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ABSTRACT 
 

As traffic levels in a mobile network increase, it is important for the Mobile Network Operators 

to adequately forecast future traffic demands. Strategic planning by the service provider, will 

result in timely rollout the required capacity for adequate future service provision which will 

alleviate network congestion and ultimate failure of the systems in place. This will ensure that 

acceptable Quality of Experience (QoE) and Quality of Service (QoS) is achieved by the 

deployment and rollout of systems and equipment and optimization of radio access resources in a 

timely manner.  

 

 In this research, artificial neural networks were used to forecast mobile traffic demands. The 

artificial neural network (ANN) was trained on input data consisting of a combination of 

quantified values of factors influencing mobile voice and data traffic together with the related 

target data variables. The taught artificial neural network was subsequently analysed on its ability 

to make forecasts based on the relationships obtained during training of the network. The ANN 

was used to predict the network busy hour for voice and data traffic per Long Term Evolution 

(LTE) relay nodes, Radio Network Controller (RNC) and Base Station Controller (BSC) and 

which could be used to determine the maximum demand for network resources that the network 

would be subjected to and how robust the system was to traffic growth and the capacity designs 

that need to be implemented to ensure continuity of service within QoS and QoE limits. The data 

was sourced from one local telecommunication service operator and the research considered 

various network nodes (BSC, RNC, LTE relay nodes) and cellular voice and data service 

technologies. Data from 21 BSC, 10 RNC and 1 LTE nodes was used. 

 

The research involves the use of multiple factors as inputs to the neural networks that can be used 

to establish additional non-linear relationships to the associated targets and therefore improve the 

accuracy of forecasts. The results of the performance of the trained networks had average MSE 

values that ranged from 0.950694 to 0.982268 for cellular traffic forecasts (voice and data) and 

for prediction of the bouncing busy hour (BBH), the range spread from 0.049477 for LTE Data 

BBH and a maximum of 0.67827 for RNC voice (BBH) which demonstrate the accuracy and 

applicability of the use of ANN in the forecasting of cellular traffic and associated busy hours. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Mobile cellular networks have become one of the biggest infrastructures known to man with 

millions of components. Many individuals and businesses depend on them for daily 

communication activities. With the increase in uptake of these services, QoS and QoE have 

emerged with more pressure being put on Mobile Network Operators (MNOs) to expand and 

optimize their networks in order to meet customer requirements. The development of an 

appropriate hardware deployment and optimization plan is important to accommodate the steady 

increase of subscribers coupled with the increase of end user devices that are resource hungry. 

There is pressure on the service providers to rollout ICT infrastructure and services that will 

provide seamless QoS and QoE commensurate with the increased demand. 

 

The planning and operation of a mobile network operating business needs a suitable model for 

mobile traffic forecasting. Mobile traffic forecasts are pivotal in helping a mobile services 

operator to make important decisions on infrastructure development, upgrading of existing 

modules and optimization of resources. In Kenya, market demand projections have been the main 

means of predicting cellular traffic demands. However, from a technical perspective, this 

approach has proved to be inaccurate with the result that the service providers pursue a reactive 

approach in terms of meeting QoS and QoE requirements as outlined in their operating licence 

conditions. 

 

In ITU recommendation E.800, QoS is specified as “Totality of characteristics of a 

telecommunication service that bear on its ability to satisfy stated and implied needs of the user 

of the service.” [1] while ITU recommendation G.100, QoE is specified as “The overall 

acceptability of an application or service, as perceived subjectively by the end-user.” which may 

be influenced by context and user expectation. 
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QoS of mobile services is measured through Key Performance Indicators (KPIs) that benchmark 

network coverage, quality and performance of voice, SMS and mobile data. Compliance of each 

mobile network operator (MNOs) to the prescribed QoS standards, require that they meet the 

target KPIs. 

 

A major challenge that has led to the MNOs continued non-compliance is based on three of the 

KPIs set out in their licence conditions. These KPIs are: 

1. Call Set-up Success Probability. This KPI is influenced by a breakdown in the call setup 

process which could be due to a number of causes such as poor network coverage, 

interference and attenuation of the mobile signal due to fading and path loss. These 

causes can result in degraded signal levels and increased Bit Error Rate (BER) and 

therefore poorer signal quality. A low value of this KPI indicates inadequate network 

capacity. 

2. Call Blocking Probability which is caused by traffic channels not being available even 

after a Stand-alone Dedicated Control Channel (SDCCH) has been allocated to a call. A 

high value of this KPI indicates inadequate network capacity. 

3. Call Completion Probability. A call is termed to be complete when it undergoes the 

normal channel release mechanism once the call has been terminated by either party. If a 

condition occurs that results in call ending prematurely, then it is deemed to affect this 

KPI. A low value of this KPI indicates inadequate network capacity. 

These particular KPIs are major indicators of inadequate capacity in the radio access networks in 

terms of telecommunications hardware and frequency resources. These inadequacies come in a 

number of forms such as failed handovers, blocked calls, dropped calls, poor network coverage, 

poor voice call and browsing quality. This means that the network has inadequate capacity to 

meet the threshold for call setup success probability and call completion probability. Therefore, 

in order to improve these particular KPIs: 

i. The number of cells must be increased to accommodate issues like reduced signal levels 

in cluttered and multipath environments.  

ii. Rollout and activation of more Transceivers (TRXs) can reduce the block rate. 
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iii.  Optimization of frequency reuse plans can greatly reduce interference levels from 

adjacent or co-channels.  

 

Further as per the industry regulators in many countries, the MNO is required to maintain a 

certain threshold for QoS KPIs. The Kenyan regulator, the Communications Authority of Kenya 

(CA), has placed these KPIs in the conditions laid out in the licences awarded to the MNOs. Not 

meeting the set out thresholds will be deemed a contravention of these conditions and may result 

in severe penalties imposed on the MNOs. A network planner and optimizer therefore, can 

adequately plan for future network expansion by monitoring these KPIs and considering how 

radio resources and capacity can be optimally utilized to cater for future system capacity 

shortfalls.  

 

Mobile networks will face an exponential increase in capacity requirements over the next few 

years due to increase in demand for traditional voice and data services as well as new and 

emerging technologies which have come about as a result of convergence of technologies such as 

Internet Protocol Television (IPTV) and Over the Top (OTT) services. 

 

Engineers previously based their arguments for rolling out additional capacity by analysing 

traffic patterns vis a vis network capacity to develop a rollout strategy. In the past, network 

planners have solely utilized cell by cell database analysis techniques and spreadsheet analysis to 

do traffic forecasting. The approach of using spreadsheet is a lengthy process and requires a lot of 

preparation. Additionally, cell by cell analysis more often than not, does not consider surrounding 

areas or cells. Furthermore, the accuracy of the predictions is by large, reliant on the experience 

and skills of the network planner. A lot of step by step analysis was required which took up a lot 

of preparation [2]. This method required the Engineer to be skilled and experienced in network 

traffic dynamics to adequately give a prediction of the network capacity that would be required in 

future. Further, this approach was limited to small geographic areas of coverage which do not 

give a holistic picture of the total capacity shortfall of a mobile network.  
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Mobile traffic forecasting cannot be overstated in its importance on such a network, where it is 

important to achieve and maintain acceptable service quality and also weigh against the time 

involved and cost in installing additional transceivers or commissioning new base stations [2]. 

This generally has the result of optimizing the balance between an acceptable network-wide 

grade of service and capital expenditure on network hardware. For example, rollout plans can be 

put in place in advance to the time that a shortfall in network capacity is anticipated. Market 

analytics indicate significant increase in mobile traffic quantities and mobile network operators 

upgrading existing networks as well as the parallel rolling out of new communications 

infrastructure in a bid to meet the network capacity demands [3]. 

 

Along with predictions of growth of revenues and market share, traffic forecasts are of paramount 

importance to mobile network operators and telecommunications equipment vendors to include 

in their business planning and strategies. This is because a significant portion of their expenses 

will go into the rollout of networks and the capacity upgrades of existing infrastructure [3]. The 

importance of a methodology for forecasting the future traffic levels cannot be overstated as the 

turnaround time for upgrading a network is on average 2 to 4 months [4]. Therefore, it can be 

clearly observed that inadequate planning for traffic levels can lead to congestion which will 

severely affect QoS and QoE as well as user perception and by extension loss of business and 

revenue for the MNO.  

 

Therefore, a network traffic forecasting tool is a powerful means to continually mitigate future 

shortfalls in poor QoS and QoE by mobile service subscribers. 

