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ABSTRACT 

 

Honey adulteration by cheaper sweeteners such as sugar syrups, synthetic honey, molasses, and 

sugar beet has become a common vice thus negatively affecting the quality of honey production, 

and diminishing its market value. Lack of label–free, easy to use and rapid quality assessment 

honey adulteration detection techniques in the market has encouraged honey producers and 

processors to cheat on its quality. Furthermore, the current honey adulteration detection techniques 

such as, Stable Carbon Isotope Ratio Analysis (SCIRA), Liquid Chromatography (LC), Gas 

Chromatography (GC), and High Performance Liquid Chromatography (HPLC) suffer from the 

disadvantages that include being less rapid and expensive to use. Hence the need for rapid and 

affordable honey adulteration detection techniques. In this research, laser Raman spectroscopy 

robustness as an emergent technique for definitive molecular fingerprint analysis was explored to 

study honey adulteration. Authentic honey was intentionally adulterated by molasses in varying 

concentration ranges. Raman spectra was collected separately with each done under 60 seconds 

from small quantities of 1 g of authentic honey, molasses and molasses - adulterated honey 

samples. PCA was employed to perform exploratory analysis of the combined authentic and 

adulterated Raman spectral data sets, while machine learning techniques namely, random forest 

(RF), and support vector machine (SVM), and artificial neural networks (ANN) were used to create 

multivariate classification and regression models for forecasting authentic honey and molasses - 

adulterated honey samples. The most variant bands between authentic honey and molasses that 

were confirmed using ANOVA and PCA showed characteristic bands centered around: 690 cm-1 

(stretching of CO and CCO, and bending of OCO); 732 cm-1 (glucose ν(C-C) vibrations); 754cm-

1 (weak (C = O) bond vibrations); 845 cm-1 (glucose spectrum); 970 cm-1 (glucose, ν (C- O) 

vibrations). Furthermore, high classification accuracies ranging from 86 – 100 % were achieved 

using RF and SVM classification models. Artificial Neural Networks (ANN) was built as a 

regression model using the concentration ranges of 0 – 10%. The coefficient of determination (R 

–squared) was 2R = 0.5786 and the mean absolute error (MAE) was 1.51. In order to calculate the 

limit of detection (LOD), the training data set obtained from the ANN regression model were used 

to determine the LOD. The median and mean absolute deviation values of the samples with known 

concertation versus samples whose concertation were predicted were used to calculate the LOD 
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because they were found to be statistically stable, thus they yielded minimized error bars. Using 

the ANN model an LOD value lower than 1% was obtained. Thus, the results discussed in this 

research demonstrate the capability of Raman spectroscopy coupled with PCA, RF, and SVM, and 

ANN for molecular distinction of authentic and molasses - adulterated honey using the Raman 

spectral data.  
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CHAPTER 1: INTRODUCTION 

  

1.1: Background to the Study 

Laser Raman spectroscopy is a spectroscopic technique typically used to determine vibrational 

modes of molecules when such molecules interact with laser source of light (Yang and Yi, 2011). 

Raman scattering of light arises when incident radiation is scattered by molecules resulting in a 

frequency shift that is either the same as incident radiation or a shifted frequency (Smith and Dent, 

2019). The frequency shifts in the molecular transitions of scattered radiation lies between 

rotational, electronic and vibrational level, and they constitute about 0.0001 % of the incident 

radiation (Wiley, 2006). The frequency shifts results into Raman effects corresponding to 

wavelength shifts of a vibrating molecular bond (Long, 2005). Hence, unique molecular structures 

that form the molecular fingerprints of the sample under study are revealed by the shifts in 

wavelength (Py et al., 2015).  

As a non- destructive technique, Raman spectroscopy involves simple sample preparation 

procedures that do not need dissolving of samples, or pressing of pellets, or alter the physical or 

chemical structure of  a sample (Zeitler et al., 2007). This limits the possibility of sample cross – 

contamination (Korth and Ralston, 2002) and reduces clean ups. Moreover, the rich and 

informative Raman spectra has instrumentally aced Raman spectroscopy capabilities over other 

analytical methods (Alula et al., 2018) in definitive molecular analyses. In addition, Raman 

spectroscopy technique is advantageous since, it operates at wavelengths that are independent of 

vibration modes being studied, with tunable wavelength ranges spanning from UV to NIR being 

possible (Gaft and Nagli, 2008) even the far – infrared which are very difficult to access  (Petry et 

al., 2003). Furthermore, Raman spectroscopy combined analytical techniques have incredibly 

facilitated the progressive qualitative and quantitative assessment of food components, thus the 

quality of food (Yang et al., 2005; Se et al., 2019). 

In assessing adulteration, Laser Raman spectroscopy is employed to predict levels of adulteration 

in virgin oil using soya bean, corn and olive residue (Baeten and Meurens, 1996).  Moreover, the 

technique has also been used in the discrimination of olive oil from various vegetable oils as well 

as detecting adulteration (Donfack and Materny, 2009). The robustness of laser Raman 
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spectroscopy  has been extensively harnessed in detecting urea adulteration in milk  (Khan and 

Krishna, 2015), analysis of chemical profiling of medical counterfeits (Dégardin et al., 2011), and 

the detection of butter adulteration by margarine (Selin et al., 2013).  

1.2: Honey Adulteration  

Honey adulteration is the process of lowering the quality of honey by combining it with low-cost 

sweeteners that have similar properties but are of lower quality than honey (Tura and Seboka, 

2020). The use of cheap sweeteners to adulterate honey is credited with the ability to artificially 

manufacture cheap sweeteners with profiles that resemble authentic honey  (Yaacob, et al., 2019).  

(Se et al., 2019) specifically mentioned starch syrups, inverted syrups, jaggery syrup, molasses, 

and date syrup as common cheap sweeteners used to adulterate honey. For example, the distinct 

dark brown color of jaggery syrup has made it difficult to distinguish it from natural honey on 

many occasions (Mishra et al., 2010), thus its wide use as a honey adulterant. For instance, 

molasses, a product of sugarcane refining is commonly used to adulterate honey. The presence of 

such low-quality honey on the market may have lowered the market price of genuine honey  

(Zábrodská et al., 2014), thus, limiting the country's economic growth. 

Honey adulteration crept into honey production in recent decades as a fraudulent act to meet the 

insecure global honey supply (Zábrodská et al., 2014). Honey adulteration, according to (Ertelli et 

al.,2010), has become an appealing vice that helps honey fraudsters meet the ever-increasing 

market demand for honey and honey products. In a case study of the Czech market, (Zábrodská et 

al., 2014) found that consumers frequently encounter bogus honey as well as honeys that are 

occasionally tainted in some way by deadly chemicals such as antibiotics, colorings, and 

Hydroxymethylfurfural. Excessive consumption of such phony honey is harmful to people's 

health, particularly diabetics (Fakhlaei et al., 2020). Adulterants like molasses can also cause 

digestive issues like loose stools, according to the researchers (Gupta, 2020). Ill-health, such as 

obesity and high blood sugar levels (Ismail et al., 2018), are some of the consequences of 

consuming tainted honey. 
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1.3: Conventional Methods of Honey Adulteration Sensing.  

Adulteration sensing in honey includes not only the detection of adulterants directly added to 

honey, but also the detection of adulterants through the indirect feeding of sugars to honey colonies 

(Guler et al., 2014). In honey adulteration sensing, conventional methods such as thin layer 

chromatography (TLC), stable carbon isotope ratio analysis (SCIRA), gas chromatography (GC), 

liquid chromatography (LC), and high performance liquid chromatography (HPLC) are popular. 

TLC has been used to detect HFCS (Yaacob, et al., 2019) and to investigate the authenticity of 

honey by looking into the ratio of fructose to glucose (Cimpoiu et al., 2013). This  method, 

however, is unreliable because more extensive works needs to be done to assess its reliability in 

detecting (Se et al., 2019a). SCIRA, on the other hand, has proven useful in distinguishing honeys 

from various botanical sources (Bontempo et al., 2015). GC has proven to be accurate in detecting 

sugar adulterants and the aroma of honey (Yaacob, et al., 2019). However, using this technique 

necessitates time-consuming sample preparation (Matute et al., 2007). While LC has been found 

to be effective in sensing C3 and C4 adulterants (Yaacob, et al., 2019), HPLC has been found to 

be reliable for routine monitoring of large numbers of samples, despite being labor intensive and 

requiring an expert (Roussel et al., 2003).  

In this research, robustness of Laser Raman spectroscopy as an emergent technique for definitive 

molecular fingerprint analysis was explored in the detection of the molecular distinction of honey 

and molasses (honey adulterant) which are two compounds with almost similar molecular 

composition. The Raman spectra obtained from both authentic honey and honey samples 

adulterated with molasses were subjected to exploratory analysis to ascertain unique properties of 

authentic samples and adulterated samples. Similarly, classification analysis was done to check on 

the ability of laser Raman spectroscopy to in molecular distinction of similar compound.  

Furthermore, regression analysis to help in building a model that could be used confirming the 

authenticity of honey samples. Using principal component analysis (PCA) loadings plot, definitive 

spectral bands characterizing authentic honey, molasses and honey adulterated by molasses at 

different concentrations were identified. Moreover, for the purposes of building rapid models, 

principle components (PCs) were used as inputs for both classification and regression models. This 

greatly reduced the architecture of the models, thus making the modes to be rapid. Classification 

analysis were done using support vector machine (SVM) and random forest (RF) models, high 

classification accuracies ranging from 86 – 100 % were achieved. In addition, regression analysis 
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was done using artificial neural network (ANN) model in the concentration range of 0 – 10 %.  

This yielded a coefficient of determination 2R = 0.5786 and mean absolute error (MAE) of 1.51. 

This research is ordered into six chapters: the introduction entails background information and 

captures a statement of the problem, the objectives, significance and justification of the study and 

the hypothesis of this study. The chapter on literature review presents a review of literature on 

honey adulteration detection by Raman spectroscopy and other spectroscopic techniques, a review 

of machine learning tools applied in extraction of Raman data in honey adulteration studies as well 

as the discussion of honey adulteration studies. The chapter on theoretical framework discusses 

Raman spectroscopy and its utility in various applications by considering emissions that are 

relevant in the interpretation of molecular vibrations that are Raman active. In addition, discussions 

of Chemometric techniques, namely PCA, RF, SVM, and ANN are also outlined. In the materials 

and methods chapter, sample preparation approaches are described in detail as well as how Raman 

spectral data was acquired from each sample set and preprocessed before analysis. In addition, 

data analysis approaches utilized in interpreting the spectral data are described. Results and 

discussion chapter entails a description of the collected results, analyses using various techniques 

and the discussion of the findings. Conclusion and recommendations chapter contains a summary 

of the main findings and directions for future research.  

 

1.4: Statement of the problem 

The current techniques used in assessing quality of honey are cumbersome and expensive, this 

makes it hard to frequently carry out quality assessments of honey at every stage of processing, 

marketing and selling (Kružík, 2017). Thus there is a compelling demand to study and create 

techniques that are rapid, non-destructive and portable that can easily be used for routine 

assessments of the quality of honey. If more rapid techniques are developed, it will significantly 

ensure quality food products are sold in the market, thus the economic viability of each food 

product such as honey will be realized (Zábrodská et al.,2014).  
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1.5: Research objectives  

1.5.1: Main objective 

To create an effective quantification and prediction model for assessing honey adulteration through 

analysis of Raman spectra using PCA, RF, SVM, and ANN 

1.5.2: Specific Objectives 

i. To obtain characteristic Raman profiles and identify unique Raman bands of molasses, 

authentic honey and molasses – adulterated honey. 

ii. To perform exploratory data analysis using multivariate calibration on the collected Raman 

spectra of authentic honey and adulterated honey using selected Chemometrics techniques 

iii. Build a prediction model from the collected Raman spectra of authentic and adulterated 

honey and employ it in determining limit of detection. 

