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Abstract 

 
Aggregate losses can be applied widely in areas of actuarial science as well as financial mathematics. 

They can be calculated using the collective risk model which sums random losses involving both 

claim severity and claim frequency. Impact of claim severity on aggregate losses has been well 

explored in previous research while less research has been done on impact of claim frequency on 

aggregate losses especially using phase type distributions which motivates this study. 

In this research we improve on calculation of aggregate losses by introducing phase type distributions 

in modeling claim frequency, construct phase type Poisson Lindley, determine their properties and 

parameter estimation. This research also determines how to get matrix parameters of phase type 

distributions, construct phase type compound probability generating function and apply the proposed 

models to secondary cancer cases in Kenya to demonstrate their advantage. Phase type distributions 

have one of their parameter as a matrix hence they can be used to model claim frequency for diseases 

which have multiple stages of transition and data which applies bonus malus system. The phase type 

distributions considered in this research are Panjer class (a, b, 0) , class (a, b, 1) and Poisson Lindley 

distributions. Matrices calculated using Chapman-Kolmogorov equation have shown to fit well in 

the phase type distributions. The concept of survival analysis (Kaplan-Meier) is used to estimate the 

transition probabilities of the matrix parameters and the long run probabilities represent the row 

vector →Y. Severity distributions considered are one and two parameter Poisson Lindley distribution, 

Pareto, Generalized Pareto and Wei-bull distributions. Method of moments is used in estimation of 

parameters of the severity distributions while Panjer recursive model and Discrete Fourier Transform 

are used in estimation of aggregate loss probabilities. 

Phase type distributions, help us investigate the impact of frequency within frequency in estimation 

of aggregate losses. PH Poisson-Generalized Pareto model provided the best fit for Panjer class 

(a, b, 0) while PH ZT Poisson-Generalized Pareto model provided the best fit for class (a, b, 1) and PH 

two parameter Poisson Lindley-Generalized Pareto model provided the best fit for Poisson Lindley 

distributions. Finally, we propose phase type two parameter Poisson Lindley-Generalized Pareto as 

the best overall model for modeling secondary cancer data in Kenya and similar data. This research 

enables the insurance sector to improve its reserving models for cancer which has become a world 

wide menace. 
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1 INTRODUCTION 

 
1.1 Background of the study 

 
Aggregate loss distribution is distribution of aggregate monetary loss in activities which have 

occurred over a one year period. Different approaches have been developed to estimate aggregate 

losses, including Monte Carlo method, Panjer recursive formula, Fourier Transform and simulation 

[Pavel, 2011]. Aggregate losses are as: 
 

N 

SN = ∑ Gi SN = G1 + G2 + ... + GN (1.1) 

i=1 

 

where: 

Gi represents the claim severity/amount and N represents the claim count/number. Aggregate loss dis- 

tributions were introduced way back in 1980’s by [Dmitry et.al, 2001], [Glenn, 1981] , [Hewit, 1967], 

[Harry, 1981] and [Felix et. al, 2014]. Originally aggregate loss distributions were developed using 

ordinary distributions such as Poisson for claim frequency, Gamma and exponential distributions 

for claim severity distributions. 

 
[Persi et. al, 1991] extended construction of aggregate loss distribution using mixtures such as 

Negative Binomial for claim frequency, Pareto and Generalized Pareto for claim severity distribution.  

[Mohamed et. al, 2010] further extended estimation of aggregate loss distribution using simulation 

method. Aggregate loss distributions have been evolving gradually with some of distributions 

being constructed only in their closed form hence they are calculated using numerical methods 

[Heckman et. al, 1983]. 

 
Modeling of aggregate losses plays an important role in decision making in the business field 

especially the insurance sector. The aspect of phase type distributions on aggregate loss distribution 

have not been widely investigated hence any development in this area provides great help to 

insurance firms. 

 

1.1.1 Phase-type distribution 

 
Phase-type distributions are derived by convoluting exponential distribution. These distributions 

come about from interrelated Poisson process which are in phases as shown in [Asmussen, 1996]. 

The sequence in which these processes occur is a stochastic process. It is shown by a random variable 

which describes the time until the Markov process reaches the one absorption state where the every 

state represents a phase. 
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Phase type distributions can be divided into two which are discrete phase-type distributions and 

continuous-time Markov process. Phase-type distributions which are discrete result from inter- 

related geometric distributions occurring in phases where the sequence the phases occur in can 

be stochastic processes. [Erlang, 1909] introduced phase type distributions and they have been 

extended to more modern theories by [Neuts, 1981] as well as [Asmussen, 1996]. Degenerate distri- 

bution (0 phase/empty phase), exponential distribution representing (1 phase), Erlang distribution 

representing (2 or more identical phases) were first introduced by [Erlang, 1909] and was later devel- 

oped further by [Jensen, 1953]. Theoretical properties of phase type distributions have been studied 

by [O’cinneide, 1990] while [Asmussen, 1996] generalized risk models to model situations where 

the premium is depended on current reserves. He further extended his work to provide an algorithm 

to model finite time-horizon ruin probability. This was later extended to its application to survival 

analysis as well as queuing theory. The most recent work on phase type distribution has been done 

on its statistical inference where likelihood estimation is proposed based on the EM-algorithm and 

Markov chain Monte Carlo (MCMC) based approach. In the recent past phase-type distribution 

have been used to approximate any positive-valued distribution as they preserve the Markovian 

nature of the model which is crucial for tractable computation used in performance evaluation. 

 

1.1.2 Markov models 

 
A model of a random occurance which evolves from time to time in a manner which the past activities 

affects the future activities through the current activity with some degree of probability is known 

as a Markov chain. The “time” can be either be discrete that is integers, continuous that is real 

numbers or a set which is totally ordered. Markov chain describes a process which has been observed 

at discrete intervals. Markov model have been extended to modeled infectious diseases taking 

into consideration environmental factors which leads spreading of diseases which are infectious 

[Kehinde et. al, 2019]. This research tested the Markovian property and estimated how stationary 

the process was over the period. 

 
Recent models have been developed to address spreading dynamics disease contagion and rumor 

spreading separately despite them being similar. This was elaborated by [Guilherme et. al, 2016] by 

developing a model based on discrete time Markov chain which included transitions which were 

plausible for both a disease contagion process and rumor propagation and consequently showed that 

their model covered traditional spreading schemes as well as features relevant in social dynamics, 

which include apathy, not remembering, and lost recovering of interest. 

 
This was further advanced to joint observation and disease transition model which was modeled using 

latent continuous time Markov chain; and the observation process, according to a Markov-modulated 

Poisson process with observation rates that depend on the individual’s underlying disease status by 

[Jane et. al, 2015]. All these types of matrices are considered in this research. [Sietske, 2009] showed 

that matrix-geometric distributions can equivalently be defined as distributions on the non-negative 

integers that have a rational probability generating function. It has been shown that the class of 

matrix-geometric distributions is strictly larger than the class of discrete phase-type distributions 

[Gareth et. al, 2015]. There are three special kinds of matrices which are: square matrix which has 
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equal number of row, row vector which contains one row and colum vector which has one column 

as highlighted by [John et. al, 2016]. 

 
1.1.3 Panjer Recursive model 

 
Panjer recursion are random variables of special type where in most general cases the distribution 

of S in equation (1.1) is a compound distribution. Recursion for special cases were introduced by 

Harry Panjer and they are used to calculate compound distribution. The claim size Xi is assumed 

to be i.i.d and independent of frequency distribution. For continuous severity distribution the 

severity probabilities are obtained by discretization of the claim density function but discrete severity 

distributions can be applied directly to Panjer recursive formula. The claim number N is a random 

variable which takes 0, 1, 2... values. Panjer recursion requires the probability of N to be a member 

of the Panjer class and the classes whose recursion has been developed are the (a, b, 0) class and 

(a, b, 1) class of distribution. 

 

Distribution of class (a, b, 0) should satisfy the relation: 

P[N = k] =pk pk =
 

a + 
b 

  
pk−1 k ≥ 1 (1.2) 

 

where the initial value p0 is determined such that ∑∞ pk = 1. 

The distribution of class (a, b, 1) should satisfy the relation; 

P[N = k] =pk pk =
 

a + 
b 

  
pk−1 k ≥ 2 (1.3) 

where the initial value P0 is an assumed value and p1 is determined by: 

 

p1 + p2 + ... + pk = 1 − p0 (1.4) 

 
1.1.4 Panjer class (a, b, 0) 

 

Panjer class (a, b, 0) recursion formula is satisfied by four distributins which are ,Binomial, Poisson, 

Geometric and Negative Binomial distributions. More distributions in this class can be derived 

by fixing the initial value p j and consequently applying the recursion tp the subsequent vales. 

Negative Binomial distribution is constructed by fixing two parameters k and n using methods 

which rely on: Binomial expansion as well as Poisson with Gamma mixing distributions and mixing 

of iid random variables of Geometric distribution. Experiments with the random variable which 

represent the number of failures experienced before achiving the nth success as well as the total 

number of trials which are needed to achieve the nth success as highligted by [Oketch, 2011]. If 

the class (a, b, 0) recursion holds for a given range of values of k, known distributions are then 

available. [Sundt et. al, 1981] proved that only these four distributions mentioned above belong to 

class (a, b, 0). The four distributions can be represented by a united formula called united Panjer 

distribution . 
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The values of a, b and p0 in these distributions can be represented depending on the distribution as: 
 
 

i. Binomial distribution 

a = 
−p   

1 − p 

 
b = 

p(n + 1) 

1 − p 

 
p0 = (1 − p)n 

 

ii. Poisson distribution  

a =θ b = λ p0 = e−λ 

 

iii. Negative Binomial distribution 

 

a =1 − p b = (1 − p)(r − 1) p0 = pr 

iv. Geometric distribution 

 

a =1 − p b = 0 p0 = p 

 
The values of a, b, p0 using united Panjer distribution of class (a, b, 0) are expressed as: 

 

a =
   λ  

α + λ 
b = 

(α − 1)λ 

α + λ 
p0 = (1 + 

λ 
)−α 

A matrix has been derived from the recursion of Panjer class (a, b, 0) for the distribution of compound 

distribution when frequency distribution belongs to the generalized Panjer class (a, b, 0) family and 

this has been a major development in risk theory. 

 
1.1.5 Panjer class (a,b,1) 

 
Panjer recursion algorithm is used to estimate the probability distribution approximation of a 

compound random variable . Panjer class (a, b, 1) contains distributions such as Zero truncated 

distributions as shown by [Fackler, 2009], Zero modified distribution as shown by [Younes, 2012], 

Extended truncated Negative binomial (ETNB) distribution and Sibuya distribution . Class (a, b, 1) 

distributions increase the flexibility in modeling claim frequency distributions. The Zero modified 

distributions are derived from zero truncated distribution. In the case of zero truncated distribution 

as highlighted by [Elsayed, 2011] the value of zero is not recorded hence it can be expressed as: 

pT =
    1 

pk k = 1, 2, 3, 4, ... (1.5) 

k 1 − p0 
 

Zero modified distribution is expressed as: 

 

pT = (1 − pm)pT 

 

 
k = 1, 2, 3, 4, ... (1.6) 
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The Zero modified distributions can be derived from the distributions of class (a, b, 0) by modifying 

formula (1.6) to: 
 

pm 1 − pm 
p
 

 
 

 k 1 2 3 4 

k = 
1

 0 
k
 

— p0 
= , , , , ... (1.7) 

Panjer recursive formula of class (a, b, 1) was derived by [Sundt et. al, 1981]. A matrix has been 

derived from the recursion of Panjer class (a, b, 1) for the distribution of compound distribution 

when frequency distribution belongs to the generalized Panjer class (a, b, 1) family. The development 

of a matrix form formula for the moment of compound distribution has also been a major step in 

evaluation of compound distribution. 

 
1.1.6 Severity distributions 

 
Severity distributions are distributions used to model claim count distributions. The Wei-bull 

distribution has been reviewed intesively since its was introduced in 1951 by Professor [Ernst, 1951]. 

[Mohammad, 2000] compared multiple methods of calculation of Weibull parameters which included 

how it fits based on the method of mean square error (MSE) and also the Kolmogorov- Smirnov 

(KS) criteria. Weibull distribution has been used in modeling squared returns of stock prices of the 

Cornerstone Insurance PLC and results showed that it has a good fit for the data . [Oscar, 1981] 

simplified method of moments in order to find Wei-bull distribution with specified mean and variance 

as it is tedious to calculate these values. 

 

Discrete distributions are very important distriutions when modeling frequency data in various 

applied fields such as epidemiology, public health e.t.c. Parameter estimation of distributions can 

be considered in guiding on how to estimate parameters for the model which is very important 

for reliability engineers and applied statisticians. Ordinary discrete distributions such geometric 

and Poisson exhibit weak applicability in modeling failure times and frequency. This is majorly 

because most real frequency data will show either under-dispersion or over-dispersion. This is not 

the case with these distributions as highlighted by [Abdulhakim et. al, 2021]. [Rama et. al, 2015] 

worked on one parameter Poisson Lindley distribution in modelling frequency data and it arises 

from Poisson distribution when its parameter λ follows Lindley distribution. General expression 

for the rth factorial moment of PLD has been obtained and hence its first four moments about 

origin has also been obtained by Shanker. One parameter Poisson Lindley distribution has been 

applied in data-sets relating to ecology and genetics to test its goodness of fit and the fit shows 

that it can be an important tool for modeling biological science data. [Rama et. al, 2016] obtained 

two-parameter Lindley distribution in 2013. When α = 1 for two parameter Poisson Lindley then 

it becomes one parameter Poisson Lindley distribution. Two parameter Poisson distribution has 

been found to be a beNer model than the one parameter Poisson Lindley distribution for analyzing 

waiting time, survival time and grouped mortality data [Tanka, 2016]. Two parameter Poisson 

Lindley distribution have been estimated by [Rama et. al, 2016]. Two parameter Poisson Lindley 

distribution has been extended to three parameter Poisson. Parameters estimation of three state 

Poisson Lindley distribution has been explored using maximum like likelihood and method of 

moments and simulation study has been carried out to check the consistency of the maximum 
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likelihood estimates. [Kishore et. al, 2018] applied three parameter Poisson distribution to read 

data and it was discovered that it is a flexible model that may be a useful alternative to known 

distributions like Poisson, Poisson Lindley, Two-parameter Poisson Lindley and many others for 

count data analysis . [Rama et. al, 2017] highlighted on Zero-truncated two parameter Poisson 

Lindley distribution. 

 

1.2 Statement of the problem 
 

Aggregate losses combine the likelihood (frequency) and size (severity) of losses. This produces a 

beNer estimate of the impact of the losses to the institution. Aggregate loss is usually expressed in 

terms of probability distribution to enable evaluation of the magnitude of the risk. [Harry, 1981] 

derived a recursive formula to estimate aggregate loss which required discrete claim frequency 

distributions and if claim amount distribution were continuous the values had to be discretized using 

method of rounding or method of local moment matching. [Xueyuan, 2010] introduced a different 

approach using matrix-form recursion which estimated compound distributions if claim severity ,Xi, 

were discrete or continuous phase-type distributions and claim frequency , N, were generalized class 

(a, b, 0) family. The class of discrete phase-type distributions is one of the classes of distributions 

which are dense in the class of all discrete distributions how ever only few distributions have been 

explored. 

 
Claim severity has been well explored in previous research while less has been done on claim 

frequency more so using phase type distributions which is a developing field. In this research we 

contribute in calculation of aggregate loss probabilities by in-cooperating phase type distributions 

in modeling claim frequency and consequently compound phase type distributions. The phase type 

distributions considered in this research will be constructed as well as their properties and parameter 

estimation methods developed. Phase type distributions requires one of its parameters to be a matrix 

hence a model to determine how to select the matrices will be developed and the proposed models 

applied to secondary cancer cases in Kenya to demonstrate their applicability and advantage. These 

models improve estimation of aggregate losses for cancer insurance policies as it in-cooperates 

transition of the secondary cancers. Phase type models are preferred because matrix parameters 

provide great flexibility. Cancer has over the years become one of the leading killer diseases hence 

insurance sectors have recently ventured into insurance policies to covers cancer patients. It is a 

dynamic disease hence it needs models that can capture its dynamic nature. In-cooperation of phase 

type distributions enables modeling of the dynamic aspect of cancer. 

 
This research is aimed at developing a model which improves the estimation of aggregate losses of 

cancer and other diseases with transition states hence enabling insurance sectors to draft competitive 

policies which increase the uptake of cancer policies and other chronic diseases. 

 

1.3 General objective 

 
The primary research objective is to compute phase type compound probability generating function 

for various cases and estimate aggregate losses of secondary cancer cases. 
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1.3.1 Specific objectives 

 

i. To develop phase type distributions using phase type Panjer class (a, b, 0) and class (a, b, 1) and 

calculate their properties. 

ii. To formulate phase type Poisson Lindley distributions and determine their properties. 

iii. To construct compound phase type probability generating functions when N is a phase type 

mixture and discrete phase type distribution. 

iv. To develop a model of determining the matrix of the phase type distributions using multi-state 

Markov model. 

v. To estimate aggregate loss probabilities of secondary cancer cases using the proposed phase 

type models. 

 

1.4 Significance of the study 

 
Distributions of aggregate claims are used to calculate premiums and estimate claim fluctuation 

reserves. The distribution of retained losses is useful for the insured in deciding on the degree of 

coinsurance expressed in deductible arrangements, stop loss levels and quota insurance. Phase 

type distributions provides great flexibility in estimating aggregate losses. In-cooperating phase 

type distributions helps insurance sector to almost accurately reserve for their anticipated losses 

hence reducing the risk of going into ruin. This enables the insurance companies to plan on different 

investment ventures which can increase returns hence increasing their capacity and creating more 

opportunities for the ambitious young generation. 

 
Construction of phase type models enables great flexibility in estimation of aggregate losses be- 

cause of the matrix parameters. In this work phase type distributions are used as claim frequency 

distribution hence increasing the flexibility in estimation of claim frequency. Determination of an 

algorithm which can propose appropriate condition upon how to select proper matrices to build up 

claim number distributions which is developed in this research is a major development in estimation 

of aggregate loss distributions. 

 
This achievement transforms the insurance sector in estimation of aggregate losses. Improving 

modeling of cancer policies transforms lives of policy holders who eventually suffer from cancer and 

help insurance sectors make beNer estimates in their computation. This enables more insurance 

firms introduce chronic illness insurance policies which eventually improves access to quality health 

care for cancer patients. Transforming the insurance sector gives me a sense of accomplishment 

as a mathematician as this improves the survival rate of cancer patients as it has been proven that 

cancer can be treated successfully if detected early and given the correct medication. 
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1.5 Data 

 
We considered 850 patients between calender years 2013-2018 from a large health facility in Kenya. 

The following data about the patients was available, age, sex, type of cancer, date of diagnosis and 

transition stages of the cancer. This data-set was used to compute aggregate loss probabilities of 

secondary cancer cases and is shown in Appendices . 

 

1.6 Organization of thesis 
 

This thesis progresses as follows;chapter one give background of aggregate loss distributions as well  

as phase type distribution which chapter two highlights on previous literature done on aggregate 

losses and phase type distributions. Chapter three reviews distributions of class (a, b, 0) and class 

(a, b, 1) and also Panjer recursive model for these two classes. The pgf of these distributions which 

satisfy condition of class (a, b, 0) and (a, b, 1) are derived using pgf technique and iteration technique. 

Chapter four expresses distributions of class (a, b, 0) as phase type distributions and also estimates 

their properties. Panjer recursive model for class (a, b, 0) is expressed as a phase type recursive model. 

It also extends to distributions of class (a, b, 1) and they are expressed as phase type distributions 

and also their properties are estimated. Panjer recursive model for class (a, b, 1) are also expressed 

as phase type recursive model. These phase type distributions are used to model claim frequency for 

secondary cancer cases. Phase type Poisson mixture distributions and their properties are derived in 

chapter five. Chapter six derives expressions of the multi-state models using Chapman-Kolmogorov 

for three state, four state, five state and six state models for cancer data. These multi-state models 

represents the matrices in the phase type distributions used in modeling claim frequency. 

 
Chapter seven estimates parameters of distributions used to model claim severity. Severity distribu- 

tions considered are both discrete and continuous distributions. Parameters of severity distributions 

are estimated using method of moments. The continuous distributions are discretized in order to be 

applied in phase type Panjer recursive model for both class (a, b, 0) and class (a, b, 1) and in Discrete 

Fourier Transform. Severity distribution are used to model claim amounts of cancer cases and hence 

they are in-cooperated in estimating the aggregate losses. In chapter eight, transition probabilities 

and transition intensities of three state, four state, five state and six state are estimated. The long 

run probabilities which are represented as γ in our research are calculated for each multi-state model. 

Claim frequency probability for distributions of both classes are calculated as well as their moments. 

Claim severity probabilities are also estimated for each claim severity distribution. Aggregate loss 

probabilities in-cooperating different claim frequency distributions and severity distributions are 

estimated for class (a, b, 0), class (a, b, 1) and Poisson mixture distributions. Chapter nine concludes 

on our research and also highlight our recommendations. 
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2 LITERATURE REVIEW 

 
2.1 Introduction 

 
This chapter outlines relevant literature on aggregate losses as well as phase type models. This 

chapter is divided into subsections that explain on choice of frequency and severity distributions, 

compound distributions explored in previous research and outline the research gaps handled in this 

research. 

 

2.2 Review framework 

 
The literature is outlined as follows; aggregate losses distribution and methods applicable in calcula- 

tion of aggregate losses are explored as well as framework used in choice of severity and frequency 

distributions. Previous literature on distributions used to model claim frequency are extensively 

explored as well as for severity distribution and previous research on aggregate loss distributions also 

examined. The distributions can either be ordinary distributions, mixture distributions or phase type 

distributions. Compound distributions explored so far are highlighted and the methods employed in 

calculation of the aggregate loss probabilities. This research is aimed at modeling claim data with 

multiple transition states hence phase type distributions are preferred to other models. Lastly areas 

of application of the phase type models are explored and their parameter estimation consequently 

identifying more research gaps. 
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Figure 2.1. Model Framework 
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2.3 Aggregate losses 
 

Aggregate loss distributions are calculated using compound distribution of claim frequency and claim 

severity distributions. Recursive formula for compound distribution (S) when claim frequencies, 

pn ,belongs to the Schroters family was derived by Schroter (1991). The concept of compound 

distribution was further elaborated by [Harry, 1981] using a recursive formula when claim fre- 

quency (N) belong to the (a, b, 0) family. This formula was generalized further to class (a, b, 1) by 

[Sundt et. al, 1981]. [Eisele, 2006] derived a procedure for compound phase-type distribution but 

it was not computationally efficient because of its high convolutions. A simplified recursion algo- 

rithm for aggregate claims distribution with individual claim amounts having phase-type random 

variable has been derived by [Christian, 2006]. [Xueyuan, 2010] and [Kok et. al, 2010] derived phase 

type Panjer recursive model for class (a, b, 0) and class (a, b, 1), however they did not determine 

applicability of the models to real data and they did not develop a model to determine the matrix 

parameter. [Hess et. al, 2002] extended Panjer classes to class (a, b, k). 

 
The claim frequency distribution which belong to class (a, b, 0) are Poisson , Negative Binomial, 

Binomial and Geometric distributions [Garrido, 2006]. A frequency distribution that is a member of 

class (a, b, 0) the following recursive relation must hold for some constant a and b. 
 

  pk 
= a + 

b 
 

k = 1, 2, 3, ... (2.1) 

pk−1 k 
 

where pk is the claim frequency probability. The initial probability p0 of a member of class (a, b, 0) 

is fixed implying that the sum of all pk must sum to 1. The member of class (a, b, 0) class has two 

parameters a and b [Stuart et. al, 2008]. 

 
[Kok et. al, 2010] extended [Xueyuan, 2010] work expressed a matrix-form recursion formula for 

class (a, b, 1) family. The mean and variance of these distributions were evaluated. [Kok et. al, 2010] 

also discussed the mixtures of zero modified and zero truncated versions of logarithmic distributions 

and their linear combinations. It is clearly demonstrated in this work how to compute moments of 

compound distribution (S) recursive based on aggregate claim distribution. Only some very special 

members of the generalized (a, b, 1) family are examined in this work which opens more problems to 

be explored. Panjer class (a, b, 1) contains distributions such as Zero truncated distributions (p0 = 0), 

Zero modified distribution (p0 > 0) , Extended truncated Negative binomial(ETNB) distribution and 

Sibuya distribution . 

 

Class (a, b, 1) distributions increase the flexibility in modeling claim frequency distributions [Marcelo et. al, 2015]. 

The Zero modified distributions are derived from zero truncated distribution where in the case of 

zero truncated distribution the value of zero is not recorded. Distributions which satisfy conditions 

of Panjer class (a, b, 1) include: 

 
(a). Zero-truncated distribution,where P0 = 0 

i. Zero truncated Poisson distribution. 
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ii. Zero truncated Binomial distribution. 

iii. Zero truncated Geometric distribution. 

(b). Zero-modified distributions where P0 = 0 

i. Zero modified Poisson distribution. 

ii. Zero modified Binomial distribution. 

iii. Zero modified Geometric distribution. 

iv. Zero modified Extended truncated negative binomial distribution(ETNB). 

(c). Other distributions 

i. Extended truncated Negative binomial (ETNB) distribution. 

ii. Logarithmic distribution. 

iii. Sibuya distribution. 

 

Panjer recursive formula of class (a, b, 1) was derived by[Sundt et. al, 1981]. A matrix has been 

derived from the recursion of Panjer class (a, b, 1) for the distribution of compound distribution 

when frequency distribution belongs to the generalized Panjer class (a, b, 1) family. Generalized phase 

type distributions have been derived for class (a, b, 0) distributions . [Vilar et. al, 2009] assumed 

that insurance companies provides historical sample of claim frequency and claim severity hence 

he developed a non-parametric approach which can be used in insurance. [Harchol, 2012] based 

his work on non parametric estimators to calculate density functions where data is censored or 

truncated using Monte Carlo simulation methods and bootstrap re-sampling. A methodology 

useful in comparing various strategies used in pricing insurance products was developed. Different 

numerical methods which can be used in calculation of aggregate loss so far are: 

 

(i) Monte Carlo simulations. 

(ii) Panjer recursion. 

(iii) Heckman-meyers. 

(iv) Fourier Transform. 

 

Panjer recursive model is the oldest method of calculating aggregate loss distribution and is discussed 

in [Heckman et. al, 1983]. The method of Heckman-Meyers is discussed in detail in Heckman 

[Heckman et. al, 1983] and its application in calculation of aggregate loss models. The application of 

Fast Fourier Transform in calculation of aggregate loss models is discussed in [Robertson, 1992]. The 

latest method to be developed is the stochastic simulation by [Mohamed et. al, 2010]. [Pavel, 2010] 

reviewed the three numerical algorithms which had been developed by 2010. [Paul et.al, 2010] 

showed that Monte Carlo method is the easiest to implement but it is a slow method hence Panjer 
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recursive method and Fourier Transforms are more preferred. [Kumer et. al, 2011] reviewed and 

extended Panjer’s recursion formula used in derivation of compound negative binomial distributions 

where they explored gamma as well as its mixtures distributions and developed a theory which can 

apply R software directly. The accuracy of the method used proved to be beNer and the computation 

time quite faster. The numerical methods considered in this research are Panjer recursive model 

as some of the distribution considered follow Panjer classes and Discrete Fourier Transform for 

distributions that do not follow Panjer classes. 

 
A model to determine matrix parameters is developed in this research and extends application of Pan- 

jer class (a, b, 1) distributions not considered so far as well as mixture distributions. [Sundberg, 1974] 

highlighted that aggregate loss models can be modeled using two modeling approaches which are: 

 

(i) Individual risk model 

This model emphasizes the loss from each individual contract and represents the aggregate 

losses as: 

 

Sn = G1 + G2 + ... + Gn 

 

where Gi(i = 1, 2, 3, ...n) is the loss amount, n denotes fixed number of contracts in the portfolio 

which is a fixed number and Gi are independent and not necessarily identically distributed. 

(ii) Collective Risk model 

This model represents aggregate losses in terms of a frequency distribution and a severity 

distribution and is expressed as: 

 

SN = G1 + G2 + ... + GN 

where N is a random number representing the number of losses or payments, Gi(i = 1, 2, 3, ..., N) 

represents the claims amounts which are assumed to be iid and both N and Gi are assumed to 

be independent of each other . 

 

Severity and frequency distribution can be applied to the collective risk model to determine the 

aggregate losses. Severity distributions have been well explored in previous literature, however less 

research has been done on impact of claim frequency on aggregate losses. This research expands the 

scope of claim frequency distributions in estimation of aggregate losses. Phase type distributions 

are employed to address this short coming. 

 

2.4 Frequency distribution 

 
Frequency distributions can be divided into three categories which are discrete distributions, contin- 

uous distributions and mixed distributions. 
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2.4.1 Discrete distributions 

 
A discrete probability distribution depicts the occurrence of discrete outcomes and is made up of 

discrete variables. The probability mass function of discrete distributions can be expresses as: 
 

n 

p(x) = ∑ f (x) 
x=0 

Most claim count distributions considered so far are discrete distributions. This research extend 

used of discrete distributions as claim count distributions to phase type discrete count distributions 

in estimating aggregate losses. 

 
2.4.2 Continuous distributions distribution 

 
A continuous probability distribution is a distribution in which the random variable can take on any 

continuous value . The probability density function is expressed as: 

 

p(x) = 
n 

x=0 

 
f (x) dx 

 

2.4.3 Mixed distributions 

 
A mixture distribution is a probability distribution whose random variable is derived from a group 

of other random variables. The random variable is selected randomly from the collection of other 

random variables according to the given probabilities of selection. The values of selected random 

variables are then realized. The underlying random variables can be random real numbers and if they 

are continuous then the outcome will be continuous. If the underlying random variable is discrete 

then the outcome is a discrete. Discrete mixture are expresses as: 
 

n 

p(x) = ∑ wi f (x) 
x=0 

Continuous mixture are expresses as: 
 

p(x) = 
n 

 

x=0 

 
wi f (x) dx 

This research extend used of mixture distribution in modeling claim count data to phase type mixture 

distributions. 

 
2.4.4 Phase type distributions 

 
Phase type distributions are constructed by mixing of exponential distributions resulting from a chain 

of inter-related Poisson processes which occur in sequence also known as phases. [Sophie et. al, 2012] 

showed that under the constraint that their representation is to be non-negative, Poisson distributions 

Ú 

Ú 
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i=1 

 
 

which are extensions of phase type disributions. [Gabor et. al, 2012] introduced the libphprng library 

for generating random-variates from PH distributions. A compound random variable X is important 

in various experiences which include reliability which is used for modeling the lifetime of a system 

in a particular shock model as shown in [Verbelen, 2013]. 
 

Research has been done on distribution of the random variable T = ∑N  Gi where Gi for i ≥ 1 is a 

sequence made random variables which are independent and identically distributed and also have a 

common phase-type distribution with the distribution of T having been obtained using phase-type 

distributions as shown in [Serkan, 2016]. Victoria generalized phase type distribution by replacing 

the underlying by Markov mixtures process enabling them to model heterogeneity and inclusion 

of past information which is due to the Markov property of the underlying process as shown in 

[Surya, 2016]. 

 
[Asger et. al, 2018] demonstrated how similar coalescent theory and Phase-type theory are and 

the implication of that close relation. The translations are useful, complex and difficult to derive. 

Coalescent theory formula equations are trivial to define and compute using phase-type theory as 

well as the matrix notation. This work obtained explicit formula for the joint distribution of the 

height of a tree, explicit formula for expected values, co-variances of the height of a tree height 

and total length of branchs. [O’cinneide, 1990] highlighted on Phase type distributions and their 

invariant polytopes. [Mogens, 2005] introduced use of phase type distributions in risk theory while 

[Antony et. al, 2020] developed compound distribution to model extreme natural disasters in Kenya. 

Continuous phase-type distribution have various special cases which are: 

 

(i) Degenerate distribution- this is where the point mass is zero or it is an empty phase-type 

distribution meaning it has 0 phases. 

(ii) Erlang distribution – This has 2 or more phases which are identical and in sequence. 

(iii) Deterministic distribution (or constant)– This is limiting case of the Erlang distribution 

where the number of phases consequently become infinite and the time in each and every state 

becomes zero. 

(iv) Coxian distribution – This has 2 or more phases which are not necessarily identical in their 

sequence with a certain probability of transiting to the absorbing state after each phase. 

(v) Hypoexponential distribution – it has two or more phases which are in sequence and they 

can either be non-identical or a mixture of identical and non-identical phases. [Mogens et. al, 2017]. 

 

This research modifies the concept of Hypoexponential distribution which is expressed as a phase 

type distribution as: 
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2.5 Multi state models 

 
Phase-type distribution is a probability distribution which is constructed by mixing exponential 

distributions. Markov processes are stochastic process and they are shown by a random variable 

which describes the time up to absorption for a Markov process which has one absorbing state where 

each state represents one of the phases. 

 
A mathematical model representing of a random scenario which evolves with time in a manner 

that the past affects the future through the current state with some level of probability. Markov 

chain describes a process observed at discrete intervals and they have been used in epidemiological  

models as shown by [Abdulhakim et. al, 2021]. However they do not project other relevant disease 

information such as probability of geNing infection and recovery from first infection or the anticipated 

time to geNing an infection and recovering for both prone and infected people [Juan, 2020]. These 

disease models considered in estimating the transition probabilities (TPs) cannot generalize the 

transition estimates of disease outcomes at discrete time steps for predictions in the future. This 

necessitated the adoption of a discrete-time Markov chain model. [Clement et. al, 2019] sought 

to address aforementioned issues using discrete-time Markov chain model. This study came to 

the conclusion that hepatitis B is more infectious over a long period of time than tuberculosis or 

HIV despite the probability of geNing first infection of these two diseases being comparatively low 

within the population considered. Hiv infected Patients had a considerably lower life expectancy 

compared to those suffering from tuberculosis and Hepatitis B. This study came to the conclusion 

that discrete-time Markov models are good models in modeling diseases dynamics in Ghana . 

 
[Asmussen, 1996] developed a model based on discrete time Markov chain including all transitions 

affecting disease contagion process as well as rumor propagation. They consequently showed that  

their model covered traditional spreading schemes as well as features which are relevant in social 

dynamics, such as apathy, in ability to remember, and lost recovering of interest. [Manuel et. al, 2021] 

considered a non-homogeneous continuous time Markov chain model for Long-Term Care to monitor 

the quality of the labeling using Portuguese life expectancies taking into consideration reasonable 

monthly costs for each dependence state and consequently computing them by Monte Carlo 

simulation, trajectories of the Markov chain process hence deriving relevant information for model 
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validation and premium calculation. Chapman-kolmogorov equation is used to derive the Multi 

state models considered in this research. It based on the fact that, a process which begins in state i 

at time s and is in state j at time r occurs through some state k ∈ M at an unknown intermediate 

time R i.e 
 

n n 

pi j(s, r) = ∑ pr[Z(s, r) = j, Z(s, r) = k|Z(s, s) = i] pi j(s, r) = ∑ pik(s, R)pk j(R, r) (2.2) 

k=1 k=1 
 

In the recent past insurance companies have embraced the thought of insurance for chronic diseases 

such as cancer hence multi state models improves it’s estimation as it allows modeling of transition 

between states. 
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3 PHASE TYPE DISTRIBUTIONS OF CLASS (a,b,0) AND 

CLASS (a,b,1) 

 
3.1 Introduction 

 
Discrete phase type distributions (DPHD) are derived from a Markov chain which has one which 

is absorbing and retains the remaining states as transient. The transition matrix of a phase type 

distribution is expressed as: 
 

c10 

c20 

 
. . . . 

  

 cm0 
 

= 

 
Z y 

 

 
 

where 

 
y represents (n ∗ 1) non-zero column vector. 

Z represents (n ∗ n) non-zero matrix. 

0 represents (1 ∗ n) zero row vector. 

1 represents (1 ∗ 1) single element matrix. 

0 1  

 

The higher orders of C are represented as: 

C2 =CC 

=

 

Z y  
Z y 

 

 
0 1 

 
0 1  

 
Z2 B2 

 

= 
0 1  

C = 

  

 

 c11 c12 c13 · · · c1m 

c21 c22 c23 · · · c2m 

c30 

. 

c31 

. 

cm1 

c32 

. 

cm2 

c33 

. . 

cm3 

· · · 

. 

· · · 

c3m 

. 

cmm 

0 0 0 0 0 1 
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n 

 

Hence Cn can be expressed as: 

 
n 

 
Zn Bn 

   
n−1    

k

!
 

 C =  
0 1

  where Bn = ∑ Z u 
k=0 

 

 

In this chapter we improve on the work of [Xueyuan, 2010]. The distributions considered in this 

chapter and chapter four satisfy the conditions of discrete phase type transition matrix. The algorithm 

of selecting matrix parameters for phase type distributions was not determined which will be one of  

the main objectives of this study. In this chapter distributions of class (a, b, 0) and class (a, b, 1) are 

expressed as phase type distributions and their properties derived. 

 

3.2 PH Panjer class (a,b,0) distribution and its aggregate loss distribution 

recursively 

3.2.1 PH Panjer class (a, b, 0) distribution using pgf technique 

PH Panjer formula for class (a, b, 0) is illustrated as: 

Pn =
 

A + 
B

 
Pn−1 (3.1) 

Multiplying all through by n results to: 

 
nPn =

 
An + B

 
Pn−1 

=
,  

n − 1 + 1
 

A + B
,

Pn−1 

=
 

n − 1
 

APn−1 +
 

A + B
 

Pn−1 n = 1, 2, ... (3.2) 

Expressing equation (3.2) in terms of pgf and multiplying it by sn and sum the result over n. 
 

∞ ∞ ∞ 

∑ nPns
n = A ∑ (n − 1)Pn−1sn + (A + B) ∑ Pn−1sn (3.3) 

n=1 n=1 n=1 
 

Factoring out s, s2 and s respectively results to: 
 

∞ ∞ ∞ 

s ∑ nPns
n−1 = As2 ∑ (n − 1)Pn−1sn−2 + (A + B)s ∑ Pn−1sn−1 (3.4) 

n=1 

 

Divide through by s resulting to: 
 

∞ 

n=2 

 
 
 

∞ 

n=1 

 
 
 

∞ 

∑ nPns
n−1 = As ∑ (n − 1)Pn−1sn−2 + (A + B) ∑ Pn−1sn−1 (3.5) 

n=1 n=2 n=1 
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− 

− 

Y (s) 

Y (s) 

 
 

Let the pgf of phase type frequency distribution be defined as: 
 

∞ 

Y (s) = ∑ Pns
n 

n=0 
 

The first derivative of the pgf is: 
 

∞ 

Y ′(s) = ∑ nPns
n−1 (3.6) 

n=1 
 

Let the pgf of the phase type frequency distribution be defined as: 
 

∞ 

Y (s) = ∑ Pn 1sn−1 (3.7) 

n=1 
 

The first derivative of the pgf is: 
 

∞ 

Y ′(s) = ∑ (n 1)Pns
n−2 (3.8) 

n=2 
 

Combining equation (3.6),equation (3.8) and equation (3.5) it becomes : 

 

Y ′(s) =AsY ′(s) + (A + B)Y (s) 

(I − As)Y ′(s) =(A + B)Y (s) (3.9) 

Rearranging equation (3.9) it becomes: 

Y ′(s) 
=

 
A + B

 
I − As

 −1 
(3.10) 

This expresses the discrete distributions of phase type Panjer of class (a, b, 0) in terms of pgf. 

Theorem 3.2.1 (PH Panjer class (a, b, 0) distributions). The distributions arising from pgf of phase 

type Panjer class (a, b, 0) model 

Y ′(s) 
=

 
A + B

 
I − As

 −1 
( 3.11 )  

 

are: 

 

(i) Phase type Poisson when A = 0, B > 0. 

(ii) Phase type Negative binomial A > 0, B > 0. 

(iii) Phase type Binomial when BA−1 > 0, BA−1 < 0. 

(iv) Phase type Geometric when A > 0, B = 0. 
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Proof of theorem 3.2.1 

 
(i) When A = 0, B = 0 

From equation (3.11) replacing the value of A and the value of B results to: 

 
Y 1(s) 

Y (s) 
=B

 

Ú 

d lnY (s) =

Ú 

B ds 

lnY (s) =Bs + C 

 

The above equation simplifies to:  
 

Y (s) = eCeBs (3.12) 

 

Replacing s with 1 results to : 

 
Y (1) =eCeB 1 = eCeB eC = e−B (3.13) 

 
Combining equation (3.13) and equation (3.12) results to: 

 
Y (s) =e−BeBs Y (s) = e−B+Bs Y (s) = eB(s−1) (3.14) 

Summary 

This represents the pgf of phase type Poisson distribution with parameter B. 

Theorem 3.2.2 (Properties of phase type Poisson distribution). Letting B from equation 

(3.14) be Λ the properties of Phase type Poisson can be expressed as: 

(a) pgf 
 

Y (ŝ) = →YeΛ(s−1)→1T ( 3 .1 5 )  

 

(b) Expectation  

E(N̂ ) = →YΛ→1T ( 3 .1 6 )  

 

(c) Variance  

Var(N̂ ) = →YΛ→1T (3 . 1 7 )  

 

Proof of theorem 3.2.2 



22 
 

 

 

(a) The pmf of phase type Poisson distribution is: 
 

 
 

The pgf of Poisson is given by: 

 

y(n̂) = 
e−ΛΛn 

n! 

∞ Y s y n  ̂sn 
∞ e−ΛΛn 

sn
 

 
 

∞ 
e−Λ (sΛ)n 

 
( ) = ∑ ( ) 

n=0 
= ∑ 

n=0 
= ∑ 

n=0 

Y (s) =e−ΛeΛs Y (s) = eΛ(s−1) (3.18) 

Equation (3.18) can be transformed to a proper pgf by multiplying by →Y on the left hand 

side and→1T  on the right hand side to become: 

Y (ŝ) = →YeΛ(s−1)→1T (3.19) 

Derivative of pgf can be used to obtain other properties of PH Poisson distribution. The 

derivatives of equation (3.18) are obtained as: 

Y ′(s) =ΛeΛ(s−1) 
(3.20) 

Y ′′(s) =Λ2eΛ(s−1) 
(3.21) 

In general the kth factorial moments is given by: 

Yk(s) = ΛkeΛ(s−1) 

(b) E(N) = Y ′(1) hence equation (3.20) can be expressed as: 

Y ′(s) =ΛeΛ(s−1) Y ′(1) = Λ E(N) = Λ (3.22) 

Equation (3.22) can be wriNen as a proper expectation as: 

E(N̂ ) = →YΛ→1T (3.23) 

 

(c) Variance of N can be expressed as: 

Var(N) = Y ′′(1) + Y ′(1) − [Y ′(1)]2 (3.24) 

Y ′′(1) can be obtained from equation (3.21) as: 

Y ′′(s) =Λ2eΛ(1−1) Y ′′(s) = Λ2 (3.25) 

Hence equation (3.24) can be expressed as: 

Var(N) =Λ2 + Λ − [Λ]2 Var(N) = Λ (3.26) 

Equation (3.26) can be rewriNen as : 
 

Var(N̂ ) = →YΛ→1T (3.27) 

n! n! 
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− 

    

 

(ii) When A > 0, B > 0 

From equation (3.10) replacing A and B results to : 

 
Y ′(s) 

=(A + B)(I As)−1 
Y (s) 

Ú 

d lnY (s) =

Ú 

(A + B)(I − As)−1 ds 

Introduce −A 
Ú 

d lnY (s) =(A + B)(−A)−1 
Ú 

(I − As)−1 ds 

lnY (s) =(A + B)(−A)−1ln(I − As) + ln C lnY (s) = ln(I − As)−[(A+B)(A)
−1] + ln C 

lnY (s) =ln C (I − As)−[(A+B)(A)
−1]

 

Therefore: 

 
 

Let s = 1 

Y (s) =[C]
 

(I − As)−[(A+B)(A)
−1] 

(3.28) 

Y (1) =
 
C

   
(I − A)−[(A+B)(A)

−1] C = (I − A)(A+B)(A)
−1 

(3.29) 

 

Replacing equation (3.29) in equation (3.28) : 

h  
−1
i (A+B)(A)−1 

 

Summary 

Y (s) = (I − A)(I − As) (3.30) 

This is the pgf of phase type negative binomial distribution with parameters (A + B)(A)−1 and 

(I − A) for 0 < A < I. Any data set that has the values of A > 0 and B > 0, the most appropriate 

frequency distribution is the negative binomial distribution. 

