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Vegetation cover and composition are important aspects of the dryland environ-
ment because they provide livelihood to humans and also protect soil resources
against erosion. Currently, scientists are advancing various techniques for detect-
ing vegetation degradation in the drylands and the possibilities for its control. This
study contributed through the testing of time-series mixed-effects modelling of the
normalized difference vegetation index (NDVI) and rainfall relationship to trace
the footprints of vegetation dynamics in the drylands. The approach aimed at pro-
viding guidelines for quick diagnosis of the changes in vegetation cover and com-
position to trigger necessary action. The mixed-effects technique used in this study
is a novel regression approach for simultaneous modelling of the NDVI–rainfall
relationship in different dominant vegetation types. Its time-series application with
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI images between 1982 and 2008 was
tested in eastern Kenya. The results show how the original dominant vegetation
types had been converted to cereal croplands, open grasslands, or reduced to bare
ground in a span of 27 years. In some places, it shows how the changes in vegeta-
tion composition resulted in the overall loss of vegetation cover. Field validation
positively confirmed these observations; thus, indicating that the method was a
promising tool for tracing vegetation dynamics in the drylands. In spite of its suc-
cess, the method was found to be only useful in detecting changes in large areas
with dominant vegetation types. The technique can therefore be recommended for
regional analysis, and can be used as a first approximation to guide more detailed
subsequent analysis.

1. Introduction

Vegetation is an important aspect of dryland ecosystems. This is because it buffers
the soil against erosion, improves the air quality and is also a major source of human
livelihood in terms of food, shelter, fuel, pasture for livestock, medicine and income
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workshop was organized by Somalia Water and Land Information Management (SWALIM)
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6026 C. T. Omuto

(O’Connor et al. 2001, Dregne 2002, Ludwig et al. 2004, Karnieli et al. 2008, Vilela
et al. 2009). Although the dryland vegetation is important and should be protected, its
coverage has been variously reported in the literature to be rapidly declining (Dregne
2002, Obua et al. 2006). Data collected from many parts of the world by the Food and
Agriculture Organization (FAO) of the United Nations show that its coverage has had
a gross decline by millions of hectares since 2000 due to human activities (FAO 2007).
Many countries, which have been alarmed by such reports, are instituting policies to
conserve/restore their dryland vegetation (Imbernon 1999). This is a positive step that
needs to be guided by scientific evidence all the way through policy recommendations,
formulations and implementations.

Application of remote sensing is one of the widely used approaches for providing
scientific evidence of the environmental change. Its ability to detect changes on the
Earth’s surface has helped scientists to understand vegetation-cover dynamics and to
support the development of land-use/cover policies (Liang 2004). To date, the applica-
tion of remote-sensing indices in vegetation has dominated the methods for assessing
and monitoring changes in vegetation cover. Liang (2004) and Baugh and Groeneveld
(2006) have discussed these indices and their applications in various circumstances.
Normalized difference vegetation index (NDVI) is one of these indices, with wide
applications in the drylands. This is because of its readily available time-series data and
its simplicity and robustness, which make its application repeatable in other locations
(Tucker et al. 2005). Apart from its effectiveness in predicting the surface properties
when vegetation canopy is not too dense or sparse, the NDVI also has a good cor-
relation with rainfall, which is one of the limiting factors for growth of the dryland
vegetation (Evans and Geerken 2004, Baugh and Groeneveld 2006).

There is a plethora of publications in the literature using the NDVI to monitor
vegetation-cover dynamics (Xie et al. 2008). However, recent research indicates that
there is still untapped potential for the NDVI, which could be useful not only in mon-
itoring changes in vegetation cover, but also in vegetation composition (Evans and
Geerken 2004, Wessels et al. 2007, Balaghi et al. 2008). They suggest that concur-
rent time-series modelling of the NDVI and climatic data to account for the harmonic
relationship between these two quantities can yield time-series residuals that are highly
correlated with human-induced changes in vegetation cover (Wessels et al. 2007). This
approach is currently in application for tracking vegetation-cover loss as an index of
human-induced land degradation (Bai et al. 2008). While the residuals from such mod-
elling have proven useful in diagnosing changes in vegetation cover, other modelling
parameters have not been emphasized. The objective of this study was to analyse the
parameters of time-series modelling of the NDVI–rainfall relationship to find out if
they could be important in diagnosing changes in vegetation cover and composition.

