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Abstract

Linear mixed-effects models (LME) include both fixed-effects and random-effects variables. The
use of LME is powerful in analyzing repeated measurements, longitudinal data or unbalanced data
and the variations between and within-subject observations can be captured by random effects. In
this study, remote sensing data were used to understand sorghum yield variability in a context of
low input low output extensive farming system such in South Sudan. LME modelling approach
helped understanding the sorghum yield variation between the two states of interest in this study
and between two different agricultural seasons.

The unbalanced nature, the repeated measures on same statistical units for remotely derived pa-
rameters and the longitudinal nature of the data dictated the choice and the appropriateness of
Linear Mixed-Effects models (LME) for statistical analysis in this study. The random-effects struc-
tures were used to describe the spatio (between states) and temporal (between seasons) specific
variations of the sorghum yield during the two agricultural seasons (2018-2019); while the size of
cultivated land and the households’ size as a proxy of labor were used as fixed-effects variables in
addition to remotely derived variables.
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1 INTRODUCTION

Remote sensing is defined as the acquisition of information about an object or phenomenon from
distance. This involves an instrument, or a sensor mounted on a platform, such as a satellite, an
aircraft, an UAV/UGV, or a probe [59]. The sensor measures the electromagnetic radiation that is
either reflected or emitted by the target. The type and the usefulness of the information accessible
from remote sensing depend on the specific properties and particularities of the instrument and
its platform. These properties include: satellite orbitography, UAV/UGV flight/motion plan, field
sensor position and orientation, active or passive sensing, detector array and optical lens charac-
teristics [59, 15]. Currently, the climate and satellite data are available within weeks of acquisition
and can provide data for operational assessment of crop yields.

Early work by Benedetti et al.[3] showed that National Oceanic and Atmospheric Administra-
tion (NOAA) satellite Normalized difference vegetation index (NDVI) data could be used to pre-
dict plant photosynthetic capacity and efficiency. In addition, the usefulness and affordability of
real‐time crop monitoring was made possible using NDVI index. A linear model for estimating
wheat yield forecast using NDVI integration during the wheat grain‐filling period was developed.
Agro-meteorological information was recommended to be added to NDVI for better yield predic-
tion [41].

A number of studies focusing on applying remote sensing products as a proxy indicator for yield
estimation has been widely conducted. Such remotely sensed information is essential to explore
the relationships of vegetation indices with crop yield. For example, a significant positive correla-
tion was found between maize yield and enhanced vegetation index (EVI), normalized difference
vegetation index (NDVI), and wheat yield and EVI in different countries [32, 33, 34]. Another
way of using remotely induced vegetation indices to build the link with crop yields is also to ex-
plore how these parameters interact with water stress factors, such as surface temperature, soil
moisture, rainfall [41], and evapo-transpiration.

Crop yield prediction using remote sensing data have been intensively studied mainly in wheat
and maize, but such information is limited in Sorghum and in context of protracted conflict with
access restrictions to farms such in South Sudan. The present study proposes a framework for
field-level sorghum yield simulation in a country where sorghum cropping is characterized by
extensive farming, with low inputs low outputs. The approach that have been used required the
collection of remotely sensed data over an adequate time frame and a corresponding record of
field crop yields.

In this project a number of remote sensing parameters have been used including Normalized Dif-
ference Vegetation Index(NDVI), Enhanced Vegetation Index(EVI), Soil moisture, Precipitation,
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Leaf Area index (LAI), evapo-transpiration and Fraction of photo-synthetically Absorbed Radia-
tion(FPAR), to simulate sorghum yield production and understand the yield variations in South
Sudan.

1.1 RATIONALE

The difficulty to access ground measurements in South Sudan due the protracted conflict and
insecurity, lack of access, inadequate infrastructure and chronic structural problems with inad-
equate statistics/data service and the challenge to estimate yields over large areas using other
monitoring methods such agriculture surveys make remote sensing data a valuable alternative
for yield prediction. Widely and freely available remote- sensing indices (MODIS products NDVI,
EVI and LAI, FPAR) [9] that simulate above-ground biomass, Soil Moisture and Rainfall data have
been combined for the simulation of sorghum crop yield.

For the humanitarian organizations as well as for the government, accurate and timely estima-
tion of sorghum production yielded by small scale farmers who received humanitarian support
to rebuild the agriculture sector in South Sudan can be critical as the country deeply depend on
humanitarian aid for its agriculture. Modeling represents an opportunity to turn data into in-
sights that will enable decision makers to make strategic planning to meet humanitarian needs
and adjust interventions accordingly. Given the unbalanced nature, the repeated measures on
same statistical units for remotely derived parameters and the longitudinal nature of the data for
this study, Linear Mixed-Effects model (LME) was chosen and appropriate for statistical analysis.
The random effects in this study are used to describe the spatio(state) and temporal (inter-annual)
specific variations of the sorghum yield during two agricultural seasons(2018-2019). South Sudan
was chosen for this study because of the very limited research in remote sensing and the need
for a mathematical model that uses remote sensing to simulate sorghum yield to support human-
itarian and government efforts in food security and response planning. This study used five(5)
years (2016-2020) remote sensing data from MODIS products and the 2018-2019 sorghum yield
data from 2 states (Upper Nile and Western Bahr El Gazal states).

1.2 RESEARCH OBJECTIVES

The main objective for this study is to assess field level sorghum yield variability in South Sudan
using remote sensing.

1.2.1 SPECIFIC OBJECTIVES

1. To quantify and predict the effects of remote sensing data and other covariates on sorghum
yield in the context of selected study sites.

2. To use the linear mixed-effects models to predict sorghum yield variability in the context of
low input low output extensive farming system using remotely sensed data.
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1.3 LIMITATIONS OF THE STUDY

Despite tremendous efforts developing regression models that relate satellite-derived vegetation
indices directly to observed yield data, these models have their limits in the way that they are
essentially retrospective and are based empirically on indirect inferences. In addition, because the
regression relationship varies largely on a year-to-year basis due to inter-annual variations in cli-
mate parameters, water availability (evapo-transpiration, Soil moisture), and farm management
practices, the application of these models is limited to the studied regions and periods and is dif-
ficult under extreme conditions (e.g., flooding and drought, cloud coverage, etc) beyond historical
records.
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2 LITERATURE REVIEW

Remote sensing is a technique that aims at acquiring information from space. Fussel et al.[12]
defines remote sensing as a set of knowledge and techniques used to determine the physical and
biological characteristics of objects or targets through measurements performed from remote lo-
cations, without any contact with those objects or targets. Sensors onboard satellites record the
radiometric properties of objects observed on the Earth surface in forms of digital images. This
technique has the advantage of supplying information over a long period of time and intervals de-
pending on the satellite itself [20] . Using remote sensing is cost-effective compared to traditional
data collection from field survey or aerial photography particularly for studying large areas.

Agricultural vegetation develops from planting to harvest as a function of meteorological driving
variables such as sunlight, temperature and precipitation. During the crop cycle, the growth is
further modified by soil and plant characteristics (genetics) and farming practices. For the last two
decades the use of remotely sensed data for crop monitoring and yield modeling has progressed
significantly.

Crop yields estimation is an important application of remote sensing [28, 35]. Applications in
highly accurate yield estimates and crop disease and water stress detection at sub-pixel level have
been operational in Northern America and Europe [8], [54] for last decade. In recent remote sens-
ing studies, the normalized difference vegetation index (NDVI) and Enhanced Vegetation Index
(EVI) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery
are widely used for crop yield analysis. NDVI, calculated with measurements of reflected light
from the red and NIR bands, has long been used as an indirect measure of crop yield, including
that of wheat [54], [18]. Siddoway and Aase [1] confirmed the relationship of NDVI and wheat
grain yield but noted that the relationship deteriorated rapidly as wheat ripened.

Linear regression models relating NDVI to crop yield have, for example, been developed by Ras-
mussen [42] and Groten [14] for Burkina Faso and by Maselli et al. [33] for Niger. The same and
other investigations showed that yield forecasting can be obtained by the use of NDVI data of
specific periods which depend on the eco-climatic conditions of the areas and the types of crop
grown.

Idso et al. [18] reported that summing NDVI values from late-season (Feekes 10.5, flowering to
grain fill) spectral measurements was useful in predicting the grain yield of wheat. Bartholome
[2] reported that accumulated NDVI was a more stable predictor of millet ( Panicum miliaceum
L.) and sorghum [Sorghum bicolor (L.)] grain yields than a single spectral measurement. For this
reason, this study have used 5 years remotely sensed data to simulate sorghum yield in context
of South Sudan.
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Ref [42] calculated a sampling-interval weighted average NDVI by integrating multi temporal
spectral measurements with time, which improved the grain yield estimates of millet from a single
spectral measurement. Ref [51] reported that sensing twice and combining NDVI using a linear
model improved correlation with wheat grain yield compared with sensing once.

Studies have shown that the seasonal accumulated NDVI values are correlated well with the re-
ported crop yields in semi-arid regions [14]. Doraiswamy and Cook [11] further demonstrated
that accumulating the NDVI values for spring wheat only during the grain-fill period improved
the estimates of potential crop yields in North Dakota. Ref [61] used NDVI time series data from
moderate resolution imaging spectroradiometer(MODIS) to forecast wheat yield in Kansas and
Ukraine and multi-temporal vegetation indexes (VIs) were proposed to improve the yield predic-
tion accuracy [6]. Ref [26, 27] predicted wheat yield with the accumulated VIs such as ΣNDVI(Nir,
Green) and Σ RVI(Nir, Red) from jointing to the initial filling stage, and achieved a higher predic-
tion accuracy than with VI in a single stage. Other forecasting yield methods use yield-related
agronomic parameters that can be estimated from field and/or remote sensed data. For example,
researchers have estimated the absorbed photosynthetically active radiation (PAR) and LAI and
used it to predict yield of wheat and maize [40]; [50].

In rain fed agriculture, soil moisture conditions during the crop season are one of the key factors
in determining crop yields. Thus, a crop model with a robust and accurate soil-water component
was developed (EPIC: Erosion productivity impact Calculator) by [19]. This model has been used
widely to simulate spring wheat crop growth and yield, [36], [62].

Several other techniques are being used and that relates VI with final yield at a specific crop growth
stage such as at vegetative and reproductive stages during the growing season ([49], [29, 13]).
Other techniques associate final yield with historical values of VI such as NDVI obtained during
the entire growing season or during a specific period of the growing season such as the vegetative
or reproductive stages [23, 34, 57]. These techniques require historical values of NDVI for a specific
region and are comparedwith current values of NDVI to detect NDVI anomalies or deviations from
historical values and then after the data are used to estimate yields [21, 17].