1.6: Significance and Justification of the study 

The consequences of honey adulteration as a vice range from health risks such as high blood sugar 

levels and obesity to economic risks which include and not limited to brake – down of the economy 

due to low prices of adulterated honey and loss of consumer confidence on the quality of honey 

(Ismail et al., 2018). The shortcomings due to ineffective honey adulteration detection techniques 

in the markets today has also greatly contributed to the increase in honey adulteration fraud (Jaafar 

et al., 2020). The current techniques are unable to cope with the newest and sophisticated 

adulteration methods, and in so doing low quality honey gets its way into the market thus 

diminishing the market price of authentic honey (Zábrodská et al., 2014). In addition, the current 

techniques of honey adulteration detection are cumbersome, use expensive chemicals with some 

being able to detect only one adulterant (Cotte et al., 2007; Bougrini et al., 2016).  These pertinent 

issues call for a solution. It is for such reasons that this study explores the adequacy of laser Raman 

spectroscopy coupled with machine learning techniques as a robust definitive molecular analysis 

method in the assessment of honey adulteration.  

The scientific significance of this work is geared towards improving and adding to the existing 

spectral libraries on honey adulteration using laser Raman spectroscopy.  By identifying unique 

and prominent spectral bands that significantly contribute to honey adulterated by molasses, this 
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research has proved the possibility of laser Raman to be used as a hands on technique for routine 

monitoring and assessment of honey quality.  

 

1.7: Scope and limitation of the study 

Production of natural honey under varying climatic conditions has made it an easy target of 

adulteration by low – cost sweeteners. In the market today, honey adulterants range from 

industrially manufactured syrups as well as indirect feeding of honey bees on sugar syrups. In this 

work, molasses, a highly viscous by – product from sugar refining is studied as honey adulterant. 

On its own, the molecular composition of molasses is majorly dominated by fructose, glucose, and 

sucrose which are also the basic compounds characterizing the honey profile. 

1.8: Hypothesis of the Study 

It is possible to create a quantification scheme for honey adulteration detection lower than 1%. 

Using the distinct vibrational bands present in honey together with the target adulterant, the 

prediction of trace adulteration levels is achievable with prediction models being developed from 

a range of low adulteration levels of honey. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1: Chapter Overview  

This chapter presents a review of literature on honey adulteration detection by Raman spectroscopy 

and other spectroscopic techniques. A review of Chemometric techniques applied in extraction of 

Raman data in honey adulteration studies has also been presented. A discussion of honey 

adulteration studies has also been done. 

2.2: Honey Adulteration Detection Using Raman Spectroscopy 

Raman spectroscopy has been utilized in the detection of honey adulterated by fructose, insulin 

syrup, glucose, and malt must (Oroian et al., 2018). Groups of authentic samples and samples at 

different adulteration levels were created for analysis. The classification analysis using PLS – LDA 

yielded a total accuracy of 96.54 % and 90.00 % for authentic vs. adulterated and adulterated honey 

respectively (Oroian et al., 2018). When authentic honey was examined further, it revealed bands 

at: 346, 353, 408, 498, 606, 681 and 793 cm-1 which were assigned to respective molecular 

components and vibrations. In addition, the band at 1048 cm-1 was associated to  glucose ring 

vibration, at 1054 cm-1 CH and COH bending vibrations in carbohydrates were found to be 

responsible with some CN bond vibrations in proteins and amino acids also contributing, and at 

1238 cm-1 COH bond vibrations were prominent (Corvucci et al., 2015; Li et al., 2017; Özbalci et 

al., 2013).   

 

Honey tainted by fructose exhibited skeletal intensity at 606 cm−1, ring vibration and stretch of C-

OH at 750 – 850 cm-1 and C – O – C cyclic alkyl ethers at 1074 cm-1. For honey adulterated with 

glucose, glucose specific wavenumbers were noted at 498 and 918 cm-1.  For honey adulterated by 

hydrolyzed insulin syrup, characteristic band with high magnitudes in intensity were realized at 

450 , 680, 793, and 1253 cm-1 (Li et al., 2017). Furthermore, honey adulteration by inverted sugar 

showed characteristic bands at 681 cm-1 and  793 cm-1 which corresponded to fructose molecule, 

and glucose ring vibrations respectively (Corvucci et al., 2015;  Li et al., 2017; Özbalci et al., 

2013).  
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2.3: Detection of Honey Adulteration by high fructose corn syrup (HFCS) and maltose syrup 

(MS) using Raman spectroscopy 

Li et al., (2012) applied Raman spectroscopy in uncovering high fructose corn syrup (HFCS) and 

maltose syrup (MS) adulterants in honey. Authentic honey and HFCS and MS were mixed in 

different ratios. Analysis of the Raman spectroscopy results was done using PLS – LDA. The 

results proved the viability of Raman spectroscopy coupled with PLS –LDA as a probable method 

for disclosing adulterants in honey (Shan, et al., 2012). As noted by Paradkar and Irudayaraj. 

(2001), the Raman band found present at 705 cm-1 corresponded to CO and CCO stretching, and 

bending of OCO. CH vibrations characterized the bands at 865 and 824 cm-1 while CH and COH 

vibrations contributed to the signal at 915 cm-1 and 1065 cm-1. Raman bands at 1127 cm-1 were 

linked to C – O stretching vibrations whereas COH vibrations contributed to 1264 cm-1 and at 1373 

cm-1 was linked to CH and OH bonds bending. The combination of CH bending vibrations and the 

vibration of COO- group was associated with the band at 1461 cm-1 (Shan, et al., 2012). 

 

2.4: Detection of Honey Adulteration Using Chemometrics – Integrated Raman 

Spectroscopy 

Raman spectroscopy coupled with Chemometrics has effectively been utilized in the quantification 

of various sugar adulterants (Özbalci et al., 2013). For instance, Li et al (2012), employed Raman 

spectroscopy in studying honey adulterated by HFCS and MSS. Using the PLS –LDA discriminant 

model, high total accuracies of 91.1 % and 97.8 % were achieved for HFCS and MSS samples 

respectively. Furthermore, (Kneipp et al., 2002) hinted on the progressive utilization of Raman 

spectroscopy in assessment of foodstuff safety and quality. In this study, Kneipp harnessed the 

advantageous uniqueness of Raman spectroscopy and its ability to combine both infrared 

spectroscopies alongside NIR spectroscopy. Furthermore, (Mignani et al., 2016) devised an 

ingenious compact dispersive Raman spectroscopy (at 1064 nm stimulated) combined with 

Chemometrics data treatment to check out traits of honey depending on diverse markers such as 

carbohydrate profile. The quantitative and qualitative analyses of excess sugars in comparison to 

data acquired from Raman spectra proved the viability of the technique in predicting main sugars 

(Mignani et al., 2016). 
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2.5: Other Spectroscopic Techniques Used in Honey Adulteration Detection 

2.5.1: Chemometrics-Integrated Infrared Spectroscopy 

The combination of IR spectroscopy with Chemometrics has become an instrumental tool in the 

detection of honey adulteration.  This method is fancied for a variety of reasons, including its 

speed, ease of sample preparation procedures, cheaper, non-destructive, and suitability in actual 

monitoring (Velázquez et al., 2009; Anguebes et al., 2016), thus making it a famous method in 

honey adulteration detection. Frequently, IR spectra can reveal concealed details about a sample's 

constitution. Matrix effect and overlapping, that may cause standalone IR spectroscopy less 

capable compared to aforementioned methods for detecting adulterated honeys, could be overcome 

by bringing it together with Chemometrics statistical analysis. Moreover, NIR spectroscopy, 

coupled with PLS – LDA and Coherent Anti –Stokes Raman Scattering (CARS) have been 

effectively applied in examining quality of honey samples containing high fructose corn syrup 

(HFCS) and maltose sugar syrup (MSS), coupling the method with CARS has helped improve the 

classification accuracies (Ma et al., 2017). Although this method could not predict the degree of 

HFCS adulterant, it was found to be accurate for MSS prediction (Yaacob, et al., 2019). 

2.5.2: Nuclear Magnetic Resonance Spectroscopy (NMRS) 

NMRS utilization in combination with statistical models to evaluate the validity of honeys from 

different flora and geographical locations has been fruitful (Spiteri et al., 2014). When compared 

to other techniques, NMRS has been insufficiently sensitive in detecting adulterants of ISS and 

HFCS in honey. For instance, (Ribeiro et al., 2014) used NMRS to distinguish HFCS adulterated 

honey from pure blossom honey, and discovered significant differences in transverse relaxation 

time between the two honeys (Oliveira et al., 2014; Spiteri et al., 2014). In general, NMRS enables 

the quick detection (under 5 minutes to receive one NMRS spectrum), the simultaneous 

measurement of adulterants and several chemical compounds from the same spectrum. However, 

the high cost of operation of the NMR that needs an expert restrains its large use as do other high-

end analytical techniques (Ertelli et al., 2010). 
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2.5.3: Chemometrics-Integrated High-performance Anion-Exchange Chromatography 

Coupled with Pulsed Amperometric Detection (HPAEC –PAD) 

 

HPAEC-PAD technique is well-established in determining carbohydrate content of compounds. 

Majority of HPAEC-PAD applications use a high pH mobile phase because numerous 

carbohydrates are not charged at pH 7. Additionally, using a gold working electrode and oxidation 

at a high pH, carbohydrates can be detected (Corradini et al., 2012). Electron flow through the 

working electrodes over time generate charge that yield to a chromatogram. As such the potentials 

created overtime result to pulses Amperometric detection (PAD) (Mellado-mojica et al., 2016). In 

an adulteration study, HPAEC – PAD was used to identify thirteen different sugars syrups that had 

been used to spike pure honey. It was discovered that, combining supervised classification with 

LDA was effective in differentiating pure honey from adulterated honey, categorizing distinct 

varieties of honey, together with designating a sample to an actual category (Cordella and Milit, 

2005). High classification accuracies at 96.5 percent using the LDA model proved to be successful 

in categorizing the various types of honeys.  

2.6: Tools Used to Extract Raman Spectral Data for Analysis  

Principal Component analysis (PCA) as a multivariate tool has been applied in the comparative 

examination of Raman spectra and IR spectra of commercialized honey in the markets of Ecuador. 

This was done to verify the quality of the honey. Of the 8 samples that were analyzed, two of them 

were found to have a huge disparity in the composition of sucrose and reducing sugars, thus 

shaping two clear clusters that varied in relation to samples analyzed (Salvador et al., 2019). In 

another study involving (Vis-NIRS) coupled with Chemometric tools, PCA was utilized as a linear 

technique for dimensionality reduction. Through the representation of loading values, the 

wavelengths that had the great significance of the first three PCs looked associated to the level of 

adulteration for almost all the wavelengths. Although there was no complete difference that was 

possible using this technique, the obtained results suggested that PCA displayed a trend for the 

adulterated samples to be grouped in relation to the level of adulteration (González et al., 2018).  

 

In a study of virgin oil adulteration, PCA was employed to scale down the multidimensional data 

acquired from Raman spectroscopy. Thus, the discrimination of oil samples based on origin or 
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their composition was realized (Ez et al., 2003). Likewise, SIMCA, Chemometric analysis was 

successfully applied for the correct classification of the origin of Mexican honeys from four 

dissimilar regions (Velázquez et al., 2009). Furthermore, Vibrational spectroscopy coupled with 

multivariate methods as PCA and HCA can be used for laying out investigated elements into 

categories on the basis of their comparison, thus can be employed in analysis of spectral data for 

differentiation of unadulterated wheat flour and wheat flour adulterated with L-Cysteine and 

Cysteine (Cebi et al., 2017).  