Theorem 3.2.3 (Properties of phase type Negative Binomial distribution). Letting A from 

equation (3.30) be Q and B = (α − 1)Q the properties of phase type Negative Binomial distribution 

are expressed as: 

(a) pgf 
 

 

 
(b) Expectation 

 

 
 

(c) Variance 

Y (ŝ) = →Y{[I − Q][I − sQ]−1}α→1T ( 3 .3 1 )  

 
E(N̂ ) = α→YQ[I − Q]−1→1T ( 3 .3 2 )  

 
Var(N̂ ) = α→Y{Q2[I − Q]−2 + Q[I − Q]−1}→1T ( 3 .3 3 )  
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− 

→ 

( ) = ∑ 
n=0 

( ) = ∑ 
n=0 

n ∑ ( 
n=0 

) 
n 

( ) 

 

 

Pro of  o f  t he ore m  3. 2. 3  

(a) The pmf of phase type Negative Binomial distribution is: 

y(n̂) =

 
n + α − 1

 

[I − Q]α Qn y(n̂) = 

 
n + α − 1

 

Pα Qn 

n n 

 

The pgf of n is given by: 
 

∞ 

Y s y n  ̂sn 
∞  

 
n + α − 1

 

Pα Qnsn 
Pα  

∞ 

1 n

  
−α

   

Qs n 

Y (s) =Pα 
h
I − Qs

i −α 

= 
h
P[I − Qs]−1

i α 

( 3 .3 4 )  

P can be expressed in terms of Q as P = [I − Q] hence equation (3.34) can be written as: 

Y (s) = 
,

[I − Q][I − sQ]−1

, α 

( 3 .3 5 )  

Equation (3.35) can be transformed to a proper pgf by multiplying by →Y on the left hand side 

and→1T  on the right hand side to become: 

Y (ŝ) = →Y
,

[I − Q][I − sQ]−1

, α 

1T ( 3 .3 6 )  

which is the pgf of Phase type Negative Binomial distribution. Derivative of pgf can be used 

to obtain other properties of phase type Negative Binomial distribution. The derivatives of 

equation (3.34) are obtained as: 

 

Y ′(s) =αPα Q[I − sQ]−α−1 ( 3.37 )  

Y ′′(s) =α(α + 1)Pα Q2[I − sQ]−α−2 ( 3.38 )  

In general the kth factorial moments is given by: 

 

Yk(s) = α(α + 1)(α + 2)...(α + k − 1)Pα Qk[I − sQ]−α−k 

(b) E(N) = Y ′(1) hence equation (3.37) can be expressed as: 

Y ′(s) =αPα Q[I − Q]−α−1 = αPα Q[I − Q]−α [I − Q]−1 
 

Hence:  
E(N) = αQ[I − Q]−1 ( 3.39 )  

 

Equation (3.39)can be written as a proper expectation as: 

 

E(N̂ ) = α→YQ[I − Q]−1→1T ( 3 .4 0 )  

= 
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,  ,  

− 

h      
i−1 

        

 

(c) Variance of N can be expressed as shown in (3.24) and Y ′′(1) can be obtained from equation 

(3.38) as: 
 

Y ′′(1) =α(α + 1)Pα Q2[I − Q]α−2 = α(α + 1)[I − Q]α Q2[I − Q]α−2 

Y ′′(1) =α(α + 1)Q2[I − Q]−2 ( 3.41 )  

Hence equation (3.24) can be expressed as: 

 
Var(N) = α(α + 1)Q2[I − Q]−2 + αQ[I − Q]−1 − α2Q2[I − Q]−2 

=αQ2[I − Q]−2 + αQ[I − Q]−1 

Var(N) =α
,

Q2[I − Q]−2 + Q[I − Q]−1

,  
( 3 .4 2 )  

Equation (3.42) can be rewritten as : 

Var(N̂ ) = α→Y
,

Q2[I − Q]−2 + Q[I − Q]−1

,
→1T ( 3 .4 3 )  

 

(iii) When A < 0, B > 0 

From equation (3.10) replacing the A and B results to: 

 
Y ′(s) 

= (A + B)(I As)−1 
Y (s) 

 

From equation (3.30) we know that: 
 

(A+B)A−1 

Y (s) = (I − A)(I − As) 
 

Let (A + B)(A)−1 = −M 

Where M is a positive matrix . 

Therefore: 

Y (s) =
h
(I − A)(I − As)−1

i −m 

= 
h
(I − As)(I − A)−1

i m

 

Y (s) =
,

I(I − A)−1 − [A(I − A)−1]s
, m 

Y (s) = 
,
(I − A)−1 + 

 
− A(I − A)−1

 
s
, m 

(3.44) 

Summary 

This is the pgf of phase type binomial distribution with matrix parameter M. This means that for 

any data with matrix of value A < 0 and matrix of value B > 0 the most appropriate frequency 

distribution for that data set is phase type binomial distribution. 

Theorem 3.2.4 (Properties of phase type Binomial distribution). Letting A from equation 

(3.44) be − (I − Q)Q−1 and B = (α + 1) (I − Q)Q−1 the properties of phase type Binomial 

distribution are expressed as: 
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( ) = ∑ 
n=0 

( ) = ∑ 
n=0 

n 
+ ) 

 
 

a) pgf 

 

 

b) Expectation 

 

 

c) Variance 

 

 
Proof of theorem 3.2.4 

 
Y (ŝ) = →Y[Ps + Q]α→1T ( 3 .4 5 )  

 

E(N̂ ) = α→Y[I − Q]→1T ( 3 .4 6 )  

 
Var(N̂ ) = α→Y{[I − Q]Q}→1T (3 . 4 7 )  

 

(a) The pmf of phase type Binomial distribution is: 

y(n̂) =

 
α
 

(I − Q)nQα−n y(n̂) = 

 
α
 

PnQα−n 

n n 

The pgf of n is given by: 

∞ 

Y s y n  ̂sn 
∞      α

  

PnQα−nsn 

 

Ps Q α 
(3.48) 

 

Equation (3.48) can be transformed to a proper pgf by multiplying by →Y on the LHS and→1T 

on the RHS to become: 

Y (ŝ) = →Y[Ps + Q]α→1T (3.49) 

which is the pgf of Phase type Binomial distribution. Derivative of pgf can be used to obtain 

other properties of phase type Binomial distribution. The derivatives of equation (3.48) are 

obtained as: 

Y ′(s) =αP[Ps + Q]α−1 (3.50) 

Y ′′(s) =α(α − 1)P2[Ps + Q]α−2 (3.51) 

In general the kth factorial moments is given by: 

Yk(s) = α(α − 1)(α − 2)...(α + k − 1)Pk[Ps + Q]α−k 

(b) E(N) = Y ′(1) hence equation (3.50) becomes: 

Y ′(1) =αP[P + Q]α−1 = αP = α[I − Q] 
 

Hence:  
E(N) = α[I − Q] (3.52) 

 

Equation (3.52) can be wriNen as a proper expectation as: 

E(N̂ ) = α→Y[I − Q]→1T (3.53) 

= ( 
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(c) Variance of N can be expressed as shown in (3.24) and Y ′′(1) can be obtained from equation 

(3.51) as: 
 

Y ′′(1) =P2α(α − 1)[P + Q]α−2 Y ′′(1) = P2α(α − 1) (3.54) 

Hence equation (3.24) can be expressed as: 

 

Var(N) ={P2α(α − 1) + Pα − P2α2} = Pα[I − P] = PαQ (3.55) 

Equation (3.55) can be rewriNen as : 

 

Var(N̂ ) = α→YPQ→1T (3.56) 

(iv) When A > 0, B = 0 
From equation (3.11) replacing A and B it becomes : 

Y ′(s) 
=(A)(I − As)−1 

d 
lnY (s) = (A)(I − As)−1 

Ú 

d lnY (s) = 

Ú 

(A)(I − As)−1ds 
 

Y (s) ds 

Introduce a negative sign: 

 
 

 
Therefore: 

 
 
 

Let s = 1 

Ú 

dlnY (s) = − 

Ú 

(−A)(I − As)−1 ds lnY (s) = −ln(I − As) + ln C 

 
Y (s) =(C)(I − As)−1 (3.57) 

 

Y (1) =C(I − A)−1 I = C(I − A)−1 C = I − A (3.58) 

 

Combining equation (3.58) and equation (3.57) results to: 

 

Y (s) =(I − A)(I − As)−1 (3.59) 

 

Summary 

This is the pgf of a phase type geometric distribution with parameter (I − A). 

i.e Pn = An(I − A) n = 0, 1, 2, ... 

For any data which has its value of B = 0, the suitable frequency distribution is phase type 

geometric distribution and its mean should be greater than its variance. 

Theorem 3.2.5 (Properties of phase type Geometric distribution). Letting A from equation 

(3.59) be Q and B = 0 the properties of phase type Geometric distribution are expressed as: 
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(a) pgf 

 

 

(b) Expectation 

 

 

(c) Variance 

 

 

Proof of theorem 3.2.5 

 
Y (ŝ) = →Y[I − sQ]−1[I − Q]→1T ( 3 .6 0 )  

 
E(N̂ ) = →YQ[I − Q]−1→1T ( 3 .6 1 )  

 
Var(N̂ ) = →YQ2[I − Q]−2 + Q[I − Q]−1→1T ( 3 .6 2 )  

 

(a) The pmf of phase type Geometric distribution is: 

y(n̂) =Qn[I − Q] y(n̂) = QnP 
 

The pgf of n is given by: 

∞ ∞ 

Y (s) = ∑ y(n̂)sn = ∑ QnPsn = P[I − Qs]−1 (3.63) 

n=0 n=0 

Equation (3.63) can be transformed to a proper pgf by multiplying by →Y on the LHS and→1T 

on the RHS to become: 

Y (ŝ) = →Y[I − Q][I − Qs]−1→1T (3.64) 

which is the pgf of Phase type Geometric distribution. Derivative of pgf can be used to 

obtain other properties of phase type Geometric distribution. The derivatives of equation 

(3.63) are obtained as: 

Y ′(s) =QP[I − Qs]−2 (3.65) 

Y ′′(s) =2Q2P[I − Qs]−3 (3.66) 

In general the kth factorial moments is given by: 

Yk(s) = k!QkP[I − Qs]−(k+1) 

(b) E(N) = Y ′(1) hence equation (3.65) can be expressed as: 

Y ′(1) =QPP−2 Y ′(1) = QP−1 
 

Hence:  

E(N) = QP−1 (3.67) 
 

Equation (3.67) can be wriNen as a proper expectation as: 

E(N̂ ) = →YQP−1→1T (3.68) 
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(c) Variance of N can be expressed as shown in (3.24) and Y ′′(1) can be obtained from equation 

(3.66) as: 
 

Y ′′(1) =2Q2PP−3 Y ′′(1) = 2Q2P−2 (3.69) 

Hence equation (3.24) can be expressed as: 
  

Var(N) =2Q2P−2 + QP−1 − 

Equation (3.70) can be rewriNen as : 

Q2P−2 = Q2P−2 + QP−1 
(3.70) 

Var(N̂ ) = →YQ2P−2 + QP−1→1T (3.71) 

 
3.3 Compound distributions of Panjer class (a, b, 0) distributions with severity 

distributions 
 

This section develops and applies compound phase type distributions (CPHD) in modeling secondary 

cancer cases for distributions of Panjer class (a, b, 0). Compound distributions considered in previous 

researches do not in cooperate diseases with transition phases, which can be considered by compound 

phase type distribution(CPHD). Convoluting pgf of count distribution and pgf of severity distribution, 

the pgf of compound distributions can be derived. 

Definition 3.3.1. Let N be a random variable whose pgf is Y (s) and G1, ..., GN is a set of independent 

and identically distributed random variable which has a common pgf  X (s) which is independent from 

N, therefore the pgf of compound distribution is illustrated as: 
 

Z(s) = Y [X (s)] ( 3.72 )  

 
 

 
3.3.1 General expression of phase type compound distributions 

Theorem 3.3.2 (Compound PH-Poisson ). If the pgf of N ∼ PH − P(Λ) the compound pgf of N is: 

Z(s) = →YeΛ

 
Lx[X (s)]−I

 
→1T ( 3 .7 3 )  

where Lx[X (S)] represents Laplace transform of the claim amount distribution for continuous severity 

distributions. 

 

Proof of theorem 3.3.2 

Let the pgf of the compound distribution be illustrated as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.18) it becomes: 

Z(s) =Y 
h
Lx[X (s)]

i  
= →YeΛ

 
Lx[X (s)]−I

 
→1T (3.74) 
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x 

x 
→ 

x x → 

x → 

x x 
→ 

 

Theorem 3.3.3 (Compound PH-Negative Binomial ). If the pgf of N ∼ PH − NBin(Q, α) the compound 

pgf of N becomes: 
 

Z(s) =→Y
,

P
h
I − 

 
L  [X (s)]

 
[I − P]

i −1 , α 

1T ( 3 .7 5 )  

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 3.3.3 

Let the pgf of the compound distribution be illustrated as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.35) it becomes: 

Z(s) =Y 
 
L  [X (s)]

  
= →Y

,
P
 
I − 

 
L  [X (s)]

 
[I − P]

 −1
, α 

1T (3.76) 

 

Theorem 3.3.4 (Compound PH-Binomial ). If the pgf of N ∼ PH − Bin(Q, α) the the compound pgf 

of N becomes: 

Z(s) =→Y
h
P
 

L  [X (s)]
 

+ [I − P]
i α 

1T (3 . 7 7 )  

where Lx[X (s)] is as the Laplace transform. 

 

Proof theorem 3.3.4 

Let the pgf of the compound distribution be illustrated as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.48) it becomes: 

Z(s) =Y [L  [X (s)]] = →Y
,

P
 

L  [X (s)]
 

+ [I − P]
, α 

1T (3.78) 

 

Theorem 3.3.5 (Compound PH Geometric ). If the pgf of N ∼ PH − Geo(Q) the the compound pgf of 

N becomes: 

Z(s) =→Y
h
I − 

 
L  [X (s)]

 
[I − P]

i −1
P→1T ( 3 .7 9 )  

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 3.3.5 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.63) it becomes: 

Z(s) =Y [Lx[X (s)]] = →Y
,

I − 
 

Lx[X (s)]
 

[I − P]
, −1

P→1T (3.80) 
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α 

Ú 

− 

− 

k=0 

k=0 

x 
0 α α 

α 

x ( ) = 
0 β (α, γ)(x + λ )α+γ 

x ( ) = 
λγβ (α, γ) 

∑ 
k=0 

k λ 

= 
λγβ (α, γ) ∑ x 

0 

 

3.3.2 Laplace transform and probability generating function of severity distributions 

 
The continuous severity distributions taken into consideration in this study are; Weibull, Pareto 

and Generalized Pareto. Most continuous distributions do not have probability generating function 

hence their Laplace transforms are derived and replaced in equation (3.74), (3.76), (3.78) and (3.80) to 

get the pgf of the compound distributions. 

 
(i) Weibull distribution 

The Laplace transform of Weibull distribution can be derived as: 
 

LxX (s) =E[e−sx] 

L X (s) =

Ú ∞ 

e−sx 
β x

 β −1
e−(

 x )β 
dx 

 

 

 
(ii) Pareto distribution 

LxX (s) = 
β Γ(β ) 

 
α [sα + (  x )β −1]β 

 
(3.81) 

The Laplace transform of Pareto distribution can be derived as: 
 

LxX (s) =E[e−sx] 

LxX (s) = αβα 
∞

 

0 

e−sx 

(x + β )α+1 
dx

 
L X 

α ∞

 k Γ(α + k) k!  

x (s) = 
β

 ∑ ( 1) 
k=0 k! Γ(α) β 2k+1 

L X 
∞ 

k    α Γ(α + k) 

x (s) = ∑ (  1) 
k=0 

Γ(α) β 2k+2 
(3.82) 

 

(iii) Generalized Pareto distribution 

The Laplace transform of Generalized Pareto distribution can be derived as: 
 

LxX (s) =E[e−sx] 

L X s 
Ú ∞ 

e−sx xα−1 

dx
 

 
L X s 

  1 
Ú ∞ 

xαe−sx 
∞

 

 
α + γ

 
x k

dx
 

  1 ∞ −(α + γ) 
Ú ∞ 

 

 
γ+k+1−1 

 
−sx 

L X s   1 ∞ −(α + γ) Γ(α + k) (3.83) 

x    ( ) = 
λγβ (α, γ) 

∑ 
λk sα+k 

 

The discrete distributions considered in this study are one parameter Poisson Lindley and two 

parameter Poisson Lindley distributions which have probability generating functions expressed as: 

λk 

0 

e dx 
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( ) = 
I + θ 

(
 

) 

( ) = 
I + θ

 
0 

+ 
0 

( ) = 
1 + θ

 
[θ + 1 − s]2 

( ) =
(θ + 1)2 ∑ 

+ 
(θ + 1)2(αθ + 1) ∑ ( ) 

θ + 1 

 

(i) One parameter Poisson Lindley distribution 

The probability generation function of one parameter Poisson Lindley distribution can be 

derived as: 

X s 

Ú ∞ 

eλ (1−s) θ 2 

1 
 

λ e−θλ dλ 

X s 
θ 2

 

h Ú ∞ 

λe−λ (1+θ −s)dλ 

Ú ∞ 

e−λ (θ +1−s)dλ 
i
 

X s 
θ 2

 

h  θ + 2 − s i  
(3.84)

 

 
 

(ii) Two parameter Poisson Lindley distribution 

The probability generation function of two parameter Poisson Lindley distribution can be 

derived as: 

X s 
θ 2

 

∞ h  s i x 
 

  

θ 2 ∞ 

α
 

 

 

x 
h  s i x 

X s 
αθ [θ + 1 − s] + θ 2 

 
 

(3.85) 

( ) =
(αθ + 1)[θ + 1 − s]2 

3.3.3 Compound phase type distributions probability generating functions 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.74) the pgf of the compound 

distributions of PH-Poisson with severity distributions are: 

 

Distributions Pgf of compound phase type distributions 

PH Poisson-Weibull 
Λ

   
β Γ(β ) −1

     

T
 

Z(s) = →Ye 
α  [sα+(  x )β −1 ]β →1 α 

    

PH Poisson-Pareto 
Λ   ∑∞    (−1)k  α  Γ(α+k) 

−1 T 

Z(s) = →Ye 
k=0 Γ(α)  β 2k+2 →1 

    

PH Poisson-Gen Pareto 
Λ 1 ∑∞   −(α+γ) Γ(α+k) 

Z(s) = →Ye λγ β (α,γ)    k=0 λ k sα+k   −1   
→1T 

  h  i    

PH Poisson-OPPL 
Λ θ 2 θ +2−s   −1 

Z(s) = →Ye 
1+θ     [θ +1−s]2 →1T

 
Λ

  
αθ [θ +1−s]+θ 2 

−1

 
 

PH Poisson-TPPL 
 

 

Z(s) = →Ye (αθ +1)[θ +1−s]2 →1T 

Table 3.1. Compound phase type Poisson distributions 

 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.76) the pgf of the compound 

distributions of PH-Negative Binomial with severity distributions are: 

x=0 (θ + 1) x=0 

0 
+ 

+ 
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Distributions Pgf of compound phase type distributions 

PH Neg Binomial-Weibull 
Z(s) = →Y

,
P[I − 

  
β Γ(β )  

 
(I − P)]−1

, α 

1T 
α [sα+( x )β −1]β 

→
 ,    α   , α 

PH Neg Binomial-Pareto Z(s) = →Y  P[I − ∑∞ (−1)k   α   
Γ(α+k)   

(I − P)]−1 →1T
 

k=0 Γ(α) β 2k+2 ,      , α 

PH Neg Binomial-Gen Pareto Z(s) = →Y  P[I −     1  
∑∞ −(α+γ) Γ(α+k)  (I − P)]−1 →1T

 
λγ β (α,γ) k=0 λk sα+k ,    h  i  , α 

PH Neg Binomial-OPPL 
2 

Z(s) = →Y  P[I − θ   θ +2−s   (I − P)]−1 →1T 1+θ [θ +1−s]2 ,      , α 

PH Neg Binomial-TPPL 
2 

Z(s) = →Y  P[I − 
αθ [θ +1−s]+θ 

(I − P)]−1 →1T 
(αθ +1)[θ +1−s]2 

Table 3.2. Compound phase type Negative Binomial distributions 

 
 

Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.78) the pgf of the compound 

distributions of PH-Binomial with severity distributions are: 
 

Distributions Pgf of compound phase type distributions 

PH Binomial-Weibull 
Z(s) = →Y

,
P
  

β Γ(β )  
 

+ (I − P)
, α 

1T 
α [sα+( x )β −1]β 

→
 ,  α   , α 

PH Binomial-Pareto Z(s) = →Y  P   ∑∞ (−1)k   α   
Γ(α+k)    

+ (I − P) →1T
 

k=0 Γ(α) β 2k+2 ,       , α 

PH Binomial-Gen Pareto Z(s) = →Y  P     1  ∑∞ −(α+γ) Γ(α+k)   + (I − P) →1T
 

λγ β (α,γ) k=0 λk sα+k ,  h  i  , α 

PH Binomial-OPPL Z(s) = →Y  P θ
2   θ +2−s   + (I − P) →1T 

1+θ [θ +1−s]2 ,       , α 

PH Binomial-TPPL Z(s) = →Y  P αθ [θ+1−s]+θ
2 

+ (I − P) →1T 
(αθ +1)[θ +1−s]2 

Table 3.3. Compound phase type Binomial distributions 

 
 

Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.80) the pgf of the compound 

distributions of PH-Geometric with severity distributions are: 
 

Distributions Pgf of compound phase type distributions 

PH Geometric-Weibull Z(s) = →Y
,

I − 
  

β Γ(β )  
 
(I − P)

, −1
P→1T α [sα+( x )β −1]β α 

PH Geometric-Pareto Z(s) = →Y
,

I − 
 

∑∞ (−1)k   α   
Γ(α+k) 

 
(I − P)

, −1
P→1T k=0  Γ(α) β 2k+2 

PH Geometric-Gen Pareto 
Z(s) = →Y

,
I − 

 
  1  

∑∞ −(α+γ) Γ(α+k)

 
(I − P)

, −1
P→1T

 
λγ β (α,γ) k=0 λk sα+k 

PH Geometric-OPPL 
Z(s) = →Y

,
I − 

  
θ 2    

h  
  θ +2−s   

i  
(I − P)

, −1
P→1T 1+θ [θ +1−s]2 

PH Geometric-TPPL Z(s) = →Y
,

I − 
  

αθ [θ +1−s]+θ 2   
 
(I − P)

, −1
P→1T 

(αθ +1)[θ +1−s]2 

Table 3.4. Compound phase type Geometric distributions 

 
 

3.4 Phase type Panjer recursion formula for class (a, b, 0) 

Phase type Panjer recursion formula is obtained from the pgf of the phase type distributions of 

aggregate losses, claim count distribution and claim amount distributions. Let Z(s), Y (s) and X (s) 
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( ) = ∑ 
x=1 

( ) 
j 

( ) 

 

be M ∗ M matrix representing the phase type aggregate loss, phase type claim count distribution pgf 

and phase type claim amount distribution pgf respectively. 

 

Theorem 3.4.1. P hase  ty pe  co mpo und  d istr i but i on  of  class  (a, b, 0) r ecurs ive ly  If the distribu- 

tion of N belongs to Panjer class (a, b, 0) therefore it should satisfies the following equation: 
 

 

Z j y x Z
 

j x
   

A B
x h

I
 

Ay  0  
i −1

 

 

where Z( j) is a M ∗ M matrix and Z(0) is the initial matrix. 

 
Proof of theorem 3.4.1 

The pgf of phase type aggregate loss distribution is expressed as: 

∞ 

Z(s) =E[sSN ] = ∑ Z( j)s j 
j=0 

 

 

The pgf of phase type frequency distribution is expressed as: 

∞ 

Y (s) =E[sN] = ∑ Pns
n 

n=0 

The pgf of severity distribution is expressed as: 

∞ 

X (s) =E[sXi ] = ∑ y(x)sx 
x=0 

Phase type aggregate loss distribution can be represented as a convolution of the pgf of phase type 

claim count distribution and pgf of claim amount distribution as: 

Z(s) = Y [X (s)] (3.86) 
 

Equation’s (3.86) first derivative is:  
Z′(s) = {Y ′[X ′(s)]}X ′(s) (3.87) 

 

The pgf of phase type claim count distribution is: 

∞ 

Y (s) = ∑ Pns
n (3.88) 

n=0 

Combining equation (3.86)and equation (3.88) it becomes: 

∞ 

Z(s) = ∑ Pn[X (s)]n (3.89) 

n=0 

∞ 

− + − 
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n 

 
 

The first derivative of the pgf of the phase type aggregate loss distribution as expressed in equation 

(3.89) is: 
 

∞ 

Z′(s) = ∑ nPn[X (s)]n−1X ′(s) (3.90) 

n=0 

 

Phase type Panjer’s model is expressed as : 
 

Pn =
 

A + 
B

 
Pn−1 n = 1, 2, 3, ... (3.91) 

Multiplying all through by n equation (3.91) becomes: 

 
nPn =

 
nA + B

 
Pn−1 n = 1, 2, 3, ... (3.92) 

Multiplying equation (3.92) by [X (s)]n−1X ′(s) and adding the result over n it results to : 
 

∞ ∞ 

∑ nPn[X (s)]n−1X ′(s) = ∑ (nA + B)Pn−1[X (s)]n−1X ′(s) (3.93) 

n=1 n=1 
 

Merging equation (3.90) and equation (3.93) it becomes : 
 

∞ ∞ 

Z′(s) = ∑ (n − 1)APn−1[X (s)]n−1X ′(s) + (A + B) ∑ Pn−1[X (s)]n−1X ′(s) (3.94) 

n=1 n=1 
 

By definition the pgf of phase type aggregate loss distribution is: 
 

∞ 

Z(s) = ∑ Z( j)s j (3.95) 

j=0 
 

The first derivative of equation (3.95) is : 
 

∞ 

Z′(s) = ∑ jZ( j)s j−1 (3.96) 

j=1 
 

By definition the pgf of severity distribution is: 
 

∞ 

X (s) = ∑ y(x)sx (3.97) 

x=0 

 

Equation’s (3.97) first derivative can be expressed as: 
 

∞ 

X ′(s) = ∑ xy(x)sx−1 (3.98) 

x=1 
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− 

— − 

j=1 n=1 n=1 

 
 

Merging equation (3.94) and equation (3.96) it becomes: 
 

∞ ∞ ∞ 

∑ jZ( j)s j−1 = A
   

∑ (n − 1)Pn−1[X (s)]n−1X ′(s)
}  

+ (A + B)
 

∑ Pn−1[X (s)]n−1X ′(s)
}  

(3.99) 

 

Apart from equation (3.95) Z(s) can be shown as: 

∞ 

Z(s) = ∑ Pn 1[X (s)]n−1X (s)′ (3.100) 

n=1 
 

Hence the first derivative of equation (3.100) ; 

∞ 

Z′(s) = ∑ (n 1)Pn 1[X (s)]n−2X ′(s) (3.101) 

n=2 
 

Merging equation (3.100), (3.101) and equation (3.99) it becomes: 

∞ 

∑ jZ( j)s j−1 =A X (s)Z′(s) + (A + B)Z(s)X ′(s) 
j=1 

∞ ∞ ∞ ∞ 

=A ∑ y(x)sx ∑ jZ( j)s j−1 + (A + B) ∑ Z( j)s j ∑ xy(x)sx−1 (3.102) 

x=0 j=1 j=0 x=1 
 

Multiplying equation (3.102) by equation (3.90) it becomes : 
 

∞ ∞ ∞ ∞ ∞ 

∑ jZ( j)s j =A ∑ y(x)sx ∑ jZ( j)s j + (A + B) ∑ Z( j)s j ∑ xy(x)sx (3.103) 

 
But we know: 

j=1 x=0 

 
 

∞ 

j=1 

 
 

∞ 

j=0 x=1 

 
 

and 

∑ jZ( j)s j = 
j=1 

∑ 
j=x+1 

( j − x)Z( j − x)s j−x (3.104) 

∞ ∞ 

∑ Z( j)s j = ∑ Z( j − x)s j−x (3.105) 

j=0 j=x 
 

Combining equation (3.103), (3.104) and (3.105) it becomes : 
 

∞ ∞ ∞ ∞ ∞ 

∑ jZ( j)s j =A ∑ ∑ ( j − x)y(x)Z( j − x)s j + (A + B) ∑ Z( j − x)s j−x ∑ xy(x)sx 
j=1 x=0 j=x+1 j=x x=1 

∞ ∞ ∞ ∞ 

=A ∑ ∑ ( j − x)y(x)Z( j − x)s j + (A + B) ∑ ∑ xy(x)Z( j − x)s j 
x=0 j=x+1 j=1 x=1 

∞ ∞ ∞ ∞ 

= ∑{A  ∑ ( j − x)y(x)Z( j − x)}sj + ∑{(A + B) ∑ xy(x)Z( j − x)}sj (3.106) 

j=1 x=0 j=1 x=1 
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− ( ) ( ) = ∑ 
x=1 

( − ) + ( + ) ( ) − 

− ( ) ( ) = ∑ 
x=1 

+ ( ) 

( ) = ∑ 
x=1 

( ) 
j 

( ) 

( ( ) 
j 

( ) 

 

Combining the coefficients of s j in equation (3.106) it becomes : 
 

∞ ∞ 

jZ( j) =A ∑ ( j − x)y(x)Z( j − x) + (A + B) ∑ xy(x)Z( j − x) 
x=0 

∞ 
x=1 

∞ 

=A jy(0)Z( j) + A ∑ ( j − x)y(x)Z( j − x) + (A + B) ∑ xy(x)Z( j − x) (3.107) 

x=1 

 

Factoring out
 

I − Ay(0)
 

in equation (3.107) it becomes: 

x=1 

 

 
I Ay 0  

  
jZ j 

∞  h
A j x A B x

i
y x Z

 
j x

 
 

 

 
I Ay 0  

  
jZ j 

∞   

A j Bx
 

y x Z
 

j x
 

(3.108) 

 
 

The recursive form of the compound distribution is found by dividing equation (3.108) by I − Ay(0) j 

to get: 

"  ∞ # "
 

 
 

 
 

  

 

# −1 
 

  

 

Equation (3.109) can be rearranged to: 
 

 

 

Z j y x Z
 

j x
   

A B
x h

I
 

Ay  0  
i −1 

(3.110) 

 

→Z( j) can be expressed as a row vector as →YZ( j) hence equation (3.110) becomes: 

 
→Z  j y  x →Z

  
j x

   
A B

x h
I
 

Ay  0  
i −1 

(3.111) 

 

The initial aggregate loss probability matrix is expressed as: 
 

Z 0 
∞ h

y 0 
i n

P  
(3.112) 

( 

 

Z( j) can be expressed as a probability as: 

) = ∑ ( ) n 
n=0 

 

z( j) = →YZ( j)→1T 

 
3.5 Phase type distributions of class (a,b,1) and its aggregate loss distribution 

recursively 

3.5.1 Phase type distributions of class (a, b, 1) using iteration technique 

∞ 

(3.109) j j − x y(x)Z A j + Bx ∑ 
x=1 

Z( j) = 

− 

I − Ay(0) 

− + − 

) = ∑ 
x=1 

− + − 

∞ 
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n 

n 

2 

P k = 2 3  4 

1 + ∑ 
k=2 

1 ∑ 
k=1 

1 ( − ) = 

 

Theorem 3.5.1 (Phase type Panjer class (a, b, 1) distributions). The distributions arising from 

phase type Panjer recursive model 
 

Pn =
 

A + 
B

 
Pn−1 f or n = 2, 3, 4, ... ( 3.113 )  

 

are: 

 

(i) Phase type Zero-truncated Poisson distribution when A = 0, B > 0. 

(ii) Phase type Shifted (zero-truncated) geometric distribution when A > 0, B = 0. 

(iii) Phase type Zero-truncated Negative Binomial distribution when A > 0, A + B > 0. 

 
Proof of theorem 3.5.1 

 

 
(i) When A = 0, B > 0 

 

Equation (3.113) becomes: 

 
 

 
n = 2; 

 
 

n = 3; 

 
Pn = 

B 
Pn−1 (3.114) 

 
P2 = 

B 
P1 

 

P 
B B B B2 

 

 
n = k; 

3 = 
3 

P2 = 
3 

∗ 
2 

P1 = 
3! 

P1
 

 

 
 

Pk can be expressed as: 

Pk = 
Bk−1 

k! 1 , , ... 

 

∞ ∞ ∞ P Bk−1 
 

∑ k = I P1 + ∑ Pk = I P1 + ∑ 
k! 

P1 = I 
k=1 

P 
  

I 
∞ Bk−1   

 

 

k=2 
∞ Bk 

I P B−1 

k=2 

I P B−1 eB I I 

P1 = B(eB − I)−1 

k! 
= 

k! 
=
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Therefore:  
 

Pk = 

 

Bk−1 

k! 
∗

 

 
B(eB 

 
— I) 

 
−1 Pk = [Bk 

 

(Bk!)−1 

 
] ∗ [( 

 
B)(eB 

 
— I)−1] 

 

 

(3.115) 

Pk =[Bk][k!(eB − I)]−1 k = 0, 1, 2, ... (3.116) 

This is phase type Zero-truncated Poisson distribution with parameter B > 0 . 

 
Theorem 3.5.2 (Properties of phase type Zero-truncated Poisson distribution). Letting 

A from equation (3.116) be 0 and B = Λ the properties of phase type Zero-truncated Poisson 

distribution are expressed as: 

(a) pgf 

 

 
(b) Expectation 

 

 
(c) Variance 

 

 
Proof of theorem 3.5.2 

X (ŝ) = →Y[ΛeΛs][eΛ − I] − 1→1T (3 . 1 1 7 )  

 
E(N̂ ) = →YΛ[I − e−Λ]−1→1T ( 3 .1 1 8 )  

 
Var(N̂ ) = Λ[I − e−Λ]−1 ( 3 .1 1 9 )  

 

(a) The pmf of phase type Zero truncated Poisson distribution can be shown as: 

f (n) = Λn[(eΛ − I)n!]−1 n = 1, 2, 3, ... 
 

The pgf of n is given by: 

∞ ∞ 

X (s) = ∑ f (n)sn = ∑ Λn[(eΛ − I)n!]−1sn = [I(eΛ − I)−1] ∗ eΛs − I 
n=1 n=1 

X (s) =[eΛs − I][eΛ − I]−1 (3.120) 

Equation (3.120) can be transformed to a proper pgf by multiplying by →Y on the LHS and 
→1T  on the RHS to become: 

X (ŝ) = →Y[eΛs − I][eΛ − I]−1→1T (3.121) 

Derivative of pgf can be used to obtain other properties of phase type Poisson distribution. 

The derivatives of equation (3.120) are obtained as: 

X ′(s) =[ΛeΛs][eΛ − I]−1 (3.122) 

X ′′(s) =[Λ2eΛs][eΛ − I]−1 (3.123) 

In general the kth factorial moments is given by: 

Xk(s) = [ΛkeΛs][eΛ − I]−1 
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1 + ∑ 
k=2 

1 ∑ 
k=1 

1( ) = 

 

(b) E(N) = X ′(1) hence equation (3.122) can be expressed as: 

X ′(s) =[ΛeΛs][eΛ − I]−1 X ′(1) = [ΛeΛ][eΛ − I]−1 X (1) = Λ[I − e−Λ]−1 

Hence: 
 

E(N) = Λ[I − e−Λ]−1 E(N̂ ) = →YΛ[I − e−Λ]−1→1T (3.124) 

(c) Variance of N can be expressed as: 
 

Var(N) = X ′′(1) + X ′(1) − [X ′(1)]2 (3.125) 

X ′′(1) can be obtained from equation (3.123) as: 

X ′′(s) =[Λ2eΛ][eΛ − I]−1 X ′′(s) = Λ2[I − e−Λ]−1 (3.126) 

Hence equation (3.126) can be illustrated as: 
 

Var(N) =Λ2[I − e−Λ]−1 + Λ[I − e−Λ]−1 − Λ2[I − e−Λ]−2 = Λ[I − e−Λ]−1 

Var(N) =→YΛ[I − e−Λ]−1→1T (3.127) 

(ii) When A > 0, B = 0 
 

Equation (3.113) becomes: 

 
 

n = 2; 

 

 
n = 3; 

 

 
n = k; 

 
Pn = APn−1 (3.128) 

 

P2 = AP1 

 

 
P3 =AP2 = A ∗ AP1 = A2P1 

 

Pk =Ak−1P1 k = 2, 3, 4... 

Pk can be expressed as: 
 

∞ ∞ ∞ 

∑ Pk = I P1 + ∑ Pk = 1 P1 + ∑ Ak−1P1 = I 
k=1 

P 
  

I 
∞ 

Ak−1
 

 

k=2 
∞ 

I P Ak−1 
 

I P I 

k=2 

A −1 I 

 

P1 = (I − A) 

= = − 
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n=0 

 

Therefore:  
Pk = Ak−1(I − A) (3.129) 

 

This is a phase type Zero-truncated geometric distribution with parameter 0 < I − A < I. 

 
Theorem 3.5.3 (Properties of phase type Zero-truncated geometric distribution). Let- 

ting A from equation (3.129) be > Q and B = 0 the properties of phase type Zero-truncated geometric 

distribution are expressed as: 

(a) pgf 
 

 

 
(b) Expectation 

X (ŝ) = →YP[Q − Q2s]−1→1T ( 3 .1 3 0 )  

 

E(N̂ ) = →YP−1→1T ( 3 .1 3 1 )  

 

(c) Variance 

 

 
 

Proof of theorem 3.5.3 

 
Var(N̂ ) = →YI − P−1→1T ( 3 .1 3 2 )  

 

(a) The pmf of phase type Geometric distribution is: 
 

f (n) =P[I − P]n−1 f (n) = PQn−1 
 

The pgf of n is given by: 

∞ ∞ 

X (s) = ∑ f (n)sn = ∑ P[I − P]n−1sn 
n=0 

X 
P  ∞ 

n=0 
n P      I  

(s) = 
I − P 

∑ [(I − P)s] = 
I − P 

∗ 
I − (I − P)s 

(3.133)
 

X (s) =→YP[Q − Q2s]−1→1T (3.134) 

which is the pgf of Phase type Zero truncated Geometric distribution. The derivatives of 

equation (3.134) are obtained as: 
 

X ′(s) =Q2P[Q − Q2s]−2 (3.135) 

X ′′(s) =Q4P[Q − Q2s]−3 (3.136) 

In general the kth factorial moments is given by: 

Xk(s) = Q2kP[Q − Q2s]−k−1 
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n 

2 

−k 

k! 

k! 

=A (A + B) 

 

(b) E(N) = X ′(1) hence equation (3.135) can be expressed as: 

X ′(1) =Q2P[Q − Q2]−2 = P[I − Q]−2 = P−1 
 

Hence:  

E(N) = P−1 E(N̂ ) = →YP−1→1T (3.137) 

 

(c) Variance of N can be expressed as shown in (3.125) and G′′(1) can be obtained from equation 

(3.136) as: 
 

X ′′(1) =Q4P[Q − Q2]−3 = QP[I − Q]−3 = QP−2 (3.138) 

Hence equation (3.125) can be expressed as: 

 
Var(N) =Q[I − Q]−2 + [I − Q]−1 − [I − Q]−2 = Q[I − Q]−2 + I[I − Q]−1 − I[I − Q]−2 

Var(N) =I − P−1 Var(N̂ ) = →YI − P−1→1T (3.139) 

(iii) Where A > 0, A + B > 0 
 

Equation (3.113) becomes: 

 
 

 
n = 2; 

Pn =
 nA + B 

Pn
 

 

−1 n = 2, 3, 4, ... (3.140) 

P2 =
 2A + B 

P1
 

n = 3; 

P3 = 
3A + B 

P2 = 
3A + B 

∗ 
2A + B 

P1 =
 

3A + B
  

2A + B
 

P1
 

 
 
 
 
 
 

(3.141) 

3 3 2 3! 

n = k; 
 

P =(kA + B)[(k 1)A + B]...(3A + B)(2A + B)
P1

 
k! 

=Ak−1

h  
kI + BA−1

   
(k − 1)I + BA−1 ........ 3I + BA−1

  
2I + BA−1

 i
P1

 

=Ak(A + B)−1

h  
BA−1 + kI

  
BA−1 + (k − 1)I ........ BA−1 + 3I

  
BA−1 + 2I

  
BA−1 + I

 i
P1

 

k −1
 

BA−1 + kI
 

 

 kI 
P1 (3.142) 
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1 + ∑ 
k=2 

( ) 
kI 

1 = 

1 ∑ ( 
k=1 

)( ) 
kI 

= 

1( + ) ∑ 
k=1 

kI 
= 

1( + ) ∑ 
k=1 

) 
kI 

= 

1( + ) ∑ 
k=1 

kI 
(− ) = 

k = ( ) 
kI 

( + )[( ) ] 

−(A + B)A 

kI 
(−A)k 

 

Pk can be expressed as: 
 

∞ 

∑ Pk = I 
k=1 

∞ 

P Ak A B −1

  
BA−1 + kI

 

P I
 

 
∞ 

P Ak A B −1

  
BA−1 + kI

 

I
 

 
∞ 

P A B −1 Ak

  
BA−1 + I + kI − I

 

I
 

∞ 

P A B −1 Ak 1 k

 
−[(BA)A−1 + I]

 

I
 

∞ 

P A B −1 

 
−[(A + B)A−1 + I]

 

A k I
 

 

 

 

 

 
 

Therefore: 

P1(A + B)−1

h
(I − A)−[(A+B)A

−1] − I
i  

= I 

P1(A + B)−1 = [(I − A)−[(A+B)A
−1] − I]−1 

P1 = (A + B)[(I − A)−[(A+B)A
−1] − I]−1 k = 1, 2, 3, ... (3.143) 

 
P Ak A B −1

  
BA−1 + kI

  

A B I
 
 

A −[(A+B)A−1] 

 

I −1 

"  
−1

 #"  

 

# −1 
 

 
 
 

This is Zero-truncated Negative Binomial distribution with parameter (A + B)(A)−1 > 0 

0 < I − A < I 

Theorem 3.5.4 (Properties of phase type zero-truncated Negative Binomial distribution). 

