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ABSTRACT

The understanding of the linkage between stock returns, volatility and trading volume is paramount

since it provides insights into the financial markets’ micro-structure. The available literature reveals

insufficient studies into modeling this correlation and most empirical studies have largely focused on

developed markets than on emerging markets. GARCH model and its extensions have been utilized

to model this relationship and to reproduce stylized features of financial time series. However, the

model does not adequately describe the persistence of the financial markets’ volatility. A model that

can permit GARCH parameters to shift across regimes according to a Markov chain process is con-

sidered the solution to this problem, thus an attempt of this study is to put forward a regime-switching

framework for modeling asset returns dynamics. The aim is to probe the dynamic correlation between

stock returns, volatility and trade volume of both emerging and developed markets. In addition, the

consequence of adding trade volume to the conditional variance equation of GARCH on volatility

persistence is investigated. GARCH and regime-switching (RS) models are utilized to explore the

link between stock returns, volatility and trade volume. The RS model is able to capture the structural

changes in the variance process across regimes and its use extended to pricing European call options.

The model is adapted to include GARCH effects and further implemented to pricing European call

options. The estimated call options are compared with the corresponding Black-Scholes(B-S)’ model

estimates to establish the model with the best fit. The results reveal well-known features such as

volatility clustering, heavy tails, leverage effects and a leptokurtic distribution. The developed mar-

kets are described with high volatility clustering and persistence compared with the emerging market

and the volatility persistence is observed to decrease as the data changes frequency from daily to

weekly. Furthermore, the volatility persistence is observed to dwindle after trade volume is included

into the conditional variance equation of GARCH model. However, as the data frequency shifts from

daily to weekly, mixed results emerge. The stock returns and volatility from the developed mar-

kets have a negative correlation, but the correlation in emerging market is positive. In addition, all

the stock returns indices are characterized by regime shifts with heterogeneous conditional volatility,

volatility clustering and varying responses to past negative returns. Furthermore, the volatility pro-

cess stays longer in the high volatility regime of the developed markets before switching to regime 2

compared to the duration of stay in the same regime of the emerging markets. Finally, RS-GARCH

model presents the best results when fitted to long-dated options data as compared to RS and B-S

models whereas B-S model presents the best fit for short-dated options.
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CHAPTER 1: INTRODUCTION

1.1 Background

The existing studies on financial modeling unveil that the connection between returns from stocks,

volatility and the total traded shares have been broadly investigated in both established and develop-

ing stock markets. The understanding of this connection is paramount because it gives investors the

insight of the financial market micro-structure. Abbondante et al. (2010) defines volatility as a sta-

tistical measure of asset returns dispersion, and refers to the total shares transacted within a specific

period of time as trading volume(or volume). According to him, volatility may be calculated by deter-

mining the variance or standard deviation of an asset return and that a higher value is an indication of

investment returns that are highly dispersed and this can be associated with a higher risk. Arguably,

the success of stock market heavily relies on volatility in the sense that when the volatility reduces,

the stock price may go up and vice versa. In other words, this implies that when volatility increases,

market risk rises as well, and returns may fall. Moreover, Abbondante et al. (2010) contends that

trading volume can be employed in technical analysis as an indicator of the direction of the stock

price. Trading volume gives investors an estimate of the stock market value and to some extent it can

confirm trend or trend reversal and it is likely that as trade volume increases, the stock prices gener-

ally would move in a similar direction. It is thus worth noting that a thorough understanding of how

stock returns, volatility and volume are related is essential. According to Wiley and Daigler (1999),

information flow into the market play a crucial role in determining the stock price and volume rela-

tionship, whereas, Karpoff (1987) on the other hand, argue that price-volume empirical relationship

is paramount because of the fact that it gives insights into the understanding of the many theories that

compete to widely spread ideas about the role played by the information that flows into the market.

The investors’ motivation to trade is mostly determined by their trading objective; it could be to spec-

ulate on market information or portfolios diversification to spread the risk, or the desire for liquidity.

These varied trading motives stem from the interpretation of various data sources. As a consequence,

trading volume may come from any of the investors with various information sets. Many empirical

studies disclose that information flow into the market is linked to volatility and trading volume, as

shown by the studies of Gallant et al. (1992), Lamoureux and Lastrapes (1990), and He and Wang

(1995). All these studies, reports that the arrival of new information into the market causes changes

in stock prices and as a consequence the returns on stock, volatility and trade volume are positively

1



associated.

Moreover, investors are motivated by larger returns to investment and this results in capital flow,

however, it is not easy to forecast returns in a volatile market environment, see Attari et al. (2012).

According to Attari et al. (2012) and Glascock and Hsieh (2014), emerging stock markets are asso-

ciated with extremely volatile stock returns emanating from the stock market having low volume. A

market at the development stage of becoming a mature and developed system where growth is steady

and political risks (the risk that an investment is likely to be adversely affected by political changes

and instability in a country) are low, is known as an emerging market. These markets are in most

cases located in undeveloped countries that are striving to achieve a steady business infrastructure.

An investment in an emerging market has the tendency to be volatile and uncertain, and investors

demand higher potential returns in exchange for the higher risk. In general, emerging markets are

characterized by low income, rapid growth, high volatility currency swings, and high potential re-

turns. Note that, an emerging market becomes a developed market if it has all the traits of a developed

market. On the other hand, a developed market is a country that is most developed in terms of its

economy and capital markets. That is, it is an economy (country) with a high level of economic ac-

tivity characterized by high per capita income or per capita gross domestic product (GDP), high level

of industrialization, developed infrastructure, technological advancement, and a relatively high rank

in human development, health and education. In a developed market there are high levels of liquid-

ity in debt and equity, political and financial stability (hence less risk), high economic development,

and the market is open to foreign investment and this provides accessibility to global investors and

hence encourages a higher volume of investment and transactions. In general, a developed market

economy is characterized by high income, high human development rank, service sector domination,

technological, and high level of infrastructure development.

A study by Girard and Biswas (2007) compared stock returns’ volatility and trade volume in both

established and developing markets and reported a negative relationship between the two markets. Ac-

cording to Al Samman and Al-Jafari (2015) trading volume is a crucial indicator that can be utilized

to gauge the market strength because it includes information about the stock market’s performance.

Empirical studies have looked at the dynamic and contemporaneous correlation between returns from

stocks and trading volume. In this regard, Lee and Rui (2000) report that in developed markets vol-

ume is granger-caused by returns and similarly, Mahajan and Singh (2009) unveils that volatility

and volume are positively correlated in addition to disclosing that returns granger-cause trading vol-

ume (one-way causality). Furthermore, studies by Christie (1982) disclose that volatility and trading

2



volume are negatively correlated while Rogalski (1978) on the other hand established a positive con-

temporaneous link between volume and absolute returns by utilizing month-on-month data. Recently,

Jiranyakul (2016) investigated the dynamic association between returns on stocks, volatility and trade

volume from the Thai Stock exchange and established that trade volume is paramount in dynamic re-

lationships. Pertaining to the subprime mortgage crisis in the United States, the trade volume creates

both returns and volatility. Moreover, the available literature reports a contemporaneous association

between volatility and trade volume from the Thai Stock market. Despite this remarkable empirical

and theoretical investigations on stock returns, volatility and trading volume correlations, blended

results have been established in general. In addition, the focus of majority of these studies have been

on the established stock markets rather than emerging stock markets which leave inadequate similar

literature for emerging markets.

Lamoureux and Lastrapes (1990) in their study claim that the random arrival of information into

the market causes price movements and consequently this leads to trade volume fluctuations. Despite

information flow being unobserved, trade volume can be utilized as an exogenous variable for return

series heteroscedasticity of variability of return series in question. When trade volume is factored

into GARCH model, volatility persistence, as reflected by the ARCH and GARCH effects, may be

minimized or eliminated. Moreover, Lamoureux and Lastrapes (1990) argue that when trade volume

is added into the conditional variance equation, the conditional volatility persistence vanishes. Results

similar to that of Lamoureux and Lastrapes (1990) have been established by studies of Miyakoshi

(2002) and Omran and McKenzie (2000) who investigated the Australian equities and found that

the volatility persistence decreased considerably after trade volume is utilized as a proxy for the

information arrival rate. The studies of Huang and Yang (2001), Chen et al. (2001), Yüksel (2002),

Salman (2002) and Ahmed et al. (2005) reports contrasting results that volatility persistence does not

decrease when trade volume is incorporated into the conditional volatility equation.

Financial markets have been observed quite often to exhibit an abrupt change of their behavior,

for instance, previous studies reveals that volatility on stock returns changes with time and the change

tend to persist. Moreover, some stylized features of volatility for instance volatility clustering, lever-

age effects, higher volatility emanating from non-trading periods, etc, have been reported by many

empirical studies. Volatility has been found to be a vital factor that influences option pricing despite

the fact that it is a difficult factor to estimate, however, once estimated volatility may be utilized to

determine future stock prices or the option prices. Black-Scholes model which is reported from the

existing literature to have been broadly utilized in option pricing assumes that volatility is steady

3



until the lapse time, which is not the case since volatility is known to change over time. Also, the

model is deemed a single volatility regime model. Furthermore, the conditional variance of returns

is time varying and researchers have paid attention to this stylized fact by building models that cap-

ture the changing variance, either in a continuous, see Heston (1993), or discrete, see Engle (1982),

time setting. Unfortunately, both discrete and continuous time states of nature have given rise to in-

completeness, for example, the multiplicity of equivalent martingale measures involves a continuum

of equilibrium prices. As a result, the question of choosing the best model arises. For instance, an

approach for pricing options was developed by Duan (1995) that considered a GARCH model with

Gaussian innovations whereas Heston and Nandi (2000), basing their argument on the methodology

by Duan (1995), considered a new conditionally Gaussian model to capture skewness in prices of

options. They developed a nearly closed form formulation for pricing call options and used empirical

data to verify its pricing performance. However, this model is conditionally Gaussian which means

that it does not reflect the behavior of short-term equity options smiles. The model was later extended

by Christoffersen et al. (2006) who utilized Inverse Gaussian distribution in order to increase the

skewness effect. On the other hand, ARCH - type models have been widely used to model the varying

volatility, however, in order to capture the sudden changes of financial market behavior such as the

volatility swings, Regime switching models of Hamilton (1989) are utilized. According to an unob-

servable process that creates switching among a finite range of regimes, these model parameters as-

sume various values in diverse time periods. In support of regime-switching models with autonomous

mean and variance changes, Bollen et al. (2000) and Hardy (2001) suggested a regime-switching

log-normal (RSLN) model in which log-returns follow a normal distribution with mean and variance

that are dependent on the regime variable. To investigate the volatility of the valued-weighted Tai-

wan Stock Index returns, Li and Lin (2003) used the Hamilton and Susmel (1994) Markov-Switching

ARCH model. Additionally, Markov regime-switching models have been used to show that volatility

expectations in the German, Japanese, and US stock markets are regime-specific. Pricing options

under regime switching model has been widely suggested, however, pricing of regime risk has been

a problem. Regime risk is linked to the changing economic conditions and hence ought to be priced.

Furthermore, valuing regime risk in a Markov regime switching model is a subject that is yet to be

completely investigated in the literature. In fact, the impact of switching regimes in the underlying

asset price dynamics on the behavior of option prices is addressed through direct pricing of regime

risk. It also provides some insight into how macroeconomic factors affect option prices, which is par-

ticularly significant when pricing a long-maturity option because macroeconomic conditions might

4



vary over time.

In conclusion, despite the fact that extensive research on stock returns, volatility, and trading

volume exists, the majority of studies have focused mostly on developed stock markets, leaving anal-

ogous research on emerging markets lacking. However, this notwithstanding the documented evi-

dence reveals results that are not in total consensus about the association between returns on stocks,

volatility and trade volume. In addition, the issue of including trading volume in GARCH model’s

conditional variance equation and as to whether volatility persistence decreases or even vanishes al-

together, has been found to disclose conflicting results. Another issue that emerges from the available

literature is that the GARCH model and its extensions have been utilized to capture the stylized char-

acteristics of financial time series for instance, heavy tails, clustering of volatility, leverage effects,

long-memory, leptokurtic distribution, among others. The empirical researches report that stock re-

turns volatility poses several issues that GARCH-type models fail to reflect well, see Bauwens et al.

(2006). In particular, these models frequently exhibit a high level of conditional volatility persistence.

Ardia et al. (2019) demonstrates that the GARCH-type model does not reflect the actual volatility

change whenever there is regime changes in volatility dynamics. The volatility change in a market

with regime switches can best be captured by considering a regime switching model because it per-

mits the GARCH parameters to change over time. As a consequence, this study proposes to utilize

GARCH-type and a regime-switching model to model the underlying asset’s dynamics as well as to

probe the contemporaneous and dynamic correlation between returns on stock, volatility and trade

volume from both emerging and developed markets. This is further utilized to investigate how inte-

grating trade volume into the GARCH-type models’ conditional variance equation affects volatility

persistence.

Moreover, modeling the underlying asset’s dynamics using a regime switching model is extended

to pricing European options and the Black-scholes model is used as a benchmark model for the op-

tion pricing. In fact, a regime-switching model for pricing European options is proposed in this paper

when the underlying asset dynamics are dependent on market regimes. The formulation of this model

is based on a geometric Brownian motion that is guided by a two-state continuous-time Markov chain

and by an application of a change of measure, an option price is developed using risk-neutral valua-

tion. The regime switching (RS) model is modified to include GARCH effects and dynamics resulting

to regime-switching GARCH model, hereinafter referred to as RS-GARCH. The implementation of

these two models is done by computing the European call option prices for some chosen stock market

indices and the results compared with those from the famous Black-Scholes model. This comparison
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is necessary for establishing the best model for pricing the European options.

In general, in this study, the stock markets dynamics are modeled with the aim of probing the

relationship that exists between stock returns, volatility and trading. Moreover, the dynamics of

the stock returns’ volatility in a regime switching market is investigated and applied in pricing the

European options. The principal contributions of this study are that;

• The relationship between stock returns, volatility and trading volume is investigated using both

GARCH-type and Regime switching models. A comparison of this relationship for both de-

veloped and emerging financial markets is carried out, such a comparative study that uses both

GARCH-type and Regime switching models is missing from literature. Moreover, the rela-

tionship between asymmetric volatility and trade volume using GARCH-type models is inves-

tigated.

• The dynamics of stock returns’ volatility is probed using the GARCH-type and Regime switch-

ing models. The GARCH-type models conditional to normal, student-t and GED distributions

are utilized for both developed and emerging markets. The regime switching model is applied

to the two market data sets to capture the stock market dynamics in a regime switching financial

market setting. Moreover, a comparison of the stock market dynamics for the two sets of mod-

els is implemented and such a comprehensive comparison has not been carried out by earlier

studies.

• The effect of trade volume on volatility asymmetry and volatility persistence when trade vol-

ume is added to the conditional variance equation of GARCH-type model is investigated under

the three conditional distributions; normal, student-t and GED. The existing literature has not

captured the relationship between trade volume and volatility asymmetry, and a comparison of

the same for both emerging and developed markets is lacking. This study, therefore, has filled

up this gap. Furthermore, this study adds to the existing literature by investigating the effect

of trade volume on volatility persistence since earlier studies have reported conflicting results.

This notwithstanding, the empirical studies existing in literature have not compared the case

for developed and emerging markets in addition to the fact that many of these studies have fo-

cused more on modeling developed markets than emerging market. These two issues have been

addressed by this study.

• The research by Hardy (2001) assumed that the stock returns are log-normally distributed, and
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utilized a regime switching model to price European options. In this study, this assumption

is dropped and instead the European call options are priced using the regime switching model

under the assumption that the returns on stocks follow a normal distribution. Moreover, a large

data set with many observations as compared to the two market indices data considered by

Hardy (2001) is utilized so as to increase the chance of getting better descriptions of the model

in the options pricing. Finally, the regime switching model is adapted to include GARCH effects

which results to a Regime switching GARCH (RS-GARCH) model and this model is utilized

in pricing the European options. The results of the European call options estimated from both

the RS and RS-GARCH models are compared with those of the Black-Scholes model and the

model with better fit is determined.

1.2 Statement of the problem

Modeling stock returns is an important task in financial markets and the past couple of years have

witnessed an increase in research that are geared towards modeling the financial time series of both

emerging and developed stock markets. The majority of empirical studies on the dynamic and con-

temporaneous association between returns on stocks, volatility, and trade volume have focused on

developed economies such as, the US, UK, Japan, and Hong Kong stock markets, as compared to

emerging markets. These prior studies reports a link between returns on stocks, volatility and trade

volume, however, some few studies have reported conflicting results pertaining this relationship. Most

of these previous empirical studies generally support the mixture of distribution hypothesis (MDH)

model in explaining the association between trade volume and stock returns in the setting of informa-

tion arrival into the market. Many empirical studies that utilized the MDH model have explained the

volatility persistence by adding trading volume in GARCH model as a proxy for information arrival.

The existing literature reveals that there are very few studies that have utilized asymmetric GARCH

models to investigate the connection between returns and trade volume. On the other hand, financial

markets have been observed quite often to exhibit an abrupt change of behavior, for instance, previ-

ous studies have shown that stock returns volatility changes with time and the change tend to persist.

Regime switching models proposed by Hamilton (1989) are utilized in modeling dynamic switches

of the salient characteristics of financial time series, for instance, volatility asymmetry, among others.

In the context of modeling the dynamics of the correlation between stock returns and trade volume, it

is revealed that Regime switching models have hardly been used by prior studies to model this rela-
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tionship. This study focuses on modeling the underlying asset returns using GARCH models and its

extensions and Regime Switching models as well as applying these models in pricing the European

options. Furthermore, the existing literature reveals limited information on whether regime-switching

and RS-GARCH models outperform the famous Black-Scholes model in pricing European options.

Therefore, a regime switching model for pricing European options is constructed and modified to

include GARCH effects and dynamics resulting to regime-switching GARCH model.

1.3 Objectives of the study

1.3.1 Main objective

The overall objective of the study is to model the correlation between stock returns, volatility and

trading volume of the emerging and developed financial markets and to price few financial derivatives

such as European options.

1.3.2 Specific objectives

(i) To analyze stock returns volatility dynamics in both developed and emerging markets based on

GARCH and Regime switching models.

(ii) To investigate the dynamic correlation of stocks returns, volatility and trade volume in emerging

and developed financial markets.

(iii) To investigate the asymmetric relationship between trade volume and stock returns using GARCH

models.

(iv) To price European options using regime switching and RS-GARCH models.

1.4 Scope of the study

This study probes the dynamic and contemporaneous correlation between stock returns, volatility and

total number of shares traded in Nairobi securities exchange (NSE20), S&P500 and FTSE100 market

indices. The dynamic structure of the underlying stock returns is modelled using GARCH models and

their extensions, Regime switching, and MS-GARCH models conditioned with Gaussian, student-t,

and generalized error distributions (GED) specifications. Application of these models is extended to

the pricing of European options.
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1.5 Significance of the study

Modeling financial market index as well as option pricing is significant in the following manner; first,

it provides the understanding of the financial markets micro-structure. Secondly, it demonstrates the

rate of information flow to the market, how the information is widely spread and how it influences

stock returns by applying different models, for instance the GARCH models specify a symmetric

volatility response to news. Finally, the use of exponential GARCH models gives new insight into the

asymmetric effects of volatility, trading volume, and their impact on stock returns. The understanding

of the dynamic structure of the underlying assets is the basis for application of the knowledge into

pricing options.
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CHAPTER 2: LITERATURE REVIEW

The relationship between stock returns, volatility and trade volume has previously been carried out

extensively by many empirical studies. Karpoff (1987) argues that most of these early studies disclose

a significant positive correlation between returns on stocks, volatility and trade volume. Lee and Rui

(2000) utilized China stock market data to investigate the contemporaneous and causal correlation

between stock returns, trade volume and volatility and unveiled that trade volume is not granger-

caused by stock returns. Later, Lee and Rui (2002) carried a similar study utilizing data from New

York, London and Tokyo stock markets and documented that returns on stock are not granger-caused

by trading volume in each of the three markets. However, they reported that returns’ volatility is

positively related with trade volume across the three markets. These findings are not consistent with

those of Chen et al. (2001) who examined the dynamic connection between stock returns, volatility

and trade volume by utilizing data from nine different stock exchanges. This study reported that

for some stock exchanges stock returns granger-caused trade volume, whereas for some other stock

exchanges, trade volume granger-cause stock returns.

Mubarik and Javid (2009) conducted a similar research utilizing the ARCH and GARCH-M mod-

els on Pakistan Stock Market data and revealed that stock returns’ volatility and trade volume are

significantly correlated. The results suggest that the previous day trade volume has significant effect

on the present-day return, that is, the previous day trade volume and returns explains the prevalent

market returns. Moreover, studies of Khan and Ahmed (2009), and Al-Jafari and Tliti (2013) utilized

Karachi Stock Exchange index and Amman Stock Exchange data and disclose that returns’ volatility

and trade volume have a significant positive correlation. In his work, Crouch (1970) investigated

the connection between daily trading volume and the daily absolute changes of the stock market in-

dex and individual stocks and reported a positive relationship between them. Stock data recorded on

monthly basis was analyzed by Rogalski (1978) who reported a positive relationship between the total

number of traded shares and the absolute returns. In the emerging market situation, Brailsford (1996)

reported a strong contemporaneous relationship between returns and volatility. Harris (1987) did em-

ploy several transactions to measure the total number of traded shares and reported that changes in

total number of traded shares and changes in the square of returns were related.

The asymmetric effect of trading volume on return volatility through price formation process is

also well documented in literature. Several empirical studies find asymmetric volatility to be a cru-

cial factor in the understanding of trading volume-return volatility relationship. The asymmetry of
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volatility effect is largely associated with a greater rise in the volatility following an unexpected price

fall compared to a price increase of the same magnitude; see Bollerslev et al. (1992), Patterson (2000)

and Brooks et al. (2008). Furthermore, this asymmetry of volatility effects is due to price fluctuations

and these changes are in most cases negatively related with volatility changes. Kroner and Ng (1998)

argue that, the cause for this asymmetric effect is due to leverage effect and a rise in the information

flow following unfavorable news. Moreover, increase in information flow due to unfavorable news

leads to relative rise of the rate of information flow across firms which in turn affects the co-variances

across stock returns. In terms of the asymmetric issue, ”bad (or unfavorable) news” refers to negative

returns while during financial crises it refers to information with adverse effects across the integrated

stock markets. Studies of Schwert (1989) and Nelson (1991) reported the asymmetric volatility be-

havior of stock returns using US data; Reyes (2001) estimated an asymmetric impact on volatility in

the Tokyo Stock Exchange; Henry (1998) captured asymmetry of volatility using Hong Kong Stock

market data; Sentana (1995) used the UK and US data to identify the asymmetric impact in the Stock

market returns; Zakoian (1994) empirically tested the asymmetry of volatility behavior of French

Stock data.

