjer, and Willmot (2012). We use a linear estimator that dimin-
ishes the mean square error in the study.

_ n m
Definition 4.1.1. Let Y;; be the ith risk for the jth death, which are iid withY =Y ) V.

i=1j=1
Let ©; denote the parameter associated with the distribution of the SMR. This means the

hypothetical mean given by m(?) = [Y,- 1/©; = ¥] and process variance is 52 () = Var [Yi 1@ =1v].
In addition, let IT = E[(m(®)|Y;1, Y, ...Y;)] be the parameter for the SMR, with 62 =
[s*(9)] and a® = Var [m(19)] being the two functions of the random parameter 1.

Lemma 4.1.1. Let the BC Model predictor be a solution of the estimator problem as in
Klugman, Panjer, and Willmot (2012) then

2
argmin E <vo—|— Z Zv'~ i )

Vio,Vil y+++sVim i=1 ]

n m

where vy+ Z Z vijYij is the estimator of expected SMR,I1, and arg min component
i=1 j=1

represents the expression of parameter values that diminishes the function for all i # j.

Then the BC Model solution is given by;
ZY+(1-2)u 4.1.1)

where Z is such that Z = ( e K) and K = —2. Therefore, making the value of K small and
making Z closer to the value 1. Another attractive feature of the BC formula is that the
more the amount of experience data accumulated (as n — o), the more the credibility fac-
tor of Z approaches one. It is vital to note that equation (4.1.1) is essential in application
of the BCA to SMR modeling as it incorporates all used linear estimators of the number

of deaths experienced in a specific population.

Lemma 4.1.2. Let BCA problem of Mortality Quadratic Loss be stated in a counteractive
way to satisfy equation (4.1.1) for all i # j, then;

2

= <v0+ZZv~ i i ) —minC=ZY + (1 —Z) 1L where C
i=1j

is the Credibility Estimate for Systematic Mortality Risk.

Proof. We verify by assuming that the estimator for the individual mean death will be

2
m(¥) and simple BC is E <v0+ y Z v~~Y,~j—m(19)> O

|:<va—|— 121,2 vaY;; —T1 )2

+E[(m(9) —TI)] +2E
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2
- <vO+zzv,, - ) +E [(m(9) - 11)?] (4.12)

i=1j

Expanding the equation (4.1.2) and collecting the terms it becomes;

<vo+ ZZ viiYij— ) (m(®) —I1)] (4.1.3)

i=1j=

=0

We apply the aggregate expectation and the fact, that IT=E[m(3)|Y},Y>...,Y,].

From the equation (4.1.3), we decompose its minimized function as an aggregate of the
two expressions where its second expression doesn’t depend on the parameters that have
been used in the minimization. Thus, minimizing the function is done in a similar manner

to minimizing the first part of the aggregate sum.

By minimization of its function critical points, we obtain;

1 9f

2 8v01 a

n m
+) Z vijYij—m(% ]
i=1 j=1

=Vvo+ Z Z Vij E( l]) E(m(%))

i=1j=1

n m
=vo+ (Z Yy vij—1> u for all values of k = 0.
i=1j=1

For the values of k £ 0, we have:

1of _
28v,~k

a (Vo+zzv,, - )]

i=1j
- 2
=E[Y]vo+ X Y0 e viBYuYi] + viE[Yz] — E[Yym ()] = 0
1=
We then simplify its derivative, by noting that it has:
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E[Y;Yy] = E [E[Y;;Yi|0]]
E[Yz] =E [E[Yz|9]] = E[s*(9) + (m(9))*] = 0>+ p* + p?

E[Yym(8)] = E[E[Yam(9)|0)] = E[(m(1))*] = p* + u* (4.1.4)

Taking above equation (4.1.4), and inserting into derivative, it gives:

NS
~

=0

B[ —
Q|

1%

Sy

(1—giv,~j> g i u?) +ve (o +p*+u*) — (PP +u*) =0

which ultimately becomes
n m
Vo2 — (1— y Y v,-j> p>=0
i=1j=1

s 55

The right hand side of the equation doesn’t depend on the value of k. Therefore, all v; are

HM:

constant. It follows;
VI =V = V3 =V =

From the solution for v;5, we have;

2
mp
vo=(1—mv)p = (1 —m) H

Finally, the best estimator is

2 2
mp _ mp
< lzijz’ i ”) 62+ mp? 02 +mp? H
C=ZY+(1-2Z)u

where C is the BC Estimate. Hence, the proof.
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4.2 Heavy Tailed Distribution

4.2.1 Introduction

We had reviewed the SMR models by using Definition 3.1.1., Definition 3.1.2. and
Definition 3.1.3. as summarized in Table 3.1. The randomness of these classical models
follows a Normal distribution, which does not fit well, as illustrated in Chapter 3. We
model the disturbances of these classical SMR models as a heavy-tailed distribution. We

begin by introducing the concept of heavy-tailed distribution.

Definition 4.2.1. Let f(Y) be the PDF of a heavy tailed distribution function of a random
variable Y if its MGF is infinite for all values of ¢,y greater than 0, then

oo

[ @f)dy=co

—o0

From definition 4.2.1, it implies that;
lim eYPlY >y| =0Vt >0
y—00

For the Complementary CDF, S(y) = Pr[Y >y|]=0<S(y) <1and lim S(y) =0<
y—eo
S(y) <1 for all values of t > 0.

where S (y) is the survival function of Y, which is obtained by S(y) = 1—F (y) and F (y)
is the CDF of Y.

Definition 4.2.2. Let a heavy tailed statistical distribution be in the form of;

[eMF(dy) = ooV values of A > 0
R

where the function g(y) > 0 is to be a heavy tailed if f;

lim g(y)e*=0Y values of A > 0.

y—ro

Theorem 4.2.1. Let G be a function of a heavy-tailed statistical distribution with a fixed
time, T > 0Y G(y,y+ T], then the corresponding force of systematic mortality (hazard
function) satisfies the function lim inf (M) =0.

y—>o0 y

Proof. Proving by contradiction method. Suppose we assume that the function G(y,y+T]

is not heavy tailed. Then, we can define;

d :=supG(y,y+ T]e*"” < oo for some values of A’ > 0. Therefore, VA < A', we get;

m=0

/e’lyG(dy) < Z AT G(mT, mT +T)
0
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(o)

Z A(m+1) T —A'mT dexp AT i

From the above integral defined where it is determinate for all values of A € (0,A’) that
has an implication on the distribution of G and cannot be a heavy tailed distribution. Thus

the needed implication is shown as;.
We define that the implication follows from the specific inequality G(y) > G(y,y+ T].

Assume that on the contrary of the proposal, ‘/liminf’ as defined as a strictly positive

number (> 0).

Then, we say there exist yo > 0 and € > 0 such that R(y) > ey for all y > yo which implies
that G(y) < e~ thus a contradiction.

Assume that, on the contrary, G is NOT a heavy tailed distribution, then we deduce (for
instance by the exponential Chebyshev inequality) that, for some values of A > 0 and
d > 0, we have G(y) < de~* for all y.

This implies that lim inf < ) = 0 thus contradiction.
y—roo

This leads to the conclusion that the distribution is heavy tailed.

Hence, the proof. O]

Lemma 4.2.1. Let fy(y) be a NIG distribution with the Tail behavior that is assumed to

be a Bessel function that asymptotically behaves as;

T
~ eV o0
Ki(y) V2 Dy —

Proof. Let us note that the tail of Normal Inverse Gaussian distribution decays as
Fr(3) ~ [y T eProe (4.2.1)

From the above equation (4.2.1), if it is invalid, then the value of o — || < 1. Through
this, a special case of the NIG tail decays as

Fry) ~ Iy 2

and this is a tail behavior of the Cauchy distribution and hence, a heavy tailed distribution.

Hence, the proof. L]

4.2.2 Normal Inverse Gaussian (NIG) Distribution

The NIG distribution is a continuous distribution function defined as a normal variance-

mean mixture with a mixing density as the IG distribution. It is Generalised Hyperbolic
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Distribution a special case with four parameters, namely «,f3,0,and ¢ defined as tail
heaviness, asymmetry parameter, location, and scale parameter, respectively, all of which

are real numbers ( & > 0 and ¢ > 0).

Definition 4.2.3. The random variable Y is said to have Normal Inverse Gaussian dis-
tributed NIG (o, 3,60, 0) if its PDF is given by;

(04

ANIG) = Sexp{o/a2— 2 Bo L o0)Ks (009! ep(By)  422)

T

—_

2
where ¢(y) = [1 + (@) ], K,(y) is the modified Bessel function the 3rd kind of

order r calculated at y. The conditions for the four parameters are 0 < || < &, 6 € R,and
0 < o. Different parameters on the distribution play unique roles that can be attributed
to two groups. The first group denotes o and B that mainly affects the shape of the
distribution. The second group of parameters belongs to 4t = 6 and 8 =0 that denotes
distribution scale. The parameter o, which can take non-negative values, denotes density
function flatness. It means the greater value of the «, the greater the probability mass
concentration around 6. In addition, the probability density function will reach a much

higher maximum value; look at Figure 4.2.1(a).

On the other side, parameter 3 is determining the kind of skewness the distribution posses.
Whenever the value 8 = 0, it implies that the symmetric distribution is around the mean.
However, a negative value of B means a heavier left tail, and a positive value means a
heavier right tail (see Figure 4.2.1(b). Moreover, the 3rd parameter 6 = ¢ denoting the
distribution scale. It means that small values of ¢ narrow the distribution down while
larger values of o make it wider. The last parameter 6 is responsible for the density

function shift, which is the location parameter.

NIG(a. 2. -3.1) NIG(1. 8.0.1)

05

a=4

04

—_a=25 03

02

=55

01F

(a) varying a and g =2, p= -3, =1 (b) varying fand a =1, p =0, =1

Figure 4.2.1: NIG Probability Density plots
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The NIG (o, B, 0, 0) distribution is always defined as a Gaussian Variance-Mean mixture,
which means that the distribution can be given out as the marginal distribution of variable
Y in the pair (Y,Z), with the conditional probability Y|Z defined by

Y/Z=27~N(6+B2) (4.2.3)

and the variable Z follows IG distribution with the parameters ¢ and /a% — B 2for0 <
Bl <.

Definition 4.2.4. Let denote T = /%2 — 32, then the mean, variance, kurtosis and skew-
ness of ¥ be given by;

m= 9—1—%6
N
5= (x(or)‘;S

(1+4(5;))

| k= 33—

where mean is E[y| = m, variance= Var (y) = v, kurtosis= s, and skewness= k.

Despite the NIG having a fairly complicated looking probability density function, it has a
simple MGF given by;

M,y(t) :exp{t9+6 (\/az—ﬁ2—\/a2—(ﬁ +t)2>} (4.2.4)

Given the the MGF in equation (4.2.4), it easy to note many properties of NIG that makes

it useful to model the randomness of a systematic mortality risk model.

Lemma 4.2.2. The following are the features of Normal Inverse Gaussian (NIG) distri-
bution that make it the best heavy tailed distributionLillestol (2000).

; _ B
(i) IfY~NIG(o,,0,0), then T = kY ~ NIG(%, % ,k6,ko).
(ii.) If Y1 ~ NIG (o, B, 6y,01) and Y, ~ NIG(a, 3,6, 0,) are independent, then the sum.
Z=Y,+Y~NIG(,p,(61+ 6,), (01 + 02)).
(iii.) If Y; ~NIG (a,B , 6, 0),(i = 1,---,m) are independent, then the sample mean
_ m
Z=1 ;11/[ ~NIG (ma,mp,0,0).
(iv.) If Y; ~NIG (., , 0, ©), then variable Zz(%) has the Standard NIG distribution
denoted by Z ~NIG (a.0,B0,0,1).

Proof. We prove the Lemma 4.2.2 as follows. [
1. Let T = kY. Then
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MT(Z‘) ZMky(l) = E[etky] ZMy(tk)

:exp{tk9+6(\/062 — /02 — (B +1k) 2)}

:exp{tk9+k6(\/(%)2—(

_ B
T = kY ~ NIG(%,B k6,ko)

>~
SN—
)
SN—
|
= L
~IR
SN~—
§)
|
Y
>
+
-~
SN—
[\*)
S~—
—

2. LetZ=Y,+Y,.
For identically and independently distributed Y;,Y>,we have My, 1y, (t) =My, (t )My, (t).
By using the property, we have;
My (t)= exp {rkel +01(\/o2—P2) — /a2 — (B +1k) )}
exp{tk92+62(\/a2 —a?— (B +tk) )}

:exp{tk(91+92)—|—(01+62)(\/oc2—[32 — Vo= (B+k) )}
Z=Y,+Y,~NIG(a,,(01+6,),(01+02))

o om
3. Let Z=YY; . From the property of My (t) = Mg y (L). Since ¥;,i =1,2,3....m and
i=1 i
i=1
are iid, we get

My (5)=exp{L£0+0(/o? =B~ /o2~ (B+ 1))}

Ly
— exp {t@ n c(\/(moc)z —(mB)2— \/(moc)Z — (mp —|—t)2)}

1
Z=- ZY' ~NIG (mo,,mB3,0,0).

=1

4. Let Z:(%). We use the first property to obtain;
Mz(t)=Elexp[(Y —0) 5] = Eexp<<—¥r>><My<g>>
=exp(—Lt)xexp(0)L+\/(0a)? —/(ca)2—(cB +1)?)

:exp{\/((fa) —(0B)?—+/(ca)? —("ﬁ“)z)}
Z ~NIG(ac,$0,0,1)

Lemma 4.2.2 proves that NIG is the best fit compared to many other commonly used
heavy-tailed distributions when modeling SMR under data paucity data structure such as

Kenya.
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4.2.3 The Parameter Estimations of the NIG Distribution

The sum of NIG variables when used in a model is still a NIG variable with the four
parameters. This property may lack in several other common heavy-tailed distributions
like student’s ¢ distribution, Variance Gamma and Hyperbolic Distributions, which make
it sufficient Lillestol (2000) when modeling the mortality risk by the incorporation of the
Biihlmann Credibility Approach.

Through solving the mean, variance, kurtosis, and skewness for all of the parameters, we
get a closed analytical method of moments solution under a couple of rather fair con-

ditions Karlis (2002). This means we estimate all the NIG distribution parameters as

follows;
( é . 3sy/v
= M= 379
R 315, Jv(k—3s2-3)
0= a9
3 _ s 4.2.5)
v(k—%s2—3)
o — V3k—452—9
v(k—%s2—3)

\

where @ = [l and 6 = $ from the estimates.

During the parameter estimations of the NIG distributions, it is important to consider
short time horizons, as the mortality of a shorter time or instantaneous rate of death.
Thus, rejection of a non-zero mean return null hypothesis is not probable during the study,
which contradicts the null hypothesis and makes NIG a suitable distribution for modeling.
In addition, it is vital to note that Y ~ NIG(¢, /§, é, 6) and all the parameters are estimated
from the available Kenyan Mortality data.

4.2.4 Testing For Normality of Mortality Data On Models

In this sub-section, we conduct three important statistical tests to ascertain on whether
the Kenyan mortality data exhibit Normality assumptions commonly used in the classical
models. The results informs the inclusion of BCA approach into the classical models.

The test include;

4.2.4.1 JB Test for Model A

The JB test is used to test whether the kind of Kenya mortality data to be used follows
a normal statistical distribution Thadewald and Biining (2007). This test statistic is non-

negative, which signals that the mortality-specific data do not have a normal distribution
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property Wang, Huang, and Liu (2011).