1.2 PROBLEM STATEMENT  

Mobile traffic determines the major source of revenue for mobile network operators and is 

therefore an important variable that needs to be determined with a degree of accuracy. Mobile 

traffic forecasting is a major and fundamental process in the mobile network operations and 

planning which requires the precise forecast of the amount and physical settings of mobile traffic 

during the various intervals (usually hours) of the planning horizon. Some knowledge of 

imminent traffic levels is therefore necessary. Improper dimensioning of resource capacity will 
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result in subscribers being subjected to degraded QoS or the operators overspending on 

unnecessary infrastructure. Mobile network operators therefore need a means or method that 

enables them to forecast mobile traffic in order to augment its planning formulation make its 

management more efficient. Precise forecasting of mobile traffic is problematic, as it is largely 

influenced by variables that are "uncertain" and which are not directly related to final traffic load.  

The process of analysis of areas that require dimensioning of ICT resources is long and 

arduous. based mostly on reactive responses to reduced levels of QoS and also based on 

economic factors that would result in optimizing sales volumes rather than providing 

seamless levels of network quality across the country. Coupled with the lengthy budgeting 

and approval process for rolling out new infrastructure, the MNOs would require a tool to 

determine, with a fair degree of accuracy, projected cellular traffic volumes and required 

resources in ample time to allow proper planning and implementation to prevent degraded 

service levels in their networks. This will result in increased customer satisfaction levels as 

well as increased compliance to ascribed QoS conditions as set out in the operating licences. 

1.3 OBJECTIVES 

1.3.1 Overall Objective 
The purpose in this work was investigation of the utilization of artificial neural networks in the 

forecasting of cellular traffic volumes and further, to develop software based artificial neural 

network module that would forecast mobile voice and data traffic. 

1.3.2 Specific Objectives 
The specific objectives were three-fold, namely; 

i. To determine the factors influencing cellular traffic volumes and incorporate them as 

inputs to improve the accuracy of forecasts. 

ii. To implement a neural network based forecasting model for cellular traffic.  

iii. To validate the accuracy of the method by comparing the predicted values with the actual 

values. 
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1.4 JUSTIFICATION FOR THE STUDY 

Statistics from the CA Quality of Service reports show that the existing mobile networks are not 

up to par with the prevailing KPI requirements. The specific KPIs that are affected can be 

improved by properly dimensioning network resources according to the mobile traffic loading. 

This is enshrined in the operating licence conditions of the three MNOs that operate under the 

regulatory arm of the CA. Failure to meet the minimum required KPI thresholds encourages a 

penalty of 0.1% of annual gross turnover for not meeting the QoS conditions. With the review of 

the QoS framework to include SMS and data services in addition to the voice KPIs and ancillary 

QoE metrics, this figure is set to be revised to 0.2 % of their annual gross turnover. 

 

A method of forecasting future network traffic is important for the purpose of technical and 

financial planning. The findings from the research and the creation and implementation of the 

ANN based forecasting tool will benefit the Kenyan mobile network operators by allowing them 

to develop schemes for network expansion planning. Further, the research findings will aid the 

ICT industry regulator, the CA, to develop network rollout targets and obligations to fill the 

communication access gaps being faced in the country by integrating the forecasts with the 

Universal Access objectives and plans. It is therefore justified to develop a methodology and tool 

for giving a large scale traffic forecast to enable the planning engineers as well as the financial 

and budgeting experts to plan for future network expansion. 

1.5 LIMITATIONS 

The greatest challenge was the availability of consistent and exhaustive data for training, 

validation and testing of the ANN. To enable an artificial neural network to make predictions 

with a high degree of accuracy, a large amount of historical mobile traffic data is required. 

Mobile network operators have different policies on storage and archiving of such data which is a 

pitfall in streamlining data for similar periods of time from the operators. Different levels of 

prediction accuracy are therefore expected based on this scenario. No simulated data is used to 

train or validate data in the ANN. However, due to the diversity of the equipment and systems 

deployed by the mobile network operators, there is a challenge in obtaining data that is 

synchronous across all networks. Additionally, deployment of technologies may be done at 
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different times and locations by different operators and with different equipment depending on 

their individual rollout plans. Further, other data like demographic indicators was unavailable for 

a variety of contexts or in a form that can be fed into the neural network system. 

 

Some data inputs which were found to have been sampled at longer intervals have to be 

normalized over a long period which is unsuitable for making accurate short term mobile traffic 

forecasts. As a result, the data has to be graphed and data points obtained by interpolation. This in 

turn compromised the accuracy of the forecast.   

 

Further, variables that are continuous in value must be converted to discrete values for input into 

the neural network. 

1.6 THESIS LAYOUT 

The rest of the thesis is arranged as follows: 

In Chapter 2, a review on the literature of mobile traffic forecasting is conducted as well as an 

analysis of artificial neural networks. In Chapter 3, cellular voice and traffic data from a 

mobile network operator is analyzed and interpreted through graphing and self-organizing 

map (SOM) plots. In Chapter 4, the step by step process of designing the artificial neural 

network is documented which includes the training, validation and testing of the networks. In 

Chapter 5, the results are analyzed and discussed. Chapter 6 summarizes this thesis by giving 

a review of the study in the preceding chapters and the outcomes of the research. Finally, 

Chapter 7 identifies some problems and recommendations for work that can be done in the 

future in this area of research.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 MOBILE NETWORK PERFORMANCE 

A typical mobile wireless network is composed of different modules and nodes, transmission 

equipment as well as radio access and spectrum. Typically, it is composed of Node-B (3G/4G, 

5G) and Base Transceiver Stations (BTS) (2G) distributed across a service area and they act as 

the first point of connection between a mobile terminal user and the mobile network. Each BTS 

or Node-B has the capability to handle a specified number of calls simultaneously above a 

specified threshold of QoS before voice and data quality degenerates due to exhaustion of 

resources. 

 

With the growth and expansion of a network, the cellular traffic grows and there is increased 

need for new network solutions to meet the expected quality of service and experience. The 

MNO therefore has to come up with an optimization strategy solution which may be a 

combination of: [ 2] [5] 

a) Underlaid-overlaid cells  

b) Micro-cells and femto cells for ‘hot-spots’  

c) Data offloading to WiFi Networks  

d) New radio channels added to a cell  

e) Addition of new spectrum resources and re-farming  

f) Dual-band operation (GSM 900/1800)  

g) Cell splitting (additional base-stations)  

Every base station (BS) is commissioned with transceivers (TRXs), which dictate the maximum 

capacity of traffic that can be carried. As standard practice, when a new BS is rolled out, it would 

normally be commissioned with the minimum number of transceivers and more are added after 

the cell traffic is analysed and traffic congestion is noted.  

 

Network congestion has been aptly defined as “state of network elements (e.g. switches, 

concentrators, cross-connects and transmission links) in which the network is not able to meet the 
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negotiated network performance objectives for the already established connections and/or for the 

new connection requests. It is a network state in which performance degrades due to the 

saturation of network resources, such as communication links, processor cycles, and memory 

buffers” [1]. 

 

Network capacity shortfall is characterized by network congestion which can be due to different 

causes. Such causes could be congestion of the Paging Channel (PCH), Stand-Alone Dedicated 

Control Channel (SDCCH), Random Access Channel (RACH), Access Grant Channel (AGCH) 

or Traffic Channel (TCH). However, the most likely causes of congestion are due to TCH and 

SDCCH congestion as the other channels are usually configured with large capacities hence are 

unlikely to undergo congestion. 

 

The two main types of congestion that lead to degradation of QoS are therefore SDCCH and 

TCH congestion 

i. SDCCH Congestion 

This is defined as the failure to access an SDCCH during set up. The SDCCH is used to provide a 

reliable connection in GSM for signalling and Short Message Services and is used for location 

updating, mobile terminal authentication and assignment of TCH during idle periods [1]. 

Unavailability of the SDCCH results in unsuccessful attempts in call setup. 

ii. TCH Congestion 

This is defined as the failure to access a TCH. The TCH carries user speech or data at either full 

or half duplex depending on the configuration preferred. There are eight radio channels in a radio 

frequency carrier and most are configured to be traffic channels [1]. Unavailability of such 

channels in the call setup or handover phase results in TCH congestion. 

2.2 THE CELLULAR MOBILE SERVICES MARKET 

The exponential growth of subscriber numbers has led to overload of the mobile networks 

leading to degraded QoS and QoE. It is therefore of increasing importance for MNOs to improve 

their QoS and QoE and by extension their capacity to retain their customers and acquire 
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additional subscribers in order to secure and grow their revenues. Mobile traffic investigation and 

optimization is therefore of paramount importance for network expansion planning [6]. 

 

User perception is guided by the QoS and QoE. The KPIs are on the service mobility (handover 

success rate), accessibility (Call Setup Success rate, call blocking rate, call set-up time), retention 

(call drop rate, call completion rate), speech quality and availability. With the evolution of new 

technologies and services based on mobile broadband, there has been additional focus on the 

KPIs that are related to the performance of packet switched (PS) networks such as network jitter 

and latency. 

