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Abstract

Gaussian mixture models are applied in machine learning specifically unsuper-
vised machine learning. More specifically they can be used during image seg-
mentation and music classification just to mention a few.

In this project, it is shown how the EM Algorithm is derived and how it effec-
tively comes into use in terms of soft clustering data sets into distributions.

EM Algorithm is used to estimate parameters within a model in a fast and
stable way then fills the missing data in a sample and find the values of latent
variables.

The Gaussian Mixture model looks at the distributions. It groups only data
points that belong to a similar distribution. This is done through soft clus-
tering where by the points are assigned the probability of being in a certain
distribution, It goes as far as clustering data points in between different distri-
butions accurately by showing to which extent a data point falls in a particular
distribution.

Expectation Maximum Algorithm uses the observed data to get optimum values
that can be used to generate the model parameters.

Limitations anticipated within this study include;

� Expectation Maximum Algorithms have slow convergence and this conver-
gence is made to the local optima.

� It also requires forward and backward probabilities, while numerical optimiza-
tion only requires forward probability.

i



Declaration and Approval

I declare that this dissertation is my original work and has not been presented
for an award of a degree in any other university.

Signed: Date:06 / 12 / 2022
Priscillah Angatia Shiroko
I56/34727/2019

As the supervisor to this student’s dissertation, I certify that this dissertation
has my approval for submission.

Signed:............................ Date:...........................
Prof. Patrick G. O. Weke
Department of Mathematics,
University of Nairobi,
Box 30197-00100, NAIROBI, KENYA.
Email: pweke@uonbi.ac.ke

ii

06.12.2022



Dedication

This project is dedicated to my daughter Ariellah Norah for being my moti-
vation towards completing this degree, My parents and siblings for their love,
encouragement and support.

iii



Acknowledgement

I give all thanks first and foremost to the Almighty God for giving the strength to
reach this far. I also thank Prof. Patrick Weke for the guidance, correction and
support given while undertaking my project. I also thank the entire Department
of Mathematics and the University of Nairobi as a whole for offering all necessary
support to reach this far

iv



Contents

1 GENERAL INTRODUCTION 1

1.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . 2

1.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 GAUSSIAN MIXTURE MODELS 4

2.1 Gaussian Distribution (Parameter Estimation) . . . . . . . . . . 4

2.2 Gaussian Mixture Models (Parameter Estimation) . . . . . . . . 7

3 DERIVATION OF THE EXPECTATION MAXIMIZATION
ALGORITHM 9

3.1 Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Convergence in the Expectation Maximization (EM) Algorithm . 12

4 GENERALIZED EXPECTATION MAXIMIZATION 16

4.1 Likelihood for complete data . . . . . . . . . . . . . . . . . . . . 16

4.2 The Expectation Step . . . . . . . . . . . . . . . . . . . . . . . . 18

5 EXPECTATION MAXIMIZATION(EM) IN GAUSSIAN MIX-
TURE MODELS 20

5.1 Expectation Maximization (EM) in Gaussian Mixture Models . . 20

5.2 Illustration of the EM Steps . . . . . . . . . . . . . . . . . . . . . 21

6 DISCUSSIONS AND RECOMMENDATIONS 26

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Study Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 REFERENCES 27

vi



1 GENERAL INTRODUCTION

1.1 Background Information

A mixture can be described as a constructed probability distribution after com-
bining two distributions or more to get a new distribution. It can be classified
as either Discrete, Finite, or Continuous.

A mixture created by combining numerous Gaussian distributions is known as
a Gaussian Mixture Model. It is predicated on the idea that each data point
is produced by a combination of a limited Gaussian distributions’ number with
unknown characteristics.

Application of Gaussian mixture models is applied in machine learning specifi-
cally unsupervised machine learning. More specifically they can be used during
image segmentation and music classification just to mention a few.

They use a clustering format where we try to find cluster points using unsu-
pervised learning in the datasets that shares common characteristics. In the
clustering analysis, the Expectation Maximum Algorithm is used to fill in miss-
ing data in a sample, estimate model parameters quickly and steadily, and
determine the values of latent variables.