 

In a study of forecasting beef adulteration by blight beef using Vis – NIR, support vector machine 

(SVM) was used to create a segregation hyperplane of the valid beef and blighted beef (Zhao et 

al., 2019). Similarly, in studying honey adulteration by hyperspectral imaging, the SVM algorithm 

had an accuracy of 92 % (Shafiee et al., 2016). Moreover, using Gas Chromatography, the SVM 

algorithm has been used to build a model with 100 percent classification accuracy to distinguish 

between authentic sesame oils and adulterated sesame oils adulterated (Peng et al., 2015).  

Random Forest (RF) has been used in food adulteration detection as a single-class classifier and 

in infrared spectroscopy. In order to use the random forest, artificial outliers from the target 

samples had to be generated, and all possible adulterations had to be simulated. The algorithm 

used affluently generated invariably scattered artificial samples in all directions close to the 

intended categories, involving the entire realm of variations and allowing the expansion of a 

suitable random forest model (Bachion et al., 2019). Researchers have used e-nose measurements 

and RF in differentiating distinct samples of apple juice (Ro, 2018). In a study involving rapid 

segregation of authentic and adulterated Andiroba Oil, RF was used to build classification models, 

which showed 100% of correct classification. Thus, this method could be crucial in periodic 

assessments of adulteration (Santana et al., 2018).  

Using electronic nose, the application of ANN to unearth the adulteration levels in camellia seed 

oil and sesame oil was insightful. The outcome indicated that, while the electronic nose can't 

forecast the adulteration percentage in camellia seed oil using ANN as a pattern identification 

technique, it can be applied to quantify sesame oil (Hai and Wang, 2006). In adulteration sensing 

in saffron samples using electronic nose, ANN affirmed the possibility of distinguishing saffron 

from saffron mixtures containing graft materials with accuracies of 86 percent (Heidarbeigi et al., 
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2015). Similarly, ANN has been applied successfully in detecting cow ghee adulteration by of 

margarine using e –nose machine with accuracies as high as 85.6 and 97.2 percent (Ayari and 

Ghaleh, 2018). In a study on coconut oil adulteration, ANN data sets were developed to validate 

and test the ANN models. This system was found to uncover coconut oil adulteration by sunflower 

with an accuracy of 99.53 percent and 98.82 percent. Thus, suggesting that this technique could 

be useful in the creation of a portable sensor for scanning of adulteration in edible oil (George et 

al., 2017). 

2.7: A Summary of Honey Adulteration Detection Techniques Studies  

Exploration of rapid and sensitive honey adulteration techniques has been an ongoing process in 

research (Yaacob, et al., 2019). Lately, Wu et al., (2017) comprehensively analysed the 

applications of chromatographic and spectroscopic techniques in honey adulteration detection. He 

established that, chromatographic techniques namely using GC (Matute et al., 2010) , LC (Wang 

et al., 2015), HPLC (Du et al., 2015; Wang et al., 2015)) and HPAEC- PAD (Morales et al., 2008) 

had been applied successfully in the identification of a number of honey adulterants. Notably, 

using SPE – HPAEC – PAD (Megherbi et al., 2009) a 1 % limit of detection of honey adulteration 

had been achieved.  Conclusively, Wu established that, the practical applications of spectroscopic 

techniques was more robust and remarkable than the chromatographic techniques when identifying 

adulterants present in honey (Yaacob, et al., 2019). This was because spectroscopic techniques are 

rapid and simple to use.  

In comparison to spectroscopic methods, traditional chromatographic methods are tedious, limited 

to expertise operation and utilize toxic and expensive chemicals in their analysis.  In addition, 

some of the methods can only identify one honey adulterant (Cotte et al., 2007; Bougrini et al., 

2016). Hence limiting their application in qualitative and quantitative assessment of honey 

adulteration. On the other hand, spectroscopic techniques cannot be applied singly in the 

identification of adulterant markers in honey, hence their integration with Chemometrics methods 

to enable derivation of important spectral information. In literature, Chemometric – integrated 

spectroscopic techniques have been used to test for honey authenticity (Sivakesava  and Irudayaraj, 

2002) as well as identification of microscopic figurative markers that show honey adulteration by 

sugar syrups (Cordella et al., 2005). Thus robust systems built using Chemometric – integrated 
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spectroscopic techniques has caught the attention of researchers in classifying honey and detecting 

honey adulterants (Yaacob, et al., 2019). 

In summary, Se et al., (2019) did a comparative distinction of the techniques that have already 

been used for honey adulteration detection as shown in Table 2.1. 

Table 2.1: Comparative study of distinctive methods of honey adulteration detection 

Method  Chemometric 

method  

Adulterants Limit of Detection Reference 

SCIRA No Tool HFCS, glucose 

syrup and 

saccharose syrup 

LOD > 7% Tosun 2013 

(Cotte et al., 2007) 

NMR ICA  Beet and cane full 

High fructose corn 

syrup, High 

fructose inverted 

syrup and Inverted 

syrup 

LOD > 10% (Spiteri et al.,2015) 

(Oliveira, Ribeiro, 

Mársico, et al., 

2014) 

 

FT-Raman 

spectroscopy 

combined with 

Chemometrics 

PLS, PCR, 

LDA, and CVA 

Inverted beet and 

cane syrup 

96% Correct 

classification 

accuracy acquired. 

(Paradkar et al., 

2001) 

(Cannavan, 2014) 

(Pierna et al., 2011) 

NIR integrated with 

Chemometrics 

CARS; PLS-

LDA and PLSR 

HFCS and maltose 

syrup 

HFCS and MS 

adulterants 

classified with 96.3 

and 96.1%  

(Zhu et al., 2010) 

(Li et al., 2017) 

FTIR-ATR coupled 

with Chemometrics 

PLS, PCR Corn Syrup, High 

fructose corn 

syrup and Inverted 

sugar syrup 

R2 > 0.976,  

SEP < 3. 

(Velazquez et al., 

2009) 

(Ranjan et al., 

2021) 

Reversed phase 

SPEHPAEC- 

PAD 

 COSS LOD > 1% (Megherbi et 

al., 2009) 

(Taylor et al., 

2014.) 

HPLC-RID  Starch syrup  LOD > 2.5% (Wang et al., 

2015) 

(Tahsin et al., 

2014) 

E-tongue 

coupled with 

Chemometrics 

 

 Sucrose and 

saccharose 

syrup 

 

LOD > 2% Bougrini et 

al., 2016 

(Rifna et al., 2022) 
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2.8: Summary of Literature Review 

The application of the aforementioned Chemometric – coupled Raman spectroscopic techniques 

and other techniques reported in Table 2.1 have remarkably proven the viability of these systems 

in detection of adulterants in honey. However, for spectroscopic techniques, fluorescence caused 

by excitation from the laser radiation can swamp the weak phenomena of Raman spectra thus 

making collection of quality data difficult, thus posing as a challenge to the quality of Raman 

spectral data. Similarly, in a study done by Paradkar et al., (2001), mining of Raman data was a 

major challenge. Thus in this work, Raman spectral preprocessing entailed smoothening using 

Vancouver Algorithm based on fifth – order polynomial fitting method (Birech et al., 2020). In 

addition, spectral normalization was done using R software. Furthermore, the development of 

better and effective classification and regression models was done using robust machine learning 

techniques, namely; Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural 

Network (ANN).  
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CHAPTER THREE 3: THEORETICAL FRAMEWORK 

 

3.1: Chapter Overview 

This chapter discusses Raman spectroscopy and its utility in various applications by considering 

emissions that are relevant in the interpretation of molecular vibrations that are Raman active. 

Types of Raman spectroscopy and their applications are also discussed in brief. In addition, 

discussions of Chemometric techniques, namely PCA, RF, SVM, and ANN are also outlined.  

3.2: Theory of Laser Raman Spectroscopy  

Raman scattering is an inelastic phenomenon (Li and Church, 2014a) that occurs when incident 

laser light interacts with a sample. When the electric field of the laser interacts with a sample, 

molecules at the ground vibrational electronic states are excited and are promoted to a virtual state 

( a non – existent state) below an electronic state (Li and Church, 2014b). Relaxation from the 

virtual state may occur through Rayleigh scattering giving out the same energy as incident laser, 

or stokes Raman shift scatter which yields energy lower than the incident laser or anti – stokes 

Raman scatter which emits energy higher in magnitude than that of the incident laser  (Kudelski, 

2008).  

Conventionally, when incident laser light interacts with a sample of wave number o  most of it is 

transmitted through Rayleigh scattering, but some of it is scattered. New wave numbers of the type 

'

o o m     will be observed with m   associated with Raman scattering which entails, rotational, 

vibrational and electronic levels (Wiley., 2006). The sample interaction with incident laser of a 

wavenumber o causes a photon to be absorbed, thus it is promoted from a low to a high energy 

level E1 and E2 respectively, therefore ΔE = E2 – E1. The energy change ΔE between the two 

levels is denoted by a wavenumber m , where ΔE = hcvm. Likewise, when interaction involve  

energy transitions from a higher level E2 to a lower level E1, energy is made available and E2 – 

E1 = hcvm  (McCreery., 2001).  Thus the quantization of losses in photon energy (Kudelski., 2008).   
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Figure 3.1: Diagrammatic representation of energy transitions between ground vibrations sates 

and the virtual states of Rayleigh scattering, Stokes Raman and Anti –stokes Raman scattering 

(Source: Krishnan, 2019). 

Descriptively, when the electric field of a laser combines with the molecules of a sample, the 

molecules are excited in a specified geometrical orientation, thus polarization. Relaxation of 

molecules from the polarized condition occurs almost immediately and molecules return to their 

initial state at a process called Rayleigh scattering. Relaxation of the molecule to the first excited 

vibrational level results in Stokes – Raman shifts whereas relaxation from an excited vibration 

level to the ground state produces anti – stokes Raman scattering (Tan et al., 2019). It is from such 

relaxation process that Raman active molecules with polarizability that have even symmetry, 

stretching vibrations as well as vibrations that do not generate electric field become possible 

(Bosshard et al., 2002). Therefore, Raman spectroscopy becomes capable of carrying out both 

qualitative and quantitative analysis of samples by exploring the spectral signatures (Araujo et al., 

2018).  
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3.3: Sample and Raman Intensity 

Raman scattering intensity is an important quantity in Raman measurements because it depends 

mainly on how many molecules are present per unit volume of sample examined by Raman 

instrument (Zhao et al., 2021). Raman spectroscopy is a technique for determining a molecule's 

intensity by examining its Raman intensity. The association between Raman intensity and 

molecule concentration lays foundation of quantitative Raman spectroscopic analysis whereas 

qualitative Raman analysis depends on the weighted sum of the Raman spectra of the components 

constituting a mixture (Haynes et al., 2005).  

3.4: Variants of Raman Spectroscopy and Their Advantages 

The laser wavelength chosen is vital for performance of Raman and has a significant impact on 

the spectrum obtained (Krafft et al., 2009).  Field of view for Raman measurements is dependent 

on the laser wavelengths, thus resonance effects (Pettinger et al., 2012).  Shorter wavelengths are 

more easily noticeable with lower scatter effects and quantum efficiency. Because more electronic 

transitions occur in the ultraviolet (UV) than in the infrared regions of the spectrum, shorter 

wavelengths are also more likely to excite fluorescence. The wavelength of the laser should be as 

long as the sensitivity demands allow (Nakamoto and Brown, 2003). 

 

3.4.1: Frequency Precision and Accuracy of Raman Shifts 

Assignment of Raman features, library searching, and spectral subtraction depend on reproducible 

Raman shift values (Raanan et al., 2018). Frequency accuracy becomes increasingly important as 

spectral databases become available, since spectra from a wide variety of spectrometers will 

contribute to the database.  Unfortunately, peak frequencies in the literature often vary by several 

reciprocal centimeters for a given Raman feature, but accuracy of substantially better than ±1 cm-

1is routinely achievable. In some spectrometers, < 1 cm-1 accuracy is both routine and automatic 

(McCreery, 2001). 