Kearns and Pagan (1993) reports the effect of asymmetric volatility in the emerging market stock

returns was lower compared to the developed stock market returns. Frijns et al. (2010), in their

study used traditional regression analysis methods whose findings documented contradictory results

for volatility asymmetry in the Australian market volatility index, which was constructed using daily

data of S&P500/ASX200 index options. GARCH models were utilized by Lamoureux and Lastrapes

(1990) to model stock returns volatility and trading volume relationship who reported that persistence

in the conditional variance vanishes with addition of trade volume as an exogenous variable. Their

findings formed the foundation for further research by academicians and policy makers to investi-

gate the correlation between returns, volatility and trading volume in developed markets and later

in emerging markets. These later studies aimed at investigating whether trading volume explains

volatility persistence. Omran and McKenzie (2000) and Miyakoshi (2002) both found similar results

to those reported by Lamoureux and Lastrapes (1990) for the Australian Stock Exchange and the

Tokyo Stock Exchange, respectively. Najand and Yung (1991) analyzed daily prices and volume of

treasury bond’s future markets in their research and found that GARCH effects persisted even after

volume is incorporated in their model’s conditional variance. Similarly Brailsford (1996) utilized

Australian equities and found that after accounting for trading volume as a proxy for the information

arrival rate, volatility persistence was significantly reduced.
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Emenike and Opara (2014) conducted a study in Nigeria to look into the connection between

stock returns’ volatility and trading volume by fitting the daily All-share Index and closing trading

volume of Nigerian Stock Exchange into GARCH (1, 1) and GARCH-M (1, 1) models. Their find-

ings disclosed a significant positive relationship between trading volume and stock returns volatility.

Moreover, they revealed that persistence in volatility does not disappear with inclusion of trading

volume in the conditional variance equation of both GARCH (1, 1) and GARCH-M (1, 1) models.

Additionally, studies by Chen et al. (2001) in nine developed markets, Huang and Yang (2001) in

Taiwan, and Ali et al. (2005) for the Kuala Lumpur Stock Exchange markets have all documented

that stock returns’ persistence of volatility remains after inclusion of trade volume in the conditional

variance equation of the GARCH model.

The relationship between trade volume and stock returns’ volatility was investigated by Gulia

(2016) who utilized GARCH model to analyze data from the Indian Stock Market. His study looked

at the relationship of the price-volume changes and the effect on volatility persistence after adding

trade volume to the basic ARCH variance equation and reported that negative returns have a lower

price-volume change slope than positive returns. They further claimed that persistence of variance

reduces when trade volume is included in the GARCH variance equation as an exogenous variable.

Moyo et al. (2018) evaluated the effects of trading volume as a proxy for the arrival of information

on stock volatility, and the impact of adding trading volume into the conditional volatility equation

on volatility persistence, using the EGARCH and TGARCH models. Their findings show a positive

association between trading volume and stock returns, and that trading volume is a poor source of

volatility on stock returns when used as a proxy for information flow. However, there is no observed

change on volatility persistence when trading volume is added in the conditional variance equation.

For the Johannesburg Stock Exchange (JSE) in South Africa, Naik et al. (2018) revisited the asso-

ciation between equities’ trade volume and returns’ volatility. He looked at the volume-volatility link

using EGARGH and Granger causality models, as well as the volatility persistence before and after

trade volume is included in the volatility model as an exogenous variable. The researchers discovered

a positive and contemporaneous association between transaction volume and market volatility and

that volatility persistence never died off after the explanatory variable was included in the volatility

model.

Poudel and Shrestha (2019) used an Autoregressive Distributed Lag technique to analyze the

connection between trading volume and stock returns using the Nepalese Stock Market index (NEPSE

index). He looked at the short and long term impact caused by trading volume on stock returns. His
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studies revealed that there was a long-term and short-term positive connection between trading volume

and stock returns. As a result, he came to the conclusion that stock returns had a considerable impact

on trade volume in the Nepalese Stock Market.

There is a wide discussion on option pricing that exists in literature. Black and Scholes (1973)

developed the Black and Scholes model which was widely applied in scientific research in option

pricing. The model was later extended to options on futures, see Black (1976). Even after academi-

cians and practitioners could use this option pricing tool to get option prices, there was concern on

how to make profits by being able to predict volatility direction or simply knowing how to accurately

price options. Black (1976) argued that the simplest approach consisted fitting historical volatility

into the Black and Scholes formula for futures prices. However, it was discovered that the model was

inaccurate since it gave equal weights to all past rates of returns irrespective of the initial values. The

other approach is the realized volatility estimator that was based on squared log returns summed over

some time interval, see Black (1976). The approach also exhibited significant biases.

Further research was devoted to option pricing using GARCH models with Engle (1982) being

the first one to propose the ARCH model. This model explains that future conditional variance is a

function of the unconditional long-term variance, and of the returns of the past days. Bollerslev (1986)

extended this model to GARCH model which has an additional parameter that takes into account low

and high volatility. The question then was on how to implement these volatility estimators based on

the theory of options pricing. Duan (1995) answered this question by proposing the GARCH option

pricing model that utilized Monte-Carlo approach to price options. He reported that simulated asset

prices followed a GARCH process hence heteroscedasticity of stock returns is captured leading to the

reduction of pricing bias caused by the volatility smile. However, the model by Duan (1995) only

corrects certain biases resulting from the Black-Scholes model and does not perform empirical tests

of his approach.

Siu et al. (2004) proposed a model for pricing options based on GARCH assumption for under-

lying assets in the context of dynamic version of Gerber-Shiu’s option-pricing model. They applied

conditional Esscher Transforms to develop a martingale measure in the context of an incomplete

market situation. The result was consistent with that of Duan (1995) under the assumption of condi-

tional normality for the stock innovation. They, too, justified the pricing result based on the dynamic

framework of utility maximization problems as per the Gerber-Shiu’s option-pricing model.

Barone-Adesi et al. (2008) in their research proposed option pricing method that was based on

GARCH models with filtered historical innovations. Their model outperformed other GARCH pricing
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models and Black Scholes models empirically for S&P500 index options. The model did explain

implied volatility smiles by the negative asymmetry of the filtered historical innovations. Empirical

evidence and the extent of deterioration of the delta hedging in the presence of large volatility shock

were revealed by the study.

Under the regime switching Black-Scholes economy, Hao and Yang (2011) reported a Scenario-

based risk estimate for a portfolio of European style derivative assets over a fixed period of time. In

their study they derived a closed form expression for measuring risk for both barrier and vanilla Euro-

pean options and noted that this approach can be applied to a variety of exotic options as well. In his

research, Duan (1995) developed a model for pricing options on an asset whose continuously com-

pounded stock returns follow the generalized Autoregressive conditional heteroskedastic (GARCH)

process. He utilized local risk neutralization approach to construct this model and unveiled that the

GARCH option pricing model allows for the inference of implied GARCH parameters from the mar-

ket data, and that the inferred parameter values can be employed in a similar way to the Black-Scholes

model’s implied volatility. In their research Dash et al. (2012) utilized the GARCH option pricing

model for options traded on the National Stock Exchange, India. It was further reported that the

GARCH (1,1) model was used to obtain volatility projections, and calculated option prices using

these volatility projections in the Black-Scholes-Metron model. Their results indicated that the im-

plied volatility (for both calls and puts) were overestimated, and that call and put option prices were

predominantly overvalued. Further, they reported that put options were more overpriced than call

options and that the overestimation of volatility and overvaluation of options prices increased with

higher market capitalization and moderate/higher trading volume of the underlying stock.

Recent studies on option pricing have been carried, for instance, Biswas et al. (2018) used a regime

switching stochastic model with a semi-Markov modulated square root mean reverting process to

study European option pricing. In their study, they discovered the local risk-minimizing European-

type vanilla options price, and it was proven that the price function adequately meet a non-local

degenerate parabolic PDE, which is the general case of the Heston PDE model. A study by Deelstra

et al. (2020) considers risk-neutral pricing of Vanilla, digital and down-and -out call options with the

price of the underlying asset evolving according to the exponential of a Markov-modulated Brownian

motion (MMBM) with two-sided phase-type jumps. Further, he documents that such options are

closely related to the MMBM’s first passage properties which he analyzed by randomizing the time

horizon using Erlang distribution. Moreover, Nasri et al. (2020) used a regime switching Copula

model to option prices where serial independence of error terms for time series is presented which was
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subjected to several time series analysis. Moreover, Kirkby and Nguyen (2020) utilized duality and

FFT-based density projection implementation to establish a novel and efficient transform approach

for pricing Asian options for general asset dynamics, such as regime switching Levy processes and

stochastic volatility models with jumps.

In his research, Lin and He (2020) addressed the problem of pricing the European options using

a regime switching finite moment log-stable model. Their model has the ability to represent the key

features of asset returns, as well as the impact of regime transition, and it is compatible with market

findings. Furthermore, they state that option prices are driven by a coupled FPDE (Fractional Partial

Differential Equation) system in their model. They note that their model can mimic option prices

emanating from other existing models with particular parameter settings while also bringing into

significance pricing differences relative to current models by changing parameter values, indicating

that it has the potential to be used in practice.

Godin et al. (2019) in his study reveals that Esscher transform approach for obtaining risk neu-

trality is famous in pricing options under regime switching models. However, this approach creates

path-dependence in the dynamics of option price since under the physical measure, the underlying

asset is integrated in a Markov process. To address the path-dependence they develop a novel and

intuitive risk-neutral measure that integrates risk-aversion in regimes and consequently removing the

path dependence side effects. Later on, the study of Godin et al. (2019) was complimented by Godin

and Trottier (2021) who developed and utilized extended Girsanov principle which also removes the

path-dependence effect. This model is easy to interpret in terms of consistence with hedging agents

locally minimizing their risk-adjusted discounted squared hedging errors.

In general, it is noted from the existing literature that a comparative study of the relationship

between stock returns, volatility and trade volume for both emerging and developed market is missing.

The use of regime switching model to investigate this relationship as well as investigating the effect of

adding trading volume to the GARCH-type conditional equation on volatility asymmetry is missing

as well. Moreover, the literature does not document the use of regime switching model to model the

relationship between trade volume and asymmetric volatility. The study of Hardy (2001) proposes

use of regime switching model on pricing European options under the assumption that the returns

are log-normally distributed, this study uses the regime switching model to price European options

with the assumption that the stock returns are normally distributed. In addition, the effect of GARCH

is included in the regime switching model and consequently a regime-switching GARCH model is

derived and applied in European options pricing.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter presents the research methods and procedures followed in this study and it begins by

giving a brief review of stylized facts of return series which is then followed by an outline of the

underlying asset. In addition, models applied in analyzing the financial time series data sets and their

parameter estimation methodologies are presented.

3.2 A review of stylized facts of returns

Financial time series is defined as a sequence of observations on financial data over a fixed period of

time. Among the aims of analyzing a financial time series is to find physical models that can explain

the empirically observed features of real life data. The observations of the time series is often assumed

to exhibit a normal (Gaussian) distribution, however, this has always been disapproved by empirical

studies of practically any financial time series whose results have revealed that most financial time

series are non-stationary which means the mean, variance and auto-covariances of the time series

vary with time. For instance, the presence of changing variance in stock returns were first captured

by Engle (1982) using the ARCH model and later Bollerslev (1986) extended it to generalized ARCH

(GARCH) model. Cont (2001) compiled and documented statistical properties that were observed

to be common to a wide set of financial time series and referred to them as ’stylized facts’. We list

some of the stylized facts as follows; Heavy tails-the returns for most data set seem to have a distribu-

tion(unconditional) that displays a power-law or Pareto-like tail; Volatility clustering-large volatility

changes tend to be followed by large volatility changes of either sign or low volatility changes by

low volatility changes; Leverage effect-changes in stock prices tend to be negatively correlated with

changes in volatility, that is, volatility is high after negative shocks than after positive shocks of same

magnitude; Aggregational Gaussianity-as the time scale for which the returns are calculated increases,

the distribution of returns tends to be normal. That is, the shape of the distribution is different at dif-

ferent time scales; Conditional heavy tails-the time series’s residual exhibits heavy tails even after

correcting returns for volatility clustering, for example, through GARCH-type models. However, the

tails are less heavy as compared to the unconditional distribution of returns, e.t.c.

Definition 3.2.1 Let F be a set of subsets ω of Ω . Then F is a σ -algebra if the following conditions

are satisfied
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(i) ϕ ∈ F ,

(ii) if ω ∈ F , then ωc ∈ F ,

(iii) if ω1, ω2, ..., ωn, ... ∈ F , then
∞⋃
i=1

ωi ∈ F i.e ωi are countable unions

Definition 3.2.2 A probability measure P is a function P → [0, 1] such that

(i) P(Ω) = 1

(ii) P(ω) + P(ωc) = 1

(iii) if ω1, ω2, ..., ωn, ... ∈ F are disjoint, then P (
∞⋃
i=1

ωi) =
∑∞

i=1 P (ωi)

Definition 3.2.3 Let (Ω,F ,P) be a probability space where Ω = {X1, ..., Xn} is the set of all

possible outcomes, F is a σ− algebra and P is a probability measure. A filtration on (Ω,F ,P) is

an increasing family (F)t≥0 of sub-σ -algebra of F . That is, for each t, Ft is a σ -algebra included

in F and Fs ⊂ Ft if s ≤ t

Definition 3.2.4 Let {Xt : t = 0, 1, 2, 3, ...} be a sequence of random variables defined on some

probability space (Ω,F ,P). Then {Xt, t∈ T} is a stochastic process where T is an index set repre-

senting time and can be continuous or discrete. It thus follows that

(i) E[Xt] = µt for t = 0, 1, 2, 3, .... That is, µt, is the expected mean of the process at time t.

(ii) Cov(Xt, Xs) = γt,s for t = 0, 1, 2, 3, ... where Cov(Xt, Xs) = E[(Xt − µt)(Xs − µs)] =

E[XtXs]− µtµs is the auto covariance function.

(iii) The autocorrelation function, ρt,s is defined by ρt,s = Corr(Xt, Xs) for t = 0, 1, 2, 3, ..., where

Corr(Xt, Xs) =
Cov(Xt,Xs√

V ar(Xt)V ar(Xs)
= γt,s√

γt,tγs,s

Note that (ii) and (iii) are the linear dependence measures between random variables such that if the

value of ρt,s is close to ±1 the linear dependence is strong otherwise the linear dependence is weak.

Definition 3.2.5 Let (Xt)t≥0 be a stochastic process on (Ω,F ,P) . Then (Xt)t≥0 is adapted to the

filtration (Ft) if for each t > 0, Xt is Ft -measurable, i.e. Xt is measurable with respect to Ft .

Definition 3.2.6 A process Xt is strictly stationary if the joint distribution of {Xt1, Xt2, ..., Xtn} is

the same as the joint distribution of {Xt1−k, Xt2−k, ..., Xtn−k} for time points, t1, ..., tn and time lag

k.
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Remark 3.2.1 When n = 1, the distribution of Xt is the same as that of Xt−k for all t and k; that

is, X ′s are identically distributed. As a result, E[Xt] = E[Xt−k] for all t and k, that is, the mean

function is constant for all time. Moreover, V ar[Xt] = V ar[Xt−k] for all t and k implying that the

variance is constant over time.

Remark 3.2.2 If a process (Xt) is strictly stationary and its variance is finite, then the covariance

function must only depend on the time lag.

Definition 3.2.7 A process (Xt) is weakly (or second-order) stationary if

(i) E[Xt] = E[Xt−k] = µt for all t, that is, the mean function is constant over time.

(ii) γt,t−k = γ0,k for all time t and lag k.

3.3 Modeling the underlying asset

Suppose that (Xt)t≥0 is a stochastic process on a probability space (Ω,Ft,P) that describes the

stock market’s uncertainty where P is a probability measure and Ft is a filtration that represents the

available information upto time t − 1 and is driven by a Brownian motion of the stochastic process.

Further, denote the stock price at time t by St, which is adapted to the filtration (F)t≥0 and define

log returns as Xt = loge St − loge St−1 , then the following definition results;

Definition 3.3.1 Suppose Xt is a random variable with mean and variance conditional on the infor-

mation set Ft−1 (the σ-field generated by Xt−1, j ≥ 1) comprising all the information upto time t−1,

then under probability measure P, the asset returns’ model is defined as

Xt = loge

(
St

St−1
|Ft−1

)
, =⇒ Xt = µt + rt, rt = σtεt

σ2
t = V ar(Xt|Ft−1) = E

[
(Xt − µt)

2|Ft−1

]
εt ∼ i.i.d(0, 1) =⇒ εt|Ft−1 ∼ D(0, σt)

(3.3.1)

where D represents the distribution that can be either normal or leptokurtic (students-t and GED),

µt, σt and rt are the conditional mean, conditional variance and the mean-corrected asset returns

respectively.

3.4 The ARCH model

The ARCH model is a stochastic process with autoregressive conditional heteroscedasticity which

is a postulate by Engle (1982), and it uses previous variances to explain future variances. The au-

toregressive property describes a method for giving feedback that incorporates previous observations
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into the present. Also, conditionality implies a dependence on the observations that have existed

in the immediate past while heteroscedasticity means time-varying variance (volatility). In contrast

to the ARMA models which focuses on modeling the first moment, ARCH models depends on the

conditional second moments in modeling consideration. Let

Xt = Et−1[Xt] + rt ; rt = σtεt , and εt ∼ i.i.d(0, 1)

The ARCH(q) model of the process (rt), t ∈ Z+, is defined by

σ2
t = ω +

p∑
i=1

αir
2
t−i where ω ≥ 0, αi ≥ 0, for i = 1, ..., p (3.4.1)

In Equation (3.4.1) above, the mean and variance of the random variable rt, are conditional on the

information set Ft−1 up to time t− 1 and are defined as E[rt|Ft−1] = 0 and V ar[rt|Ft−1] = σ2
t ,

respectively.

3.5 The GARCH Model

The GARCH model is a basic conceptual structure of Bollerslev (1986) and it is a generalization of

Equation (3.4.1). Many researchers have largely used this model in the modeling and analysis of

economic and financial data. The model posses some notable characteristics such as their capability

to model volatility clustering as well as the ability to give account for the changing variance in time-

series data. Suppose (εt)t∈Z is an independent and identically distributed (i.i.d) sequence of random

variables with mean zero i.e E[εt] = 0 and unit variance, i.e, V ar(εt) = E[ε2t ]− (E[εt])2 = 1 and

let P ∈ N = {1, 2, ...} and q ∈ N0 ∪ {0}. Further, let ω > 0, αi ≥ 0 , for i = 1, ..., p , βj ≥ 0 ,

for j = 1, ..., q and
∑p

i=1 αi+
∑q

j=1 βj < 1 be positive parameters. A GARCH(p,q) process (rt)t∈Z

with volatility process (σt)t∈Z is then a solution to the equations

rt = σtεt, where , σ2
t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjσ
2
t−j, , t ∈ Z (3.5.1)

where the process (σt)t∈Z is non-negative. It is required that σt only depends on past innovations

(εt−h)h∈N , that is, it is demanded that σt is measurable with respect to the σ-algebra generated by

(εt−h)h∈N . Additionally, σt and rt are not dependent on (εt+h)h∈N0 and σ(εt+h : h ∈ N) respectively,

for fixed t, and that p and q are the ARCH and GARCH process degrees respectively. αi+βj implies
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that the unconditional variance of rt is finite, whereas its conditional variance σ2 evolves over time.

This study utilizes GARCH(1,1) model since its implementation is relatively simple and also from

literature the model has given good results in modeling the changing variance. The model is expressed

as follows

σ2
t = ω + α1r

2
t−1 + β1σ

2
t−1 (3.5.2)

In Equation (3.5.2), ω is constant variance corresponding to the long run average, α1 is the first order

ARCH term that broadcasts volatility information from a previous time, and β1, is the first-order

GARCH term, which represents fresh information not available at the time of the prior forecast. The

magnitude of α1 and β1 determine the extent of volatility persistence, that is, the closer the sum of α1

and β1 to 1, the more the shocks to volatility does not die off.

3.5.1 Conditional mean specification

The conditional mean Et−1[Xt] can be specified as a constant or a low order autoregressive-moving

average(ARMA) process to capture the autocorrelation generated by market microstructure impacts

on non-trading effects. This, however, is contingent on the data frequency and the type of asset.

Dummy variables linked with extreme or uncommon market events are frequently added to the con-

ditional mean specification to remove these impacts if they occurred during the sample period. As a

result, a typical conditional mean specification is of the form

Et−1[Xt] = ω +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjrt−j +
M∑

m=1

β′
mYt−m + rt (3.5.3)

where Yt is a kx1 vector of explanatory variables.

3.5.2 Explanatory variables in the conditional variance

Exogenous variables can be introduced into the conditional GARCH(p,q) formula in the same way

that they are introduced into the conditional mean equation, as shown below.

rt = σtεt, σ2
t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjσ
2
t−j +

M∑
m=1

δ′mZt−m (3.5.4)

where Zt and δ are vectors of random variables and positive coefficients, respectively. These co-

efficients, such as trade volume and microeconomic news announcements help in the prediction of

volatility, see Lamoureux and Lastrapes (1990). In financial investment, high returns are often associ-
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ated with high risk. Although modern capital asset pricing theory does not infer such a simple link, it

does imply that expected returns and risk, as measured by volatility, have certain interactions. Engle

et al. (1987) suggested that the basic GARCH model be extended so that conditional volatility can

create a risk premium that is included in the projected returns and referred to this extended GARCH

model as GARCH-in-the-mean or GARCH-M.

3.6 The GARCH-M Model

In finance, a stock’s return may be influenced by its volatility and the GARCH-in-mean model, ab-

breviated as GARCH-M, is the best way to model this phenomenon. The following is a simple

GARCH-M(1,1) model:

Xt = µt + λ1σ
2
t + rt, where , rt = σtεt, and σ2

t = ω + α1r
2
t−1 + β1σ

2
t−1 (3.6.1)

where Xt, rt and λ1 are the log return series, the mean-corrected log return series and the risk premium

parameter, respectively. A positive value of λ1 implies that the stock return is positively correlated

with its past volatility. The GARCH-M model formulated in Equation (3.6.1) implies presence of

serial correlations in the return series {Xt} which are caused by those in volatility process, {σ2
t }.

Therefore, another reason why stock returns have serial correlations is implied by the occurrence of

the risk premium.

3.7 The exponential GARCH (EGARCH) Model

This model has the ability to capture asymmetric responses of time-varying variance to shocks and

leverage effects, that is, a negative relationship between stock returns and volatility shocks. The

model ensures that the variance is always positive and utilizes rt−i

σt−i
as the standardized value. The

EGARCH(p,q) model is expressed as follows;

ln(σ2
t ) = ω +

p∑
i=1

{α
i
(|rt−i| − E|rt−i|) + γirt−i}+

q∑
j=1

βj ln(σ
2
t−j) (3.7.1)

where γi is the asymmetric or leverage parameter that gives response to asymmetry. In most empirical

cases, the value of γi is expected to be greater than 1, indicating that a negative shock can increase

future volatility or uncertainty, whereas a positive shock decreases the effect on future uncertainty.

A negative shock in financial market analysis usually means bad news, which leads to a more un-
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predictable future, whereas a positive shock means good news. As a result, investors, for example,

would expect larger stock returns to compensate for the increased risk in their investment. This study

employs EGARCH(1,1) model defined as follows;

ln(σ2
t ) = ω + {α1(|rt−1| − E|rt−1|) + γ1rt−1}+ β1 ln(σ

2
t−1) (3.7.2)

It should be noted that γ1 = 0 implies symmetry(volatility is not asymmetric), γ1 < 0 means bad

news(negative shocks) increases volatility more than good news(positive shocks) and γ1 > 0 implies

that good news(positive shocks) increases volatility more than bad news(negative shocks). Moreover,

the volatility persistence P̃ is in general estimated as P̃ =
∑q

j=1 βj.