Delivery of acceptable QoS has been a challenge for mobile operators as there has been a 

mismatch in the growth of the network capacity as compared to the exponential growth of 

subscriber bases which leads to traffic congestion and consequently poor KPIs, user experience, 

and customer dissatisfaction [6]. 

 

Forecasting traffic growth and how future demands will impact a network and by extension the 

KPIs is therefore a cornerstone in long term technical and financial plan formulation. 

2.3 MOBILE TRAFFIC FORECASTING 

A major indicator for measuring the utility rate and load of telecommunications equipment is the 

traffic. The accurate forecast of traffic is therefore important for network planning and 

optimization [6]. 

In the past, planning for future mobile traffic was often done by exponential or linear estimations 

centred on past data. These methods were not adequately accurate and gave significant deviations 

from the actual data [6].  Different factors have been identified to affect mobile traffic [7]. These 

include: 

1) Day of the week /time of the day 

2) Number of users 

3) Change of tariff levels  

4) Presence of service offers or promotions 

5) Technology trends 
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6) Demography i.e. age, population distribution. 

7) Economic factors e.g. GDP 

8) Historical traffic volumes 

Refined techniques of sampling and presenting such data in a format and frequency, that 

complements analysis of cellular mobile traffic, are unavailable. However, with the emergence of 

Big Data Analytics, the process of integrating social and economic indicators as an input in the 

analysis of short term fluctuations in mobile traffic trends will improve the accuracy of results 

and shorten the forecast horizon. 

2.4 ARTIFICIAL NEURAL NETWORKS 

A promising component of Artificial Intelligence (AI) research is centred on Artificial Neural 

Networks (ANN). It is described as a “promising new generation of information-processing 

systems that demonstrates the ability to learn, recall, and generalize from training patterns or 

data” [8]. Artificial neural networks are analogous to biological neural networks in their 

performance and characteristics. The artificial neuron was developed in a bid to reproduce the 

human neuron. Data is input into the neuron and is multiplied by its respective synaptic weights 

after which it is added and computed using an activation function which bounds or suppresses the 

output of the neuron [9]. A simple configuration of an ANN is demonstrated in Figure 2.1. 

 

Figure 2.1: Basic Structure of an ANN 
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A large collection of a simple processing units, neurons, nodes or cells operating in parallel to 

each other is referred to as a neural network [10]. Every neuron has an activation, which is 

basically a function of the received inputs. Connection between neurons is through directed 

communication paths, each with associated weights which denote data that is being utilized to 

solve the problem by the neural network. The block diagram of the operation of a NN is 

demonstrated in Figure 2.2. 

 

Figure 2.2: Block Diagram of a NN 

 

An ANN is a system specifically designed for applications which, through a learning process, can 

conduct data classification and pattern recognition. 

A variety of approaches are used by artificial neural networks to solve problems as compared to 

conventional computers which utilize algorithmic approaches [11]. The conventional computer 

has to be provided with the specific sequential steps to follow which consequently limits the 

capability to solving problems that are already understood and have been defined by human 

beings on how they are to be solved [12]. 

The Levenberg-Marquardt Algorithm is one of the many adaptations of learning algorithms in 

use and is especially used as a first choice in developing forecasting solutions. It is based on the 

backward propagation model which is proven to be one of the fastest converging networks for 

training feed-forward neural networks that are moderately sized [1]. 
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Artificial neural networks cannot be programmed to perform specific tasks but learn through 

examples. The selection of these task examples must be carefully done in order to prevent the 

wastage of useful time or resulting in an incorrectly performing network. As the artificial neural 

network learns how to problem solve by itself, the way it operates may have a level of 

unpredictability. 

The “firing rule” is a major conception used in NN and contributes to their heightened 

adaptability. The firing rule gives a decision if a neuron should be triggered for any input pattern. 

An association to all the input patterns is established, in addition to the input patterns that were 

used to train the node. 

The Hamming distance technique can be used to form the simplest firing rule [10, 13]. The rule is 

described below: 

Use a group of training patterns for a node, which include a zero-taught set, which prevent it from 

firing, and a one-taught set which cause it to fire. By extension, the set of training patterns that 

are not contained in the group will cause the node not to be fired if, when compared, they contain 

additional input elements alike to the ‘closest’ pattern in the one-taught set as compared to the 

‘closest’ pattern in the zero-taught set [10, 13]. The pattern will remain in an undefined state 

when a tie is encountered. 

A case in point is when a three-input neuron is trained to give an output of 0 when the input 

provided is 001 or 000 and to give an output of 1 when the input provided (X1, X2 and X3) is 

101 or 111. Therefore, prior to the firing rule being applied, the truth table is as seen in Table 2.1 

Table 2.1: Pre- fired Hamming Distance Truth Table 

X1 0 0 0 0 1 1 1 1 

X2 0 0 1 1 0 0 1 1 

X3 0 1 0 1 0 1 0 1 

                  

OUPUT 0 0 0 or 1 0 or 1 0 or 1 1 0 or 1 1 
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An instance of the application of the firing rule can be shown by taking the pattern 010 which 

varies by one element from 000, two elements from 001, three elements from 101, and two 

elements from 111. From this, the ‘closest’ pattern is 000 which resides in the zero-taught set. 

Therefore, when the provided input is 010, the neuron should not fire according to the firing rule. 

In contrast, 011 has an equal distance to two taught patterns which have dissimilar outputs which 

has the result of the output remaining undefined (0 or 1). 

Table 2.2 shows the obtained truth table on application of the firing rule in each column,  

Table 2.2: Post-fired Hamming Distance Truth Table 

X1 0 0 0 0 1 1 1 1 

X2 0 0 1 1 0 0 1 1 

X3 0 1 0 1 0 1 0 1 

                  

OUTPUT 0 0 0 0 or 1 0 or 1 1 1 1 

 

The generalization of the neuron is what is defined as the variation between the two truth tables 

[10, 9]. This means that the neuron is given a recognition of similarity by the firing rule and is 

enabled to ‘sensibly’ respond to patterns that it was not exposed to during training. 

A NN is deemed to have good generalization when outputs are fairly precise for inputs that have 

not been incorporated in the training group. Overfitting is a common issue plaguing network 

models. This is also referred to as memorization and has the meaning that the network model has 

learnt input to output patterns of the training set and in addition, there is storage of undeliberate 

relations in the synaptic weights. This has the undesired effect of the network providing accurate 

outputs from the input patterns of the training set but unexpected responses for a slight variations 

of input patterns [9]. 

Three factors influence generalization. These are the material difficulty of the problem to be 

solved, the network architecture (model structure), efficiency and size of the training set [9]. The 

first factor is uncontrollable, therefore, avoidance of overfitting, is limited to the last two factors. 
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Overfitting is less likely to occur when training datasets are larger. Nonetheless, there should be a 

restriction of only inclusion of input to output patterns, that accurately reflect actual processes 

being modeled. Incorrect, irrelevant and invalid data should therefore be excluded from datasets. 

2.4.1 Architecture of Neural Networks 

2.4.1.1 Feed-forward 

It describes the data movement to the output from the input. The computation on the data can 

stretch over numerous levels of neurons, without the presence of any feedback connections [9, 

12]. Feedbacks are connections outstretching from neuron outputs to neuron inputs in the 

corresponding layer or preceding layers [13]. Feed-forward ANNs gravitate towards being 

elementary and simple networks that relate outputs with inputs. Feed-forward ANNs are widely 

used in pattern recognition [9]. A pictorial depiction of a feed forward neural network is captured 

in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 A Feed-Forward Neural Network 

2.4.1.2 Feedback (Recurrent) 

Signals are able to travel bilaterally due to introduction of loops within the network. Feedback 

networks can get very complicated and are extremely capable. They have an element of 

dynamism; where their 'state' is unceasingly changing until a balanced point is obtained and 

thereafter endured at the balanced point until there are changes to the input and a fresh balanced 

X1 

Xi 

Xn Ym 

Yj 

Y1 

Input Units 

Weight Vectors 

Output 

Units 



 
 

16 

point is to be obtained [9]. Feedback networks are also defined as interactive or recurrent, even 

though the latter term is frequently used to designate feedback relationships in single-layer setups 

[12]. 

A pictorial representation of a recurrent neural network is as shown in Figure 2.4 

 

 

 

 

 

 

 

 

Figure 2.4 A Recurrent Neural Network 

2.4.2 The Learning Process (Training) 
Neural networks undergo a process of training which allows them to recognize non-linear 

relationships and patterns between inputs and targets by locating the most suitable weights of the 

connections between neurons. 