Dempster (1977) introduced the Expectation Maximum Algorithm to obtain
the Maximum Likelihood Estimates of incomplete data. A broad applicable
algorithm for computing maximum likelihood estimates from incomplete data
was presented at various levels of generality. Theory showing the monotone
behaviour of the likelihood and convergence of the algorithm was derived.

1.2 Problem Statement

Most research works have applied the Expectation Maximum Algorithm to ob-
tain Maximum Likelihood Estimates for missing or incomplete data sets in Gaus-
sian mixture models. The EM approach, which is frequently used to estimate
the model’s parameters, mainly relies on the estimation of insufficient data.
However, it doesn’t make use of any data to lessen the uncertainty caused by
missing data.

This project aims to do parameter estimation for the Gaussian mixture models
using the Expectation Maximum Algorithm.
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1.3 Objectives of the Study

The study’s main objective is to estimate the parameters for the Gaussian mix-
ture model using the EM Algorithm.

The specific objectives are to;

I. Derive the Expectation Maximization Algorithm.

II. Estimate Gaussian Mixture models’ parameters using the EM Algorithm
method.

III. Apply the EM Algorithm in the Gaussian Mixture Model.

1.4 Research Method

The breakdown of the method used for the estimation of parameters using the
EM Algorithm method is given below;

I. Derive the Expectation Maximum Algorithm.

II. The system is provided a collection of imperfect observed data with the
presumption that the observed data originates from a particular model..

III. E – Step is employed, in which values of the missing or partial data are
estimated or conjectured using the observed data. updating the variables, in
short.

IV. M – Step is applied whereby complete data sets gotten in the E – Step is
used to perform the updating of the values of the parameters. In summary,
updating the hypothesis.

V. Check whether if values converge or not. If yes, then stop, otherwise, repeat
steps two, three, and four until the convergence occurs.

1.5 Significance of the Study

The world is changing at a fast pace and embracing technology to make life eas-
ier. Machine learning is one core aspect that has been embraced by individuals
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and largely by companies to manage data and algorithms and improve accuracy
in terms of data analysis.

This study seeks to play a contributory role in making readers gain a further
understanding of EM Algorithms for Gaussian Mixture models and broaden the
reader’s understanding of unsupervised learning which is an area under machine
learning.

1.6 Literature Review

Clusteing is a method used to place data points that have similar characteristics
into groups. It is a type of unsupervised learning broken down into two types;
soft clustering and hard clustering. Using a probability- model based approach,
it is assumed that the data follows a mixture model of probability distributions
in which Expectation and Maximization Algorithm is used as stated by Yang,Lai
and Lin (2012).

Mixture models can be described as a combination of multiple distributions. It
used probability as a tool to project presence of sub-populations in an overall
population an the observation’s distribution.

A Gaussian mixture model is a type of mixture model meaning that it uses
probability to assign data points to a certain number of Gaussian distributions
using soft clustering. The idea of Gaussian mixtures was popularized by Duda
and Hart (1973).

Expectation and Maximization Algorithm for Gaussian Mixtures performs max-
imum likelihood estimation with missing values. The process was introduced
by Dempster, Laird and Rubin (1977) It is an iteration approach that cycles
between two steps that is; estimating the missing values and optimizing the
model and the two steps are repeated until convergence occurs. It is a good
estimation for missing variables as will be seen in this paper.

The current values of the existing parameters are used to calculate weights,then
the weighted joint log-likelihood is maximized in each iteration. In short in each
procedure the expectation is maximized hence the name Expectation Maximiza-
tion Algorithm.

In the field of discrete choice modelling, EM algorithms have been used by Bhat
(1997a) and Train (2008a,b).
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2 GAUSSIAN MIXTURE MODELS

2.1 Gaussian Distribution (Parameter Estimation)

A random variable X follows a Gaussian distribution if;

f(x;µ, σ) =
1√

2πσ2
e−(x− µ)2/2σ2

(2.1)