Letting A from equation (3.144) be β [I + β I]−1 and B = [(r − 1)β ][I + β I]−1 the properties of phase 

type Zero-truncated Negative Binomial distribution are expressed as: 
 

 

(a) pgf 

 

 

 
(b) Expectation 

X (s) = →Y
 

[I − β I(s − 1)]−r − [I + β I]−r
}  

I − (I + β I)−r
} −1→1T ( 3 .1 4 5 )  

 
E(N) = →Y

 
rβ 

  
I − (I + β I)−r

 −1→1T ( 3 .1 4 6 )  

(3.144) = 

+ 

+ 

(− 

+ − − 

Pk (I − A)−[(A+B)A−1] − I 
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n=1 

n=1 

       

— I ∑ s 
n=1 

∞ 

 
 

(c) Variance 

Var(N) = →Y
 

rβ [(I + β I) − (1 + β + rβ )(I + β )−r]
}  

[I − (I + β I)−r]−2
} −1→1T (3 . 1 4 7 )  

Proof of theorem 3.5.4 
 

 

(a) Let the X (s) = ∑∞ f (n)sn hence: 
∞ 

= ∑ sn
 

r(r + 1)...(r + n − 1)
 

n![(I + β I)r − I]
 −1 

β (I + β I)−1
 n

 

 

r −1 

n
h  r(r + 1)...(r + n − 1) i h  

 

−1
i n

 

X (s) =→Y
 

[I − β I(s − 1)]−r − [I + β I]−r
}  

I − (I + β I)−r
} −1→1T (3.148) 

(b) The expectation of Zero-truncated Negative Binomial distribution can be derived from equation 

(3.148) based on the fact that E(N) = G′(1) hence: 

X (s) = rβs I − (I + β I)−r 
−1

 

E(N) =→Y
 
rβ 

  
I − (I + β I)−r

 −1→1T (3.149) 

(c) The variance of Zero-truncated Negative Binomial distribution can be derived as: 

Var(N) =E(N2) − [E(N)]2 

Var(N) =→Y
 

rβ [(I + β I) − (1 + β + rβ )(I + β )−r]
}  

[I − (I + β I)−r]−2
} −1→1T (3.150) 

3.6 Compound distributions of Panjer class (a, b, 1) distributions with severity 

distributions 
 

Compound phase type distributions (CPHD) used in modeling secondary cancer cases for distri- 

butions satisfying of Panjer class (a, b, 1) are developed in this section. Distributions of Panjer 

class (a, b, 1) are zero truncated hence they do not factor in zero claim count which is the nature of 

real claim count data. Convolution of probability generating functions of claim count distributions 

and probability generating function of claim amount distributions can be used derive probability 

generating function of compound distributions as shown in definition (3.3.1). 

 
3.6.1 General expression of phase type compound distributions 

Theorem 3.6.1 (Compound PH Zero-truncated Poisson distribution ). If the pgf of N ∼ PH − ZTP(Λ) 

the compound pgf of N is: 

Z(s) = →Y
h

ΛeΛ

 
Lx[X (s)]

 i h
eΛ − I

i
→1T ( 3 .1 5 1 )  

n! = (I + β I) β I(I + β I) 
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x → 

x 
→ 

 
 

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 3.6.1 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.117) it becomes: 

Z(s) =Y 
h
Lx[X (s)]

i
 

=→Y
h

ΛeΛ

 
Lx[X (s)]

 i h
eΛ − I

i
→1T (3.152) 

Theorem 3.6.2 (Compound PH Zero-truncated Geometric distribution ). If the pgf of N ∼ PH − 

ZT Geo(Q) the the compound pgf of N is: 

Z(s) = →YP
h
Q − Q2L  [X (s)]

i −1
1T ( 3 .1 5 3 )  

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 3.6.2 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.130) it becomes: 

Z(s) =Y 
h
Lx[X (s)]

i
 

=→YP
h
Q − Q2L  [X (s)]

i −1
1T (3.154) 

 

Theorem 3.6.3 (Compound PH zero-truncated Negative Binomial distribution ). If the pgf of N ∼ 

PH − ZTNeg Bin(β, r) the compound pgf of N is: 

Z(s) =→Y
 

[I − β I(Lx[X (s)] − 1)]−r − [I + β I]−r
}  

I − (I + β I)−r
} −1→1T ( 3 .1 5 5 )  

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 3.6.3 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (3.145) it becomes: 

Z(s) =Y 
h
Lx[X (s)]

i
 

=→Y
 

[I − β I(Lx[X (s)] − 1)]−r − [I + β I]−r
}  

I − (I + β I)−r
} −1→1T (3.156) 

The Laplace transforms and probability generating functions are as shown in Subsection (3.3.2) 
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3.6.2 Compound phase type distributions probability generating functions 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.152) the pgf of the compound 

distributions of PH-Zero-truncated Poisson with severity distributions are: 

 

Distributions Pgf of compound phase type distributions 

 
PH Zero truncated Poisson-Weibull 

Λ

 
β Γβ  

 
 

Z s YΛe 
α  

[sα+( x )β −1]β  
→ 

( ) = → 
Λ   

α 1T e −I     

 
PH Zero truncated Poisson-Pareto 

Λ  ∑∞  (−1)k α  Γ(α+k) 
k=0 Γα    2k+2 

Z(s) = →YΛe β →1T   eΛ−I      

 
PH Zero truncated Poisson-Gen Pareto 

Λ γ 
1 

∑∞   −(α+γ) Γα+k 

Z(s) = →YΛe λ  β (α,γ)   k=0 λ k sα+k     
→1T 

eΛ−I i     h  

 
PH Zero truncated Poisson-OPPL 

Λ θ 2 θ +2−s   
1+θ 2 

Z(s) = →YΛe [θ +1−s] →1T 
eΛ−I     

 
PH Zero truncated Poisson-TPPL 

Λ 
αθ [θ +1−s]+θ 2 

Z(s) = →YΛe (αθ +1)[θ +1−s]2     
→1T 

eΛ−I 

Table 3.5. Compound phase type Zero truncated Poisson distributions 

 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.154) the pgf of the compound 

distributions of PH-Zero truncated Geometric with severity distributions are: 

 

Distributions Pgf of compound phase type distributions 

PH ZT Geometric-Weibull 
Z(s) = →YP

h
Q − Q2 β Γβ  

i −1
1T 

α [sα+( x )β −1]β 
→

 α 

PH ZT Geometric-Pareto 
Z(s) = →YP

h
Q − Q2 ∑∞ (−1)k  α  

Γ(α+k) 
i −1

1T
 

k=0 Γα β 2k+2 
→

 

PH ZT Geometric-Gen Pareto 
Z(s) = →YP

h
Q − Q2   1  

∑
∞ −(α+γ) Γα+k 

i −1
1T

 

λγ β (α,γ) k=0 λk sα+k 
→

 

PH ZT Geometric-OPPL 
Z(s) = →YP

h
Q − Q2  θ

2    
h  

  θ +2−s   
i i −1

1T → 
1+θ [θ +1−s]2 h  i  1 

PH ZT Geometric-TPPL 
2 − 

Z(s) = →YP  Q − Q2  αθ [θ +1−s]+θ →1T 

(αθ +1)[θ +1−s]2 

Table 3.6. Compound phase type Zero truncated Geometric distributions 

 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (3.156) the pgf of the compound 

distributions of PH-Zero-truncated Negative Binomial with severity distributions are: 
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( ) = + ) 0 j + ∑ 
x=1 

( ) 
j 

( ) 

 

 

Distributions Pgf of compound phase type distributions 

PH Negative Binomial 

-Weibull 

Z(s) = →Y
, h

I − β I
h  

β Γβ  
 

− I
i i −r

 α [sα+( x )β −1]β α 

−[I + β I]−r
, ,

I − (I + β I)−r
, −1

1T 
→ 

, h  h      i i −r 

PH Negative Binomial 

-Pareto 

Z(s) = →Y I − β I ∑∞ (−1)k  α  
Γ(α+k) 

− I 
k=0 Γα β 2k+2 

−[I + β I]−r
, ,

I − (I + β I)−r
, −1

1T 
→ 

, h          i −r 

PH Negative Binomial 

-Gen Pareto 

Z(s) = →Y I − β I λ γ β 
1    

γ   ∑
∞ −(α+γ) Γα+k − I 

(α, ) k=0 λk sα+k 

−[I + β I]−r
}  

I − (I + β I)−r
, −1

1T 
→ 

, h     h  i    i −r 

PH Negative Binomial 

-OPPL 

2 
Z(s) = →Y I − β I θ   θ+2−s  − I 1+θ [θ +1−s]2 

−[I + β I]−r
, ,

I − (I + β I)−r
, −1

1T 
→ 

, h        i −r 

PH Negative Binomial 

-TPPL 

2 

Z(s) = →Y I − β I αθ [θ+1−s]+θ − I 
(αθ +1)[θ +1−s]2 

−[I + β I]−r
, ,

I − (I + β I)−r
, −1

1T 
→ 

Table 3.7. Compound phase type Zero truncated Negative Binomial distributions 

 
 

3.7 Phase type Panjer recursion formula for class (a, b, 1) 

The pgf of the phase type distributions of aggregate losses,frequency distribution and severity 

distributions are used to derive phase type Panjer recursion formula. Let Z(s), Y (s) and X (s) be 

M ∗ M matrix representing the phase type aggregate loss, PH count distribution pgf and phase type 

severity distribution pgf respectively. 

 

Theorem 3.7.1 (Recursive form of phase type class (a, b, 1) compound distribution). If the 

distribution of N belongs to class (a, b, 1) group then it follows the following recursive formula: 

Z j 
h

P A B P 
i
y 

 

 

y x Z
 

j x
   

A B
x h

1
 

Ay  0  
i −1

 

 

where Z( j) is a M ∗ M matrix and Z(0) is considered as the initial matrix. 

 
Proof of theorem 3.7.1 

The pgf of phase type aggregate loss distribution is expressed as: 

∞ 

Z(s) =E[ssN ] = ∑ Z( j)s j 
j=0 

The pgf of PH frequency distribution is expressed as: 

∞ 

Y (s) =E[sN] = ∑ Pns
n 

n=0 

∞ 

1 − ( − + − 
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n 

n 

n 

 
 

The pgf of phase type severity distribution is expressed as: 
 

∞ 

X (s) =E[sXi ] = ∑ y(x)sx 
x=0 

 

Phase type aggregate loss distribution can be represented as a convolution of the pgf of phase type 

claim count distribution and pgf of phase type claim amount distribution as: 

 

Z(s) = Y [X (s)] (3.157) 

 
The first derivative of equation (3.157)is: 

 
Z′(s) = {Y ′[X ′(s)]}X ′(s) (3.158) 

It is known that the pgf of PH frequency distribution is: 
 

∞ 

Y (s) = ∑ Pnsn 
(3.159) 

n=0 

 

Combining equation (3.157) and equation (3.159) results to: 
 

∞ 

Z(s) = ∑ Pn[X (s)]n (3.160) 

n=0 

 

The first derivative of the pgf of the phase type aggregate loss distribution as expressed in equation 

(3.160) is: 
 

∞ 

Z′(s) = ∑ nPn[X (s)]n−1X ′(s) (3.161) 

n=0 

 

Phase type Panjer’s model is expressed as : 
 

Pn =
 

A + 
B

 
Pn−1 n = 2, 3, 4, ... (3.162) 

Multiplying all through by (n − 1) equation (3.162) becomes: 

(n − 1)Pn =
h

(n − 1)A + 
B 

( 
n n − 1)

i
Pn−1 

nPn − Pn =
h

An − 
B 

− 
n A + B

i
Pn−1 

nPn − Pn =(An + B)Pn−1 −
 
A + 

B
 

Pn−1 

nPn =(An + B)Pn−1 + Pn −
 

A + 
B

 
Pn−1 (3.163) 
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— −
n
 

− 

+ ∑ Pn 
n=1 

A + 
n
 Pn−1[X (s)] X (s) (3.165) 

 

Multiply equation (3.163) by [X (s)]n−2X ′(s) and sum the outcome over n resulting to: 

∞ nP X s 
 n−2X ′ s ∞ nA B P 

 
X s n−2X ′ s 

∞ 

P A 
 

 

B 
P

  
X s n−2X ′ s 

∑ 
n=2 

n[ ( )] ( ) = ∑ ( n=2 
+  ) n−1[ ( )] ( ) + ∑ n 

n=2 
+ 

n 
n−1[ ( )] ( ) 

(3.164) 
 

Combining equation (3.161) and equation (3.164) it becomes : 
 

∞ ∞ 

Z′(s) = ∑ (n − 1)APn−1[X (s)]n−1X ′(s) + (A + B) ∑ Pn−1[X (s)]n−1X ′(s) 
n=1 

∞ B
 

n−1  ′ 

n=1 

 
 

By definition the pgf of phase type aggregate loss distribution is: 
 

∞ 

Z(s) = ∑ X ( j)s j (3.166) 

j=0 
 

The first derivative of equation (3.166) is : 
 

∞ 

Z′(s) = ∑ jZ( j)s j−1 (3.167) 

j=1 
 

By definition the pgf of phase type severity distribution is: 
 

 
 

 
Equation’s (3.168) first derivative is : 

∞ 

X (s) = ∑ y(x)sx (3.168) 

x=0 

 

∞ 

X ′(s) = ∑ xy(x)sx−1 (3.169) 

x=1 

 

Merging equation (3.165) and equation (3.167) it becomes: 
 

∞ ∞ ∞ 

∑ jZ( j)s j−1 =A{ ∑ (n − 1)Pn−1[X (s)]n−1}X ′(s) + (A + B){ ∑ Pn−1[X (s)]n−1}X ′(s) 
j=1 n=1 

∞ B  n−1  ′ 
n=1 

+ ∑ Pn (A + )Pn 1[X (s)] 
n=1 

 

Apart from equation (3.166) Z(s) is also wriNen as: 

X (s) (3.170) 

 

∞ 

Z(s) = ∑ Pn 1[X (s)]n−1 (3.171) 

n=1 

− 

− 
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— − 

— −
n
 

− 

+ ∑ Pn 
n=1 

A + 
n
 ∑ xy(x)s 

x=1 

+ ∑ Pn 
n=1 

A + 
n
 ∑ xy(x)s 

x=1 

∑ ∑ + (A + B) ∑ ∑ xy(x)Z( j − x)s 

∑ ∑ + (A + B) ∑ ∑ xy(x)Z( j − x)s 

= ∑{A ∑ ( j − x)y(x)Z( j − x)}s + ∑{(A + B) ∑ xy(x)Z( j − x)}s 

 
 

Hence equation’s (3.171) derivative is ; 

∞ 

Z′(s) = ∑ (n 1)Pn 1[X (s)]n−2X ′(s) (3.172) 

n=2 

Combining equation (3.170), (3.171) and equation (3.172) results to: 

∞ jZ j s j−1 
 A X s Z′ s  A B Z  s X ′ s 

∞ P A 
B 

P X s n−1X ′ s 

∑ ( ) 
j=1 

= ( ) 

∞ 

( ) + ( 

∞ 

+  ) ( ) ( ) + ∑ 
n=1 

∞ 

n − ( + 
n 

) 

∞ 

n−1[ ( )] ( ) 

=A ∑ y(x)sx ∑ jZ( j)s j−1 + (A + B) ∑ Z( j)s j ∑ xy(x)sx−1 
x=0 

∞ 
j=1 
  B   

j=0 
∞ 

n−1 

x=1 

x−1 

 

Factoring out s from equation (3.173) results to : 

∞ ∞ ∞ ∞ ∞ 

∑ jZ( j)s j =A ∑ y(x)sx ∑ jZ( j)s j + (A + B) ∑ Z( j)s j ∑ xy(x)sx 
j=1 x=0 

∞ 
j=1 

B 
j=0 
∞ n−1 

x=1 
x 

 

 
But we know: 

+ ∑ Pn (A + )Pn 1[X (s)] 
n=1 

∑ xy(x)s 
x=1 

(3.174) 

 
 
 

and 

∞ 

∑ jZ( j)s j = 
j=1 

∞ 

∑ 
j=x+1 

j − xZ( j − x)s j−x (3.175) 

∞ ∞ 

∑ Z( j)s j = ∑ Z( j − x)s j−x (3.176) 

j=0 j=x 

Combining equation (3.174), (3.175) and (3.176) results to: 

∞ ∞ 

∑ jZ( j)s j =A ∑ 
∞ ∞ 

∑ ( j − x)y(x)Z( j − x)s j + (A + B) ∑ 
∞ 

∑ Z( j − x)s jxy(x) 
j=1 x=0 j=x+1 j=x x=1 

∞ B   ∞ 

n−1 x 

 

Replacing equation (3.177) with n = 1 results to: 

∞ ∞ ∞ ∞ 
j 

 

 

j h  i  

 
  

∞ ∞ ∞ ∞ 
j 

 

 

j h  i  

 
  

∞ ∞ ∞ ∞ 
j 

j h  i  

 
  j=1 x=0 j=1 x=1 

(3.178) 

y j P1 − (A + B)P0 + 

y j P1 − (A + B)P0 + 
x=0 j=x+1 

y j P1 − (A + B)P0 + 
x=0 j=x+1 

− Pn−1[X (s)] (3.173) 

Pn−1[X (s)] (3.177) 

=A ( j − x)y(x)Z( j − x)s 
j=x x=1 

=A ( j − x)y(x)Z( j − x)s 
j=1 x=1 
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= ∑ 
x=1 

− ( ) ( ) = ∑ 
x=1 

( ) + + ) 0 

( ) = + ) 0 j + ∑ 
x=1 

j 
( ) ( ) 

( + ) 0 j + ∑ 
x=1 

j 
( ) ( ) 

h  

 

Combining the coefficients of s j in equation (3.178) results to : 
 jZ j ∞ A j x y x Z j x ∞ A B xy x Z j x P 

A B P 
i
y 

( ) = ∑ ( 
x=0 

— ) ( ) ( 

∞ 

— ) + ( + ) ∑ 
x=1 

( ) ( — ) + 

∞ 

1 − ( + ) 0 j 

=A jy(0)Z( j) + A ∑ ( j − x)y(x)Z( j − x) + (A + B) ∑ xy(x)Z( j − x) 
x=1 x=1 

+ 
h

P1 − (A + B)P0

i
yj (3.179) 

Factoring out
 

I − Ay(0)
 

in equation (3.179) results to:  
I Ay 0  

  
jZ j 

∞  h
A j x A B x

i
y x Z

 
j x

 h
P A B P 

i
y 

— ( ) ( ) = ∑ 
x=1 

∞ h  

( − ) + ( + ) ( ) 

i  

 

− + 1 − ( 

h  

  

+  ) 0 j 

i  

 

 
I Ay 0  

  
jZ j 

∞   

A j Bx
 

y x Z
 

j x
 h

P A B P 
i
y 

 
(3.180) 

 

The recursive form of the compound distribution is found by dividing equation (3.180) by I − Ay(0) j 

to get: 

Z  j 

(
h
P A B P 

i
y 

∞     

A
 

B
x 

 
y x Z

 
j x

 
)

h
I Ay  0  

i −1 
(3.181) 

 

 

→Z( j) can be expressed as a row vector as →YZ( j) hence equation (3.181) becomes: 

 
→Z  j 

(
h
P

 

A B P 
i
y 

∞     

A
 

B
x 

 
y x Z

 
j x

 
)

h
I Ay  0  

i −1 
(3.182) 

 

The initial aggregate loss probability matrix is expressed as: 

Z 0 
∞ h

y 0 
i n

P  
(3.183) 

( 
 

Z( j) can be expressed as a probability as: 

) = ∑ ( ) n 
n=0 

z( j) = →YZ( j)→1T 

 

3.8 Chapter summary 
 

The main objective of this chapter was to develop phase type Panjer class (a, b, 0) distributions, 

phase type Panjer class (a, b, 1) distributions and their compound phase type probability generating 

functions. Phase type distributions of Panjer class (a, b, 0) and class (a, b, 1) are developed using pgf 

technique as well as their compound phase type probability generating functions. Panjer recursive 

formulas for both classes are also developed. 

y j + j − x y(x)Z A j − Ax + Ax + Bx P1 − (A + B)P0 

+ − 1 − ( j 

1 − ( + − − 

) = 1 − ( + − − 
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4 PHASE TYPE POISSON LINDLEY AND 

ZERO-TRUNCATED POISSON LINDLEY DISTRIBUTIONS 

 
4.1 Introduction 

 
In this chapter phase type one parameter and two parameter Poisson lindley distributions can be 

derived considering a mixing distribution which follows phase type lindley distribution. Phase type 

Zero-truncated one parameter and two parameter Poisson Lindley distributions are also derived when 

the prior distribution follows size-biased Poisson distribution (SBPD). These phase type distributions 

are used to estimate claim frequency probabilities of secondary cancer cases. These distributions 

are phase type distribution hence they in cooperates matrices. The matrix inverse of these matrix 

parameters have been wriNen as fractions for simplification of the distributions appearance and 

understanding. Matrices of these phase type distributions are derived using Chapman-Kolmogorov 

equations as multi-state models hence in-cooperating secondary cancer transitions in claim frequency. 

This improves projection of aggregate losses as it also in-cooperates the dynamic nature of cancer 

and also heterogeneity aspect of claim data as they are mixture distributions. The phase type Zero- 

truncated Poisson Lindley further affect estimation of claim count data as the do not in-cooperate 

zero claim counts which can not aNract any claim severity amounts. 

 

4.2 Phase type one parameter Poisson Lindley distribution 

 
Definition 4.2.1. A random variable X is considered a PH one parameter Poisson Lindley distribution 

if: 

X |γ ∼ Po(γ) γ|Γ ∼ PH − OPL(Γ) 

for γ > 0 and Γ is M ∗ M matrix. 

Theorem 4.2.2. If X ∼ PH − OPPL distribution the pdf of X can be given as: 
 

f → 
Γ2 

→ T
 

 

(x; Γ) = Y
(I + Γ)x+3 {(x + 2)I + Γ}1 

where Γ represents M ∗ M and I represents an identity matrix. 

 
Proof of theorem 4.2.2 

If X |γ ∼ Po(γ) and γ|Γ ∼ PH − OPL(Γ), then the pdf of the variable X is illustrated by; 

P(x) =

Ú

0

∞ 

Pr(x|γ) f (γ; Γ)dγ 

( 4.1)  
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Γ(Γ + I) 

( ) = 
x! I + Γ

(
 

) , = ∗ 

( ) = 
I + Γ x! x! (I + Γ)x+3 

{(
 

+ ) } 

( , ) = 
I + Γ 

( ) 
(Γ + I) 

( 
Γ2(Γ + I) 

−
 (Γ + I)2 

+ 
Γ(Γ + I) 

( ) = 
I + Γ

(
 

) = 
I + Γ 

=Y 
I + Γ [Γ + (1 − s)I]2 

1 

( , 
(I + Γ)x+2 

+ 
αΓ + I 

 

where f (γ; Γ) is PH − OPL(Γ). 

P x 

Ú ∞ e−γγx   Γ2 

1
  

γ e−Γγ dγ γ 

 
0 Γ M M 

P x 
Γ2

 

Ú ∞ h  γx 

e−γ(I+Γ) γx+1 

e−γ(I+Γ)
i  

dγ →Y 
Γ2  

x 2 I Γ →1T (4.2) 

 

 

4.2.1 Properties of phase type one parameter Poisson Lindley distribution 

 
The rth moments of PH-OPPL distribution expressed as: 

 
E Xr 

Ú ∞ 

xr f 

 
x Γ dx 

Γ2  Ú ∞ 

xre−Γx 1 
 

x dx →Y 
x![(x + 1)I + Γ]→1T 

(4.3)
 

 

The mean and variance of PH-OPPL distribution is derived from equation (4.3) as: 
 

(i) Expectation 

 
 

 
(ii) Variance 

 
E(x) = 

1![(1 + 1)I + Γ] 

Γ(Γ + I) 

 

= →Y 
(2I + Γ)→1T (4.4) 

 
Var x 

2![(2 + 1)I + Γ] ,  (2I + Γ) , 2 
→Y

2I + 4Γ + Γ2
 2I + Γ →1T (4.5) 

 

 

The probability generating function of PH-OPPL distribution is expressed as: 

X s 

Ú ∞ 

eγ(1−s) Γ2 

1 
 

γ e−Γγ dγ 
Γ2  h Ú ∞ 

γe−γ(I+Γ−sI)dγ 
Ú ∞ 

e−γ(Γ+I−sI)dγ
i
 

→ 
Γ2 h    Γ + (2 − s)I   i → T 

 

 

4.3 Phase type two parameter Poisson Lindley distribution 

 
Definition 4.3.1. A random variable X is considered a phase type two parameter Poisson Lindley 

distribution if it satisfies: 

X |γ ∼ Po(γ) γ|Γ, α ∼ PH − TPL(Γ, α) 

for α > 0, γ > 0 and Γ represents M ∗ M matrix. 

Theorem 4.3.2. If X ∼ PH − TPPL distribution, the probability density function of X is given by: 

 
f x; Γ α →Y 

Γ2 h
I 

(α + x)I i →1T ( 4 . 7 )  

 

where α > 0, Γ is M ∗ M and I is an identity matrix. 

0 
+ > 

0 
+ = + 

) = 
0 

( 
0 

+ = 

) = 
Γ(Γ + I) 

= 

0 
+ 

0 
+ 

0 

(4.6) 

) = 
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0 

+ 

Γ(Γα + I) 

→ 

] 

( ) = 
x! I + Γα 

(
 

+ ) , = ∗ 

( ) = 
αΓ + I x! x! (I + Γ)x+2 (αΓ + I) 

( , , ) ∑ 
x=0 

x! I + αΓ
(
 

+ ) 

( ) = 
I + Γα Γr+1 

+ Γr αΓ + I 

( ) =
(Γ + I)2 ∑ 

+ 
(Γ + I)2(αΓ + I) ∑

(
 

) 
Γ + I 

]
 

 

Proof theorem 4.3.2 

If X |γ ∼ Po(γ) and γ|Γ, α ∼ PH − TPL(Γ, α), then the pdf of variable X is expressed as; 

P(x) =

Ú ∞ 

Pr(X = x|γ) f (γ; Γ, α)dγ 

 

where f (γ; Γ, α) is PH − TPL(Γ, α). 

P x 

Ú ∞ e−γγx Γ2 
 

α γ e−Γγ dγ γ 

 
0 Γ M M 

P x 
Γ2

 

Ú ∞ γx 

αe−γ(I+Γ) dγ 
Ú ∞ γx+1 

e−γ(I+Γ) dγ →Y 
Γ2 h

I 
(α + x)I i →1T (4.8) 

 
 

4.3.1 Properties of phase type two parameter Poisson Lindley distribution 

 
The rth moments of PH-TPPL distribution is illustrated as: 

 
E Xr 

Ú ∞ 

xr f 

 
x Γ α dx 

Ú ∞ h  ∞ 

 
 

xr e
−γγx i  Γ2  

α γ e−Γγ dγ 

P x 
Γ2

 

h
α 

Γ(r + 1) Γ(r + 2) i  →Y
Γ(r + 1)I αΓ + (r + 1)I→1T 

(4.9)
 

 

The mean and variance of PH-TPPL distribution is derived from equation (4.9) as: 
 
 

(i) Expectation  

 
E(x 

 
 

Γ2 

) = 
αΓ + I 

 

 

∞ 

γ(α 
0 

 
 
+ γ)e−Γγ dγ 

 
= →Y 

(2I + Γα)→1T (4.10) 

 

(ii) Variance 

 

Var(x) =E(x2) − [E(x)]2 

E(x2) =
 αΓ + 2I   

+ 
2(αΓ + 3I) 

 
= →Y

  αΓ + 2I   
+ 

2(αΓ + 3I) 
− 

h  (2I + Γα) i 2
1T   

(4.11)
 

Γ(αΓ + I) Γ2(αΓ + I) Γ(αΓ + I) Γ2(αΓ + I) Γ(Γα + I) 
 

The probability generating function of PH-TPPL distribution can be expressed as: 
 

X s 
Γ2

 

∞ h    sI x 

  

Γ2 ∞   

α
 

 

 

x 
h  s    x 

→ 
αΓ[Γ + (1 − s)I] + Γ2 

→ T 
 

=Y
(αΓ + I)[Γ + (1 − s)I]2 

1
 

(4.12) 

The value of Γ has been calculated hence the value of α can be estimated from equation (4.10) having 

calculated the value of E(x) . 

0 (Γ + I) x=0 

0 
= 

Ú 

0 
> 

0 
+ 

0 
= 

) = 
0 

( 

Γr+2 = 

+ 
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Y 

"  #

1 (4.13)  

 

4.4 Compound distributions of one parameter and two parameter Poisson 

Lindley distributions with severity distributions 

 
Compound phase type distributions (CPHD) considered in modeling secondary cancer cases using 

one parameter and two parameter Poisson Lindley distributions are developed in this section. 

These distributions are mixture distributions hence they factor in the heterogeneity aspect of claim 

count data. Compound distribution’s probability generating functions are derived by convoluting 

probability generating function of claim count and claim amount distributions as expressed in 

definition (3.3.1). 

 

4.4.1 General expression of phase type compound distributions 

Theorem 4.4.1 (Compound phase type one parameter Poisson Lindley distribution ). If the pgf of 

N ∼ PH − OPPL(Γ) the compound pgf of N is: 
 

Z(S) = → 
Γ2 

I + Γ 

 Γ + (2 − Lx[X (S)])I  → T 

[Γ + (1 − Lx[X (S)]I]2 

 

where Lx[X (S)] is as defined in theorem (3.3.2). 

 
Proof of theorem 4.4.1 

Let the pgf of the compound distribution be expressed as Z(s) = F[X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (4.6) it becomes: 

 
Z(S) =F[Lx[X (S)]] 

→ 
Γ2 

"
 Γ + (2 − Lx[X (S)])I 

#

→ T 

 
 =Y 

I + Γ [Γ + (1 − Lx[X (S)]I]2 
(4.14) 

Theorem 4.4.2 (Compound phase type two parameter Poisson Lindley distribution ). If the pgf of 

N ∼ PH − TPPL(Γ) the the compound pgf of N is: 
 

Z  S →Y 
αΓ[Γ + (1 − Lx[X (S)])I] + Γ2 

→ T 
 ( ) = 1 

(αΓ + I)[Γ + (1 − Lx[X (S)])I]2 
( 4.15 )  

 

where Lx[X (S)] is as defined in theorem (3.3.2). 

 
Proof of theorem 4.4.2 

Let the pgf of the compound distribution be expressed as Z(s) = F[X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (4.12) it becomes: 

 

Z(S) =Y [Lx[X (S)]] 

→ 
αΓ[Γ + (1 − Lx[X (S)])I] + Γ2 

→ T 
 

=Y
(αΓ + I)[Γ + (1 − Lx[X (S)])I]2 

1
 

(4.16) 

1 
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4.4.2 Compound phase type distributions probability generating functions 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (4.14) the pgf of the compound 

distributions of PH-one parameter Poisson Lindley with severity distributions: 

 

Distributions Pgf of compound phase type distributions 

PH OPPL-Weibull 

"  
Γ+(2− 

β Γβ 
])I 

#
 

Z(S) = →Y Γ2 α  [sα+(  x )β −1 ]β 
1T α → 

  

I+Γ  [Γ+(1− 
β Γβ 

]I]2 
   

α [sα+( x )β −1]β "
 Γ ∞ α  Γ(α+k) 

#  α  

PH OPPL-Pareto 
Γ2 +(2−∑k=0 (−1)k 

Γα β 2k+2 ])I T
 

Z(S) = →Y 
I+Γ ∞ k  α   Γ(α+k)    2    

→1 
[Γ+(1−∑k=0 (−1) Γα β 2k+2 ]I] "  #  

PH OPPL-Gen Pareto 
     2 Γ+(2− 

γγ β 
1 

γ ∑∞ 
0 

−(α+γ) Γα+k )I 

Z(S) = →Y Γ (α,  )    k= γk sα+k →1T 
 

I+Γ  [Γ+(1− 
γγ β 

1  
γ ∑∞   −(α+γ) Γα+k )I]2 

     (α,  )    hk=0 γk    i s α+k 
"

 Γ+ 2− θ 2     θ +2−s I  
#  

PH OPPL-OPPL 

 
 

Z(S) = →Y Γ2 1+θ     [θ +1−s]2 →1T 
I+Γ 

θ 2 
h

 θ 2   s 

i   i 2
 

[Γ+(1− 1+θ 
+ − 

2 I 

     [θ +1−s]   "
 Γ+ 2− αθ [θ +1−s]+θ 2   

I 
#  

PH OPPL-TPPL 

 
 

Z(S) = →Y Γ2  (αθ +1)[θ +1−s]2 
  →1T 

I+Γ  
[Γ+(1− αθ [θ +1−s]+θ 2   

I]2 

(αθ +1)[θ +1−s]2 

Table 4.1. Compound phase type one parameter Poisson Lindley distributions 

 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (4.16) the pgf of the compound 

distributions of PH-two parameter Poisson Lindley with severity distributions are: 

 

Distributions Pgf of compound phase type distributions 

 
PH TPPL-Weibull 

αΓ

h
Γ+

 

1− 
β Γβ 

I

i
+Γ2 

Z(S) = →Y 
α  [sα+(  x )β −1]β 

1T α → 
h    β Γβ    i 2 

(αΓ+I) Γ+ 1− α [sα+( x )β −1]β  I 
h    α i  

PH TPPL-Pareto 

αΓ Γ+ 1−∑∞    (−1)k α Γ(α+k) 
I +Γ2

 
k=0 Γα    2k+2 Z(S) = →Y β →1T 

 
h    

∞ α  Γ(α+k) 

   i 2
 

(αΓ+I) Γ+ 1−∑k=0 (−1)k 
Γα β 2k+2 I 

αΓ

h
Γ+

 

1− 
γγ β 

1  
γ ∑∞   −(α+γ) Γα+k  

   

I

i
+Γ2

 

PH TPPL-Gen Pareto 

 
 

Z(S) = →Y 
(α,  )    k=0 γk sα+k →1T 

 

h    
  1 ∞   −(α+γ) Γα   k 

   i 2
 

(αΓ+I) Γ+ 1− 
γγ β α γ ∑k=0 γk α 

+ I (  , ) s +k αΓ

h
Γ+

 

1− θ 2 
h

 θ +2−s 

i  
I

i
+Γ2 

PH TPPL-OPPL 
1+θ 2 

Z(S) = →Y 
[θ +1−s] →1T 

h    
  θ 2 

h
 θ 2 s 

i   i 2 

(αΓ+I) Γ+ 1− 1+θ 
+ − 

2 I [θ +1−s] 
αΓ

h
Γ+

 

1− αθ [θ +1−s]+θ 2  
 

I

i
+Γ2 

PH TPPL-TPPL 

 
 

Z(S) = →Y 
(αθ +1)[θ +1−s]2 →1T h    

 αθ [θ +1−s]+θ 2   
  i 2

 
(αΓ+I) Γ+ 1− 

(αθ +1)[θ +1−s]2   I 

Table 4.2. Compound phase type two parameter Poisson Lindley distributions 
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( 
Γ2 + 3Γ + I (Γ + I)x 

, , 

( ) = | ) ( ) 
(x − 1)! 

. 
Γ2 + 3Γ + I 

( + ) + 

=
(Γ2 + 3Γ + I)(x − 1)! 

e 
0 

∗ (Γ + I)γ 

=Y
Γ2 + 3Γ + I (Γ + I)x 

1 

=
Γ2 + 3Γ + I 

γ 
0 

 

4.5 Phase type Zero-truncated one parameter Poisson Lindley distribution 

 
Definition 4.5.1. A random variable X is considered a phase type Zero-truncated one parameter Poisson 

Lindley distribution if x|γ follows size-biased Poisson distribution illustrated as: 

 

 

for γ > 0 

e−γγx−1 

f (x|γ) = 
(x − 1)! 

( 4.17 )  

where parameter γ satisfies the expression ; 

Γ2 

g(γ; Γ) = 
Γ2 

 

+ 3Γ I

 
(Γ + I)γ + (Γ + 2I)

 
e−Γγ ( 4.18 )  

for γ > 0, Γ is M ∗ M matrix and I is an identity matrix. 

Theorem 4.5.2. If X ∼ PH − ZTOPPL distribution then the probability mass function of X is: 

 
f x; Γ →Y 

Γ2 
(

(x + 2)I + Γ 
)

→1T  x
 
 

1 2 3 
 

( 4.19 )  

 

where Γ is M ∗ M and I is an identity matrix. 

Proof of theorem 4.5.2 

Given the prior distribution is X |γ ∼ SBPD(γ), then the pmf of variable X of PH-ZTOPPL distribution 

is illustrated as: 

P x 

Ú ∞ 

f 

 
x γ g γ; Γ dγ 

Ú ∞ e−γγx−1 
 

 

 

 

Γ2 h  
Γ I γ 

 
Γ 2I 

i
e−Γγ dγ 

Γ2 Ú ∞ 
 

−γ(I+Γ)   
h  

x x−1
i
 

→ 
Γ2 

(
(x + 2)I + Γ 

)

→ T 

 

 

 

Properties of phase type Zero-truncated one parameter Poisson Lindley distribution 

 
The rth moments of PH-ZTOPPL distribution is given by: 

 
E Xr 

Ú ∞ 

xr f  x Γ dγ Ú ∞ 
"  ∞ xr e

−γγx−1 
#  

Γ2 
 

 

  
Γ I γ 

 
Γ 2I 

 
e−Γγdγ 

( ) = 
0 

( ,  ) 

Γ2 Ú ∞ 

= 
0 

 

r−1 

∑ 
x=1 (x − 1)! 

Γ2 + 3Γ + I 
(
 

−Γγ 

+ ) + ( + ) 

 

→ 
r!(Γ + I)2[(r + 1)I + Γ]→ T 

 

=Y 
Γr[Γ2 + 3Γ + I] 

1
 

(4.21) 

The mean and variance of PH-ZTOPPL distribution id derived obtained from equation (4.21) as: 

0 

) = = , .... 

0 
( = + ( ) 

+ (Γ + 2I)γ dγ 

x = 1, 2, 3, .... (4.20) 

(γ + r)[(Γ + I)γ + (Γ + 2I)]e dγ 

+ 
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x=1 
"  

x

         
#

 

 

(i) Expectation  
E 

1!(Γ + I)2[2I + Γ] 
 

 

 
→ 

(Γ + I)2[2I + Γ]→ T 
 

 

(ii) Variance 

(x) = 
Γ1[Γ2 + 3Γ + I] 

= Y 
Γ[Γ2 + 3Γ + I] 

1
 

(4.22) 

 

 
Var (x) =E[x2] − (E[x])2 E[x2] = 

2!(Γ + I)2[(3I + Γ] 

Γ2[Γ2 + 3Γ + I] 
=

 
(Γ + I)2[Γ2 + 4Γ + 6I] 

 

Γ2[Γ2 + 3Γ + I] 

(Γ + I)2[Γ2 + 4Γ + 6I] 
 

"
(Γ + I)2[2I + Γ]

# 2
 

 
 

 

The probability generating function of PH-ZTOPPL distribution is expressed as: 
 

X x Γ2 ∞ 
x xI + Γ + 2I 

(s) =E[s ] = 
Γ2 + 3Γ + I ∑ s 

(Γ + I)x 

Γ2 
=

Γ2 + 3Γ + I 

∞ 

∑ 
x=1 

   sI  x 

Γ + I 

∞ 

+ (Γ + 2I) ∑ 
x=1 

   sI  x 

Γ + I 

→ 
Γ2s 

"
 (Γ + I)  (Γ + 2I) 

#

→ T 

=Y
Γ2 + 3Γ + I (Γ + I − sI)2 

+ 
Γ + I − sI 

1
 

(4.24) 

 
 

4.6 Phase type Zero-truncated two parameter Poisson Lindley distribution 

 
Definition 4.6.1. A random variable X is considered a phase type Zero-truncated two parameter Poisson 

Lindley distribution if x|γ follows size-biased Poisson distribution which can be represented as: 

 

 
 

for γ > 0 

where parameter γ satisfies the function ; 

f (x|γ) = 
e−γγx−1 

( 4.25 )  

Γ(x) 

 

g(γ; Γ, α) = 
Γ2α

 
Γ2 

+ Γα + 2Γ + I

 
(Γ + I)γ + α(Γ + I) + I

 
e−Γγ ( 4.26 )  

for γ > 0, Γ2α + Γα + 2Γ + I Γ > 0 represents M ∗ M matrix and I represents an identity matrix. 

Theorem 4.6.2. If X ∼ PH − ZTTPPL distribution then the probability mass function of X is expressed 

as: 

f → 
Γ2 (x + 1)I + α(Γ + I)→ T 

(x; Γ, α) = Y
Γ2α + Γα + 2Γ + I (Γ + I)x 

1
 

x = 1, 2, 3, .... ( 4.27 )  

where α > 0 ,Γ represents M ∗ M and I represents an identity matrix. 

Var(x) =→Y 
Γ2 [Γ2 + 3Γ + I] 

− 
Γ[Γ 2 + 3Γ + I] 

→1T (4.23) 
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0 

,  

Γ(x) 
∗ 

Γ2α + Γα + 2Γ + I 

( [ ( | ∑ 
x=1 (x − 1)! 

+ ) ( + ] 

=
[Γ2α + Γα + 2Γ + I] 

γ 
0 

(γ + r) e 

[Γ α + Γα2Γ + I] 

,  

 

Proof of theorem 4.6.2 

Given the prior distribution as X |γ ∼ SBPD(γ), then the pmf of variable X of PH-ZTTPPL distribution 

is illustrated as: 

P(x) =

Ú ∞ 

f (x|γ)g(γ; Γ)dγ 

Ú ∞ e−γγx−1 Γ2 
 

 

 

 

−Γγ 

Γ2 

=
[Γ2α + Γα + 2Γ + I]Γ(x) 

Ú ∞ h  
 

 
(Γ + I)γx + 

,
α(Γ + I) + I

,
γ x−1

i
e−(Γ+I)γdγ 

→ 
Γ2 (x + 1)I + α(Γ + I)→ T 

=Y
[Γ2α + Γα + 2Γ + I] (Γ + I)x 

1
 

x = 1, 2, 3, .... (4.28) 

4.6.1 Properties of phase type Zero-truncated two parameter Poisson Lindley distribu- 

tion 

The rth moments of PH-ZTTPPL distribution is given by: 

E Xr E E xr γ 

Ú ∞ h  ∞ 

 
 

xr e−γγx−1 i   
γ I γ 

 
α γ I 

 
I e−γγ dγ 

Γ2 Ú ∞ 
 

r−1 
h
 

i  
−Γγ 

 

→ 
r!(Γ + I)2[Γα + (r + 1)I]→ T 

 

=Y 
Γr[Γ2α + Γα + 2Γ + I] 

1
 

1, 2, 3, ... (4.29) 

The mean and variance of PH-ZTTPPL distribution is derived from equation (4.29) as: 
 
 

(i) Expectation 

 E 

 
 

1!(Γ + I)2[Γα + 2I] 

 
→ 

(Γ + I)2[Γα + 2I] → T 
 

(x) =
Γ1[Γ2α + Γα + 2Γ + I] 

= Y
Γ[Γ2α + Γα + 2Γ + I] 

1
 

(4.30) 

(ii) Variance 
 
 
 

Var 

 

 

(x) =E[x2 

 

] − (E[x])2 

 

 
E[x2 

 
 

2!(Γ + I)2[Γα + 3I] 
] = 

Γ2[Γ2α + Γα + 2Γ + I] 

E[x2 
2!(Γ + I)2[Γα + 3I] ] =

Γ2[Γ2α + Γα + 2Γ + I] 
−

 
(Γ + I)2[Γα + 2I] 2 

Γ[Γ2α + Γα + 2Γ + I] 

(Γ + I)2

h
Γ3α2 + (α + 5)Γ2α + (4α + 6)Γ + 2I

i
 

 
Var(x) =→Y 

Γ2 2 
2 

→1T 
(4.31) 

0 
)] = 

0 

0 
= (Γ + I)γ + α(Γ + I) + I e dγ 

) = ∗ [( + ) + 

(γ + I)γ + α(γ + I) + I dγ 
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The probability generating function of PH-ZTTPPL distribution is expressed as: 
 

X x 
∞ 

x Γ2
 xIα(Γ + I) + I 

(s) =E[s ] = ∑ s 
x=1 Γ2α + Γα + 2Γ + I (Γ + I)x 

→ 
Γ2s 

"
 (Γ + I)  [α(Γ + I) + I] 

#

→ T 

=Y
Γ2α + Γα + 2Γ + I (Γ + I − sI)2 

+
 (Γ + I + sI) 

1
 

(4.32) 

 

 

The value of Γ has been calculated hence the value α is derived from equation (4.30) considering 

E(x) is a known value. 