 

3.4.2: Reproducibility of Relative and Absolute Peak Intensities of Raman Shifts 

Although less important than peak frequencies, peak intensities obviously play a role in 

quantitative analysis and, in many cases, qualitative identification (Blum et al., 2014). Multivariate 

calibration techniques and their transferability depend on reproducible relative peak heights. A 

possibly lengthy method development procedure may fail when a different spectrometer is used, 
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if the observed intensities vary. Reproducibility of absolute signal is difficult to achieve between 

labs or even between instruments of the same design, but it is important for a particular instrument. 

Absolute intensities can at least be used to evaluate day-to-day instrument performance and to 

detect hardware or alignment problems (McCreery, 2001). 

 

3.4.3: Available Laser Power 

The figures of merit are normalized to a given laser power since they apply to collection rather 

than excitation of Raman scattering (Müller and Sumpf, 2020). While high laser power is vital in 

this facet, there are limitations. High power, or more precisely high power density, can cause 

thermal or photolytic damage to the sample, ultimately limiting the acceptable power density. A 

second limitation on laser power is more pragmatic, involving cost or utility requirements. With 

today’s technology, lasers with outputs of greater than about 500 mW require cooling water or 

external heat exchangers and are impractical for many requirements (Liu et al., 2019). 

 

3.5: Utility of Raman Spectroscopy in Molecular Analysis 

As an analytical technique, Raman spectroscopy blends both pros  of IR and NIR spectroscopy for 

molecular analysis (Das and Agrawal, 2011). Likewise, its operation based on frequency shifts 

that correspond to molecular vibrations of the sample under study have given Raman spectroscopy 

an edge in the study of molecular composition of materials (Kneipp et al., 2002). Furthermore, 

Raman enjoys molecular analysis since no two molecules can yield exactly the same Raman 

spectrum, thus enabling qualitative and quantitative analysis of samples for correct spectral 

interpretation (Wiley, 2006). In summary, as a key vibrational spectroscopy technique, Raman 

spectroscopy has enabled the identification and study of molecular composition of materials 

through observation of the Raman spectral bands (Schmitt and Popp, 2006).  

Raman spectroscopy comes in various types depending on the interaction between the laser and 

the sample. Non – resonance Raman scattering occurs when electrons in molecules are polarized 

after interacting with incident radiation (Lin et al., 2021). Conversely, resonance Raman scattering 

entails very close excitation frequencies between the incident radiation and the electronic transition 

of the molecule of interest (Robert, 2009). Whenever a sample interacts with incident radiation of 

very high irradiance it results into nonlinear processes during scattering. This is called non – linear 

Raman spectroscopy (Snežzana, Leo and Biljan, 2007).  
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3.6: Surface Enhanced Raman Scattering (SERS) 

SERS is a very sensitive method that increases the Raman scattering of molecules by utilizing 

some nanostructured metallic substrates (Iqbal et al., 2020). The adoption of SERS for spectral 

measurements emanates from the increase in the observed cross – section area of the sample under 

study by magnitude as far as 15 orders in comparison to the normal Raman scattering (Zheng et 

al., 2020).  The SERS effect causes an increase in Raman intensity as a consequence of an 

enhanced electric field at the metal surface (McNay et al., 2011) thus, chemical and electrical field 

enhancement is realized (Haynes et al., 2005). 

Currently, the application of SERS in spectral analysis has led to the possibility of  declaring 

Raman spectrum for a single molecule (Etchegoin et al., 2003). Interestingly, SERS spectroscopy 

has been applied in analyzing complex mixtures by measuring many SERS spectra from just a few 

molecules of a sample randomly selected (Kudelski, 2008). Furthermore, the applications of SERS 

have been demonstrated to be beyond laboratory research problems (Sharma et al., 2012). For 

instance, UV SERS has been effectively applied in analysis of protein residues and DNA bases 

(Cui et al., 2010) with ultrafast spectroscopies capable of generating enhancement factors that 

could exceed 1020 (Oliver, 2018). In addition, investigations on plasmon – enhanced photocatalytic 

reactions and ultrafast reaction dynamics have been realized through ultrafast spectroscopies 

(Chuntonov and Rubtsov, 2020).  

3.7: Tip –enhanced Raman spectroscopy (TERS) 

TERS is a technology that couples Raman spectroscopy with aperture-less scanning near-field 

optical microscopy (s-SNOM) to achieve Raman spectroscopy and Raman imaging beyond the 

diffraction limit of the probing light (Verma, 2017). The efficiency of TERS rides on scanning 

resolution  of the probe and sensitivity (Kumar et al., 2015). TERS functions on the surface of the 

sharp metal tip to excite Raman scattering from small volume (Verma, 2017). Thus, enhanced 

Raman intensity of molecules place close to such mental structures (Yeo et al., 2009).  

 

As such, the interrogative capabilities of TERS has been applied successfully in analysis of 

samples with sub – diffraction – limited capabilities (Meyer et al., 2017) as well as  analysis of  

involving solid-state physics, organic or inorganic chemistry or biochemical and cell biological 

issues (Deckert and Wiley, 2009). 
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3.8: Machine Learning Techniques Applicable for Raman Spectroscopy Analysis 

3.8.1 Principal Component Analysis (PCA) 

PCA is the real workhouse of exploratory data analysis (Abdelghany, 2016). This technique is 

used to show disparities between huge amounts of data obtained from a spectrum. By reducing the 

data to a minimum number of principle components (Sivakesava et al., 2001), PCA boils down 

the entire data set into essentials that describe the variation in the data. Thus, as an unsupervised 

statistical method, most of the linear latent variables that explain for the variance in the observed 

variables are computed (Lenhardt et al., 2014).  The triumph of this technique leans on the 

selection of preferred scope of spectrums and how many variables are assigned for use in the model 

(Paradkar et al., 2002). 

PCA is the upmost frequently used multivariate analysis calibration method employed in 

spectroscopy for extracting relevant features from complex spectral data containing overlapping 

regions (Paradkar and Irudayaraj, 2002). In addition, PCA is efficient in distinctive identification 

of data patterns that reveal similarities and differences in the data by using correlations between 

the variables of interest (Lenhardt et al., 2014). Thus, the few principle components obtained after 

a PCA gives a full representation of the entire data set (Sivakesava and Irudayaraj, 2001). 

Conclusively, PCA triumphs with proper selection of spectral ranges besides the number of 

variables engaged in the model (Paradkar and Irudayaraj, 2002). 

PCA is capable to put up with all variables in an entire data set structure with applications to an X 

– matrix data with no Y – data properties being possible (Eriksson et al., 2006). Although outliers 

and scaling methods greatly influence PCA results, constant variables have been found to have 

insignificant effects on PCA results (Brown, 2010). Given a data set, the first principal component 

is that latent variable responsible for conserving relative distances between the objects and displays 

the highest variance of the scores. This first principal component is defined by a loading vector; 

1 1 2( , ,......., )mp p p p          (3.7.1) 

Where p is loadings in PCA while m is variables’ number.  

In Chemometrics, the loading vectors lengths are normalized to 1: that is 
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1 1 1Tp p             (3.7.2) 

For example, given an object i , defined by a vector ix  containing elements ilx  to imx , its PC 1 

score ilt   is expressed as:  

1 1 2 2 1.... .T

i i i im m it x x p x p x p        (3.7.3) 

Hence, in the X – data matrix, all the objects arranged in rows, the score vector t1 is defined as  

1 1.t x p                       (3.7.4) 

Furthermore, the second principal component (PC2) characteristically defines the highest possible 

variance of scores and is orthogonal to PC1. Generally, any subsequent PCs computed are notably 

orthogonal to the previous PCs and they cover the highest possible variance of the data in their 

direction of projection. Mathematically, the scalar product of orthogonal vectors is zero, and so 

considering all pairs of PCA loading vectors we have: 

. 0T

j kp p            , 1,...........j k m       (3.7.5) 

Conclusively, as the number of PCs increase, the variance becomes very small or zero. Thus, for 

many practical data sets the first two or three PCs containing the highest variance are used for data 

interpretation and for scatter plots.  

3.8.2: Random Forest (RF)  

Random Forest is an excellent technique for classification and quantification problems (Genuer et 

al., 2012). RF is a classifier that consists of a group of tree-structured classifiers with the following 

structure: {ℎ(𝑥, Θ𝑘), 𝑘 = 1, … } where the Θ𝑘 are the independent identically distributed random 

vectors. Every tree in the group draws one unit of vote to the class that is more prevalent at input 

x. (Liu et al., 2012).   

As a member of the ensemble methods, it utilizes boosting and bagging of classification of trees 

for results aggregation (Liaw and Wiener, 2014; Genuer et al., 2012). Expressly, boosting utilizes 

the additional weights yielded by consecutive trees in predicting incorrect points, and in doing so, 

its prediction relies on a weighted vote. On its path, bagging independently constructs trees using 



22 
 

bootstrap sample of the data, thus a simple majority vote is taken as the end result for prediction 

(Breiman., 2001). According to Breiman's RF model, every tree is put using a training data set and 

a random variable. The random variable for the kth tree is designated as Θ𝑘  , and any two of these 

random variables can be used to create a classifier ℎ(𝑥, Θ𝑘), where x is the input vector. The 

classifiers sequence {ℎ1(𝑥), ℎ2(𝑥), … … … . ℎ𝑘(𝑥)} is obtained after k times of running, and we use 

it to create multiple classification model systems (Rodriguez-Galiano et al., 2015) (Liu et al., 

2012). The final outcome of these systems is determined by a simple highest vote, with the decision 

function  

𝐻(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝐼(ℎ1(𝑥) = 𝑌)𝑘
𝑖=1              (3.7.6)  

where Y is the output variable, I(.) is the indicator function, H(x) is a combination of classification 

models, and hi is a single decision tree model. Each tree has the right to vote for the best 

classification outcome for a particular input variable. Specific process shown in Figure 3.2. 

 

Figure 3.2: Random Forest schematic  
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As a classification method, random forest applies a collection of decision trees where training is 

done on an arbitrary subgroup of data included in the training set using arbitrarily selected subset 

variables (Statnikov et al., 2008; Anghelone et al, 2015). Inside the random forest, splitting at each 

node highly depends on the best predictors randomly chosen from that node (Breiman, 2001). 

Although there are nonlinear convoluted high order interaction effects, it yields variable relevance 

for each predictor variable (Strobl et al., 2007). Thus making random forests an authoritative tool 

to use in multivariate classification to naturally measure similarity within different samples (Segal, 

2004;Breiman, 2001). 

The choice of the variable of importance for a random forest model is based on three different 

issues: firstly is the sensitivity of the samples size and the number of variables. Secondly, the 

sensitivity of mtry and ntree as method parameters are central in the optimization of a random 

forest model. Thirdly, for highly correlated data sets, the determination of the variable of 

importance determines the robustness and effectiveness of the developed model (Liaw and Wiener, 

2014). In constructing a random forest model, the two main parameters, mtry and ntree are of great 

importance.  For instance, if good quality trees are chosen, the out – of – bag (OOB) error is 

minimized. This yield a model with good performance (Mitchell, 2011). The OOB of samples is 

used in defining the correlation among the tress, estimation of error of prediction, and evaluating 

the variables of importance (Genuer et al., 2012). Therefore, the choice of good RF model 

parameters is important for building better discrimination models as well as stabilizing the score 

of the variables of importance (Liaw and Wiener, 2014).  

3.8.3: Support Vector Machine (SVM) 

SVM technique is majorly utilized for classifying and quantifying analyses (Chang and Lin, 2011). 

As a classification technique, SVM models transform original data spaces into higher dimensions’ 

spaces. This enables linear division of the data groups into classes, hence solving pattern 

recognition problems (Vandewalle, 1999). In its operation, SVM models create hyperplane that 

ensures a maximum margin exists between the closest support vectors separating classes of data 

(Lenhardt et al., 2014).    