Equation (2.1) above has 2 parameters and 1 input. The two parameters are µ
as the mean and σ2 as variance. The mean shifts the center of the Gaussian
curve while variance measures the wideness of the Gaussian curve. When the
µ = then it means that the largest value is 1. Also, when the variance is not
big but small, then the data is less spread out and is closer to the mean but
when the variance is large, the data is more spread out and moves far from the
mean. From the equation we are able to tell the observation probability of the
input x, given a certain distribution.
For the multivariate, the probability density function is given by;

f(x;µ,
∑

) =
1√

(2π)|Σ|σ2
exp( − 1

2
(x− µ)T Σ−1(x− µ))

(2.2)

Where we have the input as x, mean as µ and
∑

as the covariance matrix.
The mean is still the center of the data but this time it is vector similarly to
the input. It therefore must vary similar to the input. The covariance tells
each variance’s dimension and the inputs relationship.
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To find the maximum likelihood estimate for unknown mean µ for a Gaussian
distribution whose known variance σ2 is , we first;
i) The log-likelihood.
ii) Differentiate the log-likelihood.
iii) Set the differentiated log-likelihood to 0.
Assuming all points are independent, then the joint likelihood which is a
product of the likelihood of each point is;

fX(x) =
n∏

i=1

f(xi;µ, σ
2
i )

(2.3)

when we refer to Equation (2.1), we get equation (2.4) below from equation
(2.3) above

fX(x) =

n∏
i=1

1√
2πσ2

e−(xi − µ)2/2σ2

(2.4)

The log-likelihood function then becomes

InfX(x) =

n∑
i=1

In(
1√

2πσ2
) − 1

2σ2
(xi − µ)2

(2.5)
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Differentiating;

d

dµ
InfX(x) =

n∑
i=1

1

σ2
(xi − µ)2

(2.6)

Equating the likelihood to zero (0)

n∑
i=1

1

σ2
(xi − µ)2 = 0

(2.7)

We get the parameter that maximizes the likelihood to be equal to;

µ̂ =
1

N

∑
i

xi

(2.8)

The variance as seen has no effect on the estimates.
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2.2 Gaussian Mixture Models (Parameter Estimation)

Gaussian mixture models help in modelling sets of data from several different
clusters where by each cluster has different properties from the other but data
points within each cluster through the Gaussian distribution can be modelled.
Data points that belong in a single distribution are grouped together.
Suppose from the data we have data, we want to get parameters that will
maximize the likelihood of observing the data. We therefore get the
probability as follows;

p(x) = Σn
i=1ϕif(x;µi,Σi)

Σn
i=1ϕi = 1

(2.9)

where we have the weight as ϕi, mean as µi and the covariance matrix as Σi

per Gaussian. The weights sum upto 1.

We use Gaussian mixture models when we can tell which particular gaussians
combination a particular point comes from and if so we can get the means and
covariances.
Assume we have data from K Gaussian distributions. The likelihood then will
be;

Inp(x;π, µ,
∑

) =

N∑
i=1

In(

K∑
k=1

πKN(xi|µk, σk))

(2.10)

Applying the same principle as done under section 2.1, differentiation of
equation (2.10) and equating the function to 0, we get optimal distribution
parameter. The parameter that will maximize the likelihood is shown as;
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i)

πK =
1

N

∑
n

(Yn = K)

(2.11)

From the Bayes Rule we know that;

ii)

µK =

∑
n(Yn = K)xn∑
n(Yn = K)

(2.12)

We apply equation (2.12) in equation (2.11) to get

iii)

σ2
k =

∑
n(Yn = K)||xn − µk||2∑

n(Yn = K)

(2.13)

If we can not figure out which Gaussians combinations a point comes from
then it makes it difficult to get the means and covariances hence we bring in
the Expectation Maximization approach to estimate the weights, means and
variances.
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3 DERIVATION OF THE EXPECTATION
MAXIMIZATION ALGORITHM

3.1 Log-Likelihood

In formulating the Expectation Maximization the log-likelihood of the
complete full data set comprising of the observations made (X) and the
missing data sets (Z) is key.

First, define the log-likelihood of the complete data set as;

 L(X|θi) = log p(X|θi)

(3.1)

The complete data pdf;

p(X|θi)

(3.2)

can be factored as;

p(X|θi) =
p(Z,X|θi)
p(Z|X, θi)

(3.3)

9



Third, we use equation 3.1 and equation 3.3 to get the log-likelihood of the
incomplete data set.