3.8 Markov-Switching GARCH (MS-GARCH) Model

Suppose that the mean of rt is zero and there is no serial correlation, that is, assume that E[rt] = 0

and E[rtrt−i] = 0 for i ̸= 0 and all t > 0. It is realistic to make this assumption if one is dealing

with high-frequency returns whose conditional mean is usually assumed to be zero. In this study

conditional variance process is allowed to switch regimes and in addition, the observed information

set until time t − 1 is denoted by Ft−1. Thus, the general case of a Markov-Switching GARCH

model is written as: rt|(ξ(t),Ft−1) ∼ D(0, σ2
k,t, ϵt). In this expression, D(0, σ2

kt, ϵt) represents a

continuous distribution whose mean is zero, has a changing variance with time, σ2
k,t and an additional

shape parameters ϵk collected in the vector. The random variable ξ(t) defined in the discrete space

1, ..., k, represents the Markov-switching GARCH model. The standardized innovation is defined as

ηk,t = rt/(σk,t) ∼ D(0, 1, ϵk). To model the dynamics of the state of random variables, it is assumed

that the state ξ(t) evolves according to an unobserved first order homogeneous Markov chain with a

probability transition matrix of order kxk. In this study, two states are considered, that is, k = 2, so

the transition probability matrix P is given by

Pij =

p11 p12

p21 p22


where Pij = P [ξ(t) = j|ξ(t − 1) = i] is the transition probability from state ξ(t − 1) = i to

ξ(t) = j , 0 ≤ Pij ≤ 1, ∀ i, j ∈ {1, 2} and that
∑2

j=1 Pij = 1, ∀ i ∈ {1, 2}. Considering the

parameterization of D(.) , we’ve the variance of r2t conditional on the realization of ξ(t) = k, that is,

σ2
k,t = E[r2t |ξ(t) = k,Ft−1]
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On the other hand, conditional variance dynamics is modeled under the assumption that the con-

ditional variance of rt follow a GARCH-type model, see Haas et al. (2004). Conditionally on regime

ξ(t) = k , σ2
k,t is a function of the past observations, rt−1 , past variance, σ2

k,t and vector of parameters,

θk which is regime-dependent, that is,

σ2
k,t = h(rt−1, σ

2
k,t−1, θk). (3.8.1)

Here h(.) is a Ft−1-function that defines the conditional variance filter and ensures that it is positive.

The initial variance recursions, that is, σ2
k,t(k = 1, 2) , are set equal to the unconditional variance in

regime k. Depending on the form of h(.), different scedastic specifications are obtained, and in our

case GARCH and EGARCH scedastic specifications are considered as shown below. According to

Bollerslev (1986), the GARCH model is given by

σ2
k,t = α0,k + α1,kr

2
t−1 + βkσ

2
k,t−1 (3.8.2)

for k = 1, ..., k. We have θk = (α0,k, α1,k, βk)
′ in this case and in order to ensure positivity, it

demands that α0,k > 0, α1,k ≥ 0 and βk ≥ 0 . Moreover, covariance-stationarity is ensured in each

regime by requiring that (α1,k + βk) < 1.

Moreover, an EGARCH scedastic specification with regimes is expressed as

ln
(
σ2
k,t

)
= α0,k + α1,k

(
|ηk,t−1| − E[ηk,t−1|]

)
+ α2,krt−1 + βk ln

(
σ2
k,t−1

)
, for k = 1, 2. (3.8.3)

The expectation E[|ηk,t−1|] is taken with respect to the distribution conditional on regime k. In this

case, we have θk = (α0,k, α1,k, α2,k, βk)
′. Covariance-stationarity in each regime is obtained by

requiring that βk ≥ 1.

3.9 Conditional distributions

In this section, we provide the distributions that were utilized to model the financial log returns, each

of which is standardized to have a zero mean and unit variance
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3.9.1 Normal distribution

The probability density function of a random variable rt with mean µ and variance σ is defined as

f(rt) =
1√
2πσ

exp−1

2

(
rt − µ

σ

)2

for −∞ < rt < ∞ (3.9.1)

The mean, variance, skewness and kurtosis are defined as E(rt) = 0, V ar(rt) = σ2 , Skew(rt) = 0,

and Excess Kurt(rt) = 3 , respectively. Let f(rt|Ft−1) be a normal distribution with mean µt and

variance σ2
t , then the likelihood function of f(rt|Ft−1) is given by

f(r1, ..., rT ; θ) = f(r1; θ)
T∏
t=2

1√
2πσ2

t

exp
[
− (rt − µt)

2

2σ2
t

]
(3.9.2)

Here, r1 is the initial observation whose marginal density function is expressed as, f(r1; θ). The

maximum likelihood estimate of θ is obtained by maximizing Equation (3.9.2) as below;

L = ln f(r1, ..., rT ; θ) = ln f(r1; θ)−
1

2

T∑
t=2

[
ln 2π + lnσ2

t +
(rt − µt)

2

σ2
t

]
(3.9.3)

3.9.2 Student-t distribution

Let xv be a student-t distribution with v degrees of freedom, then V ar(xv) = v/(v − 2) for v > 2 .

If we define εt = xv/
√
v/(v − 2) , then the probability density function of εt is

f(εt|v) =
Γ(v + 1)/2

Γ(v/2)Γ(v − 2)π

[
1 +

ε2t
v − 2

]−(1+v)/2

, v > 2 (3.9.4)

where Γ(x) =
∫∞
0

yx−1e−xdy is a Gamma function. The mean, variance, skewness and Excess

kurtosis of the distribution are E(εt) = 0, for v ≥ 2, V ar(εt) = v
v−2

for v ≥ 3 , Skew(εt) =

µ4

σ2 − 3 for v ≥ 3, and Excess Kurt(εt) = 6
v−4

for v ≥ 5 , respectively. Moreover, the conditional

likelihood function of rt is given by

f(rm+1, ..., rT |α,Am) =
T∏

t=m+1

Γ((v + 1)/2)

Γ(v/2)
√
(v − 2)π

1

σt

[
1 +

r2t
(v − 2)σ2

t

](v+1)/2

(3.9.5)

where rt = σtεt , v > 2 and Am = (r1, ..., rm). The conditional log-likelihood function of the

student-t distribution is provided as below for specified degrees of freedom v.

L = ln(rm+1, ..., rT |α,Am) = −
T∑

t=m+1

[v + 1

2
ln
(
1 +

r2t
(v − 2)σ2

t

)
+

1

2
lnσ2

t

]
(3.9.6)
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3.9.3 The generalized error distribution(GED)

The GED is a symmetric distribution that can be both leptokurtic and platykurtic depending on the

degree of freedom v and its likelihood function is given by

f(rt, µt, σt, v) =
ve

− 1
2
| rt−µt

σtλ
|v

λ2(1+1/v)Γ(1/v)
, 1 < rt < ∞, where λ =

[ Γ(1/v)

4(1/v)Γ(3/v)

]1/2
(3.9.7)

and v > 0 is the degree of freedom or tail thickness parameter. The GED becomes a normal

distribution if v = 2, and for v < 1, the density function has thicker tails compared with the normal

density function, whereas it has thinner tails for v > 2. The mean, variance, skewness and Excess

kurtosis of the distribution are E[rt] = µ , V ar(rt) = α2 Γ(3/v)
Γ(1/v)

, skew(rt) = 0 , and Excess kurt(rt) =
Γ(5/v)Γ(1/v)

Γ(3/v)2
− 3 , respectively. The likelihood function of the above Equation (3.9.7) is maximized by

L = ln(
v

λ
)− 1

2
|rt − µt

σtλ
|v − (1 + 1/v) ln 2 + ln[Γ(1/v)] (3.9.8)

3.10 Estimation of model parameters

Parameter estimation is essential in financial time series modeling because it enables the researcher

to measure and quantify different influences between the variables in question. In this study, the

estimation of the model parameters has been done using the maximum likelihood estimation method.

3.10.1 The ARCH model parameter estimation

To estimate the ARCH model parameters by the maximum likelihood estimate approach under the

assumption of normality, the likelihood function of an ARCH(p) model is expressed as

f(r1, ..., rn|α) = f(rn|Fn−1)f(rn−1|Fn−2)...f(r1|F0)f(r1, ..., rp|α)

=
∏n

t=1
1√
2πσ2

t

exp
[
− r2t

2σ2
t

]
f(r1, ..., rp|α)

(3.10.1)

where α = (ω, α1, ..., αp)
, and f(r1, ..., rp|α) is the joint probability density function of r1, ..., rp .

It is noted that the exact form of f(r1, ..., rp|α) is complicated, and hence it is dropped from the

prior likelihood function since the sample is sufficiently large. As a result, the conditional likelihood

function is considered as follows:

f(r1, ..., rn|ω, α1, ..., αp) =
n∏

t=1

1√
2πσ2

t

exp
[
− r2t

2σ2
t

]
, (3.10.2)
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where σ2
t can be evaluated recursively. The estimates generated by maximizing the previous likeli-

hood function are referred to as the conditional maximum likelihood estimates (MLEs) under nor-

mality. It is further noted that, to maximize the conditional likelihood is equivalent to maximizing its

logarithm, which is easier to handle. It thus follows that the conditional log likelihood function is

ln(r1, ..., rp|ω, α1, ..., αp) =
n∑

t=1

[
− 1

2
ln(2π)− 1

2
lnσ2

t −
r2t
2σ2

t

]
(3.10.3)

Here the first term ln(2π) does not involve any parameters, and thus the log likelihood function

becomes

ln(r1, ..., rp|ω, α1, ..., αp) = −1

2

n∑
t=1

[
lnσ2

t +
r2t
σ2
t

]
, (3.10.4)

where σ2
t = ω + α1r

2
t−1 + ... + αpr

2
t−p. Differentiating Equation (3.10.4) with respect to ω and

equating to zero we get
∂ ln

∂ω
= −1

2

n∑
t=1

[ 1

σ2
t

− r2t
σ4
t

]
= 0 (3.10.5)

In a similar manner, the derivative of Equation (3.10.4) with respect to θ for θ = α1, α2, ..., αp and

equating to zero is given as

∂ ln

∂θ
= −1

2

n∑
t=1

[ p∑
i=1

(1 + [p− 1]αir
2
t−i)

( 1

σ2
t

− r2t
σ4
t

)]
= 0 (3.10.6)

The estimates of ω and θ = α1, α2, ..., αp can be determined by solving Equations (3.10.5) and

(3.10.6) recursively, respectively.

3.10.2 The GARCH model parameter estimation

To estimate the GARCH model as expressed in Equation (3.5.1), since εt is normally distributed with

mean zero and conditional variance σt , that is, εt ∼ N(0, σ2
t ), then

p(εt|εt−1, ..., ε0) =
1√
2πσ2

t

e
− ε2t

2σ2
t (3.10.7)

The log-likelihood function of parameter vector θ = (α0, α1, ..., αp, β0, β1, ..., βq)
′ is

(θ) =
n∑

t=1

lt(θ) =
n∑

t=1

(−1

2
ln 2π − 1

2
lnσ2

t −
ε2t
2σ2

t

) (3.10.8)
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Taking first and second partial derivatives of Equation (3.10.8) w.r.t parameter vector θ and re-

arranging results to
∂lt(θ)

∂θ
=

n∑
t=1

(
ε2t
2σ2

t

− 1

2σt

)
∂σt

∂θ
(3.10.9)

∂2ltθ

∂θ∂θ′
= (

ε2t
2σ2

t

− 1

2σt

)
∂2σt

∂θ∂θ′
+ (

1

2σ2
t

− ε2t
σ3
t

)
∂σt

∂θ

∂σt

∂θ′,
(3.10.10)

where ∂σt

∂θ
= (1, ε2t−1, ..., ε

2
t−p, σt−1, ..., σt−q)

′ +
∑q

i=1 βi
∂σt−i

∂θ
. Setting Equation (3.10.9) equal to

zero becomes complex to solve analytically and calls for a numerical approach. For instance, the

Newton-Raphson procedure can be used to solve this case. The iteration scheme for this method has

the form

x⃗k+1 = x⃗k −H−1
f (x⃗k)∇f(x⃗k), (3.10.11)

where H−1
f (x⃗) is the Hessian matrix of the second partial derivative of f .

Hf (x⃗)ij =
∂2f(x⃗)

∂xi∂xj

(3.10.12)

Thus it is observed that for the maximum likelihood problem, θ̂ = argmax
θ∈Θ

L(θ), the approximated

value of θ, denoted as θk, can be obtained after the kth iteration,

θk+1 = θk − J−1(θk)∇L(θk) (3.10.13)

with ∇L = ∂L
∂θ

and Fisher information matrix J = E
(

∂2

∂θ∂θ′

)
. Applying this method to estimate the

GARCH(p,q) parameters we have

∇L(θ) =
1

2

n∑
t=1

( ε2t
σ2
t

− 1

σt

)∂σt

∂θ
and (3.10.14)

J =
n∑

t=1

E
[
(
ε2t
2σ2

t

− 1

2σt

)
∂2σt

∂θ∂θ′
+ (

1

2σ2
t

− ε2t
σ3
t

)
∂σt

∂θ

∂σt

∂θ′

]
= −1

2

n∑
t=1

E
( 1

σ2
t

∂σt

∂θ

∂σt

∂θ′

)
(3.10.15)

In this study, GARCH(1,1) model is employed and whose parameters θ = (α0, α1, β1)
′ are estimated

as follows:

∇L(θ =
1

2

n∑
t=1

( ε2t
σ2
t

− 1

σt

)∂σt

∂θ
, and (3.10.16)

J = −1

2

n∑
t=1

E
( 1

σ2
t

∂σt

∂θ

∂σt

∂θ′

)
, where

∂σt

∂θ
= (1, ε2t−1σt−1)

′ + β1
∂σt−1

∂θ
(3.10.17)
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3.10.3 MS-GARCH model parameter estimation

The maximum likelihood estimation technique is utilized to estimate the MS-GARCH as reported by

Ardia et al. (2019). Let vector Ψ = (θ1, ϵ1, ..., θk, ϵk,P) represent the model parameters, then the

likelihood function is given by

L(Ψ|FT ) =
T∏
t=1

f(rt|Ψ,Ft−1) (3.10.18)

where f(rt|Ψ,Ft−1 ) is the probability density function of rt given the past observations, Ft−1 and

the parameters of the model Ψ . Therefore, the conditional density of rt , for MS-GARCH model is

given by

f(rt|Ψ,Ft−1) =
K∑
i=1

K∑
j=1

Pijzi,t−1fD(rt|ξ(t) = j,Ψ,Ft−1) (3.10.19)

where zi,t−1 = P [ξ(t− 1) = j|Ψ,Ft−1] is the filtered probability of state i at time t− 1 obtained via

Hamilton filter, see Hamilton (1989). In Equation (3.10.19), the density of rt in state ξ(t) = k given

Ψ and Ft−1 is denoted by fD(rt|ξ(t) = k,Ψ,Ft−1) . In this study the standardized innovations, ηk, t ,

of the model in each regime is assumed to be conditional to three distributions, that is, the normal,

generalized error distribution(GED) and student-t distributions. The standardization is such that each

distribution has zero mean and a unit variance. For notation purposes, the time and regime indices are

dropped but the shape parameters are conditional on the regimes. The maximum likelihood estimator

Ψ̃ is thus obtained by maximizing Equation (3.10.18).

In the next section, the knowledge of the stock returns volatility dynamics is applied in pricing

options.

3.11 Option pricing

In this section the Black-Scholes model is derived using the change of measure technique. A regime-

switching model is also derived for the European option pricing and which is further extended to

incorporate GARCH effects resulting to a regime-switching GARCH model. These models are imple-

mented using a real data as shown in Section 4.4 and the model with the best performance established

by running the Root Mean Square Error (RMSE) test.

Hamilton (1989) developed the Markov Switching (Regime Switching) model which is among

the most popular nonlinear time series models in literature that have been used to model dynamics

of stock market data. The model involves multiple structures (equations) that can characterize the
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time series behaviors in different regimes and is able to capture more complex dynamic patterns if

switching between these structures is permitted as well as it allows coefficients of the conditional

mean and variance to vary according to some finite-valued stochastic process with states or regimes.

Definition 3.11.1 Let {ξ(t), t ∈ [0, T ]} be a discrete-time random variable that can only assume an

integer value {1, 2, ..., k}. The process is said to be in state i at time t if ξ(t) = i and whenever in

state i, the probability that it will next be in state j is Pij . That is, the process is said to be a Markov

chain if

P{ξ(t+ 1) = j|ξ(t) = i, ξ(t− 1) = k, ..., }

= P (ξ(t+ 1) = j|ξ(t) = i)

= Pij, for all states k, i, j, ..., and t ≥ 0

(3.11.1)

Remark 3.11.1 Equation 3.11.1 describes an k-state Markov chain with Pi,j representing the transi-

tion probabilities. Also, 0 ≤ Pi,j ≤ 1, i, j ≥ 0,
∑k

j=1 Pi,j = 1, i, j = 1, 2, ..., k

3.11.1 Regime switching market dynamics

Let (Xt)t≥0 be a stochastic process on a discrete time set T = {0, ..., T} and (Ω,F ,P) be a prob-

ability space, where P is a physical probability measure. Further, let ξ(t) be a Markov chain with

M = {1, ..., k} states or regimes and transition probability Pij . We consider a risk-free asset,

dS∗
t = rS∗

t dt that is assumed to be continuously compounded in value at a constant risk-free rate, r,

(but not necessarily non-negative) over the trading time interval [0,T]. Taking S∗
0 = 1, the price of the

asset at time t, is given by S∗
t = ert for t ∈ [0, T ] . Consider a second market which is risky and

whose price is defined as

St = S0 exp
( t∑

j=1

Xt

)
, t ∈ T (3.11.2)

where S0 is the initial price of the asset. The log-returns for the asset are given by

Xj = µj + σjrt, where rt ∼ i.i.d N(0, 1). (3.11.3)

The constants µj and σj represents the mean and standard deviation of log-returns under each regime

and rt is a sequence of i.i.d random variables with zero mean and unit variance under measure P

and independent from the Markov chain ξ(t). The filtration Ft on the probability space (Ω,Ft,P)

contains all the information generated by all the underlying asset prices and realized regimes up to
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time T . However, the regimes are latent variables hence this filtration characterizes only a partial

information to investors. Therefore, we assume that for j ∈ {1, ..., k},

P[ξ(t+ 1) = j|Ft] = Pij (3.11.4)

where Pi,j is the transition probability from state i → j of the Markov chain ξ(t) .

3.11.2 Risk-neutral measure

Suppose that (Ω,F , {Ft : 0 ≤ t ≤ T},P) is a filtered probability space on which a standard Brownian

motion W = {Wt : 0 ≤ t ≤ T} is constructed. Let S = {St : 0 ≤ t ≤ T}, be the risky asset price

process that follows a stochastic differential equation(SDE) defined by

dSt = µStdt + σStdWt (3.11.5)

where µ and σ are constants representing the drift and volatility terms of the process, and Wt is a

Wiener process that starts at zero, that is, W0 = 0. Equation (3.11.5) has the solution

St = S0 exp
( ∫ t

0

(µ− σ2

2
)ds+

∫ t

0

σdWs

)
(3.11.6)

Equivalently, this equation can also be expressed as

Xt = loge(
St

S0

) =⇒ Xt = (µ− σ2

2
)t+ σWt

= (µ− σ2

2
)t+ σ

√
tεt), εt ∼ i.i.d N(0, 1)

(3.11.7)

The solution of Equation (3.11.5) is derived using the Ito’s formula as follows; let

f(t, St) = loge St, =⇒
∂

∂t
f(t, St) = 0,

∂

∂S
f(t, St) =

1

St

and
∂2

∂2S
f(t, St) = − 1

S2

df =
1

St

(µStdt + σStdWt)−
−1

2S2
(µStdt + σStdWt)

2

= µdt+ σdWt −
σ2

2
dt =

(
µ− σ2

2

)
ds+ σdWs∫ t

0

d(loge St) =

∫ t

0

(µ− σ2

2
)dt+

∫ t

0

σdWt

loge(
St

S0

) = (µ− σ2

2
)t+ σdWt =⇒ St = S0 exp

(
(µ− σ2

2
)t+ σWt

)
(3.11.8)
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Let Xt(h) be the log return over the time interval [t, t + h] where h ≥ 0 is the length of time

between the stock price observations, then

Xt = loge
(St+h

St

)
= (µ− σ2

2
)[(t+ h)− t] + σW [(t+ h)− t]

= (µ− σ2

2
)h+ σWh =⇒ Xt(h) ∼ N((µ− σ2

2
)h, σ2h)

when h = 1, Xt = (µ− σ2

2
) + σεt, ∀ i ≥ 0

(3.11.9)

Further, we consider a discounted stock price, S̃t defined by S̃t = S0e
−rt. Utilizing Equation (3.11.6)

we get

S̃t = S0 exp(−
∫ t

0

rds) exp
(∫ t

0

(µ− σ2

2
)ds+

∫ t

0

σdWs

)
= S0 exp

{
(µ− r)t− σ2

2
t+ σWt

}
= S0 exp

{
− 1

2
σ2t+ σ

(µ− r

σ
+Wt

)}
(3.11.10)

Let

W̃t = Wt +
µ− r

σ
t (3.11.11)

where W̃t is a Brownian motion under measure Q and µ−r
σ

is the market price of a risk. Equation

(3.11.10) thus becomes

S̃t = S0 exp
{
− 1

2
σ2t+ σW̃t

}
(3.11.12)

By Ito’s lemma we get the SDE

dS̃t = σS̃tdW̃t (3.11.13)

Also, utilizing rules within Ito’s calculus we differentiate W̃t = Wt +
µ−r
σ
t with respect to t to get

dW̃t = dWt +
µ− r

σ
dt (3.11.14)

Using Equation (3.11.14), we re-arrange Equation (3.11.5) as follows;

dSt = µStdt+ σSt[dW̃t −
µ− r

σ
dt]

= µStdt+ σStdW̃t − µStdt+ rStdt

= rStdt+ σStdW̃t

(3.11.15)
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Notice that the drift term µ = r which implies risk neutrality and hence the discounted price process,

S̃t, is F-martingale under measure Q . This leads us to the following definition

Definition 3.11.2 A risk neutral measure is a measure P that is equivalent to Q under which the

discounted stock price process S̃t is a martingale.

Remark 3.11.2 If Wτ is a Brownian motion(BM) under measure P and then we shift the process by

Y (t) = σt, then the shifted process is BM under measure Q, that is, W̃t = Wt − σt is BM under Q

defined via dQ
dP = eσWt− 1

2
σ2t . This is the Radon-Nikodym derivative.

