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ABSTRACT 

The estimation of the demand for health commodities is an important aspect in the prevention of 

stock outs in health facilities. More so, given the numerous challenges that public health facilities 

in developing countries face regarding commodity procurement, accurate estimation of the 

commodities required is critical. Insulin therapy is a cornerstone in the management of diabetes 

aiding in abating diabetic complications.  

This study considered the use of time series models premised on the Box-Jenkins methodology 

Autoregressive Integrated Moving Average (ARIMA) method to explore the trends of insulin 

utilisation in Kiambu Level 5 County Referral Hospital and to forecast its consumption using 

monthly aggregates of insulin consumption from January 2014 to June 2020, including the 

COVID-19 period.  

The average annual consumption of insulin was 1359 (SD = 283) vials, with the consumption 

showing a generally decreasing linear trend with a maximum consumption of 2316 vials in 2014 

and a minimum consumption of 661 vials in 2017. The maximum six-month forecast consumption 

of insulin was 103 vials in March 2019, while the minimum forecast consumption of insulin was 

92 vials in January 2019 and the average forecast insulin consumption was 98 (SD = 2) vials.  

The maximum pre-Covid consumption of insulin was 38 vials, while the minimum consumption 

of insulin was 19 vials, with the average insulin consumption during this period being 30 (SD = 1) 

vials. The maximum post-Covid consumption of insulin was 43 vials, while the minimum 

consumption of insulin was 21 vials, with the average insulin consumption during this period being 

30 (SD = 1) vials. There was no discernible difference in the patterns of consumption during these 
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two time periods. The results are important to policy makers in the medical sector for planning the 

purchase and inventory maintenance of insulin stock in the county. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Insulin replacement therapy is one of the cornerstones in the pharmacotherapy of diabetes. It is 

indicated when a patient has severe hyperglycemia, has Type I diabetes, or has not achieved 

optimal glycemic control with oral agents. A variety of insulin formulations have been developed 

differing with respect to source i.e., bovine insulin isolated from a cow’s pancreas, porcine insulin 

isolated from a pig’s pancreas or human insulin obtained either from recombinant 

deoxyribonucleic acid (DNA) technology or enzymatic modification of porcine insulin. These 

formulations also differ with regard to duration and onset of action i.e. short, intermediate or long 

acting insulins (Brogden & Heel, 1987; Heinemann & Richter, 1993).  

Increasing prevalence of prediabetic and diabetic patients as well as a significant proportion of 

undiagnosed diabetes causing an increase in demand for insulin, availability of insulin in public 

health institutions is a matter of critical importance (Whiting, Guariguata, Weil, & Shaw, 2011). 

The catchment population of public health institutions makes this issue even more serious owing 

to the fact they are mostly low-income earners and solely depend on these facilities to provide 

insulin to them due to the price difference from private healthcare facilities. As a result, 

uninterrupted supply of insulin is required in these facilities if the patients are to achieve their 

optimum glycemic targets and abate complications arising from the disease (Lipscombe et al., 

2018).  

Conversely however, public health facilities are frequently plagued with stock outs of essential 

health commodities. More so, health commodities such as insulin that are expensive to purchase 

are more often affected. Several factors have been identified as reasons for frequency of stock-

outs in public health care facilities. These factors include: incorrect forecast estimates of quantities 
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required for reordering, inadequate allocation of funds for health commodity procurement, 

infrastructural challenges such as lack of transport and storage facilities and sub-optimal 

production from health commodity manufacturers (Wagenaar et al., 2014). 

Health commodity demand estimation is one of the crucial components in ensuring the security of 

the supply chain of health commodities. Accurate estimations result in more accurate predictions 

resulting in a decreased frequency of stock outs of these commodities (USAID & DELIVER, 

2014). This in turn helps in the mobilization of resources where additional health commodities are 

required, optimal use of the available resources, development of a more responsive supply and 

procurement plan as well as gap identification in the existing supply chains (JSI & SIAPS, 2015). 

Forecasting refers to the process of estimating the future demand of a particular commodity. 

Typically, forecasting utilizes historical data to come up with a future estimate. However, where 

historical data is not available, subjective forecasts known as judgmental forecasts are employed 

(Papalambros & Wilde, 2018).  

Time series analysis has utility not only in the determination of utilization of insulin through 

descriptive analysis but also in the prediction of future quantities of insulin required through time 

series modelling (World Health Organisation, 2018). Autoregressive (AR) models are used to 

forecast quantities based in correlation of a dependent variable and past values of the dependent 

variables. Moving average (MA) models are used to forecast quantities based on correlation of a 

dependent value and past error terms or random shocks. Autoregressive Integrated Moving 

Average (ARIMA) combines both the AR and the MA processes accounting for dependencies with 

past values of the variable as well as random shocks (Papalambros & Wilde, 2018).  

The impact of COVID-19 on the global healthcare outlook has been quite significant. In 

developing countries however, the impact has been felt even more. Institution of a lockdown and 
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curfew hours within the country has affected the accessibility to hospitals by patients. In addition, 

hospitals handling COVID-19 cases, whether suspected or confirmed, have noted an aversion by 

other patients to their facilities due to the fear of the risk of contracting the disease (Bernstein & 

Stead, 2020). This has further decreased access to these facilities. This reduced access may have 

far reaching implications especially in chronic conditions such as diabetes that require regular 

visits to hospital facilities for follow-up checkups (Schaffer, 2020).  

1.2 Problem Statement 

Among the biggest challenges in the provision of healthcare in the public sector is that of perennial 

stock-outs of essential health commodities. These stock-outs in turn, worsen the health outcomes 

for patients due to discontinuation of treatment or alterations to harsher treatment regimens 

(Koomen, Burger, & Van Doorslaer, 2019). Pasquet et al. (2010) noted a direct positive correlation 

between non-adherence to treatment and increased frequency of stock-outs.  

High stock-outs of insulin in public health care have been identified as one of the greater 

impediments to access of care for diabetic patients. Delayed access to insulin in these patients 

often leads to severe and permanent complications including ophthalmic complications resulting 

in blindness; cardiovascular complications; end-stage renal disease; and development of diabetic 

foot that may eventually lead to amputations Optimal stocking of insulin is therefore of paramount 

importance. However, challenges such as improper forecasting techniques result in insulin stock-

outs.  