 L(X|θi) = logp(X|θi)]
∑
Z

P (Z|X, θi)

(3.4)

Remember that;

∑
Z

P (Z|X, θi) = 1

(3.5)

is differentiable in θ

 L(X|θi) =
∑
Z

P (Z|X, θi)logp(X|θi)

(3.6)

is finite for all estimated θ

Using equation (3.3) above,
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 L(X|θi) =
∑
Z

P (Z|X, θi)log
p(Z,X|θi)
p(Z|X, θi)

(3.7)

is differentiable with respect to estimated θ for fixed θ.

 L(X|θi) =
∑
Z

P (Z|X, θi)logp(Z,X|θi) −
∑
Z

P (Z|X, θi)logp(Z|X, θi)

(3.8)

 L(X|θi) = EZ(logp(Z,X|θi)|X, θi) − EZ(logp(Z|X, θi)|X, θi)

(3.9)

by definition of expectation,

 L(X|θi) = Q(θi|θi) + R(θi|θi)

(3.10)
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EZ is the Expectation for the missing data sets.

−EZ(logp(Z|X, θi)|X, θi) represents the incomplete-data likelihood and the
expectation of the completed-data likelihood difference.

3.2 Convergence in the Expectation Maximization (EM)
Algorithm

The Jensen’s inequality mentions that if fx is a function on TX , and E(f(X))
and f(E(X)) are finite, then

E(f(X)) ≥ f(E(X))

(3.11)

With the Jensen’s inequality in mind and using the equation
EZ(logp(Z,X|θi)|X, θi), we show that it can be improved with each iteration
that is the M-Step and so will the likelihood function.

The proof of convergence begins with the observation of the following
relationship;

L(X|θ) = logp(X|θ) = log(
∑
Z

P (Z,X|θi)) = log(
∑
Z

P (Z|X, θi)
p(Z,X|θi)
p(Z|X, θi)

(3.12)

With the equation 3.12 and the Jensen’s inequality we obtain;
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L(X|θ) = logp(X|θ)

(3.13)

Using equation (3.3)

L(X|θ) = log(
∑
Z

P (Z|X, θi)
p(Z,X|θ)

p(Z|X, θi)

(3.14)

is differentiable with respect to estimated θ for fixed θ.

L(X|θ) = log(EZ
p(Z,X|θ)

p(Z|X, θi)
|X, θi) ≥ EZ(log

p(Z,X|θ)

p(Z|X, θi)
|X, θi)

(3.15)

Using equation (3.3)

L(X|θ) =
∑
Z

P (Z|X, θi)log
p(Z,X|θ)

p(Z|X, θi)
)

(3.16)
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is differentiable with respect to estimated θ for fixed θ.

L(X|θ) =
∑
Z

P (Z|X, θi)logp(Z,X|θ) −
∑
Z

P (Z|X, θi)logp(Z|X, θi)

(3.17)

is continuous in θ for fixed θ.

L(X|θ) = EZ(logp(Z,X|θ)|X, θi) − EZ(logp(Z|X, θi)|X, θi)

(3.18)

Express as;

L(X|θ) = Q(θ|θi) + R(θi|θi)

(3.19)

In the Maximization step of the i-th iteration, 0∗ is chosen according to;

θ∗ = argmax0Q(θ|thetai)

14



(3.20)

a θ∗ at iteration n can be chosen such that;

Q(θ∗|θi) ≥ Q(θi|θi)

(3.21)

This proves the existence of a sufficient condition to prove the convergence
property of the EM algorithm.
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4 GENERALIZED EXPECTATION
MAXIMIZATION

The generalized EM convergence is slow but offers a more flexible and general
framework for dividing into the EM Steps, the optimization process. It is
applied in cases where it is difficult to get θ∗.

4.1 Likelihood for complete data

With the assumption that a set of missing data is known, then optimization of
a likelihood function is the first step. But to compute the complete-data
likelihood’s expectation in the E-step, we begin by getting the missing data
sets’s expectation.