 

2.4.2.1 Recognition Methods 

Network responses and the associated pattern memorization can be categorized in two major 

ways; these are Associative mapping and Regulatory detection. 

a) Associative mapping  

 The ANN comprehends how to make specific patterns on a set of input neurons when a separate 

specific pattern is used on the group of input neurons [14]. Associative mapping is further 

grouped in two general methods: 

1) Hetero-association: which is related to two recall methods:  

i. Nearest-neighbor recall, in which the input pattern stored, which is most 

similar to the presented pattern, corresponds to the created output pattern. 
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ii. Interpolative recall, where the patterns presented correspond to the patterns 

stored which in turn have a similarity dependent interpolation to the output 

pattern.  

2) Auto-association:  input patterns are associated with themselves and input and output 

unit’s states coincide which is used to provide completion of patterns. A pattern is 

produced when a distorted pattern or a portion of the pattern is presented. 

b) Regularity detection 

In regularity detection each unit’s response has a unique ‘meaning’. Specific characteristics of 

input patterns elicit responses in the neurons. The importance of this version of learning is 

knowledge representation and feature discovery [14]. 

 

Each ANN has connection weights whose values possess knowledge. The learning rule for 

modifying the weight values is used to modify information kept in the ANN as a function of 

experience. Data is kept in the neural network’s weight matrix (w). The learning of an ANN is 

done through the determination of the weights [14].  

 

ANNs can therefore be grouped in two main ways depending on how the learning is performed. 

These are: 

1) Adaptive networks that have the capability of altering their weights, that is    0
dw

dt
    

2) Fixed networks where the weights are fixed cannot be changed, that is   0
dw

dt
 . 

These networks have their weights being specified as per the problem that is being 

solved. 

2.4.2.2 Learning Methods 

Artificial neural networks generally follow two methods of learning. These are Unsupervised and 

Supervised. 

i. Unsupervised learning: In this method, the artificial neural network does not utilize an 

extrinsic teacher and is only based on determinate localized environment state 
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information. Data is provided to the ANN and incipient collective properties are detected 

through self-organization. When an artificial neural network learns and operates 

concurrently, it is said to be learning on-line. [4, 11, 12, 14]. 

ii. Supervised learning: In this method, the artificial neural network uses an extrinsic 

teacher. Every output neuron is instructed on what the desired reaction to inputs should 

be. Global environment state information could be needed, while training processes are 

ongoing. The main examples of supervised learning include reinforcement learning which 

is on punishing unwanted behaviors and/or rewarding desired behaviors, stochastic 

learning which is based on introduction of random variables and use of random based 

learning or optimization techniques and error-correction learning which involves 

comparison of system output to desired outputs. A major issue of concern in supervised 

learning is error convergence (which is the error minimization between computed and 

desired unit values). The goal of error convergence is the determination of a collection of 

weights that will minimize the error [4, 11, 12, 14]. A common method in many 

supervised learning examples is the least mean square (LMS) convergence. 

Principally, unsupervised learning is conducted on-line whereas supervised learning is done off-

line. 

 

2.4.2.3 Transfer Functions 

Transfer functions translate inputs to output signals. This transformation occurs between the 

output and input nodes of the neuron.   ANN behavior has a dependence on both the weights, 

which have been specified for the neurons, and the transfer functions [4, 11, 14]. Transfer 

functions work with activation functions which trigger the neuron according to the results of the 

bias and weighted sum. Transfer functions are generally grouped into four categories: 

i. Linear (ramp): where the total weighted output is proportionate to the output activity. 

ii. Sigmoid: where the output constantly varies but more non-linearly than the variation of 

the input. The output’s relationship to the input is a function of the weighted sum of 

inputs and is non-linear in nature. 

iii. Threshold: where output is fixed on either of 2 levels, which is dependent on if the total 

input is less than or greater than a threshold value. 
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iv. Gaussian: where the output follows a normal distribution curve where there is an equal 

quantity of measurements below and above the mean. 

Sigmoid functions have more equivalence to real neurons as compared to threshold, linear or 

Gaussian functions. However, all the transfer functions should be considered rough 

approximations. 

 

2.4.2.4 Back Propagation (BP) Learning Process 

The BP algorithm is used for weights setting and therefore in multi-layer perceptrons training 

[10]. For a neural network to be trained to perform a particular task, each unit’s weight should be 

modified in a method that will reduce the error between the actual output and the desired output 

[15]. The BP algorithm is a determined method for deploying gradient descent technique in the 

weight space (parameter space between input and output layer), where the gradient of the sum of 

squared errors with respect to the weights is estimated by transmitting the gradient of the error 

function in reverse from the input layer in the network [9]. Gradient descent is an optimization 

technique used to minimize the cost function such that there is minimal deviation of the outputs. 

BP algorithm has a requirement that the ANN performs a calculation to determine the error 

derivative of the weights (Ew). That is to say, it should compute the changes in error as each 

weight is slightly decreased or increased. The BP algorithm is the commonest way for computing 

the Ew. The BP algorithm is most simply understood when all the network neurons are linear in 

nature. It works by first calculating the Ea, which is the speed with which the error switches as 

the level of activity of a unit is modified, after which it calculates each Ew. For output neurons, 

the Ea is basically the variation between the desired and the actual output. To calculate the Ea 

belonging to a hidden layer neuron, all weights between output neurons and connected hidden 

layer neurons must first be recognized and then multiplied by the Ea’s of these output neurons 

and sum the products. The addition is equivalent to the Ea for the selected hidden layer neuron. 

Post computing all the Ea‘s within the hidden layer just prior to the output layer, the Ea ‘s for the 

additional layers can be computed in a similar manner, going from one layer to another in an 

opposite orientation to the direction actions move in the network. Hence the name back 

propagation. When the Ea has been calculated for a neuron, it is simple to calculate the Ew for 
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every arriving link of the neuron. The Ew is a result of the activity through the arriving link and 

Ea. 

 

The BP algorithm includes an additional step for units that are non-linear, whereby prior to 

propagating backwards, the Ea is transformed into the Ei, which is the velocity at which the error 

switches as the total input experienced by a unit is switched. 

 

2.4.3.1 Derivation 

The BP algorithm necessarily begins with calculating the output layer, as this is where the wanted 

outputs are present. However, intermediate layers do not have the presence of outputs [10]. 

After randomly choosing the network weights, the necessary corrections are computed. The 

general steps in the BP algorithm can be broken down into the following: 

Step 1: Feed - forward computation 

Step 2: Back propagation to the output layer 

Step 3: Back propagation to the hidden layer 

Step 4: Updates of weights  

When the error function achieves a suitably minimal value, the algorithm stops to operate. 

Neurons are joined to each other and the weight of the connection is a real number related with 

every link. The connection weights from unit uk to unit ui is denoted as ωki. It is consequently 

appropriate to constitute the connectivity pattern in the network using a weight matrix ω whose 

elements are the weights ωki..  

 

Connection types are twofold and defined as:  

 Inhibitory which inhibits the generation of a signal and 

 excitatory which promotes the generation of a signal. 

A negative weight typifies an inhibitory connection whereas positive weight typifies an 

excitatory connection [10]. This connectivity pattern distinguishes the structure of a network as 

demonstrated in Figure 2.5 [10]. 
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Figure 2.5 Connectivity Pattern of a NN 

The error energy found at the output layer is shown as: 

 

        (2.1)  

Where k = 1-----N; and N is the sum total of neurons in the output layer, and dk is the measure of 

activity of the kth unit in the upper layer whereas yk is the wanted output of the kth unit. 

Consequently, a gradient of  is considered, where: 

  (2.2)   

Using the gradient (steepest descent) procedure, then: - 

       (2.3) 

 

The connection weights from unit uk to unit ui is denoted as ωki. At the kth neuron in the output 

layer, j denotes the jth input and  is the learning rate, where by the gradient procedure: 

         (2.4)   

The negative (-) symbol in Eq. (2.4) shows a downhill direction approaching a minimum. 

A perceptron is defined as a mathematical model of a neuron where the k’s perceptron’s node 

output zk is shown by 
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          (2.5) 

xj which is the neuron’s jth input, while it can be noted that yk is the perceptron's output: 

 

          (2.6) 

  

being a non-linear activation function at the Nth neuron in the output layer. It can now be 

substituted that 

         (2.7) 

        

further, shown through Eq. (2.5): 

        (2.8)  

     

where p is designating the output layer and yj is the perceptrons’s output due to xj , so Eq. (2.7) 

transforms to: 

       (2.9)  

    

The ø function transforms the weighted sum of inputs in accordance with Eq. 2.10 

         (2.10)  

  

then Eq. (2.9) becomes: 

     (2.11) 
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and, by Eqs. (2.4) and (2.11): 

 

     (2.12) 

Neuron k of the output (p) layer has its jth input denoted as j. 