Conventionally, classification models have been utilizing the density of classes in finding a 

separating surface between classes. This approach however is limited by the Hughes effect which 

calls for dimensionality reduction of data by feature selection (Qi et al., 2011).  Reportedly, SVM 
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models do not suffer this limitation because they seek an optimized separating surface that finds 

support vectors that set the demarcation of the classes (Gualtieri and Chettri, 2000).  Generally, in 

p dimensional space, the hyperplane corresponds to a space given by p -1 (Brown, 2010). 

Remarkably, in 2- dimensions the equation of a separating hyperplane is given by  

1 1 2 2 0o X X                (3.7.6) 

Here o , 1 , and 2 are parameters and if there is a value 1 2( , )TX X X for which the equation 

holds true, the point can be located on the hyperplane. Conversely, if X does not satisfy the above 

equation 

1 1 2 2 0o X X              (3.7.7) 

Or, X can also take the form 

1 1 2 2 0o X X              (3.7.8) 

In which case, the value lies on the other side of the equation 

Therefore, for a p dimensional space, the equation of the hyperplane takes the form  

1 1 2 2 ....... 0o pX X X                (3.7.9) 

Hence equally, a value of 1 2( , ...... )T

pX X X X for which the equation above is satisfied locates the 

point on the hyperplane (Lin and Chen, 2013). 

In real – life applications, SVM has been utilized in medical tests to determine which patients 

suffer from particular diseases and at the same time recommending a specific type of treatment 

(Yoshioka et al., 2007).  Moreover, SVM has been used extensively in classification of text 

(Joachims, 2005), recognition of facial expression (Michel and Kaliouby, 2003), as well as gene 

analysis (Le Thi et al., 2008). Hence, Support Vector Machines can be thought as a linear classifier 

technique, with a peculiar kind of rule that guarantees good predictive performances on unseen 

data(Carey et al., 2018). 
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3.8.4: Artificial Neural Network (ANN)  

ANNs are structural systems designed to connect and create impression between input data and 

output data similar to the way the human brain analyzes and processes information (Deng et al., 

2020). ANNs models train and learn from input data. The self – learning capabilities enable them 

to yield better results as more data becomes available (Plumb et al., 2005). Informatively, Neural 

network modelling has been instrumental in solving analytical problems, expressly in the fitting 

of multivariate data (Zupan, 2008). Thus it’s application in food quality assessment (Özbalci et 

al., 2013).  

Categorically, ANNs can be applied in classification, time series forecasting and regression 

analyses (Gallo and Bonis, 2013). In regression analysis, neural networks are used to precisely 

describe the input – output relations in all situations lacking functional form whereas for time 

series applications, neural networks utilize past available data to predict future values. For 

classification problems, NNs can be trained to efficiently discriminate classes that are linearly 

separable along a straight line (Kwon, 2011). 

To build a robust ANN model, it is vital to choose and optimize the basic parameters such as 

number of layers, number of neurons in the hidden layer, the learning rate, and the number of 

epochs of the training model  (Lee et al., 2016).  For instance, ANN model with a few number of 

neurons leads to non –linearity problem whereas if too many neurons are used it results to 

overfitting problem (Kim et al., 2019). Generally, ANN models are programmed via a learning 

algorithm to perform a particular task. The learning algorithm conditions the neural network to 

provide answers to a specific problem. The learning of the model can be unsupervised learning, 

where the network is trained only based on a set of inputs, beyond the respective outputs in which 

case a set of both the inputs and outputs are fed into the network and it learns from them (Rocchetta 

et al., 2019). Conversely, supervised learning utilizes the backpropagation algorithm since it 

allows the modification of the connecting weights such that it reduces error function E. (Otchere 

et al., 2021). To obtain a most favorable network model for exploring a given data set, it is prudent 

to partition the data into subsets, namely, the training set and the test set. Basically, the network 

learns from the training set, and audits how it goes in hand with the test set and administers itself 

to a set that has not been checked on (Kwon, 2011).  
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3.8.4.1: Back Propagation ANN Learning Algorithm 

Multilayer feed – forward net with the back – propagation (BP –ANN) learning algorithm is the 

commonly used ANN models (Zupan, 2008). A simple flowchart followed by the back propagation 

algorithm involves neurons arranged in a multi – layer network consisting of an input layer (Layer 

1), hidden layer (Layer 2), and an output layer (layer 3) as shown in Figure 3.3. In fact BP 

algorithm monitors learning of a network by utilizing the mean square error and the gradient 

descent to achieve a minimum error sum of squares so us to obtain the modification to the 

connection weight of the network (Li and Cheng et al., 2012). Expressly, the back propagation 

learning process involves either the forward propagation or the back propagation of error signal. 

In forward propagation an input signal is sent from an input layer through a hidden layer to the 

output layer. For back propagation of error signal, the signal’s error is defined as the difference 

between the actual output and the expected output of the network. The propagation of the error 

signal is from the output layer to the input layer in a layer by layer manner (Wang and Wu, 2006).  

 

Figure 3.3: A multi – layered neuron network architecture with an input layer (layer 1), hidden 

layer (layer 2), and an output – layer (layer 3) with the back propagation algorithm (Source: 

(Kadhm et al., 2021).  

The work of a neural network is not only verified graphically but also quantitatively using the error 

indicators such as; the determination index ( 2R ) which statistically measures the fit that shows 

how much variation of a dependent variable is explained by the independent variable(s) in a 

regression model. The mean absolute error (MAE) is a measure that eliminates the effects of 
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outliers on the regression model whereas, the mean absolute percentage error (MAPE) measures 

prediction accuracy of forecasting of the regression model. The mean square error (MSE) measures 

how close a regression line is to a set of data points, and the root mean square error (RMSE) tells 

you how concentrated the data is around the line of best fit (Kwon, 2011). These indices measure 

in many ways, the spread between the original and the estimated output of the network with low 

values of these indictors, indicating a well optimized neural network model (Chau, 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.simplilearn.com/tutorials/excel-tutorial/regression-analysis
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CHAPTER 4: MATERIALS AND METHODS 

 

4.1: Chapter Overview 

This chapter entails sample preparation approaches described in detail as well as how Raman 

spectral data was acquired from each sample set and preprocessed before analysis. In addition, 

data analysis approaches utilized in interpreting the spectral data are described.   

4.2: Collection of Honey and Molasses Samples 

In this study, 100 ml authentic honey sample was obtained from the bee department of ICIPE-

Kenya and used without any treatment. The honey sample was directly harvested from a beehive, 

put into a cylindrical container and stored in the laboratory before experiment (Figure 4.4 (a)). In 

addition, 100 ml of Molasses, a honey adulterant collected in a bottle, was commercially acquired 

from a local dealer in Nairobi Kenya (Figure 4.4 (b)). All the samples were kept at 23 –25 oC in 

the laboratory before measurements were taken.  

 

 

(a)                                                                     (b) 

Figure 4.4: Authentic honey sample obtained from the bee department of ICIPE-Kenya (a), and 

Molasses, a honey adulterant (b). 
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4.3: Raman Sample Substrates Used in the Experiment 

Conductive silver paint/paste used for this study is as reported by (Birech et al., 2022). The 

conductive silver paint was smeared on cleaned glass slides to provide a surface over which the 

samples to be studied were placed before Raman spectral measurements were taken. The Silver 

paint was used as a Raman signal enhancer to enable acquisition of pronounced Raman signals for 

easy differentiation of spectral bands in the samples studied. 

 

 

(a)                                                                     (b) 

Figure 4.5: Conductive silver paint (a), and three cleaned glass slides (b) 

 

Before applying the Silver paint on a clean glass slide, the bottle was shaken well to ensure all the 

paint is well liquefied. On the other hand, the glass slides were thoroughly cleaned using distilled 

water, left to dry before they were rinsed by dipping in a solution of ethanol. The Silver paint was 

then applied onto the clean glass slides using a smooth brush fitted on its bottle top.  
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4.4: Sample Preparation 

The authentic honey sample acquired from ICIPE and the purchased molasses were each 

considered to be 100% in concentration.  By calculating the concentration of molasses by mass in 

a mixture of honey and molasses (HMM), 27 samples of honey adulterated by molasses were made 

by mixing authentic honey sample and molasses at different masses (Table 4.2). The masses of 

the honey and molasses were measured using an electronic balance (Figure 4.6). To obtain a 

desired percentage concentration of molasses in the mixture of honey and molasses samples, the 

following formula was used: 

 

 % conc. of molasses in HMM =
Mass of molasses in grams

Mass of molasses in grams +Mass of honey in grams
× 100% (4.4.1) 

     

 

(a)                                (b) 

Figure 4.6: Electronic balance used to measure, the weight of an empty sample bottle (a), and the 

weight of a sample bottle with honey and molasses in it (b)
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Table 4.1: Mass of molasses expressed as a percentage of the mixture of honey and 

molasses 

Sample label Mass of molasses (g) Mass of honey (g) Mass of molasses in 

mixture (%) 

Honey 0.000 1.0 0.0 

BB 0.005 1.0 0.5 

CC 0.010 1.0 1.0 

DD 0.015 1.0 1.5 

EE 0.020 1.0 2.0 

FF 0.026 1.0 2.5 

GG 0.031 1.0 3.0 

HH 0.036 1.0 3.5 

IT 0.042 1.0 4.0 

JE 0.047 1.0 4.5 

KK 0.053 1.0 5.0 

LL 0.058 1.0 5.5 

MM 0.064 1.0 6.0 

NN 0.070 1.0 6.5 

OR 0.075                 1.0 7.0 

PP 0.081 1.0 7.5 

QQ 0.087 1.0 8.0 

RR 0.093 1.0 8.5 

SS 0.105 1.0 9.5 

TT 0.111 1.0 10.0 

UU 0.176 1.0 15.0 

VV 0.250 1.0 20.0 

WW 0.333 1.0 25.0 

XX 0.429 1.0 30.0 

YY 0.538 1.0 35.0 

ZZ 0.667 1.0 40.0 

PT 0.819 1.0 45.0 

ET 1.000 1.0 50.0 

Molasses 1.000 0.0 100.0 
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The prepared mixtures of honey—molasses (HMM) at different percentage concentrations of 

molasses were each stirred vigorously using a rod to obtain a homogeneous mixture before storing 

at the laboratory in the open (Figure 4.7 (a) and (b)). The solutions were stirred again using a 

glass rod before smearing onto a glass slide with conductive silver paint awaiting measurements. 

 

(a)                                                                             (b) 

Figure 4.7: Prepared mixtures of honey – molasses (HMM) samples at different percentage 

concentrations of molasses (a), the prepared mixtures stored in the open on a laboratory bench (b).  

Three spots of silver paint smears were made on each glass slide and left for 7 minutes to dry 

(Figure 4.8 (a)). A drop 1 gram of HMM at each percentage concentration was smeared over 

the three spots of respective labeled glass slides and spread to form a uniform thin layer before 

measurements were done (Figure 4.8 (b)). Thirty Raman spectra were acquired from each 

percentage concentration of the HMMs. (what was thickness and uniformity? How does it affect 

results? thus also the 1 drop of HMM) – best answer is, single layer smear, of silver paste, and 

single layer smear of HMM for consistent results and many spectra were taken to take off any 

biasness of results and big variation between spectra – this was done to make sure at least the data 

collected is consistent from sample to sample – at each % concentration 30 spectra were collected. 
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(a)                                                                    (b) 

Figure 4.8: Glass slides with smears of silver paint left to dry in the open (a), honey—molasses 

smears (HMM) over dry silver paint (b)  

4.5: Instrumental Optimization and Sample Analysis 

STR Raman spectrometer equipped with a 785 nm Near Infrared diode laser, a thermoelectric 

cooled CCD detector with 2048 pixels, a manually controlled microscope stage was used (Figure 

4.9). Instrumental parameters were set as follows: density filter was set to allow 50% of laser 

power to pass to the sample (with a maximum power output of 18.20 milliwatts and a spot size of 

68.47 micrometers), X10 (0.30) objective lens was used to focus the sample under study at the 

microscope stage, acquisition time was 10 seconds, 5 accumulations per sample spot and spectra 

was acquired in the region of 97 to 1846 cm-1 at a resolution of 1.78. The 600 BLZ grating was 

used. Before starting the experiment, the Raman system was first cooled to -76 o C and calibrated 

using a silicon wafer peaked at 520.5 cm-1 and centered at 1050 cm-1. All experimental 

measurements were done at room temperature and a dark room. 
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Figure 4.9: Laser Raman Spectrometer equipment in the department of Physics at the University 

of Nairobi. 