1.3 Justification 

A study conducted in Tanzania reported one of the interventions applied in mitigating the 

frequency of stock-outs was a shift to a more efficient stock forecasting technique (Wales, Tobias, 

Malangalila, Swai, & Wild, 2014). Leung et al. (2016) identified the need for changing the 
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forecasting technique to account for seasonality and variations in trend over time is critical in in 

getting better forecast estimates as well as having better inventory levels.  

The current method being used to determine the quantity to reorder is a moving average process, 

with only three months of past consumption data being used in this analysis. The paucity of past 

consumption data limits the method’s capability to capture long term seasonal and trend variations 

in insulin consumption. Additionally, the moving average process only typifies the relationship 

between a dependent variable and past random shocks or errors. Using an ARIMA model instead 

incorporates the relationship between a dependent variable and past value of itself into the moving 

average model as well (Papalambros & Wilde, 2018).  A wider range of past consumption data is 

utilized in the development of the model. This proposal therefore seeks to address a gap in practice 

by exploring ARIMA time series models to forecast the insulin consumption need for Kiambu 

Level 5 County Referral Hospital. 

1.4 Research Questions 

i. What is the five-year trend and yearly insulin consumption in Kiambu Level 5 County Referral 

Hospital between January 2014 and December 2018? 

ii. What ARIMA time series model best fits the insulin consumption in Kiambu Level 5 County 

Referral Hospital between January 2014 and December 2018 and what are the subsequent six-

month forecasts from this model? 

iii. What is the impact of onset of the COVID-19 pandemic on insulin consumption in Kiambu 

Level 5 Hospital? 
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1.5 Objectives of the Study 

1.5.1 General Objective 

To determine the trends and dynamics in the utilization of insulin in Kiambu Level 5 County 

Referral Hospital. 

1.5.2 Specific Objectives 

(i) To determine the five-year trend and yearly insulin consumption in Kiambu Level 5 County 

Referral Hospital between January 2014 and December 2018. 

(ii) To specify a model for insulin consumption using the consumption data between January 

2014 and December 2018 and further forecast the insulin consumption for Kiambu Level 

5 County Referral Hospital from January 2019 to June 2019 

(iii)To assess the impact of COVID-19 on insulin consumption by comparing insulin 

consumption between April 2019-June 2019 and April 2020-June 2020 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Social-Economic burden of diabetes 

Diabetes impacts the economy in both subtle and more overt ways. Diabetes directly increases the 

amount of health expenditure by a household to accommodate the additional visits to healthcare 

facilities, medications required, and follow-up health technologies needed such as glucose test 

strips for routine sugar monitoring. Indirectly, the effects of the disease on the economy build on 

the loss of productivity by individuals afflicted with the disease. Metrics such as shrinking 

workforce resulting from death or incapacitation, absenteeism due to additional hospital visits, 

diminished work output due to decreased body functionality are estimated to give an approximate 

effect. The total economic burden of the disease is then a sum-total of the direct and indirect 

estimated costs of the disease (Bommer et al., 2018). 

Bommer et al. (2017) put the approximate cost of the global economic burden of diabetes at 

US$1.3 trillion, with the indirect economic impact estimated at US$450 billion. The largest 

contribution to these costs was from the shrinking workforce, accounting for up to 48.5% of these 

costs, closely followed by mortality, accounting for up to 45.5% of the costs. In Africa, these costs 

were estimated to be in the region of US$25.52 billion (Kirigia et al., 2009).  

In addition to the deleterious clinical effects diabetes has to an individual’s body, the economic 

effects threaten to prove just as devastating. A study conducted in New Zealand concluded that the 

total cost of healthcare for a patient with diabetes was three times that of a patient with no diabetes 

(Crew, 2016). In instances where a patient with diabetes loses their gainful source of income due 

to effects of the disease, the indirect cost of the disease is significantly higher than the additional 

direct costs of healthcare due to the disease. In Indonesia, Soegondo (2016) estimated the cost of 

managing myocardial infarction in diabetes to be around US$22000, making it the most expensive 
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diabetic complication to manage clinically. Other major contributors to the direct additional costs 

of healthcare due to diabetes include haemodialysis costs resulting from nephropathic 

complications, amputation costs and costs arising from kidney transplantation. 

Socially, the decrease in the quality of life of a patient afflicted with diabetes comes to the fore. 

Amputations arising from complications of the disease result in decreased ambulatory functioning 

of an individual, limiting his or her socialisation in a sense, stigma from some members of society 

as well as a decreased perceived sense of self-worth. Blindness resulting from the disease results 

in a need for additional dependence on others just to maintain the normal social functioning of an 

individual, significantly altering their quality of life. Nutritional freedom is also affected because 

of the restricted nutritional choices available to stop the normal progression of the disease, with 

this freedom further curtailed in cases where the patient is already undergoing dialysis. Within the 

family setup, the dynamic could be significantly altered in cases where patients develop erectile 

dysfunctions arising from autonomic neuropathic complications. Finally, the exclusion of an 

individual from the community in instances of hospital admission could also significantly affect 

the individual’s social setup and quality of life involuntary. 

2.2 Aetiology and classification of diabetes 

One of the principal causes of Type I diabetes is the autoimmune degradation of the β-pancreatic 

cells where antibodies target glutamic acid decarboxylase and tyrosine phosphatase or both,  in 

about 99% of the patients (Chowdhury, Mijovic & Barnett, 1999). The major causes of Type II 

diabetes are the gradual, progressive deterioration of β-pancreatic cell function and development 

of resistance to insulin by tissues in the body, inhibiting proper glucose uptake from the 

bloodstream of an individual. This arises from a multiplicity of a mix of host factors, such as the 

genetic predisposition of an individual and environmental factors such as the nutritional choices 
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of an individual. Clinical conditions that disrupt the normal functioning of the endocrine system 

such as somatostatinomas, hyperthyroidic states, Cushing’s syndrome and glucagonomas interfere 

with the optimal glucose regulation in the body (Resmini, Minuto, Colao & Ferone, 

2009).  Infections from viruses such as Hepatitis C Virus, pancreatic disease conditions such as 

hereditary hemochromatosis, cystic fibrosis and inflammation of the pancreas, therapeutic drugs 

harmful to the pancreas and predisposing genetic states of an individual could also result in the 

development of diabetes by patients (O’Riordan, Robinson, Donaghue & Moran, 2009; Tattersall 

& Fajans, 1975). 