3.11.3 Derivation of the Black-Scholes formula by change of measure

The stock price, under the risk-neutral measure has the following dynamics

dSt = rStdt+ σStdW̃t (3.11.16)

whose solution is given by

ST = S0 exp
( ∫ t

0

(r − σ2

2
)ds+

∫ t

0

σdW̃s

)
(3.11.17)

Suppose that the payoff of a call option on a stock at a future time T is φ(ST ), where φ(ST ) is a

random variable on the probability space (Ω,F ,P) describing the market. The payoff is defined as;

φ(ST ) = Max(ST −K, 0) = (ST −K)+, for K ≥ 0

= St exp
( ∫ T

t

(r − σ2

2
)ds+

∫ T

t

σdW̃s

)
−K)+

(3.11.18)

Moreover, suppose that the discount factor from now (time, t) until time T is Dt = exp(−
∫ T

t
rds),

then today’s price of the call option, Ct, under the risk-neutral measure is just the discounted expected

value of its payoff. That is,

Ct = exp(−
∫ T

t

rds)EQ[St exp
( ∫ T

t

(r − σ2

2
)ds+

∫ T

t

σdW̃s

)
−K)+|Ft]

= e−rτEQ[φ(ST )|Ft]

= e−rτEQ[φ(ST )IST>K ]

(3.11.19)

32



where Q denotes the risk-neutral measure. This expression can be re-stated in terms of the physical

measure P as follows;

Ct = e−r(T−t)EP
(dQ
dP

φ(ST )|Ft

)
(3.11.20)

where dQ
dP is the Radon-Nikodym derivative of Q with respect to P. Note that, here, τ = T − t and

IST≥K is an indicator function which takes value of 1 if the stock price at maturity is greater than the

strike price. Equation (3.11.19) can thus be written as follows;

Ct = e−rτEQ[ST IST>K −KISτ>K ]

= e−rτEQ[ST IST>K ]−Ke−rτEQ[IST>K ]
(3.11.21)

We first evaluate the second term in the right hand side (RHS) of Equation (3.11.21) as follows;

Ke−rτEQ[IST>K ] = Ke−rτQ[ST > K]

= Ke−rτQ[St exp((r −
σ2

2
)τ + σW̃τ ) > K]

= Ke−rτQ
[
lnSt + (r − 1

2
σ2)τ + σW̃τ > lnK

]
= Ke−rτQ

[
W̃τ >

lnK − lnSt − (r − 1
2
σ2)τ

σ

]
(3.11.22)

Since W̃τ is normally distributed with mean zero and variance τ , that is, W̃τ ∼ N [0, τ ], it follows

that W̃τ√
τ

∼ N [0, 1]. Therefore, Equation (3.11.22) becomes

Ke−rτEQ[ISτ>K ] = Ke−rτN
[− lnK + lnSt + (r − 1

2
σ2)τ

σ
√
τ

]
(3.11.23)

Next we evaluate the first term in the right hand side (RHS) of Equation (3.11.21) as below;

e−rτEQ[ST IST>K ] = e−rτEQ[Ste
(r− 1

2
σ2)τ+σWτ IST>K

]
= e−rτEQ[Ste

rτe−
1
2
σ2τ+σWτ IST>K

]
= StEQ[e− 1

2
σ2τ+σWτ IST>K

] (3.11.24)

Using the above Remark (3.11.2), Equation (3.11.24) can be written as

e−rτEQ[ST IST>K ] = StEP[
dQ
dP

IST>K ] = StE[IST>K ] (3.11.25)
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Under the new measure the dynamics of the stock price ST changes as follows;

ST = Ste
(r− 1

2
)τ+σWτ = Ste

(r− 1
2
σ2)τ+σ(W̃τ+στ)

= Ste
(r+ 1

2
σ2)τ+σW̃τ

(3.11.26)

Now substituting Equations (3.11.26) to (3.11.24) results to

e−rτEQ[ST IST>K ] = StEQ[IST>K ]

= StQ
[
ST > K

]
= StQ

[
Ste

(r+ 1
2
σ2)τ+σW̃τ > K

]
= StQ

[
lnSt + (r +

1

2
σ2)τ + σW̃τ > lnK

]
= StQ

[
W̃τ >

lnK − lnSt − (r + 1
2
σ2)τ

σ

]
= StQ

[W̃τ√
τ
>

lnK − lnSt − (r + 1
2
σ2)τ

σ
√
τ

]
= StN

[− lnK + lnSt + (r + 1
2
σ2)τ

σ
√
τ

]

(3.11.27)

Putting Equations (3.11.23) and (3.11.27) into Equation (3.11.21) the contingent claim price is given

by

Ct = StN
[− lnK + lnSt + (r + 1

2
σ2)τ

σ
√
τ

]
+Ke−rτN

[− lnK + lnSt + (r − 1
2
σ2)τ

σ
√
τ

]
= StN(d1)−Ke−rτN(d2).

(3.11.28)

This is the Black-Scholes formula.

3.11.4 Regime-switching (RS) model

We consider a risk-free asset and a risky asset as discussed earlier in Section 3.11.1. These assets are

tradable continuously over time in a finite time horizon τ = [t, T ] where T < ∞. In order to describe

uncertainty, we consider a complete probability space (Ω,F ,P) where P is a real world probability

measure. According to Yao et al.(2006), in the regime switching world, one typically modulates the

rate of return and the volatility by a finite-state Markov chain {ξ(t), t ≥ 0}, which represents the

market regime. Let {ξ(t), t ≥ 0} be continuous, finite-state, Markov process on (Ω,F ,P) with state

space M = {1, 2, ..., k} and that St is the stock price at time t satisfying the stochastic differential
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equation defined by
dSt

St

= µξ(t)dt+ σξ(t)dWt, ξ(t) = {1, 2, ..., k} (3.11.29)

where St > 0 is the initial price, Wt is a standard Brownian motion independent of ξ(t) . The

parameters µξ(t) and σξ(t) denote the expected rate of return on the asset and volatility of the asset

price respectively, and are assumed to be constant and distinct for each regime. In this way, ξ(t) is

regarded as a variable that chooses one of the states in M at time t of the market. Equation (3.11.29)

is solved using Itô lemma to give

ST = Ste
(µξ(t)− 1

2
σ2
ξ(t)

)τ+σξ(t)Wτ , for ξ(t) = {1, 2, ..., k} (3.11.30)

The stock price process in Equation (3.11.30) is assumed to exhibit regime switches. Let the price

process undergo discrete shifts between regimes ξ(t) and that it follows a first-order Markov chain,

then the transition probability Pij from state i at time t to state j at time t− 1 is denoted by

Pij = P
{
ξ(t) = j|ξ(t− 1) = i

}
for all i, j = {1, 2, ..., k} (3.11.31)

where 0 ≤ Pij ≤ 1 and
∑k

j=1 Pij = 1 . The transition matrix Pij of the Markov chain is given by

Pij =



p11 p12 ... p1k

p21 p22 ... p2k

. . ... .

. . ... .

. . ... .

pk1 . ... pkk


In particular, for a very small time interval δ > 0,

P (T < δ) = 1− e−λiδ = 1− (1− λiδ) = λiδ (3.11.32)

That is, in a short interval of time δ > 0, the probability of leaving state i is approximately λiδ. This

means, λi is the transition rate out of state i and can formally be expressed as

λi = lim
δ→0+

[P (ξ(T ) = j|ξ(t) = i

δ

]
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Since Pij is the probability of moving from state i to state j, the quantity gij = λiPij is the

transition rate from state i to state j.

Definition 3.11.3 (Generator matrix) Define a generator matrix, G for a continuous-time Markov

chain. The (i, j)th element of the transition matrix is given by

gij =

λiPij, i ̸= j

−λi, i = j

, Also gii = −
∑
i ̸=j

gij (3.11.34)

The generator matrix of the Markov chain is thus given by

G =



λ11 λ12 ... λ1k

λ21 λ22 ... λ2k

. . ... .

. . ... .

. . ... .

λk1 λ22 ... λkk


and, for each state, the elements of the generator matrix satisfy the equation λjj +

∑k
i=1,i ̸=j λij = 0 .

For small time interval δ > 0 and i the probability to be in state j at time t+ δ given that the random

variable was in state i at time t is given by

P
(
X(t+ δ) = j|X(t) = i

)
= gij.δ +O(δ) (3.11.35)

where O(δ) is the probability from state i to state j in more than one step but limδ→0

[O(δ)
δ

]
= 0 .

The model developed here postulates that the regimes are unobservable and thus state transitions

until maturity is considered. Denote by ξ(t), the variable representing the regime in which the process

was at time t. When the change in log price Xt is in regime j, it is presumed to have been drawn

from a normal distribution with mean, µj and variance, σ2
j . Hence, the probability density function

of Xt conditional on ξ(t) taking on the value j is given by

f(Xt|ξ(t) = j; θ) =
1

σj

√
2π

exp
{
− (Xt − µj)

2

2σ2
j

}
(3.11.36)

for j = {1, 2, ..., k} and θ is a vector of parameters µj, σj for j = 1, 2, ..., k , that is, θ = {µj, σj }.

Furthermore, it is presumed that the unobserved regime ξ(t) have been generated by a probability
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distribution for which the conditional probability that ξ(t) = j given the information upto time t is

denoted by πj , that is

P
{
ξ(t) = j|Ft; θ

}
= πj for j = {1, 2, ..., k} (3.11.37)

Thus the vector θ also includes πj for j = 1, 2, ..., k, that is, θ = {µj, σj, πj}′ . Next is to find the

probability of the joint event that ξ(t) = j and Xt falls within some time interval [t,T]. This is

determined by integrating

p(Xt, ξ(t) = j; θ) = f
(
Xt|ξ(t) = j; θ

)
P
(
ξ(t) = j|Ft; θ

)
(3.11.38)

over all values of Xt between t and T . Equation (3.11.38) is the joint probability density function of

ξ(t) and Xt and by utilizing Equations (3.11.36) and (3.11.37), it is expressed as

p(Xt, ξ(t) = j; θ) =
πj

σj

√
2π

exp
{
−

(
Xt − µj

)2
2σ2

j

}
for j = {1, 2, ..., k} (3.11.39)

The unconditional probability density function of Xt is determined by summing Equation (3.11.39)

over all values for j:

f(Xt; θ) =
k∑

j=1

p(Xt, ξ(t) = j; θ)

=
π1√
2πσ1

exp
{
−

(
Xt − µ1

)2
2σ2

1

}
+ ... +

πj√
2πσj

exp
{
−

(
Xt − µj

)2
2σ2

j

} (3.11.40)

Again, based on the definition of conditional probability,

P
[
ξ(t) = j|Xt; θ

]
=

p
(
Xt, ξ(t) = j; θ

)
f(Xt; θ)

=
πjf(Xt|ξ(t) = j; θ)

f(Xt; θ)
(3.11.41)

Note that the magnitude in Equation (3.11.41) for each observation Xt in the sample can be calculated

if the knowledge of the parameters θ is known by use of Equations (3.11.36) and (3.11.39). Equation

(3.11.41) represent the probability, given the observed data, that the unobserved regime responsible

for observation t was regime j. The probability of ξ(t) = j given the information Ft upto time t, that

is, P [ξ(t) = j|Ft] can be calculated by first calculating

P [ξ(t− 1) = i|Ft−1] from P [ξ(t) = j|Ft−1] (3.11.42)
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with the following equation

P [ξ(t) = j|Ft−1] =
2∑

j=1

P [ξ(t) = j, ξ(t− 1) = i|Ft−1]

=
2∑

j=1

P [ξ(t) = j|ξ(t− 1) = i]P [ξ(t− 1) = i|Ft−1]

(3.11.43)

where P [ξ(t) = j|ξ(t − 1) = i] is the transition probability as earlier defined in Equation (3.11.31).

Next, adding the data Xt at the time t leads to the equation

P [ξ(t) = j|Ft−1, Xt] =
f(ξ(t) = j,Xt|Ft−1)

f(Xt|Ft−1)

=
f(Xt|ξ(t) = j,Ft−1)P [ξ(t) = j|Ft−1]∑2
j=1 f(Xt|ξ(t) = j,Ft−1)P [ξ(t) = j|Ft−1]

(3.11.44)

Note that the probability, P [ξ(t) = j|Ft−1] for t = 1, 2, ..., T can be obtained by repeating the

calculations of Equations (3.11.43) and (3.11.44), and the results substituted into Equation (3.11.39).

In order to price options, it is key to derive a pricing model that produces no arbitrage (a situation

where investors can make a guaranteed profit without incurring risk). To avoid arbitrage, the options

are priced under risk neutral measure or martingale measure. Under the physical probability measure

P, we wish to have e−
∫ T
t rdsSt to be a martingale. Here, r is the risk free interest rate and it is

assumed to be constant across the regimes. Since St denotes the price of a stock at time t which

satisfies Equation (3.11.29), we assume that ξ(t), and Wt are mutually independent; and σ2
ξ(t) > 0 ,

for all ξ(t) ∈ M. Suppose that {ξ(u),W (u) : 0 ≤ u ≤ t} denote the sigma field generated by Ft.

We note that all (local) martingales concerned are with respect to the filtration. It is clear that {Wt}

and {W 2
t − t}, are both martingales. Define an equivalent measure Q under which the discounted

stock process is a martingale. Let the risk-free rate be denoted by r > 0. Then for 0 ≤ t ≤ T , let

Zt = exp
(∫ T

t

βsdWs −
1

2

∫ T

t

β2
sds

)
(3.11.45)

where βs =
µ(ξ(u))−r
σ(ξ(u))

. By Girsanov’s theorem, the process

W̃t = Wt −
∫ T

t

βsds =⇒ dW̃t = dWt − βtdt (3.11.46)

is a Q-Brownian motion. Moreover, applying Ito’s rule results to dZt

Zt
= βtdWt where Zt is a local

martingale, with E[Zt] = 1, 0 ≤ t ≤ T . An equivalent measure Q is defined via the Radon-Nikodym
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derivative, dQ
dP = ZT . Combining Equations (3.11.29) and (3.11.46) gives

dSt

St

= rdt+ σξ(t)dW̃t whose solution is ST = St exp
[
(r − 1

2
σ2
ξ(t))τ + σξ(t)W̃τ

]
(3.11.47)

This model has two types of random sources, Wt and ξ(t) and the inclusion of ξ(t) makes the under-

lying market incomplete.

Let R denote the total time spent in regime ξ(t) = j for j = 1, 2, ..., k in the interval [t, T ]

in n trials, given that at time t, the state is k. Denote the probability, Pr(R = αj) , by p for

j = 1, 2, ..., k − 1 . For simplicity, we restrict ourselves to two regimes, i.e, k = 2 , hence the

transition matrix, discussed earlier, reduces to

Pij =

p11 p12

p21 p22


The fraction of times spent by the Markov chain in each regime, as the numbers of transitions n

become large, can be calculated using a time-average(invariant) distribution of the Markov chain, that

is βP = β , where P is the transition matrix and β is the average fraction of the time spent in state

ξ(t) = j over n steps as n approaches infinity. Let β = [β1 β2 ], then

[βP ] = [β1 β2]

p11 p12

p21 p22

 = [β1 β2] (3.11.48)

This results into two equations as β1P11 + β2P21 = β1 and β1P12 + β2P22 = β2 both of which

simplify to β1P12 = β2P21( since P11 + P12 = 1 and P21 + P22 = 1 ). Again, since β is a valid

probability distribution, β1 + β2 = 1 and solving we get

β1 =
P21

P12 + P21

and β2 =
P12

P12 + P21

(3.11.49)

Since, τ = T − t is the trading period, the total time spent in regimes 1 and 2 can now be calculated

as R = β1τ and τ − R = τ − β1τ , respectively. In view of the research by Duan et al. (2002)

and Hardy (2001) the distribution of log returns, Xt = log(ST

St
) , conditional on the total time spent

in regime ξ(t) = j, for j = 1, 2 , k can be developed such that there exist a normal density function

with mean µ∗ and variance σ∗2 , that is,

Xt|R ∼ N(µ∗, σ∗2) (3.11.50)
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where µ∗ = R
τ
µ1+

(
τ−R
τ

)
µ2 and σ∗2 = R

τ
σ2
1 +

(
τ−R
τ

)
σ2
2 . Since p is the probability function for R ,

FXt = Pr
[
Xt ≤ x

]
=

k−1∑
j=1

Pr
[
Xt|R = αj

]
p

=
k−1∑
j=1

ϕj

(x− µ∗
σ∗

)
p

(3.11.51)

where ϕ() is the standard normal probability distribution function. This implies that the probability

density function for Xt is

fXt =
k−1∑
j=1

ϕj

(x− µ∗
σ∗

)
p (3.11.52)

where ϕ() is the standard normal density function.

Now, define C(K,T ) , the European call option (under regime switching world) with strike price

K that matures after time T , and is valued at St at an initial time t. Since in a regime switching

market, the parameter σ2 switches regimes, we can define a parameter σ∗2 conditional on knowing

R , the total time spent in regime ξ(t) = j for j = 1, 2 . This implies that, the asset price St|R has a

log-normal distribution with parameters that depend on R , that is, the parameters are µ ∗ and σ∗2 as

defined earlier. Now, to derive a regime switching option pricing model, the Black-Scholes formulae

is considered, where the parameter σ2 is replaced with σ∗2 to give the desired model as below;

C(K,T ) = EQ[max(XT −K)|R
]
= Stϕ(d1)− e−rτKϕ(d2) where (3.11.53)

d1 =
ln(St

K
) + rτ + 1

2

[
Rσ2

1 + (τ −R)σ2
2

]√
Rσ2

1 + (τ −R)σ2
2

d2 = d1 −
√
Rσ2

1 + (τ −R)σ2
2

Proof 3.11.1 Define φ(ST ) = (ST −K), with K > 0. Recall that for any r, T, S0 > 0

E[e−rτφ(ST )] = e−rτS0Φ(d1)− e−rτKΦ(d2)

where d1 = log
St

K
+ (r +

1

2
σ2), d2 = d1 − σ

√
τ

(3.11.54)

Let R be the total time spent in regime ξ(t) = j for j = 1, 2 in the interval [t, T ] in n trials. Then the

distribution of log returns Xt = log(ST

St
) , conditional on the time spent in regime ξ(t) = j for j = 1, 2

is a normal density function with mean µ∗ and variance σ∗2
t , that is, Xt|R N(µ∗, σ∗2

t ) with µ∗ =

Rµ1 +(τ −R)µ2 and = Rσ2
1 +(τ −R)σ2

2 . According to Hardy (2001), conditional on knowing R,

the asset price Sn|R has a log normal distribution with parameters dependent on R . Substituting
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µ∗ and σ∗2
t into Equation (3.11.54) completes the proof.

3.11.5 The RS model parameter estimation

Equation (3.11.40) best describes the actually observed data Xt since the regime ξ(t) is unobserved.

If the regime variable ξ(t) is i.i.d across different dates, t, then the log likelihood for the observed

data can be calculated from Equation (3.11.40) as

L(θ) =
T∑
t=1

log f(Xt; θ) (3.11.55)

The maximum likelihood of θ is obtained by maximizing Equation (3.11.55) subject to the constrains

that π1 + π2 = 1 and πj ≥ 0 for j = 1, 2 . To obtain the maximum likelihood estimates(MLEs) of

Equation (3.11.55) we form the Lagrangean

J(θ) = L(θ) + λ(1− π1 − π2) (3.11.56)

and set the derivative w.r.t θ equal to zero. From Equation (3.11.55), the derivative of the log

likelihood is given by
∂L(θ)

∂θ
=

T∑
t=1

1

f(Xt; θ)

∂f(Xt; θ)

∂θ
(3.11.57)

Note that from Equation (3.11.40)

∂f(Xt; θ)

∂πj

=
1√
2πσ2

j

exp
{
− (Xt − µj)

2

2σ2
j

}
= f(Xt|ξ(t) = j; θ) (3.11.58)

Thus
∂L(θ)

∂πj

=
T∑
t=1

1

f(Xt; θ)
f(Xt|ξ(t) = j; θ) (3.11.59)

Recalling Equation (3.11.41) the derivative in Equation (3.11.59) can be written as

∂L(θ)

∂πj

= π−1
j

T∑
t=1

P
{
ξ(t) = j|Xt; θ

}
(3.11.60)

From Equation (3.11.59) the derivative of Equation (3.11.56) with respect to (w.r.t) πj is given by

∂J(θ)

∂πj

= π−1
j

T∑
t=1

P
{
ξ(t) = j|Xt; θ

}
− λ = 0 (3.11.61)
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This implies that
T∑
t=1

P
{
ξ(t) = j|Xt; θ

}
= λπj (3.11.62)

Summing Equation (3.11.62) over j = 1, 2 produces

T∑
t=1

[
P
{
ξ(t) = j|Xt; θ

}
+ P

{
ξ(t) = 2|Xt; θ

}]
= λ(π1 + π2) (3.11.63)

or
∑T

t=1[1] = λ(1) =⇒ T = λ. Replacing λ with T in Equation (3.11.62) produces

π̃j = T−1

T∑
t=1

P
{
ξ(t) = j|Xt; θ̃

}
for j = 1, 2 (3.11.64)

Next is to find the MLE of µj . From Equation (3.11.40) it follows that

∂f(Xt; θ)

∂µj

=
(Xt − µj)

σ2
j

p(Xt, ξ(t) = j; θ) (3.11.65)

hence
∂L(θ)

∂µj

=
T∑
t=1

1

f(Xt; θ)

(Xt − µj)

σ2
j

p(Xt, ξ(t) = j; θ) (3.11.66)

Applying Equation (3.11.41) we have

∂L(θ)

∂µj

=
T∑
t=1

{(Xt − µj)

σ2
j

}
P{ξ(t) = j|Xt; θ} (3.11.67)

Setting the derivative of Equation (3.11.56) w.r.t µj equal to zero implies that

T∑
t=1

XtP{ξ(t) = j|Xt; θ} = µj

T∑
t=1

P{ξ(t) = j|Xt; θ} (3.11.68)

Hence

µ̃j =

∑T
t=1XtP{ξ(t) = j|Xt; θ̃}∑T
t=1 P{ξ(t) = j|Xt; θ̃}

for j = 1, 2 (3.11.69)

The estimate of σ2
j follows as below. From Equation (3.11.40) we have

∂f(Xt; θ

∂σ2
j

) =
{
− 1

2
σ−2
j +

(Xt − µj)
2

2σ4
j

}
p(Xt, ξ(t) = j; θ) (3.11.70)

hence
∂L(θ)

∂σ2
j

=
T∑
t=1

1

f(Xt; θ)

{
− 1

2
σ−2
j +

(Xt − µj)
2

2σ4
j

}
P (ξ(t) = j|Xt; θ) (3.11.71)
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Equating Equation (3.11.71) to zero leads us to finding the MLE of σ2
j ,that is,

T∑
t=1

{
− σ2

j + (Xt − µj)
2
}
P{ξ(t) = j|Xt; θ} = 0 (3.11.72)

This implies that

σ̃2
j =

∑T
t=1(Xt − µj)

2P{ξ(t) = j|Xt; θ̃}∑T
t=1 P{ξ(t) = j|Xt; θ̃}

for j = 1, 2 (3.11.73)

If we restrict the transition probability only by the conditions Pij > 0 and (Pi1 + Pi2) = 1 for all i

and j, then Hamilton (1990) showed that the MLEs for the transition probability is given by

P̃ij =

∑T
t=2 P{ξ(t) = j, ξ(t− 1) = j|Xt; θ̃}∑T

t=2 P{ξ(t− 1) = i|Xt; θ̃}
for j = 1, 2 (3.11.74)

This implies that the estimated Pij is essentially the number of times state i seems to have been

followed by state j divided by the number of times the process was in state i.