Ref [13] used correlations and multiple linear-regression analysis to determine variables to be
used to predict final winter wheat grain yield. In their findings both the correlation and regres-
sion analyses suggested mid-season NDVI, chlorophyll content, plant height, and total nitrogen
uptake to be good predictors of final winter wheat grain yield. Several investigations have shown
that NOAA NDVI data accumulated during a rainy season can be related to total rainfall or final
primary productivity in the Sahel [33].

In a study about operational maize yield model development and validation based on remote
sensing and agro-meteorological in Kenya, [46] found that the land cover NDVI and the actual
Evapo-transpiration in his model explain 83% of the maize crop yield variance with a root square
mean error (RMSE) of 0.3298 t/ha. Pavlo [31] recent research indicates the suitability of the LAI



6

and NDVI for the simulation of sweet corn yields. It was determined that LAI is a more suitable
index for the crop yield prediction: the R2 value was 0.92 and 0.94 against 0.85 for the NDVI-based
models. It was determined that it is better to use the LAI values obtained at the flowering stage,
when R2 averaged to 0.94, and the NDVI-based models did not depend on the crop stage (the R2

was 0.85 both for the flowering and ripening stages of the plant development).

In another study using RapidEye satellite multi-spectral data, Angela et al.[22] estimated LAI and
biomass of corn and soybean; the results indicated that the cumulative red-edge simple ratio per-
formed best for estimating LAI and biomass. Ref [25] comparatively, analyzed data from different
satellites (Gaofen-1, Huanjing-1, and Landsat-8 multi spectral) data for estimating the leaf area
index of winter wheat.

Research result from Ref [7] study estimated LAI of a potato crop with different fertilization levels
using Sentinel-2 satellite images and the results demonstrated that the weighted difference vege-
tation index using high spatial resolution can be used for estimating the LAI. Ref [63] found high
correlation (0.75) between LAI and rice yield in China in a study that aimed at predicting grain
yield in rice using multi-temporal vegetation indices from Unmanned Aerial Vehicle (UAV)-based
multi-spectral and digital imagery.

In a rice trail where different Nitrogen rates, planting patterns and different rice cultivars were
involved, Yanyu Wang et al. [58] have used a compact multi-spectral camera mounted on a fixed-
wing drone(ebee) to collect data during key growth stages. LME, simple regression (SR), artificial
neural networks(ANN) and random forests(RF) models were developed relating growth parame-
ters above ground biomass(AGB) and leaf area index(LAI) to spectral information. Cultivar, growth
stage and planting pattern were selected as candidates of random effects for the LME models due
to their significant effects on rice growth. The study results revealed that when comparing to
other regression models (SR, ANN and RF), the LME model improved the AGB estimation accu-
racy for all stage groups to varying degrees: theR2 increased by 0.14–0.35 and the RMSE decreased
by 0.88–1.80 t/ha for the whole season, the R2 in LME increased by 0.07–0.15 and the RMSE de-
creased by 0.31–0.61 t/ha for pre-heading stages. In addition, the R2 increased by 0.21–0.53 and
the RMSE decreased by 0.72–1.52 t/ha for post-heading stages.

Bolton et al.[5] and Ref [48] mentioned several studies that have focused on other remote in-
dices, including phenological metrics extracted from vegetation indices time series to improve
yield estimation. However, these studies typically target the simpler cases of relatively homo-
geneous landscapes as found in the US and China. In other parts of the world including South
Sudan, agricultural landscapes are more heterogeneous with a higher diversity in crop types, crop
management practices, and thus field sizes. Ref [30] showed that the correlations between the
accumulated FPAR and yields in Europe vary widely depending on the crop type and geographic
locations, especially in Northern Europe where observed inter-annual yield variability is too low
to be easily detected from remote sensing data.
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The issues related to small field sizes is always exacerbated in smallholder landscapes, which are
often more likely threatened by food insecurity. The small size of the fields also implies a lack of
reliable yield statistics to establish robust empirical relationships. Furthermore, such landscapes
are often located in inter-tropical regionswhere estimating yield from remote sensing observations
is complicated by an abundant cloud coverage during the growing season, making the use of
optical remote sensing more challenging [52] and [60, 43].

The traditional methods of yield measuring turn to be time-consuming and cannot consider yield
variations over a large field or space in addition to insecurity and lack of access in so many parts
of South Sudan; therefore they are prone to large errors due to incomplete ground observations,
leading to poor crop yield assessment and crop area estimations or predictions. In the light of
these limitations, remote sensing methods could be a reliable alternative
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3 RESEARCH METHODOLOGY

3.1 INTRODUCTION

This study was based on modelling two years (2018-2019) sorghum grain yield obtained from
random surveys carried out in Upper Nile and Western Bar El Gazal states in South Sudan. A
combination of Multiple Linear Regression (MLR) and Linear Mixed-Effects (LME) models were
performed to assess regression relationship and develop a mathematical model that would fit
well the yield and understand the random effects of the states and seasonal variations in rain-fed
extensive farming system. In addition to yield data, 5 years satellite-derived data on some key
crop parameters were collected remotely and both datasets merged for further analysis.[55, 47]

In particular, satellite-derived vegetation indices, as measures of plant chlorophyll abundance and
vegetation radiation absorption, and climatological related data were collected and have proven
to be closely related to crop growth in field studies and theoretical models. Accurate and timely
estimation of production yielded by the farmers who received humanitarian support to rebuild the
agriculture sector in South Sudan can be critical as the country deeply depend on humanitarian
aid for its agriculture. This study aims at developing a simple and efficient model-based method
to estimate sorghum yield in South Sudan using satellite-derived data fromMODerate Resolution
Imaging Spectroradiometer (MODIS) products.

3.2 DESCRIPTION OF STUDY AREA

Upper Nile is a state in South Sudan and located at 10030’N32030’E. With Malakal as the head
quarter, the state has 13 counties and a total population estimated at 964,353 inhabitants (South
SudanCensus, 2008) living in area of 77,823.42km2. Western Bahr el Ghazal situated at 07053’N25052’E
is another state with Wau as its capital city. It has an area of 93,900km2 and is the least populous
state(333,431persons) in South Sudan, according to the census conducted in 2008. Western Bahr
El Gazal and Upper Nile states are two of 11 states that form the Republic of South Sudan. In
these two states, diversified crops are cultivated but Sorghum (Sorghum bicolor) is the dominant
crop. In general, crop planting is completed by mi-may when the soil moisture is good enough
after 2-3 good rains to initiate the germination. Sorghum usually matures after 5 months and
harvest happens late November beginning of December.

3.3 STUDY DESIGN

This study relied on the analysis of sorghum yield data randomly collected at household level(self-
reported) from farmers who received humanitarian seeds support during 2 agricultural seasons
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(2018-2019) and remotely sensed data for 5 years (2016-2020) from MODIS satellite products.
Given that in the two states concerned by this study (Upper Nile andWester Bahr El Gazal states),
sorghum is grown under rain fed conditions, the seasonal variability in rainfall patterns could
contribute to the variability in crop yields from season to season. This research - in addition to
developing a sorghum yield model using remote sensing - it intends to analyse and establish the
inter-states and inter-seasonal variations of sorghum in South Sudan.

3.4 DESCRIPTION OF REMOTELY DERIVED FACTORS

3.4.1 NDVI

Vegetation indices (MODIS13A3) from Terra Moderate Resolution Imaging Spectroradiometer)
Vegetation Indices (MODIS) Version 6 data are provided monthly at 1 kilometer (km) spatial reso-
lution as a gridded Level 3 product in the sinusoidal projection. The Normalized Difference Vegeta-
tion Index (NDVI) from MODIS complements NOAA’s Advanced Very High Resolution Radiome-
ter (AVHRR) NDVI products and provides continuity for time series historical applications. The
normalized difference vegetation index (NDVI) is derived from the visible and near-infrared (NIR)
bands and has been successfully used to monitor vegetation changes at regional scales [54], [10].

NDV I =
ρNIR1 −ρred

ρNIR1 +ρred
(1)

where ρNIR1 = Near-infrared and ρred = Red

NDVI data used in this study was downloaded from MODISI3A3 product.

3.4.2 EVI

The enhanced vegetation index (EVI) is designed to enhance the vegetation signal with improved
sensitivity in high biomass regions and improved vegetation monitoring through a de-coupling
of the canopy background signal and a reduction in atmosphere influences. MODIS includes an
Enhanced Vegetation Index (EVI) that minimizes canopy background variations and maintains
sensitivity over dense vegetation conditions. [9] mentioned that MODIS NDVI and EVI products
are computed from surface reflectances corrected for molecular scattering, ozone absorption, and
aerosols.

EVI is computed following this equation:

EV I = G× (NIR−RED)

(NIR+C1×RED−C2×Blue+L)
(2)

,where NIR/red/blue are atmospherically-corrected and partially atmosphere corrected (Rayleigh
and ozone absorption) surface reflectance, L is the canopy background adjustment that addresses
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non-linear, differential NIR and red radiant transfer through canopy, C1, C2 are the coefficients of
the aerosol resistance term, which uses the blue band to correct for aerosol influences in the red
band. In MODIS-EVI equation, the coefficients are L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.

Then the equation become as follow:

EV I = 2.5× (ρNIR1 −ρred)

(ρNIR1 +6×ρred −7.5×ρblue +1)
(3)

The NDVI is chlorophyl sensitive while the EVI is more responsive to canopy structural variations,
including leaf area index (LAI), canopy type, plant physiognomy, and canopy architecture. NDVI
and EVI, two vegetation indices, complement each other in studies about the global vegetation
and improve upon the detection of vegetation changes and extraction of canopy biophysical pa-
rameters. [10]. This study used EVI data downloaded from MODIS13A3 product.

3.4.3 LAI /FPAR (m2 ∗m−2)

The Leaf Area Index (LAI) and the Fraction of Photosynthetically Active Radiation (FPAR) data
used in this study are derived from MODIS. An 8-day composite data set with 500 meters (m)
pixel size. The algorithm used chooses the “best” pixel available from all the acquisitions of the
Terra sensor from within the 8-day period. LAI could be defined as the one-sided green leaf area
per unit ground area in broad-leaf canopies and as one-half the total needle surface area per unit
ground area in coniferous canopies. FPAR is the fraction of incident photo-synthetically active
radiation absorbed by the green elements of a vegetation canopy [37].LAI data were downloaded
from MDC15A3H version 6 MODIS product.