Types I and II are the most prevalent forms of diabetes. The main difference between these two 

forms of diabetes is in the onset of the disease and the levels of insulin secretion by the β-pancreatic 

cells. In Type I, the manifestation of the disease is at a young age and the insulin secretion by the 

β-pancreatic cells is almost non-existent, necessitating the need for institution of insulin in the 

management of the disease, whereas in Type II, the manifestation of the disease is at a much older 

age with a diminished level of endogenous insulin being produced or development of resistance to 

insulin by tissues of the body (Deshpande, Harris-Hayes & Schootman, 2008). Symptomatic 

differentiation of these two forms of disease is difficult due to the similarity of the clinical 

symptoms and complications of the disease. Although there was a significant distinction between 

these two diseases could be drawn from the fact that insulin therapy is the mainstay therapy in 

Type I, this distinction is progressively growing bleaker with the increasing prevalence of insulin 

use in Type II diabetes. In the event of a need for clinical distinction, this can be done more 

conclusively by determining the presence or absence of autoantibodies against tyrosine 

phosphatases (TP) and glutamic acid decarboxylase (GAD) (Falorni et al., 2000).  
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2.3 Complications of diabetes 

Untreated diabetes for protracted periods of time results in several complications in the body. 

There are two types of complications: microvascular and macrovascular complications. 

Microvascular complications arise from the damage of the endothelium by glucose molecules, 

increase in the vascular oxidative stress resulting from release of superoxide radicals and 

development of advanced glycation end products. These complications include neuropathies, 

retinopathies, and nephropathies (Vithian & Hurel, 2010). Macrovascular complications result 

from an atherogenic process triggered by an elaborate inflammatory response that causes 

monocytes to migrate to the sub-endothelium potentially causing conditions such as hemorrhagic 

stroke, cardiovascular heart disease and peripheral arterial disease (Dunn, Chan, Ng & Stocker, 

2013).  

Diabetic retinopathy occurs when the microvasculature of the retina is damaged. It is the 

commonest diabetic complication and the leading cause of blindness in the world. Diabetic 

nephropathy occurs when there is glomerular damage in the nephrons, resulting in 

microalbuminuria initially and finally progressing to proteinuria in advanced disease. Diabetic 

neuropathy presents as several clinical syndromes: autonomic neuropathies that include 

gastroparesis, postural hypotension, erectile dysfunction, and gustatory sweating; focal 

neuropathies such as cranial nerve palsy, entrapment syndromes and diabetic amyotrophy; 

symmetrical sensorimotor neuropathies (Vithian & Hurel, 2010). 

Hemorrhagic stroke and ischemic heart disease contribute the most to mortality due to diabetes 

(Wingard & Barrett-connor, 2003).  Peripheral vascular disease is characterised by the lack of 

pulses in the lower extremities. Unchecked, it progresses to the development of foot ulcerations 

that eventually lead to amputations. Other complications that result from diabetes include 
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increased susceptibility to infections, reduced wound healing, macrosomia where a woman gives 

birth to a baby with an excessive birth weight and finally increased susceptibility to dental 

infections (Deshpande et al., 2008). 

2.4 Insulin therapy 

In instances where there is an absolute lack of production of insulin in the body, such as in Type I 

diabetes, insulin pharmacotherapy is instituted. Insulin is derived from different sources; porcine 

insulin from pigs, which differs from human insulin by the presence of alanine instead of threonine 

in the B-chain of its insulin molecule; bovine insulin from cows, which differs from human insulin 

by the presence of alanine and valine in place of threonine and isoleucine in the A-chain of its 

insulin molecule; and human insulin derived from recombinant deoxyribonucleic acid (DNA) 

technology (Heinemann & Richter, 1993).  

Insulin replacement therapy is intended to mimic the normal physiologic process of endogenous 

insulin in the body. Consequently, deficiencies in the physiologic action of regular human insulin 

have led to the development of human insulin analogues, altering the durations of action of the 

regular insulin. As such, rapid acting analogues such as insulin aspart, insulin glulisine and insulin 

lispro and long-acting analogues such as insulin glargine and insulin detemir have been developed 

(Hirsch, 2005; Siebenhofer AAS & Pieber, 2004). 

Various complications arise from the regular usage of insulin. Hypoglycemia is one of the 

commonest complications arising from an imbalance between the levels of insulin and nutrients in 

the body, and a mismatch between the glucose counter-regulatory mechanisms and the action of 

insulin (Cryer, 2002). Lipid hypertrophy due to repeated injections has also been a common 

complication. However, the rotation of the injection sites has been used to resolve this 

complication. Another complication is immunologic reactions, especially to the animal-derived 
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insulins, but the increased use of human insulin and highly purified forms of insulin has decreased 

these reactions (Kahn & Rosenthal, 1979).   

2.5 Trends in insulin use 

Globally, the number of patients who require insulin has been on a steady increase due to the 

increasing prevalence of diabetes in the world as well as a largely remaining proportion (40–50 

percent) of undiagnosed diabetes (Whiting et al., 2011). Whereas this increase in prevalence has 

been significantly noted with type 2 diabetes, type 1 diabetes has also been noted to increase 

averagely at 4 percent annually (Forlenza & Rewers, 2011). This increasing prevalence has not 

only been noted in developed countries, but in lower- and middle-income countries as well. The 

lag time between the clinical diagnosis of diabetes and the existence of the condition also 

contributes significantly to the increase in demand for insulin especially for type 2 diabetes 

patients. 

Lipska et al. (2017) studied the temporal trends in the consumption of insulin between 2006 and 

2013 in the United States and reported an overall incremental trend in the consumption of insulin. 

They however attributed this to the adoption of alternative forms of insulin, rapid and basal insulin 

analogues, over the intermediate acting human insulins, which they reported an actual decrease in 

their utilisation. The adoption of these newer analogues of insulin was however noted to be among 

patients who had private insurance. Xu et al. (2019) also reported a 21 percent increase in the 

utilisation of insulin in the state of California with a concomitant 54 percent increase in the 

expenditure of insulin. They however noted a decrease in the utilisation of premixed and 

intermediate acting insulin, in contrast to the increased use of rapid and long-acting insulins. 