 

4.7 Compound distributions of Zero-truncated one parameter and 

Zero-truncated two parameter Poisson Lindley distributions with severity 

distributions 

 
Compound phase type distributions (CPHD) considered in modeling secondary cancer cases using 

Zero-truncated one parameter and two parameter Poisson Lindley distributions are derived in this 

section. These distributions are mixture distributions hence they factor in the heterogeneity aspect 

of claim count data. Zero truncated distributions do not take in to account zero claim count which is 

the case of real claim data as zero claim count can not aNract any claim severity amount. Compound 

distribution’s probability generating functions are derived by convoluting of probability generating 

function of claim count and claim amount distributions as expressed in definition (3.3.1). 

 

4.7.1 General expression of phase type compound distributions 

Theorem 4.7.1 (Compound phase type Zero-truncated one parameter Poisson Lindley distribution ). 

If the pgf of N ∼ PH − ZTOPPL(Γ) the compound pgf of N is: 

Z  S →Y 
Γ2Lx[X (S)] 

"
  (Γ + I)    (Γ + 2I) 

#

→1T 
( 4 .3 3 )

 

( ) = 
Γ2 + 3Γ + I (Γ + I − Lx[X (S)]I)2 

+ 
Γ + I − Lx[X (S)]I 

 
 

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 4.7.1 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (4.24) it becomes: 

 
Z(S) =Y [Lx[X (S)]] 

→ 
Γ2Lx[X (S)] 

"
 (Γ + I)    (Γ + 2I) 

#

→ T 
 

=Y
Γ2 + 3Γ + I (Γ + I − Lx[X (S)]I)2 

+ 
Γ + I − Lx[X (S)]I 

1
 

(4.34) 
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Theorem 4.7.2 (Compound phase type Zero-truncated two parameter Poisson Lindley distribution). 

If the pgf of N ∼ PH − ZTTPPL(Γ, α) the the compound pgf of N is: 

Z  S →Y 
Γ2Lx[X (S)] 

"
 (Γ + I)    [α(Γ + I) + I]  

#

→1T 
( 4 .3 5 )

 

( ) = 
Γ2α + Γα + 2Γ + I (Γ + I − Lx[X (S)]I)2 

+ 
(Γ + I − Lx[X (S)]I) 

 

where Lx[X (s)] is as the Laplace transform. 

 

Proof of theorem 4.7.2 

Let the pgf of the compound distribution be expressed as Z(s) = Y [X (s)], hence replacing the pgf of 

frequency distribution as shown in equation (4.32) it becomes: 

 
Z(S) =Y [Lx[X (S)]] 

→ 
Γ2Lx[X (S)] 

"
 (Γ + I)    [α(Γ + I) + I] 

#

→ T 
 

=Y
Γ2α + Γα + 2Γ + I (Γ + I − Lx[X (S)]I)2 

+ 
(Γ + I − Lx[X (S)]I) 

1
 

(4.36) 

 

4.7.2 Compound phase type distributions probability generating functions 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (4.34) the pgf of the compound 

distributions of PH-one parameter Poisson Lindley with severity distributions are: 
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Distributions Pgf of compound phase type distributions 

PH ZT OPPL 
Γ2 β Γβ 

"  
α x β −1 β 

Z(S) = →Y 
[sα+( α ) ]   (Γ+I)  
Γ2+3Γ+I 

    
β Γβ 

2 
Γ+I− 

α [sα+( x )β −1]β  
I
    α 

+     

#

→1T 
(Γ+2I) 

Γ+I− 
β Γβ 

I 
  

α [sα+( x )β −1]β    "α 

 
- Weibull 

PH ZT OPPL 
Γ2   ∑∞  (−1)k α Γ(α+k)    

k=0 Γα    2k+2 
Z(S) = →Y β (Γ+I) 

Γ2+3Γ+I 
     

∞ α Γ(α+k)  
      2 

Γ+I− ∑k=0 (−1)k 
Γα β 2k+2 I 

+   (Γ+2I)   

#

→1T 

Γ+I− ∑∞    (−1)k α Γ(α+k) 
I 

k=0 Γα β 2k+2 "  

 
-Pareto 

PH ZT OPPL 
Γ2 

γγ β 
1  

γ 
∑∞   −(α+γ) Γα+k 

  Γ I 
 

Z(S) = →Y 
(α,  )    k=0 γk sα+k (  + ) 

Γ2+3Γ+I 
   

  1 ∞  −(α+γ) Γα   k  

        2 Γ+I− 
γγ β α γ 

∑k=0 γk α 
+ I (  , ) s +k 

+   (Γ+2I)   

#

→1T 

Γ+I− 
γγ β 

1  
γ 

∑∞   −(α+γ) Γα+k    I (α, )    k=0 γk sα+k 
Γ2 θ 2 

h
 θ +2−s 

i "  
Γ+I) 

 
-Gen Pareto 

PH ZT OPPL 
      1+θ 2              

Z(S) = →Y 
[θ +1−s] 

Γ2+3Γ+I 
   

  θ 2 
h

 θ 2 s 

i   2 

Γ+I− 1+θ 
+ − 

2 I [θ +1−s] 

+   (Γ+h 2I) i   

#

→1T 

Γ+I−  θ 2     θ +2−s I 1+θ  [θ +1−s]2 
Γ2 αθ [θ +1−s]+θ 2 "  

 
-OPPL 

PH ZT OPPL 
 

 

Z(S) = →Y       (αθ +1)[θ +1−s]2         (Γ+I)  
Γ2+3Γ+I 

   
 αθ [θ +1−s]+θ 2   

    2
 Γ+I− 

(αθ +1)[θ +1−s]2   I 

+   (Γ+2I)   

#

→1T 

Γ+I−  αθ [θ +1−s]+θ 2   
I 

(αθ +1)[θ +1−s]2 

 
-TPPL 

Table 4.3. Compound phase type zero truncated one parameter Poisson Lindley distributions 

 

 
Replacing equation (3.81), (3.82), (3.83), (3.84), and (3.85) in equation (4.36) the pgf of the compound 

distributions of PH-two parameter Poisson Lindley with severity distributions are: 
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Distributions Pgf of compound phase type distributions 

PH ZT TPPL 
Γ2 β Γβ 

"  
α x β −1 β 

Z(S) = →Y 
[sα+( α ) ]   (Γ+I)  
Γ2+3Γ+I 

    
β Γβ 

2 
Γ+I− 

α [sα+( x )β −1]β  
I
    α 

+     

#

→1T 
(Γ+2I) 

Γ+I− 
β Γβ 

I 
  

α [sα+( x )β −1]β    "α 

 
-Weibull 

PH ZT TPPL 
Γ2   ∑∞  (−1)k α Γ(α+k)    

k=0 Γα    2k+2 
Z(S) = →Y β (Γ+I) 

Γ2+3Γ+I 
     

∞ α Γ(α+k)  
      2 

Γ+I− ∑k=0 (−1)k 
Γα β 2k+2 I 

+   (Γ+2I)   

#

→1T 

Γ+I− ∑∞    (−1)k α Γ(α+k) 
I 

k=0 Γα β 2k+2 "  

 
-Pareto 

PH ZT TPPL 
Γ2 

γγ β 
1  

γ 
∑∞   −(α+γ) Γα+k 

  Γ I 
 

Z(S) = →Y 
(α,  )    k=0 γk sα+k (  + ) 

Γ2+3Γ+I 
   

  1 ∞  −(α+γ) Γα   k  

        2 Γ+I− 
γγ β α γ 

∑k=0 γk α 
+ I (  , ) s +k 

+   (Γ+2I)   

#

→1T 

Γ+I− 
γγ β 

1  
γ 

∑∞   −(α+γ) Γα+k    I (α, )    k=0 γk sα+k 
Γ2 θ 2 

h
 θ +2−s 

i "  
Γ+I) 

 
-Gen Pareto 

PH ZT TPPL 
      1+θ 2              

Z(S) = →Y 
[θ +1−s] 

Γ2+3Γ+I 
   

  θ 2 
h

 θ 2 s 

i   2 

Γ+I− 1+θ 
+ − 

2 I [θ +1−s] 

+   (Γ+h 2I) i   

#

→1T 

Γ+I−  θ 2     θ +2−s I 1+θ  [θ +1−s]2 
Γ2 αθ [θ +1−s]+θ 2 "  

 
-OPPL 

PH ZT TPPL 
 

 

Z(S) = →Y       (αθ +1)[θ +1−s]2         (Γ+I)  
Γ2+3Γ+I 

   
 αθ [θ +1−s]+θ 2   

    2
 Γ+I− 

(αθ +1)[θ +1−s]2   I 

+   (Γ+2I)   

#

→1T 

Γ+I−  αθ [θ +1−s]+θ 2   
I 

(αθ +1)[θ +1−s]2 

 
-TPPL 

Table 4.4. Compound phase type zero truncated two parameter Poisson Lindley distributions 

 

 

4.8 Chapter summary 

 
The main objective of this chapter was to develop phase type Poisson Lindley distributions, Phase 

type zero truncated Poisson Lindley distributions and compound phase type probability generating 

functions. Phase type Poisson Lindley and Phase type zero truncated Poisson Lindley are constructed 

as well as their compound phase type probability generating functions. 
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5 MULTI-STATE CANCER MODEL 

 
5.1 Introduction 

 
In this chapter, we outline the mathematics of applying a Markov framework to multiple state 

models for secondary cancer insurance products. The Markov framework is used to determine the 

paNern of secondary cancer models and therefore the transition probabilities as well as the transition 

intensities are estimated. The transition matrix obtained improves on the estimation of aggregate 

losses of cancer as it factors in the movement between different states. Only Markov models with 

finite states are be considered in this research. Multi-state models derived in this chapter represents 

the matrix parameters of the phase type distributions of class (a, b, 0) and class (a, b, 1) illustrated in 

chapter three as well as Poisson Lindley and Zero-truncated Poisson Lindley distributions illustrated 

in chapter four. This research introduces estimation of aggregate losses based on the results obtained 

from our multiple state models. This chapter considers three state, four state, five state and six state 

models of different cancer transitions. Three state model illustrates cancer patients who transit 

from Healthy state-Leukemia state-Dead states, four state model illustrates patients who transit 

from Healthy state-Liver cancer state-Colon state-Dead states, five state model illustrates Healthy 

state-Stomach cancer state-Pharynx state-Colon state-Dead states and six state model illustrates 

Healthy state-Oesophagus cancer state-Stomach state-Lung state-Kidney state-Dead states. These 

models are non recovery models as it assumed that once a patient is infected with cancer their 

transition probability changes tremendous due to the first infection. 

 
5.2 Multiple state models setup 

 
Consider m possible transition states in a multiple state model. Let π be a finite and countable set 

such that: π = {1, 2, 3, ..., m} and leNing the set of direct transitions to be W expressed as: 

W ⊆ (i, j)|i /= j but i, j ∈ π 

The set π,W is called a multiple state model. Let Z(r) be the state of occupancy by individual under 

study at time r where r ≥ 0. {Z(r); r = 0, 1, 2, 3, ...} is a time-discrete Markov process if for; 

0 ≤ r0 ≤ r1 ≤ r2 ≤ ... ≤ rm 

 

and corresponding states 

with probability 

i0, i1, i2, ..., im ∈ s 

 
pr[Z(rn) = in, Z(rn−1) = in−1, ..., Z(r0) = i0] > 0 
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satisfies the Markov property: 

 
pr[Z(rn) = in|Z(rn−1) = in−1, ..., Z(r0) = i0] pr[Z(rn) = in|Z(rn−1) = in−1] 

 
5.2.1 Transition probabilities 

 
Let probability of moving from a given state to the next state in a Markov process by pi, j(s, r) and 

be define such that: pi, j(s, r) = represents conditional probability of an individual being in state j at 

time r provided that they were in state i at time s. 
 

pi j(s, r) =pr[Z(r) = j|Z(s) = i] = 
pr[Z(r) = j, Z(s) = i]

 
, 

 
 

where; r ≥, s ≥ 0 and i, j ∈ M 

pr[Z(s) = i] 

The above equation holds if pr[Z(s) = i] > 0 else pi j(s, r) = 0 hence: 
 

0 if i =/ j 

pi, j(s, s) = 
1 if i=j 

 

This implies that an individual under consideration, can only be in one state at a given time but 

cannot be in two states at the same time. The transition probabilities have the following properties: 

0 ≤ pi j(s, r) ≤ 1 

where ; i, j ∈ M 

∑

 

j∈M 

This model is build on the assumption that: 

pi j(s, r) = 1 

 
 

* The transition process depends on the length of time interval [s; r] 

* It also depends on the time s and r when it starts and ends. 

 

Hence the process is classified as time-inhomogeneous. 

 
5.2.2 Chapman-Kolmogorov equation 

Definition 5.2.1 (Chapman-Kolmogorov equation). It states that, a process which begins in state i 

at time s and is in state j at time r occurs through some arbitrary state k ∈ M at an arbitrary intermediate 
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| ∗ | 

— − 

— − 

− 

− 

 
 

time R i.e 

n p 

 
n  

 pr[Z(s, r) = j, Z(s, r) = k, Z(s) = i] 

i j(s, r) = ∑ pr[Z(s, r) = j, Z(s, r) = k|Z(s) = i] = ∑ prZ(s) = i 
k=1 

n 

= ∑ 
k=1 

n 

k=1 

pr[Z(s, r) = j|Z(s, r) = k, Z(s) = i] ∗ pr[Z(s, r) = k, Z(s) = i] 

pr[Z(s) = i] 

= ∑ pr[Z(s, r) = j Z(s, r) = k, Z(s) = i] pr[Z(s, r) = k Z(s) = i] 
k=1 

Using Markov property: 

n n 

pi j(s, r) = ∑ pr[Z(s, r) = j|Z(s, r) = k] ∗ pr[Z(s, r) = k|Z(s) = i] = ∑ pk j(R, r)pik(s, R) 
k=1 

n 
k=1 

pi j(s, r) = ∑ pik(s, R)pk j(R, r) (5 .1 )  

k=1 

 
 

Kolmogorov Forward equation 

 
Equation (5.1) can be transformed to its differential form. Let r = Wt + κd implying that R = Wt 

hence equation (5.1) can be rewriNen as: 

n 

pi j(s,Wt + κd) = ∑ pik(s,Wt)pk j(Wt,Wt + κd) 
k=1 

n 

pi j(s,Wt + κd) pi j(s,Wt) = ∑ pik(s,Wt)pk j(Wt,Wt + κd) + pi j(s,Wt)pj j(Wt,Wt + κd) pi j(s,Wt) 
k=1 

n 

= ∑ pik(s,Wt)pk j(Wt,Wt + κd) pi j(s,Wt)[1 p j j(Wt,Wt + κd)] 
k=1 

lim 
κd →0 

pi j(s,Wt + κd) − pi j(s,Wt) 

κd 
  ∂ 

p
 

= lim 
κd →0 

n 

n 
k=1 pik(s,Wt)pk j(Wt,Wt + κd) − pi j(s,Wt)[1 − p j j(Wt,Wt + κd)] 

κd 
pk j(Wt,Wt + κd) 

i j(s,Wt) = ∑ pik(s,Wt) lim − pi j(s,Wt) 
∂Wt k=1 κd →0 κd 

lim 
κd →0 

n 

[1 − p j j(Wt,Wt + κd)] 
κd 

 

 
where : 

= ∑ pik(s,Wt)ℑk j pi j(s,Wt)ℑ j (5.2) 

k=1 

limκ pk j (Wt ,Wt +κd ) = ℑk j lim
 

[1−pj j (Wt,Wt +κd )] = ℑ j The Kolmogorov Forward equation 
 

 

d →0 κd 

is therefore:  
  ∂ 

p
 

κd →0 κd 

 
n 

∂Wt 
i j(s,Wt) = ∑ pik(s,Wt)ℑk j pi j(s,Wt)ℑi 

k=1 

∑ 
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where ℑi j(Wt) represents transition intensity between two states i and j. In a summary we can say 

that, ℑi j(Wt) represents the change rate of the transition probability pi j in a small time interval, h 
 

ℑi j(Wt) = lim 
κd →0 

pi j(Wt,Wt + κd) 

κd 

 

for i j 

 

In our study, we consider and define the transition intensities and probabilities between different 

cancer states such that: 

pi j(VA,Wt) = The probability that a life aged VA + Wt and in state j was in state i at age VA. 

ℑVA+Wt = The transition intensity/rate from state i to state j at age Va + Wt. In the above cases, 

i, j = 1, 2, 3, ..., m VA = 0, 1, 2, 3, ... and 0 ≤ Wt ≤ 1. It is important to note that we consider constant 

force of mortality hence we have; 

 
ℑi j(VA + Wt) = ℑi j(VA) for x = 0, 1, 2, 3... and 0 ≤ Wt ≤ 1 

 

Hence ; 
 

n n 

pi j(s,Wt + κd) = ∑ pik(s,Wt)pk j(Wt,Wt + κd) pi j(VA,Wt + κd) = ∑ pik(VA,Wt)pk j(Wt,Wt + κd) 

 
where: 

k=1 

 
0 if i /= j 

pi, j(VA,VA) = 1 if i=j 

k=1 

implies that a person can only be in a particular state at a particular time but cannot be in two 

stages at the same time. 

 
5.3 Three state cancer model 

 
5.3.1 Introduction 

 
This section considers a three state cancer Markov model which in cooperates Healthy state, 

Leukemia and Dead state. A case where the patients can not move back to any state is considered. 

This leads to the assumption that a life is not permiNed to enter a state more than one time. The 

patients who recover are assumed to have been censored from the study. Leukemia was considered 

for three state model as most of the patient did not transit to any other type of cancer. 

 

5.3.2 Three state Leukemia cancer model 

 
Figure (5.1) represents the three-state model in which we systematically derive the respective 

Kolmogorov Forward Differential Equation. 
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Figure 5.1. Leukemia cancer model 

 
From the figure (5.1) above the transition probability matrix is expressed as: 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) 

  
a1 b1 0    

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) = 0 c1 d1 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) 0 0 1 

Hence the values of interest are; a1, b1, c1 and d1. Where a1 represents the transition probability of 

remaining in healthy state, b1 represents the transition probability of transiting from healthy state 

to Leukemia state, c1 represents the transition probability of remaining in Leukemia state and d1 

represents the transition probability of transiting from Leukemia state to Dead state. 

Theorem 5.3.1 (Three state Leukemia model ). The transition probability matrix for this model is: 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt)  

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0  

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) = 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) 

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 

0 0 1 

 

Proof of theorem 5.3.1 

Figure 5.1 represents the Three state Leukemia model. The transition intensities and probabilities 

are derived using Kolmogorov forward equations. Kolmogorov Forward Differential equation is 

expressed as: 

n 

pi j(VA,Wt + κd) = ∑ pik(VA,Wt)pk j(Wt,Wt + κd) 
k=1 

In this model we consider the following: (i, k, j) = 1, 2, 3 

When i = 1 and j = 1 
 
 

 
3 

p11(VA,Wt + κd) = ∑ p1k(VA,Wt)pk1(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] + p12(VA,Wt)p21(Wt,Wt + κd) 

+ p13(VA,Wt)p31(Wt,Wt + κd) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] + p12(VA,Wt)p21 ∗ 0 + p13(VA,Wt) ∗ 0 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] (5.3) 
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∂Wt 

∂Wt 

∂Wt 

 

Subtracting p11(VA,Wt) from equation (5.3) 

p11(VA,Wt + κd) − p11(VA,Wt) =p11(VA,Wt)[1 − p12(Wt,Wt + κd)] − p11(VA,Wt) 

=p11(VA,Wt)[−p12(Wt,Wt + κd)] 

lim p11(VA,Wt + κd) − p11(VA,Wt) 
=p11(VA,Wt ) lim

 −p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) (5.4) 

When i = 1 and j = 2 

3 

p12(VA,Wt + κd) = ∑ p1k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p13(VA,Wt)p32(Wt,Wt + κd) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.5) 

Subtracting p12(VA,Wt) from equation (5.5) 

p12(VA,Wt + κd) − p12(VA,Wt) =p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

— p12(VA,Wt) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) ∗ −p23(Wt,Wt + κd) 

=p11(VA,Wt)p12(Wt,Wt + κd) 

lim p12(VA,Wt + κd) − p12(VA,Wt) 
=p11(VA,Wt ) lim

 p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) (5.6) 

When i = 2 and j = 2 

3 

p22(VA,Wt + κd) = ∑ p2k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p12(Wt,Wt + κd) + p22(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p23(VA,Wt)p32(Wt,Wt + κd) 

=p22(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.7) 

Subtracting p22(VA,Wt) from equation (5.7) 

p22(VA,Wt + κd) − p22(VA,Wt) =p22(VA,Wt)[1 − p23(Wt,Wt + κd)] − p22(VA,Wt) 

=p22(VA,Wt) ∗ −p23(Wt,Wt + κd) 

lim p22(VA,Wt + κd) − p22(VA,Wt) 
=p22(VA,Wt ) ∗ − lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) (5.8) 
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∂Wt 

∂Wt 
11( t) 

0 
A) 11( A, 12( A) ]0 

∂Wt 
A, t) 

0 
A) 12( A, 12( A) 

 

When i = 2 and j = 3 
 

3 

p23(VA,Wt + κd) = ∑ p2k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p13(Wt,Wt + κd) + p22(VA,Wt)p23(Wt,Wt + κd) 

+ p23(VA,Wt)p33(Wt,Wt + κd) 

=p22(VA,Wt) ∗ p23(Wt,Wt + κd) + p23(VA,Wt) (5.9) 

Subtracting p23(VA,Wt) from equation (5.9) 

p23(VA,Wt + κd) − p23(VA,Wt) =p22(VA,Wt) ∗ p23(Wt,Wt + κd) + p23(VA,Wt) − p23(VA,Wt) 

=p22(VA,Wt) ∗ p23(Wt,Wt + κd) 

lim p23(VA,Wt + κd) − p23(VA,Wt) 
=p22(VA,Wt ) ∗ lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) (5.10) 

This model is build on the assumption that our observations are done within the interval time 

(0, t). We solved individual derivatives to aNain the required transition probabilities. Solving for the 

derivative of equation (5.4) we obtained the transition probability of remaining in healthy state. The 

derivative of equation (5.4) is expressed as: 

 
  ∂   

p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) 
∂ 

ln p11(VA,Wt) = −ℑ12(VA) 
∂Wt 

Ú t    ∂ 
ln p V 

 
W ∂W 

Ú t 

−ℑ 

∂Wt 

V ds ln p V W 

 
−ℑ V s t 

ln p11(VA,Wt) =[−ℑ12(VA)t] p11(VA,Wt) = e−ℑ12(VA)t 
(5.11) 

Solving for the derivative of equation (5.6) we obtained the transition probability of moving from 

healthy state to Leukemia state. The derivative of equation (5.6) is expressed as: 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) 

∂ 
p12(VA,Wt) = e−ℑ12(VA)t ∗ ℑ12(VA) 

∂Wt ∂Wt 
Ú t    ∂ 

p
 

V   W ∂W 
Ú t 

e−ℑ12(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ12(VA)sds 

 
p12(VA,Wt) = 

"
ℑ12 (VA ) ∗ e−ℑ12(VA)s 

# t
 p12(VA,Wt ) = 1 − e−ℑ12(VA)t 

(5.12) 

−ℑ12(VA) 
0

 

 

Solving for the derivative of equation (5.8) we obtained the transition probability of remaining in 

Leukemia state. The derivative of equation (5.8) is expressed as: 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) 

  1 ∂   
p22(VA,Wt) = −ℑ23(VA) 

∂Wt p22(VA,Wt) ∂Wt 

0 
A, t = 12( t) = [ 

0 
12( t = 12( t) = 

0 
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0 

  

∂Wt 
A, t) t = 

0 
23( A) 

0 
22( A, 

0 
23( A) 

∂Wt 
23( A, 23( 

∂Wt 
A, t) 

0 
A) 

23( A, 23( A) 
0 

A 
23( A, 

−ℑ23(VA) 

 
 

 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

Ú t 

∂ ln p V W 

Ú t 

−ℑ V ds 

ln p22(VA,Wt) =[−ℑ23(VA)s]t p22(VA,Wt ) = e−ℑ23(VA)t 
(5.13) 

 

Solving for the derivative of equation (5.10) we obtained the transition probability of moving from 

Leukemia state to Dead state. The derivative of equation (5.10) is expressed as: 

  ∂ 
p V W e−ℑ23(VA)t ∗ ℑ V 

Ú t    ∂ 
p
 
 

V   W ∂W 

Ú t 

e−ℑ23(VA)s ∗ ℑ 
 

V ds 

 
p V W ℑ V 

Ú t 

e−ℑ 

 
(V )sds p V  W 

h  ℑ23(VA) ∗ e−ℑ23(VA)s i t 
 

 

 

p23(VA,Wt) = − e−ℑ23(VA)t + 1 p23(VA,Wt) = 1 − e−ℑ23(VA)t 
(5.14) 

In this model state 3 is an absorbing state hence the transition probabilities are defined as: 

p31(VA,Wt) = 0, p32(VA,Wt) = 0, p31(VA,Wt) = 1 The transition probability matrix for this model is : 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt)  

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0  

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) = 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) 

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 

0 0 1 

 
 

5.4 Four state cancer model 
 

5.4.1 Introduction 

 
In this section four state cancer Markov model which in cooperates Healthy state, Liver cancer 

state,Colon state and Dead state is derived. A case where patients can not move back to any state 

is considered. This leads to the assumption that a life cannot enter a state more than once. The 

patients who recover are assumed to have been censored from the study. 

 

5.4.2 Four state Liver cancer-Colon model 

 
Figure (5.2) represents the four-state model in which we systematically derive the respective Kol- 

mogorov Forward Differential Equation. 

 

 

Figure 5.2. Liver cancer-Colon model 

0 

0 
22( t) = 

t) = A) 
0 

23( t = 23( 

t) = 23 
t) = 
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= 

 

 

From the figure (5.2) above the transition probability matrix is expressed as: 
 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) 

  
a2 b2 0 0    

 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt)    

0 c2 d2 0  

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) 
p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) 

0 0 e2 f2 
0 0 0 1 

 

Hence the values of interest are; a2, b2, c2, d2, e2 and f2. Where a2 represents transition probability 

of remaining in healthy state, b2 represents the transition probability of moving from Healthy state 

to Liver cancer state, c2 represents the transition probability of remaining in Liver cancer state, d2 

represents the transition probability of moving from Liver cancer state to Colon cancer state and 

e2 represents the transition probability of remaining in Colon cancer state and f2 is the transition 

probability of moving from Colon cancer state to Dead state. 

Theorem 5.4.1 (Four state Liver-Colon cancer model ). The transition probability matrix for this 

model is: 

 

 

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0 0 

 

=

 

 

 

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 0 

0 0 e−ℑ34(VA)t 1 − e−ℑ34(VA)t 

0 0 0 1 
 
 

Proof of theorem 5.4.1 

Figure (5.2) represents the Four state Liver-Colon cancer model. The transition intensities and 

probabilities are derived using Kolmogorov forward equations. Kolmogorov Forward Differential 

equation is expressed as: 
 

n 

pi j(VA,Wt + κd) = ∑ pik(VA,Wt)pk j(Wt,Wt + κd) 
k=1 

 

In this model we consider the following: (i, j, k) = 1, 2, 3, 4 

When i = 1 and j = 1 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) 
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∂Wt 

∂Wt 

 
 
 

 
4 

p11(VA,Wt + κd) = ∑ p1k(VA,Wt)pk1(Wt,Wt + κd) 
k=1 

+ p13(VA,Wt)p31(Wt,Wt + κd) + p14(VA,Wt)p41(Wt,Wt + κd) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] + p12(VA,Wt)p21(Wt,Wt + κd) 

+ p13(VA,Wt)p31(Wt,Wt + κd) + p14(VA,Wt)p41(Wt,Wt + κd) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] (5.15) 

Subtracting p11(VA,Wt) from equation (5.15) 

p11(VA,Wt + κd) − p11(VA,Wt) =p11(VA,Wt)[1 − p12(Wt,Wt + κd)] − p11(VA,Wt) 

=p11(VA,Wt)[−p12(Wt,Wt + κd)] 

lim p11(VA,Wt + κd) − p11(VA,Wt) 
=p11(VA,Wt ) lim

 −p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) (5.16) 

When i = 1 and j = 2 

4 

p12(VA,Wt + κd) = ∑ p1k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p13(VA,Wt)p32(Wt,Wt + κd) + p14(VA,Wt)p42(Wt,Wt + κd) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.17) 

Subtracting p12(VA,Wt) from equation (5.17) 

p12(VA,Wt + κd) − p12(VA,Wt) =p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

— p12(VA,Wt) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) ∗ −p23(Wt,Wt + κd) 

lim p12(VA,Wt + κd) − p12(VA,Wt) 
=p11(VA,Wt ) ∗ lim

 p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) (5.18) 

When i = 2 and j = 2 

4 

p22(VA,Wt + κd) = ∑ p2k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p12(Wt,Wt + κd) + p22(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p23(VA,Wt)p32(Wt,Wt + κd) + p24(VA,Wt)p42(Wt,Wt + κd) 

=p22(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.19) 
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∂Wt 

∂Wt 

∂Wt 

 

Subtracting p22(VA,Wt) from equation (5.19) 

p22(VA,Wt + κd) − p22(VA,Wt) =p22(VA,Wt)[1 − p23(Wt,Wt + κd)] − p22(VA,Wt) 

=p22(VA,Wt) ∗ −p23(Wt,Wt + κd) 

lim p22(VA,Wt + κd) − p22(VA,Wt) 
=p22(VA,Wt ) ∗ − lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) (5.20) 

When i = 2 and j = 3 

4 

p23(VA,Wt + κd) = ∑ p2k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p13(Wt,Wt + κd) + p22(VA,Wt)p23(Wt,Wt + κd) 

+ p23(VA,Wt)p33(Wt,Wt + κd) + p24(VA,Wt)p43(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)p33(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.21) 

Subtracting p23(VA,Wt) from equation (5.21) 

p23(VA,Wt + κd) − p23(VA,Wt) =p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)[1 − p34(Wt,Wt + κd)] 

— p23(VA,Wt) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)[−p34(Wt,Wt + κd)] 

lim p23(VA,Wt + κd) − p23(VA,Wt) 
=p22(VA,Wt ) ∗ lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) (5.22) 

When i = 3 and j = 3 

4 

p33(VA,Wt + κd) = ∑ p3k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p31(VA,Wt)p13(Wt,Wt + κd) + p32(VA,Wt)p23(Wt,Wt + κd) 

+ p33(VA,Wt)p33(Wt,Wt + κd) + p34(VA,Wt)p43(Wt,Wt + κd) 

=p33(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.23) 

Subtracting p33(VA,Wt) from equation (5.23) 

p33(VA,Wt + κd) − p33(VA,Wt) =p33(VA,Wt)[1 − p34(Wt,Wt + κd)] − p33(VA,Wt) 

=p33(VA,Wt)[−p34(Wt,Wt + κd)] 

lim p33(VA,Wt + κd) − p33(VA,Wt) 
=p33(VA,Wt ) ∗ − lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) (5.24) 
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∂Wt 

∂Wt 
11( A, 12( 11( A, 

0 
A) 

12( A, 
0 

A) A, 12( A) 

∂Wt 
22( A, 23( 22( A, 

0 
A) 

 

When i = 3 and j = 4 

4 

p34(VA,Wt + κd) = ∑ p3k(VA,Wt)pk4(Wt,Wt + κd) 
k=1 

=p31(VA,Wt)p14(Wt,Wt + κd) + p32(VA,Wt)p24(Wt,Wt + κd) 

+ p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt)p44(Wt,Wt + κd) 

=p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) (5.25) 

Subtracting p34(VA,Wt) from equation (5.25) 

p34(VA,Wt + κd) − p34(VA,Wt) =p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) − p34(VA,Wt) 

=p33(VA,Wt)p34(Wt,Wt + κd) 

lim p34(VA,Wt + κd) − p34(VA,Wt) 
=p33(VA,Wt ) ∗ lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) (5.26) 

This model is build on the assumption that our observations are done within the interval time 

(0, t). We solved individual derivatives to aNain the required transition probabilities. Solving for the 

derivative of equation (5.16) we obtained the transition probability of remaining in healthy state. 

The derivative of equation (5.16) is expressed as: 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) 

  1 ∂   
p11(VA,Wt) = −ℑ12(VA) 

∂Wt p11(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t 

∂ ln p V W 
Ú t 

−ℑ V ds 

ln p11(VA,Wt) =[−ℑ12(VA)t] p11(VA,Wt) = e−ℑ12(VA)t 
(5.27) 

Solving for the derivative of equation (5.18) we obtained the transition probability of transiting from 

healthy state to Liver cancer state. The derivative of equation (5.18) is expressed as: 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) 

∂ 
p12(VA,Wt) = e−ℑ12(VA)t ∗ ℑ12(VA) 

∂Wt 
Ú t 

∂ p V W 
Ú t 

e−ℑ12(VA)s ∗ ℑ 
 

V ds p 

∂Wt 

V W ℑ V 

Ú t 

e−ℑ12(VA)sds 

p12(VA,Wt) = − e−ℑ12(VA)t + 1 p12(VA,Wt) = 1 − e−ℑ12(VA)t 
(5.28) 

Solving for the derivative of equation (5.20) we obtained the transition probability of remaining in 

Liver cancer state. The derivative of equation (5.20) is expressed as: 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) 

  1 ∂   
p22(VA,Wt) = −ℑ23(VA) 

∂Wt p22(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t 

∂ ln p V W 
Ú t 

−ℑ V ds 

ln p22(VA,Wt) =[−ℑ23(VA)t] p22(VA,Wt) = e−ℑ23(VA)t 
(5.29) 

t) = A) 
0 

t) = 12( 

0 
t) = 12( 12( t) = 

0 

t) = A) 
0 

t) = 23( 
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23( A, 
0 

A) 23( A, 23( A) 

∂Wt 
33( A, 34( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
A, t) 0 A) 34( A, 34( A) 

 

 

Solving for the derivative of equation (5.22) we obtained the transition probability of moving from 

Liver cancer state to Colon cancer state. The derivative of equation (5.22) is expressed as: 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) 

∂ 
p23(VA,Wt) = e−ℑ23(VA)t ∗ ℑ23(VA) 

∂Wt ∂Wt 
Ú t 

∂ p V W 
Ú t 

e−ℑ23(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ23(VA)sds 

 
p23(VA,Wt) = 

"
ℑ23 (VA ) ∗ e−ℑ23(VA)s 

# t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t 

(5.30) 

−ℑ23(VA) 
0

 
 

Solving for the derivative of equation (5.24) we obtained the transition probability of remaining in 

colon cancer state. The derivative of equation (5.24) is expressed as: 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) 

  1 ∂   
p33(VA,Wt) = −ℑ34(VA) 

∂Wt p33(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p33(VA,Wt) =[−ℑ34(VA)t] p33(VA,Wt) = e−ℑ34(VA)t 
(5.31) 

Solving for the derivative of equation (5.26) we obtained the transition probability of moving from 

Colon cancer state to Dead state. The derivative of equation (5.26) is expressed as: 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) 

∂ 
p34(VA,Wt) = e−ℑ34(VA)t ∗ ℑ34(VA) 

∂Wt ∂Wt 
Ú t    ∂ 

p
 

V   W ∂W 
Ú t 

e−ℑ34(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ34(VA)sds 

 
p34(VA,Wt) = 

"
ℑ34 (VA ) ∗ e−ℑ34(VA)s 

# t
 p34(VA,Wt ) = 1 − e−ℑ34(VA)t 

(5.32) 

−ℑ34(VA) 
0

 
 

In this model state 4 is an absorbing state hence the transition probabilities are defined as: 

p41(VA,Wt) = 0, p42(VA,Wt) = 0, p43(VA,Wt) = 0, p44(VA,Wt) = 1 . The transition probability matrix 

for this model is : 
 

 

 

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0 0 

 

=

 

 

 

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 0 

0 0 e−ℑ34(VA)t 1 − e−ℑ34(VA)t 

0 0 0 1 

 

0 
t) = 23( t) = 

0 

t) = A) 
0 

33( t = 34( 

0 
34( t = 34( t) = 

0 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) 

p31(VA,Wt) 

p41(VA,Wt) 

p32(VA,Wt) 

p42(VA,Wt) 

p33(VA,Wt) 

p43(VA,Wt) 

p34(VA,Wt) 

p44(VA,Wt) 
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5.5 Five state cancer model 
 

5.5.1 Introduction 

 
In this section five state cancer Markov model which in cooperates Healthy state, Stomach cancer 

state, Pharynx state, colon state and Dead state is derived. A case where the patients can not transit  

back to any state is considered. This leads to the assumption that a patient cannot enter a state 

more than once. The patients who recover are assumed to have been censored from the study. 

 

5.5.2 Five state Stomach cancer-Pharynx-Colon model 

 
Figure (5.3) represents the five-state model in which we systematically derive the respective Kol- 

mogorov Forward Differential Equation. 
 
 

 

Figure 5.3. Stomach cancer-Pharynx-Colon model 

 
From the figure (5.3)above the transition probability matrix is expressed as: 

 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) 

  
a3 b3 0 0 0    

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) = 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) 

0 c3 d3 0 0 

0 0 e3 f3 0 

0 0 0 g3 h3 

0 0 0 0 1 
 

Hence the transition probabilities of interest are; a3, b3, c3, d3, e3, f3, g3 and h3. Where a3 represents 

transition probability of remaining in healthy state, b3 represents the transition probability of moving 

from Healthy state to Stomach cancer state, c3 represents the transition probability of remaining in 

Stomach cancer state, d3 represents the transition probability of transiting from Stomach cancer 

state to Pharynx cancer state, e3 represents the transition probability of remaining in Pharynx cancer 

state, f3 is the transition probability of transiting from Pharynx cancer state to Colon cancer state, 

g3 represents the transition probability of remaining in Colon cancer state and h3 is the transition 

probability of moving from Colon cancer state to Dead cancer state. 
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∂Wt 

 

 
Theorem 5.5.1 (Five state Stomach-Pharynx-Colon cancer model ). The transition probability 

matrix for this model is: 

 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) = 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) 

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0 0 0  

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 0 0 

0 0 e−ℑ34(VA)t 1 − e−ℑ34(VA)t 0 

0 0 0 e−ℑ45(VA)t 1 − e−ℑ45(VA)t 

0 0 0 0 1 

 

Proof of theorem 5.5.1 

Figure 5.3 represents the Five state Stomach-Pharynx-Colon cancer model. The transition intensities 

and probabilities are derived using Kolmogorov forward equations. Kolmogorov Forward Differential 

equation is expressed as: 

n 

pi j(VA,Wt + κd) = ∑ pik(VA,Wt)pk j(Wt,Wt + κd) 
k=1 

In this model we consider the following: (i, k, j) = 1, 2, 3, 4, 5 

When i = 1 and j = 1 

5 

p11(VA,Wt + κd) = ∑ p1k(VA,Wt)pk1(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] + p12(VA,Wt)p21(Wt,Wt + κd) 

+ p13(VA,Wt)p31(Wt,Wt + κd) + p14(VA,Wt)p41(Wt,Wt + κd) 

+ p15(VA,Wt)p51(Wt,Wt + κd) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] (5.33) 

Subtracting p11(VA,Wt) from equation (5.33) 

p11(VA,Wt + κd) − p11(VA,Wt) =p11(VA,Wt)[1 − p12(Wt,Wt + κd)] − p11(VA,Wt) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd) − 1] 

=p11(VA,Wt)[−p12(Wt,Wt + κd)] 

lim p11(VA,Wt + κd) − p11(VA,Wt) 
=p11(VA,Wt ) lim

 −p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) (5.34) 
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∂Wt 

∂Wt 

 

When i = 1 and j = 2 
 

5 

p12(VA,Wt + κd) = ∑ p1k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p13(VA,Wt)p32(Wt,Wt + κd) + p14(VA,Wt)p42(Wt,Wt + κd) 

+ p15(VA,Wt)p52(Wt,Wt + κd) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.35) 

Subtracting p12(VA,Wt) from equation (5.35) 

p12(VA,Wt + κd) − p12(VA,Wt) =p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) 

[1 − p23(Wt,Wt + κd)] − p12(VA,Wt)] 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) 

∗ −p23(Wt,Wt + κd) 

=p11(VA,Wt) ∗ p12(Wt,Wt + κd) 

lim p12(VA,Wt + κd) − p12(VA,Wt) 
=p11(VA,Wt ) ∗ lim

 p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) (5.36) 

When i = 2 and j = 2 
 

5 

p22(VA,Wt + κd) = ∑ p2k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p12(Wt,Wt + κd) + p22(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p23(VA,Wt)p32(Wt,Wt + κd) + p24(VA,Wt)p42(Wt,Wt + κd) 

p25(VA,Wt)p52(Wt,Wt + κd) 

=p22(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.37) 

Subtracting p22(VA,Wt) from equation (5.37) 

p22(VA,Wt + κd) − p22(VA,Wt) =p22(VA,Wt)[1 − p23(Wt,Wt + κd)] − p22(VA,Wt) 

=p22(VA,Wt) ∗ −p23(Wt,Wt + κd) 

lim p22(VA,Wt + κd) − p22(VA,Wt) 
=p22(VA,Wt ) ∗ − lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) (5.38) 
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∂Wt 

∂Wt 

 

When i = 2 and j = 3 
 

5 

p23(VA,Wt + κd) = ∑ p2k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p13(Wt,Wt + κd) + p22(VA,Wt)p23(Wt,Wt + κd) 

+ p23(VA,Wt)p33(Wt,Wt + κd) + p24(VA,Wt)p43(Wt,Wt + κd) 

+ p25(VA,Wt)p53(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)p33(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.39) 

Subtracting p23(VA,Wt) from equation (5.39) 

p23(VA,Wt + κd) − p23(VA,Wt) =p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt) 

[1 − p34(Wt,Wt + κd)] − p23(VA,Wt) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt) 

[−p34(Wt,Wt + κd)] 

lim p23(VA,Wt + κd) − p23(VA,Wt) 
=p22(VA,Wt ) ∗ lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) (5.40) 

When i = 3 and j = 3 
 

5 

p33(VA,Wt + κd) = ∑ p3k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p31(VA,Wt)p13(Wt,Wt + κd) + p32(VA,Wt)p23(Wt,Wt + κd) 

+ p33(VA,Wt)p33(Wt,Wt + κd) + p34(VA,Wt)p43(Wt,Wt + κd) 

+ p35(VA,Wt)p53(Wt,Wt + κd) 

=p33(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.41) 

Subtracting p33(VA,Wt) from equation (5.41) 

p33(VA,Wt + κd) − p33(VA,Wt) =p33(VA,Wt)[1 − p34(Wt,Wt + κd)] − p33(VA,Wt) 

=p33(VA,Wt)[−p34(Wt,Wt + κd)] 

lim p33(VA,Wt + κd) − p33(VA,Wt) 
=p33(VA,Wt ) ∗ − lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) (5.42) 
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∂Wt 

∂Wt 

 

When i = 3 and j = 4 
 

5 

p34(VA,Wt + κd) = ∑ p3k(VA,Wt)pk4(Wt,Wt + κd) 
k=1 

=p31(VA,Wt)p14(Wt,Wt + κd) + p32(VA,Wt)p24(Wt,Wt + κd) 

+ p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt)p44(Wt,Wt + κd) 

+ p35(VA,Wt)p54(Wt,Wt + κd) 

=p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt)[1 − p45(Wt,Wt + κd)] (5.43) 

Subtracting p34(VA,Wt) from equation (5.43) 

p34(VA,Wt + κd) − p34(VA,Wt) =p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) 

[1 − p45(Wt,Wt + κd)] − p34(VA,Wt) 

=p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) 

[−p45(Wt,Wt + κd)] 

=p33(VA,Wt)p34(Wt,Wt + κd) 

lim p34(VA,Wt + κd) − p34(VA,Wt) 
=p33(VA,Wt ) ∗ lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) (5.44) 

When i = 4 and j = 4 
 

5 

p44(VA,Wt + κd) = ∑ p4k(VA,Wt)pk4(Wt,Wt + κd) 
k=1 

=p41(VA,Wt)p14(Wt,Wt + κd) + p42(VA,Wt)p24(Wt,Wt + κd) 

+ p43(VA,Wt)p34(Wt,Wt + κd) + p44(VA,Wt)p44(Wt,Wt + κd) 

+ p45(VA,Wt)p54(Wt,Wt + κd) 

=p44(VA,Wt)[1 − p45(Wt,Wt + κd)] (5.45) 

Subtracting p44(VA,Wt) from equation (5.45) 

p44(VA,Wt + κd) =p44(VA,Wt)[1 − p45(Wt,Wt + κd)] 

=p44(VA,Wt)[−p45(Wt,Wt + κd)] 

lim p44(VA,Wt + κd) − p44(VA,Wt) 
=p44(VA,Wt ) ∗ − lim

 p45(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p44(VA,Wt) =p44(VA,Wt) ∗ −ℑ45(VA) (5.46) 
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∂Wt 

∂Wt 
11( A, 12( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
12( t) 

0 
A) A, 12( A) 

 

When i = 4 and j = 5 
 

5 

p45(VA,Wt + κd) = ∑ p4k(VA,Wt)pk5(Wt,Wt + κd) 
k=1 

=p41(VA,Wt)p15(Wt,Wt + κd) + p42(VA,Wt)p25(Wt,Wt + κd) 

+ p43(VA,Wt)p35(Wt,Wt + κd) + p44(VA,Wt)p45(Wt,Wt + κd) 

+ p45(VA,Wt)p55(Wt,Wt + κd) 

=p44(VA,Wt)p45(Wt,Wt + κd) + p45(VA,Wt) 

(5.47) 

 

Subtracting p45(VA,Wt) from equation (5.47) 

p45(VA,Wt + κd) − p45(VA,Wt) =p44(VA,Wt)p45(Wt,Wt + κd) + p45(VA,Wt) − p45(VA,Wt) 

=p44(VA,Wt)p45(Wt,Wt + κd) 

lim p45(VA,Wt + κd) − p45(VA,Wt) 
=p44(VA,Wt ) ∗ lim

 p45(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p45(VA,Wt) =p44(VA,Wt) ∗ ℑ45(VA) (5.48) 

This model is build on the assumption that our observations are done within the interval time 

(0, t). We solved individual derivatives to aNain the required transition probabilities. Solving for the 

derivative of equation (5.34) we obtained the transition probability of remaining in healthy state. 