3.4.4 Précipitation (mm/day)

Precipitation can be any form of moisture which falls to the earth. This includes rain, snow, hail
and sleet. Complex forces are the cause of the water droplets to fall as rainfall. Precipitation
can also be defined as any product of the condensation of atmospheric water vapor that falls
under gravitational pull from clouds. The main forms of precipitation include drizzling, rain, sleet,
snow, ice pellets, etc. Precipitation will occur when part of the atmosphere becomes saturated
with water- vapor (with 100% relative humidity), and that the water condenses and precipitates
or falls. Rainfall data used in this study are freely available and downloaded from NASA Earth
data.

3.4.5 Soil moisture (cm3 ∗ cm−3)

In general, soil moisture refers to the water present in the upper part of the soil and is a variable
controlling a wide array of ecological, hydro logical, geo-technical, and meteorological processes.
Soil moisture plays also a role of regulator of the partitioning of the incoming solar energy at
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land surface level into the outgoing sensible, latent, and surface heat fluxes, mainly through the
processes of soil evaporation and plant transpiration. Soil moisture is an important life sustaining
entity. The main use of soil moisture is to enable vegetation growth. Water that is stored in the
soil has many roles that include the fact that it controls the partitioning of rainfall into runoff and
infiltration,[31, 56].

Soil moisture parameter is an important variable in climate system. Accurate prediction and the
understanding of the variations of surface temperature, drought, and flood depend critically on
knowledge of soil moisture variations, as do impacts of climate change and weather forecasting.
Several physical, chemical and biological processes that take place at the land surface are strongly
influenced by the amount of water stored within the upper soil layers. Data about soil moisture
data in this study come from Soil Moisture Active Passive (SMAP) enhanced L3 Radiometer Global
daily 9 km. This enhanced product Level-3 soil moisture gives a composite of daily estimates of
global land surface conditions retrieved by (SMAP) radiometer.

3.4.6 Evapo-transpiration

Evapo-transpiration can be defined as the sum of all forms of evaporation plus transpiration, but
in the frame of the study it well corresponds to the sum of evaporation from the plant transpi-
ration plus land surface. About evapo-transpiration, literature provides several definitions, here,
evapotranspiration will refer to the water lost to the atmosphere from the ground surface, evap-
oration from the capillary fringe of the groundwater table, and the transpiration of groundwater
by plants whose roots tap the capillary fringe of the groundwater table [38].

The evaporation of water from plant leaves is the transpiration aspect of evapo-transpiration. The
amount of water that plants transpire varies largely geographically and over time. Several factors
determine and influence the transpiration rates, this includes temperature, relative humidity, wind
and air movement, soil-moisture availability and type of plant.

3.5 DATA COLLECTION

The data used in this study (Table 1) are about sorghum yield measures that were collected during
two-years agricultural seasons 2018 and 2019. Surveys were conducted with small scale farming
households in Upper Nile and Western Bahr El Gazal states who received sorghum seeds from
humanitarian assistance. 235 household farmers randomly selected were interviewed, and data
collected via device magic and then transferred to Excel.

3.6 SATELLITE (remotely sensed) DATA ACQUISITION

Five years (2016-2020) satellite data include 7 standard MODIS products among which vegeta-
tion indices: Normalized Difference vegetation Index (NDVI), Enhanced vegetation Index(EVI),
the eight day Fraction of Photosythetytically Active Radiation (FPAR) and Leaf Area Index (LAI)
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(MOD13A3), and agroclimatic data : Precipitation(mm/day) every month, daily Soil moisture
(cm3/cm3) and every 8 days evapo-transpiration(kg/m2/8days). NDVI and EVI were composited
every month of each year, LAI and FPAR every eight days of eachmonth starting fromDay-of-Year
1 in each calendar year. Details are available on the MODIS data website.[4]

Remotely sensed data from satellite provide a real-time assessment of themagnitude and variation
of crop condition parameters, and this study investigates the use of these parameters as inputs to
modelling sorghum yield variation in the context of South Sudan.

3.7 METHODS OF DATA ANALYSIS

3.7.1 Multiple linear Regression (MLR) Analysis

Multiple linear regression (MLR) is a statistical technique that uses two or more independent
variables to predict the outcome of a dependent variable. The assumption is that there is no
clustering. This technique enables researchers to determine the variation of the model and the
relative contribution of each independent variable in the total variance. MLR attempts to establish
or to model the relationship between two or more explanatory variables and a response variable by
fitting a linear equation to measured data. Each value of the independent variable x is associated
with a value of the dependent variable y.

The population regression line for k explanatory variables x1,x2, ...,xk is defined to be:

µ = β0 +β1x1 +β2x2 +β3x3 + ...+βkxk (4)

, this line describes how the mean response µy changes with the explanatory variables. The ob-
served values for y vary about their means µy and the assumption is that they have the same
standard deviation δ . The fitted values b0,b1, ...,bk estimate the parameters

β0,β1,β2, . . .βk (5)

of the population regression line. Since the observed values for y vary about their means µy,
the multiple regression model includes a term for this variation. The model could be written or
expressed as :

DATA = FIT +RESIDUAL,

where ,
the term FIT represents the expression

β0 +β1x1 +β2x2 +β3x3 + ...+βkxk (6)

The ”RESIDUAL” term represents the deviations of the observed values y from their means µy ,
which are normally distributed with meanµ and variance σ . The model deviations is written as
ε .
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The model for multiple linear regression, with n observations, is as follows:

yi = β0 +β1x1 +β2x2 + ...+βkxik+ εi (7)

for i= 1,2, ...n InMLR and particularly in least-squaresmodel, the best-fitting line for the observed
data is obtained by minimizing the sum of the squares of the vertical deviations from each data
point to the line.

The values fit by the equation :

β0 +β1x1 +β2x2 + ...+βkxik+ εi (8)

are denoted by ŷ and the residuals εi are equal to yi− ŷi , the difference between the observed and
fitted values. The total of the residuals is equal to zero.

3.7.1.1 Identifying and Controlling for Confounding with Multiple Linear Regression

Multiple regression analysis is a powerful tool and can be used to assess whether confounding
exists, and, since it allows us to estimate the association between a given independent variable
and the outcome holding all other variables constant; multiple linear regression provides also a
way of adjusting for (or accounting for) potentially confounding variables that have been included
in the model.

3.7.1.2 Comparison of different Models

The comparisons of different models were done by evaluating their predictive capabilities, which
were evaluated by their coefficient of determination (R2) and the Residual Mean Square Error
(RMSE)

3.7.1.3 Coefficient of determination (R2)

The coefficient of determination (denoted as R2) is a key output of regression analysis. The (R2)

represents the proportion of the variance in the dependent variable that is predictable from the
independent variable. The coefficient of determination informs about the percentage of varia-
tion in dependent variable explained by all the independent variables together. The coefficient
of determination, R2, is a key statistic indicating how well a model including a set of predictors
accounts for the variation in the response variable. While it shows the utility of these predictors
in fitting the model, it also provides a measure of predictability of the response variable using the
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set of predictors. R2 can also be used to choose the optimal set of predictors when the model size
including all predictors, is fixed.

The R2 is usually presented as the quantity that estimates the percentage of variance of the re-
sponse variable explained by its (linear) relationship with the explanatory variables. It is computed
by means of the ratio:

R2 =
ESS
T SS

= 1− RSS
T SS

(9)

= 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ¯̂yi)2 (10)

where,
ESS, TSS and RSS are respectively the explained, total and residual sum if squares.

When there is an intercept term in the linear model, this coefficient of determination is actually
equal to the square of the correlation coefficient between yi and ŷ.

R2 = 1−

 ∑
n
i=1(yi − ȳ)(ŷi − ¯̂y)√

∑
n
i=1(yi − ȳ)2 ∑

n
i=1(ŷi − ¯̂y)2

2

(11)

with,
¯̂yi as the mean predicted Sorghum yield,
yi observed yield values,
and
ȳi is the average of observed sorghum yield.

This equation (11) has a a great interpretation in that R2 measures the goodness of fit of the regres-
sion model by its ability to predict the response variable and this is measured by the correlation.
In Addition, this expression shows that the (unconditional) distribution of the response does not
need to be Gaussian to allow for the interpretation of R2 (Renaud et Al., 2010).

3.7.1.3.1 Residual Mean square Error (RMSE)

The Root Mean Square Error (RMSE) is equal to the standard deviation of the residuals (Predic-
tion errors). Residual’s measure and provides information on how far from the regression line data
points are; RMSE is a measure of how spread out these residuals are. It provide important infor-
mation about how concentrated the data is around the line of best fit and this is mainly useful for
analyzing overall significance of linear regression.

RMSE =

√
1
n

n

∑
i=1

(xi − yi)2 (12)

where, xi and yi represent the estimated and measured values of Sorghum yield respectively.
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3.7.2 Linear Mixed-Effects Model

Longitudinal data are (usually non-uniformly) ordered in time, and unbalanced data are very com-
mon. Furthermore, serial measurements of one subject are positively correlated, and between-
subject variance is not constant over time due to several biotic and abiotic factors. The linear
mixed-effects (LME) model is a suitable model to handle such data [24].

The problem is that the mixed effects model contains two components: a fixed effect (the explana-
tory variables) and the random effects. There is need to select not only an optimal fixed-effects
structure but also an optimal random effects structure. In most cases, the interest is in the fixed
effects. But if the random effects are poorly chosen, then this affects the values (biased) and qual-
ity of the fixed effects as the random effects work their way into the standard errors of the slopes
for the fixed effects. On the other hand, variation in the response variable not modeled in term of
fixed effects ends up in the random effects. [64]

The form of the LME model is given by:

µ ∼ N(0,G),ε ∼ N(0,R) (13)

G = σ
2
s H(φ) (14)

R = τ.I (15)

In equations (14,15),

G represents the variance-covariance matrix of the random effects.
H(.) is defined by the suitable correlation function,
f (h,φ),σ2

s represents the partial sill,
φ represents the range,
and
h represents the lag or distance [39].

R in equation(9) represents a N ×N positive definite variance-covariance matrix of ε .
τ2 is called the nugget effect.
I represents the identity matrix (diagonal matrix of 1s).
ε is not correlated with the random effect µ , that is, Cov(µ,ε) = 0.
Simultaneous estimates of correlation parameters (i.e.,σs,H,φandτ) and fixed effect coefficients
(i.e, β ) are obtained by Restricted or (residual) Maximum Likelihood estimation (REML) to reflect
the loss of degree of freedom due to the estimation of the fixed effects coefficients [39].

In this study, the LinearMixed-EffectsModel (LME)was used to capture the effects of fixed param-
eters (cultivated land and households’ size) and spatial (in each state) and temporal (inter annual
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variations) random effects in different models using remotely sensed data. Cultivated land as well
household size as a proxy of labor were set as fixed-effects parameters given the interest of the
study and as it is considered as a key factor in low input low output extensive farming system
such in the South Sudan.