Further, using Eq. (2.10): 

       (2.13) 

Though, using Eq. (2.1): 

       (2.14) 

where, for a sigmoid non-linearity: 

      (2.15) 

it can be seen that: 

        (2.16) 

In consequence; using Eqs. (2.13), (2.14) and (2.16): 

       (2.17) 

such that, in the output layer, using Eqs. (2.4), (2.7): 

      (2.18) 

so that by Eqs. (2.12) 

       (2.19) 

 k as denoted by Eq. (2.17), to finish the deduction of the placing of output layer weights. 

Propagating backwards to the rth hidden layer, it can be seen that 
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        (2.20) 

for the ith branch into the jth neuron of the rth hidden layer. Subsequently, in equivalence to Eq. 

(2.7): 

        (2.21) 

while considering Eq. (2.8) and the designation of   in Eq. (2.13): 

    (2.22) 

so that, using the right hand-side relation of Eq. (2.13) 

      (2.23) 

Where
jy




  is not accessible (where, also j (r) above is inaccessible). 

However, ε can only be influenced by neurons that are upstream when back propagation is done  

the output. Any other information is unavailable at this juncture. Hence: 

(2.24) 

addition over k is done across the neurons of the subsequent (r + 1) layer which join to yj (r), 

while addition over m is across every input to every kth neuron of the (r+1) layer. 

Therefore, whilst  taking note of the designation of , Eq. (2.24) becomes: 

  (2.25) 

because only ωki.  (r + 1) is linked to yj (r). 

Subsequently, through Eqs. (2.13), (2.16), (2.25): 

(2.26) 
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and, through Eq. (2.19): 

       (2.27) 

to obtain  Δwji(r)  as a function the weights of the (r + 1) layer and   , while taking note of Eq. 

(2.26). It is important to note that partial derivatives of ε in regard to the considered hidden layer 

cannot be taken. Therefore, the partial derivatives of ε with respect to the upstream variables in 

the output direction must be taken, as they are the only ones that influence ε. This consideration 

is the background for the Back-Propagation process, to enable curbing the absence of attainable 

error data in the hidden layers [10, 12]. 

 

To finalize its derivation, the BP algorithm reverse propagates all the way to r = 1 (which is the 

primary layer). 

2.5 SURVEY OF EARLIER AND RELATED WORK 

Mobile traffic forecasting techniques can be classified into different categories according to the 

methods that have been employed in forecasting and analysis. The methods that have been used 

in load and traffic forecasting techniques include: 

1. Quantitative mobile broadband traffic prediction illustration, which uses the Gompertz 

function as a mathematical basis [3]. This method is centred on mathematical modelling 

structure for the mobile broadband growth of traffic that is used in evolution studies. It is 

demonstrated that an “S-curve” model premised on a Gompertz function can be suitably 

parametrized and gives adequate workability in forecasting different traffic increase 

scenarios. A network evolution study is done as an example application of the formulated 

model. The study was done in an urban based European network in conjunction with 

postulations on the target network KPIs and user equipment (UE) receiver limitations. 

Many prediction examples are demonstrated with a disclosure of the potential bearing on 

the needed radio network capacity growth. 

2. Driving factors for traffic growth were analysed for mobile data trends in the Western 

European Market in [16]. Long term prediction patterns for cellular broadband 
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penetration of various subscription categories are done using extrapolation and diffusion 

models and used for rollout of new technology, upgrade planning and network 

dimensioning. 

3. Dynamic Harmonic Regression (DHR) and Autoregressive Moving Average [17] have 

been used to analyze different methods for long term forecasts of packet switched traffic 

from live 3G networks. The dataset consists of 400 values, each representing the peak 

load for a separate day. Four methods were applied to forecast the increase in traffic: 

linear and exponential regression, ARMA and DHR. Sophisticated methods such as 

ARMA and DHR performed better. Authors showed simulation results for long term, 

(more than 100 days) as well as short term forecasting (hourly or daily). ARMA and DHR 

are more sophisticated than linear regression or exponential regression. Authors used 

METAWIN statistical software Meta-Analysis with Resampling Tests to monitor and 

record the traffic in a mobile core network. It is noted that the authors remove any user 

payload to meet the privacy requirements. The authors also used NEXUS reporting suit 

provided by Nexus telecom to monitor GSM, GPRS and UMTS network components. 

NEXUS is designed to monitor usage trends and traffic volumes within a multi-vendor 

core network. 

4. In Traffic Predicting for Mobile Networks with Multiplicative Seasonal ARMA Models 

[18] which is rooted on the study of real data accrued by China Mobile Communications 

Corporation (CMCC) Heilongjiang Co. Ltd, the authors proposed to use the multiplicative 

seasonal Autoregressive Integrated Moving Average (ARIMA) models for mobile 

communication traffic forecasting. Experiments and test results showed that [18] was 

feasible and effective to fulfil the requirements in traffic forecasting application for 

mobile networks. 

5. Network Traffic Prediction and Result Analysis hinged on Seasonal ARIMA and 

Correlation Coefficient [6] where focus on traffic prediction for network planning and 

network optimization was used. Time series from a mobile network in Heilongjiang 

province in China was studied. Multiplicative seasonal Autoregressive Integrated Moving 

Average model (ARIMA) is employed to make traffic series prediction.  
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6. Accumulation Predicting Model (APM) is suitable for time series showing steady 

seasonal pattern and is easier to employ as compared to ARIMA. A time series of traffic 

from a certain mobile network of Heilongjiang province in China was studied. Average 

daily traffic per month for the province as well as its every sub-region was forecasted by 

using APM. The resulting precision was high and even comparable with ARIMA [6]. 

7. Multifractal Exploration based traffic prediction has been used in [19]. Box-Jenkins 

model has been proven to be appropriate for voice traffic (since the arrival calls follows a 

Poisson distribution). Internet traffic exhibits statistical self-similarity and has to be 

modelled using the Fractional Autoregressive Integrated Moving Average (FARIMA) 

process. Origins of self-similarity in the internet traffic have been mainly attributed to the 

heavy tailed probability distribution of the transfer sizes and inter-arrival times. Unlike 

other datasets, network traffic in the Internet core was effectively represented by a 

Poisson model within the sub-second time scales. After employing the heavy tailed – 

infinite variance “Levy” distribution, the simulation results indicate that the backbone 

traffic of the internet nearly follows a Poisson distribution and closely resembles a self-

similar process at the same time. To forecast, the nature of the time series need to be 

determined through comparison to short-range dependence and long range dependence 

and then applying the most suitable forecasting model [19]. 

8. Least Squares Support Vector Machine (LS-SVM) has been employed to achieve analysis 

of characteristic and forecasting of the mobile communication traffic. Compared with 

Seasonal ARIMA models, experiments and test results show that the LS-SVM solution 

increased the implementation efficiency greatly and improved accuracy [20]. 

9. Soft Computing Paradigms have been used to perform contrastive investigation of six (6) 

soft computing modes (multi-layer perceptron networks) Elman recurrent neural network 

(RNN), radial basis function network, Hopfield model, fuzzy inference system and hybrid 

fuzzy neural network [21]. Simulation results indicated that hybrid fuzzy neural networks 

were the best candidates for the analysis and forecasting. 

10. Real Time Prediction Using Ad-hoc Networks where a procedure to develop a multilayer 

feed forward neural network combined with a backpropagation algorithm for forecasting 

travel time and traffic congestion is described in [22]. The prediction of travel time and 
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traffic congestion was based on past and current traffic information and was found to be 

not straightforward due to among others, the high complexity and ill predictability of 

traffic process, incorrect observations and different data sources. However, it was found 

that neural networks could exhaustively be used to solve these problems. The Real Time 

Prediction Using Ad-hoc Network was designed on top of a mesh-based communication 

infrastructure for the mobile nodes to communicate. The mesh-based communication 

approach enabled easy deployment of the system in real world. Optimized Link State 

Routing Protocol (OLSR) routing protocol was used for establishing an ad-hoc network 

for peer-to-peer communication with a high level of accuracy of forecast achieved. 

11. The use of an ensemble of neural networks to improve HSDPA traffic forecasting through 

machine learning algorithms including Support Vector Regression (SVR) and abductive 

networks to improve the forecasting accuracy is reported in [23]. The trained model was 

characterized with a good forecasting performance. A data set containing 44160 

recordings of hourly high-speed data packet access (HSPDA) data traffic in UMTS based 

cellular network. 

12. Use of deep spatio-temporal neural networks long-term mobile traffic prediction method 

is reported in [24]. A double Spatial transformer networks (STN) method was created 

which singularly combined STN forecasts and historical statistics, resulting in extended 

term projections of mobile traffic. 

13. In [25], Seasonal Auto Regression Integrated Moving Average (SARIMA) has been 

explored as a complementary method of predicting UMTS based data traffic in the capital 

city of Ethiopia, Addis Ababa. Past UMTS data traffic load was used to predict future 

loads as a basis for infrastructure expansion.  