The derivative of equation (5.34) is expressed as: 

 
  ∂   

p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) 
  1 ∂   

p11(VA,Wt) = −ℑ12(VA) 
∂Wt p11(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p11(VA,Wt) =[−ℑ12(VA)t] p11(VA,Wt) = e−ℑ12(VA)t 
(5.49) 

Solving for the derivative of equation (5.36) we obtained the transition probability of transiting from 

healthy state to Stomach cancer state. The derivative of equation (5.36) is expressed as: 

 
  ∂   

p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) 
∂ 

p12(VA,Wt) = e−ℑ12(VA)t ∗ ℑ12(VA) 
∂Wt 

Ú t    ∂ 
p V

 
 

W ∂W 

Ú t 

e−ℑ12(VA)s ∗ ℑ 
 

V ds p 

∂Wt 

V W ℑ V 

Ú t 

e−ℑ12(VA)sds 

 
p12(VA,Wt) = 

"
ℑ12 (VA ) ∗ e−ℑ12(VA)s 

# t
 

p12(VA,Wt ) = 1 − e−ℑ12(VA)t 
(5.50) 

−ℑ12(VA) 
0

 

t) = A) 
0 

11( t = 12( 

0 
A, t = 12( 12( t) = 

0 
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0 

∂Wt 
22( A, 23( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
A, t) 0 A) 23( A, 23( A) 

∂Wt 
33( A, t) = 34( 

0 ∂Wt 
33( A, t) t = 

0 
34( A) 

∂Wt 
A, t) 0 A) 34( A, 34( A) 

∂Wt 
44( A, 45( 

∂Wt 
A, t) 

0 
A) 

 
 

Solving for the derivative of equation (5.38) we obtained the transition probability of remaining in 

stomach cancer state. The derivative of equation (5.38) is expressed as: 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) 

  1 ∂   
p22(VA,Wt) = −ℑ23(VA) 

∂Wt p22(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p22(VA,Wt) =[−ℑ23(VA)t] p22(VA,Wt) = e−ℑ23(VA)t 
(5.51) 

Solving for the derivative of equation (5.40) we obtained the transition probability of moving from 

stomach cancer state to Pharynx cancer state. The derivative of equation (5.40) is expressed as: 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) 

∂   
p23(VA,Wt) = e−ℑ23(VA)t ∗ ℑ23(VA) 

∂Wt ∂Wt 
Ú t    ∂ 

p
 

V   W ∂W 
Ú t 

e−ℑ23(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ23(VA)sds 

 
p23(VA,Wt) = 

"
ℑ23 (VA ) ∗ e−ℑ23(VA)s 

# t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t 

(5.52) 

−ℑ23(VA) 
0

 

Solving for the derivative of equation (5.42) we obtained the transition probability of remaining in 

Pharynx cancer state. The derivative of equation (5.42) is expressed as: 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) 

  1 ∂   
p33(VA,Wt) = −ℑ34(VA) 

∂Wt p33(VA,Wt) ∂Wt 

  ∂ 
ln p V   W − ℑ V 

Ú t    ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p33(VA,Wt) =[−ℑ34(VA)s]t p33(VA,Wt ) = e−ℑ34(VA)t 
(5.53) 

 

Solving for the derivative of equation (5.44) we obtained the transition probability of transiting from 

pharynx state to colon cancer state. The derivative of equation (5.44) is expressed as: 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) 

∂ 
p34(VA,Wt) = e−ℑ34(VA)t ∗ ℑ34(VA) 

∂Wt ∂Wt 
Ú t    ∂ 

p
 

V   W ∂W 
Ú t 

e−ℑ34(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ34(VA)sds 

 
p34(VA,Wt) = 

"
ℑ34 (VA ) ∗ e−ℑ34(VA)s 

# t
 p34(VA,Wt ) = 1 − e−ℑ34(VA)t 

(5.54) 

−ℑ34(VA) 
0

 

Solving for the derivative of equation (5.46) we obtained the transition probability of remaining in 

colon cancer state. The derivative of equation (5.46) is expressed as: 

  ∂   
p44(VA,Wt) =p44(VA,Wt) ∗ −ℑ45(VA) 

  1 ∂   
p44(VA,Wt) = −ℑ45(VA) 

∂Wt p44(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p44(VA,Wt) =[−ℑ45(VA)t] p44(VA,Wt) = e−ℑ45(VA)t 
(5.55) 

t) = A) 
0 

22( t = 23( 

0 
23( t = 23( t) = 

0 

A) 

0 
34( t = 34( t) = 

0 

t) = A) 
0 

44( t = 45( 
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∂Wt 
45( t) 

0 
A) A, 45( A) 

 

 

Solving for the derivative of equation (5.48) we obtained the transition probability of transiting from 

colon cancer state to dead state. The derivative of equation (5.48) is expressed as: 

 
  ∂   

p45(VA,Wt) =p44(VA,Wt) ∗ ℑ45(VA) 
∂ 

p45(VA,Wt) = e−ℑ45(VA)t ∗ ℑ45(VA) 
∂Wt 

Ú t    ∂ 
p V

 
 

W ∂W 

Ú t 

e−ℑ45(VA)s ∗ ℑ 
 

V ds p 

∂Wt 

V W ℑ V 

Ú t 

e−ℑ45(VA)sds 

 
p45(VA,Wt) = 

"
ℑ45 (VA ) ∗ e−ℑ45(VA)s 

# t
 

p45(VA,Wt ) = 1 − e−ℑ45(VA)t 
(5.56) 

−ℑ45(VA) 
0

 

 

In this model state 5 is an absorbing state hence the transition probabilities are defined as: 

p51(VA,Wt) = 0, p52(VA,Wt) = 0, p53(VA,Wt) = 0, p54(VA,Wt) = 0, p55(VA,Wt) = 1 
The transition probability matrix for this model is : 

 

 

 

  

 
e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0 0 0  

0 e−ℑ23(VA)t 1 − e−ℑ23(VA)t 0 0 

0 0 e−ℑ34(VA)t 1 − e−ℑ34(VA)t 0 

0 0 0 e−ℑ45(VA)t 1 − e−ℑ45(VA)t 

0 0 0 0 1 

 

5.6 Six state cancer model 
 

5.6.1 Introduction 

 
In this section six state cancer Markov model which in cooperates Healthy state, Oesophagus cancer 

state, Stomach state ,Lung state, Kidney state and Dead state is derived. A case where patients can 

not move back to any state is considered. This leads to the assumption that a life cannot enter a 

state more than once. The patients who recover are assumed to have been censored from the study. 

 

5.6.2 Six state Oesophagus cancer-Stomach-Lungs-Kidney model 

 
Figure (5.4) represents the six-state model in which we systematically derive the respective Kol- 

mogorov Forward Differential Equation. 

= 

 

 

0 
A, t = 45( 45( t) = 

0 

 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) 
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= 

 
 

 

 

 

Figure 5.4. Oesophagus cancer-Stomach-Lungs-Kidney model 

 

From the figure (5.4)above the transition probability matrix is expressed as: 

  
 

  
 

 

  

  
 

 

Hence the transition probabilities of interest are; a4, b4, c4, d4, e4, f4, g4, h4, k4 and l4. Where a4 

represents transition probability of remaining in healthy state, b4 represents the transition probability 

of moving from Healthy state to Oesophagus cancer state, c4 represents the transition probability 

of remaining in Oesophagus cancer state, d4 represents the transition probability of transiting 

from Oesophagus cancer state to Stomach cancer state, e4 represents the transition probability of 

remaining in Stomach cancer state, f4 is the transition probability of transiting from Stomach cancer 

state to Lung cancer state, g4 represents the transition probability of remaining in Lung cancer 

state, h4 is the transition probability of transiting from Lung cancer state to Kidney cancer state, 

k4 represents the transition probability of remaining in Kidney cancer state and l4 represents the 

transition probability of transiting from Kidney cancer state to Dead state. 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) p16(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) p26(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) p36(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) p46(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) p56(VA,Wt) 

p61(VA,Wt) p62(VA,Wt) p63(VA,Wt) p64(VA,Wt) p65(VA,Wt) p66(VA,Wt) 

 

a4 b4 0 0 0 0 

0 c4 d4 0 0 0 

0 0 e4 f4 0 0 

0 0 0 g4 h4 0 

0 0 0 0 k4 l4 

0 0 0 0 0 1 
 



86 
 

  

= 

 

 
Theorem 5.6.1 (Six state stomach-colon-liver-lung cancer model ). The transition probability 

matrix for this model is: 

  

 

  

  

 
  

 
 

 

 

 

Proof of theorem 5.6.1 

Figure (5.4) represents the Six state Oesophagus-Stomach-Lung-Kidney cancer model. The transition 

intensities and probabilities are derived using Kolmogorov forward equations. Kolmogorov Forward 

Differential equation is expressed as: 
 

n 

pi j(VA,Wt + κd) = ∑ pik(VA,Wt)pk j(Wt,Wt + κd) 
k=1 

 

In this model we consider the following: (i, k, j) = 1, 2, 3, 4, 5, 6 

When i = 1 and j = 1 
 

6 

p11(VA,Wt + κd) = ∑ p1k(VA,Wt)pk1(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)p11(Wt,Wt + κd) + p12(VA,Wt)p21(Wt,Wt + κd)+ 

+ p13(VA,Wt)p31(Wt,Wt + κd) + p14(VA,Wt)p41(Wt,Wt + κd) 

+ p15(VA,Wt)p51(Wt,Wt + κd) + p16(VA,Wt)p61(Wt,Wt + κd) 

=p11(VA,Wt)[1 − p12(Wt,Wt + κd)] (5.57) 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) p16(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) p26(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) p36(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) p46(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) p56(VA,Wt) 

p61(VA,Wt) p62(VA,Wt) p63(VA,Wt) p64(VA,Wt) p65(VA,Wt) p66(VA,Wt) 

 

e−ℑ12(VA)t 

0 

0 

0 

0 

1 − e−ℑ12(VA)t 

e−ℑ23(VA)t 

0 

0 

0 

0 

1 − e−ℑ23(VA)t 

e−ℑ34(VA)t 

0 

0 

0 

0 

1 − e−ℑ34(VA)t 

e−ℑ45(VA)t 

0 

0 

0 

0 

1 − e−ℑ45(VA)t 

e−ℑ56(VA)t 

0 

0 

0 

0 

1 − e−ℑ56(VA)t 

0 0 0 0 0 1 
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∂Wt 

∂Wt 

 

Subtracting p11(VA,Wt) from equation (5.57) 

p11(VA,Wt + κd) − p11(VA,Wt) =p11(VA,Wt)[1 − p12(Wt,Wt + κd)] − p11(VA,Wt) 

=p11(VA,Wt)[−p12(Wt,Wt + κd)] 

lim p11(VA,Wt + κd) − p11(VA,Wt) 
=p11(VA,Wt ) lim

 −p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) (5.58) 

When i = 1 and j = 2 
 

6 

p12(VA,Wt + κd) = ∑ p1k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p13(VA,Wt)p32(Wt,Wt + κd) + p14(VA,Wt)p42(Wt,Wt + κd) 

+ p15(VA,Wt)p52(Wt,Wt + κd) + p16(VA,Wt)p62(Wt,Wt + κd) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.59) 

Subtracting p12(VA,Wt) from equation (5.59) 

p12(VA,Wt + κd) − p12(VA,Wt) =p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) 

[1 − p23(Wt,Wt + κd)] − p12(VA,Wt) 

=p11(VA,Wt)p12(Wt,Wt + κd) + p12(VA,Wt) 

∗ −p23(Wt,Wt + κd) 

=p11(VA,Wt) ∗ p12(Wt,Wt + κd) 

 

 
lim p12(VA,Wt + κd) − p12(VA,Wt) 

=p11(VA,Wt ) ∗ lim
 p12(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

 

 

When i = 2 and j = 2 

  ∂   
p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) (5.60) 

 

6 

p22(VA,Wt + κd) = ∑ p2k(VA,Wt)pk2(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p12(Wt,Wt + κd) + p22(VA,Wt)[1 − p23(Wt,Wt + κd)] 

+ p23(VA,Wt)p32(Wt,Wt + κd) + p24(VA,Wt)p42(Wt,Wt + κd) 

p25(VA,Wt)p52(Wt,Wt + κd) + p26(VA,Wt)p62(Wt,Wt + κd) 

=p22(VA,Wt)[1 − p23(Wt,Wt + κd)] (5.61) 



88 
 

∂Wt 

∂Wt 

 

Subtracting p22(VA,Wt) from equation (5.61) 

p22(VA,Wt + κd) − p22(VA,Wt) =p22(VA,Wt)[1 − p23(Wt,Wt + κd)] − p22(VA,Wt) 

=p22(VA,Wt) ∗ −p23(Wt,Wt + κd) 

lim p22(VA,Wt + κd) − p22(VA,Wt) 
=p22(VA,Wt ) ∗ − lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) (5.62) 

When i = 2 and j = 3 
 

6 

p23(VA,Wt + κd) = ∑ p2k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p21(VA,Wt)p13(Wt,Wt + κd) + p22(VA,Wt)p23(Wt,Wt + κd) 

+ p23(VA,Wt)p33(Wt,Wt + κd) + p24(VA,Wt)p43(Wt,Wt + κd) 

+ p25(VA,Wt)p53(Wt,Wt + κd) + p26(VA,Wt)p63(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)p33(Wt,Wt + κd) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.63) 

Subtracting p23(VA,Wt) from equation (5.63) 

p23(VA,Wt + κd) − p23(VA,Wt) =p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt) 

[1 − p34(Wt,Wt + κd)] − p23(VA,Wt) 

=p22(VA,Wt)p23(Wt,Wt + κd) + p23(VA,Wt) 

[−p34(Wt,Wt + κd)] 

lim p23(VA,Wt + κd) − p23(VA,Wt) 
=p22(VA,Wt ) ∗ lim

 p23(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) (5.64) 

When i = 3 and j = 3 
 

6 

p33(VA,Wt + κd) = ∑ p3k(VA,Wt)pk3(Wt,Wt + κd) 
k=1 

=p31(VA,Wt)p13(Wt,Wt + κd) + p32(VA,Wt)p23(Wt,Wt + κd) 

+ p33(VA,Wt)[1 − p34(Wt,Wt + κd)] + p34(VA,Wt)p43(Wt,Wt + κd) 

+ p35(VA,Wt)p53(Wt,Wt + κd) + p36(VA,Wt)p63(Wt,Wt + κd) 

=p33(VA,Wt)[1 − p34(Wt,Wt + κd)] (5.65) 
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∂Wt 

∂Wt 

 

Subtracting p33(VA,Wt) from equation (5.65) 

p33(VA,Wt + κd) − p33(VA,Wt) =p33(VA,Wt)[1 − p34(Wt,Wt + κd)] − p33(VA,Wt) 

=p33(VA,Wt)[−p34(Wt,Wt + κd)] 

lim p33(VA,Wt + κd) − p33(VA,Wt) 
=p33(VA,Wt ) ∗ − lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) (5.66) 

When i = 3 and j = 4 
 

6 

p34(VA,Wt + κd) = ∑ p3k(VA,Wt)pk4(Wt,Wt + κd) 
k=1 

+ p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt)p44(Wt,Wt + κd) 

+ p35(VA,Wt)p54(Wt,Wt + κd) + p36(VA,Wt)p64(Wt,Wt + κd) 

=p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt)[1 − p45(Wt,Wt + κd)] (5.67) 

Subtracting p34(VA,Wt) from equation (5.67) 

p34(VA,Wt + κd) − p34(VA,Wt) =p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) 

[1 − p45(Wt,Wt + κd)] − p34(VA,Wt) 

=p33(VA,Wt)p34(Wt,Wt + κd) + p34(VA,Wt) 

[−p45(Wt,Wt + κd)] 

=p33(VA,Wt)p34(Wt,Wt + κd) 

lim p34(VA,Wt + κd) − p34(VA,Wt) 
=p33(VA,Wt ) ∗ lim

 p34(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) (5.68) 

When i = 4 and j = 4 
 

6 

p44(VA,Wt + κd) = ∑ p4k(VA,Wt)pk4(Wt,Wt + κd) 
k=1 

=p41(VA,Wt)p14(Wt,Wt + κd) + p42(VA,Wt)p24(Wt,Wt + κd) 

+ p43(VA,Wt)p34(Wt,Wt + κd) + p44(VA,Wt)[1 − p45(Wt,Wt + κd)] 

+ p45(VA,Wt)p54(Wt,Wt + κd) + p46(VA,Wt)p64(Wt,Wt + κd) 

=p44(VA,Wt)[1 − p45(Wt,Wt + κd)] (5.69) 



90 
 

∂Wt 

∂Wt 

 

Subtracting p44(VA,Wt) from equation (5.69) 

p44(VA,Wt + κd) =p44(VA,Wt)[1 − p45(Wt,Wt + κd)] 

=p44(VA,Wt)[−p45(Wt,Wt + κd)] 

lim p44(VA,Wt + κd) − p44(VA,Wt) 
=p44(VA,Wt ) ∗ − lim

 p45(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

 

 

When i = 4 and j = 5 

  ∂   
p44(VA,Wt) =p44(VA,Wt) ∗ −ℑ45(VA) (5.70) 

 

6 

p45(VA,Wt + κd) = ∑ p4k(VA,Wt)pk5(Wt,Wt + κd) 
k=1 

=p41(VA,Wt)p15(Wt,Wt + κd) + p42(VA,Wt)p25(Wt,Wt + κd) 

+ p43(VA,Wt)p35(Wt,Wt + κd) + p44(VA,Wt)p45(Wt,Wt + κd) 

+ p45(VA,Wt)[1 − p56(Wt,Wt + κd)] + p46(VA,Wt)p65(Wt,Wt + κd) 

=p44(VA,Wt)p45(Wt,Wt + κd) + p45(VA,Wt)[1 − p56(Wt,Wt + κd)] (5.71) 

Subtracting p45(VA,Wt) from equation (5.71) 

p45(VA,Wt + κd) − p45(VA,Wt) =p44(VA,Wt)p45(Wt,Wt + κd) + p45(VA,Wt) 

[1 − p56(Wt,Wt + κd)] − p45(VA,Wt) 

=p44(VA,Wt)p45(Wt,Wt + κd) + p45(VA,Wt) 

[−p56(Wt,Wt + κd)] 

=p44(VA,Wt)p45(Wt,Wt + κd) 

lim p45(VA,Wt + κd) − p45(VA,Wt) 
=p44(VA,Wt ) ∗ lim

 p45(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p45(VA,Wt) =p44(VA,Wt) ∗ ℑ45(VA) (5.72) 

When i = 5 and j = 5 
 

6 

p55(VA,Wt + κd) = ∑ p5k(VA,Wt)pk5(Wt,Wt + κd) 
k=1 

=p51(VA,Wt)p15(Wt,Wt + κd) + p52(VA,Wt)p25(Wt,Wt + κd) 

+ p53(VA,Wt)p35(Wt,Wt + κd) + p54(VA,Wt)p45(Wt,Wt + κd) 

+ p55(VA,Wt)[1 − p56(Wt,Wt + κd)] + p56(VA,Wt)p65(Wt,Wt + κd) 

=p55(VA,Wt)[1 − p56(Wt,Wt + κd)] (5.73) 
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∂Wt 

∂Wt 

∂Wt 
11( A, 12( 

∂Wt 
A, t) 

0 
A) 

 

Subtracting p55(VA,Wt) from equation (5.73) 

p55(VA,Wt + κd) =p55(VA,Wt)[1 − p56(Wt,Wt + κd)] − p55(VA,Wt) 

=p55(VA,Wt)[−p56(Wt,Wt + κd)] 

lim p55(VA,Wt + κd) − p55(VA,Wt) 
=p55(VA,Wt ) ∗ − lim

 p56(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p55(VA,Wt) =p55(VA,Wt) ∗ −ℑ56(VA) (5.74) 

When i = 5 and j = 6 
 

6 

p56(VA,Wt + κd) = ∑ p5k(VA,Wt)pk6(Wt,Wt + κd) 
k=1 

=p51(VA,Wt)p16(Wt,Wt + κd) + p52(VA,Wt)p26(Wt,Wt + κd) 

+ p53(VA,Wt)p36(Wt,Wt + κd) + p54(VA,Wt)p46(Wt,Wt + κd) 

+ p55(VA,Wt)p56(Wt,Wt + κd) + p56(VA,Wt)p66(Wt,Wt + κd) 

=p55(VA,Wt)p56(Wt,Wt + κd) + p56(VA,Wt) (5.75) 

Subtracting p56(VA,Wt) from equation (5.75) 

p56(VA,Wt + κd) − p56(VA,Wt) =p55(VA,Wt)p56(Wt,Wt + κd) + p56(VA,Wt) − p56(VA,Wt) 

=p55(VA,Wt)p56(Wt,Wt + κd) 

lim p56(VA,Wt + κd) − p56(VA,Wt) 
=p55(VA,Wt ) ∗ lim

 p56(Wt,Wt + κd) 

κd →0 κd κd →0 κd 

  ∂   
p56(VA,Wt) =p55(VA,Wt) ∗ ℑ56(VA) (5.76) 

 
This model is build on the assumption that our observations are done within the interval time (0, t). 

We solved individual derivatives to aNain the required transition probabilities. 

Solving for the derivative of equation (5.58) we obtained the transition probability of moving or 

remaining in healthy state. The derivative of equation (5.58) is expressed as: 

  ∂   
p11(VA,Wt) =p11(VA,Wt) ∗ −ℑ12(VA) 

  1 ∂   
p11(VA,Wt) = −ℑ12(VA) 

∂Wt p11(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p11(VA,Wt) =[−ℑ12(VA)t] p11(VA,Wt) = e−ℑ12(VA)t 
(5.77) 

t) = A) 
0 

11( t = 12( 
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∂Wt 
12( t) 

0 
A) A, 12( A) 

∂Wt 
22( A, 23( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
A, t) 0 A) 23( A, 23( A) 

∂Wt 
33( A, 34( 

∂Wt 
A, t) 

0 
A) 

 

 

Solving for the derivative of equation (5.60) we obtained the transition probability of transiting from 

healthy state to oesophagus cancer state. The derivative of equation (5.60) is expressed as: 

 
  ∂   

p12(VA,Wt) =p11(VA,Wt) ∗ ℑ12(VA) 
∂ 

p12(VA,Wt) = e−ℑ12(VA)t ∗ ℑ12(VA) 
∂Wt 

Ú t    ∂ 
p V

 
 

W ∂W 

Ú t 

e−ℑ12(VA)s ∗ ℑ 
 

V ds p 

∂Wt 

V W ℑ V 

Ú t 

e−ℑ12(VA)sds 

 
p12(VA,Wt) = 

"
ℑ12 (VA ) ∗ e−ℑ12(VA)s 

# t
 

p12(VA,Wt ) = 1 − e−ℑ12(VA)t 
(5.78) 

−ℑ12(VA) 
0

 

 

Solving for the derivative of equation (5.62) we obtained the transition probability of remaining in 

oesophagus cancer state. The derivative of equation (5.62) is expressed as: 

  ∂   
p22(VA,Wt) =p22(VA,Wt) ∗ −ℑ23(VA) 

  1 ∂   
p22(VA,Wt) = −ℑ23(VA) 

∂Wt p22(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p22(VA,Wt) =[−ℑ23(VA)t] p22(VA,Wt) = e−ℑ23(VA)t 
(5.79) 

Solving for the derivative of equation (5.64) we obtained the transition probability of transiting from 

oesophagus cancer state to stomach cancer state. The derivative of equation (5.64) is expressed as: 

 
  ∂   

p23(VA,Wt) =p22(VA,Wt) ∗ ℑ23(VA) 
∂ 

p23(VA,Wt) = e−ℑ23(VA)t ∗ ℑ23(VA) 
∂Wt ∂Wt 

Ú t    ∂ 
p
 

V   W ∂W 
Ú t 

e−ℑ23(VA)s ∗ ℑ V ds p V W ℑ V 

Ú t 

e−ℑ23(VA)sds 

 
p23(VA,Wt) = 

"
ℑ23 (VA ) ∗ e−ℑ23(VA)s 

# t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t 

(5.80) 

−ℑ23(VA) 
0

 

 

Solving for the derivative of equation (5.66) we obtained the transition probability of remaining in 

stomach cancer state. The derivative of equation (5.66) is expressed as: 

  ∂   
p33(VA,Wt) =p33(VA,Wt) ∗ −ℑ34(VA) 

  1 ∂   
p33(VA,Wt) = −ℑ34(VA) 

∂Wt p33(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p33(VA,Wt) =[−ℑ34(VA)t] p33(VA,Wt) = e−ℑ34(VA)t 
(5.81) 

Solving for the derivative of equation (5.68) we obtained the transition probability of transiting from 

stomach cancer state to lung cancer state. The derivative of equation (5.68) is expressed as: 

0 
A, t = 12( 12( t) = 

0 

t) = A) 
0 

22( t = 23( 

0 
23( t = 23( t) = 

0 

t) = A) 
0 

33( t = 34( 
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∂Wt 
34( t) 

0 
A) 34( A, 34( A) 

∂Wt 
44( A, 45( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
45( t) 

0 
A) 45( A, 45( A) 

∂Wt 
55( A, 56( 

∂Wt 
A, t) 

0 
A) 

∂Wt 
56( t) 

0 
A) 56( A, 56( A) 

 
 
 

  ∂   
p34(VA,Wt) =p33(VA,Wt) ∗ ℑ34(VA) 

∂ 
p34(VA,Wt) = e−ℑ34(VA)t ∗ ℑ34(VA) 

∂Wt 
Ú t    ∂ 

p V
 
 

W ∂W 

Ú t 

e−ℑ34(VA)s ∗ ℑ 

∂Wt 

V ds p V W ℑ V 

Ú t 

e−ℑ34(VA)sds 

 
p34(VA,Wt) = 

"
ℑ34 (VA ) ∗ e−ℑ34(VA)s 

# t
 

p34(VA,Wt ) = 1 − e−ℑ34(VA)t 
(5.82) 

−ℑ34(VA) 
0

 

Solving for the derivative of equation (5.70) we obtained the transition probability of remaining in 

lung cancer state. The derivative of equation (5.70) is expressed as: 

  ∂   
p44(VA,Wt) =p44(VA,Wt) ∗ −ℑ45(VA) 

  1 ∂   
p44(VA,Wt) = −ℑ45(VA) 

∂Wt p44(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p44(VA,Wt) =[−ℑ45(VA)t] p44(VA,Wt) = e−ℑ45(VA)t 
(5.83) 

Solving for the derivative of equation (5.72) we obtained the transition probability of transiting from 

lung cancer state to kidney cancer state. The derivative of equation (5.72) is expressed as: 

  ∂   
p45(VA,Wt) =p44(VA,Wt) ∗ ℑ45(VA) 

∂ 
p45(VA,Wt) = e−ℑ45(VA)t ∗ ℑ45(VA) 

∂Wt 
Ú t    ∂ 

p V
 
 

W ∂W 

Ú t 

e−ℑ45(VA)s ∗ ℑ 

∂Wt 

V ds p V W ℑ V 

Ú t 

e−ℑ45(VA)sds 

 
p45(VA,Wt) = 

"
ℑ45 (VA ) ∗ e−ℑ45(VA)s 

# t
 

p45(VA,Wt ) = 1 − e−ℑ45(VA)t 
(5.84) 

−ℑ45(VA) 
0

 

Solving for the derivative of equation (5.74) we obtained the transition probability of remaining in 

kidney cancer state. The derivative of equation (5.74) is expressed as: 

  ∂   
p55(VA,Wt) =p55(VA,Wt) ∗ −ℑ56(VA) 

  1 ∂   
p55(VA,Wt) = −ℑ56(VA) 

∂Wt p55(VA,Wt) ∂Wt 

  ∂ 
ln p V W — ℑ V 

Ú t   ∂ 
ln p V   W ∂W 

Ú t 

−ℑ V ds 

ln p55(VA,Wt) =[−ℑ56(VA)t] p55(VA,Wt) = e−ℑ56(VA)t 
(5.85) 

Solving for the derivative of equation (5.76) we obtained the transition probability of transiting from 

kidney cancer state to dead state. The derivative of equation (5.76) is expressed as: 

  ∂   
p56(VA,Wt) =p55(VA,Wt) ∗ ℑ56(VA) 

∂ 
p56(VA,Wt) = e−ℑ56(VA)t ∗ ℑ56(VA) 

∂Wt 
Ú t    ∂ 

p V
 
 

W ∂W 

Ú t 

e−ℑ56(VA)s ∗ ℑ 

∂Wt 

V ds p V W ℑ V 

Ú t 

e−ℑ56(VA)sds 

 
p56(VA,Wt) = 

"
ℑ56 (VA ) ∗ e−ℑ56(VA)s 

# t
 

p56(VA,Wt ) = 1 − e−ℑ56(VA)t 
(5.86) 

−ℑ56(VA) 
0

 

0 
A, t = 34( t) = 

0 

t) = A) 
0 

44( t = 45( 

0 
A, t = 45( t) = 

0 

t) = A) 
0 

55( t = 56( 

0 
A, t = 56( t) = 

0 
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= 

 
 

In this model state 6 is an absorbing state hence the transition probabilities are defined as: 

p61(VA,Wt) = 0, p62(VA,Wt) = 0, p63(VA,Wt) = 0, p64(VA,Wt) = 0, p65(VA,Wt) = 0, p66(VA,Wt) = 1 
The transition probability matrix for this model is : 

 

 
 

  

  

 
  

 
 

 

 
 

5.7 Estimating transition and transition intensities 
 

5.7.1 Introduction 

 
Transition probability is the probabilities associated with various state changes and transition 

intensity is the the rate of change between states. Transition probabilities are derived from transition 

intensities or vice versa transition intensities can be derived from transition probabilities using 

Chapman Kolmogorov equations. This research considered estimation of transition probabilities 

and consequently estimating transition intensities. Product limit model was modified to estimate 

transition probabilities and the transition probabilities are used to calculate the transition intensities. 

Product limit model is based on the assumption that individuals under investigation transit at the 

same time hence only a single estimate is obtained. 

 

5.7.2 Modified-product limit model 

 
The product limit estimator is considered as the estimator of the survival function of lifetime data. 

Product limit is often considered in medical research in measuring the fraction of patients in a 

particular state for a certain amount of time after treatment. Product limit estimators can be 

considered in measuring the length of time people remain in a particular state after occurrence of a 

certain event. Product limit estimate is used to estimate survival estimate. Survival probabilities can 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) p16(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) p26(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) p36(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) p46(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) p56(VA,Wt) 

p61(VA,Wt) p62(VA,Wt) p63(VA,Wt) p64(VA,Wt) p65(VA,Wt) p66(VA,Wt) 

 

e−ℑ12(VA)t 

0 

0 

0 

0 

1 − e−ℑ12(VA)t 

e−ℑ23(VA)t 

0 

0 

0 

0 

1 − e−ℑ23(VA)t 

e−ℑ34(VA)t 

0 

0 

0 

0 

1 − e−ℑ34(VA)t 

e−ℑ45(VA)t 

0 

0 

0 

0 

1 − e−ℑ45(VA)t 

e−ℑ56(VA)t 

0 

0 

0 

0 

1 − e−ℑ56(VA)t 0 

0 0 0 0 0 1 
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y 

 
 

also be estimated as:  

Sx(t) =t px = e−µt (5.87) 

 

The probability of remaining in one state from the Markov models is defined as: 

 

pss(VA,Wt ) = e−ℑsn(VA)t 
(5.88) 

Let µ = ℑsn hence combining equation (5.87) and equation (5.88) it becomes: 

Sx(t) = e−ℑsn(VA)t 
(5.89) 

Equation (5.89) can be estimated using Kaplan-Meier estimate. 

Definition 5.7.1 (Modified Kaplan-Meier estimate). Modified Kaplan-Meier estimate is expressed 

as: 
 

Ŝ(t) = ∏ (1 ρ̂y) ( 5 .9 0 )  
t j<t 

 

where: 

S (̂t) represents the probability of remaining in a particular state. 

ρ̂y is the hazard function which represents the number of affected cancer patients compared to the 

individuals under investigation. 

 

Product limit estimate can be expressed in terms of transition probabilities as : 

 

p̂ss(VA,Wt) = ∏ (1 ρ̂y) (5.91) 
t j<t 

 

This research is based on the assumption that there is the risk under investigation occurs at one 

period hence equation (5.90) is modified to become: 

 

Ŝ(t) = (1 − ρ̂y) (5.92) 

Combining equation (5.91) and equation (5.92) 

 
p̂ss(VA,Wt) = (1 − ρ̂y) (5.93) 

 

where: 

1 − ρ̂y = ny−
n 

my , ny represents the number of people at risk, 

my is the number of individual affected by the risk under investigation. 
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ny 

ny 

 

Estimation of transition probabilities and transition intensities of Three stomach cancer 

model 

 
The transition probabilities of interest in the three state stomach cancer model are expressed as: 

 

p11(VA,Wt ) =e−ℑ12(VA)t
 p12(VA,Wt ) = 1 − e−ℑ12(VA)t

 (5.94) 

p22(VA,Wt ) =e−ℑ23(VA)t
 

Equation (5.94) can be further be expressed as: 

p23(VA,Wt ) = 1 − e−ℑ23(VA)t
 (5.95) 

 

p11(VA,Wt) =(1 − ρ̂y) = 
ny − my 

p12(VA,Wt) =1 − (1 − ρ̂y)  = 1 − 
ny − my

 

The same methodology applied in equations (5.96) and (5.97) can be used for equation (5.95). 

 
(5.96) 

 
(5.97) 

 

 

Estimation of transition probabilities and transition intensities of Four state breast-colon 

cancer model 

 
The transition probabilities of interest in the four state stomach cancer model are expressed as: 

 

p11(VA,Wt ) = e−ℑ12(VA)t
 p12(VA,Wt ) = 1 − e−ℑ12(VA)t

 (5.98) 

p22(VA,Wt ) = e−ℑ23(VA)t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t

 (5.99) 

p33(VA,Wt ) = e−ℑ34(VA)t
 p34(VA,Wt ) = 1 − e−ℑ34(VA)t

 (5.100) 

Equations (5.98), (5.99) and (5.100) can be further expressed as shown in equation (5.96) and (5.97). 

 

 
Estimation of transition probabilities and transition intensities of Five state lung-stomach- 

colon cancer model 

 
The transition probabilities of interest in the five state stomach cancer model are expressed as: 

 

p11(VA,Wt ) = e−ℑ12(VA)t
 p12(VA,Wt ) = 1 − e−ℑ12(VA)t

 (5.101) 

p22(VA,Wt ) = e−ℑ23(VA)t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t

 (5.102) 

p33(VA,Wt ) = e−ℑ34(VA)t
 p34(VA,Wt ) = 1 − e−ℑ34(VA)t

 (5.103) 

p44(VA,Wt ) = e−ℑ45(VA)t
 p45(VA,Wt ) = 1 − e−ℑ45(VA)t

 (5.104) 

Equations (5.101), (5.102) , (5.103)and (5.104) can further be expressed as shown in equation (5.96) 

and (5.97). 
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Estimation of transition probabilities and transition intensities of Six state stomach-colon- 

liver-lung cancer model 

 
The transition probabilities of interest in the six state stomach cancer model are expressed as: 

 

p11(VA,Wt ) = e−ℑ12(VA)t
 p12(VA,Wt ) = 1 − e−ℑ12(VA)t

 (5.105) 

p22(VA,Wt ) = e−ℑ23(VA)t
 p23(VA,Wt ) = 1 − e−ℑ23(VA)t

 (5.106) 

p33(VA,Wt ) = e−ℑ34(VA)t
 p34(VA,Wt ) = 1 − e−ℑ34(VA)t

 (5.107) 

p44(VA,Wt ) = e−ℑ45(VA)t
 p45(VA,Wt ) = 1 − e−ℑ45(VA)t

 (5.108) 

p55(VA,Wt ) = e−ℑ56(VA)t
 p56(VA,Wt ) = 1 − e−ℑ56(VA)t

 (5.109) 

Equations (5.105), (5.106), (5.107), (5.108) and (5.109) can further be expressed as shown in equation 

(5.96) and (5.97). 

 
5.8 Applicability in Discrete phase type distributions 

Discrete phase type distributions are build on a Markov chain where one state is an absorbing state 

while the other state are transient. The matrices derived in this chapter should satisfy that condition 

for them to be applicable in phase type distributions. For three state model the multi state model 

obtained is: 
 

e−ℑ12(VA)t 1 − e−ℑ12(VA)t 0 
 

  
Z y 

 
0 e−ℑ23(VA)t 

 
0 0 

1 − e−ℑ23(VA)t 

1 
 
=  0 1  

This is the representation required for discrete phase type distribution which represents distribution 

of the time to absorption of a Markov chain. 

 
5.9 Chapter summary 

 
The main objective of this chapter was to develop multi-state models of secondary cancer cases to 

be applied as the matrix parameters of the phase type models. Multi-state models of four selected 

secondary cancer cases are developed for: Leukemia cancer model, Liver cancer-Colon model, 

Stomach cancer-Pharynx-Colon model and Oesophagus cancer-Stomach-Lung-Kidney model. The 

transition intensities and stationary probabilities for each model are developed. 



98 
 

 

α α 
α 

 
 
 
 

 

6 SEVERITY DISTRIBUTIONS 

 
6.1 Introduction 

 
Severity distributions are applied in modeling of claim amounts. Continuous distributions and 

discrete distribution are considered in this research. Severity probabilities are applied in Panjer 

recursive model and Discrete Fourier in order to estimate aggregate loss probabilities. Continuous 

distribution that are considered are: 

 

(i) Weibull distribution 

(ii) Generalized Pareto distribution 

(iii) Pareto distribution 

 

Discrete distributions considered in this research are: 

 

i One parameter Poisson Lindley distribution 

ii Two parameter Poisson Lindley distribution 

 

6.2 Continuous distributions 

 
Continuous distribution are discretized in order to be applied in Panjer recursive formula and Discrete 

Fourier Transform which requires only discrete distributions. Method of rounding is to discretized 

the continuous distributions. 

 
6.2.1 Weibull distribution 

 
A continuous random variable is said to follow Weibull distribution if its pdf is given by: 

 

β (  x )β −1e−(
 x )β 

; x > 0; α, β > 0 

0 otherwise 

 
where α and β are the parameters. 

f (x) = 
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0 

β 

( ) = ( ) 
α 

(
α 

) α 

1 − e α 

r =E[X x x α 

α 
β 

α α 

r β 

2 β 

α 

y µ1 =

Ú 

αry  e−ydy = αr 

Ú 

y e− dy 

 

Cumulative distribution function 

 
The cumulative distribution of Weibull distribution can be derived from its probability density 

function. 