The random effects had different choices, the interest was on understanding the random effects
generated by the spatial variations at State level(differences between the two states: Upper Nile
and Wester Bahr El Gazal) and inter-annual variations for the two agricultural seasons (2018–
2019). Moreover, with these random effects, more group combinations with remotely sensed
factors (EVI, LAI) and precipitations or Soil-moisture were utilized to improve the robustness of
Yield/NDVI/Cultivated land models in this study. Optimal random effects were determined by
comparing the REML values.

3.7.1.1 Model Selection in Mixed Effects Modelling

As it could be done in linear regression, there are two main options for model selection. The first
option is based on selection tools like the Akaike Information Criteria (AIC), or the Bayesian Infor-
mation Criteria (BIC). The AIC and BIC both contain in their equations two terms that measure
the fit and the complexity of the model. The likelihood value includingMaximum Likelihood (ML)
and the RestrictedMaximum Likelihood (RML) are also used in defining the measure of the model
fit.

From Ref [64] the AIC is defined as twice the difference between the value of the likelihood L
(measure of fit) and the number of parameters (penalty for model complexity) in the model. For
the Bayesian Information Criterion(BIC), the number of observations is also taken into account,
which means that more significant increases in the likelihood are required for larger data sets to
confirm a model as better. In below formula, p is the number of parameters in the model (θ ), L
can be either the maximum Likelihood (ML) or the Restricted maximum Likelihood (REML), and
for ML, we have n∗ = n
but for REML,
n∗ = n−p

AIC =−2×L(θ)+2×p (16)

BIC =−2×L(θ)+2×p× ln(n∗) (17)

This means that an AIC based on REML can not be comparable with an AIC obtained by ML. This
is equally valid for the BIC.
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3.7.1.2 The Restricted Maximum Likelihood

Restricted Maximum Likelihood (REML), a statistical methodology that is a particular form of
LME, does not base estimates on a maximum likelihood fit of all the information. In statistics, the
REML uses a likelihood function that is derived from a transformed set of data so that parameters
that could bring noise have no effect. From the its formula, the estimator for the variance obtained
by maximum likelihood is biased by a factor (n−2)/n. In case the model contains p explanatory
variables, then the bias is (n−p)/n. The reason that the maximum likelihood estimator is biased
is because it ignores the fact that the intercept and slope are estimated as well (as opposed to
being known for certain). So, there is need for a mechanism that gives better ML estimators, and
this is what REML does.

REML works as follows:

The linear regression model:

Yi = α +β ×Xi + εi

can be written as:
Yi = Xi ×β + εi.
This is based on simple matrix notation using Xi = (1Xi) ,
and
the first element of β is the intercept,
and
the second element is the original β .

The normality assumption implies that,

Yi = N(Xi ×β ,σ2) (18)

The problem with the ML estimator is that we have to estimate the intercept and the slope, which
are in β in Equation (3.14). Obviously, the problem is solved if there is no β . The REML avoids
having any β in Equation (5.18). It does this by finding a special matrix A of dimension n× (n2),
and special means orthogonal to (or independent of) X

′
, multipliesY = (Y1, ...,Yn)with this matrix

and continues with ML estimation. Orthogonal means that if A and X are multiplied, the result is
0.

Hence, we get

A
′
×Y = A

′
×X ×β +A

′
× ε = 0+A

′
× ε

. The distribution for A
′ ×Y is now given by:

A
′
×Y ∼ N(0,σ2 ×A

′
×A) (19)
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which no longer depends on β .
Applying ML on A

′ ×Y gives an unbiased estimator for σ2.

3.7.1.2 Hypothesis testing

The second approach to find the optimal model is via hypothesis testing. There are two options
here: the t-statistic and the F-statistic.
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4 RESULT AND DISCUSSION

4.1 CHECKING FOR LINEAR RELATIONSHIPS BETWEEN PARAMETERS

In part A, data were analysed using the Multiple Linear Regression (MLR) procedure in R (R
Language [53, 16])to test the effect of cultivated land and vegetation indices remotely derived
measurements NDVI, EVI, LAI, FPAR ON sorghum yield. In addition, MLR analysis was used to
model final yield using NDVI and Cultivated landmeasurements and household size as predictors.
[45]The coefficient of determination (R2) and Root Mean Square Error (RMSE) were used as the
criteria to determine if remotely sensed vegetation indexes could be used as linear predictors of
sorghum yield in context of farmers self-reported data and extensive low input low output farming
system.

In Part B a Linear Mixed-Effects Model (LME) regression analysis was used to model final yield
using cultivated land, household size, vegetation indices (NDVI, EVI, LAI, FPAR) and combining
with agrometeorological measurements (Precipitation, soil moisture, evapotranspiration) as fixed-
effects parameters between-states and between-seasons variations were captured using
States and Year as random-effects parameters.The coefficient of determination (R2) , Aka Ike
information criterion (AIC), Bayesian Information Criterion (BIC), Loglikelihood were used as the
criteria to determine the best model which provide the best combination of agro (cultivated land)
and remotely sensed predictors.

4.2 EFFECTS OF REMOTE SENSING DATA AND OTHER COVARIATES ON
SORGHUM YIELD IN SELECTED SITES

4.2.1 Descriptive statistics of field data

The average cultivated land during the two agricultural seasons was 0.674± 0.076 and the self-
declared sorghum yield average was 453.75±49.21.. The maximum yield obtained was obtained
in Upper State and was at 2,345kg.ha−1 with a maximum cultivation of 3 ha.

Cultivated land (ha) Sorghum yield kg.ha−1

2018 2019 2018 2019

Upper Nile 0.673 ± 0.075 0.817 ± 0.12 453.75 ± 0.075 565.23 ± 78.68

Western B Gazal 0.736 ± 0.095 0.673 ± 0.075 506.22 ± 60.83 453.73 ±49.21

Table 1. Average cultivated land and sorghum yield for the two agricultural seasons
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Figure 1. Table 1: statistic description of the field data.

4.2.2 Remotely derived data

NDVI EVI Precipitation FPAR LAI Evapotranspir SoilMoisture

median 0.462 0.243 2.072 0.480 1.500 1.655e+01 0.256

mean 0.475 0.278 2.519 7.715 8.844 9.273e+02 0.270

SE.mean 0.0046 0.003 0.054 0.922 0.918 1.268e+02 0.003

CI.mean.0.95 0.009 0.006 0.107 1.808 1.800 2.48e+02 0.007

var 0.045 0.024 6.089 1784.894 1769.764 2.897e+07 0.011

std.dev 0.212 0.154 2.467 42.248 42.068 5.383e+03 0.103

coef.var 0.447 0.554 0.979 5.476 4.757 5.804e+00 0.379

Table 2. Remotely derived parameters description
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4.2.3 Checking for collinearity between different parameters

Data indicate a positive high correlation between sorghum harvest and cultivated land (0.884). In
addition, strong positive correlation is found between NDVI and EVI (0.966) and between precip-
itation and EVI(0.702). NDVI was also highly correlated to precipitation (0.682)

Figure 2. Collinearity check between field data and remotely sensed data
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4.2.4 Sorghum harvest analysis during the two agricultural seasons

Higher yields were observed in Upper Nile state compare to Western Bahr El Gazal. In addition,
the agriculture year 2019 was better with the maximum yield compared to year 2018 for both
states.

Figure 3. Sorghum yield plotted against cultivated land for the two agricultural seasons
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Figure 4. sorghum yield plotted against NDVI

The beeswarm plot in Figure 5 illustrates well that the majority of sorghum data fall between
quartile 1 and quartile 3 and majority of people produced less than 500kg.ha−1 below the average
sorghum yield in Sub-Saharan countries which is around 800kg.ha−1 (FAOSTAT, 2018)

Figure 5. Sorghum yield during the two agricultural seasons
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4.3 Predicting the effects of remote sensing data on sorghum yield

The combination of NDVI and Cultivated land provided a better estimate of sorghum yield than
the NDVI or EVI on their own. There was a strong linear regression relationship between sorghum
yield and cultivated land (R2 = 0.781,p= 2.2e−16). In addition, the association between culti-
vated land and NDVI improved the model (R2 = 0.786). All models that included cultivated land
and NDVI as ones of the predictors were significant (R2 > 0.78 and RMSE < 180.6kg.ha−1,p =
2.2.e−16). Soil moisture was negatively related to sorghum yield.

It was observed that the addition of other remote sensed predictors did not improve the model
M6 < - Sorgharvest ∼ NDVI ∗Cultland.

Model equation R2 RMSEkg.ha−1 p value

M1 Y = 165.07∗NDV I +373.68 0.00923 382 0.142

M2 Y = 195.2∗EV I +398.93 0.00687 382.4 0.205

M3 Y = 574∗Cultland +66.86 0.781 179.2 2.2e-16

M4 Y = 154 ∗ NDV I − 385 ∗ Soil − Moisture +

485.21
0.02007 380.7 0.0952

M5 Y = 10.36LAI +149.11∗NDV I +360.01 0.01031 382.6 0.3004

M6 Y = 116.2 ∗ NDV I + 679.4 ∗Cultland194.5 ∗
NDV I : Cultland +6.24

0.786 178.3 2.2e-16**

M7 Y = 77.269.37∗NDV I+574.9∗Cultland0.61∗
HHSize

0.782 180.3 2.2e-16

M8 Y = 105.55 + 35.23 ∗ NDV I77.36 ∗
SoilMoisture + 573.36 ∗ Cultland7.26 ∗
Precipitation0.79∗Evapotranspiration

0.784 179.9 2.2e-166

M9 Y = 100.06 + 573.5 ∗ Cultland0.77 ∗
HHsize + 25.55 ∗ NDV I + 9.01 ∗ LAI7.79 ∗
Precipitation75.08 ∗ Soilmoisture0.79 ∗
Evapotranspiration

0.785 180.6 2.2e-16

Y= Sorghum yield ∗∗ best model selected based on high R2 and small RMSE

Table 3. Different model fitted for sorghum yield
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Figure 6. sorghum yield vs cultivated land

Model(M6) SSm6<-lm(Sorgharves ∼ NDVI*CultLand)

Coefficients:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 6.242 43.064 0.145 0.885

NDVI 116.204 79.968 1.453 0.148

CultLand 679.361 53.671 12.658 < 2e−16∗∗∗

NDVI:CultLand −194.495 92.713 −2.098 0.037 *

Table 4. Table of coefficient for Model (M6)
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Model (M6) assumption check with residuals (Y NDVI*Cultland)

Y = 116.2∗NDV I +679.4∗Cultland194.5∗NDV I : Cultland +6.24

The model M)6 was better fit with a higher R2 = 0.786 and a lower RMSE = 178.3kg.ha−1 The
normality assumption does not fully hold for the residuals. The qq-plot of the residuals versus a
normal distribution shows some skewness from the normality assumption. This is due to values
in the qq-plot that deviate from the qq-line at the upper end of the graph and could be attributed
to the outliers in data. (Figure 4.7)

Figure 7. Model assumptions check with residuals

Observed sorghum yield vs predicted. (R2 = 0.786)
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Figure 8. Predicted Yield plotted against observed yield

Linear regression relationships between all remote sensed variables were tested and none of them
alone was significant as yield predictor of self-reported sorghum yield.