The global expenditure on insulin has also increased due to the increased demand for insulin as 

well as the emerging focus on the mitigation of non-communicable diseases. Herkert et al. (2019) 
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reported a threefold increase in the cost of insulin in the last decade in the United States resulting 

in a slight increase in the incidence of underuse of insulin by patients who needed it. 

2.6 Access to insulin 

A cornerstone of security of supply, as defined by the United Nation’s Children Fund (UNICEF), 

is the uninterrupted provision of quality medicines, ensuring constant access to medicines to 

patients when they do need them (Kristensen, Hall & Jarrett, 2000). This in turn means that stock 

outs of essential commodities are reduced through a matrix of interrelated systems that include 

better estimation and prediction of the actual demand of the commodity, reduced lead times during 

the supply of the commodity and the presence of adequate buffer stock to protect from unexpected 

demand shocks. 

Lower- and middle-income countries face various challenges in their quest to provide adequate 

access to insulin. Frequent disruptions in the supply chain, inefficient procurement systems and 

underdeveloped or nonexistent distribution systems build up the basis of the infrastructural 

problems limiting access to insulin in public health facilities. Consequently, the proper estimation 

of the accurate health demand of insulin remains a challenge bringing about inequalities in access 

and supply of insulin. Beran, Ewen and Laing (2016) found that while Maputo received 77.3 

percent of the total insulin from the central stores in Mozambique, this only accounted for 11.3 

percent of the total demand of insulin in the country. Estimation also at the central or national level 

is important as well. In Kyrgyzstan, stock outs of insulin were experienced at the lower facilities 

due to inaccurate estimations from the central stores (Beran et al., 2013).  

2.7 Time series data and applications in medical research 

Time series data refer to those that have been collected repeatedly over time equal or unequal 

intervals of time. Since these data are highly autocorrelated, conventional statistical methods that 
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do not adjust for this correlation are deemed inappropriate for the analysis of these data (Soyiri & 

Reidpath, 2013). These data have found numerous applications in medical research, where the 

variation of a variable over time is of interest.  

In drug studies where the concentrations of a drug are measured over time to determine the 

pharmacodynamic and pharmacokinetic properties of the molecule, time series analysis is usually 

employed. In endocrinological studies where the measurement of pulsatile frequencies of secretion 

of hormones is desired, this data is usually critical. In comparison studies where the effect of a 

novel intervention is measured against a standard over time, time series analysis is usually used. 

In rate- determinant studies where the rate of a variable of interest is to be measured, time series 

analysis also comes in handy (Crabtree, Ray, Schmidt, O’Connor & Schmidt, 1990). 

Kane et al. (2014) modelled influenza incidence data using ARIMA and random forest time series 

modelling. Although the authors concluded that Random Forest time series modelling had better 

predictive ability than ARIMA time series modelling for their data, they stated that the ability to 

incorporate exogenous variables and to automate model selection is a key advantage of ARIMA 

time series modelling. Reis and Mandl (2003) modelled syndromic surveillance data to forecast 

the expected number of visits to their emergency department. They developed a trimmed seasonal 

mean model, which on examining the residuals from the model, discovered strong autocorrelation 

of the residuals. To account for this, they subsequently fitted an ARIMA time series model to the 

residuals of the trimmed seasonal mean model.  

Pratyaksa et al. (2017) successfully fitted an ARIMA time series model using the daily 

consumption data of povidone-iodine to forecast its future demand. The authors however, 

highlighted the need for validation and comparison of the fitted model with other forecasting 

models to assess its true utility as a forecasting tool. Papana, Folinas, and Fotiadis (2012) assessed 
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several univariate time series models to develop a forecast model for the drug rapilysin lypdinj 

2x1.16g/vial (rl). The authors compared a moving average model, an exponential smoothing 

model, a random walk model and an autoregressive model of order one. The exponential model 

was found to be the most apt, with the limited range of their historical data being a reason why an 

ARIMA model was not fitted for their data.  

Molina et al. (2016) compared the efficacy of forecasts of drug demand using Artificial Neural 

Networks (ARN) and ARIMA time series models and concluded that the former yielded more 

accurate forecasts. However, the flexibility of the latter derived from the fact that it incorporates 

both autoregressive and moving average processes, coupled with the complexity of developing the 

former model, makes a compelling case for the utilisation of ARIMA time series models in 

developing health demand forecasts. 

2.8 ARIMA class of models 

The ARIMA class of models refers to those that explain the relationship between a dependent 

variable and lagged values of itself together with lagged values of random errors or shocks. It is 

usually denoted as an ARIMA (p, d, q) model, where the p represents the autoregressive parameter, 

d is the number of times the data have been differenced to achieve stationarity, and q is the moving 

average parameter. It takes the following form: 

 𝑦𝑡 = 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

              𝑦𝑡: Dependent random variable at time (t) 

 𝑦𝑡−𝑖 : Lagged values of the dependent variable 

 𝜀𝑡 : Error term at time (t) 

 𝜀𝑡−𝑖 : Lagged error terms 
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𝛼𝑖 : Autoregressive parameters  

𝜃𝑖 : Moving average parameters 

 

where the error term is independent and identically distributed and has a normal distribution with 

a mean of zero and a constant variance.  

2.8.1 Box-Jenkins Methodology 

The Box Jenkins Methodology refers to an analytical method developed by George Box and 

Gwilym Jenkins applied to time series models, more specifically in this case, the ARIMA class of 

model, to best fit past time series data to itself (Box & Jenkins, 1970). The baseline assumption of 

this method lies in the stationarity of the data. As such, the stationarity of the variables is the first 

thing to be checked. Variables that are found not to be stationary, are subsequently differenced, 

until stationarity is achieved. 

2.8.1.1 Stationarity of Data 

This is a property of time series data that states that the statistical attributes such as the mean and 

variance of a time series remain constant throughout the time series. Therefore, the detection of 

stationarity is a crucial component in the analysis of ARIMA time series models. Various methods 

have been used to assess for stationarity. Visual plots of autocorrelograms can be used to check 

for this, with a rapidly decaying to zero autocorrelogram indicating the stationarity of data and 

gradual decay indicating non-stationarity. Parametric measurements can be used for more rigorous 

estimation. 