14. 3D convolutional models have been used to forecast mobile traffic in [26] where 

spatiotemporal features from neighbouring stations to the target base station are utilized to 

forecast mobile traffic with the experimental outcomes showing better forecast results 

when compared to multivariate Auto Regressive Moving Average model (ARMA), and a 

model based on the n-to-n with 1-to-1 model for traffic forecasting. 

15. A predictor model which employed ANN has been used to forecast mobile network traffic 

in [27] with attention given to its performance when compared to linear predictors. The 
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ANN based predictor model was found to outperform linear predictors in shorter 

observation window lengths which make them more useable in the situation where 

information on historical network traffic data is unavailable. 

16. A study was done comparing time series analysis methods and supervised learning to 

forecast LTE busy hour traffic in [28] where it was found that supervised learning 

techniques performed better than time series methods as regards to forecast precision and 

data storage space requirements. 

2.6 THE CASE FOR THE UTILIZATION OF ARTIFICIAL NEURAL NETWORKS IN 

MOBILE TRAFFIC FORECASTS 

ANN can be used in pattern recognition and trend detection to obtain solutions for problems 

which have a complexity level that is too high for solving or detection by conventional computer 

methods or by human analysis. This is due to the ability of artificial neural networks to develop 

meaning from incomplete, imprecise or complex data. A trained neural network can be described 

as an "expert" in the information category it has been provided to analyze [12]. 

Additional benefits of artificial neural networks over other techniques are: 

1) It utilizes simple calculation operations such as multiplication, summing and basic logic 

operations to resolve stochastic, complex, nonlinear problems or mathematically ill-

defined problems [9, 11]. 

2) Self-Organization: Artificial neural networks are capable of creating its own 

representation or organizational structure of information obtained during its learning 

process [9, 12]. 

3) Adaptive learning: this is the artificial neural network’s ability to adapt its learning 

depending on initial experience and data fed to it. [9, 12]. 

4) Fault Tolerance via Redundant Information Coding: When a neural network is partially 

destroyed, computing performance undergoes a level of degradation that corresponds to 

the level of damage. Artificial neural networks, however, possess a degree of fault 

tolerance and can retain some network capabilities despite major network damage [12]. 

5) Real Time Operation: Artificial neural networks can carry out computation processes in 

parallel [18]. 
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Artificial neural networks have found use in various forecasting tools. They have been used to 

forecast electric loads in the short, medium and long term [10, 21]. Their flexibility in use has 

been demonstrated in the estimation and real time prediction of road traffic and travel time in 

intelligent traffic management systems [22]. Their ease of combination with other forecasting 

techniques has resulted in hybrid forecasting techniques such as the combination of artificial 

neural networks with Holt-Winters model to forecast TCP/IP based network traffic volumes for 

ISPs [29]. 

 

Artificial Neural networks have been used to forecast mobile GSM voice traffic in Nigeria [7] 

where future traffic was predicted based on historical traffic per BSC. Traffic from six BSCs was 

considered. The data used in [7] was obtained for each hour of the day spanning a period of five 

months.  

 

However, this approach only considered historical voice traffic as training data without 

considering that future traffic could be influenced by other factors such as network node service 

area density, special events such as public holidays, and time of day, as well as consideration of 

these factors in the forecasting of mobile data traffic in addition to mobile voice traffic. 

Additionally, cellular traffic rides on various technologies (2G, 3G, 4G) which is carried through 

BSC, RNC and LTE nodes which was considered in the work done in this thesis which also used 

data spanning over a larger time horizon of a year so as to improve the accuracy of forecasts all 

year round. Robustness of the ANN to variation in service area density factors has been improved 

by selecting network nodes in various service areas. Traffic prediction based on various network 

nodes i.e. 21 BSC, 10 RNC and 1 LTE relay node which all serve different service areas. 

Therefore, it is possible to drill down and obtain granular traffic and BBH values of these 

different service areas that each of these nodes serve. 

2.7 RESEARCH GAP 

The approach used in Nigeria [7] only considered historical voice traffic as training data and 

further did not delve into the forecasting of cellular data traffic. 
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Additionally, consideration of QoE is not restricted by the technology in use. The case in [7] only 

considered 2G voice traffic from BSC nodes. Consumers are transparent to what technology is in 

play when using mobile services and it is inconsequential whether they are on 2G, 3G 4G, or 5G 

as long as the experience is seamless. Most research on cellular traffic volumes has been 

constrained to GSM (2G) as is the case in [7]. However, this approach does not provide the full 

picture as cellular service users do not lock their mobile terminals to only operate on a certain 

technology but may oscillate across 2G, 3G, 4G or 5G depending on which technology is 

optimally available at their location. To get a clearer picture of the QoE requirements, research 

and design of the ANN module in this work spanned across all technologies in a bid to determine 

the capacity requirements across all mobile service technologies through forecasts of the 

maximum voice and mobile data traffic expected at network nodes as well as the expected 

network node busy hours each day. Additionally, to enhance the precision of the forecasts, a 

larger data set was considered so as to allow to accurately predict cellular traffic all year round. 

 

Further, as convergence of technology accelerates, there is increased use of packet switched 

(mobile data) services in the provision of services that were traditionally circuit switched in 

nature. Such services include voice, text, audio and video messaging as well as video calling. 

Addition of internet protocol television (IPTV) and over-the-top (OTT) services, such as Voice 

over Internet Protocol (VoIP), on the cellular platform has put the provision of quality mobile 

data services into perspective. Therefore, any capacity forecasts of circuit switched (voice traffic) 

network resources need to be coupled with forecasting of packet switched (data) capacity 

resource requirements. Previous research material has only focused on voice traffic and data 

traffic separately with more focus being placed on the traditional voice services delivered over 

the GSM platform. Finally, additional inputs to the training data on factors such as time, location, 

special events, network node types and service technologies were incorporated to give a more 

accurate result. 

2.8 SUMMARY 

The capability of learning by example makes artificial neural networks extremely versatile and 

powerful. Additionally, they make it unnecessary to design a task specific or data specific 
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algorithm for the performance of a specific task. It is therefore unnecessary to analyze or 

understand how that task will be deciphered. Artificial neural networks have parallel architecture 

and quick computational and response times that make them suitable for real time and live 

systems. Although the selection of the best combination of processing time, least error value and 

optimum neural network architecture in artificial neural networks is iterative there is less 

computational effort required and is easy to implement when compared to other forecasting 

methods [30]. 

 

The major advantage of the artificial neural network method is that an initial mobile traffic load 

model is not required. The main drawback of artificial neural networks is there is no assurance of 

convergence in the training process [21]. A further disadvantage is that there is no explicit law for 

selecting the size of hidden layer to circumvent under-fitting and over-fitting [21]. This is 

overcome by creating a number of network configurations and testing them against algorithms 

and subsequently performing cross validation of performance results. 
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CHAPTER 3 

MATERIALS AND METHODS 

The proposed neural network should make traffic forecasts for each hour in the day. It should 

also be capable of determining the busy hour for the sampled cellular network. To achieve this, 

relevant input variables were identified, formulated and gathered from the field.  

 

Traffic in dense urban environment generally follow a static and linear trend and will give a more 

likely worst case setting for network expansion due to network congestion attributed to a high 

population density.  

 

3.1 DATA SOURCING 

The study benchmarked with similar works done in other jurisdictions and adapted to the context 

in Kenya. The research data was sourced from verified traffic volume data from a Kenyan MNO. 

Cellular voice traffic in Erlangs and cellular data in Gigabytes logged over a period of over one 

year on an hourly basis was used in the training, validation and testing of the designed ANNs. 

The busy hours for voice and data services were obtained by taking note of the hour of the day 

that maximum traffic is recorded. 

3.2 ARTIFICIAL NEURAL NETWORK DESIGN 

The notion backing the use of multi-layer artificial neural network models in mobile traffic 

forecasting is the assumption that future traffic is dependent on historical traffic volumes as well 

as external influencing factors (e.g. time of day/month. year, ICT penetration, population growth, 

service tariffs and special events), and the multi-layer artificial neural network is used to estimate 

this dependency.  

 

Therefore, the building of a multi-layer artificial neural network model for mobile traffic 

forecasting can be deemed to be a nonlinear system identification task. Determination of the 

network model structure involves the choosing of network structure and the input variables. The 

estimation of parameters is achieved by training the ANN on historical mobile traffic data which 

require a choice on a suitable training data and an appropriate learning algorithm. Validation of 
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the model/ trained network is done by testing on new traffic data. The neural network model is 

therefore assumed to be founded on pattern recognition functions.  