Compare to other models, cultivated land was the best predictor with a significantly higher ac-
curacy of the estimation of sorghum yield. There was a strong linear regression between culti-
vated land and sorghum yield (R2 = 0.78and p = 2.2e−16). The LAI was highly related to NDVI
(p = 2.9e−05) and FPAR also significantly related to LAI (p = 8.6e−100)
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Figure 9. Sorghum yield plotted against different parameters: (a)NDVI, (b)EVI, (c)Soil-Moisture,
(d)Precipitation, (e)FPAR,(f)NDVI vs LAI, (g)LAI, (h) Cultland, (i) HH-Size, (j) Evapotranspiration, (k) LAI

vs FPAR

4.4 Linear Mixed-Effects Model in predicting sorghum yield variability

The LME models were executed using lme4 package in R software.
library(lme4) # for linear Mixed-effects models using lmer function.
library(merTools) # confidence interval of predictors in LME.
library(MuMIn) # to have R2

library(lmerTest)# provide p-value for fixed-effects predictors

Several models were constructed starting from the full model with all seven remotely sensed pre-
dictors as fixed-effect models and the agricultural season (year) and State were used as random-
effects variables. It is was important to identify the appropriatemodel which explain themaximum
variations while keeping the cultivated land as the main sorghum predictor variable in the logic
of an extensive farming system.



29

4.4.1 Random-effects structures

Analyzing sorghum yield variability in the two states during the two agricultural seasons and
considering all combinations of random-effects given the assumption about spatial and temporal
variability, two (2) different structures were developed to capture the random-effects of the State
(spatial random-effects) and the Year (temporal random-effects variations in each agricultural
season).

Random-effect structure (1) with random intercepts

for factors State and Year: ∼ (1|State)+(1|Year).

Model summary R2 RMSE AIC BIC Loglik

S11<-lmer(Sorgharvest∼CultLand+NDVI+(1|Year) +

(1|State))
0.784 175.45 3100.0 3120.8 −1544.0

S12<-lmer(Sorgharvest∼CultLand+LAI + (1|Year) +

(1|State))
0.785 174.98 3099.1 3119.8 −1543.5∗

S13<-lmer(Sorgharvest∼CultLand+HH-
Size+NDVI+LAI+Precipitation+Soil-
Moisture+Evapotranspiration+ (1|Year)+(1|State))

0.787 173.88 3106.6 3144.6 −1542.3∗

S14<-lmer(Sorgharvest∼CultLand + NDVI + LAI + EVI
+ Soil-Moisture + Precipitation + Evapotranspiration +
(1|State)+(1|Year))

0.787 174.18 3107.0 3145.0 −1542.5

S18a<-lmer(Sorgharvest∼CultLand + NDVI + Precipita-
tion + (1|State)+(1|Year))

0.785 175.07 3101.3 3125.5 −1543.7

S19a<-lmer(Sorgharvest∼CultLand+ NDVI + Precipitation
+ LAI + EVI + (1|Year)+(1|State))

0.786 174.4 3103.8 3134.9 −1542.9

S22<-lmer(Sorgharvest∼NDVI + LAI + Soil-Moisture +
Precipitation + Evapotranspiration + (1|Year)+(1|State))

0.084 359.5 3444.7 3475.0 −1713.4

*Model is significant.

Table 5. Different fixed-effect models comparison with random – intercept structure (1)
∼ (1|State)+(1|Year)

All models with cultivated land as fixed-effect predictor had a higher coefficient of determination
(R2 > 0.784) as opposed to the model with only remotely derived predictors which shows a very
high residual mean square error of 359.5kg.ha−1. For this random-structure, the model S13 is
the best fit for it has high R2 = 0.787 and smaller Akaike Information criterion (AIC= 3106) and
relatively small RMSE = 173.88kg.ha−1 [55]
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The analysis of variance for all mixed-effects models in above table is summarized in the below
table:

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

S11 6 3100.1 3120.8 -1544.0 3088.1

S12 6 3099.1 3119.8 −1543.5 3087.1 1.0164 0 < 2e−16∗∗∗

S18a 7 3101.3 3125.5 −1543.7 3087.3 0.0000 1 1.0000

S19a 9 3103.8 3134.9 −1542.9 3085.8 1.5092 2 0.4702

S22 9 3444.7 3475.8 −1713.4 3426.7 0.0000 0 1.0000

S13 11 3106.6 3144.7 −1542.3 3084.6 342.0951 2 < 2e−16∗∗∗

S14 11 3107.0 3145.0 −1542.5 3085.0 0.0000 0 1.0000

Table 6. Anova results for all models with random-intercept structure (1): ∼ (1|State)+(1|Year)

The Anova analysis reveals that models S12 and S13 are statistically significant (p= 2e−16) for
this first random-intercept structure. From these outputs, it is clear the models S12 and S13 are
better than all the other and their difference are highly significant.

Random effects for model S13

Groups Name Variance Std. Dev

State Intercept 897.2 29.95

Year Intercept 419.5 20.48

Residual 30529.5 174.71

Table 7. Summary of random effects results for model S13

Model S13 predict a yield variability of 897.3kg.ha−1 at state level as compare to the annual vari-
ations which is predicted at 419.5kg.ha−1. There was a much lower yield variability predicted by
model S12 at seasonal level (241kg.ha−1) as compared to S13.



31

Fixed effects of Model S13

Estimate Std. Error df t value Pr(> |t|)

(Intercept) 98.87 63.44 43.79 1.55 0.126

CultLand 568.46. 20.40 227.25 27.85 < 2e−17∗∗∗

HH-Size -1.98 2.82 228.70 −0.70 0.484

NDVI 29.05 68.76 232.45 0.42 0.63

LAI 10.34 9.61 230.85 1.07 0.283

Precipitation −0.80 6.84 232.53 −1.18 0.238

Soil-Moisture −36.63 116.07 224.78 −0.31 0.753

Evapotranspiration −0.73 0.86. 231.18 −0.84 0.397

Table 8. Summary of fixed effect results for model S13

Random effects for model S12

Groups Name Variance Std. Dev

State Intercept 241.0 15.53

Year Intercept 934.6 30.58

Residual 30891.3 175.76

Table 9. Random effects results for model S12

Model S12 predict much higher variability at state level (934.6kg.ha−1) as compare to the seasonal
variation (241kg.ha−1)

Fixed effects: Model S12

Estimate Std. Error df t value Pr(> |t|)

(Intercept) 53.66 35.069 5.530 1.530 0.181

CultLand 564.87 20.25 222.37 27.889 < 2e−16∗∗∗

LAI 9.34 9.15 231.08 1.021 0.308

Table 10. Fixed effects summary results for model S12

Model diagnostic (S12) – check for assumption
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Figure 10. model S12 assumption check with residuals

Figure 11. Model S13 assumption check

Random-effect structure (2) with random-intercept including variance-covariance ma-
trix: ∼ (1|State)+(1|Year)+(1|State : Year)
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Model summary R2 RMSE AIC BIC Loglik

S11a<-lmer(Sorgharvest∼CultLand + NDVI +(1|State)+
(1|Year)+(1|State : Year))

0.784 175.45 3102.1 3126.3 −1544.0

S11b<-lmer(Sorgharvest∼CultLand*NDVI +(1|State) +

(1|Year)+(1|State : Year))
0.788 173.85 3099.8 3127.5 −1541.9∗

S12a<-lmer(Sorgharvest∼CultLand + LAI + (1|State) +
(1|Year)+(1|State : Year))

0.785 174.98 3101.1 3125.2 −1543.5

S13a<-lmer(Sorgharvest∼CultLand + HH-Size + NDVI +
LAI + Precipitation + Soil-Moisture + Evapotranspiration
+ (1|Year)+(1|State)+(1|State : Year))

0.787 173.88 3108.6 3150.1 −1542.3

S14<-lmer(Sorgharvest∼CultLand + NDVI + LAI + EVI
+ Soil-Moisture + Precipitation + Evapotranspiration
+(1|State)+(1|Year)+(1|State : Year))

0.787 174.18 3109.0 3150.5 −1542.5

S18<-lmer(Sorgharvest∼CultLand + NDVI + Precipitation
+ (1|State)+(1|Year)+(1|State : Year))

0.785 175.07 3103.3 3131.0 −1543.7

S19<-lmer(Sorgharvest∼CultLand + NDVI + Precipitation
+ LAI + (1|Year)+(1|State)+(1|State : Year))

0.786 174.42 3103.8 3134.9 −1542.9

S19b<-lmer(Sorgharvest∼CultLand + Precipitation + LAI
+ EVI + (1|State)+(1|Year)+(1|State : Year))

0.786 174.45 3103.9 3135.0 −1542.9

S20<-lmer(Sorgharvest∼CultLand + NDVI + LAI + EVI +
FPAR + Soil-Moisture + Precipitation + Evapotranspira-
tion + (1|State)+(1|Year)+(1|State : Year))

0.787 174.14 3110 3155.6 −1542.3

* Good model based on high R2, low RMSE and low AIC

Table 11. Different-effects models comparison with random-intercept structure (2):
∼ (1|State)+(1|Year)+(1|State : Year)

The analyse of variance of all crossed models in below table suggests Model S11b is a fairly good
model with a higher R2 (0.788) and a smaller AIC (3099.8).
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Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

S11a 7 3102.1 3126.3 −1544.0 3088.1

S12a 7 3101.1 3125.2 −1543.5 3087.1 1.0164 0

S11b 8 3099.8 3127.4 −1541.9 3083.8 3.2464 1 0.07158.