Definition 4.2.5. Let denote /B be a parametric test statistic given by;

_m 2 1 22
JB = 0 (2S +2(K 3) ) (4.2.6)

where m is the observed data total number, which are degrees of freedom and S is defined

as sample skewness, while sample kurtosis is denoted as K :

1 3
A a Z (Xl—f)
S:&: i=1

where 93 and 94 are denoted as the estimates of 3rd and 4¢h central moments, respectively,

% is denoted as sample mean where as 62 is denoted as the variance estimate.
From the set of Kenyan mortality data, we formulate a null hypothesis against an alterna-

tive hypothesis as;

JB(p < 0.05)=Reject Hy (A Normal Distribution)

JB(p < 0.05)= Reject Hy (Not A Normal Distribution) where p is the p-value.

Distribution Mean Standard Deviation
Normal (62.565,64.466) (2.057,2.455)
The adjusted test statistic: JB = (4.183,4.258)
Significance level: a =0.05
Critical value: (0.1235,0.1358)
Critical region: Reject Hy if JB > (0.01235,0.01358)

Table 4.1: JB Normality test for Model A of Males and Females Respectively

Table 4.1 shows a test statistic and p-value of (4.183, 4.258) and (0.01235, 0.01358)
respectively. In the above case, we reject the stated null hypothesis (Hp) and make con-

clusion that the data is not normally distributed. We conclude at o = 0.05 that our Kenyan

mortality data is heavy-tailed distributed.
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4.24.2 DH for Model B

Since model B is a multivariate parameter and model errors using independent univari-
ate Normal Inverse Gaussian Levy processes, Ainou (2011), we used the DH test see
Doornik and Hansen (2008) to test whether the Kenyan Mortality data follows a Gaussian
distribution before proposing NIG distribution.

We rewrite the equation (3.1.3) in the form;
K1 =K +0+CZyy 4.2.7)

where K; is a two-dimension random walk with drift, 0 is the constant, C is a 2 x 2 upper
triangular matrix constant and Z; is a 2-dimensional standard Gaussian random variable.

From equation (4.2.7), we rewrite it as follows;
logitq(x,t) = K. | + K2 1 (x) (4.2.8)

where x starts from ages 60 to 90 and ¢ covers from 2010 to 2020. Then, the linear
regression is applied in equation (4.2.7) when estimating the value of K;. The mean and

variance is estimated as follows;

ElK.1—K]=0
Var[Kl+1 — Kt]] == CC/

(4.2.9)

Equation (4.2.9) is showing that the mean as well as the variance of the first consecutive
differences, Z, 1 —A;, are used when estimating 8 and W = CC’ , respectively. In ad-
dition, we do estimations before summarizing our results in the Table 4.2. Commonly,
those negative value for 8; shows SMR improvement. From the same trend, the positive

value for 6, indicates that SMR at higher ages, which increases at a slower rate.

0 W
—-0.0868560  (0.052567300,-0.00066890)
0.00082550 (-0.00018935, 0.0000023457)

Table 4.2: Variance and Mean Matrices Estimates for Model B

The multivariate section of Table 4.3 below has indicated that the test statistic is significant
according to the p-value of the test, which is a bi-variate normality assumption that has
been rejected at a o« = 0.05 significance level. Subsequently, the multivariate or bi-variate

normality assumption that has been made on the model does not hold.
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Normal Distribution Kenyan Data

The adjusted test statistic: p—value = (24.183,25.242)
Significance level: a =0.05
Critical value: (0.1235,0.1581)
Critical region: Reject Hy if p —value < (0.01235,0.01581)

Table 4.3: DH Normality test for Model B of Males and Females Respectively

We also confirm the DH Normality test for model B using a Multivariate Shapiro-Wilk
Test for Normality, which is tabulated in Table 4.4 as;

Normal Distribution Kenyan Data
The adjusted test statistic:  p —value = (0.8629,0.9025)
Significance level: a=0.05
Critical value: 0.1235
Critical region: Reject Hy if  p —value < 0.01422

Table 4.4: A Multivariate Shapiro-Wilk Test for Normality of Males and Females Respec-
tively

From the test statistic of (0.8629,0.9025) in Table 4.4, which is greater compared to the
critical value at the confidence significance level of o = 0.05, we then reject the null
hypothesis, which assumes that the Kenyan mortality data is normal, which prompts the
use of NIG during modeling. In addition, it confirms the findings of the Doornik-Hansen
test on the Normality for Model B.

4.2.4.3 The AD Test for Model C

The AD test is a statistical test done when determining whether a specific data sample has
been drawn from a particular type of statistical probability distribution see Evans, Drew,

and Leemis (2017). We defined our hypothesis as follows;

Hp: Kenyan mortality data follow a Normal distribution vs H;: Kenya population data do

not follow a Normal distribution.

Definition 4.2.6. Let A2 be the test Statistic given as;

A= M-S (4.2.10)

M.

where S =Y 2-110g. {G(Y;) +log.[l — [G(Ya+1-:)]} and G is the CDF of the Gaussian
i=1

distribution and ¥; are the ordered Kenyan Mortality data.

From the analysis;
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Distribution Mean Standard Deviation

Normal (62.004,64.360) (2.001,2.816)
The adjusted test statistic: A? = (0.8257,0.8545)
Significance level: a=0.05
Critical value: (0.752,0.788)
Critical region: Reject H if A? < (0.00752,0.00788)

Table 4.5: AD Test for Model C of Males and Females Respectively

From Table 4.5, we deduce that since the test statistic is (0.8257,0.8545) is less than
0.752 from the AD test, we do not reject the null hypothesis and conclude that we do not
have sufficient evidence at & = 0.05 to conclude that Kenyan Data is following a Normal

distribution (we model it as a NIG distribution).

4.3 Incorporating the BCA into the Mortality Models

We now incorporate these SMR models into BCA;

4.3.1 Mathematical Modeling of Mortality Risk

Definition 4.3.1. Let p (x,7) and ¢ (x,7) denote the likelihood that a person aged exactly x
years lives and dies respectively to age exactly (x +¢). From the summation of these prob-
abilities of life and death equals to 1. The value of g (x,7) is associated with instantaneous

death rates of p(x,7) commonly known as force of systematic mortality.

With the assumptions of UDD and CFM in between the integer age of x and year ¢, then
the force of systematic mortality is equivalent to the central death rates, (x,t)= m(x,t)
with the rate of m(x,) being defined as CDR.

From the estimations of parameters to be used in the model, we assume an OLS method
since the data given is in a discrete form. We make an assumption of ¢ years within the
year of fitting span [xl(,w, xhigh} (xlow — Xpigh +1 = t) and k ages in the fitting age span
[t1ows Xnigh) |fiow — thigh + 1] = m. While the models A and C apply the use of in (m(x,1)),
the B model applies logit (q(x,t)) = In <%> to model rates of mortality. From the

empirical Kenyan mortality data, it shows that In (m(x,t)) is in both model A and C and

In (13(;(’2 t)), which has displayed a downward trend during time period x (see Figure

4.3.1).

As a way of eliminating this downward trend, let us denote Q(x,t) = In(m(x,t) ) —
In(m(x,t— 1)) for the two models namely A and C models while Q (x,7) = logit (q(x,1)) —
logit (q(x,t — 1)) for the B model (as illustrated in Figure 4.3.2), x = Xjo,y + 1, ..., thigh-
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With an assumption of having that (r — 1) observed values, the value of O, ¢, 1, . .

O, kpign are illustrated in above Figure (4.3.3).

The BC estimate Oy, thigh+ 1 for those ages x in the year f5,;,, + 1 is defined as the weighted
N Xhigh
average or weighted proportion of the mean sample, Q, = % Y Q) - and the exact
X=Xjop+1

mean of u with weights of Z at the same time (1 —Z), in that order. The distribution of the
parameter risk, O, will always determine the kind of parameters used when determining

the value of parameter u as well as the BC estimate or factor of Z.
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Figure 4.3.1: log, (m(x,t) ) & logit(q(x,t) ) against time for Kenyan Males
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Figure 4.3.2: log, (m(x,t) ) & logit(q(x,t) ) against time for Kenyan Females
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4.3.2 Incorporation of the BCA into Model A

Proposition 4.3.1. Let u(x,t) = ot + Bek; + e(x,t) be under Non-Gaussian assumptions

with e(x,t) to be following a NIG distribution randomness assumption with mean of 6 +

B

. 2
£ and variance of 6%, then
T T

B o?
[e(x,t) ] W NNIG{ 0+ 7o, GxT—3Z }
e(?)

0 + %G, Oc 75

where W;_1 is the adapted to filtration about the process up to a time t — 1 and co-

variances of the two random errors is zero.

Proof. 1t is assumed that the overall mortality trend follows a simple random walk with
a drift of ¥ for the prediction of mortality such as k;=k;_| + ¥ + e(¢) where randomness
trends of (e(7)) of the time follows a NIG and are i.i.d such that e(¢) for r =1, + 1,.....1,,.

Let a random variable Q,, denote the differences between the central death rates ¢ and
t — 1. This means that Q,, = In(m(x,t) ) — In(m(x,t — 1)). O

Oxt =B(k; —ki—1) + De(x,1)
Oxs =P + Br x e, + Ne(x,1)

where the values of x = x...,x,, and t =t1,...,tyy and Ae(x,1) ~ NIG(6 + [—;6,26‘;‘—32)

This follows that Qy; ~ NIG(¥ By, %2k, B2o?2 +2072), is the sum of independent vari-
ables of NIG distribution, and still remains a NIG distribution with new parameters.

From the conditional expectation as well as variance of Q,,, it is easy to apply the
BC, such that 0(x) = E[Q,,/X] = B:® and Var[Qy,/X]| = B202 + 207 in the similar
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order. Since the expectation of value of the stated hypothetical mean, 8 = E[0(x)] =
E[E[Qx,/X]] = OE[E[Qx,/X]], the estimated value of 8, denoted by 8 is given by;

6= (4.3.1)

:|Co>
:le

Xm
L 6=
X1

From the equation (4.3.1), the variance process expected value denoted by a = E[a(X)]|=E[B2]c2 +
2E[02],is estimated as;

R O-AEZ Xm Ao Xn 6x2
a==—) 0:+2) —- (4.3.2)
X1 X1

while the hypothetical mean variance ¢ = Var[8(X)] = 92Var[Bx] = O*E[B2] — E[Bx]*.

This can be estimated through;

A Am Xm A
a=v> (% Y oi-(1y 93))
X1 X1

v

By writing the equation in form of the ZX + (1 — Z) u, it is easy to estimate fl as .

Hence, the proof.

4.3.3 Incorporation of the BCA into the Model B

Proposition 4.3.2. Ler u(x,t) = k,(l) + kt(z) (x —X) + e(x,) be under Non-Gaussian as-
sumptions with e(x,t) to be following a NIG distribution randomness assumption with
mean of 6 + I%G and variance of © ‘:—32, then

(1) B 2
e 6+>01, o© O,.10..
t(z) /W,_1 ~NIG ! l§ ! el 6’12 e L
€; 62 + ?627 O¢,10¢2 6672
where W,_1 is the adapted to filtration about the process up to a time t — 1 and co-

variances of the two random errors is zero.

Proof. Let kt(l) and kt(z) be time trends modeled by a bi-variate random walk having a
drift of . It is easy to model k,( Y and kt(z) time trends as bi-variate random walk with the
drift 0 i.e. k') =k + 9 +e(x,1) where ki = 1,2 to show that (k" k'PY, 9 = (8, )’
and e(t) = (e!V, Y.

The two errors e(x,) as well as e(r) assumed to be i.i.d. while the time trends for V values
of ¢ are also i.i.d. when values of i = 1,2 and W;_ is the adapted to filtration about the

process up to atime ¢ — 1.

By considering a random variable;
,L)* 9 —1 b .
Qus=In (%) = logit(p(x,t) — logit (p(x,t — 1)

O = (K =k + (x— ) (kP — k) + Ae(x,1)
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Or = {(O1 + %) (x—x) }+{(e(t) +e(t — 1))x(x —X) } + Ae(x,1)

forvaluesof x=1,2,3.....;n,t =1,2,3,.....m, and Ae(x,t) = e(x,t) —e(x) ~ NIG (0,263).
Qui~ NIG(O + ) (x— %)}, (x—%)0; | +2 % (x— X)0,,10.2+207).

The conditional expectation variance of [Qy;/X]|= (%1 + ¥»)(x —X) and the variance ex-
pectation Var(v)=0 = (x —X) Ge%l +2(x —%)0,,10,2+202.

It is essential to estimate hypothetical mean expected value, 0 = E[0(X)] = ¥ + %1 +

E(x —x),with its estimation as:

A A A Xm
b=h+h+1Yy (x—%
X1

with = oL (z [In(m(x, 11— 1) = In(m(x, 1 — 1>J) =13 0= Ous.
X1

X
Similarly, the process variance expected value, Var(v)=0 = (x—X)02 | +2(x—X)0, 10,2+

263 is estimated as;

A2, G\ R PP
Var(v) = P Y (x—X)"++ Y 267
X1 X1

The expected value of D is estimated as;

since Var[6(®)] = ©3Var|(x — )]. Thus, for values of ® and v, w have Z = (#) :

Hence, the proof. O

4.3.4 Incorporation of the BCA into the Model C

Proposition 4.3.3. Ler u(x,t) = In(m(x,t)) = K,(O) -+ K,(l)ln(m(x, ty—1))+e(x,t) be under
Non-Gaussian assumptions with e(x,t) to be following a NIG distribution randomness

. . . 2
assumption with mean of 6 + %G and variance of G%, then

e(x,1) 0 —1—%6
e(O,t) /‘/Vt—l ~ NIG 92—|—%G ,62,6‘30,6‘3’1
e(1,1) 6;+Lc

where W;_1 is the adapted to filtration about the process up to a time t — 1.

Proof. The time trend in the model lAc,(j ), Jj =0,1, is assumed to be following a simple
random walk of drift ¥, i.e., l%,(j): lAcz(i)lH%--i—e (j,t) since j = 0,1 and the term of e(x,7)
is denoted as the error term associated with the model. e, ;) is assumed to be NIG dis-
tributed at the same time i.i.d. with mean of 6 + [—gc and variance of Gxor‘—_gz for V values of
r.

By considering the random variable given as Qy, defined by In(m(x,t))—In(m(x,t — 1))

and replacing it with the values of the model as written in equation (3.1.5), we obtain; [
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Qe = k¥ + k0 + kM + &Y 4 tn(m(x, 1y — 1)+ Ae(x,1)
Oy = Vo + Viin(m(x,t; — 1)+ [€(0,2) + €(0,1)In(m(x,t; — 1)] + Ae(x,1)

where x = 1,2,3.....,n,t = 1,2,3,.....m, and Ae(x,t) = e(x,t) —e(x,t — 1)~ NIG(0,25?)

and from equation (4.3.7), we have;
Ors ~ NIG( + Sin(m(x,t; —1),06%(€,0) + [In (m(x,1; — 1))]*0%(g,1) +2067] (4.3.3)

At the specific ages, we make an assumption that Ae(x,7) follows a White Noise in a way

that O, ; are identically and independently distributed for the values of x =1,2,3.....,n.
From the above model, we apply the approach of BC theory and calculate the values of

the hypothetical mean and variance, where;
Q(X) = E(QXJ/X) =1+ ﬁlln(m(x,tl — 1)
Var(v) =Var(Qx /X) =(62(¢,0) + [In(m(x,t; — 1)]*6?(g,1) +2062)

We proceed ahead with the estimation of the values of the means and variance, 6(X) and

Var(v) respectively as follows;

1.9() +

Z In(m(x,t; — 1) )] (43.4)

From equation (3.1.6), it important to rewrite equation (4.3.4) in the BC formulae:

O, = (==l )=y (0x)

Consequently, we estimate the expected variance, Var(v) as used in the BCA as; Var(v) =Var(
Ox./X) =(02(€,0) +[In (m(x,1; —1))]* 62(€,1) +2062) as

Var(v)=b = 62(e,0) + ZED 1 (m(x,1, — 1)) 4262

X1

while the variance of the stated hypothetical mean, v = Var[0(X)| =Var|ln (m(x,1; — 1))] =
OZE[In(m(x,t; — 1)) —E[ln(m(x,t; — 1)]?.