2. Potential of the time-series NDVI–rainfall relationship in detecting
vegetation dynamics

The NDVI and rainfall have been shown in the literature to have a harmonic
relationship, which can be generally written as:

y = f (x, m, c) + e (1)

where y is the vector of the NDVI from different locations in a study area, x is the
corresponding vector of rainfall, f is the mathematical function for the relationship
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Figure 1. Example of simple linear model for annual maximum NDVI response to annual
rainfall amounts in the Upper Athi River basin in eastern Kenya.

between the NDVI and rainfall and e is a vector of the difference between the predicted
and remotely sensed NDVI. Some authors have found a simple linear model for f
(du Plessis 1999, Evans and Geerken 2004), while others have shown that it can also be
a non-linear model (Prince et al. 2007). Whichever model type it is, f contains at least
two fitting parameters (m and c), which are related to the vegetation–rainfall char-
acteristics. As an illustration, consider a simple linear model for the NDVI–rainfall
relationship shown in figure 1. It contains a parameter m representing the slope and
another parameter c for the y-axis intercept (figure 1). The slope, which is the ratio of
the change in the NDVI to the corresponding change in rainfall, is an index of the rate
of the NDVI response to rainfall. It is a potential indicator of how fast the vegetation
responds to rainfall. The parameter c, which is the intercept, is the minimum NDVI
when rainfall is very low. It is a possible indicator of the minimum NDVI during dry
periods.

By using the modelling parameters m and c for different vegetation types in a
study area, it is possible to identify vegetation types with high NDVI during dry or
wet periods and those that respond quickly/slowly to rainfall. It may be possible to
detect significant changes of the dominant vegetation types in the study area based on
changes in the intercept and slope parameters, especially if the modelling is temporally
repeated for each location in a study area. This study tested this hypothesis in detecting
changes in vegetation composition in the Upper Athi River basin in eastern Kenya.

Apart from using the NDVI–rainfall relationship to detect the changes in vegeta-
tion composition, the relationship was also used to assess the changes in vegetation
cover. The approach of using the trend of time-series residuals from the NDVI–rainfall
model, which was developed by Evans and Geerken (2004) and later improved
by Wessels et al. (2007), was applied in this study. According to this approach, a

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
N

ai
ro

bi
 L

ib
ra

ry
] 

at
 0

1:
40

 0
6 

Ja
nu

ar
y 

20
12

 



6028 C. T. Omuto

–0.02

–0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1977 1982 1987 1992 1997 2002 2007 2012

NDVI duration (years)

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 a

c
tu

a
l 
a
n
d
 r

a
in

fa
ll-

p
re

d
ic

te
d
 N

D
V

I Increasing trend 

Decreasing trend

Figure 2. Example of time-series trend of residuals from NDVI–rainfall modelling for
detecting changes in vegetation cover.

significant gradual increase of the residuals in a given area over time is taken to indi-
cate an increase in vegetation cover, while a gradual decrease indicates a decline in
vegetation cover. In order to use this approach, the NDVI–rainfall relationship for a
particular area is first modelled, and then its residuals are extracted. The process is
repeated over time, and the trend of the residuals analysed for any gradual increase
or decrease. Figure 2 shows examples of two locations in the Upper Athi River basin.
Analysis of their NDVI–rainfall relationship gave residuals with an increasing trend
between 1982 and 2007 for one location, and a declining trend for the other location
during the same period.

In the application of the residual trends to assess changes in vegetation cover, the
significant increase of the residuals implies that the oscillations of vegetation dynamics
gradually increase above the corresponding climatic oscillations. Since the NDVI and
climate are assumed to have a harmonic relationship, unequal increase of the NDVI
signals above those for climate in a given area may be explained by a possible increase
in vegetation cover (due to forestation, etc.) (Evans and Geerken 2004, Wessels et al.
2007). Similarly, areas with declining residuals may be those in which declining vege-
tation cover oscillated below the corresponding climate signals. This study also tested
the potential of these residuals trend in monitoring changes in vegetation cover.

3. Materials and methods

3.1 Study area

The study was carried out in the Upper Athi River basin in eastern Kenya. The study
area stretches from latitude 1◦09′ to 1◦59′ S and from longitude 36◦56′ to 37◦45′ E,
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Remote sensing of vegetation cover and composition 6029

Figure 3. The study area (latitude 1◦09′ to 1◦59′ S, longitude 36◦56′ to 37◦45′ E) and some
common vegetation types. The photographs were taken between 12 and 30 May 2008.