 

The learning process involves, the input layer receiving data or information from an external 

source and passing this data to the hidden layer which processes the data, simple mathematical 

processing which involves the values of the inputs as well as the associated link weights. The 

produced results from the hidden layer are imposed onto suitable threshold functions resulting in 

final outputs from that layer. These output values subsequently act as inputs to the elements in 

the next layer which could be the output layer or a second hidden layer. The computation 

processes recur in the layers till final output values are generated by the output layer. During this 

stage, the value of the output error is obtained by calculating the variance between the actual 

outputs and that of the multi-layer ANN. This training process undergoes several epochs and is 

repetitive, and terminates when the margin of error is small enough to be acceptable. When the 

learning process is finished, the artificial neural network should be capable of giving an output 

answer(s) to a provided input dataset that is founded on the developed generalized mapping [30]. 

 

The behavior of traffic characteristics undergoes rapid changes which make artificial neural 

networks suitable for modelling forecasting future traffic loads. This is an issue with statistical 

models, as they aren’t always able to keep up with the abrupt changes in the dependencies of the 

traffic. Artificial neural networks can recognize changes in conditions without having to re-

estimate parameters. Conditions matching to new states need not have been already utilized in 

training of the network and subsequent inputs must be in the same format and contain 

information that will enable the network to recognize the condition.  

 

The forecasting problem in this research is of a times series nature, therefore, a supervised 

learning approach was utilized through a multi-layer feed-forward artificial neural network which 

made adjustments to the network weights on its internal nodes and inputs in an iterative fashion. 

The goal of iterative adjustments is in minimizing errors between actual target and predicted 

values through error back propagation, which is a stochastic gradient descent, over several 
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epochs. The final product is the achievement of optimized network weights and values with a 

local minimum of error response. 

 

The proposed model was trained using a back-propagation algorithm using two layers namely an 

input layer (not counted as no processing is done here), a hidden layer and an output layer and 

trained using a supervised learning algorithm.  

 

A network that is well trained using the back-propagation algorithm is inclined to give fairly 

accurate responses and predictions to new data provided as inputs [12]. The generalization 

property of trained artificial neural networks enables the training of the network on some but not 

all outcomes or possible solutions and still get good results with a fairly high degree of accuracy. 

There were four steps that were implemented in the training process: 

i. Assembly of training data.  

ii. Creation of the neural network object. 

iii. Training of the neural network. 

iv. Testing and validation of the neural network response. 

The traffic forecasting framework was based on 2G, 3G and 4G radio access technologies. 

As the network equipment used may be different, a traffic forecasting module was created for 

each network node i.e. BSC, RNC and LTE. Therefore, the tool was able to forecast for both 

mobile voice and data traffic: 

1. The hourly volumes for BSC voice traffic and RNC voice traffic 

2. The hourly volumes for RNC data traffic and LTE data traffic 

3. The Bouncing Busy Hour for BSC voice traffic and RNC voice traffic 

4. The Bouncing Busy Hour for RNC data traffic and LTE data traffic 

 

The implementation of this traffic forecasting module was done using the commercially available 

MATLAB Student R2018a software with Neural Network toolbox. The software has three inbuilt 

learning algorithms, which are: The Levenberg-Marquadt, Scaled Conjugate Gradient, and the 

Bayesian Regularization algorithm which are efficiently implemented in MATLAB as the 
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solution of the Hessian Matrix which involve second order derivatives that are used in machine 

learning [31]. 

 

The hardware system used was Intel core i7-8550U CPU 1.99GHz processor with 8.00 GB 

RAM, 1 TB hard drive and a 64-bit OS, x64 based processor system running Windows 10 Pro 

operating system. 

 

Training data was identified from factors that influence mobile traffic patterns and captured in a 

workbook format which was imported into the neural network toolbox.  

3.4 PERFORMANCE METRICS 

A combination of the Levenberg-Marquadt, Bayesian Regularization, and the Scaled Conjugate 

Gradient learning algorithms and network architectures of ten, twenty, thirty, forty, and fifty 

neurons in the hidden layer were tested against the data and a comparison of the error margins 

tabulated for each outcome in the selection of the optimal design for a mobile traffic forecasting 

problem. Mean Squared Error (MSE) results was used to determine accuracy of forecasting 

capability of designed networks.  

 

The MSE is the variance between the ANN’s predictions and the ground truth, which is squared 

(to remove negative signs) and averaged out across the whole dataset. It is utilized in the 

determination of the closeness of predicted values to actual values where a lower value indicates 

a closer relationship. The range of MSE ranges from 0 to infinity.  

 

The formula for MSE is given in Equation 3.1 as: 

       (3.1) 

 

Where:  MSE  = mean squared error 

    = observed values 



 
 

37 

    = predicted values 

  n  = number of data points 

3.5 PERFORMANCE OF THE ARTIFICIAL NEURAL NETWORK 

Training, testing and validation of the ANN was done with cellular data obtained at the BSC, 

RNC and LTE levels. This gave a bearing of the network expansion requirements looking 

inwards towards the core and outwards towards the radio access.  

 

Generally, there are no standard limits for average MSE, however, a lower value of MSE 

indicates higher degree of accuracy of a predicted value to the actual value. An arbitrary value of 

average MSE of less than one (1) was targeted in this research especially considering that the 

ANN was trained on associated values of factors that influence mobile traffic fluctuations and 

consideration of temporal (time based) factors cascaded to hourly quantities spread over a 

twenty-four-hour horizon. 

 

The ANN was expected to determine the bouncing busy hour for network voice and data traffic 

across all technologies i.e. 2G, 3G and 4G/LTE, as well as the hourly traffic. The hourly traffic 

could be totalled to obtain a general trend in traffic growth over a long period. This would aid in 

the design of the capacity requirements and the distribution of network resources and adoption of 

short term mechanisms for handling traffic overloading such as utilization of half rate coding and 

offloading of data traffic to Wi-Fi hotspots. 
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CHAPTER 4  

DATA ORGANIZATION AND CHARACTERISTICS 

4.1 NETWORK INPUT 

The accuracy of a time series forecast is influenced to a great extent by the amount of historical 

information available to form sensible patterns. A dataset of at least one calendar year provided 

conditions that would capture the cellular network conditions that could be analysed by the ANN 

for each month, day and hour of the year.   

 

The data set used in this research was for a period of one year and two months taken hourly for 

BSC, RNC and LTE network nodes spanning from September 2019 to November 2020. The data 

`analysed was composed of all the network traffic data obtained at the major cellular network 

nodes. 

 

To develop a suitable sampling matrix, the following data fields were selected as inputs to 

develop a unique training profile for the targets which are expected to form the network outputs. 

i. Month 

ii. Day of the Week 

iii. Special days such as public holidays  

iv. Hour of the Day 

v. BSC/ RNC/ LTE node identifiers 

In the input variable matrix, the rows were configured as follows: 

 Column 1 to 4: Month number in binary form i.e. January = 0001, December = 1100. 

 Column 5 to 7: Day of the week i.e. Monday = 001, Sunday = 111. 

 Column 8: Table 4.1 gives a breakdown of the special days which were represented by 1 

and 0 otherwise. Public holidays that fall on Saturday were ignored and marked as 0. 

Those that fell on Sunday were marked 0 but the subsequent Monday was marked as 1 as 

the Monday is counted as a holiday and therefore affects calling patterns and population 

distribution especially in urban settings. 
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Table 4.1: Special Days 

  Day Date Special Day Name 

1 Thursday 10/10/2019 Huduma day 

2 Sunday 20/10/2019 Mashujaa Day 

3 Sunday 27/10/2019 Diwali 

4 Thursday 12/12/2019 Jamhuri Day 

5 Wednesday 25/12/2019 Christmas Day 

6 Thursday 26/12/2019 Boxing Day 

7 Wednesday 01/01/2019 New Year 

8 Tuesday 11/02/2020 Funeral of Former President Moi 

9 Friday 10/04/2019 Good Friday 

10 Monday 13/04/2020 Easter Monday 

11 Friday 01/05/2020 Labour Day 

12 Monday 25/05/2020 Idd-ul-Fitr 

13 Monday 01/06/2020 Madaraka Day 

14 Friday 31/07/2020 Idd-ul-Azha 

15 Saturday 10/10/2020 Huduma day 

16 Tuesday 20/10/2020 Mashujaa Day 

17 Saturday 14/11/2020 Diwali 

 

 Column 9 to 13: Hour of the day i.e.00000 for hour 0 to 10111 for hour 23 

 Column 14 to 17/18: Table 4.2 gives the breakdown of the BSC identifiers in binary code 

while Table 4.3 gives RNC identifiers in binary code. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