Thus, for values of ¥ and v, w have Z = (nfﬁ) )

Hence, the proof.

Remark 4.3.1. Using the probability theory for calculation of the variance is estimated as;

2
Var(v)=0=13 —) In(m(x,r; — 1)) [ Z In(m(x,t; — )] } (4.3.5)



where estimation of the parameters, 0, D and O as the the BC estimates of the QXJ. In

addition, this has a value of;

= l}’l(ﬁ’l 7tn+1)_ln(m »n+1) Y fOr A/C A A
Oxi+1) = . Ax ' v =Z0:+(1-2)6
loglt(qyc,t,,—i-l) - lOglt(Qx,tn+1) , Jfor B
(4.3.6)

where Z is the BC estimates of logit(qy ;,+1) and In(my,, 1) for a given age x for a period

of ¢, + 1. Hence the estimates are;

It g, 1) = In(myy,) +Z0:+(1-2)0

R R 4.3.7)
logit(qAx,tn+1) = logit(%c,tn) +Z0x+ (1 _Z)O

It is vital to note that Propositions 4.3.1-4.3.3. conforms to the models defined in Def-
initions 3.1.1-3.1.3, where we estimate four parameters of NIG distribution as opposed
to the two parameters of a Normal distribution. In addition, the randomness is no longer
following a Gaussian distribution with mean of zero and variance of 62 as often used in
the classical Lee and Carter (1992), Cairns, Blake, and Dowd (2006) and Tsai and Yang
(2015a) models.

4.3.5 BC Estimate Determination

When dealing with the three models namely A, B, and C respectively, the parameters under
BCA are determined under MLE method as tabulated in the Table 4.6;

Estimation for values of 6,0 and b

Xn Xn
5 5 1 5 1 5 2
Qx,' = (Qxi,ter "'Qx,',t+n) Qx,- = =1 Zl Qx,-+t Vx,' = = Z (Qxith - Qx,-+t)

Xi= X,'=1

AN

XN
A A 1 ~ 1 A 2
QXN = (Qxi,f+l7"'Qxi,l+N) QxN = m—1 Z] Qx,'+t VxN = m—2 Z (Qx,-+l - Qx,'Jrl)
Xi= X,

i=1

Xn

1 A
n Z Ux
Xl‘il

n s =\2 5 A A ¢ A R
b=t Zl (0v—0)" -5 6=0= Zle v
i= Xi=

1
X

Table 4.6: Estimations for the values of 6,0 and b

Remark 4.3.2. It is essential to note that the values are as follows E[Var[X|®]] = 6 and
Var[E[X|®]] = b respectively from the above table. It is vital to take note that values of b
could sometimes be negative because of subtraction. Whenever it happens, it is essential
to customize it by setting the value of b, which implies that the value of Z = 0, and thus
the value of BC Estimate becomes 6 = Q.

For the fitting as well as forecasting purposes of the respective three SMR models namely;

A, B, and C, we use the following strategies;
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4.3.5.1 Strategy EW: expansion of the Window by a year

As a way of predicting the estimates of BC for the year, 7, + 1, we apply the estimate
{QAXJnHto Oxig+1,Oxpy+15---Oxp,+n ), then the value of estimate at time 7, + 2,will be

_ xn ~
obtained by the value of QX,tn+l__ {): Ox+ O, zl+1:| 0(t,+2)=1 ZQX,tn+2 and Z(t, +
X

2):H+LK. To estimate the BC estimate for the different time lagsi.e. 7=2,3...... ,we apply

the following equation;

X,—T+1

- 1
Ox i+7 = ) (Z Ox+ Z Ox t> (4.3.8)

x1+1

where the values of é(tn +2)= QAx’,lJrf and Z(t, + 1) = % and K = %.

for those values of for QX,t+Ta T =2,3,4.... Therefore, Z(t, + 7) is increasing in the value

of 7 for this strategy of EW.

4.3.5.2 Strategy MW: Movement of the Window by a year

To predict the estimates of BC for the year, 7, + 1, we will apply the estimate {QAXJHJr 1 to
Oxig+1,Ox 415 ---Ox tn+N} then the value of estimate at time ¢, 4+ 2,will be obtained by

— xn —
the value of Qx ,+1 = [Z Ox 1+ Oxpy1]s 660 +2) = ¥ Ox g2 and Z(ty +2) = 1k
xl

To estimate the BC estlmate for the different time lags i.e. 7T =2,3......,we apply the

following equation;

_ 1 xp—T+1 R
Oxie=—-o~ Y Ox (4.3.9)
m—1
x1+1
and the value of |
n R
Zity+71) = ———= 4.3.10
o= (") @3.10)
where the values of é(t,, +2)= QAUIH and and K = %.

for those values of for QXJH, T =2,3,4.... Therefore, Z(t, + T) is increasing in the value
of 7 for this MW strategy.

For all the two strategies, we can get the values of Z(t, + 7) where Ox, = In(/it(x,t) —
In((x,t — 1) for the A and C models while for B model, Qx ; = In(§(x,t) — In(§(x,t —1);
all for the values of (r =1, + 1,¢; +2,......,t1 + T+ 3).

This means that the forecasted mortality rates for person aged exactly x in year #;,,, + T
under the A, B and C models without credibility incorporated approach are all linear

functions of 7 with given different gradients.

Model A is defined as:

56



A A

In(m(x,t, 4+ 7)) = In(m(x,t,)) + 0P x T
In (i(x,ty + 7)) = In ((x, 1)) + Q% ;41 X T (4.3.11)

Model B is defined as;
In(§(x,tn + 7)) = In(G(x,1,)) + [O1 + D (x — )| x7
In(§(x,t, + 7)) = In(§(x,1,)) + Qﬁ’},,ﬁl X T (4.3.12)

Model C is defined as;

In ((x,tn+ 7)) = In (A, 1)) + | (D1 + B))in (hx, 5, — 1)) | x7
In(h(x,ty+ 7)) = In(M(x,1,)) + 0%, 11 X T (4.3.13)

Using the above equations (4.3.11, 4.3.12, and 4.3.13), we get the predicted mortality
rates under the three models; A, B, and C. In addition, it is expected that the EW strategy
would show the downward trends of all estimated future mortality rates better for each of
all ages x. Due to the two common invariant properties of the MW strategy, it is easier to

compute the estimates for BC before comparing the EW strategy.

4.3.6 Parameter Estimations for Systematic Mortality Risk Models

1. Model A

On model A, it is important to note that the parameters are subjected to two constraints
n

n
namely Y B, =1and ¥ k =0 as well as the estimations using the method of singular
x=1 =1

n
value decomposition (SV D). From the constraint that Y. k; = 0, it is key to note that the
=1
parameter of a, denoted as d,can be estimated as;

n n
ay = % Y In(m(x,t)) for values of t = 1,2,......n. In addition, the constraint of Y f, =1
t=1 x=1
will lead to the estimates of k;, which is 12, as follows;

b =Y [in(m(x.1)) ~a

for values of r = 1,2,...... n. The value of ﬁx is obtained through the process of regres-
sion of the [In(m(x,t)) — d,] on the value of k; without involving the constant term being

included in all ages of x.

The drift parameter, ¥}, the variance of the time trend error, Gez , and the variance of the

model error, ze , are estimated by the process of;
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A n _
b= L L (k—k-1) = (ke k1)
t=
n A
o} = L 21 (ky — k1 — B)? (4.3.14)
=
n A~
oy = %,ZO [In(m(x,1)) — Ox + Prki]
\ 1=

The logarithm of the predicted central death rates for all ages of x in year 4 1) is given by
In((x,t+1))= G+ Be(k +n1 ()= In(m(x,1)) + Be(1)D for all values of n = 1,23, ...
2. Model B

For model B, the values of kt(l) and kt(z) are determined by the logitq(x,t) on the value of

(x — X) at each value of ¢ that satisfies the following condition;
~(1 n ) i n _
=1 L llogitg(v) - ¥ (x—9)
1= t=

Ay :%

logitq(x,t)

~

™M=

t=1

The drift parameter, ¥, the variance of the time trend error, o2

ei’
of the model error, ze , are estimated by the process of;

i = 1,2, and the variance

¢ n n i i kfi)* (i)
U= ﬁt; (kf()_kt(—l):( AT )
I @#3.15)

The logit function of the predicted mortality rate logitg(x,t) for all ages x in year 7 + 1] is
given by logitg(x,t)= kt(l) +nd + k,(z) + N (x— %) = logitg(x,1) + ) + Do (x — X)7 for
all values of n =1,2,3, ...

3. Model C

The drift parameter, ¥;,i = 0,1, the variance of the time trend error, Gezi,i = 1,2, and the
2

variance of the model error, 67 , are estimated by the process of;

g Loy _ k)
" ﬁzgl (kt()_k’(_l): AT
o7 = 5 Lk kY =0 (43.16)
t=
o= G L X lin(m(x0) — kY =k n(m(x,t — 1)



The logarithm of the predicted central death rates for all ages of x in year # + 7 is given by
In((x,1 +1))= k" + 1B + 57 + o= In(m(x,1)) + [, + Do (n)in(m(x,1 — 1)] for
all values of n =1,2,3, ...

The equations 4.3.14-4.3.16 shows the parameter estimations for Systematic Mortality
Risk Models necessary for modelling under BCA.

4.4 Fitting and forecasting of Models

In this part of the study, we did fitting of the three mortality models, namely A, B, and
C, with as well as without incorporation of credibility before making sample-based pre-
dictions for future consecutive years using Kenyan mortality data. Given that we do our
study for a period of [T}, T>] we assume that we end at year #, during SMR projections.
After the projections, we do evaluation of the forecasting performances for the respective
years t, + 1, ..., Ty through application of the mortality data within the rectangle (window)
that is defined by [x,,,xy] X [fn,fy] where T} <1, and ty < T>.

We also do an examination of the forecasting performances in two cases namely before
and after incorporation of the BC method. To measure the forecasting error of the true
SMR (g) and predicted one (§), we apply the MAPE and RMSE measures.

Definition 4.4.1. Let define MAPE and RMSE for a life aged x in year ty +¢ for given a
specified fitting year span [t,,ty] as;

~ 2
RMSE,, ., — {[q(x,rn+1> — gty + 1) } @i

TN_tn

The values of the tabulated central death rates for Males and Females were determined
by dividing all the yearly observations of the age-specific death numbers by matching the

exposed number of population sizes to the death risk of death for the specific period.

For the given sets of age span before the fitting yearly span [t,,7y]|, we will forecast the
SMR for the year span under a mortality model. This should help in calculation of the
estimates of BC method for each of the years r = 1,2,3....N with the application of EW

as well as MW strategies.

Definition 4.4.2. We measure the predicting performances by calculation of the average
of the MAPE over the ages 25, ..., 100 and predicting years for the remainder of the years.
The AMAPE will be defined as;

1 Xp—T+1 100 ¢ 1 ¢ 1
AMAPE,; |, = y (¥4 4ot +1) — gt + )] (4.4.2)
In—tn [T \\Zs ‘I(x tn+1)
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The numerical illustrations prove that incorporating the BCA into these mortality models,

A, B, and C, helps improve forecasting performances.

Model A with and without BC for Kenyan Males and Females Table is shown in Table

4.7);

Kenya AMAPE RMSE
Model % EW % MW % EW% MW %
2010 14.85(12.63) 8.56(7.25) 9.55(8.95) 123.50(118.26) 182.20(180.18)
2020 16.45(14.85) 8.23(7.92) 10.16(9.14) 126.45(122.34) 193.47(188.22)
2030 18.86(15.24) 9.34(8.35) 10.89(9.85) 132.75(126.36) 195.89(190.26)
Average 16.72(14.24) 8.71(7.84) 10.20(9.31) 127.56(122.32) 190.52(186.22)

Table 4.7: Model A With and Without BC for Males and Females(brackets)

Model B with and without BC for Kenyan Males and Females Table is shown in Table

(4.8);
Kenya AMAPE RMSE
Model % EW % MW % EW% MW %
2010 11.45(14.33) 7.85(8.11)  9.55(9.22)  122.33(115.55) 202.26(195.05)
2020 12.05(15.25) 8.25(8.44) 10.15(9.45) 128.36(123.45) 200.53(198.85)
2030 13.25(15.83)  9.45(9.45) 11.23(9.90) 134.37(127.10) 201.55(196.89)
Average 12.25(15.14) 8.52(8.67) 10.31(9.52) 128.35(122.03) 201.45(196.93)

Table 4.8: Model B with and without BC for Males and Females(brackets)

Model C with and without BC for Kenyan Males and Females Table is shown in Table

(4.9);
Kenya AMAPE RMSE
Model % EW % MW % EW % MW %
2010 15.95(12.44) 7.96(7.35) 8.65(9.15) 140.33(132.52) 210.15(201.22)
2020 16.20(12.90) 8.15(8.55) 8.96(9.35) 141.65(134.35) 209.45(199.35)
2030 17.28(13.35) 9.06(8.95) 9.45(9.88) 139.45(136.36) 211.35(199.95)
Average 16.48(12.90) 8.39(8.28) 9.02(9.46) 140.48(134.42) 210.32(203.17)

Table 4.9: Model C with and without BC for Males and Females(brackets)

The numerical demonstrations in tables 4.7-4.9 show that incorporating the BC method
into the model A, B, and C, outstandingly boost their forecasting performances; however,
using the two strategies has contributed to similar prediction performances. Secondly,
incorporating the BC does drive the forecasting MAPE ratios from the above three SMR

models, thus converging to a consistent level and lower level.
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4.5 Analysis and Results

In this chapter, we have incorporated the concept of BC to boost the forecasting accuracy
and performances of A, B, and C mortality models. It is crucial to note that error terms
of the three classical models are modelled as a NIG distribution as a proposition as sta-
tistical tests tabulated in Table (4.1-4.5), showing the non-Gaussian property of Kenyan

population data.

With Kenyan mortality data for both males and females, the chapter looked at the fitting
of the models as shown in Figures (4.3.1-4.3.3) and shows a perfect fit. In addition, they
incorporated the BCA under the common EW as well as MW strategies, thus contributing
much better and accurate forecasting performances from lower rates of MAPE and RMSE
from Table (4.7-4.12). Therefore, reducing the commonly experienced valuation errors

with many other life assurance products.
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Chapter 5

Systematic Mortality Risk Forecasting
Under Deep Learning Technique

This chapter incorporated the novel DL techniques concept in systematic mortality risk
modeling to increase their predictability and forecasting accuracy. It is by applying the
Long-Short Term Memory structure (an artificial LSTM architecture) compared to tra-
ditional statistical ARIMA (p,d,q) models. The novel deep learning approach helped
integrate the CBD model to enhance its accuracy and predictive capacity for future sys-
tematic mortality risk in countries with limited data availability, such as Kenya. The
results showed that Long Short-Term Memory network architecture had higher levels of
precision when predicting the future systematic mortality risks than traditional statistical

methods.

5.1 Deep Learning Integration

Definition 5.1.1. Let Neural Networks within the deep learning infrastructure typically
consist of sets of input units with multiple hidden layers, which means that more such

layers imply a deeper network with hidden units known as nodes or neurons.