3.11.6 Regime switching-GARCH (RS-GARCH) model

Consider a discrete-time economy whose stock price at time t is St , the one period asset returns under

the physical measure P is defined as

Xt = lnSt − lnSt−1

= µt + rt, rt = σtεt

(3.11.75)

where εt ∼ N(0, 1) . The general GARCH model is defined as

rt = σtεt, σ2
t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjσ
2
t−j (3.11.76)

where p and q are the ARCH and GARCH process degrees, respectively, εt is an independent and

identically distributed sequence of random variables whose mean and variance are zero and unit,

respectively. It is required that ω > 0, αi ≥ 0, βj ≥ 0 and
∑p

i=1 αi +
∑q

j=1 βj < 1. It is argued by

Bauwens et al. (2006) that estimation of this model using daily or higher frequency data implies that

the volatility persistence is very high and the model may not be covariance-stationary. This persistence

may be as a result of regime changes in the GARCH parameters over time, see Mikosch and Stărică

(2004), etc. To capture the regime shifts, a Regime-Switching GARCH model is considered since it

allows the parameters to shift regime. Define an unobserved state variable at time t as St ∈ {1, 2, .., k}
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which selects the model parameters with probability Pij = P [α(t) = j|Ft−1] where Ft−1 is the

available information at time t. The RS-GARCH model can thus be defined as

Xt = µα(t) + rt, where rt = σt,α(t)εt and εt ∼ N(0, 1)

σt,α(t) = ωα(t) +

p∑
i=1

αi,α(t)r
2
t−i +

q∑
j=1

βkσ
2
t−j for α(t) = {1, 2, ..., k}

(3.11.77)

Let φ(ST ) be the payoff of a European call option with exercise price K maturing at a future

time T , where φ(ST ) is a random variable on probability measure space ( Ω,F ,P) describing the

market. Then, under the RS-GARCH(p,q) specification, the today’s price of the call option Ct under

measure Q is given by

Ct = e−(T−t)rEQ
[
max(ST −K, 0)|Ft

]
= e−(T−t)rEQ

[
(ST −K)+|Ft

] (3.11.78)

For simplicity we restrict the model to RS-GARCH(1,1).

3.11.7 RS-GARCH model parameter estimation

The parameter estimation of the RS-GARCH model is done via the maximum likelihood estimation

technique reported by Ardia et al. (2019). Let θ = (α0,k, α1,k, βk)
′ be the vector that represent the

model parameters, then the likelihood function is given by

L(θ|FT ) =
T∏
t=1

f(rt|θ,Ft−1) (3.11.79)

where f(rt|θ,Ft−1 ) is the probability density function of rt given the past observations, Ft−1 and the

parameters of the model θ . Therefore, the conditional density of rt , for RS-GARCH model is given

by

f(rt|θ,Ft−1) =
K∑
i=1

K∑
j=1

Pijzi,t−1fD(rt|α(t) = j, θ,Ft−1) (3.11.80)

where zi,t−1 = P [α(t − 1) = j|θ,Ft−1] is the filtered probability of state i at time t − 1 obtained

via Hamilton filter, see Hamilton and Susmel (1994). In Equation (3.11.80), the density of rt in

state α(t) = k given θ and Ft−1 is denoted by fD(rt|α(t) = k, θ,Ft−1) . The maximum likelihood

estimator θ̃ is thus obtained by maximizing Equation (3.11.79).
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3.12 Statistical tests

The statistical tests utilized in this studies are presented in this section.

3.12.1 Augmented Dickey-Fuller (ADF) test

The unit root test is critical in time series analysis for selecting techniques and procedures for further

analysis. Presence of unit root implies that the time series is not stationary and it should be noted that

a time series with unit root suffers spurious results in regression analysis. The general ADF unit root

test is based on the following regression:

∆Yt = α + βt+ γYt−1 + δ1∆Yt−1 + ...+ δp∆Yt−p + εt (3.12.1)

where ∆Yt is a time series with trend decomposition, t is the time trend, α is a constant, β is the coef-

ficient on a time trend and p is the lag order of the autoregressive process. The number of augmenting

lags(p) is determined by the Akaike Information Criterion (AIC). The test for the unit root is based

on the null hypothesis γ = 0 versus the alternative hypothesis γ < 0 . The computed test statistic

DFr =
γ̃

SE(γ̃)
(3.12.2)

is then compared with the relevant critical value for the Dickey-Fuller test. Since this test is asym-

metrical, the only concern is with negative values of the test statistic, DFr. The null hypothesis is

rejected if the test statistic is less(more negative) than the critical value and this implies no presence

of unit root.

3.12.2 Jarque-Bera(JB) Test

The Jarque-Bera test determines whether the sample skewness and kurtosis are consistent with that of

the normal distribution. Considering a sample of size n, the JB test is defined as

JB =
n

6

[
S2 +

1

4
(K − 3)2

]
(3.12.3)
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where S and K are the skewness and kurtosis of the sample, respectively and defined as follows;

S =
1
n

∑n
i=1

(
xi − x̃

)3(
1
n

∑n
i=1(xi − x̃

)2) 3
2

and K =
1
n

∑n
i=1

(
xi − x̃

)4(
1
n

∑n
i=1(xi − x̃

)2)2

The null hypothesis is that the excess kurtosis and skewness are both zero. A Sample drawn from a

normal distribution is expected to have skewness and excess kurtosis of zero (the same as kurtosis of

3).

3.12.3 Ljung Box

This is a statistical test that determines whether the time series autocorrelations is different from zero.

It is a portmanteau test since it examines the overall randomness based on a series of lags rather than

assessing randomness at each individual lag. This test is defined as follows;

H0 : The residuals are independently distributed (i.e the population correlations is zero)

Ha : The residuals are not independently distributed. The test statistic is:

Q(h) = n(n+ 2)
h∑

j=1

ρ̃2j
(n− j)

(3.12.4)

where n and ρ̃j are the sample size and sample autocorrelation at lag j, respectively, whereas m is the

maximum number of lags being tested. The critical region is Q > x2
1−α,h for α -level of significance,

where Q > x2
1−α,h is the (1 − α)-quantile of the chi-squared distribution with h degrees of freedom.

If the p-value is less than the defined significance level, the null hypothesis is rejected . This shows

that under the null hypothesis, the observed result is highly unlikely.

3.12.4 Lagrange Multiplier (LM) test

To derive the LM test, Equation (3.4.1) is rewritten as an AR(p) process for r2t as below;

r2t = ω + α1r
2
t−1 + ...+ α2

t−p + Ut, (3.12.5)

where Ut = r2t −σ2
t is a Martingale difference sequence (MDS) since Et−1[Ut] = 0 and it is assumed

that E[r2t ] < ∞ . For the squared residuals r2t , an ARCH model implies an AR model, therefore,

according to Engle (1982), Equation(3.12.5) is used to construct a Lagrange Multiplier (LM) test for

ARCH effects. The null hypothesis, H0 of no ARCH effects (i.e α1 = α2 = ... = αp = 0 ) versus the
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alternative, Ha is tested based on the test statistic

LM = T.R2 (3.12.6)

The distribution of this test statistic is a Chi-Square with p degrees of freedom, where T is the sample

size and R2 is determined from Equation (3.12.5) using estimated residuals. To make a decision,

reject H0 if the test statistic LM is not significant.

3.12.5 Root Mean Square Error (RMSE)

A Root Mean Square Error (RMSE) is computed in order to compare the two models in terms of

prediction of the option prices. It is computed by utilizing the model predicted option prices and the

observed option prices. That is, the RMSE of a prediction model with respect to the observed option

prices is defined as the square root of the mean squared error.

RMSE =

√∑n
i=1

(
Pi −Oi)2

n
(3.12.7)

where Pi is the predicted option prices, Oi the observed option prices and n is the number of

observations. Note that, a small value of the RMSE implies a model with a better prediction.
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 Empirical data

The data set utilized in this study is in twofold. The first set of data is time series data consisting of

S&P 500, FTSE100 and NSE20 indices that was randomly chosen from the New York stock exchange,

London stock exchange and the Nairobi Securities Exchange respectively. The data for FTSE100 and

S&P500 indices, which represents developed or established financial stock markets, was retrieved

from Yahoo Finance website while that for NSE20 index, which represent a developing or emerging

stock market, was obtained from the Nairobi Securities (NSE) Exchange at a fee. The financial time

series consists of the daily and weekly stock prices and their respective trading volume for the three

indices for the period 01/02/2001 to 31/12/2017. The second set of data is the daily closing stock

prices as reported in the Russell 2000(RUT), Facebook(FB) and Google(GooG) indices for the period

01/02/2013 to 21/01/2022. The corresponding call options prices for the three markets is categorized

as short-dated and long-dated, that is, call options prices expiring in 25 and 258 days respectively. The

continuously compounded index returns are computed as in Equation (3.3.1) whereas the log trading

volume (log volume), Tv , is computed in terms of logarithmic change as Tv = lnVt − lnVt−1 where

Vt and Vt−1 is trade volume at day t and t− 1, respectively.

4.2 Descriptive statistics

The descriptive statistics of the daily FTSE100, S&P500 and NSE20 closing stock indices prices are

presented in Table 4.1. The mean of the closing stock indices prices are positive and the S&P500 and

NSE20 stock indices are right skewed while FTSE100 stock price index is left skewed implying that

the stock indices have an asymmetric distribution. The skewness and kurtosis are significantly not

the same as those of a normal distribution of 0 and 3, respectively and this is a suggestion that their

distribution is leptokurtic, i.e, has fat tails. On the other hand the descriptive statistics of the second

set of data , that is, RUT, FB and GooG are presented in Table 4.2. Their mean and skewness are

positive implying a distribution that is asymmetric and skewed to the right

Table 4.1: Basic statistics for daily FTSE100, S&P500 and NSE20 stock prices

Index Obs Mean Variance Skewness Kurtosis
FTSE100 4349 5679.672 904153.9 −0.210212 −0.719395
S&P500 4276 1436.096 195139.4 0.874500 −0.198456
NSE20 4272 3645.038 1470627 0.4760600 −0.593462
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Table 4.2: Basic statistics for daily RUT, FB and GooG stock prices

Index Obs Mean Variance Skewness Kurtosis
RUT 2281 1433.826 132556.4 1.003863 0.3636780
FB 2281 153.926339 7530.357353 0.641251 −0.250147

GooG 2281 1073.035 399962.8 1.467386 1.611128

The basic descriptive statistics for the FTSE100, NSE20 and S&P500 indices returns and log

volume are presented in Table 4.3 which clearly indicate that the mean of the indices returns are all

positive and close to zero. On the other hand, the mean of the log volume are positive except for

the daily and weekly FTSE100 and the weekly S&P500 indices log volumes. The positive mean of

index returns may be an indication that investors in these markets have realized a positive return rate

on their investment. Further, the mean and variance of all the indices returns and log volume series

are observed to increase as the data changes frequency from daily to weekly. The daily and weekly

indices returns of the developed stock markets (FTSE100 and S&P500 indices) are all negatively

skewed whereas the indices returns from the developing stock market (NSE20 index) has a positive

skeweness. The log volume series are positively skewed except that for the daily FTSE100 and

S&P500, and the weekly NSE20 indices.

Table 4.3: Descriptive statistics for index returns and log volume

Index Variable Level Mean Median Variance Std dev. Skew Ex.Kurt
Daily 0.00005 0.00026 0.00014 0.01185 -0.15894 3.75705

FTSE100 Xt Weekly 0.00024 0.00194 0.00059 0.02430 -1.11068 9.5557
Daily -0.00021 -0.00029 0.12324 0.35106 -0.01070 10.41753

Tv Weekly -0.00135 -0.00249 0.18586 0.43111 0.00661 6.75700
Daily 0.00017 0.00055 0.00014 0.01202 -0.21989 6.38927

S&P500 Xt Weekly 0.00084 0.00203 0.00057 0.02379 -0.92811 5.09105
Daily 0.00018 -0.00108 0.03575 0.18908 -0.09555 6.01709

Tv Weekly -0.00108 -0.00176 0.06303 0.25109 0.09257 4.79695
Daily 0.00016 0.00001 0.00007 0.00857 0.39295 8.32209

NSE20 Xt Weekly 0.00076 0.00044 0.00066 0.02569 0.41755 2.87156
Daily 0.00103 -0.00496 0.61150 0.78199 0.09298 -0.77629

Tv Weekly 0.00392 0.00584 0.77491 0.88029 -0.00651 -1.39927

The negative skewness implies that the distribution of the return series is left skewed whereas

the positive skewness implies that the distribution is right skewed. Thus it can be concluded that

indices returns from developed stock markets have a distribution with long tail to the left while the

distribution of indices returns from developing stock market has a long tail to the right. Moreover,

the all the time series exhibit a positive kurtosis except the daily and weekly NSE20 log volumes,

which can be construed to imply that the distribution of the time series is leptokurtic. A less than or

greater than three kurtosis implies flatness and peakedness, respectively, in the time series data. It is
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thus evident that the NSE20 weekly index returns, S&P500 daily log volume and NSE20 daily and

weekly log volume have a flat distribution since they have a negative excess kurtosis whereas all the

other indices returns and log volume have a peaked distribution.

The time series data is further described by plotting the empirical density versus the normal dis-

tribution as well as the quantile-quantile(qq) plots for the daily and weekly FTSE100, S&P500 and

NSE20 indices returns and log volume as shown in Figure 1 to 4. The plots reveal that the empirical

densities are different from that of normal distribution and hence the data does not follow normal dis-

tribution. This is confirmed by the values of skewness and excess kurtosis from Table 4.3 which are

significantly not equal to those of normal distribution of zero and three. The Jarque-Bera(JB) statistic

in Table 4.4 is in support of the non-normality of the indices returns and log volume.

Figure 1: Empirical density versus normal distribution, and qq-plots for daily returns

Figure 2: Empirical density versus normal distribution, and qq-plots for daily log volume
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Figure 3: Empirical density versus normal distribution, and qq-plots for weekly returns

Figure 4: Empirical density versus normal distribution, and qq-plots for weekly log volume

4.3 Empirical findings and discussion

The daily and weekly time series plots for the stock indices, trading volume, stock indices returns and

log volume are presented in Figure 5 to 8. It is evident from the stock price and trading volume plots

that the series have a trend implying a non-constant mean and variance of the series and therefore it

can be concluded that the data is not stationary. A clear discernible pattern of behavior can be inferred

from the plots of indices returns in Figure 5 and 7. These plots reports evidence of the common prop-

erties of time series data, for instance, volatility clustering(that is, low volatility is preceded by low

volatility and high volatility is preceded by high volatility), leverage effects, leptokurtic distribution,
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heavy tails and existence of outliers. In order to be able to analyze the data for desirable results, first-

order difference is performed on the log of index returns to make the data series stationary, however,

this is not enough for one to conclude that there is volatility clustering and therefore the data series

are subjected to Ljung-Box and Lagrange Multiplier tests to inspect for autocorrelations and ARCH

effects. The results of these tests and the ADF test for stationarity of indices returns and log volume

are reported in Table 4.4. The null hypothesis that indices returns and log volume are not stationary

is rejected at the 1% significance level, an indication that both indices returns and log volume are

stationary. The Ljung-Box test results reports that all the data series have no autocorrelations and

the Lagrange Multiplier test results indicate that all the series have ARCH effects since they are all

statistically significant.
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Figure 5: The daily stock indices and stock returns

Figure 6: The daily trading volume and log volume
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Figure 7: The weekly stock indices and stock returns

Figure 8: The weekly trading volume and log volume

Figure 9: Daily absolute returns and log volume

53



Figure 10: Weekly absolute returns and log volume

Figure 11: Daily square returns and log volume

Figure 12: Weekly square returns and log volume
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Table 4.4: Statistical tests for the indices returns and log volume

Ljung Test LM Test JB Test ADF Test
Index Frequency statistic statistic statistic statistic

Daily 73.83*** 1,029*** 83,001*** -29.99*
FTSE100 Xt Weekly 38.45*** 113*** 6,035*** -10.15*

Daily 585.6*** 846.5*** 32652*** -29.30*
Tv Weekly 192.5*** 178.8*** 3535*** -14.31*

Daily 61.44*** 1,198*** 15,757*** -20.44***
S&P500 Xt Weekly 23.14* 147.2*** 2,651*** -9.448*

Daily 522.5*** 456.7*** 14508*** -28.06*
Tv Weekly 131.2*** 95.04*** 2341*** -13.54***

Daily 814.1*** 1,027*** 22,949*** -17.84*
NSE20 Xt Weekly 41.00*** 86.75*** 1,297*** -7.178*

Daily 814.1*** 476.0*** 888.1*** -30.62*
Tv Weekly 41.00*** 86.24*** 95.09*** -13.62*

Note: The asterisks *, ** & *** implies that the statistics are significant at
10%,5% and 1% level of significance, respectively.

Further preliminary investigation of the data set is done by computing the squared returns for all

the series and a test for heteroscedasticity and volatility clustering carried out. The unconditional

variance can be approximated by the squared return of a particular time series if an assumption of

zero mean is made. The sample graphics of the squared and absolute returns are presented in Fig-

ures 9 to 12 which further reveal volatility clustering. This particular stylized fact of financial asset

returns is more present in the daily time series than it is in weekly time series. An investigation of

heteroscedasticity is carried out for all the time series by calculating the autocorrelation (AC) whose

graphics are presented in Figures 13 to 18.

Furthermore, the sample autocorrelation function(ACF) is utilized to describe linear dynamics

of the data. It’s worth noting that the sample ACF of a return series is crucial in linear time series

analysis; in fact, the ACF defines a linear time series model. The graphics clearly show that the

sample ACFs are relatively close to one another, implying that the serial correlation is very low.

Figure 13: ACF for the daily returns and log volume
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Figure 14: ACF for the weekly returns and log volume

Figure 15: ACF for the daily absolute returns and log volume

Figure 16: ACF for the weekly absolute returns and log volume

Figure 17: ACF for the daily square returns and log volume
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Figure 18: ACF for the weekly square returns and log volume

The GARCH(1,1) model parameters, as depicted by the equation

rt = σtεt, σ2
t = ω + α1r

2
t−1 + β1σ

2
t−1

, are estimated using the daily and weekly FTSE100, S&P500 and NSE20 indices returns and the

results presented in Table 4.5 and 4.6. The mean µ1 of the process is close to zero in all the daily and

weekly indices returns. All the model coefficients, ω, α1, and β1, are significant at 1% confidence level

for the all the daily and weekly indices returns. The non-negativity conditions of GARCH(1,1) model,

that is, ω > 0, α1 ≥ 0, β1 ≥ 0 and that α1 + β1 < 1 is respected by the parameter estimates. This

condition is important for mean reverting (volatility persistence) process and the results reveals that

the model is weakly stationary and the conditional volatility is mean reverting for all indices returns.

It is noted that the weekly conditional volatility of indices returns tend to revert quickly towards the

mean when compared to the daily conditional volatility. The parameter β1 is a measure of volatility

persistence and a high value implies that shocks to conditional variance take long to vanish or die off.

Large values of β1 are reported in both daily and weekly indices returns of the FTSE100 and S&P500

stock markets than in the NSE20 stock market daily and weekly indices returns. The implication

is that the indices returns are characterized by volatility clustering, that is, small values of σ2
t−1 are

succeeded by small values of σ2
t and in a similar manner large values of σ2

t−1 are succeeded by large

values of σ2
t . It is therefore clear that the developed markets are characterized by high clustering of

volatility compared to low clustering of volatility in the emerging market. This means that it takes

a long time for the shocks to conditional variance to disappear in FTSE100 and S&P500 indices

returns than in NSE20 index returns. This claim is further confirmed by the value of α1 + β1 which

is close to one and is high in developed markets than in emerging market for both daily and weekly

indices returns. The value of α1+β1 measures persistence of volatility and if it nears unity, it implies
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high volatility persistence. It can be inferred that the daily and weekly NSE20 index returns reports

relatively low values of α1 + β1 compared to the daily and weekly FTSE100 and S&P500 indices

returns. Moreover, the volatility persistence decreases as the data changes frequency from daily to

weekly indices returns in all the stock indices. The coefficient α1 is a measure of the extent to which

the present time volatility shock feeds through into the volatility occurring in the next period. This

value is large in the emerging market daily and weekly index returns than in the corresponding daily

and weekly indices returns of the developed market stock indices. This means that, in comparison to

developed stock market returns’ volatility, the volatility of emerging stock market returns is influenced

more by previous volatility than by comparable news from the previous period.

Table 4.5: The parameter estimates of GARCH(1,1) model for daily indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 3.811×10−4 4.453×10−4 2.936×10−4 5.254×10−4 6.592×10−4 4.281×10−4 1.488×10−4 4.780×10−5 3.4×10−5

(0.0015) (0.0001) (0.0136) (0.0001) (0.0000) (0.0002) (0.1360) (0.6090) (0.7115)
ω 1.661×10−6 1.475×10−6 1.533×10−6 1.627×10−6 8.682×10−7 1.118×10−6 4.607×10−6 9.358×10−6 7.0×10−6

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.00000)
α1 0.1102 0.1101 0.1084 0.09749 0.09955 0.09766 0.2675 0.3642 0.3157

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00000)
β1 0.8778 0.8810 0.8800 0.8883 0.8989 0.8944 0.6920 0.5232 0.5986

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00000)
α1 + β1 0.988 0.9911 0.9884 0.98579 0.99845 0.9921 0.9595 0.8874 0.9143
Log L 14077 14120 14137 13928 14015 14039 15066 15284 15256.07
AIC −6.4735 -6.4926 -6.5000 -6.5142 -6.5546 -6.5651 -7.0532 -7.1547 -7.1417
BIC −6.4676 -6.4853 -6.4912 -6.5083 -6.5471 -6.5562 -7.0473 -7.1473 -7.1342

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged, respectively, and the p-
values are placed in brackets. The log likelihood, Akaike Information Criterion, and Bayesian Information Criterion are abbreviated
as Log L, AIC, and BIC respectively.

Table 4.6: The parameter estimates of GARCH(1,1) model for weekly indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 1.47×10−3 1.551×10−3 9.894×10−4 2.371×10−3 2.55×10−3 1.955×10−3 4.046×10−4 8.923×10−4 5.0×10−4

(0.0163) (0.0091) (0.1081) (0.0000) (0.0000) (0.0005) (0.5950) (0.1692) (0.0831)
ω 2.911×10−5 2.002×10−5 2.120×10−5 2.781×10−5 1.871×10−5 2.028×10−5 1.3×10−4 1.437×10−4 1.0×10−4

(0.0050) (0.0443) (0.0404) (0.0006) (0.0254) (0.0084) (0.0000) (0.0001) (0.0002)
α1 0.1907 0.1140 0.1342 0.224 0.1572 0.1671 0.3435 0.4196 0.3765

(0.0000) (0.0023) ( 0.0006) (0.0000) (0.0003) (0.0000) (0.0000) (0.0000) (0.0000)
β1 0.7738 0.8482 0.8282 0.7379 0.8137 0.7935 0.4833 0.433 0.4512

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00000)
α1 + β1 0.9645 0.9622 0.9524 0.9619 0.9709 0.9604 0.8268 0.8526 0.8277
Log L 2152 2188 2189 2280 2301 2308 2072 2119 2116
AIC -4.8499 -4.9289 -4.9274 -4.9594 -5.0041 -5.0148 -4.7072 -4.8107 -4.8032
BIC -4.8283 -4.9019 -4.8950 -4.9383 -4.9778 -4.9832 -4.6855 -4.7835 -4.7760

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged, respectively, and the p-
values are placed in brackets. The log likelihood, Akaike Information Criterion, and Bayesian Information Criterion are abbreviated
as Log L, AIC, and BIC respectively.