2.8.1.2 The Dickey Fuller Test 

This is a parametric stationarity estimation method that assesses the presence or absence of a unit 

root in a stochastic process. The roots refer to the solutions of a characteristic equation of a 
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stochastic process and a unit root is determined whether 1 is one of the roots. The Dickey-Fuller 

test therefore tests for the presence or the absence of a unit root in a stochastic process, with the 

null hypothesis being the presence of a unit root in am autoregressive model. This test can take 

either form: 

∆𝑥𝑡 = 𝛿𝑥𝑡−1 + 𝜀𝑡 to assess for a simple AR (1) process,  

∆𝑥𝑡 = 𝛼0 +  𝛿𝑥𝑡−1 + 𝜀𝑡 to assess for a process with drift and finally,  

∆𝑥𝑡 = 𝛼0 + 𝛼1𝑡 +  𝛿𝑥𝑡−1 + 𝜀𝑡 to test for a process with a deterministic time trend where in the 

above processes: 𝑥𝑡= variable of interest at a specified time, t, 𝜀𝑡=error term of the process, 𝛼0= 

represents the drift parameter, 𝛼1𝑡= represents a deterministic trend and finally 𝛿= represents the 

difference between the coefficient of the original process and 1 such that the null hypothesis for 

the test becomes  𝛿= 0 and indicates a unit root. 

2.8.1.3 The Augmented Dickey Fuller Test 

This is an expansion of the Dickey Fuller Test to accommodate more variables in a stochastic 

process. As such, more elaborate models can be tested using this test. The general form of models 

tested by this statistic takes on the general form below: 

∆𝑥𝑡 =   𝛼0 + 𝛽𝑡 + 𝛾𝑥𝑡−1 + 𝛿1∆𝑥𝑡−1 + ⋯ + 𝛿𝑝−1∆𝑥𝑡−𝑝−1 + 𝜀𝑡 

Where  𝑥𝑡  represents the timed variable, p represents the lags, 𝛼 represents a constant and 𝛽 

represents the coefficient of the temporal trend. 

Another parametric method that can be used to confirm stationarity and used adjunctively to the 

augmented dickey fuller (ADF) test is the KPSS test. The difference between this test and the ADF 

test is that the alternative hypothesis of this test is the presence of a unit root. 

2.8.1.4 Model identification 
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This usually involves estimating the p and the q parameters in the model. The p parameter 

represents the autoregressive process of the model, while the q parameter represents the moving 

average process. This is done by plotting autocorrelograms and partial autocorrelograms and from 

the underlying patterns of the plots, determining the various suitable model candidates that could 

be used. Once the models have been run, the Akaike’s Information Criterion (AIC) is used to 

determine the most suitable model. 

The AIC is premised on maximising the likelihood from a model and reducing the number of 

parameters used by the model. This is used to prevent over-fitting models with many predictor 

variables. It takes the following form: AIC = 2k – 2ln (L) where k represents the number of 

parameters in the model and L represents the likelihood of the model. The model with the 

minimum AIC becomes the most apt model.  

2.8.1.5 Diagnostic checks 

This is a set of statistical tests done to validate the models chosen. Usually, this is done by the 

analysis of residuals of the models. The normality of the residuals and autocorrelation between the 

residuals is discussed.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Study site 

The study was conducted in Kiambu Level 5 County Referral Hospital. Kiambu County has an 

estimated population of 2,417,735 people and it borders Nairobi, Machakos, Murang’a and Nakuru 

Counties (KNBS, 2019). Owing to its proximity to the country’s capital, Nairobi, the hospital 

serves a mix of urbanized and rural patients. The hospital serves approximately five thousand 

patients per month in the outpatient department with slightly more than one hundred patients 

requiring insulin each month. Given the hospital’s proximity to Nairobi as well as its location in 

the administrative hub in Kiambu County, coupled with the fact it acts as a referral center for 

satellite rural facilities in the various sub-counties, the insulin consumption in the facility typifies 

both urban and rural settings.  

3.2 Study design 

The study design is a retrospective descriptive analysis of the temporal trends and dynamics in the 

consumption of insulin in Kiambu Level 5 County Referral Hospital between January 2014 and 

June 2020. 

3.3 Sample size 

The sampling interval was one month. The sample size was obtained from the frequency of the 

sampling interval in the duration of the study. Since the range of data used to develop the model 

was from January 2014 to December 2018, the sample size corresponds to the number of months 

during this period. Hence, the sample size for the study was sixty. Hanke & Wichern (2015) 

recommend that the minimum number of entries used in developing an ARIMA time series model 

be fifty.  
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3.4 Data analysis 

Descriptive time series analysis was used for the analysis of temporal trends. For forecasting, an 

ARIMA model was developed using the Box Jenkins Methodology. The model was as follows: 

𝑦𝑡 = 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

Where: 𝑦𝑡 is the insulin consumption in month (t) 

 𝑦𝑡−𝑖 : Lagged monthly consumption of insulin 

 𝜀𝑡 : Error term at month (t) where ε ~ N (0, σ2) 

 𝜀𝑡−𝑖 : Lagged monthly error terms 

 𝛼𝑖 : Autoregressive parameters  

𝜃𝑖 : Moving average  

p: Order of the autoregressive process 

 q: Order of the moving average process 

 d: Number of times the data has been differenced to make it stationary 

The data was drawn from the Ministry of Health Mixtard 70/30 Daily Activity Register with the 

daily insulin consumption aggregated into monthly summaries. The data extracted from January 

2014 to June 2019 was divided into training data used to develop the model and test data that was 

used to assess the validity of the model. The training data was the monthly insulin consumption in 

vials from January 2014 to December 2018 while test data was the monthly insulin consumption 

in vials from January 2019 to June 2019. The consumption of insulin between April 2019 and June 

2019 was compared against that between April 2020 and June 2020 to assess for the effect of the 
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COVID-19 pandemic on insulin consumption. The software used for data management and 

analysis was R version 4.0.3. (R: A language and environment for statistical computing, 2020) 

3.4.1 Box-Jenkins Methodology 

The Box-Jenkins Methodology consists of three components: Model Identification; Parameter 

Estimation and Diagnostic Checks. However, the data was first checked for stationarity using the 

Augmented Dickey Fuller (ADF) test with a p-value lower than 0.05 (p-value < 0.05) indicating 

the data is stationary. Differencing was used to make the data stationary. 