and covers 4513 km2 (figure 3). It is almost flat (slope <2%) in the midland areas
(altitudes 1000−1500 m above sea level (a.s.l.)), gently sloping (2% < slope < 20%) in
the lowlands (<1000 m a.s.l.) and has steep slopes (>20%) in the uplands (>1500 m
a.s.l.). More than 50 years ago, the high-altitude areas were covered with indigenous
broadleaved deciduous forests, the midland areas dominated by herbaceous vegeta-
tion and savannah shrubs in the lowlands (Ojany and Ogendo 1973, Jaetzold and
Schmidt 1983, Tiffen et al. 1995, Omuto 2008). However, some of these original land-
cover types have already been converted to croplands, others developed for human
settlement and others replanted with Eucalyptus trees or reduced to open grasslands
(figure 3). These changes in vegetation make the study area a good candidate for
testing the potential of time-series remote sensing in detecting changes in vegeta-
tion cover and composition. The area has a bimodal rainfall pattern in which 60%
of annual rainfall falls between March and June and the remaining 40% between
October and December. In general, about 67% of the area will receive less than 800 mm
of rainfall on average in a year. These are the areas where the altitude is less than
2000 m. The remaining 33% of the area receives an average annual rainfall amount
of 1100 mm, which is mainly in the mountainous areas (where altitude >2000 m).
Although the high-rainfall highland areas were covered with forest vegetation, their
proportion was low in comparison to the lowland areas (figure 3). The study area
therefore provided a large range in vegetation cover within which the method could be
evaluated.
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6030 C. T. Omuto

3.2 Data

The data used for assessing vegetation dynamics were time-series NDVI images,
rainfall amounts and a land-cover map. The NDVI images comprised 10 day
composite maximum Advanced Very High Resolution Radiometer (AVHRR) images
from January 1982 to December 2008 and 16 day composite maximum Moderate
Resolution Imaging Spectroradiometer (MODIS) images from January 2000 to
December 2008. The AVHRR images had a spatial resolution of 8000 m and were
downloaded from http://earlywarning.usgs.gov/adds/datatheme.php on 8 January
2009. The MODIS images had a spatial resolution of 250 m and were downloaded
from http://pekko.geog.umd.edu/usda/apps on 2 February 2009. The MODIS
images were used to test if the spatial resolution could influence the accuracy of the
proposed method. All NDVI images were already geometrically corrected, and only
minor adjustments were made to convert the image digital numbers to NDVI val-
ues, as recommended in the accompanying metafiles. These adjustments were done
using ILWIS software (Koolhoven et al. 2007). Figure 4 shows box-plot summaries of
the average NDVI for the whole study area and selected samples of the mean annual
NDVI images. The summaries were obtained using R Computing Environment soft-
ware (R Development Core Team 2008). The image samples not only showed that
there were higher NDVI magnitudes in 1982 or 2000 than in 2008, but also gave the
impression of how the NDVI characteristics spatially varied in the study area.
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Figure 4. Preliminary analysis of time-series annual maximum NDVI in the Upper Athi River
basin in eastern Kenya. The numerical signposts are arranged as follows, from bottom to top:
minimum, first quartile, second quartile, third quartile and maximum. Open circles are extreme
values.
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Remote sensing of vegetation cover and composition 6031

Figure 5. Preliminary analysis of time-series annual rainfall amounts in the Upper Athi River
basin in eastern Kenya. The numerical signposts are arranged as follows, from bottom to top:
minimum, first quartile, second quartile, third quartile and maximum. Open circles are extreme
values.

The time-series rainfall data were monthly rainfall amounts for 52 recording sta-
tions in the study area (figure 3). The rainfall records were from January 1982
to December 2008 and were obtained from the Kenya Meteorological Department
(www.meteo.go.ke). A box-plot summary of the rainfall data is given in figure 5.

Although the annual mean NDVI and cyclical rainfall patterns in figures 4
and 5 looked similar, further preliminary analysis of their harmonic relationships
was carried out using monthly standardized anomalies. These anomalies were used
because they can remove seasonal variations and short-term biases, which can mask
important patterns in a time-series signal (Nikken 1999). They were determined
using:

standardized anomalyij =
(
zij − z̄j

)

σzj

, i = 1, 2, . . . , 27, j = 1, 2, . . . , 12 (2)

where zij is the mean monthly rainfall amount/NDVI for month j in year i, z̄j is
the long-term mean monthly rainfall amount/NDVI and σ zj is the standard devia-
tion for the monthly rainfall amount/NDVI. Equation (2) was implemented in the R
Computing Environment software (R Development Core Team 2008). The anomalies
showed that the NDVI and rainfall signals seemed to have had a harmonic relationship
between 1982 and 1999 (figure 6). However, after 1999, the NDVI signals generally
dipped in spite of the available rainfall. This unique response was perhaps due to the
changes in vegetation characteristics around this time. Although some authors using
similar time-series NDVI data have argued against satellite sensor artefacts in the data
(Kaufmann et al. 2000, Tucker et al. 2005), the possibility of sensor-related problems
was also not totally ignored as having contributed to the observed unique dipping of
the NDVI.