Table 4.7 and 4.8 reports the GARCH-in mean model parameter estimates for the daily and weekly

FTSE100, S&P500 and NSE20 indices return computed according to equation

Xt = µt + λ1σ
2
t + rt, σ

2
t = ω + α1r

2
t−1 + β1σ

2
t−1.
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The mean µ1 of the process is very low and not significant for all daily and weekly indices returns

whereas the risk parameter, λ1 is positive and significant for the daily indices returns except for

the S&P500 and NSE20 indices returns under the generalized error distribution. On the other hand

the risk parameter, λ1 is positive and not significant for the weekly indices returns. A positive risk

parameter value indicates a positive association between returns and volatilities, as well as the fact

that the mean of the return sequence is heavily influenced by previous innovations and conditional

variance. In other words, utilizing the conditional variance as a proxy for risk of return has a positive

relationship with the level of return. If the risk parameter is statistically significant, then it implies

that the asset in question may not be risky to hold otherwise it is risky holding. The parameters α1

and β1 are significant at 1% significance level for all the daily and weekly indices returns and the

sum of α1 and β1 is close to 1 and it decreases as the data changes frequency from daily to weekly

indices return. This means the volatility persistence decreases as the frequency of the return series

changes from daily to weekly in all stock indices. Since the value of β1 is very low in the daily and

weekly NSE20 index returns compared to the value for the daily and weekly FTSE100 and S&P500

indices returns, it is inferred that the persistence of volatility dies off quickly in emerging market than

in developed market.

Table 4.7: The parameter estimates of GARCH-M(1,1) model for daily indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 -0.0005 -0.0004 -0.0004 -0.0001 0.0002 0.0001 -0.0005 -0.0005 -0.0003

(0.1749) (0.2080) (0.3395) (0.7088) (0.5756) (0.8394) (0.1045) (0.1440) (0.5092)
λ1 0.1126 0.1032 0.1010 0.0872 0.0681 0.0714 0.1033 0.0772 0.0510

(0.0099) (0.0032) (0.0210) (0.0510) (0.0693) (0.3431) (0.0286) (0.0912) (0.4201)
ω 2×10−6 1×10−6 2×10−6 2×10−6 1×10−6 1×10−6 5×10−6 9×10−6 7×10−6

(0.0852) (0.5086) (0.5341) (0.0714) (0.1950) (0.3270) (0.0000) (0.0000) (0.0000)
α1 0.111 0.1107 0.1111 0.0975 0.1009 0.1004 0.2699 0.36283 0.3167

(0.0000) (0.0029) (0.0059) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β1 0.8766 0.8801 0.8775 0.8884 0.8975 0.8921 0.6889 0.52552 0.5965

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 + β1 0.9876 0.9908 0.9886 0.9859 0.9979 0.9913 0.9588 0.8883 0.9132
Log L -14080 14123 14139 13930 14017 14040 15069 15285 15257
AIC -6.4746 -6.4935 -6.5005 -6.5147 -6.5548 -6.5652 -7.0539 -7.1549 -7.1416
BIC -6.4673 -6.4847 -6.4902 -6.5073 -6.5459 -6.5548 -7.0464 -7.1460 -7.1326

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.
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Table 4.8: The parameter estimates of GARCH-M(1,1) model for weekly index returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 -0.0033 -0.0022 -0.0032 -0.0002 0.0003 -0.0003 -0.0044 0.0027 0.0016

(0.1348) (0.3774) (0.1151) (0.9072) (0.8553) (0.9000) (0.1780) (0.3118) (0.1206)
λ1 0.2595 0.2004 0.2752 0.1536 0.1296 0.1631 0.2120 -0.0778 -0.0491

(0.0234) (0.1160) (0.0109) (0.1147) (0.2013) (0.2814) (0.1313) (0.4881) (0.3964)
ω 3×10−5 3×10−5 3.2×10−5 3×10−5 2×10−5 2.4×10−5 1.4×10−5 1.5×10−5 1.0×10−4

(0.0038) (0.0319) (0.0178) (0.0005) (0.0180) (0.0086) (0.0000) (0.0002) (0.0003)
α1 0.2109 0.1326 0.1754 0.2313 0.1662 0.1966 0.3655 0.4234 0.3746

(0.0072) (0.0014) (0.0003) (0.0000) (0.0002) (0.0000) (0.0000) (0.0001) (0.0000)
β1 0.7477 .8210 0.7736 0.7316 0.8019 0.7658 0.4552 0.4342 0.4544

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 + β1 0.9581 0.9536 0.9513 0.9629 0.9681 0.9624 0.8207 0.8576 0.8290
Log L 2155 2190 2179 2282 2303 2308 2074 2120 2116
AIC -4.8536 -4.9294 -4.906 -4.9599 -5.0037 -5.0134 -4.7075 -4.8091 -4.8012
BIC -4.8266 -4.8970 -4.8734 -4.9336 -4.9722 -4.9766 -4.6803 -4.7765 -4.7685

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged,
respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion,
and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

The parameter estimation of EGARCH(1,1) model expressed as below;

ln(σ2
t ) = ω + {α1(|rt−1| − E|rt−1|) + γ1rt−1}+ β1 ln(σ

2
t−1)

is carried out using the daily and weekly FTSE100, S&P500 and NSE20 indices returns and the re-

sults presented in Table 4.9 and 4.10. It is evident that the conditional mean, µ, of the process is in

general significantly close to zero. The parameters ω , α1 , β1 and γ1 are all statistically significant

at 1% confidence interval except α1 which is not significant for both daily and weekly NSE20 index

returns. The ARCH-term, α1, which explains clustering of volatility is large in the emerging market

index returns than for the developed markets indices returns. This implies that the developed market

indices returns are characterized by high volatility clustering compared to low volatility clustering

in the emerging market index returns. The GARCH term, β1, explains volatility persistence and a

high value is reported in the developed market indices returns than in the emerging market index

returns. This implies that volatility persists for a long time in the daily and weekly FTSE100 and

S&P500 indices returns than in emerging market, however, as the frequency of the returns changes

from daily to weekly, volatility diminishes for all indices returns. These findings are in tandem with

the results of both GARCH(1,1) and GARCH-M(1,1) models. The asymmetric or leverage parameter

γ1 is positive and high in both daily and weekly returns of the NSE20 index compared to the corre-

sponding frequencies in both FTSE100 and S&P500 indices returns. In addition, the parameter γ1 is

positive and significant in all indices returns which means there is non-existence of leverage effects

but asymmetric volatility is present among the indices returns and thus the impact of negative news
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does not outweigh positive news, that is, good news increases volatility more than bad news. It is also

noted that the asymmetry parameter γ1 is big in both daily and weekly NSE20 index returns than

in FTSE100 and S&P500 indices returns which shows that volatility asymmetry is more in emerging

market than in established markets. This means positive shocks affects volatility more than negative

shocks in developing markets compared to developed markets. On the other hand, the ARCH effect

coefficient, α1, is negative except in the weekly NSE20 index returns which is an indication that the

variance goes up more after negative returns than after positive returns. The results further imply

a positive and significant relationship between the stock returns and conditional volatility since the

value of β1 is positive and significant.

Table 4.9: The parameter estimates of EGARCH(1,1) model for daily indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 -7.5×10−5 1.19×10−4 -9.5×10−6 1.81×10−4 3.75×10−4 1.2×10−4 1.86×10−4 6.9×10−5 5.7×10−5

(0.3075) (0.2739) (0.3783) (0.0420) (0.0001) (0.1916) (0.0455) (0.4498) (0.5348)
ω -0.1672 -0.1578 -0.1748 -0.17166 -0.1293 -0.1667 -0.8310 -1.3566 -1.1540

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 -0.1283 -0.1423 -0.1398 -0.1390 -0.1501 -0.1527 -0.0080 0.0015 -0.0021

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4364) (0.9198) (0.8795)
β1 0.9818 0.9834 0.9812 0.9815 0.9867 0.9823 0.9132 0.8631 0.8837

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
γ1 0.1183 0.1183 0.1185 0.1024 0.1041 0.1052 0.4342 0.4985 0.4667

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Log L 14182 14212 14233 14033 14108 14134 15075 15282 15258
AIC -6.5211 -6.5346 -6.5435 -6.5629 -6.5976 -6.6092 -7.0569 -7.1533 -7.1421
BIC -6.5137 -6.5258 -6.5332 -6.5555 -6.5887 -6.5988 -7.0494 -7.1443 -7.1332

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged, respec-
tively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and Bayesian
Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Table 4.10: The parameter estimates of EGARCH(1,1) model for weekly index returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 1.0×10−5 5.81×10−4 -5.9×10−6 8.61×10−4 1.7×10−3 7.46×10−4 3.68×10−4 7.82×10−4 5.64×10−4

(0.9999) (0.9036) (0.0000) (0.0778) (0.0005) (0.1602) (0.6237) (0.1047) (0.4466)
ω -0.5407 -0.4710 -0.5194 -0.7676 -0.5415 -0.6717 -1.0305 -1.3518 -1.2446

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0006) (0.0021) (0.0037)
α1 -0.2538 -0.2191 -0.2408 -0.2242 -0.2149 -0.2301 0.0077 0.0091 0.0084

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.7616) (0.8249) (0.8203)
β1 0.9305 0.9409 0.9335 0.9017 0.9326 0.9145 0.8595 0.8197 0.8355

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
γ1 0.1319 0.1257 0.1353 0.2584 0.1901 0.1932 0.4315 0.5026 0.4653

(0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Log L 2197 2215 2223 2309 2321 2335 2073 2119 2116
AIC -4.9484 -4.9864 -5.0017 -5.0192 -5.0429 -5.0720 -4.7054 -4.8086 -4.8007
BIC -4.9214 -4.9540 -4.9638 -4.9930 -5.0114 -5.0352 -4.6782 -4.7760 -4.7681

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged, respectively,
and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and Bayesian Information
Criterion are abbreviated as Log L, AIC, and BIC respectively.

The parameter estimates of MS-GARCH(1,1) model defined as

σ2
k,t = α0,k + α1,kr

2
t−1 + βkσ

2
k,t−1 for k = 1, 2
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are carried out by use of the daily and weekly indices returns and reported in Table 4.11 and 4.12.

The parameter estimates of MS-GARCH(1,1) model for the daily FTSE100, S&P500 and NSE20

indices returns are presented in Table 4.11. All the parameter estimates are significant at 5% α-

level of significance across the regimes. The ARCH-term, α1,k, is generally high in regime 2 than

in regime 1 for all indices returns implying high volatility clustering in regime 2 and low volatility

clustering in regime 1. On the other hand, the GARCH-term,βk is highest in regime 1 than in regime

2 in all indices returns across all the conditional distributions. It is thus evident that the evolution of

the volatility process across the two regimes is heterogeneous and regime 1 is characterized by high

volatility persistence. For instance, taking the case for the FTSE100 daily index returns fitted to the

MS-GARCH(1,1) model conditioned under normal distribution, it is reported that α1,2 = 0.1183 >

α1,1 = 0.0087 , and that β1 = 0.9801 > β2 = 0.8628 . The corresponding estimated values for

the daily S&P500 and NSE20 indices returns are reported as α1,2 = 0.1258 > α1,1 = 0.0362 ,

β1 = 0.9499 > β2 = 0.8699 and α1,2 = 0.2932 > α1,1 = 0.0071 , β1 = 0.9463 > β2 = 0.3565 ,

respectively. A similar case can be extracted for Generalized error and students-t distributions for the

three indices returns. The sum of α1,k and βk, that is, α1,k+βk, is less than one across the two regimes

for all the conditional distributions, however, the sum values differ across the regimes for the indices

returns. For instance, the S&P500 return series reports higher values in regime 2 than in regime 1

whereas FTSE100 and NSE20 indices returns reports a higher sum values in regime 1. The value

α1,k + βk represents the volatility persistence in the regimes (for k = 1, 2) and it is thus clear that

regime 1 has high volatility persistence for the FTSE100 and NSE20 indices returns whereas there

is low volatility persistence in regime 1 for S&P500 index returns. In general, the two regimes are

characterized by existence of heterogeneous unconditional volatility, volatility persistence as well as

a varied reaction to the past negative returns.

Table 4.12 presents the parameter estimate results for MS-GARCH (1,1) model applied to the

weekly indices returns. The parameters α1,k and βk are all significant at least at 5% α-level of signifi-

cance for all indices returns. It is revealed that the GARCH term βk is generally high in regime 1 than

in regime 2 for the FTSE100 and S&P500 indices returns whereas the value is low in regime 1 than

in regime 2 in the NSE20 index returns. This means that the volatility persists for long in regime 1 in

the developed market indices returns than in regime 2 in the emerging market index returns.
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Table 4.11: The parameter estimates of MS-GARCH(1,1) model for daily indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
α0,1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0002) (0.0008) (0.0024) (0.0000) (0.0553) (0.2633) (0.0032) (0.0078) (0.0000)
α1,1 0.0087 0.0071 0.0072 0.0362 0.1107 0.0283 0.0071 0.0151 0.2737

(0.0376) (0.0594) (0.0829) (0.0000) (0.1427) (0.0000) (0.1133) (0.1632) (0.0000)
β1 0.9801 0.9828 0.9828 0.9499 0.7819 0.9705 0.9463 0.9301 0.6285

(0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α0,2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001

(0.0011) (0.0072) (0.0074) (0.0000) (0.0000) (0.0000) (0.0004) (0.0001) (0.0000)
α1,2 0.1183 0.1327 0.1432 0.1258 0.0927 0.0780 0.2932 0.5480 0.9999

(0.0522) (0.0296) (0.0196) (0.0000) (0.00433) (0.0000) (0.0082) (0.0000) (0.0000)
β2 0.8628 0.8477 0.8378 0.8699 0.8954 0.8900 0.3565 0.2862 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0040) (0.0000) (0.2321)
P11 0.9805 0.9862 0.9884 0.9389 0.9959 0.9918 0.9624 0.9672 0.9695
P21 0.0425 0.0210 0.0144 0.2074 0.0009 0.0220 0.1261 0.0392 0.1423
α1,1 + β1 0.9888 0.9899 0.9900 0.9861 0.8926 0.9988 0.9534 0.9452 0.9022
α1,2 + β2 0.9811 0.9804 0.9810 0.9957 0.9881 0.9680 0.6497 0.8342 0.9999
Log L 14119 14129 14133 13990 14022 13993 15270 15312 15294
AIC -28222 -28239 -28247 -27963 -28023 -27967 -30523 -30605 -30564
BIC -28171 -28175 -28183 -27912 -27959 -27903 -30473 -30541 -30488

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Table 4.12: The parameter estimates of MS-GARCH(1,1) model for weekly index returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
α0,1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001

(0.0067) (0.0129) (0.0102) (0.0686) (0.1327) (0.1312) (0.0287) (0.0853) (0.0025)
α1,1 0.0902 0.0740 0.0729 0.0096 0.0037 0.0033 0.0914 0.0474 0.4939

(0.0184) (0.0409) (0.0249) (0.2110) (0.1466) (0.2032) (0.2231) (0.2833) (0.0029)
β1 0.8506 0.8681 0.8744 0.9620 0.9874 0.9877 0.6071 0.6703 0.3298

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0008) (0.0072)
α0,2 0.0011 0.0000 0.0002 0.0004 0.0001 0.0001 0.0002 0.0001 0.0000

(0.1293) (0.1321) (0.1179) (0.0740) (0.0987) (0.1344) (0.2297) (0.0716) (0.1892)
α1,2 0.3372 0.0289 0.4251 0.2623 0.1555 0.1937 0.1914 0.1117 0.0308

(0.3043) (0.1884) (0.3552) (0.1114) (0.1288) (0.1327) (0.3374) (0.2259) (0.2655)
β2 0.6466 0.9690 0.5745 0.4152 0.7649 0.6719 0.7955 0.8731 0.9580

(0.0000) (0.0000) (0.0000) (0.0430) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
P11 0.9594 0.9425 0.8189 0.9818 0.9858 0.9862 0.8761 0.8777 0.6993
P21 0.9999 0.2902 0.6173 0.0386 0.0141 0.0158 0.3422 0.2008 0.4545
α1,1 + β1 0.9408 0.9421 0.9473 0.9716 0.9911 0.9910 0.6985 0.7177 0.8237
α1,2 + β2 0.9838 0.9979 0.9916 0.6775 0.6775 0.8656 0.9869 0.9848 0.9888
Log L 2186 2190 2202 2288 2293 2292 2118 2119 2124
AIC -4356 -4359 -4381 -4561 -4566 -4588 -4565 -4217 -4224
BIC -4318 -4312 -4323 -4522 -4518 -4517 -4182 -416 -4167

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Further, regime 1 is characterized with low values of ARCH term, α1,k as compared with regime

2 in all indices returns and this implies that regime 1 has low volatility clustering in comparison to

regime 2. The probabilities of switching regimes are very low for all indices returns which imply that
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the process has the tendency to spend more time in regime 1 than in regime 2. That is, the volatility

process takes long to switch from regime 1 to regime 2 than it takes to revert back once in regime 2.

The parameter estimates of MS-EGARCH (1,1) model presented in Table 4.13 and 4.14 are com-

puted according to the equation

ln
(
σk,t

)
= α0,k + α1,k

(
|ηk,t−1| − E[ηk,t−1|]

)
+ α2,krt−1 + βk ln

(
σk,t−1

)
, for k = 1, 2.

Table 4.13 reports that all the parameter estimates are significant across the regimes except that α2,1

and α2,2 are not significant in both regimes for NSE20 index returns. The value of α1,k in regime

1 is large than in regime 2 for FTSE100 index return whereas it is low in regime 1 compared to

regime 2 for both the S&P500 and NSE20 indices returns. This implies that FTSE100 index returns

have high volatility clustering in regime 1 compared to low volatility clustering in regime 1 for the

S&P500 and NSE20 indices returns. Further, it is noted that α2,1 and α2,2 are in general negative in

both regimes implying presence of leverage effects in the returns series across the two regimes. That

is, when compared to a positive shock of the same magnitude, a negative shock has a higher influence

on volatility, thus it can be argued that, this persistence of negative shocks, or volatility asymmetry,

indicates that investors are more vulnerable to bad news than favorable news (the volatility spillover

mechanism is asymmetric). The volatility persistence is high in regime 1 for both FTSE100 and

NSE20 indices returns than in the same regime for S&P500 index returns as reported by high value

of βk.

Table 4.14 presents the parameter estimates of MS-EGARCH(1,1) for the weekly indices returns.

A similar pattern of behavior as that for daily indices returns is noticed, however, they differ in the

sense that NSE20 index returns does not show leverage effects in regime 2 and in addition the three

markets indices exhibit high volatility persistence in regime 1 as reported by large values of β1.

In general, in the daily and weekly FTSE100 indices returns, regime 1 is characterized by high

conditional volatility, strong volatility reaction to past negative returns and low volatility persistence

while the second regime exhibits low conditional volatility, weak volatility reaction to past negative

returns and high volatility persistence. Leverage effects are reported in all the return series across

all the regimes. Moreover, most of the transition probabilities reports that the volatility process has

the tendency to spend more time in regime 1 than in regime 2, that is, the process has very high

probability of staying in the same state compared to the probability of transiting to the other state.
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Table 4.13: The parameter estimates of MS-EGARCH(1,1)model for daily indices returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
α0,1 -0.1547 -0.2088 -0.3185 -0.9472 -1.0937 -1.0277 -0.6693 -0.4198 -0.5139

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0066) (0.0000) (0.0017)
α1,1 0.0647 0.0689 0.0937 0.0621 0.0605 0.0638 0.1297 0.0400 0.0551

(0.0000) (0.0000) (0.0000) (0.0110) (0.0412) (0.0266) (0.0117) (0.0020) (0.0091)
α2,1 -0.1486 -0.1609 -0.1759 -0.2635 -0.3547 0.3346 0.0023 -0.0095 -0.0050

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4111) (0.1562) (0.2848)
β1 0.9844 0.9786 0.9673 0.9052 0.8869 0.8933 0.9383 0.9611 0.9526

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ( 0.0000) (0.0000)
α0,2 -0.1516 -0.2016 -0.2019 -0.2024 -0.0842 -0.0861 -0.2757 -2.3101 -2.8062

(0.0004) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0492) (0.0000) (0.0000)
α1,2 0.0461 0.0371 0.0813 0.0855 0.0731 0.0717 0.3747 0.6942 0.6037

(0.0092) ( 0.0417) (0.0056) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α2,2 -0.1600 -0.1686 -0.1395 -0.1389 -0.1142 -0.1113 -0.0114 0.0053 0.0048

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.3478) (0.4335) (0.4503)
β2 0.9811 0.9755 0.9764 0.9767 0.9908 0.9907 0.9517 0.7455 0.6781

( 0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
P11 0.9846*** 0.9954*** 0.9977*** 0.9936*** 0.9941*** 0.9954*** 0.9437*** 0.9678*** 0.9658***
P21 0.0764*** 0.0237*** 0.0062*** 0.0062*** 0.0032 0.0025 0.2761*** 0.0452*** 0.0751***
Log L 14218 14224 14222 14082 14137 14138 15285 15314 15297
AIC -28418 -28425 -28420 -28144 -28251 -28253 -30550 -30603 -30570
BIC -28353 -28348 -28344 -28081 -28175 -28176 -30486 -30527 -30494

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged,
respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and
Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively. The asterisks *, ** & ***
represents α-level significance at 10%, 5% and 1%, respectively

Table 4.14: The parameter estimates of MS-EGARCH(1,1) model for weekly index returns

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
α0,1 -0.8367 -1.8223 -1.2039 2.4664 -2.2089 -2.6942 -1.2462 -1.2628 -1.3276

(0.0000) (0.0000) (0.0158) (0.0000) (0.0000) (0.0000) (0.0050) (0.0058) (0.0027)
α1,1 0.0506 0.0007 0.0990 0.0181 0.0278 0.0060 0.2481 0.2487 0.3376

(0.0000) (0.4963) (0.0398) (0.0000) (0.3370) (0.0000) (0.0026) (0.0037) (0.0002)
α2,1 -0.2768 -0.4992 -0.3075 -0.3582 -0.3689 -0.3460 -0.0082 -0.0087 -0.0101

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4113) (0.4084) (0.3812)
β1 0.8961 0.7722 0.8544 0.7077 0.7379 0.6809 0.8564 0.8543 0.8423

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α0,2 -0.7449 -0.1825 -0.4168 -1.2831 -0.7769 -1.4592 -0.2483 -0.2465 -0.0502

(0.0000) (0.0001) (0.1012) (0.0000) (0.0027) (0.0000) (0.1474) (0.1466) (0.4021)
α1,2 -0.3299 0.0504 0.0561 0.1120 0.0611 0.1712 0.3379 0.3270 0.5794

(0.0000) (0.0558) (0.1419) (0.0000) (0.2107) (0.0000) (0.0371) (0.0414) (0.0024)
α2,2 -0.4069 -0.1778 -0.2198 -0.2949 -0.2497 -0.3032 0.0098 0.0102 -0.0026

(0.0000) (0.0000) (0.0006) (0.0000) (0.0000) (0.0000) (0.4251) (0.4215) (0.4823)
β2 0.8914 0.9771 0.9428 0.8187 0.8933 0.7957 0.9428 0.9440 0.9412

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
P11 0.9948*** 0.9782*** 0.9832*** 0.9843*** 0.9905*** 0.9838*** 0.8765*** 0.8780*** 0.9203***
P21 0.0361*** 0.0155 0.0277* 0.0144*** 0.0102* 0.0301*** 0.4402*** 0.4271*** 0.7501***
Log L 2218 2221 2216 2322 2326 2322 2122 2121 2123
AIC -4416 -4419 -4408 -4624 -4628 -4620 -4223 -4219 -4221
BIC -4368 -4361 -4351 -4576 -4570 -4562 -4176 -4162 -4164

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged, respec-
tively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and Bayesian
Information Criterion are abbreviated as Log L, AIC, and BIC respectively. The asterisks *, ** & *** represents
α-level significance at 10%, 5% and 1%, respectively

In order to explore the effect of trade volume on volatility persistence, Equation (3.5.2) is adapted

to integrate log trade volume, Tv , as an exogenous variable in the conditional variance as shown below
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and the model parameter estimates are presented in Table 4.15 and 4.16.

rt = σtεt, σ2
t = ω + α1r

2
t−1 + β1σ

2
t−1 + δTv .