3.4.1.1 Model Identification 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots were used 

to identify the values of p and q in the ARIMA (p, d, q) model and subsequently produce a list of 

potential models.  

3.4.1.2 Parameter estimation 

The maximum likelihood estimation method was applied in the estimation of the parameters of the 

potential models. The Akaike’s Information Criterion (AIC) was used to select the most apt model, 

with the model with the least AIC score being the most apt model. 

3.4.1.3 Diagnostic checks 

Finally, diagnostic checks such as normality and independence of residuals, homogeneity of 

variance, and presence or absence of outliers were performed on the chosen model and if it failed 

any check, the next best apt model was selected and checked.  

3.5 Ethical consideration 

Data was de-identified during the extraction of daily records of patient insulin consumption 

thereby ensuring the confidentiality of patients’ records. The identity of the patients’ records was 

in any way re-identified during the analysis and subsequent publication of the study results. The 
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data was stored in encrypted, and password protected files to prevent unapproved access to it. 

Ethical approval was sought from the KNH-UoN Ethical Review Committee.  
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CHAPTER FOUR 

RESULTS 

4.1 Time series characteristics 

The monthly insulin consumption decreased gradually from 2014 to 2018. The maximum peak 

consumption of insulin was 252 vials in March and June 2014 while the minimum consumption 

of insulin was 0 vials in July 2017 as well as July and August 2018 as shown in Figure 1. The 

general trend of the insulin consumption was linear. The average annual consumption of insulin 

was 1359 ± 283 vials while the average monthly insulin consumption was 113 ± 8 vials. 

 

 2014 2015 2016 2017 2018 

January 221 148 162 99 100 

February 207 134 54 73 52 

March 252 157 47 70 65 

April 217 133 120 94 111 

May 202 150 144 66 134 

June 252 155 149 1 17 

July 183 75 29 0 0 

August 165 90 15 2 0 

September 177 134 169 1 100 

October 146 131 128 48 116 

November 139 150 169 79 137 

December 155 145 70 128 128 

Total 2316 1602 1256 661 960 

 

Table 1 

Monthly Insulin Consumption from 2014 to 2018 in Kiambu Level 5 Hospital 
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Figure 1 

Graph of the Monthly Insulin Consumption in Kiambu Level 5 Hospital 

 

Decomposing the time series revealed more clearly the inherent trends of the time series. The trend 

component was seen to be linearly decreasing from 2014 to 2017 with a slight linear increase in 

trend from 2017 to 2018. There was a seasonal component spotted in the series most likely since 

the data is annual monthly summaries. The random component of the time series was shown in 

Figure 2. 
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Figure 2 

Components of the Time Series 

 

4.2 Determination of Stationarity 

There were several positive significant lags from figure 3 other than the first lag beyond the 95% 

confidence limits. This is indicative of the highly correlated nature of the original time series. 

There was a slight element of the lags being sinusoidal in nature due to a general progressive 

decrease in the initial positive lags till lag 20 and a subsequent slight increase in the negative lags 

thereafter.  
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Figure 3 

Autocorrelation Function Plot of the Non-Differenced Time Series 

 

The original time series had an Augmented Dickey-Fuller test statistic of -1.8099 (p-value=0.6516) 

indicating the non-stationarity of the original time series while that of the first difference of the 

original time series was -6.2541 (p-value=0.01) indicating the stationarity of the first difference of 

the original time series as shown in table 1. The null hypothesis was tested at a 5% level of 

significance. 

 

Original Time Series 

 
First Difference of Original Time Series 

Dickey-Fuller = -1.8099,  

Lag order = 3, 

(p-value = 0.6516) 

Dickey-Fuller = -6.2541,  

Lag order = 3,  

(p-value = 0.01) 

 

alternative hypothesis: stationary 

 

alternative hypothesis: stationary 
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Table 2 

Augmented Dickey-Fuller Test of the Original and First-Differenced Time Series 

4.3 Model Selection 

There was only one positive significant lag, lag 5, other than the first lag beyond the 95% 

confidence limits as shown in figure 4. The rest of the lags fell within the 95% confidence limits 

indicative of the non-correlated nature of the differenced time series. There was no apparent pattern 

in the non-significant lags within the bound limits.  

 
Figure 4 

Autocorrelation Function Plot of the Differenced Time Series 

 

There was only one positive significant lag, lag 2, beyond the 95% confidence limits as shown in 

figure 5. The rest of the lags fell within the 95% confidence limits indicative of the non-correlated 

nature of the differenced time series. There was no apparent pattern in the non-significant lags 

within the bound limits of significance.  
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Figure 5 

Partial Autocorrelation Function Plot of the Differenced Time Series 

 

The AIC values of the fifteen empirical models ranged between 599.54 and 593.26. The model 

that had the largest AIC score was ARIMA (1,1,0) while the model that had the least score was 

ARIMA (2,1,3) as shown in table 2. The model with the least score was thereby selected for further 

assessment of its validity. 

ARIMA MODEL AIC VALUE 

ARIMA (0,1,1) 594.16 

ARIMA (0,1,2) 593.45 

ARIMA (0,1,3) 595.30 

ARIMA (1,1,0) 599.54 

ARIMA (1,1,1) 594.14 

ARIMA (1,1,2) 594.91 

ARIMA (1,1,3) 597.20 

ARIMA (2,1,0) 596.53 
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ARIMA (2,1,1) 594.94 

ARIMA (2,1,2) 594.32 

ARIMA (2,1,3) 593.26 

ARIMA (3,1,0) 594.92 

ARIMA (3,1,1) 596.10 

ARIMA (3,1,2) 594.69 

ARIMA (3,1,3) 595.24 

 

Table 3 

Table of Candidate Models and Their Corresponding AIC values 

4.4 Model Diagnostics for Selected Model ARIMA (2, 1, 3) 

The Q-Q plot revealed that most of the data points were aligned very close to or along the line 

depicting the expected values of a normal distribution as shown in Figure 6. This is lack of 

departure from the reference line is indicative of the fact that the residuals have a normal 

distribution.  