The land-cover map consisted of 13 dominant vegetation types mapped at a scale of
1: 100 000. It was developed by Africover in 1998 (www.africover.org, downloaded on
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6032 C. T. Omuto

Figure 6. Time-series anomalies for NDVI and rainfall.

2 January 2009). A summary of vegetation types in the map is given in table 1, where
it shows that most of the study area was already cropland by 1998. The indigenous
forest (mostly deciduous broadleaved trees) on the highlands and woodland vegeta-
tion (mainly Acacia trees) in the midlands of this land-cover map were also observed
by Owako (1971) and Ojany and Ogendo (1973) in the late 1940s. It was therefore
likely that these vegetation types had remained intact between the late 1940s and 1998.
Similarly, the wooded grassland and some parts of grassland observed in 1998 in the
south of the study area (in what is locally known as the Kapiti planes) were also noted
by Jaetzold and Schimdt (1983) and Ojany and Ogendo (1973). Again, they could
also be assumed to have remained intact between the 1970s and 1998. All these areas
with intact vegetation provided the necessary control for checking the accuracy of the
proposed method.

In addition to the time-series NDVI and rainfall data, this study also used the
90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)
to extrapolate monthly rainfall amounts for facilitating pixel-based analysis of the
NDVI–rainfall relationships. The DEM was used in extrapolating rainfall amounts
because of the known relationship between rainfall amounts and altitude in east
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Remote sensing of vegetation cover and composition 6033

Table 1. Vegetation types in the study area and their general classification.

Africover Dominant Vegetation
Code description vegetation type class Area (%)

1 Continuous closed to very
open herbaceous
vegetation

Grass and forbs Grassland 7.5

2 Medium to high thicket
with emergents

Commiphora spp. Bushland 0.7

3 Medium to high shrubland
with open medium to tall
herbaceous and
emergents (65–40%)

Grevillea spp. Dry shrubland 6.4

4 Forest with shrubs Eucalyptus Forest 3.7
5 Woodland with shrubs Acacia spp. Woodland 9.1
6 Broadleaved deciduous

woodland with open
herbaceous layer and
sparse shrubs (65–40%)

Podocarpus,
Grewia, Premna
and Combretum
spp.

Indigenous
forest

9.2

7 Open woody vegetation
with herbaceous layer

Balanites and
Rhus spp.

Wooded
grassland

6.8

8 Closed to very open
herbaceous vegetation
with sparse shrubs on
temporarily flooded land.
Water quality: fresh water

Lantana spp. Wet shrubland 0.4

9 Industrial and/or other
area(s)

Bare 0.3

10 Rain-fed herbaceous crop(s) Cereals Cereals 52.3
11 Rain-fed herbaceous crop(s)

dominant crop: industrial
crops – sisal (agave spp.)

Sisal Sisal 0.3

12 Permanently cropped area
with rain-fed shrub
crop(s). Dominant crop:
fruits and nuts –
pineapple (Ananas
comosus (L.) Merr.).
Crop cover: orchard(s)

Banana /
Pineapple

Shrub-crops 0.3

13 Permanently cropped area
with rain-fed shrub
crop(s). Dominant crop:
beverage – coffee (coffea
ssp.). Crop cover:
orchard(s)

Coffee Coffee 0.6

14 Permanently cropped area
with small-sized field(s)
of rain-fed tree crop(s)
(one additional crop)
(herbaceous terrestrial
crop with simultaneous
period). Crop cover:
orchard(s)

Mangoes/Pawpaw Tree-crops 2.6
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6034 C. T. Omuto

Africa (Omuto 2008, Omuto and Vargas 2009). The DEM was downloaded from
http://srtm.usgs.gov on 15 December 2008. Its application in extrapolating rainfall
amounts was achieved through the regression kriging method (Hengl et al. 2007,
Omuto 2008). To check the extrapolation accuracy, a holdout cross-validation was first
carried out. Then the entire dataset for the month was used to produce the image of the
rainfall amount for that month. The cross-validation tests involved using 2/3 of each
month’s rainfall amount for extrapolation and testing the output on the remaining
1/3. Its results showed that the correlation between the actual and predicted monthly
rainfall datasets were between 70–90% (figure 7).