 

4.6: Raman Spectral Data Acquisition and Analysis 

A drop of 1 gram of pure molasses and pure honey, as well as honey — molasses mixtures were 

each placed on a glass slide smeared with a thin layer of conductive silver paste and placed on the 

microscope stage of the STR Raman spectrometer. Once on the stage, each sample was first 

focused to obtain a clear view before the spectra were captured and stored using the STR software 

fitted in the computer. The STR Raman spectrometer captured a single spectrum under 10 seconds. 

A total of thirty spectra was captured from each sample. The collected Raman spectra was 

preprocessed using Vancouver Raman algorithm in order to remove fluorescence and background 

signals while R software was utilized for spectral normalization.  
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4.6.1: Analysis of Collected Raman Spectra   

In this study, PCA was executed using Chemo Spec package in R software to eliminate repetitious 

data and to extract useful information about the collected spectra. Robust PCA method was used 

with the scaling options set at no scaling, median absolute deviation and the activation function 

r_pcaSpectra were chosen for analysis. Two data sets were prepared for the analysis. Set A 

comprised of authentic honey and molasses and Set B comprised of honey adulterated by molasses 

at different adulteration levels.  

On the other hand, RF and SVM were comparatively used for classification analysis of authentic 

honey and adulterated honey samples. Five data sets, Set. 1, Set. 2, Set .3, Set. 4, and Set. 5 

discussed in the results section were developed and used for classification analysis by RF and 

SVM. Principal Components were used as inputs for the RF and SVM classification models. For 

the RF model, the training phase comprised 70 % of the data set, while the test set phase comprised 

30 % of the data set. Using the first 10 PCs, both models, RF and SVM were found to yield high 

classification accuracies, thus utilizing in the building of the models. The RF model was 

constructed using 15 trees with the mtry value set at 4 for all the data sets. Moreover, the SVM 

model was constructed using the linear kernel function with a cost of 5 and gamma of 1. For SVM, 

the hyperplane with highest correct classification accuracies was obtained when the data partition 

was 60 % for training set and 40 % for testing set. The confusion matrix for all the classification 

data sets involving RF and SVM are as presented in Tables 5.4 and Table 5.5 displayed in results 

section. To know the machine learning technique best suited for classification analysis of honey 

adulterated by molasses, the classification accuracies of RF and SVM were simultaneously 

compared, thus validating the results of each model. As such, RF could be preferred to SVM for 

classification analysis involving honey adulterated by molasses because it yielded better results 

than SVM as shown in Table 5.4 and Table 5.5 

ANN regression model was built for the purpose of predicting the various concentrations of 

molasses as an adulterant. In this study, PC’s were used as inputs for the neural net since this led 

to efficient reduction of the net architecture thus a rapid training phase (Wu and Massart, 1996). 

In order to build the ANN model, the data was first randomly partitioned into two sets, 70 % for 

the model training and 30 % for model testing. Model optimization was done by training the model 

using different number of PC’s. It was realized that, using the first 5 PC’s, the training phase took 
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the least time with better 2R  values being realized. Using the tune Grid package in R, the first 

hidden layer of the ANN model was randomized from 2 to 8 hidden layers with the second and the 

third set at 16 and 3 respectively. Through the training phase, the model was able to determine the 

best neural net architecture by selecting the architecture that yielded the lowest RMSEP value. In 

addition, the model was built using the rprop + algorithm, with the threshold set at 0.1 and the 

stepmax at 05e . Moreover, the ANN model training set values were utilized in calculating the limit 

of detection using Origin software.
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CHAPTER 5: RESULTS AND DISCUSSIONS 

 

5.1: Chapter Overview 

Analysis of huge amount of spectral data to simultaneously determinate the specific molecular 

fingerprints in complex media such as honey and molasses is very difficult. Hence, the application 

of machine learning techniques to eliminate repetitious data and extract essential features from a 

data set become necessary. Before analyzing the data using multivariate techniques, the spectral 

window of 300 to 1800 cm-1 was chosen for analysis (Yaacob, et al., 2019). This region was found 

to give relevant information for the interpretation of the spectral data. In this work, PCA was used 

to perform exploratory analysis. Using PCA, glucose, fructose, sucrose, protein and amide spectral 

bands were established in the spectral profile of authentic honey, molasses, and molasses - 

adulterated honey samples thus enabling their spectral fingerprint distinction. In addition, RF and 

SVM were comparatively used in classification analysis of authentic and molasses - adulterated 

honey samples. High classification accuracies ranging from 86 – 100 % were obtained from the 

various samples sets that were analysed. ANN was used to construct a prediction model that could 

be employed for rapid forecasting of molasses – adulteration in honey at various levels. In addition, 

the ANN values were used in the calculation of limit of detection.  

 

5.2: Characteristic Raman Spectra of Authentic Honey and Molasses  

Due to the close molecular composition of both molasses and honey, it is expected that their Raman 

profiles do not significantly differ. In order to identify differing bands between the two, ANOVA 

was used. Figure 5.10, displays the significantly variant Raman bands of authentic honey and 

molasses and were found to be within 670 cm-1 to 1050 cm-1 spectral range. The bands with the 

highest variance were recorded as bands that could be used for distinction of honey and molasses. 

As such, the prominent unique peaks with the highest significant variance were noted at 690, 732, 

754, 790, 793, 845, 880, 970, 1001, and 1645 cm-1.  
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Figure 5.10: Displaying Characteristic Raman spectral profiles of authentic and molasses (average 

of – each) in the range of 300 – 1800 cm-1. The variance plot is also plotted with significantly 

variant bands indicated with dotted lines as an eye guide. 

 

As shown in Figure 5.10, the unique band at 732 cm-1 was noted in authentic honey spectra and 

the bands at 690, 754, 793, 845,880, 1001, and 1645 cm-1 were noted in molasses spectral profile. 

The prominent band at 732 cm-1 was tentatively associated with glucose ν(C-C) vibrations and the 

band at 790 cm-1 was linked to ν(C-C) and δ (C – H) vibrations in α-glucose. Also, the ν(C-C) and 

ν(C-O) stretching vibrations on glucose were found to have a spectral range of 1000 to 1200 cm-1 

thus responsible for the band at 1001 cm-1 (Özbalci et al., 2013). The band at 1645 cm-1 was 

attributed to Amides –C=O stretching which dominate the signal window of 1640 cm-1 to  1670 

cm-1 (Ghosh and Jayas, 2009). The 845 cm-1 band was discovered to correspond to glucose 

spectrum while the bands at 793 cm-1 and 970 cm-1 were attributed to glucose spectrum and ν(C- 
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O) vibrations in glucose (Oroian et al., 2018; Özbalci et al., 2013). Stretching of CO and CCO, 

OCO bending were found responsible for the band at 690 cm-1 (Oroian et al., 2018). Weak (C = 

O) bond vibrations and wagging (NH -O) bond vibrations are responsible for the bands at 754 cm-

1 and 880 cm-1, respectively (Wurzburg, 2006).  

Conclusively, 690, 732, 754, 793, 845, 880, 1001, and 1645 cm-1 may be used as Raman marker 

bands in the distinction of authentic honey and molasses.  

 

 

Figure 5.11(a):  PCA score plot of authentic honey and molasses samples shows close clustering 

of honey samples and molasses samples, indicating that each sample has the its own unique 

characteristics. 
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Figure 5.12 (b): Plot of PCA loadings for authentic honey and molasses samples. Unique bands 

responsible for honey and molasses' segregation have been identified, these bands are the ones 

with the highest loading value.  

To further elucidate the significantly variant Raman spectral bands between authentic honey and 

molasses, PCA was done. As displayed in Figure 5.11 (a) and 5.12 (b), for PCA score plot of the 

combined Raman spectral data sets of the two samples, distinct clusters of the two sets was 

observed between positive PC1 and negative PC1.However negative PC2 showed some clusters 

were similar between authentic honey and molasses. The segregation displayed in positive and 

negative PC1 indicated that the spectral patterns of the two compounds (i.e. authentic honey and 

molasses) were distinctively different (Figure 5.11 (a)). Figure 5.12 (b) thus were used to confirm 

the bands liable for the distinct clustering. These bands were found centered at 690, 732, 754, 845, 

and 970 cm-1 thus confirming the spectral bands identified using ANOVA. The component and 

vibrational assignments of these bands are as shown in Table 5.3. The prominent bands that 

influenced the segregation were those with large loadings value and are as labeled in Figure 5.12 

(b).  
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Table 5.3: Component and Vibrational assignments of Raman bands/peaks identified in authentic 

honey and molasses using ANOVA and PCA 

Raman 

band/peak  

(cm-1) 

Component 

assignment 

Vibrational 

assignment 

Authentic 

honey 

Molasses References 

690 fructose Stretching of 

CO and CCO, 

OCO bending 

X   (Oroian et al., 2018) 

754 fructose  C – OH X   

732 glucose ν(C-C)   X (Özbalci et al., 2013) 

(Gelder et al., 2007) 
845 and 880 fructose and 

glucose, 

ν(C–O), δ(C–

C–H), ν(C–C) 

and δ(C–C–O) 

X   

1001 glucose   ν(C-C) and 

ν(C-O) 

stretching 

vibrations  

X   

793 and 970 glucose ν(C- O) X   (Oroian et al., 2018; 

Özbalci et al., 2013) 

1645 Amides –C=O 

stretching  

X   (Ghosh and Jayas., 

2009) 

(Oliveira and Bara, 

2002) 
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5.3: Identification of Raman Marker Bands for Molasses Adulteration in Honey 

 

Figure 5.13: ANOVA on averaged Raman spectra of authentic honey and honey adulterated by 

molasses at various concentrations.  The variance plot has been plotted showing significantly 

variant bands indicated with dotted lines as an eye guide. 

 

Using ANOVA as shown in Figure 5.13, the significantly distinct and variant Raman spectral 

bands at various concentrations were found to be centered at 419, 516, 630, 732, 868, 1064, 1266, 

1340, 1582 and 1645 cm-1. The bands at 419 and 630 cm-1 were linked to fructose δ (C – C – O)  

ring vibration in the pyranoid ring and to ring deformation respectively (Salvador et al., 2019). 