 

Figure 6 

QQ- Plot of the model residuals 
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The histogram of the residuals indicate that the distribution of the residuals is unimodal and there 

is no distinctly apparent pattern of skewness of the residuals as seen in Figure 7. The Shapiro-

Wilks test resulted in a test statistic of 0.99 and a corresponding p-value of 0.91, confirming the 

normal distribution of the residuals by failing to reject the null hypothesis of the Shapiro-Wilks 

test. The coefficient of skewness was -0.01, confirming the lack of skewness in the distribution of 

the residuals. 

 

Figure 7 

Histogram of Model Residuals 

 

 

There were no significant lags from figure 7 other than the first lag beyond the 95% confidence 

limits. This is indicative of the independence of the residuals. There was no apparent pattern of the 

non-significant lags. The Box-Ljung test resulted in a test statistic of 37.30 with a p-value of 0.87, 

further confirming the independence of the residuals.  
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Figure 8 

Autocorrelation Function of Model Residuals 

 

 

4.5 Model Forecasts 

The maximum six-month forecast consumption of insulin was 103 vials in March 2019 while the 

minimum forecast consumption of insulin was 92 vials in January 2019 as shown in Figure 9 

whereas the average insulin consumption 98 ± 2 vials. The maximum actual consumption of 

insulin was 107 vials in January 2019 while the minimum consumption of insulin was 107 vials in 

June 2019 as shown in Figure 9 whereas the average insulin consumption was 119 ± 4 vials. The 

general trend line for the actual consumption of insulin was higher than that of the forecasted 

consumption indicating generally higher levels of insulin consumed than those predicted.  



31 
 

 

 

 

 

Figure 9 

Graph of Comparison between Model Forecasts and Actual Values of Insulin Consumption 

 

 

4.6 Comparison of Insulin Utilization between April to June 2019 (Pre-Covid) and April to 

June 2020 (Post-Covid) 

The maximum pre-Covid consumption of insulin was 38 vials while the minimum consumption 

of insulin was 19 vials with the average insulin consumption during this period being 30 (SD = 1) 

vials. The maximum post-Covid consumption of insulin was 43 vials while the minimum 

consumption of insulin was 21 vials with the average insulin consumption during this period being 

30 (SD = 1) vials. There was no discernible difference in the patterns of consumption during these 

two time periods as seen in figure 10.  
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Figure 10 

Graph of Insulin Consumption between April to June 2019 (Pre-Covid) and April to June 2020 

(Post-Covid) 
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CHAPTER FIVE 

DISCUSSION 

5.1 Discussion 

This study intended to characterize the monthly insulin consumption at Kiambu Level 5 Hospital 

and fit an appropriate time series model to the data. Visual inspection of the plotted time series 

revealed the series to have a general downward trend that appeared linear. While this could be 

directly attributable to a decrease in the number of patients requiring insulin visiting the hospital, 

the decrease in the insulin available and stockouts in the subsequent years contribute significantly 

to this downward trend in consumption. 

Peltzer (2009) cited low patient satisfaction arising from stock-outs of essential health 

commodities as a cause for decreased patient visits to public health facilities. This could explain 

the general linear decrease where in insulin consumption due to the various stockouts of the 

commodities experienced in the facility. 

Additionally, this reduced insulin consumption could be due to reduced insulin supply due to 

budgetary allocation constraints occasioning the purchase of more-perceived emergency drugs. 

This results in the capping of the vials of insulin given to the patient, not as per their actual need, 

but as per the amount available in the hospital. These budgetary allocations force the facilities to 

shift their purchasing priorities from routine drugs to only drugs used during emergencies or those 

likely to cause public uproar when they stock out (Hodes et al., 2017). 

The minimum number of insulin vials consumed was noted in 2017. This could be attributed to 

the budgetary constraints due to deficient hospital allocations caused by a shift in priorities during 

the electioneering periods by the political administration. There was a general dip in insulin 
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consumption during the half-year months across the various years, with stockouts also occurring 

around the same time. 

Whereas this has a budgetary root as well, the budgetary reason attributable to this could be the 

transitioning between the financial government years where there is a protracted delay in the 

disbursement of funds from the national government to the county governments, forestalling 

critical services within the county level, such as healthcare allocations. 

There was no obvious seasonality or outliers observed in the series. The constancy of variance was 

difficult to assess by visual inspection. However, no visible increase in variance and as such, no 

logarithmic or square root transformation of the original time series was required. Differencing 

was used to transform a non-stationary time series into a stationary time series. A stationary time 

series is one with constancy of variance and mean. 

The ACF plot of the original time series had several significant positive correlations between lags 

close to one that tailed off with slow linear decay over seven lags, indicating an element of non-

stationarity of the series. Differencing strongly reduces these positive correlations (Identifying the 

order of differencing in ARIMA models, 2021). Upon differencing this time series, only one 

significant positive lag was observed. This is a strong indication of stationarity. The more formal 

ADF test was performed to compare the two time series. The original time series was found to be 

non-stationary (p-value=0.3277) while the first difference of the series was found to be stationary 

(p-value=0.01). 

Because of the progressive reduction in autocorrelation due to differencing, strongly negative 

correlation values indicate over-differencing. In our case however, the largest negative lag was at-
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0.2, a good indicator that the model was not over-differenced. Over-differencing leads to excess 

dependencies that would increase the standard deviation of a model (Solo, 1984). Since the 

first difference of the series was stationary, the value of the d parameter in the ARIMA (p, d, q) 

model became 1. The model therefore became first order differenced and is denoted as follows: 

𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

To estimate the remaining parameters in the model, the ACF and PACF were plotted for the 

differenced series. The patterns of the lags can be used to identify various candidate p and q 

parameters. Non-significant ACF and PACF lags indicate white noise. The p and q parameters can 

be estimated where the PACF and the ACF lags cut off, respectively (Ukpata & Waterman, 2012). 

There was a significant spike at lag 5 in the ACF plot, whereas the rest of the lags fell within the 

significance limits. This spike could either have represented a significant MA term in the model 

or could have been because of random chance (Identifying and Estimating ARIMA models; Using 

ARIMA models to forecast future values, 2021). Assuming the former, this became the value of 

the q parameter in the model became 5. 

There was a significant spike at lag 2 in the PACF plot, whereas the rest of the lags fell within the 

significance limits. The value of the p parameter in the model became 2. The resulting empirical 

model therefore became ARIMA (2,1,5). A set of 15 candidate models around the ARIMA (2,1,5) 

model were assessed for their AIC scores. The AIC score determines the most suitable model as a 

function of the likelihood and the number of parameters of the model (Takane & Bozdogan, 1987). 