In Figure 5.1.1, a neuron is represented in every node connected from one to the other
using arcs representing all synapses. Additionally, the graph represents the general input,
latent, as well as output variables. A schematical view of an artificial neural network
(ANN) has circles representing neurons with lines representing synapses. A Neural net-

works infrastructure can be represented in Figure 5.1.1;
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Figure 5.1.1: A Normal Representation of feed-forward Artificial Neural Network (ANN)

The synapses take the individual inputs before multiplying them by a “weight,” commonly
known as input “strength,” to determine the general output. In addition, Neurons are added

to these outputs from all available synapses before applying the activation function.

Definition 5.1.2. Let Q be a single neuron called perceptron defined by;
0=0Z"y+c) (5.1.1)

where y € RVis the input and Z € RY'is the connected synaptic weight, y € N are numbers
of the input signals and O is the activation function. We represent this term c as the bias
associated with the model known as activation verge or threshold. The user must note that

the function, ®, should have a differential because the learning equations have gradients.

One can use The Multilayer Perceptron ( MLP ) introduction in nonlinear separable prob-
lems such as XOR since ANN with a single layer is always not appropriate, thus solving
the stated problem. In addition, most neurons in MLP are predisposed on a wide variety
of layers, with every unit fully connected to those of the preceding layer, as illustrated by
Skovajsova (2017).

The synapses connect units by defining different types of available networks in the system.
In an ANN classical pattern like feed-forward ANN, the information moves in a unilateral
direction from an input to an output layer simultaneously the Recurrent Neural Networks.
RNN processes the information cyclically by using the extra synapses, ensuring that the

reprocessed output results are from the entire elaboration process.

Definition 5.1.3. Let Q € R* be the ReLU output functions of the deep neural networks

of a generic hidden layer having kj;, neurons be

01=0(Z"y+c) (5.1.2)
where Z € RY**n is defined as a weight matrix and ¢ € R* is called the biases vector.
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According to MLP scheme, the hidden layer output becomes the input instrument for the

following layer.

Lemma 5.1.1. Let us consider a given problem of regression, where f € N defined as the
number hidden layersBengio, Goodfellow, and Courville (2017), then the output of y € R

can be calculated by
01 =0 (Z]y+c1)
02 =0, (2101 +2)

03 =03(Z10s+c3)

Qr=y=0y (Z;fol +cf>

where Z1,2,,73,...Zy denote weight matrix vectors, cy,c2,¢3,...cy denote bias vectors,
and @, P,,P3,...Py denote activation functions that needs not be different from one

another.

It is vital to note that all measurements of the weight matrices as well as bias vectors do
rely on the unit number within the hidden layers; hence, by enhancing these hidden layers

in numbers, the abstraction levels of the input data also increase significantly.

5.2 SMR Modeling Under Deep Learning

5.2.1 Mathematical Structure of Deep Neural Networks

Definition 5.2.1. Let the mean-squared error be the common loss function used in deep

neural networks given by;
1y 2
Loss(x,%) = ¥ (x;—X)
i=1

with x; being the actual value and £ as the value predicted from the deep neural network

after having n the number of observations.

With one input layer having two nodes and a hidden layer of three nodes, its output node
will have a single node. After training data, the imputed data in the input layer will have

nodes within the hidden layer.
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Lemma 5.2.1. Let ¢ (z) be the sigmoid activation function with its result from the calcu-

lation that passes onto different sets of layer of nodes being

1
¢ (z) = o(wix+by;) = (W) (5.2.1)

where the corresponding values from its input layer before multiplying it a weight w; and
adding a corresponding bias of b;|, with 1 representing the layer and i € {1,2} represent-

ing its corresponding node.

Proof. From the partial derivative of the loss with respect to the individual weights;

which, is split in three separate parts thus simplifying into;

dLoss(x,%) _ [ dLoss(x,£) | (0% dy
I _{ 9% 9y ) \ow: (5.2.2)

By looking at the 1st part of the derivative of equation (5.2.2), it can be simplified as;

dLoss(x,% 1 . n .
—%%?ngﬂﬁﬁ(m—xyﬁ=%ﬁﬁx—@

o =0(@)(1-0()
and from the second part of the equation (5.2.2), we have;
=506 =7 (=) =(ie=) (%)
~(r=) (1- =) =0 (1-0(2))
% =0(2)(1-0(2)

And the 3rd part of the equation (5.2.2), we obtain;

aa_vi,- :aa—vii (wix+b) =x
Finally, when combined together all the derivative parts of equation (5.2.2),

owted) —2 ¥ (5—9)0(2) (1-0(2))

The backpropagation and feed-forward processes are repeated many times until the errors

are negligible.

Hence, the proof. O]

It is essential to note that Batching can be used, which normally combines multiple ob-
servations during training data before testing to gauge the model’s accuracy during the

forecasting process.
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5.2.2 Backward Propagation of Errors

Definition 5.2.2. Let Backward Propagation (back-propagation) be a supervised learning
algorithm of artificial neural networks via gradient descent. Provided ANN and an error
function, this method can calculate the error function gradient concerning the respective
weights of neural networks. ANN training involves using a given unconstrained opti-
mization problem to minimize a function within the high dimensional space. We start by

defining a loss function as:

J )2
r (vi—79)
1=

B=
2

(5.2.3)

This loss function measures the deviations of predicted values ¥ from the observed ones
v i.e. it obtains the absolute error terms between these predicted values of ¥ as well as
observed values of v. The quantity B also relies on the weights of the matrices namely
Z1,2>,23,...Zy , which ultimately influences the values of predicted ¥. Consequently, the
aim of the method is to find the exact synaptic weight values, which minimizes the value

of quantity B.

While machine learning has many algorithms applied in its application, the back-propagation
is among the most commonly applied in feed-forward training ANNs. The algorithm
works by comparing the predicted values versus the expected ones according to modify-

ing the synaptic weights through back-propagating the loss function’s gradient.

From figure 5.1.1, the procedure continuously alternates forward with backward propa-
gation in these steps. First, in the forward step, the predicted values of ¥ are calculated
by fixing the respective synaptic weights and in this backward step, the adjust weights to
reduce the error B of the network. It is important to note that ANN can iteratively per-
form both forward as well as backward propagation by modifying the weights to find the

combination, which diminishes the overall loss function.

Definition 5.2.3. Let the backpropagation be algorithm that can updates all weights of Z

in the last layer by the rule of delta as follows;

[ JB

where i is called the learning rate. As for other preceding layers, we differentiate using
product or chain rule of differentiation from Bengio, Goodfellow, and Courville (2017).
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The other weights matrix Z;_; are determined as:

. OB 9Qf1)
AZr 1= — 5.2.5
f—1 lan_] (azf_] ( )

and the process continues on to many other layers in the system.

The same idea can be looked into symbolically, just like a gradient or slope descent simi-
lar to a “climbing down a steep hill” so long as it reaches a local minimum or global limit.
However, the search moves in the gradient’s opposite direction at every update while the
gradient and learning rate slope is determined by the movement amplitude. When you
want to choose from a wide range of architecture, including the hidden layers numbers,
units for every layer, and the hyper-parameter values like learning rate, epochs, and ac-
tivation function remain another heuristic problem for ANN users. An initial round of
the hyper-parameters tuning, especially before the testing, might be highly needed. Addi-

tional extensive descriptions of ANNs and back-propagation algorithms.

5.2.3 RNN Using a LSTM Architecture

Corollary 5.2.1. Let us incorporate the concept of Deep Learning techniques in stochas-

tic mortality modeling thus increasing their predictability and forecasting accuracy.

Proof. The feed-forward ANNs represent a powerful tool for analysis, can be insufficient
when effectively managing time sequences of the available data. However, the recurrent
connections between nodes that have featured the RNNs allow for dynamic analysis of the
given sequential data. Nevertheless, through applying the given RNN structure, we often
face the massive problem of gradients disappearing and weights change, before becoming
tiny fast to give no effect. Consequently, the network will gradually lose its capability
of learning from the past to become operationally insufficient for the more extended data
sequences analysis and thus helping in making excellent predictions. This is why we say

that RNNs possess a short memory only. [
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Figure 5.2.1: A LSTM Block Structure with Its Internal Information Forward Flow De-
sign

As a way of overcoming the stated problem, (Skovajsovd, 2017) had come up with LSTM.
The LSTM is a version of RNN whose architecture can allow considerate relationships
between the data sequence, even if it happens in long, thus eradicating vanishing gradient
in the process. Similarly, RNNs need both long as well as short memory, thus efficiently
generating an extraordinary performance in the time series analysis. However, several
improvements in the original work, LSTM, have been improved through Lindholm and
Palmborg (2022). Ultimately, one can define an excellently composed basic structure as
vanilla LSTM.

Definition 5.2.4. Let f; = g;, i; = r; and o, be the output shown by Figure 5.2.1 that would
be important in RNN analysis. Let output of the auxiliary-output gate be defined as;

8 =v(Zpy+UpQi—1 +cy) (5.2.6)

e =v(Ziy +UiQi-1+ci) (5.2.7)
0ot =V (Zoyt +U,Qr 1+ Co) (5.2.8)
Je=v(Ziy +UjQi—1 +¢j) (5.2.9)

The forget gate output g; as defined by Equation (5.2.6), illustrates facts from the pre-
ceding cell state as well as the one originating from the present input are mixed within
a nonlinear way through a sigmoid activation function. Afterwards, g; is mixed through
a point-wise product especially within its previous memory state ¢(r — 1). Its input gate
1, as defined in Equation (5.2.7), uses an active sigmoid activation, which permitting for
decisions when information is received before it is updated. The output gate o;, as defined
in Equation (5.2.8), plays the role of preventing non-vital memory content transmission

that is stored information within the other blocks. Its role as a sigmoid function is to
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pass appropriate memory information. As a way of regulating processed data flow, the
input gate it does combines with that derived from all linked auxiliary NN j; as defined in
Equation (5.2.9).

Definition 5.2.5. Let the entire input block processing procedure that participates in con-

struction of the present memory cell state denoted as:
c(t) = c(t = 1)®g +r® i

To get the current output, which is a combination in between the defined function in above
equation;
Q=P (c(1))*0s (5.2.10)

From equation (5.2.10), this LSTM architecture offers an outstanding tool when dealing
with forecasting time series, particularly in cases of longer time lag connections, catching
randomness, and management of the noise. Nevertheless, any user of LSTM, just ANNs
in general, must have the face of the classical problems that concern the hyper-parameters

choices.

5.3 Mathematical Application and Results

In this section, we introduced the LSTM and RNN architectures within the standard
scheme of model B. More distinctly, the study’s objective is to exploit the functionali-
ties and advantages of the LSTM architecture to improve model B predictive capacity.
For this aim, we design several experiments to test LSTM skills in forecasting future sys-
tematic mortality risk over time before comparing its performance with the results derived
from the model of ARIMA.

Thus, the analysis of the approach will concern on the time index kl(z)

trend prediction,
bearing in mind the ARIMA (p,d,q) model as the forecasted benchmark, whereas other
parameters kt(l) and (x —X) are determined as per the estimation method by demonstrated

by Cairns, Blake, and Dowd (2006).

Distinctly, the model applies a simple random walk process with a drift. It is key to cali-
brate the best ARIMA (p,d, q) as illustrated by Makridakis, Spiliotis, and Assimakopou-
los (2018). In the initial round, this procedure confirms the time series stationarity using a
suitable unitary root test before choosing the differencing order d. The 2nd stage chooses
the auto-regressive best values and moving average order, like p and ¢q , respectively, using

information criteria for AIC or BIC.

Proposition 5.3.1. Ler kt(z) =f (k(z) kt(z)27kt(z)3’kt(i)47 ----kt(i)ﬂ +w® be the performance

t—1° t—x
of ARIMA (p,d,q) is compared with that of LSTM under R(y) be the ReLU activation

function given by
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0 fory<O

R(y) =
y fory=0
/ 0 fory<O0 : . : .
where R (y) = with the values ranging from O to o and j € N is
1 fory>0

(3)

defined as the number of time lags being considered and w,”’is the randomness term of

cohort effect.

Proof. We start building an LSTM model, which enumerates the stated function f linking
kt(z) to the time lags. The LSTM network, just like many other common machine learning
methods, needs the dataset dividing into testing and training sets. The training set often
represents supervised learning, whereas testing is for validation of the model. The LSTM
looks like a smooth, natural competitor to ARIMA (p,d,q) because it can capture a long-

term sequence or pattern within sequential data.

Table 5.1 shows a supervised learning dataset, which is useful for prediction. Upon com-

pletion of training, the network will have learnt the input—output functional relationship

K

thus capable of predicting future values of by using only the input. To be more prac-

tical, taking the input as (m XJ) matrix with time lags of kt(z) as well as the output as the
(mX1) vector of best current values, with m € N is the number as in Table 5.1. U
Output Input
p) 2 2 2

k(,(zj k% k{_} ..... icé(;’j

N N

A N

ki ki ki ki i

kl( +)m k lg +>m— 1 kt( +)m—2 """ kt( +)mf b

Table 5.1: Kenyan Supervised Deep Learning Dataset

The predicted kt(z)values, attime m+1,m+2,m—+3,...,m+J, are done recursively. Gen-

kt(z) in a generic time m +¢ is determined using the values of

erally, the predicted values of
kt(z) witht = (m+A—1,m+A—2,m+A—3,....m+ A —J) as input. The values ofkl(z)
are determined by the predicted as opposed to observed values. We start by estimating
model B parameters k,(l), (x—x) and kl(z) using the SVD method.

kt(z) is denoted as the first base for our analysis. The data

The extracted time series of
is then split into training set and testing set as per 80% training and 20% testing rule.
Consequently, we determine the last year T of observation. We have done the analysis for

the U.K. and Kenya differentiating through gender with one-time lag (j = 1).
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Nations Number of Years Years of Testing Set
UK. 1930-2018 1998-2018
KENYA 2010-2020 2010-2020

Table 5.2: Testing set years as per Nation

When selecting the optimum hyperparameters combination for the neural network, it is es-
sential to carry a preliminary fine-tuning round for all these countries while distinguishing
them by gender. In this step, we can get combinations, which will be used during LSTM

calibration during the forecasting procedure.

On the tuning results, we have discovered that this architecture having one hidden layer
does perform better than others on our data and the number of neurons depending on the
country. Using a Rectified Linear Unit (ReLU) as an activation function outperformed

many other functions when testing many other countries.

Nation  Optimal ARIMA model (p,d,q)

U.K.

Males ARIMA (1,1,0)
Females ARIMA (0,1,3)
KENYA

Males ARIMA (0,1,3)
Females ARIMA (0,1,3)

Table 5.3: Best ARIMA by Nation and Gender

After the calibration step, the paper’s analysis will include numerical and graphical pro-
cessing and presentation of the goodness of fit. To be specific, the study will follow the
approach of out of sample, which denotes the testing step within the field of machine

K

learning. The estimation of parameter parameter is determined using SVD, as for

male and female respectively.

Figure 5.3.1 dashed vertical line shows a separation of the forecasted period compared
to one used in training the LSTM network. As for ARIMA models, it is shown that
the confidence interval within 0.995 level of confidence. In addition to the graphical
check, we can compare the LSTM performance against those of optimum ARIMA in the
testing set before measuring the correctness of the forecasting by calculating the following

measures of statistical goodness of fit; which includes MAE and RMSE:

m-T 2y A2
r -k
A=T+1

MAE = (m—T)

(5.3.1)
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m—T 2
(2) _72(2)
y (&P —k
A=T+1 ( A A >
(m—T)

Table 5.4 illustrates the respective performance of ARIMA and LSTM in terms of their

RMSE =

(5.3.2)

RMSE and MAE by the individual nation and gender. From the results of measures of
goodness of fit and k; plots, we can see that the LSTM network offer excellent perfor-

mances when equated to the traditional ARIMA models.