The band at 516 was linked to exocyclic deformation band in β – glucose that occurs within the 

signal range of 477 to 542 cm-1. The prominent band at 732 cm-1 was tentatively attributed to 

glucose ν(C-C) vibrations (Özbalci et al., 2013). The band at 868 cm-1 was linked to C – O – C  
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cyclic alkyl ethers in fructose  bending of fructose as well us it may have arose due to υ(COH), 

υ(CCH) and υ(OCH) side group deformations in β – glucose that dominate the signal window of 

800 cm-1 to 950 cm-1 (Miljanić, Frkanec and Biljan, 2007). (Goodacre et al., 2002). The ν(C-C) 

and ν(C-O) stretching vibrations on glucose were found to have a signal range of 1000 - 1200 cm-

1 thus responsible for the band at 1064 cm-1 (Özbalci et al., 2013). The band at 1266 cm-1 could be 

limked to D (– )  fructose δ (=CH) (Gelder et al., 2007). In the signal ranges of 1335 cm-1 to 1435 

cm-1, the band at 1340 cm-1 was found to be connected to carbohydrates molecules that are 

vibrationally dominated by C – H and O – H bonds  (Li and Shan et al., 2012a) (Oliveira and Bara, 

2002). Amides –C=O stretching, which dominate the spectral range of 1640 cm-1 to 1670 cm-1, 

maybe responsible for the band at 1645 cm-1 (Ghosh and Jayas, 2009) (Oliveira and Bara, 2002).  
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5.4: Results of Classification Analysis Using random forest (RF) and support vector machine 

(SVM) 

Adulteration levels were determined as low, medium and high based on the concentration ranges 

of the adulterated simulates prepared as shown in Table 4.2. Concentrations up to 10% were 

considered low adulteration levels, whereas concentrations between 15 – 35% were considered to 

be medium concentrations and concentration between 40 – 50% were considered to be high 

concentrations.  

Table 5.4: Classification Models of Set.1, Set.2, and Set.3 using RF and SVM 

Random Forest Test Set                          Support Vector Machine Test Set 

Set. 1 1 2 Total % correct 1 2 Total % correct 

1 9 0 9 100.00 10 2 12 83.33 

2 1 8 9 88.89 0 6 6 100.0 

Total 10 8 18 94.44 10 8 18 88.89 

Set. 2 1 2 Total % correct 1 2 Total % correct 

1 10 0 10 100.00 10 0 10 100.0 

2 0 8 8 100.00 0 8 8 100.0 

Total 10 8 18 100.00 10 8 18 100.00 

Set. 3 1 2 Total % correct 1 2 Total % correct 

1 10 0 10 100.00 10 0 10 100.0 

2 0 8 8 100.00 0 8 8 100.0 

Total 10 8 18 100.00 10 8 18 100.00 

Set 1: 1 – honey, 2 – honey with 0.5 % molasses, Set 2: 1 – honey, 2 –  honey with 25 % molasses, 

Set 3: 1 – honey, 2 – honey with 50 % molasses 
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Table 5.5: Classification models of Set. 4 and Set. 5 using RF and SVM 

Random Forest Test Set                               Support Vector Machine Test Set 

Set. 4 1 2 3 4 Total % correct 1 2 3 4 Total % correct 

1 10 0 1 0 11 90.91 10 0 0 0 10 100.0 

2 0 8 0 0 8 100.0 0 8 1 0 9 88.89 

3 0 0 9 0 9 100.0 0 0 9 0 0 100.0 

4 0 0 0 8 8 100.0 0 0 0 8 8 100.0 

Total 10 8 10 8 36 97.22 10 8 10 8 36 97.22 

Set. 5 1 2 3 4 Total % correct 1 2 3 4 Total % correct 

1 9 1 0 0 10 90.00 9 2 0 0 11 75.00 

2 1 162 18 1 182 89.01 1 161 15 1 178 82.42 

3 0 3 29 5 37 78.38 0 3 31 7 41 78.95 

4 0 0 4 15 19 78.95 0 0 5 13 18 68.42 

Total 10 166 51 21 248 86.69 10 166 51 21 248 86.29 

Set 4: 1 – honey, 2 – honey with 0.5 % molasses, 3 – honey with 25 % molasses and 4 – honey 

with 50 % molasses. 

Set 5: 1 – honey, 2 – low adulteration concentrations (0.5% – 10%), 3 – medium adulteration 

concentrations (15% – 35%), 4-high adulteration concentrations (40% – 50%) 

The effective application of a random forest model for classification analysis is anchored on the 

choice of two main parameters; the mtry and the ntree. A random forest model is said to have good 

performance if the OOB (out of bag ) error is minimized (Breiman., 2001). In this study, an 

optimized random forest model was established with mtry at set 4 and ntree set at 15 for all the 

five data sets developed for classification analysis. High correct classification accuracies ranging 

from 86 – 100 % were realized when using the random forest method as shown in Table 5.4 and 

Table 5.5.  

Other variables that had greater influence on the accuracies of RF model were as shown in Table 

5.6 below.  

Table 5.6: Details of variables from the RF Classification Analysis 

 OOB Error (%) p – value kappa 

Set 1 14.29 0.0003914 0.8889 

Set 2 0 2.542 e - 05 1 

Set 3 0 2.542 e - 05 1 

Set 4 8.33 2.2 e - 16 0.9628 

Set 5 10.15 8.38 e - 13 0.7169 
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In Table 5.6, Set 1 is noted to have the highest OOB error of 14.29 % than the other sets. This set 

comprised of authentic honey and honey at 0.5 % adulteration level. With this, the two sets had 

close similarities, thus the high OOB error and classification accuracies lower than 100 % as 

reported in Table 5.4. Furthermore, the OOB error of Set 2 and Set 3 were zero owing to the fact 

that these sets comprised of authentic honey with a 25 % adulterated sample for Set 2, and authentic 

honey with a 50 % adulterated sample for Set 3. With this high variation in characteristics due to 

adulteration, the random forest model correctly classified authentic honey from adulterated honey 

samples, thus the zero OOB error and high classification accuracies of 100 % as displayed in Table 

5.4.   

Notably, the main principal of operation of an SVM classification model is in creating a hyperplane 

that maximizes on the margin from the closest support vectors separating any two classes. In 

addition, the effectiveness of an SVM classier lies in the choice of the kernel type, the gamma ( )

and the cost (C). The  cost regulates the degree of violating the margin (Y. Wang et al., 2006; 

Nyairo, 2018). A low C values yields wide margins that can hold more support vectors and vice 

versa (Lin and Chen., 2013). For radial basis kernels (RBK) functions, 𝛾 is utilized as a measure 

of similarity between two given points. In this study, the SVM model was able to yield a 

hyperplane when the parameters were optimized at a cost = 5 and 𝛾 = 1.  

 

Figure 5.14: SVM plot utilizing linear kernel function 
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5.5: Results of Prediction Model Using ANN 

The ANN model was constructed using the tune Grid package in R. The first hidden layers of the 

model were set from 2 to 8 allowing the training phase of the model to automatically have several 

architectures. The model was able to select the best neural architecture based on the layers that 

yielded the lowest RMSEP value as shown in Table 5.7.  In the training phase, the best neural 

architecture with the lowest RMSEP value of 1.86 was realized when layer 1 had 7 inputs. Using 

this architecture, the test phase yielded a RMSEP value of 2.05 with  2R  value of 0.5786 and MAE 

of 1.51. 

 

Table 5.7: Training Phase of ANN Model 

Layer 1 RMSE R – Squared MAE 

2 NaN NaN NaN 

3 NaN NaN NaN 

4 NaN NaN NaN 

5 1.86 0.65 1.41 

6 1.97 0.61 1.44 

7 1.86 0.65 1.29 

8 2.26 0.55 1.62 

 

 

5.5.1: Calculation of Limit of Detection (LOD): 

In analytical techniques, the limit of detection is the least amount of an analyte that can be traced 

and established to be present in a particular sample (Vogt, 2015). According to IUPAC, the 

statistical significance of a spectrum is when the signal is raised by 3 standard deviation above the 

background reference (Chang, 2011). Thus   

3
LOD

S


                                          (5.11) 

 

  is the standard deviation of the multiple samples and S  is the sensitivity.  
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Figure 5.15 (a): Linear fit plot using the median and mean absolute deviation from the training 

data set of the ANN model. 

ANN model was executed using tune Grid package in R software. Due to wide range in 

consecutive adulteration levels above 10%, the concentration ranges from 0 – 10% were used for 

the calculation of LOD. However, when testing the ANN model, it was realized that a linear fit 

using the mean and standard deviation yielded high errors bars.  Therefore, linear fit plots shown 

in Figure 5.15 (a) and Figure 5.16 (b) were obtained by plotting the median values of known 

concentration against predicted concentrations.  The median was used because it has been reported 

to be statistically more stable than the mean (Seo, 2006). The error bars were derived from the 

mean absolute deviation (MAD) calculated using the predicted values at different concentrations 

using the formula: 

 

( ( ( )))MAD MEDIAN ABS R MEDIAN R              (5.12) 
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Figure 5.16 (b): Linear fit plot using the median and mean absolute deviation from the test data 

set of the ANN model. 

 

Utilizing equation 5.11, the LOD of molasses in honey in reference to the collected Raman 

spectral data of authentic honey, molasses and molasses - adulterated honey was found to be:  

 

3 3 0.1361 0.4083

0.9265 0.9265
LOD

S

 
    

 

0.44069%LOD   

 

An LOD of 0.44069 % shows that laser Raman spectroscopy is able to accurately detect 4 grams 

of molasses present in 1000 grams of authentic honey, thus proving the viability of laser Raman 

as a rapid and robust technique that could be used to detect subtle adulteration levels. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1: Conclusions  

The objective of this study was to discover definitive molecular fingerprints that distinguish 

authentic honey from honey adulterated with molasses by detecting the vibrational bands of 

molecular compounds found in both honey and molasses, such as fructose, glucose, and sucrose. 

The analysis of authentic honey and molasses molecular profile using ANOVA and principal 

components produced definitive and distinct spectral bands which characterize authentic honey, 

molasses, and honey under different adulterations levels of molasses. Using ANOVA, the band at 

732 cm-1 was found to be unique to honey profile whereas the bands at 690, 754, 793, 845,880, 

1001, and 1645 cm-1 were noted in molasses spectral profile. The aforementioned bands may be 

considered as Raman marker bands for detecting molasses adulteration in honey.  

To check on the segregation ability of Raman spectroscopy to identify definitive spectral bands of 

specific molecular compounds was explored using Random Forest and Support Vector Machines 

as classification models. The use of principal components as inputs in both models helped in the 

classification models' rapid analysis as well as their high correct accuracies. Both RF and SVM 

models achieved high correct classification accuracies ranging from 86 to 100 percent, confirming 

the robustness and potential of Chemometric –Integrated Raman spectroscopy as a viable method 

for conclusive molecular analysis. 

Principle components were used as inputs in the construction of ANN prediction model. The use 

of principal components as inputs significantly helped the model to have a less complicated 

architecture, thus improving on its learning rate and accuracy of prediction. Developed with an 

aim of predicting low levels of adulteration, low concentrations ranging from 0 – 10 % were 

considered. The model yielded 2R  value of 0. 5786 with RMSEP of 2.05 I and MAE of 1.51.  

Although the 2R  value of the prediction model was at 0.5786, it clearly illustrates the possibility 

of better models being built whenever negligible adulteration ranges between consecutive samples 

are put into consideration. In addition, the utilization of the ANN model values, yielded a limit of 

detection lower than 1 %.  
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6.2: Recommendations 

The market demand of honey and honey products is ever growing, so are the methods of 

developing sophisticated honey adulterants. The methodology developed in this work using 

molasses as one of the major honey adulterants can be extended to include honey from different 

geographical regions as well as more of the cheaply available and commonly used honey 

adulterants. In so doing, comprehensive, spectral libraries of distinct spectral bands characterizing, 

the honeys and the various adulterants can be developed and act as a reference for spectral analysis 

of honey in our country. 

Notably, the main setback experienced in this work involved colleting good quality Raman spectra 

that is reproducible on repeat measurements as well as a signal substrate that has negligible 

influence on the acquired Raman signal. The author proposes a methodology where obtaining 

reproducible Raman spectra from a spot of a sample is possible, this can be achieved by using 

automated laser systems with the ability to fully scan all the sample at once to obtain multiple 

spectra and at the same time maintaining the amount of power delivered to the sample under study.  

Although background subtraction is recommended whenever substrates are used for signal 

enhancements, it is however prudent to consider the use of substrates that have minimal 

contribution to the Raman signal of a sample especially when dealing with samples that are partly 

opaque and partly translucent.  