S18 8 3103.3 3131.0 −1543.7 3087.3 0.0000 0

S19 9 3103.8 3134.9 −1542.9 3085.8 1.4946 1 0.22151

S19b 9 3103.9 3134.9 −152.9 3085.9 0.0000 0

S14a 11 3107.1 3145.1 −1542.6 3085.1 0.7397 2 0.69082

S13a 12 3108.7 3150.1 −1542.3 3084.7 0.4680 1 0.49390

S20 13 3110.6 3155.6 −1542.3 3084.6 0.0054 1 0.94152

Table 12. Anova results for all models with random-intercepts structure (2):
∼ (1|State)+(1|Year)+(1|State : Year)

Tables below summarize the significant model S11b

Random effects for model S11b

Groups Name Variance Std. Dev

State Intercept 238.6 15.45

Year Intercept 811.1 28.48

Residual 30489.0 174

Table 13. Random effects results for model S11b
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Comparing Model S11b, S12 and S13, the Model S11b predicts a much lower yield variability
(811.1kg.ha−1) at state level as opposed tomodel S12 (934kg.ha−1) andmodel S13(897.2kg.ha−1).
The lower annual(seasonal) random effects was predicted by model S11b(283.6kg.ha−1) followed
by model S12(241kg.ha−1) and then model S13 (419.5kg.ha−1).

Fixed effects: Model S11b

Estimate Std. Error df t value Pr(> |t|)

(Intercept) 11.76 48.22 21.98 0.244 0.8095

CultLand 668.37 53.06 233.67 12.597 < 2e−16∗∗∗

NDVI 115.64 78.53 231.90 1.473 0.1422

CultLand:NDVI −188.60 90.88 230.77 −2.075 0.0391∗

Table 14. Fixed effects results for model S11b

Figure 12. Model S11b diagnostic
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Comparison of predicted sorghum yield with different random-effects
structures

Below is a series of figures showing the scatter diagrams sorghum yield values versus predicted
values from different type of LME models, which were constructed with different random effects
structures. From the overall performance, the model S11b achieved the highest accuracy using
the cultivated land and all the remotely sensed predictor as fixed-effects predictors. This model
yielded more accurate estimation results (R2 = 0.788) and (RMSE = 173.85)kg.ha−1) follow by
model S12 that used cultivated land and LAI as fixed effects predictors(R2 = 0.785) and (RMSE =

174.9kg.ha−1) these two models used State and Year in the random-effects structures. Model S13
had a coefficient of determination (R2 = 0.787) and (RMSE = 173.80kg.ha−1).
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Figure 13. Comparison of predicted sorghum yield with different random-effects structures.
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Plotting random slopes for the significant models (S12, S13
and S11b)

Figure 14. Plot of random slopes for three significant models S11b, S12 and S13.

It is noticeable that significant variation in sorghum yield is predicted for Upper Nile state as
opposed to Western Bahr El gazal and that for the two years the two lines are clearly different
suggesting seasonal variability as well.
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4.5 Conclusion and Recommendation

4.5.1 Results discussion and Conclusion

For the humanitarian organizations working in South Sudan as well as for the government, un-
derstanding the crop yield variability between different states and between agricultural seasons is
extremely important for humanitarian planning purposes as well as for government to better meet
farmers needs. Remote sensing data have been widely used to model crop yield simulation and
forecasting. In this study remote sensing data were used to compare sorghum yield variability in
two states (Upper Nile and Western Bahr El gazal) during two agricultural seasons (2018-2019).
Using linear mixed-effects model approach provided a great tool to understanding sorghum yield
variations between the two producing states.

Given the unbalanced nature, the repeatedmeasures on same statistical units for remotely derived
parameters and the longitudinal nature of the data for this study, Linear Mixed-Effects model
(LME) was chosen and appropriate for statistical analysis. The random-effects in this study were
used to describe the spatio (state) and temporal (inter-annual) specific variations of the sorghum
yield during the two agricultural seasons (2018-2019).

The LME models with more explanatory remotely derived variables was poorer than the opti-
mum models (S12,S11b), which included only a few predictors. S11b : R2 = 0.788,RMSE =

173.85kg.ha−1,S12 : R2 = 0.785,RMSE = 174.98kg.ha−1 as compare to the full model S20 . Fur-
thermore, the 9 constructed and independent models (S11a, S12a, S11b, S18, S19, S19b, S14a, S13a,
S20) with the second random-effects structures in table (12) had an average R2 = 0.786 with av-
erage RMSE of 174.49kg.ha−1 while for the 7 models build with second random-effects structure
(table6) the average coefficient of determination was much lower (R2 = 0.685) and with a higher
average RMSE=201.06kg.ha−1 .

Comparing Model S11b, S12 and S13, the Model S13 predicted a much higher sorghum yield
variability (897.2kg.ha−1) at state level as opposed to model S12 (241.0kg.ha−1) and model S11b
(238.6kg.ha−1). In addition, higher annual (seasonal) random effects was predicted by model
S12(934.6kg.ha−1) and S11b(811.1kg.ha−1) and then model S13 (419.5kg.ha−1); therefore model
S12 and S13would be better choices to understanding the sorghumyield variability in self-reported
data and in the context of South Sudan.

Cultivated land had a significant effect on sorghum yield variability in all the models that were
considered, for instance model M4 had a ρ-value: 0.095(ρ>0.05) without cultivated land as a pre-
dictor and model M6 had a ρ-value of 2.2e− 16(ρ < 0.05) when cultivated land was included.
Combining NDVI or EVI with cultivated land had a significant effect on model M6 (Interaction
NDVI: Cult land, ρ − value = 0.037(ρ < 0.005).
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In addition, in LME, the models which did not include cultivated land as fixed effect parameter
were not significant. This means remote sensing parameters taken alone as fixed predictors were
not significant in the context of this study.

In conclusion, this study results show that Linear Mixed-Effects (LME) models not only offer ad-
vantages in understanding the appropriateness of sorghum yield modeling using remote sensing
data; they also provide a good insight in yield variations between the two states as well as between
the two agricultural seasons. For application of LME models in context of this study, using fewer
remotely derived factors is promising. In the context of South Sudan modeling crop yield by using
remote sensing data seems to be a viable option to assess yield variability.

4.5.2 Recommendation

This study assessed the potential of using LMEmodels to study sorghum yield variability in South
Sudan using farmers self-reported data and remote sensing. For greater precision, and given the
need for the country in term of cereal yield prediction and forecasting, we would recommend
following:

� There would be need to validate optimum models from this study with future sorghum yield
in South Sudan or relevant statistical yield when they are available.

� More precise on-farm field research in cereal crop modeling using remote sensing data would
be needed for cereal yield modeling and forecasting:

◦ Explore the possibility of crop simulation combining with mathematical modeling for
South Sudan context.

◦ Consider using UAV (drones) in field research when security allows for better understand-
ing of crop yield parameters mixed with remote sensing data and crop yield prediction
in South Sudan’

� Model the effects of insecurity and conflict on cereal yield as result of poorly tended sorghum
crops
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ANNEX

library(ggplot2)
library(ggpmisc)
library(ggpubr)
library(gridExtra)
library(ggeffects)
library(effects)
library(psych)
library(pastecs)
library(beeswarm)
library(sjPlot)

#Attaching the dataset
attach(FinalDataset2021JK)
str(FinalDataset2021JK)
head(FinalDataset2021JK)
FinalDataset2021JK$Year<-as.factor(Year)
str(FinalDataset2021JK)

SSudan<-na.omit(FinalDataset2021JK)
str(SSudan)
describe(FinalDataset2021JK$Sorgharvest)

Fielddata<-cbind(HH_Size, CultLand, Sorgharvest)
stat.desc(Fielddata, basic = F)

Remotedata<-cbind(FinalDataset2021JK$EVI,FinalDataset2021JK$NDVI, FinalDataset2021JK$Precipitation, FinalDataset2021JK$FPAR,
FinalDataset2021JK$LAI, FinalDataset2021JK$Evapotranspiration,
FinalDataset2021JK$Soil_Moisture)

stat.desc(Remotedata, basic = F)
stat.desc(Evapotranspiration, basic = F)

*****************************************************************

.1 Data exploration

*****************************************************************
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.1.1 Covariates description

describe(FinalDataset2021JK$CultLand)
describe(FinalDataset2021JK$Sorgharvest)
Stats<-tapply(Sorgharvest, CultLand, mean)
Stats
describe(NDVI)
describe(EVI)
describe(LAI)
describe(HH_Size)
stat.desc(SSudan$Sorgharvest, basic = F)

.1.2 Checking for col-linearity between covariates

pairs.panels(FinalDataset2021JK)
ggpairs(FinalDataset2021JK[,4:12])
ggpairs(FinalDataset2021JK[,4:9])

.1.3 Some Graphs

par(mfrow=c(2,2))

plot(CultLand, Sorgharvest)

qplot(CultLand, Sorgharvest, data = na.omit(FinalDataset2021JK), colour = Year)

boxplot(Sorgharvest CultLand, main = ”Boxplot production vs cultivated land”, col=”blue”)

boxplot(Sorgharvest, CultLand, main = ”Boxplot production vs cultivated land”, col=”blue”)

boxplot(Sorgharvest CultLand, data = FinalDataset2021JK, main = ”Sorghum yield vs cultivated
land”, # do not duplicate outliers: outline = FALSE, col =”blue”)
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1.3.1 Box plot and Bee swarm

boxplot(Sorgharvest, outline = FALSE,
main = "Beeswam plot of sorghum yield")

beeswarm(Sorgharvest,
data = as.data.frame(FinalDataset2021JK),
add = TRUE, pwcol = as.numeric(Year), pch = 16)

legend("topright", title = "Sorghum Yield", legend = levels(Year),
pch = 16, col = 1:2)

boxplot(Sorgharvest, CultLand, col = c("blue","green"),
horizontal = TRUE)

1.3.2 ggplots

g1<-ggplot(SSudan, aes(x = CultLand, y = Sorgharvest, colour = State))
+
geom_point(size = 2) +
theme_classic() +
theme(legend.position = "right")
g1

g2<-ggplot(data = na.omit(FinalDataset2021JK),
aes(x= CultLand, y=Sorgharvest, col = Year))+
geom_point(alpha = 0.7) + theme_bw()
g2

g3<-ggplot(SSudan,aes(x=CultLand, y=Sorgharvest,col=Year))+
geom_jitter() +
geom_boxplot(alpha=0.5) + facet_wrap(~Year)
g3

g4<-ggplot(SSudan,aes(x=CultLand,y=Sorgharvest,col=Year)) +
geom_jitter() +
geom_boxplot(alpha=0.5) + facet_wrap(~State)
g4

ggarrange(g1, g2, g3, g4,
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labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)

ggplot(data=na.omit(FinalDataset2021JK),
aes(x=NDVI, y=Sorgharvest, col=Year))+
geom_boxplot(notch = TRUE) +
geom_point(alpha = 0.7, col="blue") +
theme_bw()

ggplot(data=FinalDataset2021JK, aes(x=NDVI, y=Sorgharvest))+
geom_violin(notch = FALSE) +
geom_point(alpha = 0.7, col="blue")+theme_bw()

**************************************************************************

PART A

Linear Multiple Regression Analysis - Modeling

**************************************************************************
SSm1<-lm(Sorgharvest~NDVI)
summary(SSm1)

SSm2<-lm(Sorgharvest~EVI)
summary(SSm2)

SSm3<-lm(Sorgharvest~CultLand) # Significant model
summary(SSm3)

SSm4<-lm(Sorgharvest~NDVI+Soil_Moisture)
summary(SSm4)
summary(anova(SSm4))

SSm5<-lm(Sorgharvest~LAI+NDVI)
summary(SSm5)

Best Model Multiple linear regression

SSm6<-lm(Sorgharvest~NDVI*CultLand)
summary(SSm6) # good model Cultivated land and
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NDVI effect statistically significant
AnovaSSm6<-anova(SSm6)
AnovaSSm6

par(mfrow=c(2,2))
plot(SSm6)
par(mfrow=c(1,1))

Predicted Sorghum yield vs observed yield.