3.3 Time-series modelling of the NDVI–rainfall relationship

Before application of the mixed-effects modelling, the NDVI and rainfall statistical
characteristics (annual maximum or minimum, semi-annual mean, coefficient of vari-
ation, etc.) were first determined. The statistical characteristics for the NDVI were
then correlated with the corresponding rainfall characteristics to identify the best
combination that could give the highest Pearson correlation for most pixels in the
study area. After testing all NDVI and rainfall statistics, the 6 month (or 0.5 year)
maximum NDVI and 6 month accumulated rainfall were found to give the highest
correlation (>0.72%) for over 90% of the pixels in the study area. The spatial and
temporal distributions of the 6 month maximum NDVI and corresponding rainfall
amounts were also found to be nearly the same. Thus, a linear model was chosen
for equation (1). This linear model was then analysed with the mixed-effects mod-
elling for different vegetation types from the land-cover map (Pinheiro and Bates 2000,
Omuto et al. 2006).

Mixed-effects modelling is a unique regression analysis that simultaneously deter-
mines the average regression parameters for an entire population and parameters for
individual groups (e.g. vegetation types) in the population. The approach behaves like
a hybrid regression of a single model for the whole landscape, on the one hand, and
multiple models for each group in the landscape, on the other hand. Consequently,
it integrates the advantages of these two modelling extremes and gives very robust

Figure 7. Correlation between time-series predicted and measured monthly rainfall amounts.
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Remote sensing of vegetation cover and composition 6035

statistical estimates (Pinheiro and Bates 2000, Omuto et al. 2006). Its modelling
representation of equation (1) is:

yi = fi(x, φ) + ei

φi = Dβ + Bbj i = 1, 2, 3, . . . , 13 (3)

bi ∼ N(0, ψ), ei ∼ N(0, σ 2)

where i is the number of vegetation classes in the land-cover map, φ is the vector of
regression parameters, N is the symbol of normal distribution, σ is the standard devi-
ation, β is a vector of the whole study area average estimates of the model’s slope
and intercept (also known as fixed effects), b is a vector of random deviations of the
slope and intercept in each vegetation class around the fixed effects (also known as
random effects), D and B are design matrices for solving equation (3) and ψ is a
variance–covariance matrix for the random effects (Laird and Ware 1982). Pinheiro
and Bates (2000) and Omuto et al. (2006) have given detailed information on how to
solve equation (3) and obtain its regression parameters. In this study, the solution was
implemented using the R Computing Environment software (R Development Core
Team 2008).

Equation (3) was determined for every 6 months from January 1982 to December
2008. Its resultant time-series residuals were used to determine the change in vege-
tation cover while the time-series random effects were used to assess the temporal
change in vegetation composition. For the random effects, their time-series similari-
ties or differences between the vegetation classes were used to identify the time when
the vegetation composition changed and possible changes between different vegeta-
tion types. The assumption used was that the concurrent time-series patterns of the
random effects implied similar vegetation types, while separate time-series patterns
implied different vegetation types. The general framework given in figure 8 was used
to implement these analyses. Validation of the results was carried out by comparing
two photographs/high-resolution images of the same area taken at two different dates.

4. Results

4.1 The NDVI–rainfall model parameters

Mixed-effects modelling estimated the regression parameters for the NDVI–rainfall
relationship in every dominant vegetation type in the study area. Figure 9 shows an
example of its output in the first half of 1994. It shows the population average esti-
mates of the regression parameters (i.e. intercept = 0.4490 and slope = 0.0007) and
regression parameters for indigenous forest, grass and Acacia vegetation types. The
regression parameters for these vegetation types were estimated as random deviations
from the population average estimates; hence, they were known as random effects. The
estimation was carried out such that vegetation types with regression parameters lower
than the population averages had positive random effects, while vegetation types with
parameters higher than the population average estimates had negative random effects
(Pinheiro and Bates 2000). For example, random effects for the intercept parameters
were positive for grass (0.0785 = 0.449 – 0.3705) and Acacia (0.0308), because their
curves were lower than the population average, while that for indigenous forest was
negative (–0.0688), because its curve was above the average curve (figure 9). Where
the random effects were zero implied that the model characteristics for that vegetation
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Figure 8. Conceptual framework for time-series mixed-effects modelling for detecting vegeta-
tion dynamics.

type were similar to the population average. This is illustrated in figure 9 for the slope
parameter for indigenous forest and Acacia, which had parallel curves to that of the
population average.