If X is equal to xt; s = 1,..., S contains S vectors that are statistically
independent and Z = zs ∈ C; s = 1,..., S, where zs = C(j) shows that xs is
generated by the s-th mixture, then;

p(Z,X|θ) can be written as;

p(Z,X|θ) =

S∏
s=i

p(zs, xs|θ

(4.1)

Indicator variables come in to show the status of the missing data sets

∆ = (δ(j)s ; j = 1, ..., Jands = 1, ..., S

(4.2)
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Since only one of the terms in (δ
(j)
s ; j = 1, ..., J is equal to one for each and all

others equal to 0, we express p(Z,X|θ) as:

p(Z,X|θ) =

S∏
s=i

J∑
j=i

δ(j)p(xs,zs|θ
s )

(4.3)

Find the likelihood of the first set

p(Z,X|θ) =

S∏
s=i

J∑
j=i

δ(j)p(xs,zs=c(j)|θ
s )

(4.4)

Find the likelihood of the next set

p(Z,X|θ) =

S∏
s=i

J∑
j=i

δ(j)s p(xs, δ
(j)
s = 1|θ)

(4.5)

The likelihood of the completed-data together is therefore obtain as;
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logp(Z,X|θ) =

S∑
s=i

log(

J∑
j=1

δ(j)s p(xs, δ
(j)
s = 1|θ)

logp(Z,X|θ) =

S∑
s=i

log(

J∑
j=1

δ(j)s p(xs|δ(j)s = 1, θ)P (δ(j)s = 1, θ)

logp(Z,X|θ) =

S∑
s=i

log(

J∑
j=1

δ(j)s p(xs|δ(j)s = 1, ϕ(j))P (δ(j)s = 1)

logp(Z,X|θ) =

S∑
s=i

J∑
j=1

δ(j)s log(p(xs|zs = 1, ϕ(j))π(j))

logp(Z,X|θ) =

S∑
s=i

J∑
j=1

δ(j)s log(p(xs|zs = C(j), ϕ(j))π(j))

(4.6)

With only one non-zero term in the summation sumJ
j=1, we can extract

delta
(j)
s without affecting the result from the log function.

4.2 The Expectation Step

Using the expectation of equation 44 we get,

Q(θ|θi) = EZ(logp(Z,X, θi)

Q(θ|θi) =

S∑
s=i

J∑
j=1

Eδ(j)s |xs, θi)log(p(xs|δ(j)s = 1, ϕ(j))π(j))

(4.7)
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We then define

v
(j)
i (xs) = E(δ(j)s |xs, θi) = P (δ(j)s = 1|xs, θi)

(4.8)

and denote π
(j)
i at iteration i as the j-th mixture coefficient. With the Bayes

theorem, express v
(j)
i (xs) as

v
(j)
i (xs) = P (δ(j)s = 1|xs, θi)

=
p(xs|δ(j)s = 1, θiP (δ

(j)
s = 1|xs, θi)

p(xs|θi)

=
p(xs|δ(j)s = 1, ϕ

(j)
i P (δ

(j)
s = 1|xs, θi)

p(xs|θi)

=
p(xs|δ(j)s = 1, ϕ

(j)
i )π

(j)
i∑J

k=1 p(xs|δ(j)s = 1, ϕ
(k)
i )π

(k)
i

(4.9)
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5 EXPECTATION MAXIMIZATION(EM)
IN GAUSSIAN MIXTURE MODELS

5.1 Expectation Maximization (EM) in Gaussian
Mixture Models

Expectation Maximization is an algorithm that is used when there are latent
variables also known as missing values or incomplete data. From the existing,
we find the optimum values for the missing variables and then find the
parameters of the model after which step back and update the values for the
latent variables. Simply put, the algorithm begins with some initial estimates
which it iteratively updates through an E-step and M-step until convergence
occurs.
The following is a breakdown on the steps followed in EM;
i) An incomplete existing data set is uploaded to the system putting in mind
the assumption that the existing data is from a specified model.
ii)Expectation step also known as the E-Step: In this step we calculate the
probability of a particular gaussian generating a specific point. The existing
data is what we estimate or guess the value of the missing variables with. We
compute as follows;

Wi =
ϕif(x;µi,

∑
i)∑n

j=1 ϕjf(x;µj ,
∑

j)

(5.1)

We are looking at the probability that xk was is gaussian i generated for an
element in row k and column i with the rows as the points and the columns as
the Gaussians.
iii) Maximization step also known as the M-Step: Using the expectations
generated in the E-Step, we update the parameter’s values that is the means,
weights and covariances.
To do a weight ϕi update, we add the probability each point is generated by
Gaussian i then perform division by the number of points.