By analyzing error estimates of MAE and RMSE, Kenya shows the best performance
LSTM concerning the ARIMA model for both tabulated genders. Moreover, by graphical
analysis, the LSTM appears to capture the non-linearity, especially of the future mortality
trends, by showing its good capability of bettering representation by decreasing mortality
dynamics when dealing with the ARIMA model.

Nation Males Females
U.K. MAE RMSE MAE RMSE

KPLSTM 1455 1825 1588  22.58

K% ARIMA 1656 2245 1845 24.45
Kenya  MAE RMSE MAE RMSE

KPLSTM 1852 2235 20.68  24.07
KYARIMA 2085 24.05 21.56 26.86

Table 5.4: LSTM & ARIMA Performances in the testing set for every Nation

Analytically, we have noticed a higher ability of the LSTM when capturing trends of non-
linear without going in an opposite situation, which is an excessive oscillating or parabolic
trend (as well as the latter observed when compared to traditional ANNs). Contrary, the
analysis is showing that ARIMA (p,d, q) method is not effective. This evolution of kt(z) as
per ARIMA models is sometimes experienced out of reach within the confidence interval

levels, as in the U.K. case for both sexes.

Even though ANN is an excellent and outstanding learning algorithm for modeling, it
offers the only point of predictions without indicating any form of their variability. In
addition, the prediction of confidence intervals is a real substantial challenge within the
ANN field. Nevertheless, the LSTM network still demonstrates an excellent candidate to
use when predicting the mortality trend accurately over a long time.

Table 5.4 shows that LSTM indeed over-performs the traditional ARIMA (p,d,q) model
in all stated nations because of its fantastic architecture, which permits learning the vital
influence from historical mortality data and replacing it with high accuracy the future
years. The LSTM network capability is seen easily, particularly for the populations of the

two nations where kt(z) parameter does need to take a protuberant linear trend.
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Forecasting of ARIMA vs LSTM
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Figure 5.3.1: Mortality Prediction Under ARIMA vs LSTM

One remarkable LSTM aspect concerns the probability of achieving optimal predicting
performance without resorting to a prior selection, especially of the time steps. For ex-
ample, we have shown that the determined values of mortality (Figure 5.3.1) from logit-
mortality rates, logitl (x,t) for the Kenyan for males. The ARIMA model offers a trivial
forecasted trend shape when compared to LSTM. The straight line of the future kt(z) val-
ues, which varies over time, produces a fundamental behavior of the predicted shape of

mortality.

On the contrary, the integrated model B with the LSTM has an insignificant gap between
the real and the forecasted values mortality rates. From the smoothness of the curve,
it is easy to prove the capability of LSTM as a better forecast on accurate and big data
compared to the historical ARIMA (p,d,q) model.

5.4 Results

While the complete expectation of life has been increasing steadily globally, many the-
ories have explained the same. However, many actuaries and demographers still don’t
agree on the shape and pace despite the many models used to describe it. These are some
reasons why the non-linear estimation field of the time-dependent parameter in the CBD
model needs to offer a crucial point, improving the model fitting by overlooking signifi-
cant perspectives such as trend forecasting.

The values of MAE and RMSE from Table 5.4, under the LSTM approach, are much
lower when compared to those under the traditional ARIMA models for the UK and
Kenya. The accuracy of the model when forecasting the mortality models is much better

in terms of precision compared to those done on the traditional ARIMA models.
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Chapter 6

Actuarial Valuation of Life Products in

Kenya

This chapter uses the calculated values of SMR incorporated Under Biihlmann’s credibil-
ity approach to value the common Actuarial products such as Annuities and Assurances
sold in the Kenyan market. We compare both with and those without Biithlmann’s credi-
bility incorporated approach. Results have shown that SMR under BCA has higher levels

of precision compared to those without the BCA.

6.1 Life Annuities and Assurance Life Products without
BCA

A prudent selection of the SMR modeling method always constitutes a vital tool in the
pricing and valuation of life insurance products sold in Kenya. From the calculations from
the previous chapter, we apply the obtained cohort mortality forecasts from models A, B,

and C, when calculating premiums payable for the life assurance premiums.

6.1.1 Application of ATC in Kenyan Life Assurance Products

Many Kenyan life assurance and pension firms offer a wide range of life covers sold to

policyholders.

Definition 6.1.1. Let us define the five most common life assurance products sold in the

Kenyan insurance industry are:

1. A,y as the EPV of a whole life assurance of the amount of 1 that is payable instan-

taneously on the death’s year to a life current aged x + 1 during his or her lifetime.
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2. A1+] as the EPV of a temporary endowment assurance of amount one payable at
X n
the end of the death’s year to ultimate life currently aged exactly x within the period

of x+ 1+ n or it death occurs in a period of n years.

3. A ; as the EPVof a pure endowment assurance of an amount one that is payable
x+1:n]
instantaneously on survival of a ultimate life currently aged x + 1 if that the life

survives in a period of n years.

4. A, ;1. as the EPVof a endowment assurance of an amount one that is payable
instantaneously on the death’s year either on survival or death of a life currently

aged x + 1 if the life lives or dies in a period of n years.

5. n/A, as the EPV of a deffered life assurance of the amount of 1 that is payable
instantaneously on the death’s year to a life current aged x defered for n years during

his or her lifetime.

Definition 6.1.2. Let a temporary, pure and endowment assurances mathematically be
defined as;

n—1

L =Y et (MGxingr1en) X (1+0) 70D (6.1.1)
x+1:n] )
n—1
A = | nper1g (1+i) "dx (6.1.2)
x+1:mn]
n=
Acpin =4 +HA (6.1.3)

x+1m]  Xtln]
where np, 14,41 represents the n — year survival probability for a person aged x to year
tp+ 1, while ngyy, 1414, 1s defined as the death probability for age x during the lifetime
of a person to year f, + 1, i is the applied rate of interest during the period of valuation

and if n = 0O for the value of npyy ;41 = 1.

Each of the SMR models used, error measures for the different types of life assurance
products sold in the market are given as:

1 100
MAE"™=20 = — A —A x 100 6.1.4

! 20 ng()' 60+1:20] 610—0—1:20]| (19

A —A
1 & W 610+1'20] 610+1~20]
MAPE"=%0 — — ' ' 100 6.1.5
X 20 ; _260 | A . | X ( )
S=I= 60+1:20]
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6.1.2 Tabulation Illustrations for the Life Assurance Products

A policyholder can buy a life assurance policy without incorporated BCA. Tables 6.1-6.5
shows the expected values of MAE as well as MAPE measures (with ranking order in the
brackets) for 10-year predicted life assurance prices using the actual jump-off SMR rates
for females aged 60—-100 years from 2010 to 2020.

Whole life Assurance
Error A B C
MAE  1.986(1.982) 1.865(1.458) 1.356(1.428)
MAPE 7.235(9.128) 6.367(8.549) 7.286(8.239)

Table 6.1: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted WLA

Table 6.1 above shows the EPV of MAE and MAPE measures with (ranking order in
brackets), predicted whole life assurance with actual jump-off SMR for both genders (60-
100) from 2010 to 2020. In addition, model B and Model C provide better performance
when compared to A when valuing whole life assurance products. It means that the lower
the levels of MAE and MAPE, the better the models when valuing a whole life assurance
product for both genders.

A Term Endowment Life Assurance
Error A B C
MAE  2.129(2.123)  1.125(1.098) 1.288(1.198)
MAPE  8.296(8.001) 6.785(16.675) 6.935(26.763)

Table 6.2: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted WLA

From Table 6.2, we deduce that model B and C offer the best estimates and forecasting
for values as compared to model A for both males and females when valuing term life

assurance products.

A Pure Endowment Life Assurance
Error A B C
MAE  1.844(2. 133) 1.218(1.328) 1.425(1.355)
MAPE  7.956(8.166) 6.825(6.866) 6.986(6.857)

Table 6.3: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted WLA

Using Table 6.3, we deduce that model B and C offer the best estimates and forecasting for
values as compared to model A for both males and females when valuing pure endowment

life assurance products.
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An Endowment Life Assurance
Error A B C
MAE  1.982(2.144) 1.245(1.244) 1.256(1.276)

MAPE 7.966(38.198) 6.866(6.815) 6.988(6.914)

Table 6.4: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted WLA

From Table 6.4, we deduce that model B and E offer the best estimates and forecasting
for values as compared to model A for both males and females when valuing endowment

life assurance products.

A Deffered Endowment Life Assurance
Error A B C
MAE 2.112(32.191)  2.191(1.195) 1.195(1.266)
MAPE 8.222(8.255)  6.825(6.799) 6.252(6.988)

Table 6.5: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted WLA

Using Table 6.5, we deduce that model B and C offer the best estimates and forecasting
for values as compared to model A for both males and females when valuing deffered

endowment life assurance products.

6.1.3 Application of ATC in Kenyan Life Annuities Products

Since the projection of mortality models is normally used in pension mathematics appli-
cations, we use the values to calculate the performance of commonly available life annuity

products.

Definition 6.1.3. Let d, 1., be the EPV of discrete temporary life annuity-due of an
amount one of an insured life aged x for a period of #, + 1, which is payable yearly in
advance for a period of n years so long as insured life survives during the period. The

expected present value denoted as EPV is provided as;

n—1
gy tn] = 3, MPxt1 gyl X (140) 7" (6.1.6)
n=0
< 1
Aepito] =Y, MPxt gt X (140) "D (6.1.7)
n=1

We give an important point to note that equation (6.1.6 )represents expected present value

of discrete temporary life annuity-due of an amount one of an insured life aged x for a
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period of t, + 1, which is payable annually in arrears for a period of n years so long as

insured life survives during the period.

Hence, for purposes of calculations, we apply the obtained values of estimated mortality

rates from A, B, and C, after fitting from the provided data when calculating the EPV of

annuities for lives aged 60-100 with n = 10, with an assumption of an interest rate of

i = 10. As in our study, we apply the expected values of MAE as well as MAPE when

evaluating the expected errors between predicted EPVs and those determined from the

noted rates of mortality for the years 2010-2020. For every mortality models used, error

measures for life annuities are given as:

100

n= 1 -
MAE}™ = — '} |@60+1:20) — d60-+1:201 | x 100
20 x=60

_ 1 100 4 ao] — d .
mapEr=0 - L y 60+1:20] 60+1.201|

— x 100
20 =, ag0+1:20]

6.1.4 Tabulation Illustrations for the Life Annuity Products

On the illustrations on the tables, they are provided as follows;

A Whole Life Annuity
Error A B C
MAE  2.165(2.018) 1.155(1.254) 1.310(1.250)

MAPE 8.198(8.165) 6.850(6.678) 6.904(6.896)

(6.1.8)

(6.1.9)

Table 6.6: EPV of MAE and MAPE measures for Males and Females (in brackets) for a

whole life annuity

A Term Life Annuity
Error A B C
MAE  2.215(2.129) 1.121(1.125) 1.219(1.267)
MAPE 8.366(8.296) 6.830(6.785) 6.958(6.920)

Table 6.7: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10

year predicted temporary life annuity

Remark 6.1.1. Tables 6.6-6.7 shows that models B and A offer the best estimates and

forecasting for values compared to model A for both males and females.
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6.2 Life Annuities and Assurance Life Products Under
BCA

6.2.1 BCA Incorporation in Kenyan Life Assurance Products

For Tabulation and illustrations, we have:

A Whole Life Assurance
Error A B C
MAE  2.255(2.132) 1.155(1.150) 1.223(1.275)
MAPE 8.290(8.268) 6.815(6.844) 6.922(6.858)

z 0.4650 0.4665 0.4770

Table 6.8: EPV of MAE and MAPE measures for Males and Females (in brackets) for
WLA

Table 6.8 deduces that models B and C offer the best estimates and forecasting for values

compared to A for both males and females when valuing whole life assurance.

A Term Endowment life Assurance
Error A B C
MAE  2.005(2.135) 1.128(1.125) 1.185(1.235)
MAPE  8.198(8.388) 6.852(6.785) 6.959(6.945)

V4 0.4565 0.4670 0.4785

Table 6.9: EPV of MAE and MAPE measures for Males and Females (in brackets) for 10
year predicted temporary ELA

From Table 6.9, we deduce that models B and C offer the best estimates and forecasting
for values compared to A for both males and females when valuing temporary or term

endownment life assurance.

A Pure Endowment life Assurance
Error A B C
MAE  2.105(2.110) 1.198(1.125) 1.221(1.265)
MAPE 8.306(8.288) 6.800(6.765) 6.955(6.900)

z 0.5025 0.4985 0.4765

Table 6.10: MAE and MAPE EPV measures for Males and Females (in brackets) for 10
year predicted Pure ELA

Table 6.10, we deduce that models B and C offer the best estimates and forecasting for
values compared to A for both males and females when valuing pure endownment life

assurance.
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An Endowment life Assurance
Error A B C
MAE  2.144(2.100) 1.116(1.139) 1.275(1.269)
MAPE 8.260(8.296) 6.855(6.815) 6.900(6.955)

V4 0.4995 0.4875 0.4845

Table 6.11: MAE and MAPE EPV measures for Males and Females (in brackets) for 10
year predicted Endowment life Assurance

From Table 6.11, we deduce that models B and C offer the best estimates and forecasting
for values compared to A for both males and females when valuing endownment life

assurance.

A Deffered Endowment life Assurance
Error A B C
MAE 2.133(2.193) 1.145(1.118) 1.238(1.285)
MAPE 8.285(8.265) 6.766(6.756) 6.984(6.955)

V4 0.4990 0.4825 0.4970

Table 6.12: EPV of MAE and MAPE measures with (ranking order in brackets) for 10
year predicted Deffered ELA

From Table 6.12, we deduce that models B and C offer the best estimates and forecast-
ing for values compared to model A for both males and females when valuing deffered

endownment life assurance.

A life assurance product is mostly used when dealing with pension payments or those

death benefits that are payable upon attaining a particular age in the future.

6.2.2 Application of BCA Incorporated in Kenyan Life Annuity Prod-

ucts

For tabulations and illustrations, we have;

A Whole Life Annuity Product
Error A B C
MAE 2.144(2.108) 1.249(1.146)  1.255(1.239)
MAPE  8.320(8.259) 6.820(6.726) 6.875(26.965)
Z 0.4850 0.4980 0.5010

Table 6.13: EPV of MAE and MAPE measures for Males and Females (in brackets) for a
Whole life annuity

From Table 6.13, we deduce that models B and C offer the best estimates and forecasting

for values compared to A for both males and females.
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A Term life Annuity Product
Error A B C
MAE  2.144(2.136) 1.220(11.125) 1.255(1.303)
MAPE  7.965(8.305) 6.385(6.802)  6.955(6.950)

zZ 0.4890 0.4855 0.4860

Table 6.14: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted temporary life annuity

From Table 6.14, we deduce that models B and C offer the best estimates and forecasting
for values compared to A for both males and females. An endowment life assurance
product is mostly used when dealing with pension payments or those death benefits that

are payable upon attaining a particular age in the future, say n = 10 years.

6.3 A Comparison of Assurances and Annuities in Kenya
and The UK Data

We compare the values from the Kenyan Mortality data and the UK data under BC com-
pared with the original papers. It should help us determine how the model choice can
make a difference when considering the different levels of SMR derived from the char-
acteristics of the population such as Kenya or the UK. We note the value of Z, which is
Z= ZZU_KK with U K=United Kingdom and K=Kenya.