The lower the AIC score, the better the model fits the data. The model that emerged with the lowest 

AIC score was the ARIMA (2,1,3) model with an AIC score of 593. This model was then assessed 

for its validity. 
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A Q-Q plot of the residuals of the model revealed an almost linear pattern inferring a normal 

distribution of the residuals. The histogram corroborated this inference as it showed that the 

residuals had an approximate normal distribution with a mean of about zero. The more formal 

Shapiro Wilks test for normality also indicated a normal distribution (p-value=0.9144) as we failed 

to reject the null hypothesis of the test (Royston, 1992). 

The coefficient of skewness was found to be -0.01.  The model residuals were then assessed for 

correlation by plotting the ACF and PACF plots. All the lags were found to be within the 

significance limits, implying no correlation of the residuals in the model. The more formal test for 

the independence of the residuals, Ljung-Box test, indicated that the residuals were independent 

(p-value=0.8679) as we failed to reject the null hypothesis (Lobato, Nankervis and Savin, 2001). 

Since the model passed the various checks, the ARIMA (2,1,3) became the most appropriate model 

to fit the insulin consumption data in Kiambu Level 5 Hospital. The model fit therefore became: 

𝑦𝑡 = −0.18𝑦𝑡 − 0.80𝑦𝑡−1 − 0.22𝜀𝑡−1 + 0.73𝜀𝑡−2 − 0.64𝜀𝑡−3 + 𝜀𝑡 

The fitted model was then used to make a forecast for the insulin consumption in the next 6 months 

(January 2019- June 2019). The forecasts from the model were generally lower than the observed 

values for the same period. This could have been a result of forecast errors (Alabdulrazzaq et al., 

2021). An assessment of the accuracy of the model fit revealed that the Mean Absolute Percentage 

Error (MAPE) of the model was 17.5%. This could explain the differences in the values between 

the observed and the forecasted values. 

The effects of access to healthcare posed by the emergence of COVID-19 remain an issue of 

interest in the public healthcare framework. WHO (2020) posited that there has been a disruption 

in the supply chain of essential health commodities, in part due to the shift of focus towards 
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combatting the pandemic. Further, the redistribution of available personnel in an already thin and 

severely stretched out workforce further worsens access to health in our set-up. Individual 

perceptions of risk towards healthcare workers and healthcare institutions have as well decreased 

access to healthcare (Núñez, Sreeganga & Ramaprasad, 2021). 

The study set out to measure this aspect of access to healthcare using the number of insulin vials 

consumed within the facility. Drug usage within hospitals and documented health outcomes are 

some of the quantifiable indicators used to measure access to healthcare (Arueira Chaves, de Souza 

Serio dos Santos, Rodrigues Campos & Luiza, 2019). The study revealed that there was a slight 

increase in the number of insulin vials consumed in 2020 compared to in 2019, however, there was 

no statistically significant difference in the utilisation of insulin across this period (p-value>0.05). 

This could be attributed to the chronic nature of the disease and the dependency of insulin for its 

management. Additionally, the cost incentives laid out in public healthcare facilities for insulin 

could insulate it against emerging demand disruptions.  

A limitation of the study was the paucity of data used to create the training data for the model. 

While the sample size was greater than the minimum number of observations required to develop 

an ARIMA model, more data when available would make the model fit better and in essence 

reduce the forecast errors. The study only fitted an ARIMA model. However, more time series 

models could be fit to the data and their performance assessed as to the most apt model for the 

data. The model was also univariate and fitting exogenous variables could improve the 

performance of the model. Finally, the duration of comparison of utilisation of insulin was just 3 

months. This was due to the availability of the data. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion  

The total number of insulin vials consumed was 6795, with the average annual consumption of 

insulin being 1359 (SD =283) vials and the maximum consumption of insulin being 2316 vials in 

2014, with the minimum consumption being 661 vials in 2017 during the period between 2014 

and 2018. There was a general linear decrease in the annual insulin consumption during this period 

and notable stock-outs of the commodity or dips in utilisation during the mid-year period.  

An appropriate ARIMA time series model was successfully fitted for the consumption of insulin, 

indicating the viability of these models as suitable alternative health commodity demand 

estimation techniques. The model fitted had an accuracy of 82.5% with a MAPE of 17.5%.  

The average weekly pre-COVID (April 2019- June 2019) consumption of insulin was 30 (SD = 1) 

vials with a maximum consumption of 38 vials and a minimum consumption of 19 vials, while the 

weekly post-COVID (April 2020-June 2020) was 30 (SD = 1) vials with a maximum consumption 

of 43 vials and a minimum consumption of 21 vials. There was no significant difference in the 

weekly consumption of insulin between the first 3 months of the pandemic and a similar period 

the previous year. 

.  

6.2 Recommendations 

At a policy level, budgetary allocations to health facilities need to be buffed up especially during 

the mid-year months when there is a transitioning between two government fiscal years and during 
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the electioneering periods to avert stock-outs of critical health commodities during these periods. 

While routine monitoring and evaluation of essential health commodities is critical, additional 

monitoring should be conducted during these periods noted to be plagued by stock-outs or 

decreased insulin utilisation.  Further studies on trends of insulin consumption need to be 

conducted to shed more light on the noted decreasing annual consumption of insulin despite 

increasing prevalence of diabetes and largely high prevalence of undiagnosed prevalence in the 

country. The study also forms a basis for additional ARIMA model fits to be developed based on 

newer insulin consumption data and adoption of these models as alternative methods of demand 

estimation. Expanding the currently available dataset, Mixtard 70/30 Daily Activity Register, to 

capture additional variables will help form exogenous variables that could also be fit to newer 

ARIMA models that could maybe better characterise insulin consumption or reduce the forecast 

errors 

Additionally, different time series models should be fitted to the data and their performances 

assessed against each other to determine whether further insights into modelling this data exist and 

which time series model is the most apt for modelling this data. More data is required to assess the 

effects of the pandemic on the insulin consumption. Since the data used was only for 3 months, 

longer term trends have not been captured and this remains an important aspect to explore to 

understand the true effects of the emergence of COVID-19 on access to healthcare. 
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