The parameter estimates for the daily and weekly indices returns for the three markets are significant

at 1% α-level of significance except that µ1 is not significant for the NSE20 index returns. The ARCH

term, α1, is low for FTSE100 and S&P500 indices returns compared to the value for the NSE20 index

returns which implies low volatility clustering in the developed markets and high volatility in the

emerging market. Taking for instance the model estimates conditioned to normal distribution for

the daily indices returns for the three markets, the value for α1 are reported as 0.0900, 0.0963 and

0.2639 for the FTSE100, S&P500 and NSE20 indices returns respectively. Similarly, the α1 parameter

estimates are 0.1855, 0.1815 and 0.2432 for the weekly FTSE100, S&P500 and NSE20 indices returns

respectively. On the other hand the β1 value is high in both FTSE100 and S&P500 indices returns

than in NSE20 index returns. The β1 parameter estimate of the model for the daily indices returns

under normal distribution are reported as 0.8984, 0.8886 and 0.6923 for the FTSE100, S&P500 and

NSE20 indices returns respectively. Similarly, the values for the weekly indices returns under normal

distribution are 0.7818, 0.7597 and 0.6168 for the FTSE100, S&P500 and NSE20 market indices

respectively. In general, the established markets’ indices returns are characterized by low volatility

clustering and high volatility persistence as compared to high volatility clustering and low volatility

persistence in the developing market index returns.

Table 4.15: GARCH(1,1) parameter estimates for daily indices returns with trading volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 0.0004 0.0004 0.0004 0.0005 0.0006 0.0006 0.0001 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.8581) (0.2013)
ω 1×10−6 1×10−6 1×10−6 1×10−6 1×10−6 1×10−6 5×10−6 9×10−6 7×10−6

(0.0000) (0.0024) (0.0015) (0.0000) (0.0000) (0.0064) (0.0000) (0.0000) (0.0000)
α1 0.0900 0.09088 0.0912 0.0963 0.1102 0.0960 0.2639 0.3535 0.3104

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β1 0.8984 0.8980 0.8969 0.8886 0.8794 0.8940 0.6923 0.5355 0.6019

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 1.9×10−5 1.9×10−5 1.9×10−5 3.2×10−5 6.9×10−5 3.2×10−5 4×10−6 4×10−6 4×10−6

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0182) (0.0000)
α1 + β1 0.9884 0.9889 0.9881 0.9849 0.9896 0.9900 0.9562 0.8890 0.9123
Log L 14108 14146 14150 13996 14099 14075 15072 15287 15260
AIC -6.4872 -6.5041 -6.5061 -6.5455 -6.5933 -6.5821 -7.0555 -7.1558 -7.1429
BIC -6.4798 -6.4953 -6.4973 -6.5381 -6.5844 -6.5732 -7.0480 -7.1468 -7.1340

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged,
respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and
Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.
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In order to check the effect on volatility persistence in the three market indices after inclusion

of lagged trading volume into the GARCH model the value of α1 + β1 reported for GARCH(1,1)

model is compared with that of GARCH(1,1) model with log volume included. A general finding is

that for the daily indices returns, the volatility persistence decreased in both emerging and developed

markets even though the normal distribution and student-t distributions reports contrary findings for

the FTSE100 and NSE20 indices returns respectively after inclusion of log volume into the model.

It is noted that the volatility persistence decreased for the weekly S&P500 index returns whereas it

increased for the FTSE100 and NSE20 indices returns. It can be a general conclusion that inclusion

of log trading volume on GARCH (1,1) model reports mixed results when data changes frequency

from daily to weekly indices returns.

Table 4.16: GARCH(1,1) estimates for weekly index returns with volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 0.0019 0.0022 0.0025 0.0021 0.0023 0.0023 0.0005 0.0009 0.0005

(0.0000) (0.1138) (0.0000) (0.0000) (0.0000) (0.0000) (0.5298) (0.1785) (0.1797)
ω 2.8e-5 1.2e-5 1.2e-5 2.9e-5 1.9e-5 2.4e-5 9.3e-5 1.26e-4 1.10e-4

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0003) (0.0003) (0.0007)
α1 0.1855 0.0789 0.0962 0.1815 0.1246 0.1533 0.2432 0.3545 0.2960

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ( 0.0002) (0.0002)
β1 0.7818 0.8980 0.8815 0.7597 0.8344 0.7962 0.6168 0.5005 0.5443

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0125) (0.0040)
α1 + β1 0.9673 0.9769 0.9777 0.9412 0.9590 0.9495 0.8600 0.855 0.8403
Log L 2157 2192 2180 2295 2310 2309 2078 2122 2119
AIC -4.8585 -4.9336 -4.9083 -4.9891 -5.0206 -5.0179 -4.7176 -4.8136 -4.8065
BIC -4.8315 -4.9012 -4.8759 -4.9628 -4.9891 -4.9864 -4.6904 -4.7810 -4.7739

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Table 4.17 presents GARCH-M(1,1) with volume included in the variance equation for daily

indices returns computed according to equation

Xt = µt + λ1σ
2
t + rt, where , rt = σtεt, and σ2

t = ω + α1r
2
t−1 + β1σ

2
t−1 + δTv .

The parameters ω , α1 , β1 and δ are significant at 1% level of significance. The value of the risk

parameter λ1 is positive and decreases when trading volume is included into the conditional variance

equation for developed markets but increases for the emerging market. This is an indication that

indices returns and volatility have a positive association and that the risk of holding asset returns from

developed markets is less compared with that of holding asset returns from emerging market.
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Table 4.17: GARCH-M(1,1) estimates for daily indices returns with volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 -0.000205 -0.00004 -0.000132 -0.000099 0.0004 0.000273 -0.000677 -0.000634 -0.000455

(0.190415) (0.8054) (0.0000) (0.31064) (0.1830) (0.1450) (0.0222) (0.5280) (0.0000)
λ1 0.0778 0.0670 0.0831 0.0783 0.0315 0.0535 0.1239 0.0995 0.0738

(0.0039) (0.0090) (0.0000) (0.0000) (0.4421) (0.0834) (0.0037) (0.5818) (0.0000)
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0905) (0.0020) (0.0000) (0.0049) (0.0000) (0.0000) (0.0000) (0.0000)
α1 0.0891 0.0858 0.1160 0.096257 0.0943 0.1059 0.266110 0.348419 0.309233

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0132) (0.0000)
β1 0.8984 0.9031 0.8754 0.888953 0.9002 0.8803 0.687509 0.541778 0.602435

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.000019 0.000019 0.000018 0.000032 0.000032 0.000027 0.000004 0.000004 0.000004

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ( 0.4319) (0.0000)
α1 + β1 0.9875 0.9889 0.9914 0.98521 0.9945 0.9862 0.953619 0.890197 0.911668
Log L 14111 14149 14151 13998 14067 14070 15075 15289 15261
AIC -6.4882 -6.5048 -6.5061 -6.5459 -6.5779 -6.5793 -7.0566 -7.1564 -7.1431
BIC -6.4794 -6.4946 -6.4958 -6.5370 -6.5675 -6.5689 -7.0476 -7.1460 -7.1327

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged,
respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and
Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Table 4.18: GARCH-M(1,1) estimates for weekly indices returns with volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 -0.000988 0.003202 -0.000819 -0.0002 0.000333 -0.000341 -0.003108 0.002120 0.001136

( 0.6945) (0.0000) (0.7980) (0.9088) (0.8586) (0.9058) (0.3062) (0.4194) (0.8994)
λ1 0.1475 -0.0740 0.1525 0.1536 0.1296 0.1631 0.1623 -0.0557 -0.0284

(0.2559) (0.0000) (0.3418) (0.1184) (0.2109) (0.3081) (0.2238) (0.6231) ( 0.9416)
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.000110

(0.0077) (0.0000) (0.0406) (0.0006) (0.0185) (0.0089) (0.0002) (0.0004) (0.0007)
α1 0.197387 0.080316 0.156225 0.231321 0.166210 0.196623 0.2513 0.358991 0.297316

(0.0000) (0.0000) (0.0020) ( 0.0000) (0.0002) (0.0000) (0.0000) (0.0002) (0.0003)
β1 0.767095 0.896484 0.801833 0.731552 0.8019 0.765727 0.6007 0.496704 0.543362

(0.0000) (0.0000) ( 0.0000) ( 0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.000103 0.000147 0.000091 0.0000 0.0000 0.0000 0.0001 0.000063 0.000067

(0.0105) (0.0000) (0.1105) (0.9999) (1.0000) (1.0000) (0.0000) (0.0185) (0.0081)
α1 + β1 0.964482 0.9768 0.958058 0.962873 0.96811 0.96235 0.8520 0.855695 0.840678
Log L 2158 2194 2180 2282 2303 2302 2079 2122 2118
AIC -4.8573 -4.9367 -4.9060 -4.9577 -5.0015 -4.9992 -4.7171 -4.8116 -4.8043
BIC -4.8249 -4.8989 -4.8682 -4.9262 -4.9647 -4.9624 -4.6844 -4.7736 -4.7663

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and Ged,
respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information Criterion, and
Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

The positive correlation between indices returns and volume is further confirmed by the positive

value of δ . Adding trading volume in the GARCH-M(1,1) equation slightly reduces the volatility

persistence in both developing and developed markets although the Generalized error distribution

and the student-t distributions reports an increase of the volatility persistence for the developing and

developed markets, respectively. Table 4.18 shows the parameter estimates of the GARCH-M(1,1)

with volume included in the variance equation for weekly indices returns. The parameters ω , α1 , β1

and δ are significant at 1% confidence interval except δ for the S&P500 index returns. The volatility

persistence increases across the markets on adding trading volume into the equation of variance and
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the risky parameter decreases for the developed market whereas it increases for emerging market as

is the case in the daily indices returns. The general finding is that trading volume explains volatility

in both developed and emerging markets and that trading volume is positively related with indices

returns.

The results of EGARCH(1,1) with trading volume included into the conditional variance equation

for daily and weekly indices returns are computed by adapting Equation 3.7.2 to include trading

volume, Tv, as an exogenous variable, as presented in the equation below, and presented in Table 4.19

and 4.20.

ln(σ2
t ) = ω + {α1(|rt−1| − E|rt−1|) + γ1rt−1}+ β1 ln(σ

2
t−1) + δTv

The parameters ω , α1 , β1 , γ1 and δ are significant at 5% level of significance in both developed and

emerging daily and weekly indices returns except that α1 and δ are not significant for NSE20 and

weekly S&P500 indices returns respectively. The asymmetry parameter γ1 diminishes with inclusion

of trading volume into the conditional variance equation for both daily and weekly indices returns

respectively whereas the GARCH parameter β1 , which is the measure for volatility persistence, in-

creases with volume addition into the equation of conditional variance.

Table 4.19: EGARCH(1,1) estimates for daily indices returns with volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 0.0001 0.0002 0.0002 0.0002 0.0004 0.0004 0.0002 0.0000 0.0000

(0.5670) ( 0.0725) (0.1020) (0.0256) (0.0000) (0.0000) (0.0366) (0.5909) ( 0.5674)
ω -0.1320 -0.1269 -0.1302 -0.1553 -0.1003 -0.1228 -0.8034 -1.2830 -1.1011

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 -0.1203 -0.1310 -0.1250 -0.1190 -0.1201 -0.1205 -0.0121 -0.0015 -0.0056

(0.0000) (0.0000) ( 0.0000) (0.0000) (0.0000) (0.0000) (0.2281) (0.9154) (0.6816)
β1 0.9856 0.9867 0.9864 0.9833 0.9898 0.9875 0.9162 0.8706 0.8891

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ( 0.0000)
γ1 0.1087 0.1108 0.1096 0.1154 0.0970 0.1079 0.4250 0.4859 0.4562

(0.0000) (0.0000) ( 0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ( 0.0000)
δ 0.6804 0.6857 0.6816 1.2264 1.7073 1.4266 0.1716 0.1494 0.1607

(0.0000) (0.0000) ( 0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0004) (0.0002)
Log L 14232 14253 14251 14139 14212 14196 15088 15288 15265
AIC -6.5435 -6.5528 -6.5522 -6.6121 -6.6457 -6.6280 -7.0624 -7.1557 -7.1449
BIC -6.5347 -6.5426 -6.5419 -6.6032 -6.6353 -6.6280 -7.0535 -7.1453 -7.1345

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

The trading volume parameter δ is greater than zero and this implies that trading volume sig-

nificantly explains volatility and that trading volume and volatility have a positive relationship. The

decrease of the asymmetry parameter with volume inclusion shows that volume leads to less asym-

metric volatility on the underlying market and the increase in volatility persistence is a show that
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volume does not explain volatility. It can be construed to mean that trading volume inclusion into

the conditional variance does not reduce volatility persistence hence it does not explain volatility and

that trading volume is positively related with volatility. Moreover, it implies that bad news has bigger

effect on conditional volatility than good news and this means existence of asymmetry in the market.

As a result, trading volume influences the flow of information into the market, and it is also crucial in

predicting volatility patterns in both developed and emerging markets.

Table 4.20: EGARCH(1,1) estimates for weekly indices returns with volume

FTSE100 S&P500 NSE20
Estimate Norm Std-t Ged Norm Std-t Ged Norm Std-t Ged
µ1 0.0004 0.0008 0.0001 0.0001 0.0017 0.0015 0.0003 0.0008 0.0005

(0.0931) (0.0000) (0.0610) (0.0794) (0.0006) (0.0004) (0.6889) (0.1251) (0.4977)
ω -0.4597 -0.4316 -0.4355 -0.7622 -0.5378 -0.6736 -0.8027 -1.1800 -1.0327

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002) ( 0.0003) (0.0007) (0.0013)
α1 -0.2355 -0.2124 -0.2247 -0.2224 -0.2136 -0.2160 -0.0188 0.0026 -0.0075

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4317) (0.9454) (0.8286)
β1 0.9412 0.9459 0.9455 0.9024 0.9330 0.9157 0.8912 0.8437 0.8643

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
γ1 0.1264 0.1252 0.1246 0.2582 0.1902 0.2351 0.3813 0.4761 0.4289

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.4542 0.3551 0.4265 -0.1157 -0.1104 -0.1134 0.3677 0.3142 0.3386

(0.0000) (0.0173) (0.0026) (0.6721) (0.7266) (0.7288) (0.0000) (0.0002) (0.0001)
Log L 2203 2218 2210 2309 2321 2319 2089 2127 2124
AIC -4.9599 -4.9902 -4.9738 -5.0172 -5.0409 -5.0378 -4.7390 -4.8232 -4.8172
BIC -4.9275 -4.9523 -4.9360 -4.9857 -5.0041 -5.0010 -4.7064 -4.7852 -4.7791

Note: The normal, students-t, and generalized error distributions are represented by Norm, Std-t, and
Ged, respectively, and the p-values are placed in brackets. The log likelihood, Akaike Information
Criterion, and Bayesian Information Criterion are abbreviated as Log L, AIC, and BIC respectively.

Table 4.21 reports the results of a simple Regime switching model for the returns-volume rela-

tionship, which are computed according to a simple Regime switching model defined as follows;

Xt = µξ(t) + αξ(t)Tv,ξ(t) +σξ(t)rt where rt ∼ N(0, 1) for ξ(t) = 1, 2 .

The probability of the volatility process to transit from regime 1 to 2 (P12) for the FTSE100, S&P500

and NSE20 daily indices is 0.0099, 0.0092 and 0.0307 while that of reverting back(P21 ) is 0.0232,

0.0223 and 0.1300, respectively. This means once the volatility process is in regime 1 it takes long to

switch to regime 2 than it takes to fall back to regime 1 once in regime 2. In fact, the average duration

of stay in regime i in a single run for the daily indices returns is computed using the formula 1
(1−Pii)

,

where i = 1, 2 and it is reported as 101, 109 and 33 days compared to 43, 49 and 8 days in regime 2,

respectively. Also, the transition probability of entering regime 2 from regime 1 is 0.0266, 0.0236 and

0.0634 for the FTSE100, S&P500 and NSE20 weekly indices returns respectively and it implies that
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the volatility process lingers in regime 1 than in regime 2 before transiting. The NSE20 index returns

seems to have high probability of the volatility process to transit from regime 1 to regime 2 than that

of reverting back to regime 1 compared to the case for the FTSE100 and S&P500 indices returns.

Regime 1 of the developed market daily and weekly indices returns is characterized by high volatility

and negative returns while regime 1 of the emerging market is characterized by high volatility and

positive returns. On the other hand, regime 2 is low volatility regime and with positive returns for

the daily and weekly FTSE100, S&P500 and NSE20 indices returns. Moreover, the daily and weekly

indices returns for both established and developing markets and log trading volume are negatively

related in both regimes except for the NSE20 weekly indices in regime 2.

Table 4.21: Regime switching model estimates for the returns-volume relationship

FTSE100 S&P500 NSE20
Daily Weekly Daily Weekly Daily Weekly

µ1 -0.0009 -0.0060 -0.0001 -0.0045 0.0005 0.0013
(0.0719) (0.0865) (0.0956) (0.0608) (0.4750) (0.7103)

µ2 0.0005*** 0.0018* 0.0007*** 0.0031*** 0.0001 0.0006
(0.0000) (0.0101) (0.0000) (0.0000) (0.3173) (0.3914)

α1 -0.0053*** -0.0064 -0.0047 -0.0303*** 0.0004 0.0081*
(0.0009) (0.3248) (0.0817) (0.0005) (0.6171) (0.0404)

α2 -0.0004 -0.0028 -0.0010 -0.0005 0.0000 -0.0002
(0.3173) (0.1198) (0.1531) (0.8676) (1.0000) (0.8242)

σ1 0.0188 0.0428 0.0195 0.0364 0.0166 0.0451
σ2 0.0071 0.0161 0.0070 0.0144 0.0050 0.0154
P12 0.0099 0.0266 0.0092 0.0236 0.0307 0.0634
P21 0.0232 0.1049 0.0223 0.0572 0.1300 0.2150

Note: The values {µ1, σ1}and{µ2, σ2} stand for the mean and variance in
regimes 1 and 2 respectively and P12 andP21 are the transition proba-
bilities from regime 1 to 2 and from regime 2 to 1 respectively. The
asterisks *, ** & *** indicate 10%, 5% and 1% significant levels, re-
spectively.

Table 4.22 reports for parameter estimates of Regime Switching model for the FTSE100, S&P500

and NSE20 indices returns computed according to Equation

Xt = µξ(t) + σξ(t)rt where rt ∼ N(0, 1) for ξ(t) = 1, 2 .

All the indices returns exhibit high volatility in regime 1 than in regime 2. A comparison of volatil-

ity across regimes for the daily FTSE100, S&P500 and NSE20 indices returns is reported as σ1 =

0.0189 > σ2 = 0.0071, σ1 = 0.0196 > σ2 = 0.0070 and σ1 = 0.0166 > σ2 = 0.0050, respec-

tively. The same comparison for the weekly indices returns for the three markets infers similar trend

of volatility as that for the daily indices returns. Clearly, it can be concluded that regime 1 is high
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volatility regime with negative returns for the developed markets and high volatility and with posi-

tive regimes for the NSE20 indices returns. The transition probabilities for the volatility process to

switch from regime 1 to regime 2 are reported as 0.0098, 0.0092 and 0.0309 respectively for the daily

FTSE100, S&P500 and NSE20 indices returns. These probabilities are lower than those of switching

from regime 2 to regime 1. In fact, the probability of staying in one regime is very high, which means,

once in one regime the volatility process takes long before switching to the next regime. In general,

the probability of volatility process changing regimes from 1 to 2 is less than that of reverting back to

regime 1 implying that while in regime 1 the volatility process takes long before switching to regime

2. The duration of stay in regime 1 is reported as 102, 109 and 33 days compared to 43, 45, and 8

days in regime 2 for the daily FTSE100, S&P500 and NSE20 indices, respectively. Furthermore, it

is noted that the volatility increases as the indices returns changes frequency from daily to weekly in

the respective regimes.

Table 4.22: Regime switching estimates for indices returns

FTSE100 S&P500 NSE20
Daily Weekly Daily Weekly Daily Weekly

µ1 -0.0009 -0.0062 -0.0010 -0.0045 0.0005 0.0012
(0.0719) (0.0850) (0.0956) (0.0608) (0.4047) (0.7162)

µ2 0.0004*** 0.0018* 0.0007*** 0.0031*** 0.0001 0.0006
(0.0000) (0.0101) (0.0000) (0.0000) (0.3173) (0.3914)

σ1 0.0189 0.0432 0.0196 0.0373 0.0166 0.0453
σ2 0.0071 0.0161 0.0070 0.0144 0.0050 0.0152
P12 0.0098 0.0274 0.0092 0.0220 0.0307 0.0651
P21 0.0232 0.1101 0.0224 0.0532 0.1299 0.2122

Note: The values {µ1, σ1}and{µ2, σ2} stand for the mean and variance
in regimes 1 and 2 respectively and P12 andP21 are the transition prob-
abilities from regime 1 to 2 and from regime 2 to 1 respectively. The
asterisks *, ** & *** indicate 10%, 5% and 1% significant levels, re-
spectively.

Furthermore, the Pearson correlation coefficient which measures the strength of linear depen-

dence between any two variables is computed to investigate the relationship between volume and

stock returns. Table 4.23 shows the correlation coefficients between index returns and their corre-

sponding volume. The results disclose a negative relationship between index returns and volume for

the FTSE100 and S&P500 indices compared to the NSE20 index which reports a positive relation-

ship. These results are in agreement with the findings of the regime switching model discussed in the

earlier section.
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Table 4.23: Correlation coefficients for returns and trading volume

FTSE100 S&P500 NSE20
Daily -0.0504 -0.0364 0.0084

Weekly -0.0702 -0.1208 0.0682

4.4 Option pricing

In this section the results and discussion of the European call options pricing are presented for the

Regime-Switching, Black-Scholes and RS-GARCH models. The Black-scholes and RS-GARCH

models are as presented earlier in Equations (3.11.28) and (3.11.77), respectively, whereas the Regime-

switching model is stated as follows;

C(K,T ) = EQ[max(XT −K)|R
]
= Stϕ(d1)− e−rτKϕ(d2) where

d1 =
ln(St

K
) + rτ + 1

2

[
Rσ2

1 + (τ −R)σ2
2

]√
Rσ2

1 + (τ −R)σ2
2

d2 = d1 −
√
Rσ2

1 + (τ −R)σ2
2

4.4.1 Empirical data

The data utilized here for analysis is the daily closing price as reported in the Russell 2000, Facebook

and Google indices for the period January 2, 2013 to January 21, 2022. The indices returns, Xt , are

computed as in Equation (3.11.75). The options data utilized from the three markets is in two sets,

that is, call options prices expiring in 25 and 258 days.