The random effects from the NDVI–rainfall modelling were obtained for different
dominant vegetation types from 1982 to 2008 (figure 10). The results show that the
random effects for the intercept parameter for areas without vegetation (bare), cereals
and grass were mostly positive (figure 10). Since the intercept parameter in the NDVI–
rainfall relationship was used to reflect the minimum NDVI during dry periods, its
random-effect results among bare areas, grass and cereals imply that these vegeta-
tion types often had the lowest NDVI signals during dry periods. As for banana, sisal
and indigenous forest, their intercept random effects had the highest negative values;
implying that they remained fairly green throughout the years. In terms of the slope
parameter, grass, coffee, cereals and Lantana camara had the largest negative random
effects (figure 10). Like the intercept, the slope parameter was used to reflect the rate of
vegetation response to rainfall. Hence, its random-effect results among grass, coffee,
cereals and L. camara suggest that these vegetation types had the fastest response to
rainfall in the study area. Other vegetation types such as Acacia and Commiphora had
near-zero random effects and were likely to have had the average response to rainfall
and the average NDVI during dry periods in the study area.

4.2 Change in vegetation composition

The estimated random effects from the NDVI–rainfall relationships varied both in
time and space. For example, the intercept random effects were largely negative
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Figure 9. Example of mixed-effects output for the NDVI–rainfall relationship.

among the highland vegetation (altitude >2000 m) most of the time between 1982
and 1988 (figure 11(a)). Since they indexed the minimum NDVI during dry peri-
ods, it could be said that the highlands remained vegetated between 1982 and
1988. After 1988, the intercept random effects fluctuated far below 0, which implied
that, although the original highland vegetation seemed to have changed, they still
remained vegetated. For the lowland vegetation, the intercept random effects were
mostly positive, while the slope random effects were negative. Furthermore, their
time-series oscillations kept changing from positive to negative without any definite
pattern. This implies that the lowland vegetation had the most remarkable change
in vegetation composition between 1982 and 2008 in comparison to the highland
vegetation.

Further pixel-by-pixel assessment of the time-series pattern of the random effects
was carried out to establish the performance of the mixed-effects parameters in detect-
ing changes in vegetation composition. As an example, the time-series random effects
for three different locations in the study area (Ndulaya, Manyani and Syomuunyu)
were extracted and graphically analysed (figure 11(b)). In the land-cover map, the three
locations fell under Balanites aegyptiaca. Their random effects coincided between 1982
and 2002, implying that they all had B. aegyptiaca as the dominant vegetation during
this period. After 2002, the random effects in Ndulaya began deviating from their
counterparts in Manyani and Syomuunyu. The deviations were quite pronounced
between 2003 and 2005, minimal in 2006 and then increased again after 2006 (fig-
ure 11(b)). These deviations imply change of the NDVI response to rainfall, perhaps
due to change in vegetation composition from B. aegyptiaca to another dominant
vegetation type.
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Figure 10. Random effects for the NDVI–rainfall relationship in the study area at different
times between 1982 and 2008.

In another example, the random effects at Iiuni in the southeast of the study were
also graphically analysed. The area had been classified as small plots of maize crops
in the land-cover map by Africover (www.africover.org) in 1998. A time-series pattern
of its random effects showed that, between 1982 and 1995, it had oscillations similar
to those for grass in its neighbourhood areas. After 1995, the random effects deviated
from the characteristics for grass and behaved like the characteristics for maize crops
(figure 12(a)). This pattern was positively confirmed with digital photographs of the
area taken with nearly similar backgrounds in 1996 and 2008 (figure 12(b)). The pho-
tographs and the classification by Africover corroborate the results obtained from the
time-series pattern of the random effects.

The above pixel-by-pixel assessment of the time-series random effects was done for
all vegetation types in the study area. The results show that the majority of changes
in vegetation composition consisted of transitions to grass, crops (mainly cereals) and
Eucalyptus in some places. In the central and eastern parts of the study area, most
changes involved movement from Acacia and Commiphora to cereal crops. In the
northwest and southeast, the changes were mainly from tree vegetation to grass. There
were a few changes in the highlands (in the west, north and south) and mainly involved
change from indigenous forest to Eucalyptus trees. This was likely because most high-
altitude areas had been demarcated by the Kenyan government as protected forests in
the late 1980s and later reforested with Eucalyptus (Tiffen et al. 1995).

Although the above time-series analysis of random effects using AVHRR NDVI
images seemed to identify changes in vegetation composition, there were cases that it
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Figure 11. Integral analysis of random effects for detecting change in vegetation composition.