ϕi =
1

N

N∑
i=1

Wi
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(5.2)

For a mean µi update, we calculate all points weighted’s mean by the
probability being generated by Gaussian i of that point.

µi =

∑N
i=1 Wix∑N
i=1 Wi

(5.3)

For covariance Σi, we sum of all points weighted’s covariance by the
probability being generated by Gaussian i of that point. Perform the same for
all the Gaussian i.

∑
i

=

∑N
i=1 Wi(x− µi)(x− µi)

T∑N
i=1 Wi

(5.4)

iv) Check whether the values are converging or not. If yes, then stop otherwise
repeat step ii and step iii until the convergence occurs.
Convergence is attained by calculating the log-likelihood value after each and
every iteration and stopping when it stops making a significant change from
one iteration to the other.

5.2 Illustration of the EM Steps

Let p(xs|δ(j)s = 1, ϕ(j)) be a Gaussian distribution, from which a the j-th
cluster’s model parameter φ(j) = (µ(j), τ (j) consisting of a vector mean and a
covariance matrix of full rank.
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We make the assumption that the Gaussian MM:

θ = (π(j), µ(j), τ (j);

j=1,...,J

(5.5)

τ (j), π(j) and µ(j) and respectively denote, the covariance matrix, mixture
coefficient and mean vector, of the j-th component density. It’s then given by;

P (xs, θ) =

J∑
j=i

π(j)p(xs|δ(j)s = 1, ϕ(j))

(5.6)

where

p(xs|δ(j)s = 1, ϕ(j) = (2π)
−i
2 |τ (j)|

−1
2 exp(

−1

2
(xs − |mu(j))S(

(j)∑
)−1(xs − µ(j)))

(5.7)
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The EM iteration is as follows after the initialization of θ0:

i) E-step. In i-th iteration, calculate h
(j)
n (xs) for j and s using Equations 5.8

and 5.6, M-step follows.

ii) M-step. Maximization of Q(θ|θi) w.r.t θ to find θ∗ should be done.
Exchange θi with θ∗. After which we increase i by 1 and redo the E-step to
convergence.

To get µ(k)∗ we set;

σQ(θ|θi)
σµ(k)

= 0

(5.8)

which gives

µ(k)∗ =

∑S
s=1 h

(k)
i (xs)xs∑S

s=1 h
(k)
i (xs)

(5.9)

To determine τ (k)∗ we set;

σQ(θ|θi)
σµ(k)

= 0

(5.10)
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which gives

τ (k)∗ =

∑S
s=1 h

(k)
i (xs)(xs − µ(k)∗)(xs − µ(k)∗)S∑S

s=1 h
(k)
i (xs)

(5.11)

We maximize Q(θ|θi) to determine τ (k)∗ w.r.t τ (k) subject to
∑J

j=1 π
(j) = 1,

which brings;

π(k)∗ =
1

S

S∑
s=1

h
(k)
i (xs)

(5.12)
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Figure 1: EM Algorithm cycle
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6 DISCUSSIONS AND
RECOMMENDATIONS

6.1 Discussion

The Gaussian Mixture model looks at the distributions. It groups only data
points that belong to a similar distribution. This is done through soft
clustering where by the points are assigned the probability of being in a
certain distribution, It goes as far as clustering data points in between
different distributions accurately by showing to which extent a data point falls
in a particular distribution.

Expectation Maximum Algorithm uses the observed data to get optimum
values that can be used to generate the model parameters.

6.2 Study Limitation

Limitations anticipated within this study include;

� Expectation Maximum Algorithms have slow convergence and this
convergence is made to the local optima.

� It also requires forward and backward probabilities, while numerical
optimization only requires forward probability.

6.3 Recommendations

Future studies can look at estimation methods that can reduce the uncertainty
of missing or incomplete data.
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