F x p x ≤ x 

Ú x 

f

 

 

 

x dx 

Ú x β
 

 

 

x β −1e−( x )β 
dx 

Let (  x )β = y hence β (  x )β −1dx = dy 
α α α 

 
Ú ( x )β  (  x )β 

 
 
 

x β 

 

 
Therefore: 

F(x) = 
0 

e−ydy = − e−y 0
α
 = − e−(α ) − 1 

 
−(  x )β

 

0 otherwise 

Mean and Variance of Weibull distribution 

 
The rth moment about the origin are: 

 
µ1 r 

Ú ∞ 
r
 

 

 

Ú ∞ 
r β

 
 x 

 β −1 

   

 
−( x )β 

Let x
 β 

= y , x = αy 
1  

and β x
 β −1

dx = dy 

 
But Γn = 

Ú ∞ 
e−xxn−1dx 

∞ r 

r 
β 

0 

∞  r 

β 

0 

Therefore: 

µ1 = αrΓ

  

1 +
 r

 

(6.1) 

 

When r = 1 we get the expectation of Weibull distribution hence it is expressed as: 

E(x) = αΓ

   

1 + 
1
 

(6.2) 

 

When r = 2 we get E(x2) which is expressed as: 

µ1 = α2Γ

 

1 + 
2

 

(6.3) 

α α 0 0 

0 0 
) = ( = 

F (x) = 
; x > 0 

] = f (x)dx = e dx 



100 
 

N 

— 
N

 

β 

β 

β 

2 1 β β 

β β 

∗ Γ 1 + =
 β  

[Γ(1 + 1 )]2 

N 

β 

 

 

Variance of Weibull distribution can be calculated using equation (6.2) and equation (6.3). The 

variance is expressed as: 

Var(x) =µ1 − [µ1]2 = α2Γ

 

1 + 
2 

 

− α2

h
Γ

 

1 + 
1 

 i 2
 

=α2

(

Γ

   

1 + 
2  

   

− Γ
h  

1 + 
1  

  i 2
)  

(6.4) 

Estimation of parameters using Method of Moments 
 
 

Expectation is calculated using the formula: 
 

E 
1 N 

(x) = ∑ xi 
i=1 

 

Variance is calculated using the formula that: 

 
Var(x) = 

1 
x2 

 
1 N 

x
 

 

 

Combining equation (6.2) and (6.4) results to: 

∑ 
i=1 

i ∑ i 

i=1 

Var(x) = α2Γ

 

1 + 
2 

 

− [E(x)]2 (6.5) 

 

Equation (6.2) can be rearranged as:  
α = 

E(x) 

Γ(1 + 1 ) 
 

Hence equation (6.5) becomes: 

 
[E(x)]2 2 

 
 

 

 
Var(x) − [E(x)]2 

 

 

Γ(1 + 2 ) 
 

 

6.2.2 Generalized Pareto distribution 

 
Generalized Pareto distribution is constructed by mixing Gamma distribution and Gamma distribu- 

tion. Let the conditional Gamma distribution be expressed as: 

[E(x)]2 [Γ(1 + 1 )]2 

N 

2 Var(x) = 
β 

— [E(x)] 
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α−1 −βx 

− 

( ) = | ) ( ) 
Γ(α) 

∗ 
Γ(γ) 

 
 
 

 
 

 
and the Gamma distribution as: 

 
f (x|β 

βα 

) = 
Γα 

x e (6.6) 

 
g(β 

λγ 

) = 
Γ(γ) 

βγ−1e−βλ 
(6.7) 

Mixing the distribution in equation (6.6) and distribution in equation (6.7) results to: 

f x 

Ú ∞ 

f 

 
x β g β dβ xα−1 

Ú ∞
 βα  

e−βx λγ 

βγ−1e−βλ dβ 

 
 

 

Hence: 

 
 

 
Let 

 

 
f (x 

 
xα−1λγ 

) = 
Γ(γ)Γ(α) 

 
∞ 

e−β (x+λ )βα+γ+1 dβ (6.8) 

0 

 
y 

 
The derivative if β is: 

y = β (x + λ ) β = 
x + λ

 

dβ =  
dy 

x + λ 

Replacing the derivative of β in equation (6.8) results to: 
 

f x 
xα−1λγ   Ú ∞ 

 
 

yα+γ−1 
e−y   dy   xα−1λγ Γ(α + γ) 

 
 

 
Hence: 

( ) =
Γ(γ)Γ(α)  0 

 

(x + λ )α+γ−1 

 

 f 

x + λ 
= 

Γ(γ)Γα(x + λ )α+γ 

 
xα−1 

(x) = 
β (α, γ)(x + λ )α+γ dx (6.9) 

 
Mean and Variance of Generalized Pareto 

 
 

The first moment of Generalized Pareto distribution is expressed as: 
 

E(x) = 
  γλ  

 

α − 1 

The second moment of Generalized Pareto distribution is expressed as: 

 
 

(6.10) 

 

 

Var(x 
γλ 2(γ + α 1) 

) = 
(α − 1)2(α − 2) 

 

(6.11) 

Ú 

0 
( = 

0 
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h  i  −1d(x − f ) 

− 

id(x − f ) 

− 

1 

 

Estimation of parameters using Method of Moments 

 
Generalized Pareto distribution can also be expressed as; 

 

f (x) = 
1 

1 d 
e e 

assuming that X = e(1 − exp(−dY ))/d. 

 

and a is the shape parameter, b is the scale parameter and c is the location parameter. The moment 

estimators of Generalized Pareto distribution is expressed as: 
 

E(x) = f 
   e  

+ 
1 + d 

Var(x) = 
e2 

(1 + d)2(1 + 2d) 
Skew(x) = 

2(1 − d)(1 + 2d)0.5 
 

1 + 3d 

The value of d can be calculated from the skewness formula,hence e and f can be estimated as 

follows: 

e =S.D(1 + d)(1 + 2d)0.5 f = x̄  
e 

 

e + d 
 

The cumulative distribution function is expressed as: 
 

FX = 1 − 
1 

1 − 
e
 

 
 

6.2.3 Pareto distribution 

 
Pareto distribution is constructed by mixing Gamma distribution and exponential distribution. The 

exponential distribution is expressed as: 

 

f (x|θ ) =θe−θx x > 0, θ > 0 (6.12) 

The gamma distribution is expressed as: 
 

g(θ 
βα 

) = 
Γ(α) 

e−βθ θα−1 
(6.13) 

The Pareto distribution is derived as by mixing equation (6.12) and equation (6.13). 
 

f x 

Ú ∞ 

θe−θxg θ dθ 
Ú ∞ 

θe−θx βα 

e−βθ θα−1dθ 
 

 

βα Γα 
 

 ( ) = ( ) 
0 

 
Hence : 

=  
0 Γ(α) 

 

f 
αβα

 
 

 

= 
Γ(α − 1) (x + β )α 

(x) = 
(x + β )α+1 (6.14) 

h  
d 
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β + x 

2β 

 

Mean and Variance of Pareto distribution 

 
The first and second of Pareto distribution is expressed respectively as: 

 

E 
β  αβ 2 

 

(x) = 
α − 1 

α > 1 Var(x) = 
(α − 1)2(α − 2) 

α > 2 (6.15) 

The kth moment of and cdf of Pareto distribution and is expressed respectively as: 
 

E[xk 
βkk! 

(α − 1)...(α − k) 

 

F(x) = 1 −
   β α 

(6.16) 

 
 

Estimation of parameters using Method of moments 

 
Estimation of values of α and β using method of moments. The value of α is estimated as follows: 

 

   β  
E(x) = 

α − 1 
α > 1 and E(x 

2β 2 

(α − 1)(α − 2) 
 

β can be estimated by using these two expressions. 
 

2 
E 2 2 

  

    (x ) 
=

 (α−1)(α−2) 
=

 2β (α − 1) 
(α − 1) = 

2(α − 1) 
 

 

(6.17) 

[E(x)]2 β 2 

(α−1)2 

(α − 1)(α − 2) β 2 (α − 2) 

 

6.3 Discretization of claim severity 

 
Claim amount distribution should be a scale distribution. A scale distribution is a distribution that if 

a random variable from that distribution is multiplied by a positive constant the resulting distribution 

belonging to the same family of distribution of the original random variable. Distributions which 

satisfy the condition of scale distribution are Pareto distribution,Weibull distribution Exponential 

distribution among others. Calculation of aggregate loss distribution using Panjer recursive model 

and Discrete Fourier Transform requires a discrete distribution hence method of rounding, also 

known as method of mass dispersal is used in discretizing the continuous distributions. 

 

6.3.1 Method of rounding or method of mass dispersal 

 
This method is used to convert the severity distribution to an equispaced arithmetic distribution. 

Severity distribution are usually mostly continuous distributions. A span which fit the data according 

to how large the data is chosen for discretization. This method hugely relies on the probability 

one-half span on either side of jh and places it at jh.The following formulas are used to discretize 

2 

] = 

) = 2 
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2 

x+3 , , , ... 

r 

2 2 

— 
2 

≤ 
2 2 2 

r = ( | ( ) ∑ 
x=r 

θ + 1 
(
 

+ ) 

r = ∑ 
x=0 

θ + 1 
(
 

+ ) 

 
 

the continuous severity. 

The initial probability is calculated using the formula: 

f0 =pr

  
j < 

h
 

= Fj

 
h 
 

 
 

The subsequent probabilities are calculated using the formula: 

fx =pr

  
xh 

h 
j ≤ xh + 

h
 

= Fj

 
xh + 

h
 

− Fj

 
xh − 

h
  

x = 1, 2, 3, ... 
 

The discretazation process is halved at some point when most of the probability has been accounted 

for. The process is halved when all the fx adds up to 1 to ensure that the discretization process leads 

to a probability density function. At this point it is expressed as : 

fm = 1 − FJ

 
mh − 

h 
 

 

6.4 Discrete distributions 

 
Discrete distributions can be directly applied in Panjer recursive model hence there is no need for 

discretization. 

 
6.4.1 One parameter Poisson Lindley distribution 

 
The probability mass function of one parameter Poison Lindley is expressed as: 

 

f (x) = 
θ 2(x + θ + 2) 

x = 0 1 2 (6.18) 

(θ + 1) 

 

Mean and variance of one parameter Poisson Lindley distribution 

 
The rth factorial moments about the origin is expressed as: 

µ1 = E[E(X r/λ )] 

where Xr = X (X − 1)(X − 2)(X − 3)...(X − k + 1) 

µ1 

Ú ∞ 

p x λ 

 
f λ ; θ dλ 

Ú ∞ 
"

λr  
∞

 

e−λ λx−r 
#  

θ 2 
 

 

 
1 λ e−θλ dλ 

 

Let x + k replace x hence: 

 
µ1 

Ú ∞ 

λr

"  ∞ 
e−λ λx  

#  
θ 2 

 

 

 
 

1 λ e−θλ dλ (6.19) 
x! 

0 
) = 

0 (x − r)! 

0 
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x=0 

1 = 

N 

r = θ + 1 
(
 

+ ) = , , 

= ∑ 
i=1 

= 
2X̄ 

( ) = 
Γ(x + 1) αθ + 1 

(
 

) = 
(θ + 1)x+2 

+ 
αθ + 1 

r = 
λ 

r = ∑ 
x=0 Γ(x + 1) αθ + 1 

(
 

+ ) 

1 = ∑ 
x=0 Γ(x + 1) αθ + 1 

(
 

+ ) = 
θ (αθ + 1) 

 

where ∑∞ 

becomes: 

e−λ λx 

x! is the pdf of Poisson distribution hence it is equal to 1, hence equation (6.19) 

µ1 
Ú ∞ 

λr θ 2 

 
1 λ e−θλ dλ 

r!(θ + r + 1) 
 

r 1 2 3 
 

(6.20) 

 

when r = 1 equation (6.20) is the expectation of one parameter Poisson Lindley distribution which is 

expressed as: 
 

µ′ 1!(θ + r + 1) 

θr(θ + 1) 

   θ + 2  

= 
θ (θ + 1) 

 

(6.21) 

The variance of one parameter Poisson Lindley distribution is expressed as: 
 

µ2
′ = 

2!(θ + r + 1)    θ + 2 2(θ + 3)  = + 
 

(6.22) 

θr(θ + 1) θ (θ + 1) θ 2(θ + 1) 

 

Estimation of parameter of using method of moments 

 
θ can be estimated using method of moments as : 

X¯ 1 N 

x θ  ̂ −(X  ̄− 1) + 
ã

(X  ̄− 1)2 + 8X  ̄

 
 

 

6.4.2 Two parameter Poisson Lindley 

 
Two Poisson Lindley distribution is expressed as: 

 

f x 

Ú ∞
 

e−λ λx θ 2 

α
 

x e−θλ dλ 
θ 2 h

1
   α + x i  

θ
 
 

0; αθ 

 
1 (6.24) 

 

The rth moments about the origin of two- parameter Poisson Lindley distribution is expressed as: 

µ′ E
h

E
 Xr  i  

(6.25) 

 

Combining equation (6.24) and equation (6.25) it becomes: 

µ′ 
Ú ∞ 

"  ∞ 

xr e−λ λx 
#  

θ 2
  

α x e−θλ dλ (6.26) 

 

when r = 1 we can evaluate mean of two parameter Poisson Lindley distribution: 

µ′ 
Ú ∞ 

"  ∞ 

x 
e−λ λx 

#  
θ 2

  
α x e−θλ dλ 

   αθ + 2  
 

(6.27) 

0 
= 

θr(θ + 1) 
, ... 

i (6.23) 

0 
+ > > − 

0 

0 
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¯ 

2 = ∑ 
x=0 Γ(x + 1) αθ + 1 

(
 

+ ) = 
θ (αθ + 1) 

+ 
θ 2(αθ + 1) 

 

when r = 2 we can evaluate variance of two parameter Poisson Lindley distribution: 

µ′ 
Ú ∞ 

"  ∞ 

x2 e−λ λx 
#  

θ 2
  

α x e−θλ dλ 

 

   αθ + 2  

 

 2(αθ + 3)  
 

(6.28) 

 

 
 

Parameter estimation using method of moments 

 
Combining equation (6.27) and equation (6.28) it becomes: 

 

µ2
′ − µ1

′
 

[µ1
′ ]2 

2(αθ + 3)(αθ + 1) 

= 
(αθ + 2)2 

µ2
′ − µ1

′
 

[µ1
′ ]2 

2(b + 3)(b + 1) 

= 
(b + 2)2 

 
(6.29) 

µ2
′ −µ1

′
 

[µ1
′ ]2 

 

be k , hence equation (6.29) becomes; 

 

k = 
2(b + 3)(b + 1) 

(b + 2)2 

0 =(2 − k)b2 + (8 − 4k)b + (6 − 4k) (6.30) 
 

The value of k can be calculated hence equation (6.30) can be solved. Substituting b = αθ in equation 

(6.27) becomes; 
 

X  ̄ =
 b + 2  

θ (b + 1) 

 

(6.31) 

 

and thus: 

 
 

 
The estimate of α can be expressed as : 

 
θ = 

b + 2 

(b + 1)X 

 

 

α̂  = 
b(b + 1)X̄ 

b + 2 

 
 

(6.32) 

 
 
 
 

(6.33) 

 

6.5 Chapter summary 

 
The main objective of this chapter was to highlight the severity distributions used in modeling claim 

severity data and methods of parameter estimation. This chapter highlights continuous and discrete 

distributions considered in modeling claim severity data as well as their parameter estimations. 

Let 

0 
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7 ESTIMATION OF AGGREGATE LOSSES USING PH 

PANJER RECURSION AND DFT 

 
7.1 Introduction 

 
Phase type Panjer recursive models for class (a, b, 0) and class (a, b, 1) are used to estimate the 

aggregate loss probabilities using Panjer recursive model and one, two parameter Poisson Lindley,  

Zero-truncated one and two parameter Poisson Lindley distributions are also considered in estimation 

of aggregate loss probabilities using Discrete Fourier Transform. The distributions considered for 

frequency distributions are: 

 

(i) Panjer class (a, b, 0) distributions. 

(ii) Panjer class (a, b, 1) distributions. 

(iii) Phase type one parameter Poisson Lindley distribution. 

(iv) Phase type two parameter Poisson Lindley distribution. 

(v) Phase type Zero-truncated one parameter Poisson Lindley distribution. 

(vi) Phase type Zero-truncated two parameter Poisson Lindley distribution. 

 

This research considers both continuous and discrete distributions in modeling of claim severity.  

The continuous distributions considered are: 

 

(i) Pareto distribution. 

(ii) Generalized Pareto distribution. 

(iii) Weibull distribution 

 

The discrete distributions are mixture of Poisson distribution and Lindley distribution hence they 

are not discretized and they are: 

 

(i) One parameter Poisson-Lindley distribution. 

(ii) Two parameter Poisson-Lindley distribution. 
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7.2 Phase type recursive model for class (a, b, 0) 

The initial condition P0 of phase type Panjer recursive model is estimated as well as the matrices A 

and B. Phase type Panjer recursive model for class (a, b, 0) is expressed as: 
 

→ 
j 

→ x −1 

 

 
where  →Z(0) = →YP0 

Z( j) = ∑ y(x)Z( j x)(A + B )[I Ay(0)] 
x=1 

(7.1) 

 

7.2.1 Phase type Poisson distribution 
 

Phase type Poisson distribution is expressed as: 

 
Pn = 

 
e−ΛΛx 

(7.2) 

x! 
 

where Λ is M ∗ M matrix. The value of Λ is estimated using Markov chains. The initial condition of 

phase type Poisson distribution is expressed as: 

 

P0 = e−Λ 
(7.3) 

The matrices A and B for PH Poisson are: 

 
A =0 B = Λ (7.4) 

 
Combining equation (7.1) and (7.4) it becomes: 

 

→ 
j 

→ 
x
 −1 → → 

x
 

Z( j) = ∑ y(x)Z( j x)(0 + Λ )[I 0y(0)] 
x=1 

Z( j) = ∑ y(x)Z( j x)(Λ ) (7.5) 

x=1 

 
 

7.2.2 Phase type Negative Binomial distribution 

 
Phase type Negative Binomial distribution is expressed as: 

 

Pn =

 
n + α − 1

 

[I − Q]α Qn (7.6) 

where Q is M ∗ M matrix. The value of Q is estimated using Markov chains. The initial condition of 

phase type Negative Binomial distribution is expressed as: 

 
P0 = [I − Q]α (7.7) 
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— − 

n 

− 

Z( j) = ∑ y(x)Z( j x) 
x=1 

Q + [(α − 1)Q] 
j
 [I − Qy(0)] 

Z( j) = ∑ y(x)Z( j x)[I P] 
x=1 

I − [I − P]y(0) 

Z( j) = ∑ y(x)Z( j x) 
x=1 

— P[I − P] y(0) 

 

 

The matrices A and B for PH Negative Binomial can be shown as: 

A =Q B = (α − 1)Q (7.8) 

Combining equation (7.1) and (7.8) it becomes: 

→ 
j 

→ x
 

−1 

 
 

7.2.3 Phase type Geometric distribution 

 
Phase type Geometric distribution is expressed as: 

Pn = [I − P]nP (7.10) 

where P is M ∗ M matrix.The value of P is estimated using Markov chains. The initial condition of 

phase type Geometric distribution is expressed as: 

P0 = P (7.11) 

The matrices A and B for PH Geometric are: 

A =[I − P] B = 0 (7.12) 

Combining equation (7.1) and (7.12) it becomes: 

→ 
j 

→ 
−1 

 
 

 

7.2.4 Phase type Binomial distribution 

 
Phase type Binomial distribution is expressed as: 

Pn =

 
α

 

Pn[I − P]α−n (7.14) 

where P is M ∗ M matrix.The value of P is estimated using Markov chains. The initial condition of 

phase type Binomial distribution is expressed as: 

P0 = [I − P]α (7.15) 

The matrices A and B for PH Binomial are: 

A = − P[I − P]−1 B = (α + 1)P[I − P]−1 (7.16) 

Combining equation (7.1) and (7.16) it becomes: 
 

j 

→ → −1 −1 x 
   −1 −1 

(7.9) 

(7.13) 

+ (α + 1)P[I − P] 
j 

I + P[I − P] (7.17) 
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x=1 

— − 
j
 

n 

k 1 

 

7.3 Phase type recursive model for class (a, b, 1) 

The initial conditions P0 and P1 of phase type Panjer recursive model are estimated as well as the 

matrices A and B. Phase type Panjer recursive model for class (a, b, 1) is expressed as: 
 

→ 
j 

→ x −1 

Z( j) = [P1 − (A + B)P0]y( j) + ∑ y(x)Z( j − x)(A + B 
j 
)[I − Ay(0)] (7.18) 

 

 

7.3.1 Phase type Zero Truncated Poisson distribution 

 
Phase type Zero Truncated Poisson distribution is expressed as: 

 
Pn = Λn(e−Λ − I)−1 (7.19) 

where Λ is M ∗ M matrix. The value of Λ is estimated using Markov chains. The initial conditions of 

phase type Zero Truncated Poisson distribution is expressed as: 

 

P0 =e−Λ 
(7.20) 

Hence P1 is expressed as: 

 

PT = Pk[I − P0]−1 k = 1, 2, 3, ... PT = P1[I − P0]−1 (7.21) 

The matrices A and B for PH Zero truncated Poisson are: 

 
A =0 B = Λ (7.22) 

 
Combining equation (7.18), (7.20), (7.21) and (7.22) it becomes: 

 

→ 
j 

→ x −1 

Z( j) =[P1 − (0 + ΛP0]y( j) + ∑ y(x)Z( j − x)(0 + Λ 
j 
)[I − 0y(0)] 

→ 
j 

→ 
x
 

 
Z( j) =→Y[P1 ΛP0]y( j) + ∑ y(x)Z( j x)(Λ   ) (7.23) 

x=1 

 
 

7.3.2 Phase type Zero Truncated Binomial distribution 

 
Phase type Zero Truncated Binomial distribution is expressed as: 

 

Pn =
 

 
α

 

PnQα−n
 

I − Qα
 −1 

(7.24) 
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− 

— − − 

x=1 

Z( j) = P1 − — P[I − P] + (α + 1)P[I − P] P0 y( j) + ∑ y(x)Z( j x) 
x=1 

— P[I − P] y(0) 

Z( j) =[P1 [(I P) + 0]P0]y( j) + ∑ y(x)Z( j x) 
x=1 

[I − P] + 0 
j
 [I − [I − P]y(0)] 

 

where P is M ∗ M matrix.The value of P is estimated using Markov chains. The initial conditions of 

phase type Zero Truncated Binomial distribution is expressed as: 
 

P0 =[I − P]α (7.25) 
 

Hence P1 is expressed as: 

PT = Pk[I − P0]−1 k = 1, 2, 3, ... PT = P1[I − P0]−1 (7.26) 
k 1 

The matrices A and B for Zero truncated Binomial are: 

A = − P[I − P]−1 B = (α + 1)P[I − P]−1 (7.27) 

Combining equation (7.18), (7.25), (7.26) and (7.27) it becomes: 

→ 
h  

−1 −1
i  j 

→ 

"  

−1 −1 x 
#  

 
−1 −1 

 

 
7.3.3 Phase type Zero Truncated Geometric distribution 

 
Phase type Zero Truncated Geometric distribution is expressed as: 

 

Pn = P[I − P]n−1 (7.29) 

where P is M ∗ M matrix.The value of P is estimated using Markov chains. The initial conditions of 

phase type Zero Truncated Geometric distribution is expressed as: 
 

P0 =P (7.30) 
 

Hence P1 is expressed as: 

PT = Pk[I − P0]−1 k = 1, 2, 3, ... PT = P1[I − P0]−1 (7.31) 
k 1 

The matrices A and B for PH Zero truanted Geometric are: 

A =[I − P] B = 0 (7.32) 

Combining equation (7.18), (7.30), (7.31) and (7.32) it becomes: 

→ 
j 

→ x
 

−1 

j 

→Z( j) =→Y[P1 − (I − P)P0]y( j) + ∑ y(x)→Z( j − x)[I − P][I − [I − P]y(0)]−1 (7.33) 

+ (α + 1)P[I − P] 
j 

I + P[I − P] (7.28) 
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Ú 

— − 

1 
— − 

X ( ) = X ( ) = ∑ 
k=1 

k it 
+

 

 

7.4 Discrete Fourier Transform 

 
DFT is a computed function hence they are used to compute compound distribution. Compound 

distribution can be evaluated when both claim count and claim distribution are known. DFT is said 

to be a way of representing function in terms of a point value representation (that is a very specific 

value representation). DFT converts a finite sequence of equally spaced samples of a function into a 

same length of equally spaced samples which is a complex valued function of frequency. The DFT 

uses the characteristic function to convert the sequences. The probability generating function of the 

frequency distribution is illustrated as: 

 

∞ 

Φ(n) = ∑ nkPk (7.34) 

k=0 

The characteristic function of the claim severity density is defined as: 

 

Φ(t) = 
∞

 

−∞ 

f (x)eitx dx (7.35) 

Let the characteristic function of the claim count distribution be: 
 

ϕ t 

Ú ∞ 

eitxdF x 
n 

d 
eitxk − eitxk−1 

f
  

eitx 

 

The characteristic has real and imaginary parts which can be separated by using Euler’s formula : 
 

eiθ = cos(θ ) + i sin(θ ) 

 

 

The real part is: 

y 
1 n 

(t) =Re[ϕx(t)] = 
t
 

The imaginary part is: 

∑ dk[sin(txk) sin(txk   1)] + fn+1 cos(txn) 
k=1 

 

z(t) =lm[ϕX (t)] = 
t
 

n 

∑ dk[cos(txk 1) cos(txk)] + fn+1 sin(txn) 
k=1 

The pgf of aggregate loss distribution can be expressed as : 
 

PS(t) = PN[PX (t)]. (7.37) 

The characteristic function of the aggregate loss distribution can be expressed as: 
 

ϕS(t) =E[eiSt ] = PN[ϕx(t)]. (7.38) 

0 
n+1 

n (7.36) 
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The characteristic function of the aggregate loss distribution in equation (7.38) can be obtained using 

DFT as: 

 

ϕs(t) = PN[y(t) + iZ(t)] (7.39) 

 
Equation (7.39) has complex numbers hence it can be re wriNen as : 

 
ϕS(t) = r(t)eiθ(t) (7.40) 

DFT algorithm of aggregate losses is computed using DFT of claim count and DFT of claim amount 

separately. Let Xz be the claim amount distribution of the claim data. For any continuous function 

Xk the Fourier transform is; 
 

Xk = 
x 

Xze
itxdx 

−∞ 
 

The inverse of this Fourier transform can be wriNen as ; 

X =
 1 

Ú ∞ 

X eitxdt 
z 

2Π −∞ k 
 

When Xk is a probability function of a discrete distribution then the Fourier transform is known as a 

DFT. The characteristic function of the claim severity density function will be derived from discretizing 

the the Fourier transform. DFT transforms a sequence of N complex numbers {Xn} = X0, X1, ..., XY−1 

into another sequence of complex number {Xk} = X0, X1, ..., XY−1. This sequence of complex numbers 

can either be the severity probabilities or the frequency probabilities. 

In the case of discretized severity probabilities its DFT is expressed as: 
 

X 
Y −1 

X
 

z e 
−i2Πkz k 0 1 2 Y 1 

k = ∑ ( ) Y 

z=0 

= , , , ..., − (7.41) 

 

Expression (7.41) is very complex hence Euler’s formula is used to reduce its complexity. Euler 

formula is expressed in two ways. 

Case I: for −i 
 

 

 
Case II: for i 

e−ix = cos x − i sin x (7.42) 

 

eix = cos x + i sin x (7.43) 

 

cos x can be expressed as:  
 

cos x 

 

 
Re eix 

 
 

eix + e−ix 
 

 

= ( ) = 
2

 

Ú 



114 
 

j=0 

− 

( ) = ∑ 
z=0 

( ) 
Y Y 

Y Y 

 

 
sin x can be expressed as: 

 
 

 sin x 

 

 
 lm eix 

 

eix − eix 
 

 

= ( ) = 
2i

 
 

Applying Eulers formula equation (7.41) it becomes: 

X k 
Y −1 

X
 
z 

"  

cos

    
2Πkz 

 
 

i sin

  
2Πkz 

 #
 

 

Let cos(2Π) − i sin(2Π) be expressed as WZ. 

This simplifies equation (7.44) to : 

 
X 

 
Y −1 

kz
 

(k) = ∑ X (z)WY (7.45) 

z=0 
 

This is the DFT of the discretized claim amount probabilities. The same procedure is followed in 

estimation of DFT of frequency distribution only that the frequency probabilities do not require 

discretization because the frequency distribution is already a discrete distribution. 

 
7.4.1 No wrap convolution 

 
The distribution of sum of two random variables is given by the convolution of the respective 

distributions. The convolution of vectors is done by multiplying the two vectors. 

let a = (a0, a1, a2, ..., an−1) and b = (b0, b1, b2, ..., bn−1) be vectors of the same length n. The discrete 

convolution of these vectors, c = a ∗ b is vector of length n defined by: 
 

c 
n−1 

i = ∑ a jbi− j 0 ≤ i ≤ n − 1 

The convolution required in DFT is no wrap convolution.No wrap convolution of vector a and b is 

defined to have the following components: 
 

i 

ci = ∑ a jbi j 

j=0 

 

 

No wrap convolution is done by taking one vector,reversing it and placing it so that its first element 

is directly below the first element of the other vector. The vector are then successively shifted 

together,elements in the same column multiplied and the products added.This is repeated until the 

vectors are completely aligned. 

 

7.4.2 Estimation of aggregate loss distribution using DFT 

− (7.44) 
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N 

Y 

 

 

The frequency and severity probabilities are lengthened with equal number of zero’s as its elements. 

The matrix Wkz is multiplied with the claim count and claim amount probabilities to compute the DFT 

of the claim count and claim amount probabilities respectively. The DFT of claim count probabilities 

is multiplied with the DFT of the claim amount probabilities. The resulting vector from the product 

of the DFT of frequency and DFT of severity is multiplied with the matrix Wkz to get the DFT of DFT 

of claim count and DFT of claim amount probabilities. The values without the complex i are singled 

out and each value divided by the number of elements in the vector of claim count or claim amount 

distribution(i.e The vectors should have the same number of elements).The resulting probabilities 

are arranged in reverse except for the first probability.The values that correspond to claim count 

and claim amount distribution original values before the padding they become the aggregate loss 

distribution. 

 

7.5 Chapter summary 

 
The main objective of this chapter was to develop aggregate loss models to be applied in modeling 

of secondary cancer cases. Aggregate loss models using PH Panjer class (a, b, 0) and PH Panjer class 

(a, b, 1) are developed for each specific distribution. Discrete Fourier Transform used in estimating 

aggregate losses is also developed. 



116 
 

 
 
 
 

 

8 DATA ANALYSIS AND RESULTS 

 
8.1 Introduction 

 
In this chapter transition probabilities of three state model, four state model, five state model and six 

state model are estimated and their transition intensities. The parameters of severity and frequency 

distributions are estimated and consequently used in estimation of aggregate loss probabilities. 

Phase type Panjer recursive model and Discrete Fourier Transform are used to estimate the aggregate 

loss probabilities. The data taken into consideration was secondary cancer data obtained from a 

health facility in Kenya. The models developed in this research can be employed in different data 

sets all over the world. The frequency data is quantified the number of cancer patients affected by 

secondary cancers while severity data is quantified by the amount used to treat the patients. In this 

research we considered a period of five years, enabling us to capture the transitions. Descriptive 

statistics for secondary cancer claim count and secondary cancer claim amount are represented 

in table (8.1). The least number of secondary cancer claim count is five which represents the least 

number of deaths related to one of the secondary cancers investigated. The least secondary claim 

amount number is zero which represent amount related to secondary cancer deaths as it does not 

aNract any treatment cost. 481 was the highest number of secondary cancer claim count while 

10, 235, 000 was the highest for secondary cancer claim amount. The expectations of this data varied 

depending on the different states considered as illustrated in table (8.1). The data considered in 

this research for three state model, four state model, five state model and six state model has its 

expectation less than its median for all variable except for severity data for six state, indicating that  

the data is left-skewed. 
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Statistics Cancer Occurrences Cancer Amounts 

N 850 850 

N for States 
  

3 103 103 

4 179 179 

5 481 481 

6 87 87 

Total 850 21,735,857 

Mean 
  

3 41 339,723 

4 35 268,985 

5 57 409,702 

6 11 1,684,999 

Standard Deviation 
  

3 21 960,881 

4 44 505,720 

5 91 582,156 

6 21 3,118,754 

Minimum 5 0 

1st Quantile 48 1,104,000 

Median 82 1,316,865 

3rd Quantile 121 1,959,330 

Maximum 481 10,235,000 

Inter Quantile Range 73 855,330 

Table 8.1. Descriptive statistics of occurrence and severity of secondary cancer data 

 

 
Figure 8.1 illustrates exploratory data analysis for secondary cancer data. Figure 8.1 shows scaNer- 

plots for claim count data and claim amount data which shows claim counts and claim amounts 

have not seriously violated the independence assumption. The exponential Q-Q plot shows deviation 

from the straight line on the lower part indicating that cancer claim amount data is left skewed. 
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ny 
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(a) Severity scatter Plot (b) Frequency scatter plot 
 

(c) Comparison scatter plot (d) Exponential 

Figure 8.1. Scater Plots and Q-Q Plot of Cancer data 

 

8.2 Estimation of transition probabilities and transition intensity 

 
The concept of survival probabilities is be used to estimate the transition probabilities. 

 
8.2.1 Three state multi-state model 

 

The probability of remaining in state 1 , p11(VA,Wt) = e−ℑ12(VA)t , is equal to the probability of survival, 

implying that the individuals did not transit to the next cancer state. The probability of remaining 

in a particular state can be calculated using the formula: 

p j j(VA,Wt) =(1 − ρ̂y) = 
ny − my

 

The probability of moving from one state to the next can be estimated using the formula: 

p jk(VA,Wt) =1 − (1 − ρ̂y) = 1 − 
ny − my

 

The transition probabilities for the three state model estimated using Matlab software are: 

 
(8.1) 

 
 

 
(8.2) 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) 

  
0.8788    0.1212 0  

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) = 0 0.3981 0.6019 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) 0 0 1.0000 
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= 

 
 

The transition intensity from state 1 to 2 and state 2 to 3 are calculated as: 

p j j(VA,Wt) =e−ℑj( j+1)(VA)t ℑ12(VA) = 0.0258 ℑ23(VA) = 0.1842 

 
8.2.2 Four state multi-state model 

 
The probability of remaining in a particular state can be calculated using equation (8.1) and the 

probability of moving from one state to the next can be estimated using equation (8.2). The transition 

probabilities for the four state model estimated using Matlab software are: 

 
p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) 

  
0.7894    0.2106 0 0  

 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt)    

0 0.2905 0.7095 0  

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) 0 0 0.8976 0.1024 
p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) 0 0 0 1.0000 

The transition intensity from state 1 to 2 , state 2 to 3 and state 3 to 4 are calculated as: 

p j j(VA,Wt) = e−ℑj( j+1)(VA)t ℑ12(VA) = 0.0473 ℑ23(VA) = 0.2472 ℑ34(VA) = 0.0216 

 
8.2.3 Five state multi-state model 

 
The probability of remaining in a particular state can be calculated using equation (8.1) and the 

probability of moving from one state to the next can be estimated using equation (8.2). The transition 

probabilities for the five state model estimated using Matlab software are: 
 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) 

  

  

 

The transition intensity from state 1 to 2 , state 2 to 3 , state 3 to 4 and state 4 to 5 are calculated as: 

p j j(VA,Wt) =e−ℑj( j+1)(VA)t ℑ12(VA) = 0.1667 ℑ23(VA) = 0.1889 

ℑ34(VA) =0.0801  ℑ45(VA) = 0.1171 

 

 

 

 

= 

 

 

 

0.4341 0.5659 0 0 0 

0 0.3888 0.6112 0 0 

0 0 0.6701 0.3299 0 

0 0 0 0.5567 0.4433 

0 0 0 0 1.0000 
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= 

 

8.2.4 Six state multi-state model 

 
The probability of remaining in a particular state can be calculated using equation (8.1) and the 

probability of moving from one state to the next can be estimated using equation (8.2). The transition 

probabilities for the six state model estimated using Matlab software are: 

  

  

  

  

 

  
 

 

The transition intensity from state 1 to 2 , state 2 to 3 , state 3 to 4 , state 4 to 5 and state 5 to 6 are 

calculated as: 
 

p j j(VA,Wt ) =e−ℑ j( j+1)(VA)t
 ℑ12(VA) = 0.0216 ℑ23(VA) = 0.4137 

ℑ34(VA) =0.3691 ℑ45(VA) = 0.1653 ℑ56(VA) = 0.0299 

 
 

8.3 Estimation of stationary probabilities for the multi-state models 
 

→Y represents the stationary probabilities of the multi-state Markov models hence it needs to be 

estimated for each multi-state model. 

 
8.3.1 Three state Leukemia model 

 
Let the three state Leukemia model be expressed as A. Stationary probabilities are evaluated using 

the formula: 
 

π = πA (8.3) 

 
where π is row vector of the stationary distribution. Because of the nature of the matrix A it is 

not possible to evaluate the stationary probabilities directly hence the stationary probabilities are 

 

p11(VA,Wt) p12(VA,Wt) p13(VA,Wt) p14(VA,Wt) p15(VA,Wt) p16(VA,Wt) 

p21(VA,Wt) p22(VA,Wt) p23(VA,Wt) p24(VA,Wt) p25(VA,Wt) p26(VA,Wt) 

p31(VA,Wt) p32(VA,Wt) p33(VA,Wt) p34(VA,Wt) p35(VA,Wt) p36(VA,Wt) 

p41(VA,Wt) p42(VA,Wt) p43(VA,Wt) p44(VA,Wt) p45(VA,Wt) p46(VA,Wt) 

p51(VA,Wt) p52(VA,Wt) p53(VA,Wt) p54(VA,Wt) p55(VA,Wt) p56(VA,Wt) 

p61(VA,Wt) p62(VA,Wt) p63(VA,Wt) p64(VA,Wt) p65(VA,Wt) p66(VA,Wt) 

 

0.8976 0.1024 0 0 0 0 

0 0.1264 0.8736 0 0 0 

0 0 0.1579 0.8421 0 0 

0 0 0 0.4375 0.5625 0 

0 0 0 0 0.8611 0.1389 

0 0 0 0 0 1.0000 
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evaluated at a point k where there is the least error values between the stationary probabilities when 

fiNed in the formula π = πA. The initial probability π0 is expressed as: 

π0 = [1, 0, 0] 

 

This is because every individual considered in this research was alive and healthy at the beginning 

of this investigation. Consequently the stationary probabilities are evaluated as: 

 

π1 =π0A π2 = π1A π2 = π0A2 πk = π0Ak (8.4) 

 
The stationary probabilities for three state Leukemia model is evaluated using equation (8.4) as: 

 

π11  = 
h  

1    0    0  
i

∗  

11 

 

 

 

h  
0.2122 0.0535 0.7343 

i  h
 

 
0.2122 0.0535 0.7343  

 

 
 

Replacing the matrix [0.2122 0.0535  0.7343] in equation (8.3) it becomes : 

h  
0.2108 0.0529 0.7363 

i  
= 

h  

 

 
0.2122 0.0535 0.7343 

 
0.8788 0.1212 0 

i
∗ 

 

 

 

 

This has an error of 0.02 which is negligible, hence the stationary probabilities for three state 

Leukemia model are: 

 

π 3 state = [0.2122 0.0535 0.7343] (8.5) 

 
The same methodology is used for three state model, four state model five state model and six state 

model resulting to: 

 

States π1 π2 π3 π4 π5 π6 

4 state 0.0000 0.0000 0.0001 0.9999   

5 state 0.0039 0.0014 0.0053 0.0066 0.9827  

6 state 0.0000 0.0000 0.0000 0.0000 0.0001 0.9999 

Table 8.2. Stationary probabilities 

 

i  

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
 

= 1    0    0 ∗  0 0.0000 1.0000 

 0 0 1.0000 

 

0 0.3981 0.6019 

0 0 1.0000 
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e− Λ 

 

8.4 Estimation of frequency probabilities and its moments for class (a, b, 0) 

 
This Section estimates frequency probabilities for phase type Poisson, Negative Binomial, Binomial 

and Geometric distribution. 

 
8.4.1 Probabilities of Phase type Poisson distribution 

 

Phase type Poisson distribution is expressed as: 

 
pn = →Y 

 

 
Λ n 

n! 
→1T

 

 

 

(8.6) 

Λ is a M ∗ M matrix which is evaluated as 3 ∗ 3 matrix, 4 ∗ 4 matrix, 5 ∗ 5 matrix, and 6 ∗ 6 matrix 

in this research. The values of Λ and →Y have already been estimated hence equation (8.6) can be 

evaluated. The values of Λ and →Y are: 

Λ =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.7) 

 
 

 

Replacing values of three, four, five and six state model in equation (8.6) the probabilities respectively 

are: 
 

p3 =0.0245 p4 = 0.0184 p5 = 0.0147 p6 = 0.0123 (8.8) 

 

Estimating moments of Phase type Poisson distribution 

 
The mean and variance of phase type Poisson distribution are evaluated using the formulas; 

E(N̂ ) = →YΛ→1T Var(N̂ ) = →YΛ→1T (8.9) 

Replacing equation (8.9) with values of stationary probabilities and matrix parameter for three, four, 

five and six state model the mean and variance respectively are: 
 

E(N̂ ) =1.0001 E(N̂ ) = 1.0000 E(N̂ ) = 1.0001 E(N̂ ) = 1.0000 

Var(N̂ ) =1.001 Var(N̂ ) = 1 Var(N̂ ) = 1.001 Var(N̂ ) = 1 

 

8.4.2 Probabilities of Phase type Negative Binomial distribution 

 
Phase type Negative Binomial distribution is expressed as: 

pn = →Y

 
n + α − 1

 

[I − Q]α Qn→1T n = 0, 1, 2, ... (8.10) 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
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Q is a (M ∗ M) matrix which is evaluated as (3 ∗ 3) matrix,(4 ∗ 4) matrix,(5 ∗ 5) matrix, and (6 ∗ 6) 

matrix in this research. The value of α for three, four, five and six state model can be evaluate using 

the equation of the mean as the value of Q has already been evaluated. The value of α for three, 

four, five and six state model can be evaluated respectively as shown in equation (8.11) as: 
 

α = 
  E(N̂)  

→YQ[I − Q]−1→1T 
α3 = 4.2025 α4 = 0.64439 α5 = 0.39506 α6 

 

= 0.281395 (8.11) 

 

The values of Q and →Y have already been estimated hence equation (8.10) can be evaluated. The 

values of Q and →Y are: 

Q =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 

(8.12) 

 

 

Replacing values of three, four, five and six state model in equation (8.10) the probabilities respectively 

are: 
 

p3 =2.1865 ∗ e−19 p4 = 2.5411 ∗ e−22 p5 = 0 p6 = 1.1294 ∗ e−22 

 
Estimating moments of Phase Negative Binomial distribution 

 
The mean and variance of phase type Negative Binomial can be evaluated using the formula; 

 

E(N̂ ) =α→YQ[I − Q]−1→1T Var(N̂ ) = α→Y{Q2[I − Q]−2 + Q[I − Q]−1}→1T (8.13) 

Replacing equation (8.13) with values of stationary probabilities, values of α for each state and 

matrix parameter for three, four, five and six state model the mean and variance respectively are: 

 

E(N̂ ) =6.8116 E(N̂ ) = 5.0592e−04 E(N̂ ) = 0.0106 E(N̂ ) = 1.5577e−04 

Var(N̂ ) =11.0033 Var(N̂ ) = 8.9616e−04 Var(N̂ ) = 0.0135 Var(N̂ ) = 2.6274e−04 

 
 

8.4.3 Probabilities of Phase type Binomial distribution 

 
Phase type Binomial distribution is expressed as: 

 

pn = →Y

 
α
 

[P]nQα−n→1T n = 0, 1, 2, ... (8.14) 

P is a (M ∗ M) matrix which is evaluated as (3 ∗ 3) matrix,(4 ∗ 4) matrix,(5 ∗ 5) matrix, and (6 ∗ 6) 
matrix in this research. The value of α can be evaluate using the equation of the mean as the value 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
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of P has already been evaluated.  
α = 

 E(N̂) 

→YP→1T 

 

 

= 470 (8.15) 

 
 

The values of P and →Y have already been estimated hence equation (8.14) can be evaluated. The 

values of P and →Y are: 

P =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.16) 

 
 

 

 
Replacing values of three, four, five and six state model and α in equation (8.14) the probabilities 

respectively are: 

 

p3 =2.2457e−102 p4 = 0 p5 = 1.5888e−102 p6 = 0 (8.17) 

 
Estimating moments of Phase Binomial distribution 

 
The mean and variance can be evaluated using the formula; 

 

E(N̂ ) =α→YP→1T Var(N̂ ) = α→Y{PQ}→1T (8.18) 

Replacing equation (8.18) with values of stationary probabilities, values of α for each state and 

matrix parameter for three state model, four state model, five state model and six state model the 

mean and variance respectively are: 

 

E(N̂ ) =471.0471 E(N̂ ) = 471 E(N̂ ) = 471.0471 E(N̂ ) = 471 

Var(N̂ ) =6.5364e−15 Var(N̂ ) = 0 Var(N̂ ) = 0 Var(N̂ ) = 1.5958e−18 

 
 

8.4.4 Probabilities of Phase type Geometric distribution 

 
Phase type Geometric distribution is expressed as: 

 

pn = →Y[I − P]nP→1T n = 0, 1, 2, ... (8.19) 

P is a (M ∗ M) matrix is evaluated as (3 ∗ 3) matrix,(4 ∗ 4) matrix,(5 ∗ 5) matrix, and (6 ∗ 6) matrix 

in this research. The values of P and →Y have already been estimated hence equation (8.19) can be 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
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evaluated. The values of P and →Y are: 

 
0.8788    0.1212 0 

 h   i
 

P =  0 0.3981 0.6019 

0 0 1.0000 

→Y = 0.2122 0.0535 0.7343 (8.20) 

 

 

Replacing values of three state model, four state model, five state model and six state model in 

equation (8.19) the probabilities respectively are: 

 

p3 =3.4694e−18 p4 = 1.4476e−24 p5 = 0 p6 = 3.3087e−24 (8.21) 

 
Estimating moments of Phase Geometric distribution 

 
The mean and variance can be calculated as: 

 

E(N̂ ) =→Y[I − P][P]−1→1T Var(N̂ ) = →Y[I − P]2[P]−2 + [I − P][P]−1→1T (8.22) 

Replacing equation and (8.22) with values of stationary probabilities and matrix parameter for three, 

four, five and six state model the mean and variance respectively are: 

 

E(N̂ ) = − 0.1742  E(N̂ ) = −8.8700e−5  E(N̂ ) = −0.0074  E(N̂ ) = −8.4700e−5 

Var(N̂ ) =0.2736 Var(N̂ ) = 1.258e−5 Var(N̂ ) = 0.0233 Var(N̂ ) = 1.7640e−5 

 
8.4.5 Tabulation of frequency probabilities for PH class (a, b, 0) 

 

The results obtained above are tabulated for easy comparison and interpretation. The probabilities 

of phase type distribution of class (a, b, 0) are tabulated as: 

 

States Actual PH Poisson PH Neg Binom PH Binomial PH Geometric 

3 state 0.0435 0.0245 2.1865 ∗ 10−19 2.2457 ∗ 10−102 3.4694 ∗ 10−18 

4 state 0.0168 0.0184 2.5411 ∗ 10−22 0 1.4476 ∗ 10−24 

5 state 0.0174 0.0147 0 1.5888 ∗ 10−102 0 

6 state 0.0224 0.0123 1.1294 ∗ 10−22 0 3.3087 ∗ 10−24 

Table 8.3. Frequency probabilities of PH distributions for class (a, b, 0) in different states 

 
 

Table (8.3) shows that PH Poisson distribution has higher frequency probabilities than PH Negative 

Binomial , PH Binomial and PH Geometric distributions which are closer to the actual 
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frequency probabilities. Table (8.4) represents p-values and Multiple R of frequency probabilities of 

Panjer class (a, b, 0) shown in table (8.3) . 