4.4.2 Descriptive statistics

The basic statistics of the three indices returns are presented in Table 4.24. The daily mean returns

are positive and are reported as 0.0361%, 0.1045% and 0.0867% for the RUT, FB and GooG indices

returns respectively. This is an indication that the investment realized positive returns. Also, the vari-

ances are 0.000184, 0.000450 and 0.000255 for the RUT, FB and GooG indices returns respectively.

Further, RUT index returns has a negative skewness of −1.2381 while FB and GooG indices returns

have a positive skewness of 0.4031 and 0.4190 respectively.
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Table 4.24: Basic statistics for RUT, FB and GooG indices returns

Index Obs Mean Var Std dev. Skew Ex.Kurt JB
RUT 2280 0.000361 0.000184 0.013571 -1.238128 13.110355 25291.3∗∗∗

FB 2280 0.001045 0.000450 0.021220 0.403136 14.683610 29830.3∗∗∗

GooG 2280 0.000867 0.000255 0.015979 0.419047 6.844511 9294.8∗∗∗

Note: The asterisks *** indicate 1% significant level.

All the indices returns have an excess kurtosis greater than 3, the value for normal distribution.

This implies that the indices returns distribution has a thicker tail compared to that of normal distri-

bution and this tail thickness may be due to the temporal volatility fluctuations of the indices returns.

It is argued by Jarque and Bera (1980) that a sample drawn from a normal distribution has a skew-

ness and excess kurtosis of zero. It is thus clear that the data is not normally distributed as per the

inferences from the descriptive statistics. This is further confirmed by the JB test statistic which is

significant at 1% confidence interval. The correlation coefficients between the three indices returns

are presented in Table 4.25, and clearly there exists a significant positive relationship between them.

Table 4.25: Correlation coefficients for RUT,FB and GooG

Index RUT FB GooG
RUT 1.0000 0.4687 0.5763
FB 0.4687 1.0000 0.5809

GooG 0.5763 0.5809 1.0000

4.4.3 Empirical findings and discussion

The plots of the stock prices and returns of RUT, FB and GooG indices returns are presented in Figure

19. The common properties of financial data are evident from the three indices returns, however FB

and GooG indices returns are described by a pronounced alternating short and long spikes compared to

the RUT indices returns. The alternating short and long spikes imply existence of volatility clustering

in the underlying asset returns. The maximum likelihood estimates of the RS model are computed

according to Equation (3.11.53) and presented in Table 4.26. The parameters are different across

the two regimes, for instance, the mean in low volatility regime is 0.0008, 0.0015 and 0.0013 for

the RUT, FB and GooG indices returns respectively, which is higher than the corresponding mean

in the high volatility regime. Clearly, the low volatility regime has positive returns whereas high

volatility regime has negative returns as indicated by the values of µ1 and µ2 . This shows that the

underlying asset earns higher returns in regime 1(low volatility regime) which is associated with low
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risk as compared to regime 2(high volatility regime). The probability of switching from regime 1

to regime 2 is estimated at 0.0773, 0.2277 and 0.1931 for RUT, FB and GooG indices respectively.

These transition probabilities are very low and the implication is that, once in regime 1 the volatility

process lingers before transiting to regime 2. The average duration of stay in regime i in a single run

is computed using the expression 1
(1−Pii)

for i = 1, 2 and it is reported that once the process is in

regime 1, it stays there for approximately 12, 4 and 5 days for RUT, FB and GooG indices respectively

before switching regime. However, the volatility process stays longer in high volatility regime than in

low volatility regime approximated at 79, 19 and 24 days for RUT, FB and GooG respectively. Figure

20 to 22 shows the smoothed probabilities for the RUT, FB and GooG indices returns and clearly the

volatility process spends more time in regime 2 than in regime 1, which confirms the earlier findings

of this study.

Figure 19: Stock prices and stock returns

Figure 20: Smoothed probabilities for Russell 2000 index
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Figure 21: Smoothed probabilities for Facebook index

Figure 22: Smoothed probabilities for Google index

Table 4.26: Regime-switching(RS) model parameter estimates

Index µ̃1 µ̃2 σ̃1 σ̃2 P̃12 P̃21

RUT 0.0008 −0.0002 0.0094 0.0273 0.0773 0.0126
FB 0.0015 −0.0009 0.0141 0.0394 0.2277 0.0515

GooG 0.0013 −0.0010 0.0105 0.0306 0.1931 0.0408

Moreover, the total time spent by the Markov chain in each regime are calculated from the transi-

tion probability transition estimates presented in Table 4.26. The following Markov chains for RUT,

FB and GooG can be observed respectively follows;

Rij =

0.9227 0.0773

0.0126 0.9874

, Fij =

0.7723 0.2277

0.0515 0.9485

, and Gij =

0.8069 0.1931

0.0408 0.9485

.

It can be observed that approximately 319.56, 483.81 and 397.71 days for RUT, FB and GooG are

likely to be spent in regime one respectively, and also 1960.44, 1796.19 and 1882.29 days respectively,
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the chain is likely to spent in the second regime. Furthermore, the transition probabilities are plotted

as smoothed probabilities and presented in Figures 20 to 22, and it can be inferred that the Markov

chain spends more time in volatility regime(regime 2) than low volatility regime(regime 1). That is,

the plots of smoothed probabilities are in agreement with the computations of the total time spent in

each regime.

The RS-GARCH parameters are estimated by utilizing Equation (3.11.77) and reported in Table

4.27. The parameter estimates are significant at 5% significance level and indicate a heterogeneous

volatility process across the regimes. In each regime, the unconditional variances are different and

this is a confirmation of different volatility regimes for the underlying asset. The estimates of the

conditional mean in regime 1, ω1 , is lower than the corresponding estimates in regime 2, ω2 , that is,

ω1 < ω2 across all the indices returns. Moreover, the volatility dynamics are determined by the ARCH

and GARCH parameters, i.e, α1i and βi for i = 1, 2 respectively. A large value of βi indicates that

the shock effects to future volatility take long to die off, that is, volatility is highly persistent whereas

large values of α1i display volatility reaction to the recent changes in price. Regime 1 has a low

ARCH term and a high GARCH term and this means that the GARCH process is more reactive and

less persistent in the low volatility regime than in high volatility regime. The persistence of volatility

in each regime is calculated as α1i + βi for i = 1, 2 and for the process to be covariance stationary,

it is required that α1i + βi < 1 . The calculated volatility persistence values for RUT, FB and GooG

indices returns are reported as; α11 + β1 = 0.9633 versus α12 + β2 = 0.9764 , α11 + β1 = 0.9855

versus α12+β2 = 0.2641 and α11+β1 = 1.0986 versus α12+β2 = 0.1789 respectively. Inferences

can be made that regime 1 for the FB and GooG has high volatility persistence than regime 2 whereas

the process is explosive in the low volatility regime in the Google index. The volatility persistence is

slightly higher in the high volatility regime than in low volatility regime for Russell 2000 index.

Table 4.27: RS-GARCH model parameter estimates

Index ω1 ω2 α11 α12 β1 β2 P12 P21

RUT 7.4e-7 3.6e-5 0.0683 0.3086 0.8950 0.6678 0.3527 0.8414
FB 1.0e-7 0.0045 0.0370 0.2639 0.9485 0.0002 0.0319 0.6405

GooG 2.2e-6 0.0010 0.1401 0.1785 0.9585 0.0004 0.0398 0.3072

The estimated call option prices for some given strike prices for the RUT, FB and GooG indices

are computed based on Equations (3.11.53) and (3.11.77) and presented in Table 4.28. The strike

prices considered are for 25 and 258 days for the Russell 2000, Facebook and Google stock index

markets and their initial stock prices S0 are reported as 1987.92, 303.17 and 2601.84 respectively.
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It is assumed that the markets are risk-free and that a risk-free interest rate of 6% per annum is

utilized. It is noted that, for short-dated data the estimated option price values from the three models

are dispersed and the dispersion is large in the RUT index as compared with FB and GooG indices.

Again, the values are more or less similar for FB and GooG indices with the RS-GARCH model

reporting the least values than BS and RS models except for the RUT index. Moreover, the estimated

call option prices are significantly different from the actual market prices, however, in general the BS

call option price estimates are closest to the actual market prices than the option prices estimates of

the RS and RS-GARCH models. Therefore, it can be construed to mean that for short-dated data, the

Black-Scholes model presents better results than the Regime switching and RS-GARCH models. On

the other hand, it is revealed that for long-dated data, the estimated call option prices are more or less

similar in the three models across the market indices. However, the call options price estimates from

the RS-GARCH model are closer to the actual market prices than for BS and RS except for the RUT

index. This means that RS-GARCH model presents better results than BS and RS models for long-

dated data. Furthermore, Figure 23 and 24 presents the plots for strike prices versus the estimated call

options (from the three models) and the observed option prices in the market indices.

Figure 23: 25 days call option prices

Figure 24: 258 days call option prices
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Table 4.28: The Call Option prices

RUSSELL FACEBOOK GOOGLE
B-S RS RSG B-S RS RSG B-S RS RSG

Strike Mkt Call Call Call Strike Mkt Call Call Call Strike Mkt Call Call Call
25 days call option prices

1960 94.2 75.36 121.47 106.22 200 103.83 104.36 104.50 104.36 1600 1005.35 1011.34 1011.35 1011.34
1965 91.2 72.40 118.82 103.50 260 47.55 45.57 49.95 30.79 1825 781.55 787.67 788.17 787.67
2000 71.4 53.70 101.37 85.74 280 31.55 28.50 35.65 21.39 2300 336.9 319.83 348.68 318.38
2050 47.35 33.12 79.71 64.23 285 27.85 24.78 32.52 31.34 2340 303.55 282.90 317.49 280.83
2100 28.7 19.06 61.69 46.99 290 4.58 18.19 26.81 16.00 2450 216.65 189.41 239.63 185.17
2110 25.7 16.93 58.50 44.02 295 21.13 18.19 26.81 16.00 2500 178.4 152.39 208.40 147.20
2115 24.25 15.93 56.95 42.59 300 18.23 15.35 24.23 13.03 2600 118.05 91.55 154.14 85.25
2120 22.9 14.99 55.44 41.20 305 16.18 12.82 21.84 10.45 2650 92.7 68.21 131.09 61.91

258 days call option prices
1450 579.5 630.44 680.66 656.89 100 205.53 209.13 209.90 209.13 720 1892.15 1924.74 1924.98 1924.74
1500 537.5 586.32 645.00 618.56 105 200.85 204.43 205.42 204.42 740 1872.55 1905.93 1906.23 1905.93
1550 496 543.18 610.60 581.54 110 195.98 199.74 200.97 199.72 760 2045.55 1887.12 1887.49 1887.12
1950 214.5 254.11 382.18 337.00 115 186.40 195.04 196.57 195.02 780 2200.00 1868.31 1868.77 1868.31
1990 192.5 232.11 363.78 317.68 120 181.65 190.35 192.22 190.32 800 1793.95 1849.50 1850.07 1849.50
2000 187 226.82 359.30 312.99 125 176.9 185.67 187.92 185.62 820 1847.75 1830.70 1831.38 1830.70
2010 182 221.62 354.87 308.36 130 172.25 180.99 183.66 180.92 840 1842.75 1811.89 1812.71 1811.89
2090 143.5 183.04 321.07 273.26 135 167.45 176.33 179.47 176.23 860 2090.8 1793.08 1794.06 1793.08

The call options price estimate values reported by the three models seem to be dispersed especially

with the RUT index for short-dated data. The plots of the RS-GARCH model appear to have similar

estimates with that of the Black-Scholes model since they are closer to the actual price plot than that

of the Regime switching(RS) model. However, the Black-Scholes(BS) model presents slightly better

estimates than the RS and RS-GARCH model since the plot is closest to the actual market plot across

the three market indices. As for the long-dated data plots for the estimated call option prices, the

RS-GARCH model plot is slightly closer to the actual price plots, however, the plots for the RUT

index are a bit dispersed.

A comparison of the models is done by employing the Root Mean Square Error(RMSE) test and

the results are presented in Table 4.29. The results portray RS-GARCH model as a better model than

the Black-Scholes and RS model in estimating the 258 days option prices for Facebook and Google

indices. On the other hand, for the 25 days option prices estimation the Black-Scholes model gives

better estimates followed by RS-GARCH and RS models in that order.

Table 4.29: RMSE for the Black-Scholes, Regime-switching and RS-GARCH models

25 days options 258 days options
Index BS RS RSG BS RS RSG
RUT 5.159 21.48 11.65 29.78 160.0 115.4
FB 1.685 4.175 2.939 4.081 24.55 3.433

GooG 14.07 29.96 17.59 286.0 305.6 285.3

Therefore, the general findings is that for short-dated data, the BS model presents better options

price estimates than the RS and RS-GARCH models. On the other hand for the long-dated data, the

RS-GARCH model is slightly better than the BS and RS models. Furthermore, it can be argued that
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when the Regime switching model is adjusted to include GARCH effects it gives a better pricing

model since in both short and long dated data, the RS-GARCH model performs better than the RS

model.
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

It is reported in the previous literature on financial time series modeling that stock returns, volatility

and trading volume have a paramount relationship. The knowledge of this relationship gives infor-

mation about the micro-structure of financial markets. It also aids in determining the rate at which

information enters the market and its impact on stock returns. The empirical studies on the stock re-

turns, volatility and trading volume relationships have reported blended results, for instance, whereas

some studies found a positive association between stock returns and volatility, others found a negative

correlation. In addition, most of these empirical studies have dealt much on developed stock markets

as compared to the emerging stock markets and this leaves inadequate literature for the emerging

stock markets. It is further noted that the random arrival of information into the market causes varia-

tions in stock prices which in turn leads to changes in trade volume. When trade volume is included

in the conditional variance of the GARCH equation, it can be utilized as an exogenous variable to

explain the effect on volatility persistence.

The goal of this study is to model the dynamic and contemporaneous linkage between volatil-

ity, stock returns, and trading volume of the developing and developed stock markets. Additionally,

volatility dynamics of stock returns is explored since it is considered an essential factor in many eco-

nomic and financial fields like price assets, risk management and portfolio allocation. Many financial

markets experience drastic structural changes in stock prices and this leads to a changing volatility of

the financial market and the change is also persistent. This pattern of behavior of volatility makes it

not easy to be estimated, however, once estimated it may be utilized to determine future stock prices

and in pricing options. To model this dynamics of the underlying financial assets and the structural

changes in volatility, GARCH model and its extensions and regime switching model are utilized. Fur-

thermore, the study investigates the impact of incorporating trading volume into the GARCH model’s

conditional variance equation on volatility persistence. Another issue addressed by this study is the

European option asset pricing which has been widely dealt with by utilizing Black-Scholes model.

A regime-switching (RS) model for the European option pricing is developed for an underlying asset

whose dynamics depend on market regimes. The formulation of the model is founded on a geomet-

ric Brownian motion governed by a continuous-time Markov chain with two states. The model is

further modified to include GARCH effects which results to a RS-GARCH model. These two mod-
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els are implemented by utilizing stock market indices and call option data to estimate the European

call prices. The estimated European call option prices of these two models are compared with the

Black-Scholes’ European call option price estimates in a bid to establish the validity of the European

regime-switching option model.

The results reveals that the behavior of the three indices returns and volume have the common

properties of many financial time series. A considerable level of excess kurtosis is exhibited and

this can be related to the time-dependence in conditional variance and the asymmetric distribution of

returns. The asymmetric behavior in the conditional variance can be attributed to leverage effects.

These two properties are an indication of non-normality of the indices returns and volume series and

existence of conditional heteroscedasticity. The non-normality of the data series is confirmed by the

JB- statistic and the empirical density plots which are different from that of normal distribution as

well as the quantile-quantile plots. In addition, there is strong evidence of the common stylized facts

of financial time series, for instance, clustering of volatility, leptokurtic distribution, heavy tails and

leverage effects. The distribution of indices returns from developed markets is skewed to the left

whereas that of emerging market is skewed to the right.

The stock market dynamics and the contemporaneous relationship between stock returns and trad-

ing volume is further investigated by utilizing GARCH model and its extensions. The estimates of

GARCH (1,1) model reveals that the weekly conditional returns volatility tends to revert quickly

towards the mean compared to the daily conditional volatility, that is, the volatility persistence de-

creases as the data changes frequency from daily to weekly returns. In addition, the developed market

is characterized by high volatility clustering and volatility persistence when compared to the emerging

market indices. That is, large changes in volatility tend to be succeeded by large volatility changes

of either sign or low volatility changes by low changes, and shocks to conditional variance takes

long time to die off in developed markets than in emerging markets. The ARCH term, α1 is large

in the emerging market than in developed market which indicates that stock returns volatility in the

emerging market is much affected by past volatility than by the related news from the previous period

compared to the developed market.

The estimates of GARCH-M (1,1) model show that the indices returns and their corresponding

volatility are positively related as indicated by the positive risk parameter. The positive risk parameter

also implies that the mean of return depends largely on past innovations and conditional variance.

Moreover, the developed markets has high volatility clustering and a high persistence of volatility

than the emerging market. The volatility persistence decreases as the data changes frequency from
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daily to weekly.

The results of estimates of EGARCH (1,1) parameters reports no leverage effects in the return se-

ries but the returns are asymmetric which implies that the impact of negative news does not outweigh

positive news. The ARCH coefficient value is negative and this is an indication that the volatility rises

more after negative returns than after positive returns. It is observed that the volatility asymmetry is

large in emerging market than in developed markets and this shows that volatility is increased by

positive shocks than by negative shocks in emerging market than in developed markets. In addition

the results reveal that the stock returns and the conditional volatility have a positive relation.

In order to model the market regime dynamics, the MS-GARCH (1,1) and MS-EGARCH(1,1)

models are fitted to the data. The MSGARCH (1,1) results reports existence of regimes that are het-

erogeneous and this is implied by different parameter values across the regimes. The results indicate

that all the daily and weekly indices returns across the three markets are characterized by low volatil-

ity clustering in the first regime as opposed to high volatility clustering in the second regime. In

general, the two regimes are described by a heterogeneous conditional volatility, volatility persistence

as well as varied reaction to the previous negative returns. Furthermore, it is noted that the volatility

process stays in one regime for a long time before switching to the next regime as reported by high

state probabilities. This also means that the volatility process reverts back from regime 2 to regime 1

at a higher rate than it enters the regime. The results of MS-EGARCH (1, 1) parameter estimate show

that regime 1 for the daily and weekly returns is characterized by high conditional volatility, strong

volatility reaction to past negative returns and low volatility persistence. Regime 2 on the other hand

exhibits low conditional volatility, weak volatility reaction to past negative returns and high volatility

persistence. The results reports leverage effect (this is not reported by EGARCH (1, 1) model results)

in all indices returns and across the regimes. The leverage effect is an indicator of risk associated with

trading in the stock markets in question. It is also revealed that the indices returns and conditional

volatility are positively related in the two regimes. In addition, it is reported that the volatility process

stays in one regime for a long time before switching to the next regime.

The change on volatility persistence of the three market indices after inclusion of lagged trade

volume into the GARCH model is investigated. The volatility persistence reported by the GARCH

(1,1) model before and after inclusion of log volume are compared. The general finding is that for

the daily indices returns the volatility persistence decreased in both developed and developing mar-

kets. However, the normal and student-t distributions reports contrary findings for the FTSE100 and

NSE20 indices returns respectively. It is noted that the volatility persistence decreased for the weekly
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S&P500 index returns whereas it increased for the FTSE100 and NSE20 indices returns. Therefore it

can be argued in general that inclusion of log trading volume on GARCH(1,1) model reports mixed

results when data changes frequency from daily to weekly indices returns. Moreover, the volatility

persistence slightly decreases on addition of volume into the GARCH-M model’s conditional vari-

ance equation in daily indices returns for both developed and developing markets although the results

reported by GED distribution are different. As for the weekly returns, the persistence slightly in-

creases and arguably trade volume explains volatility in both developed and developing markets and

that trade volume and indices returns are positively related. Also, inclusion of trading volume in the

conditional variance equation of EGARCH model does not reduce the volatility persistence but in-

stead it increases, however, the asymmetry of volatility is decreased for both daily and weekly indices

returns across the markets. Also, the volume parameter δ is positive which implies that trade volume

has no significant explanation of volatility and that trade volume and volatility are positively related.

Further, it shows that bad news has more impact on conditional volatility than good news and this

indeed means the market is characterized by volatility asymmetry. Thus information flow into the

market is affected by trading volume in addition to trade volume being important in prediction of

volatility dynamics across the two categories of markets.

The stock returns, volatility and trade volume dynamic relationship is investigated by implement-

ing the Regime switching (RS) model on the developed and emerging stock market indices data.

The results reveal that regime 1 of the developed market indices is described by high volatility and

negative returns whereas that of emerging market by high volatility and positive returns. A negative

association between stock returns and log volume is revealed in regime 1 of the developed market

and stock returns and log volume are observed to be positively correlated in regime 1 in the emerg-

ing market. Regime 2 of both developed and developing markets reports low volatility and positive

returns for both daily and weekly indices returns. Moreover, stock returns and log trade volume are

negatively related for all market indices except for the daily NSE20 indices returns. It is also observed

the volatility process lingers in regime 1 before crossing to regime 2 than it takes to fall back once it

has entered regime 2.

The relationship between the indices returns and the corresponding trade volume is also carried out

using the Pearson correlation coefficient test. The results reveal that stock returns and trading volume

from the developed markets are negatively related whereas for emerging market the relationship is

positive. This finding supports the results of the Regime Switching(RS) model presented in our

earlier discussion which reported that stock returns and trading volume have a negative relationship
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in the developed market indices in both high and low volatility regimes and a positive relationship in

the emerging market index.

This study also derived a regime-switching model for pricing European call options which al-

lows the volatility process to follow a regime-switching process that is governed by a Markov chain

process. The model is further modified to incorporate GARCH effects in the regimes so as to price

the European call options. The implementation of the models is carried out in pricing the European

options derived from the Russell 2000, Facebook and Google market indices for both short and long

dated options. A model comparison is done by calculating the Root Mean Square Error (RMSE) for

each model and the model with the least RMSE is the best model for pricing the European call options.

The results indicate that the financial time series for the three markets exhibit the common stylized

facts of financial data such as volatility clustering, heavy tails among others. The parameter estimates

of the models indicate that the market indices have distinct regimes. In this case two regimes are

used, high and low volatility. It is clear that the low volatility regime has high volatility persistence

for Facebook and Google markets, whereas, the volatility process is explosive in low volatility regime

for Google market index. The results show that RS-GARCH is the best model compared with Black-

Scholes and RS models when applied to long-dated options contract. However, when short-dated

options contract are used, Black-Scholes model out performs the RS and RS-GARCH models.

5.2 Recommendations

The following recommendations are made based on our discussions and findings.

• The dynamics of the underlying asset was carried out using regime switching models with

two regimes. Moreover, the dynamic relationship between stock returns, volatility and trading

volume was carried out using a regime switching model with two regimes. We recommend

modeling the stock market dynamics and this relationship using a regime switching model with

more than two regimes.

• A regime switching model for pricing options with two regimes was derived and implemented,

hence we recommend a case for more than two regimes.

• A RS-GARCH model was found to outperform both regime switching and the Black-Scholes

models in pricing long-dated data. We recommend more research using different data sets in

order to support the findings in this study.
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Appendix B: Some R codes used in data analysis

R codes for RUSSELL 2000 index 25 days options

R codes for Facebook index 25 days options

R codes for Google index 25 days options
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R codes for Density/Q-Q plots
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