In a nutshell, although the robustness of  Chemometric – integrated spectroscopic techniques has 

been remarkable in  detecting honey adulterants (Se et al., 2019b), there is need to explore the 

effectiveness of biosensor techniques such as e –nose and optical fibre sensors in the detection of 

the different types of adulterants in honey. Comparative to spectroscopic techniques, biosensors 

are also simple, rapid and accurate to use (Ghasemi-Varnamkhasti et al., 2018). Similarly, 

biosensors coupled with Chemometrics data analysis has been reported to be capable of real time 

adulteration analysis on large scale (Bougrini et al., 2016). 
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APPENDICES 

 

Table A: Carbohydrate content comparison between molasses and honey for 100 g sample 

(Views et al., 2019) 

 Molasses                                      Honey 

Carbohydrate Contents Amount (g) RDI (%) Amount (g) RDI (%) 

Total Carbohydrate 74.73  25 % 84.4  27 

Dietary Fiber 0  0% 0.2  1 

Starch - - - - 

Sugars 54. 49   82.12   

Sucrose 29.4   0.89   

Glucose 11.92   35.75   

Fructose 12.79   40.94   

Lactose -  -  

Maltose -  1.44   

Galactose -  3.1   

 

 

Table B: Mineral content comparison between molasses and honey for 100 g sample (Views et 

al., 2019) 

 Molasses                                                Honey 

Mineral content Amount (mg) RDI (%) Amount (mg) RDI (%) 

Calcium 205  20 6  1 

Iron 4.2  26 0.42  2  

Magnesium 242  60 2  0 

Phosphorous 32  3 4  0 

Potassium 1464  31 52  1 

Sodium 37  2  4  0 

Zinc 0.29 2 0.22  1 

Copper 0.487  24 0.036  2 

Manganese 1.53  76 0.08  4 

Selenium 17.8 mcg 25 0.8  1 

Fluoride - - 7 mcg - 
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Table C: Water soluble Vitamin comparison between molasses and honey for 100 g sample 

(Views et al., 2019) 

                                              Molasses                                          Honey 

Vitamin Content Amount(mg) RDI (%) Amount(mg) RDI (%) 

Vitamin A 0 IU 0  0 IU 0  

Vitamin B6 0.67 34  0.24  1  

Vitamin B12 0 mcg 0  0 mcg 0 

Vitamin B12, Added 0 mcg 0  0 mcg 0  

Vitamin C 0  0  0.5  0  

Vitamin D 0 IU 0  0 IU 0  

Vitamin D2 - - - - 

Vitamin D3 - - - - 

Vitamin D(D2+D3) 0 mcg 0  0 mcg 0  

Vitamin E  0  0  0  0 

Vitamin E, Added 0  0  0  0 

Vitamin K 0 mcg 0  0 mcg 0  

Thiamin 0.041 3  0  0  

Riboflavin 0.002  0  0.038  2  

Niacin 0.93 5  0.121  1 

Pantothenic Acid 0.804  8  0.068  1  

Folate 0 mcg 0  2 mcg 0  

Folate, Food 0 mcg 0 2 mcg 0  

Folate DFE 0 mcg DFE 0  2 mcg DFE 0  

Choline 13.3 - 2.2  - 

Betaine - - 1.7  - 

 

 

Table D: Honey composition in g/100g (Bogdanov, 2017) 
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Figure 17: PCA score plot of authentic honey, molasses and all samples adulterated by molasses. 

LL – Low concentrations, MM – Middle concentrations, HH – High concentrations. 
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Appendix 1: ANN Model Script in R 

 

# Read the Data 

#data <- ANNF3_Scores.csv 

data <- read.csv("ANNF2_Scores.csv") 

str(data) 

############################# data partitioning ########################### 

#honey adulterated samples Data Partition 

set.seed(123) 

ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3)) 

training <- data[ind==1,] 

testing <- data[ind==2,] 

trainX <- training[,2:6] 

trainY <- training$conc 

testX <- testing[,2:6] 

testY <- testing$conc 

# cluster <- makeCluster(detectCores() - 1) # convention to leave 1 core for OS 

# registerDoParallel(cluster) 

# set.seed(1234) 

library(caret) 

set.seed(1222) 

NN1 <- train(conc~ Comp.1+Comp.2+Comp.3+Comp.4+Comp.5, 

######+Comp.6+Comp.7+Comp.8+Comp.9+Comp.10, 

             data=training, 

             method = "neuralnet", 

             trControl = trainControl(method = "CV", 

                                      number = 2, 

                                      returnResamp = "final", 
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                                      savePredictions = "final"), 

             tuneGrid = data.frame (layer1 = 2:8, 

                                   layer2 = 16, 

                                   layer3 = 3), 

             rep = 2, 

             algorithm = "rprop+", 

             threshold = 0.1,         

             stepmax = 1e+05, 

             preProc = c("center", "scale")) 

print(NN1) 

plot(NN1) 

##################### training ##################### 

library(dplyr) 

predicted<-NN1$pred$pred 

actual<-NN1$pred$obs 

training_model <- bind_cols(predicted=predicted, actual=actual) 

write.csv(training_model,"ANN_model_results_training.csv") 

####prediction########## 

ANN_pred <- predict(NN1,testX) 

postResample(pred = ANN_pred,obs = testY) 

ANN_model_testing<-bind_cols(predicted=ANN_pred,Actual=testY) 

write.csv(ANN_model_testing,"Ann_model_testing_results.csv") 

## plot  observed vs predicted values for  test set 

plot(y = NN1_pred, x = testY,  

     xlab = 'prediction', 

     ylab = 'observed') 

abline(a = 0, b = 1, lty = 2, col = 2) 

########################### end of ANN  ################################ 
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Appendix 2: PCA Script in R 

library(ChemoSpec) 

# Reading a matrix data file stored in the working directory 

rawspec <- matrix2SpectraObject(gr.crit = c("Honey","LL","MM","HH"), 

                                gr.cols = c("green","blue","purple","red"), 

                                freq.unit = "Wavelength (/cm)", 

                                int.unit = "Intensity", 

                                descrip = "honey_molasses_Study",  

                                in.file = "honey_adulterated_samples.csv", 

                                out.file = "honey_aduletration",  

                                chk = TRUE,  

                                sep = ",", 

                                dec = ".") 

# Summarizing the data 

sumSpectra(rawspec) 

#creating a title 

title<-expression(bolditalic(Raman)~bold(Spectra)) 

# Plotting all the spectra 

plotSpectra(rawspec, 

            main = title, 

            which = c(1:800), 

            yrange = c(0,2500), 

            xlim =c(249,1810), 

            offset = 100, 

            showGrid = FALSE, 

            lab.pos = 1780) 

#abline(h=600,v=30) 

# Plotting the spectra 
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plotSpectra(rawspec, 

            main = title, 

            which = c(2:800), 

            yrange = c(0,2500), 

            xlim =c(248,1810), 

            offset = 100, 

            lab.pos = 1280) 

######################################## 

spec3<-normSpectra(rawspec) 

plotSpectra(spec3, 

            main = title, 

            which = c(2,5,8), 

            yrange = c(0,250), 

            xlim =c(249,1300), 

            offset = 100, 

            lab.pos = 1280) 

################################################ 

pca<-r_pcaSpectra(spec3, choice = "noscale") 

plotScores(spec3, pca,  

           main ="Honey ~ Molasses", pcs = c(1,2), tol = 0.01) 

abline(h =0,v=0) 

###################################################################### 

# getting the PC from PCA attributes and saving it as a csv   

attributes(pca)  

pca_scores <-pca[["x"]] 

pca_scores  

#write.csv(pca_scores,'All0.5_50_scores.csv') 

##################################################################### 
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plotScores(spec3, pca,  

           main ="Adulterated_honey_samples", pcs = c(1,2), ellipse = "rob", tol = 0.01) 

#potential outliers 

diagnostics<-pcaDiag(spec3,  

                     pca,  

                     pcs = 2,  

                     #quantile = 0,95, 

                     plot = c("OD","SD")) 

#number of pcs measured 

plotScree(pca, 

          style = "alt") 

plotLoadings(spec3, pca, loads = c(1,2)) 

######################## end of Principal Components Analysis #################### 
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Appendix 3: Random Forest Script in R 

 

# Read Data 

#change p=1, m=2, y=3 and Z=4 in rawspec then transpose in excel and paste  

#the 1,2 to$samples in Raman_pca_scores1 

data <- read.csv(file.choose(), header = T) 

#data <- Raman_pca_scores1  

str(data) 

#data2 <- read.csv("~/Desktop/CTG.csv", header = TRUE) 

data$samples <- as.factor(data$samples) 

str(data) 

#select the first 10 PCs 

#data2 <-data[,1:11] 

#str(data2) 

table(data$samples) 

## Data Partition 

set.seed(123) 

ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3)) 

train <- data[ind==1,] 

test <- data[ind==2,] 

 

############################ Random Forest ########################### 

library(randomForest) 

set.seed(222) 

Set1 <- randomForest(samples~., data=train, 

                   ntree = 15, 

                   mtry = 4, 

                   importance = TRUE, 
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                   proximity = TRUE) 

print(Set5) 

attributes(Set5) 

####  Prediction & Confusion Matrix - train data 

library(caret) 

p1 <- predict(Set5, train) 

confusionMatrix(p1, train$samples) 

##### Prediction & Confusion Matrix - test data 

p2 <- predict(Set5, test) 

confusionMatrix(p2, test$samples) 

####### Error rate of Random Forest 

plot(Set5) 

# Tune mtry 

t <- tuneRF(train[,-1], train[,1], 

            stepFactor = 0.5, 

            plot = TRUE, 

            ntreeTry = 50, 

            trace = TRUE, 

            improve = 0.05) 

####### No. of nodes for the trees 

hist(treesize(Set5), 

     main = "No. of Nodes for the Trees", 

     col = "green") 

####### Variable Importance 

varImpPlot(Set5, 

           sort = T, 

           n.var = 10, 

           main = "Top 10 - Variable Importance") 
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importance(Set5) 

varUsed(Set5) 

 

############################### end of Random Forest ####################### 
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Appendix 4: Support Vector Machine Script in R 

 

########################## Support Vector Machine ############################# 

# Read Data 

data <- read.csv("Set1_Scores22.csv") 

#data <- Raman_pca_scores1 

str(data) 

#data2 <- read.csv("~/Desktop/Set1_scores.csv", header = TRUE) 

data$samples <- as.factor(data$samples) 

str(data) 

# Plot data 

library(ggplot2) 

ggplot(data = data, aes(x = Comp.1, y = Comp.2,  

                        color = samples, shape = samples)) +  

  geom_point(size = 2) + 

  scale_color_manual(values=c("#000000", "#FF0000")) + 

  theme(legend.position = "none") 

#str(data2) 

table(data$samples) 

# Data Partition 

set.seed(123) 

ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.6, 0.4)) 

train <- data[ind==1,] 

str(train) 

test <- data[ind==2,] 

#support vector machines 

library(e1071) 

mymodel <- svm(samples~., 



80 
 

               data = data, 

               kernel="linear",  

               cost=5, gamma=1,scale = FALSE) 

summary(mymodel) 

plot(mymodel,data=data, 

     Comp.2~Comp.1, 

     slice = list(Comp.3=3,Comp.4=4, 

                  Comp.5=5, Comp.6=6,  

                  Comp.7=7, Comp.8=8,  

                  Comp.9=9, Comp.10=10)) 

#confusion matrix and misclassification error 

pred <- predict(mymodel,train) 

tab <- table(predicted=pred,actual=train$samples) 

tab 

#accuracy 

1-sum(diag(tab))/sum(tab) 

mean(pred== train$samples) 

 

#################### end of Support Vector Machine ################ 

 

 

 

 

 

 

 

 



81 
 

 