 

Hypothesis 

H0 : Estimated frequency probabilities of PH Panjer class (a, b, 0) 

are not correlated to actual frequency probabilities 

P-value Multiple R 

PH-Poisson 0.0074 0.9663 

PH-Neg Binom 0.1060 0.7980 

PH-Binomial 0.0786 0.8347 

PH-Geometric 0.1064 0.7969 

Table 8.4. P-values and Multiple R for Panjer class (a, b, 0) frequency probabilities 

 
 

Table (8.4) indicates that the p-values for the models considered were higher than 0.05 except for PH 

Poisson indicating that it was the only significant model for Panjer class (a, b, 0) models. It had the 

highest Multiple R value indicating that it provided the best fit for frequency data. The values of 

claim count distributions for Panjer class (a, b, 0) are represented in figure (8.2) as: 

 
 

   

(a) Actual frequency 

probabilities 

(b) PH Geometric 

probabilities 

(c) PH Poisson Probabilities 

 

  

(d) PH Neg Binomial 

Probabilities 

(e) PH Binomial 

Probabilities 

Figure 8.2. PH Poisson, PH Geometric, PH Neg Binom, PH Binomial and Actual probabilities 

 
From figure (8.2) it is evident that PH Poisson probabilities are similar to the actual frequency 

probabilities hence they are compared to determine if it provides a good fit for the data. Frequency 

probabilities using PH Poisson, PH Negative Binomial, PH Geometric and actual data can be 

compared graphically as: 
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(a) Comparison of class (a, b, 0) probabilities 

Figure 8.3. Comparison of PH Poisson and Actual probabilities 

 
Figure (8.3) shows that PH Poisson distribution provided beNer fit for class (a, b, 0) distributions as 

it was close to the actual frequency probabilities. This is supported by its p-values and Multiple R 

values in Table (8.4) as it has a p-value less than 0.05 and highest Multiple R value. The moments of 

different state of phase type Poisson, Negative Binomial, Geometric and Binomial distribution are 

tabulated as: 
 

States 3 state 4 sate 5 state 6 state 

E(N)[Pois] 1.0001 1 1.0001 1 

Var (N) [Pois] 1.0001 1 1.0001 1 

E(N) [NB] 6.8116 5.0592 ∗ e−04 0.0106 1.5577e−04 

Var (N) [NB] 11.0033 8.9618e−04 0.0135 2.6274e−04 

E(N) [Binom] 471.0471 471 471.0471 471 

Var (N) [Binom] 6.5364 ∗ 10−15 0 0 1.5958 ∗ e−18 

E(N) [Geo] -0.1742 −8.8708 ∗ 10−5 -0.0074 −8.47 ∗ 10−15 

Var (N) [Geo] 0.2736 1.258 ∗ 10−5 0.0233 1.7640 ∗ 10−5 

Table 8.5. Moments of PH Pois, Neg Binom, Binom and Geo distributions 

 

 
Table (8.5) shows that the mean and variance of Poisson is equal which should be the case for Poisson 

distributions. PH Negative Binomial, PH Binomial and PH Geometric distribution indicated under 

dispersion as their variance was less than the actual data variance. 

 

8.5 Estimation of frequency probabilities and its moments for class (a, b, 1) 

 
Frequency probabilities for phase type Zero-truncated Poisson, Phase type Zero-truncated Binomial 

and Phase type Zero truncated Geometric distribution are estimated. 

 
8.5.1 Probabilities of Phase type Zero-truncated Poisson distribution 
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Phase type Zero-truncated Poisson distribution is expressed as: 

pn = →YΛn(eΛ − I)−1→1T n = 1, 2, 3, ... (8.23) 

Λ is a M ∗ M matrix which is be evaluated as 3 ∗ 3 matrix, 4 ∗ 4 matrix, 5 ∗ 5 matrix, and 6 ∗ 6 matrix 

in this research. The values of Λ and →Y have already been estimated hence equation (8.23) can be 

evaluated. The values of Λ and →Y are: 

Λ =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.24) 

 
 

 

Replacing values of four, five and six state model in equation (8.23) the probabilities respectively are: 

p3 =0.0388 p4 = 0.0291 p5 = 0.0233 p6 = 0.0194 (8.25) 

 

Estimating moments of Phase type Zero Truncated Poisson distribution 

 
The mean and variance of phase type Zero truncated Poisson can be evaluated using the formulas; 

E(N̂ ) = →YΛ[I − e−Λ]−1→1T Var(N̂ ) = →Y(Λ + Λ2)(I − e−Λ) − Λ2(I − e−Λ)−2→1T (8.26) 

Replacing equation (8.26) with values of stationary probabilities and matrix parameter for three, 

four, five and six state model the mean and variance respectively are: 
 

E(N̂ ) =1.5821 E(N̂ ) = 1.5820 E(N̂ ) = 1.5821 E(N̂ ) = 1.5820 

Var(N̂ ) =0.6614 Var(N̂ ) = 0.6613 Var(N̂ ) = 0.6614 Var(N̂ ) = 0.6613 

 

8.5.2 Probabilities of Phase type Zero-truncated Binomial distribution 

 
Phase type Zero-truncated Binomial distribution is expressed as: 

pn = →Y
h  α

 

[I − Q]nQα−n
i
[I − Qα ]−1→1T n = 1, 2, 3, ... (8.27) 

P is a (M ∗ M) matrix which is evaluated as (3 ∗ 3) matrix,(4 ∗ 4) matrix,(5 ∗ 5) matrix, and (6 ∗ 6) 

matrix in this research. The values of P and →Y have already been estimated hence equation (8.27) 

can be evaluated. The values of P and →Y are: 

P =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.28) 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
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→ 

 

The value of α can be estimated as from the expression of the mean for all different state models as : 

 

E(N̂ ) =→YαP[I − Qα ]−1→1T α = 471 (8.29) 

 
Replacing values of three, four, five and six state model in equation (8.27) the aggregate loss proba- 

bilities respectively are: 

 

p3 =2.2457 ∗ e−102 p4 = 0 p5 = 1.2710 ∗ e−102 p6 = 0 (8.30) 

 
Estimating moments of Zero-truncated Binomial distribution 

 
The mean and variance of phase type Zero truncated Binomial can be evaluated using the formulas; 

E(N̂ ) = →YαP[I − Qα ]−1→1T Var(N̂ ) = →Y
h
αP{Q − (Q + αP)Qα }

i h
I − Qα 

i −2
1T (8.31) 

Replacing equation (8.31) with values of stationary probabilities and matrix parameter for three state 

model, four state model, five state model and six state model the mean and variance respectively are: 

 

E(N̂ ) =471.0471 E(N̂ ) = 471 E(N̂ ) = 471.0471 E(N̂ ) = 471 

Var(N̂ ) =7.1054 ∗ e−15 Var(N̂ ) = 8.6736 ∗ e−19 Var(N̂ ) = 0 Var(N̂ ) = 8.6736 ∗ e−19 

 
8.5.3 Probabilities of Phase type Zero-truncated Geometric distribution 

 
Phase type Zero-truncated Geometric distribution is expressed as: 

 

pn = →YP(I − P)n−1→1T n = 1, 2, 3, ... (8.32) 

P is a M ∗ M matrix which is evaluated as 3 ∗ 3 matrix, 4 ∗ 4 matrix, 5 ∗ 5 matrix, and 6 ∗ 6 matrix 

in this research. The values of P and →Y have already been estimated hence equation (8.32) can be 

evaluated. The values of P and →Y are: 

 
0.8788    0.1212 0 

 h   i
 

P =  0 0.3981 0.6019 

0 0 1.0000 

→Y = 0.2122 0.0535 0.7343 (8.33) 

 

Replacing values of three, four, five and six state model in equation (8.32) the probabilities respectively 

are: 
 

p3 =9.2519 ∗ e−19 p4 = 0 p5 = 0 p6 = 1.1294 ∗ e−22 (8.34) 
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Estimating moments of Phase type Zero Truncated Geometric distribution 

 
The mean and variance of phase type Zero truncated Geometric can be evaluated using the formulas; 

 

E(N̂ ) =→YP−1→1T Var(N̂ ) = →Y[I − P]P−2→1T (8.35) 

Replacing equation (8.35) with values of stationary probabilities and matrix parameter for three state 

model, four state model, five state model and six state model the mean and variance respectively are: 

E(N̂ ) =1.1262 E(N̂ ) = 1.0000 E(N̂ ) = 1.0127 E(N̂ ) = 1.0000 

Var(N̂ ) =1.38 ∗ e−17   Var(N̂ ) = 1.18 ∗ e−20   Var(N̂ ) = 4.33 ∗ e−19   Var(N̂ ) = 6.77 ∗ e−21 

 
8.5.4 Tabulation of frequency probabilities for class (a, b, 1) 

 

The results obtained above can be tabulated for easy comparison and interpretation. The probabilities 

of phase type distribution of class (a, b, 1) are tabulated as: 
 

States Actual PH ZT Poisson PH ZT Binomial PH ZT Geometric 

3 state 0.0435 0.0388 2.2457 ∗ e−102 9.2519 ∗ e−19 

4 state 0.0168 0.0291 0 0 

5 state 0.0174 0.0233 1.2710 ∗ e−102 0 

6 state 0.0224 0.0194 0 1.1294 ∗ e−22 

Table 8.6. Frequency probabilities of PH distributions for class (a, b, 1) in different states 

 
 

Table (8.6) shows that PH Zero-truncated Poisson distribution has higher frequency probabilities 

than PH Zero-truncated Binomial and PH Zero-truncated Geometric distributions and it is closer 

to the actual frequency probabilities. Table (8.7) represents p-values and Multiple R of frequency 

probabilities of PH Panjer class (a, b, 1) shown in table (8.6) . 
 

Hypothesis 

H0 : Estimated frequency probabilities of PH Panjer class (a, b, 1) 

are not correlated to actual frequency probabilities 

P-value Multiple R 

PH-ZT Poisson 0.0073 0.9663 

PH-ZT Binomial 0.0677 0.8506 

PH-ZT Geometric 0.1064 0.7970 

Table 8.7. P-values and Multiple R for Panjer class (a, b, 1) frequency probabilities 

 
 

Table (8.7) illustrates that the p-values for the models considered were higher than 0.05 except for PH 
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ZT Poisson indicating that it was the only model that provided a good fit for frequency probabilities 

for Panjer class (a, b, 1). The values of phase type claim count distributions for class (a, b, 1) are 

represented in figure (8.4) as: 
 
 

(a) Actual frequency probabilities (b) PH ZT Poisson Probabilities 
 

(c) PH ZT Binomial Probabilities (d) PH ZT Geometric Probabilities 

Figure 8.4. PH ZT Poisson, PH ZT Binom, PH ZT Geometric and Actual probabilities 

 
From figure (8.4) it is evident that PH Zero-truncated Poisson probabilities are similar to the actual 

frequency probabilities hence they are compared to actual frequency probabilities to determine if it  

provides a good fit for the data. Frequency probabilities using PH ZT Poisson and actual probabilities 

can be represented graphically as: 
 

Figure 8.5. Comparison of PH ZT Poisson and Actual probabilities 

 

Figure (8.5) shows that PH ZT Poisson distribution provided beNer fit for class (a, b, 1) distributions 

as it was closer to the actual frequency probabilities. The moments of different state of PH zero- 

truncated Poisson, PH zero-truncated Binomial and PH zero-truncated Geometric distributions are 
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tabulated as: 
 

States 3 state 4 state 5 state 6 state 

E(N)[PH ZT Pois] 1.5821 1.5820 1.5721 1.5820 

Var (N) [PH ZT Pois] 0.6614 0.6613 0.6614 0.6613 

E(N) [PH ZT Binom] 471.0471 471 471.0471 471 

Var (N) [PH ZT Binom] 7.1054 ∗ e−15 8.6736 ∗ e−19 0 8.6736 ∗ e−19 

E(N) [PH ZT Geo] 1.1262 1 1.0127 1 

Var (N) [PH ZT Geo] 1.3878 ∗ e−27 1.1858 ∗ e−20 4.3668 ∗ e−19 6.7763 ∗ e−21 

Table 8.8. Moments of PH ZT Pois, ZT Binom and PH ZT Geo distributions 

 

 
Table (8.8) shows that modeling the data with PH Zero-truncated Poisson distribution, PH Zero- 

truncated Binomial distribution and PH Zero-truncated Geometric distribution indicates under 

dispersion as the variance is less than variance of the actual data. 

 

8.6 Estimation of frequency probabilities and moments of phase type Poisson 

Lindley distributions 

 
Frequency probabilities and moments of phase type one parameter Poisson Lindley distribution and 

two parameter Poisson Lindley distribution are estimated. 

 
8.6.1 Probabilities of Phase type one parameter Poisson Lindley distribution 

 
Phase type one parameter Poisson distribution is expressed as: 

 

pn = →YΓ2(I + Γ)−(n+3){(n + 2)I + Γ}→1T n = 0, 1, 2, ... (8.36) 

 
The values of Γ and →Y have already been estimated hence equation (8.36) can be evaluated. The 

values of Γ and →Y are: 

 
0.8788    0.1212 0 

 h   i
 

Γ =  0 0.3981 0.6019 

0 0 1.0000 

→Y = 0.2122 0.0535 0.7343 (8.37) 

 

 

Replacing values of three, four, five and six state model in equation (8.36) the probabilities respectively 

are: 

 

p3 =0.0169 p4 = 0.0125 p5 = 0.01 p6 = 0.0083 (8.38) 
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Var(N) =Y[αΓ + 2I][Γ(αΓ + I)]−1 + [2(αΓ + 3I)][Γ2(αΓ + I)]−1 − 
h
(2I + Γα)][Γ(Γα + I)]−1

i 2
1T 

 

Estimating moments of Phase one parameter Poisson Lindley distribution 

 
The mean and variance can be calculated as: 

E(N̂ ) =→Y(2I + Γ) Γ(Γ + I) 
−1→1T Var(N̂ ) = →Y(2I + 4Γ + Γ2)(Γ + I)−2 + (2I + Γ)[Γ(Γ + I)]−1→1T 

(8.39) 

Replacing equation (8.39) with values of stationary probabilities and matrix parameter for three state 

model, four state model, five state model and six state model the mean and variance respectively are: 
 

E(N̂ ) =1.8622 E(N̂ ) = 1.5017 E(N̂ ) = 1.5099 E(N̂ ) = 1.5 

Var(N̂ ) =4.3527 Var(N̂ ) = 3.2554 Var(N̂ ) = 3.2727 Var(N̂ ) = 3.2502 

 

8.6.2 Probabilities of Phase type two parameter Poisson Lindley distribution 

 
Phase type two parameter Poisson distribution is expressed as: 

pn = →YΓ2(I + Γ)−(n+2)

h
I + [(α + n)I][αΓ + I]−1

i
→1T n = 0, 1, 2, ... (8.40) 

where α > 0,, Γ is a (M ∗ M) matrix. 

The values of Γ and →Y have already been estimated hence equation (8.40) can be evaluated. The 

values of Γ and →Y are: 

Γ =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.41) 

 

 
The value of α can be estimated from the expression of the mean as: 

E(N) =→Y(2I + Γα)[Γ(Γα + I)]−1→1T α3 = −0.0667  α4 = −0.0499  α5 = −0.0399  α6 = −0.0333 

(8.42) 

 

Replacing values of four, five and six state model in equation (8.40) the probabilities respectively are: 

p3 =0.0187 p4 = 0.0125 p5 = 0.01 p6 = 0.0083 (8.43) 

 

Estimating moments of Phase type two parameter Poisson Lindley distribution 

 
The mean and variance can be calculated as: 

E(N̂ ) =→Y(2I + Γα)[Γ(Γα + I)]−1→1T (8.44) 

 ̂ → → 

(8.45) 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
 



134 
 

 

 

Replacing equation (8.45) with values of stationary probabilities and matrix parameter for three state 

model, four state model, five state model and six state model the mean and variance respectively are: 

 

E(N̂ ) =2.0717 E(N̂ ) = 2.0525 E(N̂ ) = 2.0416 E(N̂ ) = 2.0344 

Var(N̂ ) =4.0668 Var(N̂ ) = 4.0498 Var(N̂ ) = 4.0398 Var(N̂ ) = 4.0333 

 
 

8.6.3 Tabulation of frequency probabilities for PH Poisson Lindley distributions 

 
The results obtained above are tabulated for easy comparison and interpretation. The probabilities 

of phase type Poisson Lindley distributions are tabulated as: 

 

Distributions 3 state 4 state 5 state 6 state 

PH-OPPL 0.0169 0.0125 0.01 0.0083 

PH-TPPL 0.0187 0.0125 0.01 0.0083 

Actual 0.0435 0.0168 0.0174 0.0224 

Table 8.9. Frequency probabilities of PH Poisson Lindley distributions in different states 

 

 
Table (8.9) shows that PH one parameter Poisson Lindley and PH two parameter Poisson Lindley 

distributions had higher frequency probabilities which are closer to actual frequency distributions 

hence they will be compared to determine which between them provides the best fit. Table (8.10) 

represents p-values and Multiple R of frequency probabilities of phase type OPPL and phase type 

TPPL distributions shown in table (8.9) . 

 

Hypothesis 

H0 : Estimated frequency probabilities of PH Poisson Lindley 

distributions are not correlated to actual frequency probabilities 

P-value Multiple R 

PH-OPPL 0.0070 0.9675 

PH-TPPL 0.0045 0.9757 

Table 8.10. P-values and Multiple R for PH Poisson Lindley frequency probabilities 

 

 
Table (8.10) shows that the p-values for all models were lesser than 0.05 indicating that they provided 

a good fit for frequency probabilities however PH-TPPL had the least p-value and highest Multiple R 

indication that it provided the best fit for frequency data. The values of frequency distributions for 

phase type Poisson Lindley distributions are represented graphically in figure (8.6) as: 
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(a) Actual frequency probabilities (b) PH OPPL Probabilities 

 

(c) PH TPPL Probabilities 

Figure 8.6. PH-OPPL, PH-TPPL and Actual probabilities 

 
Figure (8.6) indicates that phase type one parameter Poisson Lindley and phase type two parameter 

Poisson Lindley are similar to actual frequency data hence they will be compared to determine 

which provides a beNer fit. Frequency probabilities using , PH-OPPL, PH-TPPL and actual data can 

be represented graphically as: 
 

Figure 8.7. Comparison of PH Poisson Lindley distributions and Actual probabilities 

 
Figure (8.7) shows that PH two parameter Poisson Lindley distribution provided beNer fit as it is 

closer to the actual frequency probabilities and has the lowest p-value. The moments of different 

states of phase type one parameter Poisson Lindley and phase type two parameter Poisson Lindley 

distributions are tabulated as: 
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States 3 state 4 state 5 state 6 state 

E(N) [PH-OPPL] 1.8622 1.5017 1.5099 1.5 

Var (N) [PH-OPPL] 4.3527 3.2554 3.2727 3.2502 

E(N) [PH-TPPL] 2.0717 2.0525 2.0416 2.0344 

Var (N) [PH-TPPL] 4.0668 4.0498 4.0398 4.0333 

Table 8.11. Moments of PH-OPPL and PH-TPPL distribution 

 

 
Table (8.11) shows that modeling the data with PH one parameter Poisson Lindley distribution and 

PH two parameter Poisson Lindley indicates under dispersion as its variance is less than variance of  

the actual data. 

 

8.7 Estimation of frequency probabilities and moments of phase type 

Zero-truncated Poisson Lindley distributions 

 
Frequency probabilities and moments of phase type Zero-truncated one parameter Poisson Lindley 

distribution and Zero-truncated two parameter Poisson Lindley distribution are estimated. 

 
8.7.1 Probabilities of Phase type Zero-truncated one parameter Poisson Lindley distribu- 

tion 

 
Phase type Zero-truncated one parameter Poisson distribution is expressed as: 

pn = →YΛ2[Λ2 + 3Λ + I]−1

,
[(n + 2)I + Λ][(Λ + I)n]−1

,
→1T n = 1, 2, ... (8.46) 

The values of Λ and →Y have already been estimated hence equation (8.46) can be evaluated. The 

values of Λ and →Y are: 

 
0.8788    0.1212 0 

 h   i
 

Λ =  0 0.3981 0.6019 

0 0 1.0000 

→Y = 0.2122 0.0535 0.7343 (8.47) 

 

 

Replacing values of four, five and six state model in equation (8.46) the probabilities respectively are: 

 
p3 =0.0267 p4 = 0.02 p5 = 0.016 p6 = 0.0133 (8.48) 
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 ̂ → → 

(8.50) 

 

Estimating moments of Phase Zero-truncated one parameter Poisson Lindley distribution 

 
The mean and variance can be calculated as: 

E(N̂ ) =→Y  (Λ + I)2(2I + Λ)   Λ(Λ2 + 3Λ + I) 
−1→1T (8.49) 

Var(N) =Y
 
(Λ + I)2(Λ2 + 4Λ + 6I)

  
Λ2(Λ2 + 3Λ + I)

 −1 
− 

h  
(Λ + I)2(2I + Λ)

  
Λ(Λ2 + 3Λ + I)

 −1
i 2

1T 

 

Replacing equation (8.50) with values of stationary probabilities and matrix parameter for three state 

model, four state model, five state model and six state model the mean and variance respectively are: 
 

E(N̂ ) =2.3043 E(N̂ ) = 2.3996 E(N̂ ) = 2.3967 E(N̂ ) = 2.4000 

Var(N̂ ) =4.3177 Var(N̂ ) = 3.0443 Var(N̂ ) = 3.0874 Var(N̂ ) = 3.0402 

 

8.7.2 Probabilities of Phase type Zero-truncated two parameter Poisson Lindley distribu- 

tion 

 
Phase type Zero-truncated two parameter Poisson distribution is illustrated as: 

pn = →Y
 
Λ2[Λ2α + Λα + 2Λ + I]−1

  
(n + 1)I + α(Λ + I)

  
(Λ + I)−n]→1T n = 1, 2, ... (8.51) 

where α > 0, Λ is a (M ∗ M) matrix. 

The values of Λ and →Y have already been estimated hence equation (8.51) can be evaluated. The 

values of Λ and →Y are: 

Λ =  

 

→Y = 
h
 0.2122 0.0535 0.7343 

i
 

 

 
(8.52) 

 
 

The value of α can be estimated from the expression of the mean as: 

E(N) =→Y  (Λ + I)2[Λα + 2I]   Λ[Λ2α + Λα + 2Λ + I] 
−1→1T 

α3 = − 0.0999 α4 = −0.0749 α5 = −0.0599 α6 = −0.0499 (8.53) 

Replacing values of four, five and six state model in equation (8.51) the probabilities respectively are: 

p3 =0.0197 p4 = 0.0162 p5 = 0.0130 p6 = 0.0109 (8.54) 

 

Estimating moments of Phase type ZT two parameter Poisson Lindley distribution 

 
The mean and variance can be calculated as: 

E(N̂ ) =→Y
 
(Λ + I)2(Λα + 2I)

  
Λ(Λ2α + Λα + 2Λ + I)

 −1→1T (8.55) 

0.8788 0.1212 0 

0 0.3981 0.6019 

0 0 1.0000 
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Var(N) =Y
h
(Λ + I)2(Λ3α2 + (α + 5)Λ2α + (4α + 6)Λ + 2I)

i h
Λ2(Λ2α + Λα2 + Λ + I)2

i −1
1T 

 
 

 ̂ → → 

(8.56) 
 

Replacing equation (8.55) and (8.56) with values of stationary probabilities and matrix parameter for 

three state model, four state model, five state model and six state model the mean and variance 

respectively are: 
 

E(N̂ ) =2.5653 E(N̂ ) = 2.7010 E(N̂ ) = 2.6894 E(N̂ ) = 2.6896 

Var(N̂ ) =11.1226 Var(N̂ ) = 10.2847 Var(N̂ ) = 10.3880 Var(N̂ ) = 10.4145 

 
 

8.7.3 Tabulation of frequency probabilities for PH Zero-truncated Poisson Lindley distri- 

butions 

 
The results obtained above are tabulated for easy comparison and interpretation. The probabilities 

of phase type Zero-truncated Poisson Lindley distributions are tabulated as: 
 

Distributions 3 state 4 state 5 state 6 state 

PH-ZTOPPL 0.0267 0.0200 0.0160 0.0133 

PH-ZTTPPL 0.0197 0.0162 0.0130 0.0109 

Actual 0.0435 0.0168 0.0174 0.0224 

Table 8.12. Frequency probabilities of PH ZT Poisson Lindley distributions in different states 

 
 

Table (8.12) shows that PH Zero-truncated one parameter Poisson Lindley and PH Zero-truncated 

two parameter Poisson Lindley distributions has higher frequency probabilities which are closer to 

actual frequency distributions hence they are compared to determine which between them provides 

the best fit. Table (8.13) represents p-values and Multiple R of frequency probabilities of phase type 

ZT-OPPL and phase type ZT-TPPL distributions shown in table (8.12) . 
 

Hypothesis 

H0 : Estimated claim count probabilities of PH ZT Poisson Lindley 

distributions are not correlated to actual frequency probabilities 

P-value Multiple R 

PH-ZT OPPL 0.0074 0.9663 

PH-ZT TPPL 0.0108 0.9567 

Table 8.13. P-values and Multiple R for PH ZT Poisson Lindley frequency probabilities 

 
 

Table (8.13) shows that the p-values for all models were lesser than 0.05 indicating that they provided 

a good fit for frequency probabilities however PH-ZT OPPL had the least p-value and highest 

Multiple R indicating that it provided the best fit for frequency data. The values of frequency distrib 
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utions for Zero-truncated Poisson Lindley distribution are represented graphically in figure (8.8) as: 
 
 

(a) Actual frequency probabilities (b) PH-ZTOPPL Probabilities 
 

(c) PH-ZTTPPL Probabilities (d) Comp PH-ZTOPPL and PH-ZTTPPL 

Probabilities 

Figure 8.8. PH-ZTOPPL, PH-ZTTPPL and Actual probabilities 

 
From figure (8.8) it is evident that PH Zero-truncated one parameter Poisson Lindley distributions 

and PH Zero-truncated two parameter Poisson Lindley distribution probabilities are similar to the 

actual frequency probabilities hence it they compared to actual frequency probabilities determine 

which distribution provides the best fit for the data. Frequency probabilities using PH Zero-truncated 

Poisson Lindley distributions and actual data can be represented graphically as: 
 

(a) Comparison frequency Probabilities 

Figure 8.9. Comparison of PH Zero-truncated Poisson Lindley and Actual probabilities 

 
Figure (8.9) shows that PH Zero-truncated two parameter Poisson distribution provided beNer fit as 

it was closer to the actual frequency probabilities and also had the lowest p-value and Multiple R. 
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β 

β  

[Γ 1(1 +

  )] 

β 

 
 

The moments of different state of phase type Zero-truncated one parameter Poisson Lindley and 

phase type two parameter Poisson Lindley distributions are tabulated as: 

 

States 3 state 4 state 5 state 6 state 

E(N) [PH-ZTOPPL] 2.3043 2.3996 2.3967 2.4000 

Var (N) [PH-ZTOPPL] 4.3177 3.0443 3.0874 3.0402 

E(N) [PH-ZTTPPL] 2.5653 2.7010 2.6894 2.6896 

Var (N) [PH-ZTTPPL] 11.1226 10.2847 10.3880 10.4145 

Table 8.14. Moments of PH-ZTOPPL and PH-ZTTPPL distribution 

 

 
Table (8.14) shows that modeling the data with PH Zero-truncated one parameter Poisson Lindley 

and PH Zero-truncated two parameter Poisson Lindley distributions exhibits under dispersion as its 

variance is less than variance of the actual data. 

 

8.8 Estimation of severity distribution 
 

The parameters of both discrete and continuous severity distributions are estimated. Continuous 

distribution taken into account are Weibull distribution, Generalized Pareto, and Pareto distribution. 

The continuous distributions are arithmetized using method of mass rounding and the span chosen 

is h = 250000 , h = 200000, h = 300000, h = 1200000 for three state model, four state model, five 

state model and six state models respectively. Discrete distribution considered in this research are 

one-parameter Poisson lindley distribution and two-parameter Poisson Lindley distribution. In this 

section parameters of the distributions are estimated as well as the severity probabilities. 

 
8.8.1 Estimation of parameters and discretization of Weibull distribution 

 

From chapter seven estimate of α is expressed as: 

 

α = 
E(x) 

Γ(1 + 1 ) 

 

 
(8.57) 

 

The estimate of α requires β to be estimated first as: 
 

 

Var(x) = 
[E(x)]2 

[Γ(1 + 1 )]2 
∗ Γ(1 + 

2 
) − [E(x)]2 

Var(x) − [E(x)]2 

[E(x)]2 

   Γ(1 + 2 ) 
= 

2 
β 

 
(8.58) 

 

The values of β can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.58) 

as: 

3 state = 0.47 4 state = 0.815 5 state = 9.1 6 state = 0.842 

Hence the value of α can be calculated for 3 state, 4 state, 5 state and 6 state models from equation 

(8.57) as: 
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d 

− 

 
d(x − f ) 

2 2 

 
 

3 state = 150507.7436 4 state = 240521.1121 5 state = 432431.6298 6 state = 1539559.443 

Weibull distribution is discretized using the following formula: 

fs =Fj

 

xh + 
h
 

− Fj

 

xh − 
h 
 

 
 

The resulting probabilities estimates for three, four, five and six state models for Weibull distribution 

are: 
 

f3 = 0.0171 f4 = 0.0216 f5 = 0 f6 = 0.0231 

 
8.8.2 Estimation of parameters and discretization of Generalized Pareto distribution 

 
From chapter six Generalized Pareto distribution can also be expressed as; 

1
 

d(x − f )
 1 −1

 

f (x) = 
e   

1 − 
e 

X = e[1 − exp(−dY )]/d. 
 

The moment estimators of Generalized Pareto distribution are: 
 

E(x) = f 
   e  

+ 
1 + d 

 

Var(x 
e2 

) = 
(1 + d)2(1 + 2d) 

 

Skew(x) = 
2(1 − d)(1 + 2d)0.5 

1 + 3d 

 
(8.59) 

The value of d can be calculated from the skewness formula, hence e estimated as follows: 

e =S.D(1 + d)(1 + 2d)0.5 (8.60) 

The value of f can be calculated as: 
 

 
f =x¯ 

e 
e 

+ d 

 

 
(8.61) 

The values of d can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.59) 

as: 

3 state = 17.59 4 state = 5.079 5 state = 2.13 6 state = 0.268 

The values of e can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.60) 

as: 

3 state = 107440000 4 state = 10269000 5 state = 4179000 6 state = 4901100 

The values of f can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.61) 

as: 

3 state = 339721.7777 4 state = 268984 5 state = 409701.2222 6 state = 1684997.555 

The cumulative distribution function is expressed as: 
 

1 
 

d 

FX = 1 − 1 − 
e
 

 

(8.62) 

 

The resulting probabilities estimates for three, four, five and six state models for Generalized Pareto 

distribution are: 
 

f3 = 0.0027 f4 = 0.0280 f5 = 0.1108 f6 = 0.1176 
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β + x 

x+3 , , , ... 

2 X̄ 

2β 

 

8.8.3 Estimation of parameters and discretization of Pareto distribution 

 
From chapter six Pareto distribution can also be expressed as; 

 
 

 
The value of β is estimated as follows: 

αβα
 

f (x) = 
(x + β )α+1 (8.63) 

 

   β  
E(x) = 

α − 1 
α > 1 E(x 

2β 2 

(α − 1)(α − 2) 

We can estimate β by using these two expressions. 
 

2 
E 2 2 

  

    (x ) 
=

 (α−1)(α−2) 
=

 2β (α − 1) 
(α − 1) = 

2(α − 1) 
 

 

(8.64) 

[E(x)]2 β 2 

(α−1)2 

(α − 1)(α − 2) β 2 (α − 2) 

The values of α can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.64) 

as: 

3 state = 2.285714286 4 state = 2.789019363 5 state = 3.962650275 6 state = 2.824467301 

Hence the value of β can be calculated for 3 state, 4 state, 5 state and 6 state models from equation 

(8.63) as: 

3 state = 436786.4286 4 state = 481219.3733 5 state = 1213804.401 6 state = 3074224.767 

The cumulative distribution function of Pareto distribution is expressed as: 

F(x) = 1 −
  β α 

(8.65) 

The resulting probabilities estimates for three, four, five and six state models for Pareto distribution 

are: 
 

f3 =0.0156 f4 = 0.0166 f5 = 0.0184 f6 = 0.0178 

 

8.8.4 Estimation of parameters and probability of one-parameter Poisson Linldey distri- 

bution 

 
The probability mass function of one parameter Poison Lindley is expressed as: 

 

f (x) = 
θ 2(x + θ + 2) 

x = 0 1 2 (8.66) 

(θ + 1) 

The value of x in this research considering discrete distributions if sum of the severity values for 

each particular multi-state model. The value of θ is calculated as: 

 

θ  ̂= 
−(X  ̄− 1) + 

ã
(X  ̄− 1)2 + 8X  ̄  

(8.67) 

2 

) = 2 
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¯ 

i
+

 

( ) =
(θ + 1)x+2 

+ 
αθ + 1 

, , > 

h
1

 

 

 

The values of θ can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.67) 

as: 

3 state = 5.8871 ∗ e−6 4 state = 7.4353 ∗ e−6  5 state = 4.8816 ∗ e−6  6 state = 1.1869 ∗ e−6 
For three, four, five and six state models the probabilities are evaluated respectively as: 

 
f (x) = 

θ 2(x + θ + 2) 

(θ + 1)x+3 

 
f (x 

 
)3 = 

 

1.6142 ∗ e−12 f 
 
(x)4 = 

 

2.0387 ∗ e−12 

f (x)5 =1.3383 ∗ e−12 f (x)6 = 3.2559 ∗ e−13 

 
8.8.5 Estimation of parameters and probability of two-parameter Poisson Linldey distri- 

bution 

 
The probability mass function of one parameter Poison Lindley is expressed as: 

f x 
θ 2

 

h
1 

α + x i  
x
 
 

0 1 2 
 

; θ 0; αθ 

 
1 (8.68) 

 

Expectation of two-parameter Poisson Lindley is expressed as: 

X¯ =
 αθ + 2  

θ (αθ + 1) 

 

 

(8.69) 

µ2
′ −µ1

′
 

[µ1
′ ]2 

be k , it can be expressed as: 

 

k = 
2(b + 3)(b + 1) 

(b + 2)2 

 

0 = (2 − k)b2 + (8 − 4k)b + (6 − 4k) (8.70) 

The value of k can be calculated hence equation (8.70) can be solved. The value of α and θ can be 

expressed as: 

X  ̄ =
 b + 2  

θ (b + 1) 
θ =

 b + 2  

(b + 1)X 
α̂  = 

b(b + 1)X̄ 

b + 2 

 
(8.71) 

The values of b can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.71) 

as: 

3 state = -2.5345 4 state = -2.888268 5 state = -3.400947 6 state = -2.908 

The values of θ can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.71) 

as: 

3 state = 1.02531 ∗ e−6 4 state = 1.74885 ∗ e−6  5 state = 1.4242 ∗ e−6  6 state = 2.82428 ∗ e−7 
The values of α can be calculated for 3 state, 4 state, 5 state and 6 state models from equation (8.71) 

as: 

3 state = -2471929.869 4 state = -1651525.057 5 state = -2387971.016 6 state = -10296424.92 

For three, four, five and six state models the probabilities are evaluated respectively as: 

 
f (x 

θ 2 

) =
(θ + 1)x+2 

  α + x 
f
 

αθ + 1 

 
(x)3 = 

 

1.7453 ∗ e−8 f 

 
(x)4 = 

 

1.8066 ∗ e−8 

f (x)5 =5.7517 ∗ e−9 f (x)6 = 2.8090 ∗ e−9 

Let 

= , .... > − 
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8.8.6 Tabulation of severity data results 

 
The results obtained above can be tabulated for easy comparison and interpretation. The probabilities 

of continuous and discrete severity distributions are tabulated as: 

 

States Actual Weibull Gen Pareto Pareto One par Pois Two par Pois 

3 state 0.0046 0.0171 0.0027 0.0156 1.6142 ∗ e−12 1.7453 ∗ e−8 

4 state 0.0664 0.0216 0.0280 0.0166 2.0387 ∗ e−12 1.8066 ∗ e−8 

5 state 0.0794 0 0.1108 0.0184 1.3383 ∗ e−12 5.7517 ∗ e−9 

6 state 0.1551 0.0231 0.1176 0.0178 3.2559 ∗ e−13 2.8090 ∗ e−9 

Table 8.15. Severity probabilities of continuous and discrete distributions 

 

 
Table (8.15) shows Generalized Pareto had relatively higher probabilities compared to Weibull,  

one parameter Poisson Lindley and two parameter Poisson Lindley distributions. Consequently,  

Generalized Pareto had probabilities closer to the actual probabilities hence they will be compared 

to determine if it provides a good fit. Table (8.16) represents p-values and Multiple R of severity 

probabilities shown in table (8.15) . 

 

Hypothesis 

H0 : Estimated severity probabilities of 

are not correlated to actual severity probabilities 

P-value Multiple R 

Weibull 0.1360 0.7599 

Gen Pareto 0.0153 0.9450 

Pareto 0.0721 0.8442 

OPPL 0.3413 0.5458 

TPPL 0.4478 0.4493 

Table 8.16. P-values and Multiple R for severity probabilities 

 

 
Table (8.16) indicates that the p-values for the models considered were higher than 0.05 except 

for Generalized Pareto distribution probabilities indicating that it provided a good fit for severity 

probabilities. The data of severity distribution can be represented as illustrated in figure (8.10) as: 
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(a) Actual severity 

probabilities 

(b) Weibull Probabilities (c) Generalized Pareto 

Probabilities 

 

   

(d) Pareto Probabilities (e) One parameter Poisson 

Lindley Probabilities 

(f) Two parameter Poisson 

Lindley probabilities 

Figure 8.10. Comparison of Weibull, Generalized Pareto , Pareto, One parameter Poisson Lindley, Two 
parameter Poisson Lindley and Actual probabilities 

 
Figure (8.10) shows that severity probabilities using Generalized Pareto and actual probabilities were 

similar hence they will be compared to determine if it provides a good fit for the severity probabilities.  

Generalized Pareto and actual severity probabilities can be represented graphically as: 
 

Figure 8.11. Comparison of Weibull, Generalized Pareto , Pareto and Actual probabilities 

 
Figure (8.11) shows that Generalized Pareto provided a beNer fit for severity probabilities which is 

supported by its low p-values and higher R-statistic. 



146 
 

− Z( j) = ∑ y(x)Z( j x) 
x=1 

Λ 
j
 

− 

 

8.9 Estimation Aggregate loss probabilities using phase type Panjer recursive 

model for class (a, b, 0) 

Aggregate loss probabilities are estimated using PH Panjer recursive model for class (a, b, 0) and 

(a, b, 1). PH Panjer recursive model for class (a, b, 0) is expressed as: 

→ 
j 

→ x
 

−1 

 

where  →Z(0) = →YP0 Z( j) = ∑ y(x)Z( j x) 
x=1 

A + B 
j
 [I − Ay(0)] (8.72) 

 

8.9.1 Aggregate Loss probabilities of phase type Poisson and severity distribution 

 
The initial condition, matrices A and B of phase type Poisson distribution are calculated as: 

 
P0 = e−Λ A = 0 B = Λ 

PH Panjer recursive model when claim frequency distribution is PH Poisson distribution is expressed 

as: 

→ 
j 

→ x 
 

 
 
 

For three state multi-state model the initial condition is evaluated as: 

 
0.4155    −0.0651 0.0174    

 h   i
 

P0 =  0 0.6745 −0.3066 

0 0 0.3679 

→YP0 = 0.0997 0.0251 0.2431 

 

The value of A is constant and value of B = Λ hence for three state model they can be evaluated as: 

 
0.8788    0.1212 0  

A = 0 B =  0 0.3981 0.6019 

0 0 1.0000 
 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.72) 

the aggregate loss probabilities are: 

 

 

(8.73) 
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− Z( j) = ∑ y(x)Z( j x) 
x=1 

Q + [(α − 1)Q] 
j
 [I − Qy(0)] 

 

 

States Actual PH Poi-Wei PH Poi-GP PH Poi-Par PH Poi-OPPL PH Poi-TPPL 

3 state 0.0002 0.0065 0.0009 0.0059 5.9232 ∗ e−13 6.4383 ∗ e−9 

4 state 0.0011 0.0083 0.0109 0.0063 7.5031 ∗ e−13 6.6572 ∗ e−9 

5 state 0.0014 0 0.0503 0.0070 4.9299 ∗ e−13 2.1154 ∗ e−09 

6 state 0.0035 0.0089 0.0540 0.0068 1.1990 ∗ e−13 1.0335 ∗ e−9 

Table 8.17. Aggregate loss probabilities of phase type Poisson and severity distributions 

 

 
Table (8.17) shows that actual aggregate losses have a similar trend as aggregate losses estimated 

using PH Poisson and Generalized Pareto. 