6.3.1 Life assurances in Kenya vs the UK under BCA

The tables illustrate the difference in different valuations of life assurance products sold

in the markets of both countries. They include the following:

A whole life Assurance Product
Error A B C
MAE (Kenya)  2.225(2.100) 1.150(11.205) 1.285(1.180)
MAE (UK) 2.182(2.116)  1.128(1.290)  1.299(1.125)
MAPE (Kenya) 8.356(8.296) 6.697(6.680)  6.898(6.730)
MAPE (UK) 8.452(8.296)  6.825(6.726)  6.898(6.850)
Z 0.4650 0.4665 0.4770

Table 6.15: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted WLA

Table 6.15, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.
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A Term Endowment  Assurance Product
Error A B C
MAE (Kenya)  1.955(2.100) 1.018(1.102) 1.185(1.126)
MAE (UK) 2.129(2.130) 1.015(1.095) 1.196(1.132)
MAPE (Kenya) 8.128(8.126) 6.452(6.765) 6.185(6.805)
MAPE (UK) 8.093(8.225) 6.375(6.678) 6.252(6.753)
z 0.4565 0.4670 0.4785

Table 6.16: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted Temporary ELA

Table 6.16, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.

A Pure Endowment  Assurance Product
Error A B C
MAE (Kenya)  2.013(2.115) 1.152(1.016) 1.174(1.226)
MAE (UK) 2.152(2.118) 1.143(1.018) 1.183(1.235)
MAPE (Kenya) 7.925(8.125) 6.658(6.676) 6.855(6.894)
MAPE (UK) 7.996(8.165) 6.715(6.565) 6.863(6.911)
z 0.5025 0.4985 0.4765

Table 6.17: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted Pure ELA

Table 6.17, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.

An Endowment  Assurance Product
Error A B C
MAE (Kenya) 2.432(2.115) 1.115(1.235) 1.126(1.325)
MAE (UK) 2.315(2.125) 1.135(1.215) 1.129(1.326)
MAPE (Kenya) 8.125(8.126) 6.679(6.879) 6.851(6.785)
MAPE (UK) 8.142(8.186) 6.695(6.875) 6.900(6.820)
V4 0.4995 0.4875 0.4845

Table 6.18: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted ELA

Table 6.18, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.
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A Deffered Endowment Assurance Product
Error A B C
MAE (Kenya)  2.215(2.000)  1.115(1.134) 1.318(1.201)
MAE (UK) 2.225(32.095) 1.112(1.155) 1.342(1.208)
MAPE (Kenya) 8.320(8.155)  6.659(6.575) 6.895(6.785)
MAPE (UK) 8.395(8.162) 6.661(6.588) 6.935(6.800)
z 0.4990 0.4825 0.4970

Table 6.19: EPV of MAE and MAPE measures for Males and Females (in brackets) for
10 year predicted Deffered ELA

Table 6.19, we deduce that models B and E offer the best estimates and forecasting for
values compared to A for both males and females. A life assurance product is mostly

used when dealing with pension payments or those death benefits that are payable upon

attaining a particular age in the future.

6.3.2 Life annuities in Kenya vs the UK under BCA

For tabulations and illustrations;

A whole life Annuity Product
Error A B C
MAE (Kenya)  1.485(1.820) 1.024(1.228) 1.324(1.200)
MAE (UK) 1.505(1.919) 1.085(1.230) 1.328(1.288)
MAPE (Kenya) 6.515(8.124) 6.280(6.785) 6.350(6.925)
MAPE (UK)  6.825(8.138) 6.305(6.785) 6.695(6.898)
Z 0.4850 0.4980 0.5010

Table 6.20: EPV of MAE and MAPE measures for Males and Females (in brackets) for

10 year predicted Whole life annuity

Table 6.20, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.

A Term life Annuity Product
Error A B C
MAE (Kenya)  2.025(1.995) 1.305(1.225) 1.380(1.255)
MAE (UK) 2.069(1.925) 1.312(1.250) 1.323(1.285)
MAPE (Kenya) 8.424(7.965) 6.815(6.980) 6.895(6.630)
MAPE (UK) 8.468(7.929) 6.835(6.985) 6.930(6.685)
z 0.4890 0.4855 0.4860

Table 6.21: EPV of MAE and MAPE measures for Males and Females (in brackets) for

10 year predicted temporary life annuity
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Table 6.21, we deduce that models B and C offer the best estimates and forecasting for

values compared to A for both males and females.

Remark 6.3.1. Table 6.10-6.21 shows the best estimates when valuing whole-life and

temporary life annuity products.

6.4 Results

The respective life assurance and annuities are calculated to show higher accuracy levels
than cases when the values are without the BCA on the incorporation. From the illustra-
tion on the Kenyan data, BCA has yielded a better forecast for both males and genders
(from the values of MAE and MAPE measures) compared to the A, B, and C models.

The performance is also calculated on life insurance-related products as well as appli-
cations. In addition, the applicability of the modeling approaches was comparatively

illustrated on Kenyans data.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In chapter 3, we modelled SMR Stochastically under the three-factor structure of the
Age-Time-Cohort Structure for the Kenyan Population using the classical mortality mod-
els by ascertaining their respective properties under Collateral data. Our results showed
that Kenyan Data do not exhibit the Normality property on the randomness used in the

classical models; thus NIG proposition of modeling the disturbances of the SMR models.

The precision of the short-term forecasts or prediction outcomes was assessed by both the
MAE as well as MAPE error values. All Backtesting results have shown that models B

and C for males and A and B for females offer the most realistic short-term forecasts.

However, the identified parameter uncertainty also was in many cases (more evident in
B for males and A for females), indicating the equivalent models’ possible unsuitability,

especially for long-term forecasts.

In chapter 4, we incorporated the Bithlmann Credibility Approach to Stochastic model-
ing of SMR while considering the NIG randomness assumptions. We have determined
risk measures that show an improvement in the predictability of the models under the

Biithlmann Credibility Approach, thus solving the data paucity problem.

The forecasting and pricing errors for every age and year become lower simultaneously
for all the three applied mortality models, which applies to incorporating the BCA. Conse-
quently, we conclude that the AMAPE and RMSE measures of precisions from the three
unique mortality models can always be converted to a much lower and more consistent
level whenever incorporating this BCA, as shown in the tables (4.7-4.9).

Furthermore, incorporation of the concept of BC into modern mortality models as a way
of improving its forecasting and accuracy performance is limited to neither of the above
used three mortality models nor any other common Normal assumptions, especially on

the model error distributions as well as the time trend randomness or error(s).
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In chapter 5, we improved the forecasting ability of the SMR models by using the Deep
Learning technique. The forecasting precision of the Models is more accurate when com-
pared to traditional statistical methods. The results should shift more researcher’s atten-

tion to DL forecasting techniques compared to classical statistical methods.

We have done a deep learning CBD integrated model based on an RNN possessing LSTM

architecture used to predict the future index values of the parameter, kt(z)

. This approach
has shown very high precision levels when modeling mortality trends and forecasted val-

ues instead of canonical ARIMA see in Figure (5.3.1).

In addition, LSTM has excellent features that offer more accurate forecasting while de-
creasing mortality trends over time than the best conventional ARIMA (p,d,q) process.
Deep learning integrated systematic mortality risk modeling improves the accuracy of the

models by approximately 15% for the two countries.

Ultimately, we have valued the Expected Present Value of standard Assurance and Annu-

ities under the Integrated Bithlmann Credibility Approach for Kenyan Population.

The EPV of Assurance and Annuities under the Biihlmann Credibility Approach are more
precise than those under Classical models for Kenyan data. We can conclude that, in ag-
gregate, credibility modeling incorporated methods performed much better than the con-
ventional models of A, B, and C, thus deciding to offer better options during forecasting
the SMR.

For comparability purposes, using BCA applied to the Kenyan mortality dataset has im-
proved the modeling and forecasting of SMR compared to the UK data. The results have
played an essential role in determining modern actuarial products sold in the Kenyan
market to make these products affordable for the Kenyan population, especially for low-

income earning persons.

7.2 Recommendations

7.2.1 Government Policy

Government regulators like IRA and RBA, given a mandate by the Kenyan constitution to
regulate pension and assurance products sold in Kenya, should institute more policies to
allow insurance firms to use the Bithimann Credibility Approach when calculating SMR
in case of data paucity.

These policy adjustments will reduce the cost of these products, thus enhancing coverage
among Kenyans. In addition, it will help help to reduce losses incurred from wrong
estimations, thus reducing ultimate ruin probabilities for many insurance and pension

firms.
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The research has also shown that statistical models seem less accurate than machine
learning (deep learning algorithms) during forecasting of SMR. The government agencies
should adopt the application of the deep learning approach. It provides a better projection

and is crucial in planning government activities for Kenyans.

Ultimately, deep learning techniques can help deal with the dynamic SMR instead of
using crude mortality estimations, leading to under-estimations or over-estimations during

modeling.

7.2.2 Areas of Further Research

This study has done Stochastic Modeling of Systematic Mortality Risk under Collateral
Data and Its Applications. Further research can be done in the following ways;

* The research can be improved by the incorporation of the Bithlmann-Straub Credi-
bility Model. Relaxing this means the independence of lives during modeling sys-
tematic mortality risk is not considered. This result is significant, especially when
looking at the countries with similar demographic characteristics. In addition, the
modeling of a four-factor SMR can play an essential role in improving the precision

of the results.

* Bidirectional LSTM model where the design of BLSTM is such that it can ac-
cess both the past as well as future information through the combination of both
a forward hidden layer with a backward hidden layer. In addition, it can access
long-range information in two opposite directions: one from bottom to top and the
other processing the sequential data from top to bottom, which is likely to increase

the precision of the results.

* The use of multi-level hierarchical credibility modeling using the multiple regres-
sion method when modeling mortality data of multi-population in a hierarchical

Biihlmann-Straub form is another vital area of study for further study.

» With the introduction of financial futures traded in the Nairobi Securities Exchange
market, Actuarial Mortality Risk management can be hedged using financial deriva-
tives to deal with SMR. Hedging SMR under financial derivatives can form a basis

for future research, especially for emerging markets like Kenya.
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Appendices

Appendix A: Kenyan Complete Life Table For Assured Mortality Lives

For this study, the new complete life table that we developed from the benchmark 2010 life table
is summarized in the table below. All analyses of the research in terms of figures and tables in the
thesis are developed based on these extracts for both males and females for the Kenyan population
for the years 2020 and 2050. The Kenyan Male and Female population benchmark as per the year

2020 is summarized in Table 7.1 and 7.2 , respectively, as follows;

It is important to note that the force of mortality defined as p(x) and probability of death denoted
by ¢(x) is almost similar at the young ages of Kenyan from 20 to 35 years of age, but changes
sharply for the old ages from 85 to 100 years old. This means that the instantaneous death rate and
probability of death are almost the same at the age of 20 to 40 but differ significantly from 85 to
100. This is attributed to many causes of death in old ages, such as less pandemic resistance like
Covid-19.

These other old age-related health complications are uncommon among the younger Kenyan, as
illustrated in both Males and Females as in Table 7.1 and 7.2, respectively. In addition, the force of
mortality increases for both males and females as a life ages from 85 to 100 years when compared
to the probability of death.

From the below tables, we have shown an Extract of the Complete life Table for Males and Fe-
males in Kenya as of 2020, as shown in Table 7.1 and Table 7.2, respectively. The Extract of the
Complete life Table for Males and Females in Kenya as of 2030 is shown in Table 7.3 and Table
7.4, respectively.
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Kenyan Female Life Table
Age() | u® [ g | my) | 1) | dw) | LE) | TR | eW
20 0.00038 | 0.00038 | 0.00038 | 100,000 | 38 99,981 | 5,378,188 | 53.7818
21 0.00063 | 0.00063 | 0.00063 | 99,962 63 99,931 | 5,278,207 | 52.8021
22 0.00088 | 0.00089 | 0.00088 | 99,899 88 99,855 | 5,178,277 | 51.8351
23 0.00102 | 0.00102 | 0.00102 | 99,811 102 | 99,760 | 5,078,422 | 50.8804
24 0.00090 | 0.00090 | 0.00090 | 99,709 90 | 99,664 | 4,978,662 | 49.9319
25 0.00041 | 0.00041 | 0.00041 | 99,619 41 99,599 | 4,878,998 | 48.9766
26 0.00059 | 0.00060 | 0.00059 | 99,578 59 | 99,549 | 4,779,399 | 47.9965
27 0.00073 | 0.00074 | 0.00073 | 99,519 73 99,483 | 4,679,851 | 47.0247
28 0.00085 | 0.00084 | 0.00085 | 99,446 84 | 99,404 | 4,580,368 | 46.0588
29 0.00090 | 0.00090 | 0.00090 | 99,362 89 | 99,318 | 4,480,964 | 45.0974
30 0.00092 | 0.00092 | 0.00092 | 99,273 91 99,228 | 4,381,647 | 44.1373
31 0.00095 | 0.00095 | 0.00095 | 99,182 94 | 99,135 | 4,282,419 | 43.1774
32 0.00100 | 0.00100 | 0.00100 | 99,088 99 | 99,039 | 4,183,284 | 42.2179
33 0.00108 | 0.00108 | 0.00108 | 98,989 107 | 98,936 | 4,084,246 | 41.2596
34 0.00117 | 0.00117 | 0.00117 | 98,882 116 | 98,824 | 3,985,310 | 40.3037
35 0.00125 | 0.00126 | 0.00126 | 98,766 124 | 98,704 | 3,886,486 | 39.3504
36 0.00137 | 0.00137 | 0.00137 | 98,642 135 | 98,575 | 3,787,782 | 38.3993
37 0.00145 | 0.00146 | 0.00145 | 98,507 143 | 98,436 | 3,689,208 | 37.4512
38 0.00157 | 0.00156 | 0.00157 | 98,364 154 | 98,287 | 3,590,772 | 36.5049
39 0.00165 | 0.00165 | 0.00165 | 98,210 162 | 98,129 | 3,492,485 | 35.5614
40 0.00175 | 0.00174 | 0.00175 | 98,048 186 | 97,963 | 3,394,356 | 34.6193
85 0.17918 | 0.11744 | 0.17865 | 14,959 | 2454 | 13,732 | 64,361 4.3026
86 0.18876 | 0.13119 | 0.18818 | 12,505 | 2151 | 11,430 | 50,629 4.0486
87 0.20332 | 0.14660 | 0.20264 | 10,354 | 1905 | 9,402 39,199 3.7858
88 0.21933 | 0.16382 | 0.21852 | 8,449 1664 | 7,617 29,798 3.5267
89 0.24080 | 0.18301 | 0.23964 | 6,785 1452 | 6,059 22,181 3.2692
90 0.26390 | 0.20436 | 0.26244 | 5,333 1237 | 4,714 16,122 3.0231
91 0.28890 | 0.22552 | 0.28702 | 4,096 1028 | 3,582 11,408 2.7853
92 0.32082 | 0.24868 | 0.31792 | 3,068 842 | 2,647 7,826 2.5512
93 0.35809 | 0.27384 | 0.35573 | 2,226 672 1,890 5,179 2.3266
94 0.40354 | 0.30143 | 0.39829 | 1,554 516 1,296 3,289 2.1169
95 0.45433 | 0.33125 | 0.44623 | 1,038 379 848 1,993 1.9210
96 0.51184 | 0.36352 | 0.50029 659 264 527 1,145 1.7373
97 0.57620 | 0.39837 | 0.56143 395 173 309 618 1.5627
98 0.64909 | 0.43590 | 0.63065 222 106 169 309 1.3922
99 0.74625 | 0.47624 | 0.70933 116 61 85 140 1.2141
100 | 0.99999 | 0.51949 | 0.45455 55 25 55 55 0.9989