Figure 12. Validation of mixed-effects output for the NDVI–rainfall relationship in Iiuni.
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6040 C. T. Omuto

Figure 13. Comparison of mixed-effects output for the NDVI–rainfall relationship in Sengani
and Kilungu.

did not properly identify. For example, a polygon of Acacia in Sengani in the north of
the study area had mixed responses in which the time-series random effects alternated
between those for grass, Acacia and bare ground (figures 13(a) and (c)). Similarly,
in Kilungu in the south, an area with mangoes and maize crops also had the time-
series random effects, which oscillated between the characteristics for Eucalyptus,
mangoes and indigenous forest (figures 13(b) and (d)). It was not immediately clear
whether vegetation composition in these areas was changing as depicted by the time-
series random effects or whether the random effects were not able to detect their
transitions.

In trying to find the cause of lack of clear distinction of some of the cases that
were not properly identified by AVHRR images, analysis of the time-series random
effects was repeated using MODIS NDVI images. The results demonstrated that,
in spite of the shorter time-series duration in MODIS than in AVHRR images, the
MODIS-based analysis successfully detected changes in vegetation composition in
some locations. It showed the change in vegetation composition from grass to maize
cropland after 2003 in a small parcel of land that was next to the Konza ranch in the
southwest of the study area. These two adjacent plots were distinctly represented in
two different pixels in the MODIS NDVI images. In the AVHRR NDVI image, they
all belonged to one pixel of grass that did not reflect any change in vegetation com-
position between 1982 and 2008. The MODIS NDVI image also showed a change in
vegetation composition from indigenous forest to maize crop in a field on the slopes
of the Kilungu hills and to grass and tree crops in some strips of bushlands along the
Athi River. In general, the MODIS NDVI images could detect changes in vegetation
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composition in homogeneous fields that were between 250 and 8000 m long. They
also detected changes in vegetation composition in some border fields between differ-
ent vegetation types (e.g. grass fields between Machakos urban centre and the adjacent
Kiima Kiwe forest in the west of the study area) and some fields on the slopes of the
mountainous areas (e.g. maize fields on the slopes of the Kilungu hills). The AVHRR’s
lack of clear determination of these fields was largely due to its low spatial resolution
images.

The fields that were not properly identified by MODIS and AVHRR NDVI images
were mainly those of mixed vegetation types and of relatively small sizes, but with uni-
form vegetation types (e.g. plots of crops and trees in abandoned/silted water-pans).

4.3 Change in vegetation cover

Trend analysis for the residuals from the time-series mixed-effects modelling of the
NDVI–rainfall relationship was also carried out for each pixel in the study area. In
the outputs, there were areas in the west and southeast of the study area that had
a significant gently increasing trend (figure 14). Therefore, they were associated with
improved vegetation cover for the period between 1982 and 2008. In parts of the cen-
tre, east and southwest of the study area, the time-series residuals had a significant
declining trend (figure 14) and were associated with loss of vegetation cover. In total,
about 28% of the study area was found to have had a loss of vegetation cover, 7% had
improved vegetation cover and the rest did not have any significant change in vegeta-
tion cover between January 1982 and December 2008. The areas with a steep declining
trend of the time-series residuals were those in which the difference between actual and

1°44'30" 1°44'30"

1°29'00" 1°29'00"

1°13'30" 1°13'30"

37°2'00"

37°2'00"

37°17'30"

37°17'30"

37°33'00"

37°33'00"

37°48'30"

37°48'30"

Time-series trend of the residuals

Gentle increase

No change

Steep decline

Gentle decline

Figure 14. Loss of vegetation cover in the study area using time-series AVHRR NDVI.
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predicted NDVI values was very large in a short period of time (figure 2). This implied
that they could have rapidly lost their vegetation during that period.

Some of the locations in the study area that had a significant loss of vegetation cover
were also found to have had changes in vegetation composition. Examples include
west of Ndulaya (in the northwestern tip of the study area), which was dominated by
grass and herbaceous vegetation in the 1980s, but which became bare (built-up areas)
from 1992. Other examples were Kyanzavi (in the north) and Iiuni (in the centre). In
Kyanzavi, the coffee plantation was changed to cereal cropland in 1996, and in Iiuni,
the grassland was converted to cereal cropland in 1995. In Mumbuni (in the south-
ern tip of the study area), Acacia and Rhus trees and shrubs were first changed to
grass and forbs in 1992 and then to a mixture of grass and bare areas from 2001.
Furthermore, in Lukenya (west of the Mua hills in the west of the study area), indige-
nous forest was first changed to Grevillea in the early 1990s, then to a mixture of
Grevillea and grass in the late 1990s and lastly to grass from 2001. The vegetation
types in Lukenya, Iiuni and Kyanzavi were positively confirmed during the field visit
in 2008. In Mumbuni, the area was found covered with grass and sparse Acacia shrubs
contrary to grass and bare areas, as predicted by the time-series analysis of the random
effects.