 
8.9.2 Aggregate Loss probabilities of phase type Negative Binomial and severity distribu- 

tion 

 
The initial condition, matrices A and B of phase type Negative Binomial distribution are calculated 

as: 
 

P0 = [1 − Q]α A = Q B = (α − 1)Q 

Phase type panjer recursive model when claim frequency distribution is Phase type Negative Binomial 

distribution is expressed as: 

→ 
j 

→ x
 

−1 

 
 

For three state multi-state model the initial condition is evaluated as: 

 
0.0002    0.0002 0 

 h   i
 

P0 =  0 0.1350 0.1350 

0 0 0 

→YP0 = 0.0001 0.0082 0.0081 

 

The value of A = Q and value B = (α − 1)Q hence for three state they can be evaluated as : 

 
0.8788    0.1212 0 

  
2.6349    0.3651 0  

A =  0 0.3981 0.6019 

0 0 1.0000 

B =  0 1.1814 1.8186 

0 0 3.0000 
 

 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.74) 

the aggregate loss probabilities are: 

 

  

(8.74) 
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x=1 

 

 

 

States Actual PH NB-Wei PH NB-GP PH NB-Par PH NB-OPPL PH NB-TPPL 

3 state 0.0002 0.0013 1.8214 ∗ e−4 0.0012 1.0556 ∗ e−13 8.4721 ∗ e−9 

4 state 0.0011 2.4268 ∗ e−7 3.2084 ∗ e−7 1.8365 ∗ e−7 2.1435 ∗ e−17 1.9019 ∗ e−13 

5 state 0.0014 0 0.0010 1.3172 ∗ e−4 9.1325 ∗ e−15 3.9188 ∗ e−11 

6 state 0.0035 6.3532 ∗ e−7 4.0625 ∗ e−6 4.832 ∗ e−7 8.4721 ∗ e−18 7.3027 ∗ e−14 

Table 8.18. Aggregate loss probabilities of phase type Neg Binom and severity distributions 

 

 
Table (8.18) shows that the trend of actual aggregate losses are different from aggregate losses 

estimated using PH Negative Binomial. 

 
8.9.3 Aggregate Loss probabilities of phase type Geometric and severity distribution 

 
The initial condition, matrices A and B of phase type Geometric distribution are calculated as: 

 
P0 = P A = [I − P] B = 0 

Phase type panjer recursive model when claim frequency distribution is Phase type Geometric 

distribution is expressed as: 
 

j 

→Z( j) = ∑ y(x)→Z( j − x)[I − P][I − [I − P]y(0)]−1 (8.75) 

For three state multi-state model the initial condition is evaluated as: 

 
0.8788    0.1212 0 

 h   i
 

P0 =  0 0.3981 0.6019 

0 0 1.0000 

→YP0 = 0.2108 0.0530 0.7364 

 

The value of A = [I − P] and value B = 0 hence for three state they can be evaluated as : 

 
0.1303    −0.1303 0  

A =  0 0.6066 −0.6066 B = 0 

0 0 0 
 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.75) 

the aggregate loss probabilities are: 
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− 

 

 

Z( j) = ∑ y(x)Z( j x) 
x=1 

— P[I − P] y(0) 

 

 

States Actual Geo-Wei Geo-GP Geo-Par Geo-OPPL Geo-TPPL 

3 state 0.0002 2.17 ∗ e−19 2.71 ∗ e−20 2.17 ∗ e−19 1.26 ∗ e−29 3.10 ∗ e−25 

4 state 0.0011 5.29 ∗ e−23 5.29 ∗ e−23 5.29 ∗ e−23 6.16 ∗ e−33 5.05 ∗ e−29 

5 state 0.0014 0 0 0 7.88 ∗ e−31 0 

6 state 0.0035 5.29 ∗ e−23 4.24 ∗ e−22 2.64 ∗ e−23 7.70 ∗ e−34 6.31 ∗ e−30 

Table 8.19. Aggregate loss probabilities of phase type Geometric and severity distributions 

 

 
Table (8.19) illustrate that the trend of actual aggregate losses are different from aggregate losses 

estimated using PH Geometric. 

 
8.9.4 Aggregate Loss probabilities of phase type Binomial and severity distributions 

 
The initial condition, matrices A and B of phase type Binomial distribution are calculated as: 

 
P0 = [I − P]α A = −P[I − P]−1 B = (α + 1)P[I − P]−1 

Phase type Panjer recursive model when claim frequency distribution is phase type Binomial 

distribution is expressed as: 

 
j 

→ → −1 −1 x 
   −1 −1 

 
 

For three state multi-state model the initial condition is evaluated as: 

 
0.0002    0.0002 0 

 h   i
 

P0 =  0 0.1350    0.1350 →YP0  = 

0 0 0 

0 0.0074 0.0060 

 

The value of A = −P[I − P]−1 and value B = (α + 1)P[I − P]−1 hence for three state they can be 

evaluated as : 

 
−7.2169 1.0000 0 

  
3.3992    −0.4710 0  

 
A =  0 −0.6496 1.0000 B = 1.0 ∗ e 

0 0 0 

0 0.3060 −0.4710 

0 0 0 
 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.76) 

the aggregate loss probabilities are: 

3  

+ (α + 1)P[I − P] 
j 

I + P[I − P] (8.76) 
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States Actual Bin-Wei Bin-GP Bin-Par Bin-OPPL Bin-TPPL 

3 state 0.0002 0 0 −5.28 ∗ e−102 −1.08 ∗ e−113 −1.17 ∗ e−109 

4 state 0.0011 0 0 0 0 0 

5 state 0.0014 0 4.24 ∗ e−97 1.12 ∗ e−100 1.65 ∗ e−113 7.08 ∗ e−110 

6 state 0.0035 0 0 0 0 0 

Table 8.20. Aggregate loss probabilities of phase type Binomial and severity distributions 

 

 
Table (8.20) shows that the trend of actual aggregate losses are different from aggregate losses 

estimated using PH Binomial. Table (8.21) represents p-values of aggregate loss probabilities shown 

in table (8.17), table (8.18) and table (8.19) except for phase type Binomial model which had negative 

values. 
 

Hypothesis 

H0 : Estimated aggregate losses for Panjer class (a, b, 0) 

are not correlated to actual aggregate losses 

P-value Multiple R 

PH-Poisson Weibull 0.1276 0.7701 

PH-Poisson Pareto 0.0927 0.8151 

PH-Poisson Gen Pareto 0.0249 0.9239 

PH-Poisson OPPL 0.4072 0.4854 

PH-Poisson TPPL 0.4952 0.4080 

PH-Neg Binom Weibull 0.9342 0.0517 

PH-Neg Binom Pareto 0.8859 0.0898 

PH-Neg Binom Gen Pareto 0.5525 0.3593 

PH-Neg Binom OPPL 0.8963 0.0815 

PH-Neg Binom TPPL 0.8963 0.0815 

PH-Geo Weibull 0.9344 0.0515 

PH-Geo Pareto 0.9346 0.0514 

PH-Geo Gen Pareto 0.9164 0.0657 

PH-Geo OPPL 0.9067 0.0733 

PH-Geo TPPL 0.9347 0.0513 

Table 8.21. P-values and Multiple R for Panjer class (a, b, 0) aggregate loss models 

 

 
Table (8.21) illustrates that the p-values for the models considered were greater than 0.05 except for 

PH-Poisson Generalized Pareto model which shows that this model provided a good fit for the data. 

The aggregate loss probabilities for class (a, b, 0) and actual can be illustrated as: 
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Figure 8.12. Aggregate loss probabilities for Actual data 

 
 

   

(a) Aggregate Loss 

Probabilities PH Poisson 

Severity probabilities 

(b) Aggregate Loss 

Probabilities PH Negative 

Binomial Severity 

probabilities 

(c) Aggregate Loss 

Probabilities PH Geometric 

Severity probabilities 

Figure 8.13. Comparison of Aggregate loss probabilities using PH Poisson, PH Negative Binomial and PH 
Geometric distributions 

 
The data of aggregate loss probabilities using PH Panjer class (a, b, 0) can be represented graphically 

as shown in figure (8.13). Aggregate losses using PH Binomial distribution with the severity probabil- 

ities had numerous negative values hence they were not ploNed. Aggregate losses using PH Poisson 

and Generalized Pareto are similar to actual aggregate losses hence they are ploNed for comparison. 
 

Figure 8.14. Comparison of Agg loss prob using PH Pois with Gen Par and Actual probabilities 

 

Figure (8.14) shows comparison of aggregate loss probabilities using PH Poisson with Generalized 

Pareto and actual aggregate loss probabilities. PH Poisson and Generalized Pareto provided the best 

fit for class (a, b, 0). This is also supported by its p-value as it has the lowest p-value and the highest 

Multiple R. 



152 
 

— − 

1 

— − 
j
 

Z( j) = [P1 (A + B)P0]y( j) + ∑ y(x)Z( j x) 
x=1 

A + B 
j
 [I − Ay(0)] 

 

8.10 Estimation Aggregate loss probabilities using Panjer recursive model for 

class (a, b, 1) 

Phase type Panjer recursive model for class (a, b, 1) is expressed as: 

→ 
j 

→ x
 

−1 

 
 

where  →Z(0) = →YPT  because PT  is the initial condition for Panjer class (a, b, 1). 
1 1 

 

8.10.1 Aggregate Loss probabilities of phase type Zero -truncated Poisson and severity 

distribution 

 
The initial condition, matrices A and B of phase type Zero-truncated Poisson distribution are 

calculated as: 
 

PT =P1[I − P0]−1 A = 0 B = Λ 

Phase type Panjer recursive model when claim frequency distribution is Phase type Zero truncated 

Poisson distribution is expressed as: 
 

→ 
j 

→ 
x
 

 
Z( j) =→Y[P1 ΛP0]y( j) + ∑ y(x)Z( j x)(Λ   ) (8.78) 

x=1 

 

For three state multi-state model the initial condition is evaluated as: 

 
0.3649    0.0249    −0.0220  

 h   i
 

P1 =  0 0.2656 0.1023 

0 0 0.3679 

→YP1 = 0.0876 0.0220 0.2583 

 

The value of A = 0 and value B = Λ hence for three state they can be evaluated as : 

 
0.8788    0.1212 0  

A = 0 B =  0 0.3981 0.6019 

0 0 1.0000 
 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.78) 

the aggregate loss probabilities are: 

 

(8.77) 
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1 

− 

 

Z( j) =→Y P1 − — P[I − P] y( j) + ∑ y(x)Z( j x) 
x=1 

— P[I − P] 

y(0) 

0 0 0 

 

 

States Actual ZT Poi-Wei ZT Poi-GP ZT Poi-Par ZT Poi-OPPL ZT Poi-TPPL 

3 state 0.0002 0.0103 0.0016 0.0094 9.37 ∗ e13 1.02 ∗ e−8 

4 state 0.0011 0.0131 0.0172 0.01 1.19 ∗ e12 1.05 ∗ e−8 

5 state 0.0014 0 0.0796 0.0111 7.79 ∗ e−13 3.34 ∗ e−9 

6 state 0.0035 0.0141 0.0855 0.0107 1.89 ∗ e−13 1.63 ∗ e−9 

Table 8.22. Aggregate loss probabilities of phase type ZT Poisson and severity distributions 

 

 
Table (8.22) shows that actual aggregate loss probabilities are similar to aggregate loss probabilities 

using Zero-truncated Poisson and Generalized Pareto. 

 
8.10.2 Aggregate Loss probabilities of phase type Zero -truncated Binomial and severity 

distribution 

 
The initial condition, matrices A and B of phase type Zero-truncated Binomial distribution are 

calculated as: 
 

PT =P1[I − P0]−1 A = −P[I − P]−1 B = (α + 1)P[I − P]−1 

Phase type Panjer recursive model when claim frequency distribution is Phase type Zero truncated 

Binomial distribution is expressed as: 

 
→ −1 −1

 j 

→ −1 
 

−1 x 
   −1 −1 

 

For three state multi-state model the initial condition is evaluated as: 

 
0    −0.3174    −0.3174  

 h   i
 

P1 = 1.0e − 99 ∗ 0 0.2062 0.2062 

0 0 0 

→YP1 = 1.0e − 100 ∗ 0 −0.6374 −0.6374 

 

The value of A = −P[I − P]−1 and value B = (α + 1)P[I − P]−1 hence for three state they can be 

evaluated as : 

 
−7.2169 1.0000 0 

  
3399.2    −471 0  

 
 

A =  

0 −0.6496    1.0000   B =  0 306 −471 0 0 0 
Replacing values of three, four, five and six state model and severity probabilities in equation (8.79) 

the aggregate loss probabilities are: 

 

+ (α + 1)P[I − P] + (α + 1) 

P[I − P] 
j 

I + P[I − P] (8.79) 
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1 

    
− −  − −

 − − 

 

 

 

States Actual ZT Bin-Wei ZT Bin-GP ZT Bin-Par ZT Bin-OPPL ZT Bin-TPPL 

3 state 0.0002 7.6 ∗ e−99 5.9 ∗ e−101 5.4 ∗ e−99 1.7 ∗ e−110 1.8 ∗ e−106 

4 state 0.0011 0 0 0 0 0 

5 state 0.0014 0 −4.4 ∗ e−94 −9.5 ∗ e−98 −1.7 ∗ e−110 −7.1 ∗ e−107 

6 state 0.0035 0 0 0 0 0 

Table 8.23. Aggregate loss probabilities of phase type ZT Binomial and severity distributions 

 

 
Table (8.23) shows that actual aggregate loss probabilities are not similar to aggregate loss probabili- 

ties using Zero-truncated Binomial and severity distribution. 

 
8.10.3 Aggregate Loss probabilities of phase type Zero -truncated Geometric and severity 

distribution 

 
The initial condition, matrices A and B of phase type Zero-truncated Poisson distribution are 

calculated as: 
 

PT =P1[I − P0]−1 A = [I − P] B = 0 

Phase type Panjer recursive model when claim frequency distribution is Phase type Zero truncated 

Geometric distribution is expressed as: 
 

j 

→Z( j) =→Y  P1 [I P]P0  y( j) + ∑ y(x)→Z( j x)[I P][I [I P]y(0)]−1 (8.80) 

x=1 

 
 

For three state multi-state model the initial condition is evaluated as: 

 
0.1069    −0.0331    −0.0738  

 h   i
 

P1 =  0 0.2387 −0.2387 

0 0 0 

→YP1 = 0.0257 0.0064 −0.0321 

 

The value of A = [I − P] and value B = 0 hence for three state they can be evaluated as : 

 
0.1303    −0.1303 0  

A =  0 0.6066 −0.6066 B = 0 

0 0 0 
 

Replacing values of three, four, five and six state model and severity probabilities in equation (8.80) 

the aggregate loss probabilities are: 

 



155 
 

 

 

States Actual ZT Geo-Weib ZT Geo-GP ZT Geo-Par ZT Geo-OPPL ZT Geo-TPPL 

3 state 0.0002 2.2 ∗ e−19 5.4 ∗ e−20 2.2 ∗ e−19 1.3 ∗ e−29 4.1 ∗ e−25 

4 state 0.0011 5.3 ∗ e−23 5.3 ∗ e−23 5.3 ∗ e−23 6.2 ∗ e−33 5.1 ∗ e−29 

5 state 0.0014 0 0 6.8 ∗ e−21 3.9 ∗ e−31 0 

6 state 0.0035 5.3 ∗ e−23 4.2 ∗ e−22 2.6 ∗ e−23 7.7e−34 6.3 ∗ e−30 

Table 8.24. Aggregate loss probabilities of phase type ZT Geometric and severity distributions 

 

 
Table (8.24) shows that actual aggregate loss probabilities are not similar to aggregate loss probabili- 

ties using Zero-truncated Geometric and severity distribution. Table (8.25) represents p-values of 

aggregate loss probabilities shown in table (8.22) and table (8.24). 
 

Hypothesis 

H0 : Estimated aggregate losses for Panjer class (a, b, 1) 

are not correlated to actual aggregate losses 

P-value Multiple R 

PH-ZT Poisson Weibull 0.1273 0.7705 

PH-ZT Poisson Pareto 0.0946 0.8125 

PH-ZT Poisson Gen Pareto 0.0249 0.9239 

PH-ZT Poisson OPPL 0.4971 0.4854 

PH-ZT Poisson TPPL 0.4952 0.4080 

PH-ZT Geometric Weibull 0.9344 0.0515 

PH-ZT Geometric Pareto 0.9206 0.0624 

PH-ZT Geometric Gen Pareto 0.9255 0.0585 

PH-ZT Geometric OPPL 0.9205 0.0624 

PH-ZT Geometric TPPL 0.9347 0.0513 

Table 8.25. P-values and Multiple R for Panjer class (a, b, 1) aggregate loss models 

 
 

Table (8.25) indicates that the p-values for the models considered were greater than 0.05 except for 

PH ZT Poisson Generalized Pareto, indicating that it was the model which provided the good fit for 

the data. The data of aggregate loss probabilities using PH Panjer class (a, b, 1) and actual data can 

be represented graphically as shown in figure (8.15) as: 



156 
 

 
 
 

  

(a) Actual Aggregate Loss Probabilities (b) Aggregate Loss Probabilities PH ZT Poisson 

Severity probabilities 

 

  

(c) Aggregate Loss Probabilities PH ZT Binomial 

Severity probabilities 

(d) Aggregate Loss Probabilities PH ZT Geometric 

Severity probabilities 

Figure 8.15. Comparison of Aggregate loss probabilities using PH ZT Poisson, PH ZT Binomial and PH ZT 
Geometric distributions 

 
Figure (8.15) shows comparison of aggregate loss probabilities using PH ZT Poisson, PH ZT Binomial, 

PH ZT Geometric distributions with severity probabilities. It is evident that aggregate loss proba- 

bilities using PH ZT Poisson Generalized Pareto model were similar to actual probabilities hence 

they are ploNed for comparison. PH ZT Poisson Generalized Pareto had the lowest p-values and the 

highest Multiple R values hence it was considered as the best model. Figure (8.16) shows comparison 

of aggregate loss probabilities for PH ZT Poisson Generalized Pareto and actual probabilities. 
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Figure 8.16. Comparison of Agg loss prob PH ZT Pois-Gen Par and Actual 

 
Figure (8.16) shows that PH ZT Poisson Generalized Pareto provided a good fit although it slightly 

over estimated the aggregate loss probabilities. The model that had the lowest p-value and highest 

Multiple R was PH ZT Poisson Generalized Pareto model hence it was considered the best model. 

Figure (8.17) shows comparison of aggregate loss probabilities using best model for Panjer class 

(a, b, 0) and best model for Panjer class (a, b, 1). 
 

Figure 8.17. Comparison of Agg loss prob Pois- Gen Par , PH ZT Pois-Weib and Actual 

 
Figure (8.17) shows that PH Poisson Generalized Pareto model provided a beNer fit compared to PH 

ZT Poisson Generalized Pareto. 

 

8.11 Estimation Aggregate loss probabilities using Poisson Lindley 

distributions 

 
Discrete Fourier Transforms will be used to estimate aggregate loss probabilities of Poisson Lindley 

distributions. Discrete Fourier Transform is expressed as: 
 

X 
N−1 

X
 

n e 
−i2Πkn k 0 1 2 N 1 

k = ∑ ( ) N 

n=0 

= , , , ..., − (8.81) 
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N 

N 

N 

( ) = ∑ 
n=0 

( 
N N 

( ∑ 
n=0 

) N (8.82) 

 

 

Expression (8.81) is complex to compute hence it is simplified using Euler’s formula to: 
 

X k 
N−1 

X n cos

   
2Πkn 

 
 

i sin

  
2Πkn

 

X k 
N−1 

X
  

n Wkn 

 

 

which is the expression of DFT of claim amount or claim count probabilities. The claim amount 

and claim count probabilities are of the length 8, hence the matrix W is a primitive 8th root of unity 

leading to equation (8.82) being: 
 

7 

X (k) = ∑ X (n)Wkn 

 
(8.83) 

N=0 

 
 

8.11.1 Aggregate Loss probabilities of phase type one and two parameter Poisson Lindley 

and severity distribution 

 
The DFT of frequency is calculated by multiplying the matrix Wkn and phase type one parameter 

Poisson Lindley and phase type two parameter Poisson Lindley distributions which is expressed 

mathematically as: 
 

DFT of frequency = Wkn ∗ frequency /severity probabilities 

where in this case the frequency probabilities belong to phase type one parameter Poisson Lindley 

and phase type two parameter Poisson Lindley distributions and severity probabilities belong to 

Weibull, Generalized Pareto, Pareto, one parameter Poisson Lindley and two parameter Poisson 

Lindley distributions. 

 
8.11.2 Tabulation of aggregate loss probabilities using OPPL and TPPL distributions 

 
The aggregate loss probabilities using phase type one parameter Poisson Lindley distribution and 

severity distributions as obtained from equation (8.83) are: 

 

States Actual PH-OPPL 

Wei 

PH-OPPL 

Par 

PH-OPPL 

GP 

PH-OPPL 

OPPL 

PH-OPPL 

TPPL 

3 state 0.0002 0.00028 0.00026 0.00045 2.6971 ∗ e−14 2.9146 ∗ e−10 

4 state 0.0011 0.00057 0.00047 0.0005 5.4223 ∗ e−14 5.1986 ∗ e−10 

5 state 0.0014 0.00044 0.00067 0.00223 6.3975 ∗ e−14 4.9640 ∗ e−10 

6 state 0.0035 0.00074 0.00083 0.00365 5.5951 ∗ e−14 4.4436 ∗ e−10 

Table 8.26. Aggregate loss probabilities of phase type OPPL and severity distributions 

) − ) = ( 
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Table (8.26) illustrates that phase type one parameter Poison Lindley with Weibull, Pareto and 

Generalized Pareto are similar to actual aggregate loss probabilities. The aggregate loss probabilities 

using phase type two parameter Poisson Lindley distribution and severity distributions as obtained 

from equation (8.83) are: 

 

States Actual PH-TPPL 

Wei 

PH-TPPL 

Par 

PH-TPPL 

GP 

PH-TPPL 

OPPL 

PH-TPPL 

TPPL 

3 state 0.0002 0.00024 0.00022 0.00003 2.2921 ∗ e−14 2.4783 ∗ e−10 

4 state 0.0011 0.00051 0.00042 0.00043 4.7997 ∗ e−14 4.6248 ∗ e−10 

5 state 0.0014 0.00042 0.00061 0.00193 5.85556 ∗ e−14 4.6240 ∗ e−10 

6 state 0.0035 0.00067 0.00075 0.00327 5.2901 ∗ e−14 4.2082 ∗ e−10 

Table 8.27. Aggregate loss probabilities of phase type TPPL and severity distributions 

 

 
Table (8.27) illustrates that phase type OPPL with Weibull, Pareto and Generalized Pareto are similar 

to actual aggregate loss probabilities. 

 

Hypothesis 

H0 : Estimated aggregate losses for Poisson Lindely 

are not correlated to actual aggregate losses 

P-value Multiple R 

PH OPPL-Weibull 0.0243 0.9250 

PH OPPL-Pareto 0.0184 0.9378 

PH OPPL-Gen Pareto 0.0061 0.9703 

PH OPPL-OPPL 0.0649 0.8547 

PH OPPL-TPPL 0.0885 0.8208 

PH TPPL-Weibull 0.0222 0.9294 

PH TPPL-Pareto 0.0164 0.9424 

PH TPPL-Gen Pareto 0.0056 0.9717 

PH TPPL-OPPL 0.0564 0.8678 

PH TPPL-TPPL 0.0778 0.8358 

Table 8.28. P-values and Multiple R for Poisson Lindley aggregate loss models 

 

 
Table (8.28) illustrates that the p-values for the models considered were less than 0.05 for PH OPPL 

with continuous severity distributions and PH TPPL with continuous severity distributions indicating 

that they were the significant models for mixture models. Aggregate loss probabilities in table (8.26) 

and (8.27) can be represented graphically as: 
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N 

N 

 
 
 

   

(a) Actual aggregate loss 

probabilities 

(b) Aggregate Loss Probabilities PH 

OPPL Severity probabilities 

(c) Aggregate Loss Probabilities PH 

TPPL Severity probabilities 

Figure 8.18. Comparison of Aggregate loss probabilities using PH OPPL and PH TPPL distributions 

 
Figure (8.18) shows that PH OPPL Generalized Pareto and PH TPPL Generalized Pareto models 

were similar to actual aggregate loss probabilities hence they will compared to determine which 

provides a beNer fit. Figure (8.19) shows comparison of aggregate loss probabilities using PH OPPL 

with Generalized Pareto, PH TPPL with Generalized Pareto and actual probabilities. 
 

Figure 8.19. Comparison of Agg loss pro PH OPPL-Gen Par, PH TPPL-Wei, PH TPPL-Gen Par and Actual 

 
Figure (8.19) shows that PH TPPL with Generalized Pareto provided a beNer fit compared to PH 

OPPL with Generalized Pareto model. This is also supported by its p-values and Multiple R values 

which were the lowest compared to all the other models. 

 
8.11.3 Aggregate Loss probabilities of phase type ZT one and ZT two parameter Poisson 

Lindley and severity distribution 

 
The DFT of frequency is calculated by multiplying the matrix Wkn and phase type Zero-truncated 

one parameter Poisson Lindley and phase type Zero truncated two parameter Poisson Lindley 

distributions which is expressed mathematically as: 

DFT of frequency = Wkn ∗ frequency /severity probabilities 

where in this case the frequency probabilities belong to phase type Zero truncated one parameter 

Poisson Lindley and phase type Zero truncated two parameter Poisson Lindley distributions and 

severity probabilities belong to Weibull, Generalized Pareto, Pareto, one parameter Poisson Lindley 

and two parameter Poisson Lindley distributions. 
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8.11.4 Tabulation of aggregate loss probabilities using ZT OPPL and ZT TPPL distribu- 

tions 

 
The aggregate loss probabilities using phase type Zero-truncated one parameter Poisson Lindley 

distribution and severity distributions as obtained from equation (8.83) are: 

 

States Actual PH-ZT 

OPPL Wei 

PH-ZT 

OPPL Par 

PH-ZT 

OPPL GP 

PH-ZT OPPL 

OPPL 

PH-OPPL 

TPPL 

3 state 0.0002 0.00046 0.00042 0.00007 4.3099 ∗ e−14 4.6599 ∗ e−10 

4 state 0.0011 0.00092 0.00076 0.00080 8.6717 ∗ e−14 8.3142 ∗ e−10 

5 state 0.0014 0.00071 0.00107 0.00356 1.0233 ∗ e−13 7.9414 ∗ e−10 

6 state 0.0035 0.00118 0.00131 0.00583 8.9547 ∗ e−14 7.1121 ∗ e−10 

Table 8.29. Aggregate loss probabilities of phase type ZT OPPL and severity distributions 

 

 
Table (8.29) shows that phase type Zero-truncated one parameter Poisson Lindley with Weibull, 

Pareto and Generalized Pareto are similar to actual aggregate loss probabilities. The aggregate 

loss probabilities using phase type Zero-truncated two parameter Poisson Lindley distribution and 

severity distributions as obtained from equation (8.83) are: 

 

States Actual PH-ZT 

TPPL Wei 

PH-ZT 

TPPL Par 

PH-ZT 

TPPL GP 

PH-ZT TPPL 

OPPL 

PH-ZT TPPL 

TPPL 

3 state 0.0002 0.00026 0.00024 0.00004 2.4535 ∗ e−14 2.6528 ∗ e−10 

4 state 0.0011 0.00054 0.00044 0.00046 5.1165 ∗ e−14 4.9276 ∗ e−10 

5 state 0.0014 0.00044 0.00064 0.00206 6.1967 ∗ e−14 4.8778 ∗ e−10 

6 state 0.0035 0.00071 0.00079 0.00347 5.5426 ∗ e−14 4.4011 ∗ e−10 

Table 8.30. Aggregate loss probabilities of phase type ZT TPPL and severity distributions 

 

 
Table (8.30) shows that phase type OPPL with Weibull, Pareto and Generalized Pareto are similar to 

actual aggregate loss probabilities. 



162 
 

 

 

Hypothesis 

H0 : Estimated aggregate losses for ZT Poisson Lindely 

are not correlated to actual aggregate losses 

P-value Multiple R 

PH ZT OPPL-Weibull 0.0243 0.9251 

PH ZT OPPL-Pareto 0.0184 0.9378 

PH ZT OPPL-Gen Pareto 0.0061 0.9702 

PH ZT OPPL-OPPL 0.0648 0.8549 

PH ZT OPPL-TPPL 0.0883 0.8211 

PH ZT TPPL-Weibull 0.0230 0.9277 

PH ZT TPPL-Pareto 0.0168 0.9414 

PH ZT TPPL-Gen Pareto 0.0057 0.9715 

PH ZT TPPL-OPPL 0.0584 0.8647 

PH ZT TPPL-TPPL 0.0806 0.8318 

Table 8.31. P-values and Multiple R for ZT Poisson Lindley aggregate loss models 

 

 
Table (8.31) illustrates that the p-values for the models considered were less than 0.05 for PH ZT 

OPPL with continuous severity distributions and PH ZT TPPL with continuous severity distributions 

indicating that they were the significant models. Aggregate loss probabilities in table (8.29) and 

(8.30) can be represented graphically as: 
 
 

   

(a) Actual aggregate loss 

probabilities 

(b) Aggregate Loss Probabilities 

PH ZT OPPL Severity 

probabilities 

(c) Aggregate Loss Probabilities 

PH ZT TPPL Severity 

probabilities 

Figure 8.20. Comparison of Aggregate loss probabilities using PH ZT OPPL and PH ZT TPPL distributions 

 
Figure (8.20) shows that PH ZT OPPL with Generalized Pareto and PH ZT TPPL with Generalized 

Pareto were similar to actual aggregate loss probabilities hence they will compared to determine 

which provides a beNer fit. Figure (8.21) shows comparison of aggregate loss probabilities using PH 

ZT OPPL with Generalized Pareto and PH ZT TPPL with Generalized Pareto and actual probabilities. 
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Figure 8.21. Comparison of Agg loss pro PH ZT OPPL-Gen Par, PH ZT TPPL-Gen Par and Actual 

 
Figure (8.21) shows that PH-ZT TPPL Generalized Pareto model provided a beNer fit compared to PH- 

ZT OPPL Generalized Pareto model. Figure (8.22) shows comparison of aggregate loss probabilities 

using PH TPPL with Generalized Pareto and PH ZT TPPL with Generalized Pareto and actual 

probabilities. 
 

Figure 8.22. Comparison of Agg loss pro PH TPPL-Gen Par, PH ZT TPPL-Gen Par and Actual 

 
Figure (8.22) shows both PH TPPL Generalized Pareto and PH ZT TPPL Generalized Pareto were 

very close to be differentiated graphically. They can be chosen using p-value and Multiple R values 

where PH TPPL Generalized Pareto model is superior. Figure (8.23) shows comparison of aggregate 

loss probabilities using PH Poisson Generalized Pareto, PH TPPL Generalized Pareto models and 

actual probabilities. 
 

Figure 8.23. Comparison of Agg loss pro PH Pois-Gen Par, PH TPPL-Gen Par and Actual 

 
Figure (8.23) shows that PH TPPL Generalized Pareto model provided the overall best model for 

secondary cancer data. This model had also the lowest p-values and Multiple R. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

 
9.1 Summary of Results and Challenges 

 
The objective of this study is to estimate aggregate loss probabilities using Phase type distributions.  

Phase type distributions of class (a, b, 0), class (a, b, 1) and phase type Poisson Linldey distributions 

were considered as frequency distributions and both continuous and discrete distributions were 

considered in modeling severity data. Chapman-Kolmogorov equations were considered in construc- 

tion of multi-state models. This research considered three, four, five and six state secondary cancer 

multi-state models. Phase type distributions improves estimation of aggregate loss probabilities 

of diseases which are dynamic like cancer. The best phase type distribution of class (a, b, 0) , class 

(a, b, 1) and phase type Poisson Lindley distributions in estimation of aggregate loss probabilities 

were determined. 

 
9.1.1 Frequency and Severity distributions. 

 
The claim frequency distributions were phase type distributions from Panjer class (a, b, 0), class 

(a, b, 1) and phase type Poisson Lindley distributions. Phase type distribution of class (a, b, 0) 

considered were PH Poisson, PH Negative Binomial , PH Binomial and PH Geometric distributions, 

for class (a, b, 1) the distributions considered were PH Zero Truncated Poisson, PH Zero truncated 

Binomial and PH Zero truncated Geometric distributions and PH one parameter Poisson Lindley, 

PH two parameter Poisson Lindley, PH ZT one parameter Poisson Lindley and PH ZT two parameter 

Poisson Lindley for Poisson Lindley distributions. The frequency probabilities using PH distributions 

of Panjer class (a, b, 0) are shown in figure (8.2) and showed that PH Poisson had a similar trend as 

the actual frequency probabilities. PH Poisson was compared with actual probabilities as shown 

in figure (8.3) and PH Poisson modeled the frequency data best for class (a, b, 0). Phase type 

Poisson improves estimation of frequency distribution by in cooperating the transition probability of  

secondary cancers which can not be achieved using ordinary Poisson distribution. Phase type Poisson 

distribution solved the problem faced by insurance firms of underestimation of claim frequency 

which consequently results to errors in estimation of aggregate losses. This can lead insurance firms 

in to ruin as the reserves set aside will not be able to cater for the claims. 

Frequency probabilities using PH ZT Poisson decreased from three state model to six state model. 

PH ZT Binomial probabilities had probabilities of zero for four state and six state model. PH ZT 

Geometric probabilities had zero probabilities for four state and five state models. PH ZT Poisson 

had frequency probabilities which were similar to actual data as shown in figure (8.4). Comparing 

PH ZT Poisson and actual probabilities as shown in figure (8.5) PH ZT Poisson provided the best fit 

for frequency data using distribution of PH Panjer class (a, b, 1). PH OPPL and TPPL distributions 

are as shown in figure (8.6) and it evident that they are similar to actual frequency probabilities 

hence were compared to determined which provided the best fit. Figure (8.7) shows that phase 
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type TPPL provided a good fit for all the states. PH ZT OPPL and ZT TPPL distributions are as 

shown in figure (8.8) and it evident that they are similar to actual frequency probabilities hence were 

compared to determined which provided the best fit. Figure (8.9) compares all the best frequency 

models but it was differentiate the best model hence P values and R statistics are used. The two best  

distributions for class (a, b, 0) and (a, b, 1) are compared in figure (8.9) and shows that PH TPPL 

provided the best overall model for the two classes of distributions based on Multiple R value. 

Severity probabilities using both discrete and continuous distributions are shown in figure (8.10). The 

severity probabilities of Generalized Pareto distribution increased between the three state model and 

six state model which is similar to the actual data. Figure (8.11) compares Generalized Pareto and 

actual probabilities and shows that Generalized Pareto provides a good fit for severity probabilities. 

One parameter Poisson Lindley distribution and two parameter Poisson Lindley distribution were 

totally different from the actual data hence they can not be considered as good models for cancer 

severity data as they under estimate the severity probabilities which gives a negative effect on the 

insurance companies. 

 

9.1.2 Panjer’s recursive model 

 
Estimation of aggregate loss distributions using Phase type Panjer recursive method depend mainly 

on the primary distribution which is the frequency distribution. Aggregate loss probabilities of PH 

Panjer distributions of class (a, b, 0) are shown in figure (8.13). Aggregate loss probabilities using 

PH Poisson with Generalized Pareto provided a good fit for secondary cancer data. The aggregate 

loss probabilities estimated using PH Poisson distribution with Generalized Pareto distribution had 

the same trend as actual aggregate loss probabilities hence it is considered as a good model for 

modeling aggregate losses for secondary cancer data. Comparing PH Poisson Generalized Pareto 

model with actual aggregate loss probabilities as illustrated in figure (8.14) PH Poisson-Generalized 

Pareto provided the best fit as it was a good model for all state although it slightly overestimated 

aggregate loss probabilities. PH Poisson-Weibull, Pareto, OPPL and TPPL model had aggregate 

losses probabilities lower than the actual aggregate probabilities hence they did not model the effect 

of in-cooperating the transition probabilities hence they can not be considered as a good model 

for secondary cancer cases. PH Negative Binomial and PH Geometric model had aggregate loss 

probabilities which were way lower than the actual aggregate loss probabilities hence they can not 

be considered as a good fit as it underestimate the aggregate losses. This research concludes that 

PH Poisson with Generalized Pareto distribution provided the best model for modeling aggregate 

loss probabilities for class (a, b, 0). PH Poisson with one parameter Poisson Lindley and two param- 

eter Poisson Lindley under estimated the aggregate loss probabilities which could lead to under 

estimation of reserves which can lead to insurance firms going to ruin. Aggregate loss probabilities 

using PH Negative Binomial and severity reduced from three state to the four state model, increased 

to five state model and reduced for six state model which is contrary with actual aggregate loss 

probabilities hence PH Negative Binomial model was not a good model with any of the severity 

distribution for secondary cancer data. 

Frequency probabilities using PH distributions of Panjer class (a, b, 1) are shown in figure (8.15). 

Aggregate loss probabilities using PH ZT Poisson with Weibull, Pareto, OPPL and TPPL were low 

hence they did not provide a good fit for the aggregate loss probabilities. PH ZT Poisson with 
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Generalized Pareto distributions were similar to the actual aggregate loss distributions hence they 

are compared with the actual data as shown in figure (8.16) to determine if it provides a good fit for 

secondary cancer data. Comparing the PH ZT Poisson- Generalized Pareto model with actual data 

it shows that slightly overestimated the aggregate losses. Aggregate loss probabilities using PH ZT 

Geometric distribution with severity distributions and PH ZT Binomial distribution with severity 

distributions were inconsistent with real data hence they could not be considered as good models 

in modeling secondary cancer data. Aggregate loss probabilities using distributions of Panjer class 

(a, b, 1) were best modeled using ZT Poisson distribution and Generalized Pareto distribution. 

Aggregate loss probabilities for Panjer class (a, b, 0), PH Poisson and Generalized Pareto distribution 

provided the best fit while for Panjer class (a, b, 1), the best model was PH ZT Poisson with General- 

ized Pareto distribution. The two models were compared as shown in figure (8.17) and PH Poisson 

with Generalized Pareto distribution provided the best fit for the data between the two models. 

 
9.1.3 Phase type Poisson Lindley model 

 
Aggregate loss probabilities of PH OPPL and PH TPPL with severity probabilities are shown in figure 

(8.18). Aggregate loss probabilities using PH OPPL with Generalized Pareto and PH TPPL with 

Generalized Pareto provided a good fit for secondary cancer data. The aggregate loss probabilities 

estimated using these two models had the same trend as actual aggregate loss probabilities hence 

they are compared to determine which model provide the best fit for secondary cancer cases. 

Comparing the two models with actual aggregate loss probabilities as illustrated in figure (8.19) 

indicated that PH TPPL-Generalized Pareto provided the best fit as it was a good model for all states. 

PH OPPL and PH TPPL with one parameter Poisson and two parameter Poisson under estimated the 

aggregate loss probabilities which could lead to under estimation of reserves which can consequently 

lead to insurance firms going into ruin. 

Aggregate loss probabilities of PH ZT OPPL and PH ZT TPPL with severity probabilities are shown 

in figure (8.20). Aggregate loss probabilities using PH ZT OPPL with Generalized Pareto and PH 

ZT TPPL with Generalized Pareto provided a good fit for secondary cancer data. The aggregate 

loss probabilities estimated using these two models had the same trend as actual aggregate loss 

probabilities hence they are compared to determine which model provide the best fit for secondary 

cancer cases. Comparing the two models with actual aggregate loss probabilities as shown in figure 

(8.21) indicated that PH ZT TPPL-Generalized Pareto provided the best fit as it was a good model 

for all states although it slightly overestimated the aggregate loss probabilities for five state model. 

PH ZT OPPL and PH ZT TPPL with one parameter Poisson and two parameter Poisson under 

estimated the aggregate loss probabilities which could lead to under estimation of reserves which 

can consequently lead to insurance firms going into ruin. 

Comparing the best models PH TPPL Generalized Pareto, PH ZT TPPL Generalized Pareto with 

actual aggregate loss probabilities as shown in figure (8.22) indicated that PH TPPL-Generalized 

Pareto provided the best fit as it was a good model for all states. Figure (8.23) compares the best 

models for PH Panjer classes and PH Poisson Lindley models with actual aggregate loss probabilities 

indicating that PH TPPL-Generalized Pareto provided the best fit as it was a good model for all 

states. 
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9.2 Recommendation 

 
The following recommendations have been suggested from this research. 

 
9.2.1 Frequency and Severity 

 
More research can be done on other Phase type distributions in estimation of claim frequency 

distributions as well as severity distributions where it is applicable. Research can also be done on 

discretization of severity probabilities using the method of local moment matching. 

The aggregate loss probabilities were only considered for secondary cancer data hence this method 

can be applied in other diseases which can apply multi-state model such as Hiv-Aids. 

 

9.2.2 Phase type Panjer recursive method 

 
Other distributions of phase type Panjer class (a, b, 1) can be used to estimate the frequency 

probabilities. 

Aggregate loss probabilities using different data set for other diseases can be modeled using phase 

type Panjer recursive model. 

 
9.2.3 Poisson Lindley model 

 
Other Poisson Lindley distributions such as the three parameter Poisson Lindley distributions can 

be used to estimate the frequency probabilities. 

Aggregate loss probabilities using different data set for other diseases can be modeled using phase 

type Poisson Lindley models. 

 

9.2.4 Policy implications 

 
This research can be used to improve estimation of aggregate losses of diseases which have multiple 

transition states. Policies can be drafted on how to implement this research on current policies in a 

way that will be beneficial for both the insurance firms as well as the policyholders as it will greatly 

improve access of health care for these diseases. This research methodology can also be extended to 

other field which in-cooperate multi- state models. 
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Appendices 

 
Appendix I 

 
This appendix shows MATLAB codes used in estimating matrix parameters of phase type distribu- 

tions. 

 
MATLAB codes for matrix parameters 



174 
 

 
 

 

 



175 
 

 

Appendix II 

 
This appendix shows MATLAB codes used in calculating frequency probabilities of phase type 

distributions. 

 
MATLAB codes for frequency probabilities 
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Appendix III 

 
This appendix shows MATLAB codes used in calculating severity probabilities. 

 
MATLAB codes for severity probabilities 
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