Table 7.1: An Extract of the new life Table for Males in Kenya in 2030
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Kenyan Female Life Table
Age() | u® [ g | my) | 1) | dw) | LE) | TR | eW
20 0.00038 | 0.00038 | 0.00038 | 100,000 | 38 99,981 | 5,378,188 | 53.7818
21 0.00063 | 0.00063 | 0.00063 | 99,962 63 99,931 | 5,278,207 | 52.8021
22 0.00088 | 0.00089 | 0.00088 | 99,899 88 99,855 | 5,178,277 | 51.8351
23 0.00102 | 0.00102 | 0.00102 | 99,811 102 | 99,760 | 5,078,422 | 50.8804
24 0.00090 | 0.00090 | 0.00090 | 99,709 90 | 99,664 | 4,978,662 | 49.9319
25 0.00041 | 0.00041 | 0.00041 | 99,619 41 99,599 | 4,878,998 | 48.9766
26 0.00059 | 0.00060 | 0.00059 | 99,578 59 | 99,549 | 4,779,399 | 47.9965
27 0.00073 | 0.00074 | 0.00073 | 99,519 73 99,483 | 4,679,851 | 47.0247
28 0.00085 | 0.00084 | 0.00085 | 99,446 84 | 99,404 | 4,580,368 | 46.0588
29 0.00090 | 0.00090 | 0.00090 | 99,362 89 | 99,318 | 4,480,964 | 45.0974
30 0.00092 | 0.00092 | 0.00092 | 99,273 91 99,228 | 4,381,647 | 44.1373
31 0.00095 | 0.00095 | 0.00095 | 99,182 94 | 99,135 | 4,282,419 | 43.1774
32 0.00100 | 0.00100 | 0.00100 | 99,088 99 | 99,039 | 4,183,284 | 42.2179
33 0.00108 | 0.00108 | 0.00108 | 98,989 107 | 98,936 | 4,084,246 | 41.2596
34 0.00117 | 0.00117 | 0.00117 | 98,882 116 | 98,824 | 3,985,310 | 40.3037
35 0.00125 | 0.00126 | 0.00126 | 98,766 124 | 98,704 | 3,886,486 | 39.3504
36 0.00137 | 0.00137 | 0.00137 | 98,642 135 | 98,575 | 3,787,782 | 38.3993
37 0.00145 | 0.00146 | 0.00145 | 98,507 143 | 98,436 | 3,689,208 | 37.4512
38 0.00157 | 0.00156 | 0.00157 | 98,364 154 | 98,287 | 3,590,772 | 36.5049
39 0.00165 | 0.00165 | 0.00165 | 98,210 162 | 98,129 | 3,492,485 | 35.5614
40 0.00175 | 0.00174 | 0.00175 | 98,048 186 | 97,963 | 3,394,356 | 34.6193
85 0.17918 | 0.11744 | 0.17865 | 14,959 | 2454 | 13,732 | 64,361 4.3026
86 0.18876 | 0.13119 | 0.18818 | 12,505 | 2151 | 11,430 | 50,629 4.0486
87 0.20332 | 0.14660 | 0.20264 | 10,354 | 1905 | 9,402 39,199 3.7858
88 0.21933 | 0.16382 | 0.21852 | 8,449 1664 | 7,617 29,798 3.5267
89 0.24080 | 0.18301 | 0.23964 | 6,785 1452 | 6,059 22,181 3.2692
90 0.26390 | 0.20436 | 0.26244 | 5,333 1237 | 4,714 16,122 3.0231
91 0.28890 | 0.22552 | 0.28702 | 4,096 1028 | 3,582 11,408 2.7853
92 0.32082 | 0.24868 | 0.31792 | 3,068 842 | 2,647 7,826 2.5512
93 0.35809 | 0.27384 | 0.35573 | 2,226 672 1,890 5,179 2.3266
94 0.40354 | 0.30143 | 0.39829 | 1,554 516 1,296 3,289 2.1169
95 0.45433 | 0.33125 | 0.44623 | 1,038 379 848 1,993 1.9210
96 0.51184 | 0.36352 | 0.50029 659 264 527 1,145 1.7373
97 0.57620 | 0.39837 | 0.56143 395 173 309 618 1.5627
98 0.64909 | 0.43590 | 0.63065 222 106 169 309 1.3922
99 0.74625 | 0.47624 | 0.70933 116 61 85 140 1.2141
100 | 0.99999 | 0.51949 | 0.45455 55 25 55 55 0.9989

Table 7.2: An Extract of the new life Table for Females in Kenya in 2030

95




Kenyan Female Life Table
Age() | u® [ g | my) | 1) | dw) | LE) | TR | eW
20 0.00038 | 0.00038 | 0.00038 | 100,000 | 38 99,981 | 5,378,188 | 53.7818
21 0.00063 | 0.00063 | 0.00063 | 99,962 63 99,931 | 5,278,207 | 52.8021
22 0.00088 | 0.00089 | 0.00088 | 99,899 88 99,855 | 5,178,277 | 51.8351
23 0.00102 | 0.00102 | 0.00102 | 99,811 102 | 99,760 | 5,078,422 | 50.8804
24 0.00090 | 0.00090 | 0.00090 | 99,709 90 | 99,664 | 4,978,662 | 49.9319
25 0.00041 | 0.00041 | 0.00041 | 99,619 41 99,599 | 4,878,998 | 48.9766
26 0.00059 | 0.00060 | 0.00059 | 99,578 59 | 99,549 | 4,779,399 | 47.9965
27 0.00073 | 0.00074 | 0.00073 | 99,519 73 99,483 | 4,679,851 | 47.0247
28 0.00085 | 0.00084 | 0.00085 | 99,446 84 | 99,404 | 4,580,368 | 46.0588
29 0.00090 | 0.00090 | 0.00090 | 99,362 89 | 99,318 | 4,480,964 | 45.0974
30 0.00092 | 0.00092 | 0.00092 | 99,273 91 99,228 | 4,381,647 | 44.1373
31 0.00095 | 0.00095 | 0.00095 | 99,182 94 | 99,135 | 4,282,419 | 43.1774
32 0.00100 | 0.00100 | 0.00100 | 99,088 99 | 99,039 | 4,183,284 | 42.2179
33 0.00108 | 0.00108 | 0.00108 | 98,989 107 | 98,936 | 4,084,246 | 41.2596
34 0.00117 | 0.00117 | 0.00117 | 98,882 116 | 98,824 | 3,985,310 | 40.3037
35 0.00125 | 0.00126 | 0.00126 | 98,766 124 | 98,704 | 3,886,486 | 39.3504
36 0.00137 | 0.00137 | 0.00137 | 98,642 135 | 98,575 | 3,787,782 | 38.3993
37 0.00145 | 0.00146 | 0.00145 | 98,507 143 | 98,436 | 3,689,208 | 37.4512
38 0.00157 | 0.00156 | 0.00157 | 98,364 154 | 98,287 | 3,590,772 | 36.5049
39 0.00165 | 0.00165 | 0.00165 | 98,210 162 | 98,129 | 3,492,485 | 35.5614
40 0.00175 | 0.00174 | 0.00175 | 98,048 186 | 97,963 | 3,394,356 | 34.6193
85 0.17918 | 0.11744 | 0.17865 | 14,959 | 2454 | 13,732 | 64,361 4.3026
86 0.18876 | 0.13119 | 0.18818 | 12,505 | 2151 | 11,430 | 50,629 4.0486
87 0.20332 | 0.14660 | 0.20264 | 10,354 | 1905 | 9,402 39,199 3.7858
88 0.21933 | 0.16382 | 0.21852 | 8,449 1664 | 7,617 29,798 3.5267
89 0.24080 | 0.18301 | 0.23964 | 6,785 1452 | 6,059 22,181 3.2692
90 0.26390 | 0.20436 | 0.26244 | 5,333 1237 | 4,714 16,122 3.0231
91 0.28890 | 0.22552 | 0.28702 | 4,096 1028 | 3,582 11,408 2.7853
92 0.32082 | 0.24868 | 0.31792 | 3,068 842 | 2,647 7,826 2.5512
93 0.35809 | 0.27384 | 0.35573 | 2,226 672 1,890 5,179 2.3266
94 0.40354 | 0.30143 | 0.39829 | 1,554 516 1,296 3,289 2.1169
95 0.45433 | 0.33125 | 0.44623 | 1,038 379 848 1,993 1.9210
96 0.51184 | 0.36352 | 0.50029 659 264 527 1,145 1.7373
97 0.57620 | 0.39837 | 0.56143 395 173 309 618 1.5627
98 0.64909 | 0.43590 | 0.63065 222 106 169 309 1.3922
99 0.74625 | 0.47624 | 0.70933 116 61 85 140 1.2141
100 | 0.99999 | 0.51949 | 0.45455 55 25 55 55 0.9989

Table 7.3: An Extract of the new life Table for Males in Kenya in 2040

96




Kenyan Female Life Table
Age() | u® [ g | my) | 1) | dw) | LE) | TR | eW
20 0.00038 | 0.00038 | 0.00038 | 100,000 | 38 99,981 | 5,378,188 | 53.7818
21 0.00063 | 0.00063 | 0.00063 | 99,962 63 99,931 | 5,278,207 | 52.8021
22 0.00088 | 0.00089 | 0.00088 | 99,899 88 99,855 | 5,178,277 | 51.8351
23 0.00102 | 0.00102 | 0.00102 | 99,811 102 | 99,760 | 5,078,422 | 50.8804
24 0.00090 | 0.00090 | 0.00090 | 99,709 90 | 99,664 | 4,978,662 | 49.9319
25 0.00041 | 0.00041 | 0.00041 | 99,619 41 99,599 | 4,878,998 | 48.9766
26 0.00059 | 0.00060 | 0.00059 | 99,578 59 | 99,549 | 4,779,399 | 47.9965
27 0.00073 | 0.00074 | 0.00073 | 99,519 73 99,483 | 4,679,851 | 47.0247
28 0.00085 | 0.00084 | 0.00085 | 99,446 84 | 99,404 | 4,580,368 | 46.0588
29 0.00090 | 0.00090 | 0.00090 | 99,362 89 | 99,318 | 4,480,964 | 45.0974
30 0.00092 | 0.00092 | 0.00092 | 99,273 91 99,228 | 4,381,647 | 44.1373
31 0.00095 | 0.00095 | 0.00095 | 99,182 94 | 99,135 | 4,282,419 | 43.1774
32 0.00100 | 0.00100 | 0.00100 | 99,088 99 | 99,039 | 4,183,284 | 42.2179
33 0.00108 | 0.00108 | 0.00108 | 98,989 107 | 98,936 | 4,084,246 | 41.2596
34 0.00117 | 0.00117 | 0.00117 | 98,882 116 | 98,824 | 3,985,310 | 40.3037
35 0.00125 | 0.00126 | 0.00126 | 98,766 124 | 98,704 | 3,886,486 | 39.3504
36 0.00137 | 0.00137 | 0.00137 | 98,642 135 | 98,575 | 3,787,782 | 38.3993
37 0.00145 | 0.00146 | 0.00145 | 98,507 143 | 98,436 | 3,689,208 | 37.4512
38 0.00157 | 0.00156 | 0.00157 | 98,364 154 | 98,287 | 3,590,772 | 36.5049
39 0.00165 | 0.00165 | 0.00165 | 98,210 162 | 98,129 | 3,492,485 | 35.5614
40 0.00175 | 0.00174 | 0.00175 | 98,048 186 | 97,963 | 3,394,356 | 34.6193
85 0.17918 | 0.11744 | 0.17865 | 14,959 | 2454 | 13,732 | 64,361 4.3026
86 0.18876 | 0.13119 | 0.18818 | 12,505 | 2151 | 11,430 | 50,629 4.0486
87 0.20332 | 0.14660 | 0.20264 | 10,354 | 1905 | 9,402 39,199 3.7858
88 0.21933 | 0.16382 | 0.21852 | 8,449 1664 | 7,617 29,798 3.5267
89 0.24080 | 0.18301 | 0.23964 | 6,785 1452 | 6,059 22,181 3.2692
90 0.26390 | 0.20436 | 0.26244 | 5,333 1237 | 4,714 16,122 3.0231
91 0.28890 | 0.22552 | 0.28702 | 4,096 1028 | 3,582 11,408 2.7853
92 0.32082 | 0.24868 | 0.31792 | 3,068 842 | 2,647 7,826 2.5512
93 0.35809 | 0.27384 | 0.35573 | 2,226 672 1,890 5,179 2.3266
94 0.40354 | 0.30143 | 0.39829 | 1,554 516 1,296 3,289 2.1169
95 0.45433 | 0.33125 | 0.44623 | 1,038 379 848 1,993 1.9210
96 0.51184 | 0.36352 | 0.50029 659 264 527 1,145 1.7373
97 0.57620 | 0.39837 | 0.56143 395 173 309 618 1.5627
98 0.64909 | 0.43590 | 0.63065 222 106 169 309 1.3922
99 0.74625 | 0.47624 | 0.70933 116 61 85 140 1.2141
100 | 0.99999 | 0.51949 | 0.45455 55 25 55 55 0.9989

Table 7.4: An Extract of the new life Table for Females in Kenya in 2040
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Appendix B: R Codes Used in the Thesis

## install.packages("StMoMo")

#### Model definition ##

LC <- function(ax, bx, kt, bOx, gc, wxt, ages)

cl <- mean(kt[1, ], na.rm = TRUE)

c2 <- sum(bx[, 1], na.rm = TRUE) list(ax = ax + c1 * bx, bx =bx /c2, kt =c2 * (kt - cl)) }

LC <- StMoMo(link = "logit", staticAgeFun = TRUE, periodAgeFun = "NP", constFun = con-
stLC)

## Define Lee-Carter model using predefined function

LC <- Ie(link = "logit")

## Define CBD model from scratch

CBD <- StMoMo(link = "logit", staticAgeFun = FALSE, periodAgeFun = c("1", f2))
## Define LR model using predefined functions

LR <- rh(link = "logit", cohortAgeFun = "1")

X <- ages t <- l:nYears

¢ <- (1 - tail(ages, 1)):(nYears - ages[1])

gc <- gc - phi[1] - phi[2] * ¢ - phi[3] * ¢ * 2

kt[2, ] <- kt[2, ] + 2 * phi[3] * t

kt[1, ] <- kt[1, ] + phi[2] * t + phi[3] * (t * 2 - 2 * xbar * t)

ax <- ax + phi[1] - phi[2] * x + phi[3] * x " 2

ci <- rowMeans(kt, na.rm = TRUE)

ax <- ax + ci[1] + ci[2] * (xbar - x)

kt[1, ] <- kt[1, ] - ci[1]

## Fit LC, CBD, and LR models

KEMalelniData <- central2initial(KEMaleData)

ages.fit <- 60:100

LCfit <- fit(LC, data = KEMalelniData, ages.fit = ages.fit, wxt = wxt)
CBDfit <- fit(CBD, data = KEMalelniData, ages.fit = ages.fit, wxt = wxt)
LRfit <- fit(LR, data = KEMalelniData, ages.fit = ages.fit, wxt = wxt)
## Fit LR model using the LC parameters as starting values

LRfit <- fit(LR, data = KEMalelniData, ages.fit = ages.fit, wxt = wxt, start.ax = LCfit$ax, start.bx
= LCfit$bx, start.kt = LCfit$kt)

#### Plotting of estimated parameters ##
## Plot LC model
plot(LCfit, nCol = 3)
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## Plot CBD model

plot(CBDfit, parametricbx = FALSE)

## Plot LR model

plot(LRfit, parametricbx = FALSE, nCol = 3)

## Compute deviance residuals for LC, CBD and LR
LCres <- residuals(LCfit)

CBDres <- residuals(CBDfit)