Trend analysis of the residuals using the MODIS did not identify any area with
significant change in vegetation cover. Perhaps this was because of its short time-series
imagery (from 2000 to 2008). Other studies have shown that changes in the land cover
in the study area mainly started occurring from the late 1980s (Tiffen et al. 1995,
Omuto 2008). Therefore, it was possible that without the 1980s images, the MODIS
could not have captured any significant change in vegetation cover.

5. Discussion and conclusions

Mixed-effects modelling of the NDVI–rainfall relationship was found to be a real-
istic modelling approach since it recognized the variation of vegetation responses to
rainfall (Nicholson et al. 1990, Kutiel et al. 2000, Xi et al. 2008). It enabled possi-
ble diagnosis for change in vegetation composition through the random effects, which
are statistical realizations with definable probability distribution functions (Pinheiro
and Bates 2000). In each location in the study area, the probability distribution of
the random effects for the dominant vegetation type was established. Possible changes
in vegetation composition in these locations were then reflected as deviations from
the established probability distributions. Some of the validation results (e.g. figure 12)
confirmed the validity of this approach. Other validation results that were not clearly
identified by the approach could have been due to the quality of the input data as illus-
trated in the differing results obtained from the comparative analysis using AVHRR
and MODIS images.

The areas that were found to have a steep decline in vegetation cover were those
that had a possible change in vegetation composition. For example, in the centre and
northwards, the areas with natural vegetation (Acacia, Commiphora and grass) were
found to have changed to cereals from the late 1980s. Since cereals had a very low
NDVI count during dry periods in comparison to natural vegetation (figure 10) and
that the study area was largely semi-arid and remained dry most of the time (Tiffen
et al. 1995, Omuto 2008), the conversion of natural vegetation to cereal croplands
could have occasioned the decline in vegetation cover (figure 14).
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The areas that had a gentle decline of vegetation cover were mainly areas that did
not have a significant change in vegetation composition. For example, Muumandu,
Kalanzoni and Kivani in the southwest of the study area, which had a gentle decline
of vegetation cover, had tall grass in the late 1980s. In 2004, they were found with short
grass whose coverage was less dense than the 1980 grass cover. Similarly, a gentle loss
of vegetation cover was also observed in the east of Kamuthwa in the eastern part of
the study area, even though the area had been under the Grevillea type of trees since
the early 1980s (Jama et al. 1989, Tiffen et al. 1995, Lott et al. 2003).

There were also other areas with improved vegetation cover and that were also
found to have changed the composition of their dominant vegetation types. The
Kiima Kimwe hills in Machakos (west of the study area), the Kilungu forest in
Kilome (south of the study area) and Kampi ya Mawe in Makueni (southeast of
the study area) (figure 14) were examples in this category. According to the Kenya
Forestry Working Group (KFWG 2008), these areas had been demarcated by the
Government of Kenya in the mid 1980s as protected forests. The government, through
the Ministry of Environment and Natural Resources, replaced the lost vegetation
in these areas with Eucalyptus trees from around 1990s. It is interesting that the
time-series mixed-effects modelling found these areas to have had a change in veg-
etation composition from indigenous forest to Eucalyptus trees and that they also
had improved their vegetation cover (figures 3 and 14). These results show that the
time-series mixed-effects modelling with reflective remote sensing had some potential
in assessing change in vegetation composition and cover. Hence, it can be pro-
posed as a promising tool for tracing the footprints of vegetation dynamics in a
study area.

The approach presented in this study was successful in large areas with dominant
vegetation types. It was not successful in areas with mixed vegetation types and in
areas with small pockets of vegetation (i.e. less than 250 m in spatial resolution).
Perhaps this was largely due to the scale of the input data used in the study. The
low spatial resolution of the input NDVI images possibly integrated mixed vegetation
types in a given area into one single pixel value, thus missing its true NDVI–rainfall
relationship.

In spite of the limitations of the input data, the approach is promising. Given that
the datasets used in this study are widely available, the approach could be suitable
for regional analysis of vegetation cover and composition change in other areas. The
method applied here can also be useful as a first approximation to guide further com-
prehensive analysis involving high-resolution input data. In this regard, the method
passes as a useful tool for land condition monitoring and guiding policy decisions on
vegetation dynamics in environmental conservation.
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