Predicted<-predict(SSm6); length(PP)
Predicted
describe(Predicted) #The model SSm6 is able to predict up 79% of
observed sorghum yield
describe(Sorgharvest)

SimulateSorg_yield<-simulate(SSm6)
describe(SimulateSorg_yield)

length(na.omit(FinalDataset2021JK$Sorgharvest))
length(SSudan$Sorgharvest)

Observed<-na.omit(FinalDataset2021JK$Sorgharvest); length(Observed)

equation of the line :

regpp<-lm(Predicted~Observed)
summary(regpp)
eq = paste0("y = ", round(coeff[2],1), "X + ",
round(coeff[1],1), p-value)
eq
with(FinalDataset2021JK, plot(Observed,Predicted, main = eq))
abline(regpp, col= "blue")

coeff=coefficients(regpp)
coeff

Adding the equation
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eq = paste0("y = ", round(coeff[2],1), "X + ", round(coeff[1],1))
eq
with(FinalDataset2021JK,
plot(Observed,Predicted, main = "Sorghum predicted yield vs observed"))
abline(regpp, col= "blue")

coeff=coefficients(regpp)
coeff

Checking for model assumptions

par(mfrow=c(2,2))
qqplot(NDVI, log(Sorgharvest))
qqPlot(log(Sorgharvest), distribution = "norm")

qqnorm(residuals(SSm6)); qqline(residuals(SSm6))
plot(fitted(SSm6), residuals(SSm6),
abline(h=0), xlab="Fitted Values",
ylab="Residuals", main = "Fitted values vs Residuals")
par(mfrow=c(1,1))

SSm7<-lm(Sorgharvest~EVI*CultLand)
summary(SSm7)

Good model cultivated land and EVI good predictors of Sorghum Yield

SSm8<-lm(Sorgharvest~NDVI+CultLand+HH_Size)
summary(SSm8) # This is a significant model.

SSm9<-lm(Sorgharvest~NDVI+CultLand*Soil_Moisture)
summary(SSm9) # This is another significant model

SSm10<-lm(Sorgharvest~NDVI+Soil_Moisture+
CultLand+Precipitation+Evapotranspiration)
summary(SSm10)

Full model not significance.

SSm11<-lm(Sorgharvest~CultLand+HH_Size+NDVI+LAI+
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Precipitation+Soil_Moisture+Evapotranspiration)
summary(SSm11)

Anova for signifcant models SSm3, SSm6, SSm7, SSm8 & SSm9

AnovaSSm3679<-anova(SSm3, SSm6, SSm7, SSm9,SSm10)
AnovaSSm3679
summary(AnovaSSm367910)

Plot simple models Plot1

qplot(NDVI, Sorgharvest, data = na.omit(FinalDataset2021JK),
geom=c("point", "smooth"), method="lm", formula=y~x,

main="Regression of Sorghum Production and NDVI",
ylab="Sorghum production in Kg", xlab="NDVI", se = TRUE)

Plot2

qplot(EVI, Sorgharvest, data = na.omit(FinalDataset2021JK),
geom=c("point", "smooth"), method="lm", formula=y~x,
main="Regression of Sorghum Production and EVI",
ylab="Sorghum production in Kg", xlab="EVI", se =TRUE)

Plot3

qplot(Sorgharvest, Soil_Moisture, data = na.omit(FinalDataset2021JK),
geom=c("point", "smooth"), method="lm", formula=y~x,
main="Regression of Sorghum Production and soil moisture",
ylab="Sorghum production in Kg", xlab="Soil moisture", se = TRUE)

Model Production predicted by NDVI

S1a<-ggplot(na.omit(FinalDataset2021JK),
aes(x = NDVI, y = Sorgharvest)) + geom_point()
S1a
print(S1)
S1 + stat_smooth(method = "lm", formula = y ~ x, size = 1)
S1 + stat_smooth(method = "loess", formula = y ~ x, size = 1)
S1 + stat_smooth(method = "gam", formula = y ~ s(x), size = 1)
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Sorghum yield plotted against all study predictors. Regression plot with equation on the
graph

S1 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = NDVI, y = Sorgharvest)) +
geom_smooth(method = "lm", se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800, aes(label = paste(..rr.label..)))+
stat_regline_equation(label.y = 2000)
S1

S2 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = EVI, y = Sorgharvest)) +
geom_smooth(method = "lm", se = TRUE,
color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800, aes(label = paste(..rr.label..)))+
stat_regline_equation(label.y = 2000)
S2

Use of EVI as predictor

S3 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = Soil_Moisture, y = Sorgharvest)) +
geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S3

S4 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = Precipitation, y = Sorgharvest)) +

geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +

geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+

stat_regline_equation(label.y = 2000)
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S4

S5 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = FPAR, y = Sorgharvest)) +
geom_smooth(method = "lm", se=TRUE,
color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S5

S6 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = NDVI, y = LAI)) +
geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 8,
aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 10)
S6

S6a <- ggplot(na.omit(FinalDataset2021JK),
aes(x = LAI, y = FPAR)) +
geom_smooth(method = "lm", se=TRUE,
color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 8,
aes(label = paste(..rr.label.., ..p.label..,sep = "~`,`~")))+
stat_regline_equation(label.y = 10)
S6a

Good model linear relationship Rainfall and Sorghum harvest

S7 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = LAI, y = Sorgharvest)) +
geom_smooth(method = "lm", se=TRUE,
color="blue", formula = y ~ x) +geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S7
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S8 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = CultLand, y = Sorgharvest)) +
geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S8

S9 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = HH_Size, y = Sorgharvest)) +

geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S9

S10 <- ggplot(na.omit(FinalDataset2021JK),
aes(x = Evapotranspiration, y = Sorgharvest)) +

geom_smooth(method = "lm",
se=TRUE, color="blue", formula = y ~ x) +
geom_point()+
stat_cor(label.y = 1800,
aes(label = paste(..rr.label.., sep = "~`,`~")))+
stat_regline_equation(label.y = 2000)
S10

ggarrange(S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S6a,
labels = c("(a)", "(b)", "(c)", "(d)", "(e)", "(f)", "(g)",
"(h)", "(i)", "(j)"), ("k"), ncol = 3, nrow = 4)

*********************************************************************

PART B

LINEAR MIXED EFFECT MODELS

********************************************************************
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library(lme4) # for linear Mixed-effects models using lmer function
library(merTools) # confidence interval of predictors in LME
library(MuMIn) # to have Rsquared
library(lmerTest) #provide p-value for fixed-effects predictors
library(sjPlot)
library(sjmisc)
library(emmeans)
ggeffect(S11b, "NDVI")

plot_models(S11b)

p<-ggpredict(S11b)
plot(p)

#

FinalDataset2021JK$State<-as.factor(FinalDataset2021JK$State)
str(FinalDataset2021JK)
S11<-lmer(Sorgharvest~CultLand + NDVI + (1|Year) + (1|State) ,
data = na.omit(FinalDataset2021JK), REML = FALSE)
S11 # Good LME model
plot(S11)
summary(S11)
RMSE.merMod(S11) # provides RMSE for the LME model .
RMSE=175.18
r.squaredLR(S11) # Rsquared = 0.784
plot(SSudan$Sorgharvest, Predict11)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =175.18", "R2 = 0.784"))
abline(Regression12a)

Checking for Best Model Assumption - Residual plots

Checking normality assumption with qqplot

par(mfrow=c(2,2))
qqplot(NDVI, log(Sorgharvest))
qqPlot(log(Sorgharvest), distribution = "norm")
qqnorm(residuals(S11)); qqline(residuals(S11))
plot(fitted(S11), residuals(S11), abline(h=0),
xlab="Fitted Values", ylab="Residuals",
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main = "Fitted values vs Residuals")
par(mfrow=c(1,1))

S11a<-lmer(Sorgharvest~CultLand + NDVI +
(1|State) + (1|Year) + (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S11a
summary(S11a)
RMSE.merMod(S11a)
r.squaredLR(S11a)
Predict11a<-predict(S11a)
Regression11a<-lm(SSudan$Sorgharvest~Predict11a)

plot lmer

plot(SSudan$Sorgharvest, Predict11a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =175.45", "R2 = 0.784"))
abline(Regression11a)

S11b<-lmer(Sorgharvest~CultLand*NDVI +
(1|State) + (1|Year) + (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S11b
summary(S11b)
RMSE.merMod(S11b)
r.squaredLR(S11b)
Predict11b<-predict(S11b)
Regression11b<-lm(SSudan$Sorgharvest~Predict11b)

plot lmer

plot(SSudan$Sorgharvest, Predict11b)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =173.85", "R2 = 0.788"))
abline(Regression11b)

Check for model assumption

par(mfrow=c(2,2))
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qqPlot(log(Sorgharvest), distribution = "norm")

qqnorm(residuals(S11b)); qqline(residuals(S11b))
plot(fitted(S11b), residuals(S11b), abline(h=0),
xlab="Fitted Values", ylab="Residuals",
main = "Fitted values vs Residuals")
par(mfrow=c(1,1))
plot(S11b)

S12<-lmer(Sorgharvest~CultLand + LAI + (1|Year) +(1|State),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S12
simulate(S12)
a<-summary(SSm6)
RMSE.merMod(S12)
r.squaredLR(S12)
Predict12<-predict(S12)
Regression12<-lm(SSudan$Sorgharvest~Predict12)

plot lmer

plot(SSudan$Sorgharvest, Predict12)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.9", "R2 = 0.785"))
abline(Regression12)