## Colour map of residuals for LC

plot(LCres, type = "colourmap", reslim = c¢(-3.5, 3.5))
## Colour map of residuals for CBD

plot(CBDres, type = "colourmap", reslim = ¢(-3.5, 3.5))
## Colour map of residuals for RH

LRres <- residuals(RHfit)

plot(RHres, type = "colourmap", reslim = ¢(-3.5, 3.5))
## Scatter plot of residuals for LC

plot(LCres, type = "scatter", reslim = c(-3.5, 3.5))

## Scatter plot of residuals for CBD

plot(CBDres, type = "scatter", reslim = c(-3.5, 3.5))
#### AIC and BIC for the models ##

logLik(LCfit), AIC(LCfit), BIC(LCfit)

## CBD

logLik(CBDfit), AIC(CBDfit), BIC(CBDfit)

## LR

logLik(APCfit), AIC(APCfit), BIC(APCfit)

## Forecast all models ##

LCfor <- forecast(LCfit, h = 50)

CBDfor <- forecast(CBDfit, h = 50)

LRfor <- forecast(LRfit, h = 50, gc.order = c(1, 1, 0))
plot(LRfor, only.kt = TRUE)

## Plot period index forecast of LC model
plot(LCfor, only.kt = TRUE) plot(LCforArima, only.kt = TRUE)
## Plot cohort index forecast of LR model
plot(LRfor, only.gc = TRUE)

#### Simulation ##

## Simulate all models set.seed(1234)
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nsim <- 500

LCsim <- simulate(LCfit, nsim = nsim, h = 50)

CBDsim <- simulate(CBDfit, nsim = nsim, h = 50)

LRsim <- simulate(LRfit, nsim = nsim, h = 50, gc.order = c(1, 1, 0))

## Plot simulation trajectories###

par(mfrow=c(1, 3))

plot(LRfit$years, LRfit$kt[1, ], xlim = range(LRfit$years, LRsim$kt.s$years),

ylim = range(LRfit$kt, LRsim$kt.s$sim[1, , 1:20]), type = "1", xlab = "year", ylab = "kt",
main = "Period index") matlines(LRsim$kt.s$years, LRsim$kt.s$sim[1, , 1:20], type = "1", Ity =
1)

## Plot cohort index

plot(LRfit$cohorts, LRfit$gc, xlim = range(LRfit$cohorts, LRsim$gc.s$cohorts),
ylim = range(LRfit$gc, LRsim$gc.s$sim[, 1:20], na.rm = TRUE), type = "1",

xlab = "year", ylab = "kt", main = "Cohort index (ARIMA(1,1,0) with drift)")
fan(t(LCsim$rates["65", , 1), start = 2020, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("black”, "white")), In = NULL)
fan(t(LCsim$rates["75", , 1), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("red", "white")), In = NULL)
fan(t(LCsim$rates["85", , 1), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("blue", "white")), In = NULL)

## Fanchart of q(x,t) for CBD model

matplot(CBDfit$years, t(gxt[c("65", "75", "85"), 1),

xlim = ¢(2010, 2030), ylim = ¢(0.0025, 0.2), pch = 20, col = "black”",

log ="y", xlab = "year", ylab = "mortality rate (log scale)")
fan(t(CBDsimSrates["65", , 1), start = 2020, probs = probs, n.fan =4,

fan.col = colorRampPalette(c("black”, "white")), In = NULL)
fan(t(CBDsimSrates["75", , 1), start = 2020, probs = probs, n.fan =4,

text(2020, gxt[c("65", "75", "85"), "2020"], labels = c("x = 65", "x = 75", "x = 85"))
## Fanchart of q(x,t) for LR model

matplot(LRfit$years, t(gxt[c("65", "75", "85"), 1),

xlim = ¢(2010, 2020), ylim = ¢(0.0025, 0.2), pch = 20, col = "black",

log ="y", xlab = "year", ylab = "mortality rate (log scale)") f
an(t(LRsimSrates["65", , 1), start = 2012, probs = probs, n.fan =4,

fan.col = colorRampPalette(c("black”, "white")), In = NULL)

text(2020, gxt[c("65", "75", "85"), "2030"], labels = c("x = 65", "x = 75", "x = 85"))
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## Use of function extractCohort

par(mfrow = c(1, 1))

plot(55:61, extractCohort(fitted(LCfit, type = "rates"), cohort = 1950),

type = "1", log ="y", xlab = "age", ylab = "q(x)", main = "Mortality rates for the 2018 cohort",
xlim = ¢(55,89), ylim = ¢(0.005, 0.12))

lines(62:89, extractCohort(LCfor$rates, cohort = 2015), Ity = 2)

### Parameter uncertainty and Bootstrapping using Kenyan Mortality Data ##
## Fit LC model to KE data##

LCfit_KE <- fit(Ic(), data = KEStMoMo, ages.fit = 0:89, years.fit = 2010:2020)
## Do semiparametric bootstrap of the LC model ##

LCboot_KE <- bootstrap(LCfit_KE, nBoot = 5000, type = "semiparametric")
## Plot bootstrapped parameters (Figure 12) plot(LCboot_KE, nCol = 3)

# the bootstrapped samples##

LCsimPU_KE <- simulate(LCboot_KE, h = 24)

## Forecast and simulate model without parameter uncertainty

LCfor_KE <- forecast(LCfit_KE, h = 24)

LCsim_KE <- simulate(LCfit_KE, nsim = 5000, h = 24)

## Plot prediction interval at ages 40,60 and 80 with and without ##

mxt <- KEfit KE$Dxt / LCfit KE$Ext

mxtHat <- fitted(LCfit_KE, type = "rates") mxtCentral <- LCfor_KE$rates
mxtPred97.5 <- apply(LCsim_KESrates, c(1, 2), quantile, probs = 0.975)
mxtPredPU97.5 <- apply(LCsimPU_LES$rates, c(1, 2), quantile, probs = 0.975) x <- ¢("40", "60",
"80")

matplot(LCfit_KES$years, t(mxt[x, ]),

xlim = range(LCfit_KES$years, LCfor_KES$years), ylim = range(mxtHatPU97.5[x, ],
ylab = "mortality rates (log scale)", log ="y", pch = 20, col = "black")
matlines(LCfit_KESyears, t(mxtHat[x, ]), Ity = 1, col = "black")
matlines(CBDfit_KE$years, t(mxtHatPU2.5[x, ]), Ity = 5, col = "red")
matlines(LRfit_KES$years, t(mxtHatPU97.5[x, ]), Ity = 5, col = "red")
HHHEHHHEHEHEHEHHEHAHA R

rm(list=1s())

getwd() setwd("C:/Users/Joab/Desktop/stochastic mortality")
maledata<-read.csv(file.choose())
maledata$deathrate<-maledata$Deaths/maledata$Lives

maledata$logdeathrate<-log(maledata$Deaths/maledata$Lives)
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summary(maledata) attach(maledata)
plot(logdeathrate~Age,type="1",main="Kenyan Male Mortality Evolution (2020)",
xlab="Age",ylab="log m(t,x)")

plot(logitqtx~Age,type="1",main="Kenyan Male Mortality Evolution (2020)",
xlab="Age",ylab="log q(t,x)") detach(maledata)

####Female

femaledata<-read.csv(file.choose()) names(femaledata)
femaledata$deathrate<-femaledata$Deaths/femaledata$Lives
femaledata$logdeathrate<-log(femaledata$Deaths/femaledata$Lives)
femaledata<-femaledata[1:41,]

summary(femaledata), attach(femaledata)
plot(logdeathrate~Age,type="1",main="Kenyan Female Mortality Evolution (2030)",
xlab="Age",ylab="log death rates")

plot(logqtx~Age,type="1",main="Kenyan Female Mortality Evolution (2030)",
xlab="Age",ylab="log q(t,x)") detach(femaledata)
plot(femaledata$logdeathrate~femaledata$Age,lty=1,type="1",col=4,
main="Kenyan Mortality Evolution (2020)",

xlab="Age",ylab="log death rates")
lines(maledata$logdeathrate~maledata$Age,lty=2,type="1",col=3,
main="Kenyan Female Mortality Evolution",

xlab="Age",ylab="log death rates") legend("topleft",c("Female","Male"),col=c(4,3),lty=c(1,2))
LCfit <- fit(Ic(), data = EWMaleData, ages.fit = 55:89) #’

LCfor <- forecast(LCfit)

# plot(LCfor) # # #

LCfor.iarimal <- forecast(LCfit, kt.method = "iarima", kt.order=c(1, 1, 2)) #’
plot(LCfor.iarimal) # # #Lee-Carter (forecast with auto.arima) #’
LCfor.iarima2 <- forecast(LCfit, kt.method = "iarima") #* plot(LCfor.iarima2) #’
# #CBD (Multivariate random walk with drift) #

CBDfit <- fit(cbd(), data = central2initia(EWMaleData), ages.fit = 55:89) #’
CBDfor <- forecast(CBDfit) #* plot(CBDfor, parametricbx = FALSE) #

#CBD (Independent Arima models) #

kt.order <- matrix(c(1, 1, 2, #ARIMA(1, 1, 2) for k[1]# 0, 1, 1),
CBDfor.iarima <- forecast(CBDfit, kt.method = "iarima", kt.order = kt.order) #
plot(CBDfor.iarima, parametricbx = FALSE) #

#LR: Compare forecast with different models for the cohort index #°
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wxt <- genWeightMat(55:89, EWMaleDataS$years, clip = 3) #’

LRfit <- fit(apc(), data = EWMaleData, ages.fit = 60:90,

LRforl <- forecast(LRfit) # plot(LRforl, parametricbx = FALSE, nCol = 3)’
LRfor2 <- forecast(LRfit, gc.order = c(0, 2, 2))

# plot(LRfor2, only.gc = TRUE) #

plot(c(LRfit$years, LRfor1$years)

###Compare Lee-Carter forecast using: #

# Fitted jump-off rates and all history for kt #

# LCforl <- forecast(LCfit) #

LCfor2 <- forecast(LCfit, jumpchoice = "actual") #

LCfor3 <- forecast(LCfit, kt.lookback = 30) ##

plot(LCfit$years, (LCfit$Dxt / LCfit$Ext)["60", 1,

# xlim = range(LCfit$years, LCfor1$years), #’

ylim = range((LCfit$Dxt / LCfit$Ext)["60", ], LCfor1$rates["60", ],

# LCfor2Srates["60", ],

LCfor3$rates["60", ]), # type = "p", xlab = "year", ylab = "rate",

# main = "Lee-Carter: Forecast of mortality rates at age 60") #’

LCforl$rates["60", ], Ity = 2)

# lines(LCfor2$years, LCfor2S$rates["60", ], Ity = 3, col = "blue")

# legend("topright",legend = c("Fitted jump-off", "Actual jump-oft",

# "Fitted jump-off, 30 year look-back"), # Ity = 1:3, col = c("black", "blue", "red"))
# LR forecast.fitStMoMo <-function(object, h = 50, level = ¢(80, 95)

#forecast kt

kt <- object$kt years <- object$years

nYears <- length(years) if (is.null(kt.lookback))

kt.lookback <- nYears if (kt.lookback <= 0) stop("kt.lookback must be positive")
kt.lookback <- min(c(kt.lookback, nYears)) yearsFor <- (years[nYears] + 1):(years[nYears] + h)
agesFor <- object$ages nAges <- length(object$ages)

years.f <- c(years[(kt.nNA+1):nYears], years.f) kt.h <-array(kt.h[, 1:kt.nNA], c(nrow(kt), kt.nNA))
#forecast

gc <- object$gc

cohorts <- object$cohorts nCohorts <- length(cohorts)

if (is.null(gc.lookback))

gc.lookback <- nCohorts if (gc.lookback <= 0) stop("gc.lookback must be positive")
gc.lookback <- min(c(gc.lookback, nCohorts))
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gc.h <- gc cohorts.h <- cohorts

gc.model <- NULL gc.f <- NULL cohorts.f <- (cohorts[nCohorts] + 1):(cohorts[nCohorts] + h)

if (lis.null(object$model$cohortAgeFun))

gc.hNA <- nCohorts - gc.nNA

gc.model <- forecast:: Arima(gc[(1 + nCohorts - gc.lookback):gc.nNA],

order = gc.order, include.constant = gc.include.constant)

cohorts.h <- cohorts[-((gc.nNA + 1):nCohorts)]

cohorts.f <- c(cohorts[(gc.nNA + 1):nCohorts], cohorts.f) } gc.f <- list(mean = as.vector(gc.for$mean),
lower = gc.for$lower, upper = gc.forSupper, level = level, model = gc.model, cohorts = cohorts.f)
rownames(oxt.f) <- ages

For #predict rates

rates <- predict(object, years = c(years.h, years.f), kt = cbind(kt.h, kt.f$mean),

gc = c(gc.h, gc.f$mean), oxt = cbind(object$oxt, oxt.f), type = "rates")

#Apply jump-off option forcastRates <- rates[, (nYears + 1):(nYears + h)]

fittedRates <- rates[, 1:nYears] if (jumpchoice == "actual")

{ jumpoffRates <- (object$Dxt / object$Ext)[, nYears]

forcastRates <- forcastRates * jumpoffRates / fittedRates| , nYears] }

# Predict method for Stochastic Mortality Models fits #

predict.fitStMoMo <- function(object, years, kt = NULL, gc = NULL, oxt = NULL, type =

c("link", "rates"), ...)

{ type <- match.arg(type)

ages <- object$ages

nAges <- length(ages)

nYears <- length(years)

cohorts <- (years[1] - ages[nAges]):(years[nYears] - ages[1])
nCohorts <- length(cohorts)

#Check inputs if (object$model$N > 0){

kt <- as.matrix(kt) if (ncol(kt) == 1)

kt <- t(as.matrix(kt)) if (ncol(kt) != nYears)

Appendix C: Python Codes Used in the Thesis

Year <- line_input ( shape = c(1) , dtype = "float40 ’, name = ’Year )
Age <- line_input ( shape = c(1) , dtype = ’int40 ’, name = "Age ’)
Country <- line_input ( shape = c(1) , dtype = ’int40 ’, name = Kenya )

Sex <- line_input ( shape =c(1) , dtype = ’int40 ’, name = ’Sex )
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Age_embed = Age %>%

line_embedding ( input_dim = 150 , output_dim = 5, input_length = 1, name = *Age_embed ’)
90>%

keras :: line_flatten () Sex_embed = Sex %>%

line_embedding ( input_dim = 2, output_dim = 5, input_length = 1, name = "Sex_embed *) %>%
keras :: line_flatten ()

Country_embed = Country %>%

line_embedding ( input_dim = 41, output_dim = 5, input_length = 1, name = ’Country_embed )
90>%

keras :: line_flatten () features <- line_concatenate ( list (Year , Age_embed , Sex_embed , Coun-

try_embed ))

middle = features %>%

line_dense ( units = 150 , activation = "tanh ) %>%

line_batch_normalization () %>%

line_dropout (0.10) %>%

line_dense (units = 150, activation = 'tanh *) %>% line_batch_normalization () %>%
line_dropout (0.10) %>% line_dense ( units = 150 , activation = "tanh ) %>%
line_batch_normalization () %>% line_dropout (0.10) %>%

line_dense ( units = 150 , activation = "tanh ) %>%

line_batch_normalization () %>%

line_dropout (0.10) main_output = line_concatenate ( list ( features middle )) %>%
line_dense (units = 150, activation = "tanh *) %>%

line_batch_normalization () %>%

line_dropout (0.10) %>%

line_dense ( units = 1, activation = ’sigmoid ’, name = *main_output ’)

model <- keras_model ( inputs = c(Year , Age , Country , Sex ), outputs = ¢( main_output ))
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