Model diagnostics

par(mfrow=c(1,2))
qqPlot(log(Sorgharvest), distribution = "norm")

qqnorm(residuals(S12)); qqline(residuals(S12))
plot(fitted(S12), residuals(S12), abline(h=0),
xlab="Fitted Values", ylab="Residuals",
main = "Fitted values vs Residuals")
par(mfrow=c(1,1))

plot(S12)
mixed.mod.visual(S12, rand.intercept)
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emmeans(S12,list(pairwise~State), adjust ="Tukey")

S12a<-lmer(Sorgharvest~CultLand + LAI +
(1|State) +(1|Year) + (1|State:Year),

data = na.omit(FinalDataset2021JK), REML = FALSE)
S12a
summary(S12a)
RMSE.merMod(S12a)
r.squaredLR(S12a)
Predict12a<-predict(S12a)
Regression12a<-lm(SSudan$Sorgharvest~Predict12a)

plot lmer

plot(SSudan$Sorgharvest, Predict12a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.98", "R2 = 0.785"))
abline(Regression12a)

ranef(S12a)

S13<-lmer(SSudan$Sorgharvest~CultLand +
HH_Size+ NDVI+ LAI +Precipitation +
Soil_Moisture + Evapotranspiration + (1|State) + (1|Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S13
summary(S13)
RMSE.merMod(S13)
r.squaredLR(S13)
Predict13<-predict(S13)
Regression13<-lm(SSudan$Sorgharvest~Predict13)

plot lmer

plot(SSudan$Sorgharvest, Predict13)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =173.8", "R2 = 0.787"))
abline(Regression13)
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confint.merMod(S13, level = 0.95)
# compute the confidence interval for the intercepts

Model diagnostics

par(mfrow=c(2,2))
qqPlot(log(Sorgharvest), distribution = "norm")

qqnorm(residuals(S13)); qqline(residuals(S13))
plot(fitted(S13), residuals(S13), abline(h=0),
xlab="Fitted Values", ylab="Residuals",
main = "Fitted values vs Residuals")
plot(S13)
par(mfrow=c(1,1))

S13a<-lmer(Sorgharvest~ CultLand + HH_Size +
NDVI + LAI + Precipitation + Soil_Moisture +
Evapotranspiration + (1|Year)+(1|State) +(1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S13a
summary(S13a)
RMSE.merMod(S13a)
r.squaredLR(S13a)
Predict13a<-predict(S13a)
Regression13a<-lm(SSudan$Sorgharvest~Predict13a)

plot lmer

plot(SSudan$Sorgharvest, Predict13a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =173.88", "R2 = 0.787"))
abline(Regression12)

confint.merMod(S13a, level = 0.95)
# compute the profiel confidence intervals for predictors

S14<-lmer(Sorgharvest~CultLand + NDVI + LAI +
EVI + Soil_Moisture + Precipitation +
Evapotranspiration + (1|State) +(1|Year)+(1|State:Year),
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data = na.omit(FinalDataset2021JK), REML = FALSE)
S14
summary(S14)
RMSE.merMod(S14)
r.squaredLR(S14)
Predict14<-predict(S14)
Regression14<-lm(SSudan$Sorgharvest~Predict14)

plot lmer

plot(SSudan$Sorgharvest, Predict14)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.1", "R2 = 0.787"))
abline(Regression14)

S14a<-lmer(Sorgharvest~CultLand + NDVI +
LAI + Soil_Moisture + Precipitation +
Evapotranspiration + (1|State) + (1|Year) + (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S14a #when combine NDVI fixed effect is much greater in this model
and Yearly influence of remotely sensed data is higher in State(UpN)
summary(S14a)
RMSE.merMod(S14a)
r.squaredLR(S14a)
Predict14a<-predict(S14a)
Regression14a<-lm(SSudan$Sorgharvest~Predict14a)

plot lmer

plot(SSudan$Sorgharvest, Predict14a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.23", "R2 = 0.787"))
abline(Regression12)

AnovaS13111214<-anova(S13,S11, S11a, S12, S12a, S13, S13a, S14, S14a)
AnovaS13111214 # Model S12 and S12a with LAI index is significant
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S15<-lmer(Sorgharvest~CultLand + (1|Soil_Moisture) +
(1|Evapotranspiration),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S15
summary(S15)

RMSE.merMod(S15)
r.squaredLR(S15)
Predict15<-predict(S15)
Regression15<-lm(SSudan$Sorgharvest~Predict15)

plot lmer

plot(SSudan$Sorgharvest, Predict15)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =119.7", "R2 = 0.784"))
abline(Regression15)

S16<-lmer(Sorgharvest~CultLand + NDVI + EVI + Precipitation+
(1|Soil_Moisture) + (1|Evapotranspiration),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S16
summary(S16)
RMSE.merMod(S16)
r.squaredLR(S16)
PredictS16<-predict(S16)
Regression16<-lm(SSudan$Sorgharvest~PredictS16)

plot lmer

plot(SSudan$Sorgharvest, Predict14a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =117.6", "R2 = 0.784"))
abline(Regression16)

S16a<-lmer(Sorgharvest~CultLand + NDVI + EVI + (1|Soil_Moisture)+
(0 +Soil_Moisture|Evapotranspiration), d
ata = na.omit(FinalDataset2021JK), REML = FALSE)
summary(S16a)
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RMSE.merMod(S16a)
r.squaredLR(S16a)
Predict16a<-predict(S16a)
Regression16a<-lm(SSudan$Sorgharvest~Predict16a)

plot lmer

plot(SSudan$Sorgharvest, Predict16a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.2", "R2 = 0.782"))
abline(Regression16a)

S17<-lmer(Sorgharvest~CultLand + Precipitation + (1|NDVI) + (1|State),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S17

RMSE.merMod(S17)
r.squaredLR(S17)
Predict17<-predict(S17)
Regression17<-lm(SSudan$Sorgharvest~Predict17)

plot lmer

plot(SSudan$Sorgharvest, Predict17)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =111.5", "R2 = 0.784"))
abline(Regression12)

S18<-lmer(Sorgharvest~CultLand + NDVI + Precipitation +
(1|State)+(1|Year) +(1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S18
summary(S18)
RMSE.merMod(S18)
r.squaredLR(S18)
Predict18<-predict(S18)
Regression18<-lm(SSudan$Sorgharvest~Predict18)

plot lmer
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plot(SSudan$Sorgharvest, Predict18)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =175.07", "R2 = 0.785"))
abline(Regression18)

S18a<-lmer(Sorgharvest~CultLand + NDVI + Precipitation +
(1|State)+ (1|Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S18a
summary(S18a)
RMSE.merMod(S18a)
r.squaredLR(S18a)
Predict18a<-predict(S18a)
Regression18a<-lm(SSudan$Sorgharvest~Predict18a)

plot lmer

plot(SSudan$Sorgharvest, Predict18a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.8", "R2 = 0.785"))
abline(Regression18a)

S19<-lmer(Sorgharvest~CultLand + NDVI + Precipitation + LAI +
(1|Year) +(1|State)+ (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S19
summary(S19)
RMSE.merMod(S19)
r.squaredLR(S19)

Predict19<-predict(S19)
Regression19<-lm(SSudan$Sorgharvest~Predict19)

plot lmer

plot(SSudan$Sorgharvest, Predict19)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.42", "R2 = 0.786"))
abline(Regression19)
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S19a<-lmer(Sorgharvest~CultLand+ NDVI + Precipitation + LAI + EVI +
(1|State) + (1|Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S19a
summary(S19a)
RMSE.merMod(S19a)
r.squaredLR(S19a)

Predict19a<-predict(S19a)
Regression19a<-lm(SSudan$Sorgharvest~Predict19a)

plot lmer

plot(SSudan$Sorgharvest, Predict19a)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.1", "R2 = 0.786"))
abline(Regression19a)

S19b<-lmer(Sorgharvest~CultLand + Precipitation + LAI + EVI + (1|State) +
(1|Year) + (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S19b
summary(S19b)
RMSE.merMod(S19b)
r.squaredLR(S19b)

Predict19b<-predict(S19b)
Regression19b<-lm(SSudan$Sorgharvest~Predict19b)

plot lmer

plot(SSudan$Sorgharvest, Predict19b)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.45", "R2 = 0.786"))
abline(Regression19b)

S20<-lmer(Sorgharvest~CultLand + NDVI + LAI + EVI + FPAR +
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Soil_Moisture + Precipitation + Evapotranspiration +
(1|State) + (1|Year) + (1|State:Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S20
summary(S20)
RMSE.merMod(S20)
r.squaredLR(S20)

Predict20<-predict(S20)
Regression20<-lm(SSudan$Sorgharvest~Predict20)

plot lmer

plot(SSudan$Sorgharvest, Predict20)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =174.14", "R2 = 0.787"))
abline(Regression20)

S22<-lmer(Sorgharvest~NDVI + LAI + Soil_Moisture +
Precipitation + Evapotranspiration + (1|State) + (1|Year),
data = na.omit(FinalDataset2021JK), REML = FALSE)
S22
summary(S22)
RMSE.merMod(S22)
r.squaredLR(S22)

Predict22<-predict(S22)
Regression22<-lm(SSudan$Sorgharvest~Predict22)

plot lmer

plot(SSudan$Sorgharvest, Predict22)
text(c(x=300, 250), y=c(1400, 1700),
labels = c("RMSE =155.7", "R2 = 0.757"))
abline(Regression22)

ANOVA for model S18 and S19

Analysis of variance for the first Random-effects structure
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Anova for table 6 in the Thesis document

AnovaS1112131418a19a22<-anova(S11,S12,S13, S14, S18a, S19a, S22)
AnovaS1112131418a19a22

Anova for table 10 in the thesis document

AnovaS11a11b12a13a14a181919b20<-
anova(S11a, S11b, S12a, S13a, S14a, S18, S19, S19b, S20)
AnovaS11a11b12a13a14a181919b20

Anova for the 3 significant models

Anova121311b<-anova(S12,S13,S11b)
Anova121311b # this analyse show S12 is the best model given
smaller AIC and loglik

Plotting random slope variation with lmer

******************************************************************
ggplot(S11b,aes(x=CultLand,y=Sorgharvest,color=Year))+
geom_line()+
geom_point(data=SSudan,aes(x=CultLand,y=Sorgharvest))+
facet_wrap(~State,nrow=3)

ggplot(S12,aes(x=CultLand,y=Sorgharvest,color=Year))+
geom_line()+
geom_point(data=SSudan,aes(x=CultLand,y=Sorgharvest))+
facet_wrap(~State)

ggplot(S13,aes(x=CultLand,y=Sorgharvest,color=Year))+
geom_line()+
geom_point(data=SSudan,aes(x=CultLand,y=Sorgharvest))+
facet_wrap(~State)
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