40 

Table 4.2: Base Station Controllers 

  BSC_Name BSC Binary code 

1 BGMBSC2 0 0 0 0 1 

2 ELDBSC2 0 0 0 1 0 

3 FTRBSC1 0 0 0 1 1 

4 IKUBSC2 0 0 1 0 0 

5 KIAMBA_BSC 0 0 1 0 1 

5 KISBSC3 0 0 1 1 0 

7 KRTBSC2 0 0 1 1 1 

8 KSMBSC2 0 1 0 0 0 

9 KSMBSC3 0 1 0 0 1 

10 KTEBSC1 0 1 0 1 0 

11 KTIBSC1 0 1 0 1 1 

12 KTLBSC2 0 1 1 0 0 

13 MDIBSC2 0 1 1 0 1 

14 MSABSC4 0 1 1 1 0 

15 NKUBSC3 0 1 1 1 1 

16 NKUBSC4 1 0 0 0 0 

17 PKSBSC5 1 0 0 0 1 

18 PKSBSC6 1 0 0 1 0 

19 RNGBSC2 1 0 0 1 1 

21 VPKBSC2 1 0 1 0 1 

20 RUKBSC2 1 0 1 0 0 

21 VPKBSC2 1 0 1 0 1 

 

Table 4.3: Radio Network Controllers 

  RNC_Name RNC Binary code 

1 ELDRNC1 0 0 0 1 

2 NKURNC2 0 1 1 0 

3 KSMRNC2 0 1 0 0 

4 MSARNC2 0 1 0 1 

5 PKSRNC2 1 0 0 0 

5 VPKRNC2 1 0 1 0 

7 KSMRNC2 0 1 0 0 

8 VPKRNC2 1 0 1 0 

9 PKSRNC1 0 1 1 1 

10 PKSRNC2 1 0 0 0 
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In total, four input matrices were created with ancillary target matrices. These were BSC Voice, 

RNC Voice, RNC Data and LTE data. 

 

These input matrices were used as inputs to the ANN to map to both hourly traffic volumes as 

well as network busy hours with prediction targets being: 

1. The Bouncing Busy Hour 

2. The hourly traffic 

The weekly busy day and the maximum hourly traffic can then be obtained by the analysis and 

summations of the ANN hourly prediction values.  

4.2 CLUSTERING OF INPUT DATA 

To analyze the degree of similarity between the input variables, a low dimensional visualization 

of the ANN training samples and the relative associative weights was done through a process of 

clustering the input data. Data is grouped by similarity by using a Self Organizing Feature Map 

(S.O.F.M) or a Self Organizing Map (S.O.M.) composed of a two dimensional finite region 

composed of regularly arranged rectangular or hexagonal grid. 

 

The ANN pattern recognition problem can be visualized as low dimensional representations 

through a process of competitive learning or vector quantization, while preserving the top level 

properties of the input space such as similarity relations amongst data elements [32]. The trained 

ANN outputs a feature map which does vector classification through identification of the node 

that has the minimal distance metric weight vector to the input space vector. A configuration of 

100 neurons arranged in a 10 by 10 matrix was used to represent the input data. 

 

A hit plot was plotted for the BSC voice traffic input data as shown in Figure 4.1. Data with 

attributes of a similar nature are grouped together and their closeness in similarity results in 

closer distances than attributes that are less similar resulting in a two dimensional visualization of 

multi-dimensional data points. 
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Figure 4.1: Sample Hits Plot for Input Variables for BSC Voice Traffic 

Figure 4.1, demonstrates the number of BSC voice traffic training data which are linked with 

each of the cluster centers (neurons). The figures on the axes are a two dimensional scale of the 

number of neurons on the lattice which in this case is a 10 by 10 matrix configuration of a 100 

neurons. The input data is composed of the columns 1 to 18 of the BSC voice traffic training 

data. The highest number of hits linked with any neuron is 5004. Therefore, 5004 input vectors 

are in that cluster which is the number of data points associated with that neuron. Zero hits 

indicate that no input vector in that cluster is associated with that neuron. This is true of the other 

neurons and their associated values.  

 

Each element of the input vector has a weight plane as demonstrated in Figure 4.2. This is shown 

for columns 1 – 18 of the BSC voice traffic training input matrix. Each plot is a visualization of 

the weights that connect each of the neurons to each input variable where darker colors represent 

bigger weights. Similar connection patterns of any inputs provide an assumption that the inputs 

are highly associated. From a visual analysis and comparison, all the inputs have connections that 

are dissimilar. None of the input variables have similar weight patterns. 
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Figure 4.2: BSC Voice Traffic Input Variables Weight Planes 

 

Elements that have similar weight patterns can be eliminated from the input matrix to speed up 

the training process if necessary. Through visual inspection, it was seen that elimination of any of 

the eighteen input elements will compromise the accuracy of the neural network as none of the 

elements has a degree of similarity in the patterns formed from the 2 dimensional visualizations 

of the input variables weight planes. The largest number of hits related with a single neuron was 

5,004 out of a total of 191, 754 input variables. Similar tests were done for RNC Voice, RNC 

Data and LTE input data and visual comparisons of the input weight planes of each of the 

columns in the input matrix did not show any similarities in patterns. The SOM plots for BSC 

and RNC voice and RNC and LTE data input variables are as shown in Figure A 2.1.1 to A 2.4.2 

in the appendix. 

4.3 NETWORK TARGETS 

4.3.1 Daily Traffic Trends 
For the study period, the daily traffic load profiles indicate a constant volume for 2G voice traffic 

as evidenced by the BSC traffic profile in Figure 4.3, however, a gradual increase for 3G voice 
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and data traffic can be seen in Figure 4.4. Additionally, LTE data traffic also increased during the 

period. This could be attributed to the factors such as uptake of smart mobile devices that utilized 

the new packet switch technologies such as 3G and LTE. Mobile network operators have focused 

on rolling out newer technologies that are cheaper and that have higher traffic capacity [33]. This 

has resulted in a migration from legacy systems and an increase in deployments of technologies 

such as 3G and LTE.  

 

Significant peaks and drops in network traffic observed in Figures 4.3, 4.4 and 4.6 which can be 

attributed to failures in network elements as well as temporary migration of network traffic to 

accommodate network elements that are undergoing maintenance or replacement. 

 

Figure 4.3: 2G (BSC) Daily Voice Traffic 

With time, it is expected that 2G traffic will reduce as the traditional 2G access frequencies will 

be re-farmed to support 3G and later technologies as the mobile networks mature and as the 

market adopts an increased uptake of smarter data driven end user devices. 
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Figure 4.3 and 4.4 show that 3G traffic is constantly increasing during the study period while 2G 

traffic is constant and reducing in some of the BSCs analyzed. 

 

 Figure 4.4: 3G (RNC) Daily Voice Traffic 

It can be noted from Figure 4.5, which shows total aggregated network 2G and 3G voice traffic 

per day, 2G voice traffic patterns maintain a fairly constant and slower percentage growth where 

traffic increased from 1,338,229 to 1,803,268 Erlangs (35% increase) as compared with 3G 

volumes which had a significant percentage increase in total volumes from 213,212 to 470,442 

Erlangs (120.6% increase). This is a comparison between traffic volumes on the first date and the 

last date of the data set. 

 

Figure 4.5: 2G (BSC) and 3G (RNC) Voice Traffic Trend 
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Figure 4.6: 3G (RNC) Daily Data Traffic 

Fig 4.6 shows total aggregated network 3G data traffic per day and demonstrates a fairly constant 

and slight upward trend for the analyzed RNCs. As observed from the trend, KRTRNC2 came 

online at the beginning of September 2020 as part of network rollout. 

 

Figure 4.7: 3G (RNC) Data Traffic Trend 
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A summation of the total daily 3G traffic is shown in Figure 4.7 which depicts a slow increment 

pattern for 3G which changes from 121,705 GB to 158,205 GB (30% increase) from the first day 

to the last day of the series. 

 

 

Figure 4.8: LTE Daily Data Traffic 

However, as seen in Figure 4.8, LTE data volumes show a significant upward trend from 

approximately 105,681 GB to 195,578 GB per day which translates to an 85.1% increase over the 

whole period. As the mobile network operator was piloting the LTE technology on their network, 

traffic was recorded as a single node. 

4.3.2 Hourly Traffic Trends 

An analysis of the different traffic series data demonstrates that primarily two traffic trends were 

evident: the first for hourly (0000 hrs to 2300 hrs) and another giving a daily profile through the 

week. An arbitrary date of 1st September 2020 which was in the period under research was 

selected. Figure 4.9 shows that the 2G voice traffic is lowest between 0000 hrs to 0500 hrs.  
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Figure 4.9: 2G (BSC) Hourly Voice Traffic Trend per Day 

From Figure 4.9, it can be seen that 2G voice traffic peaks in the evenings, generally rising from 

1800 hrs until 2100 hrs. It however has a plateau during daylight hours from 0800 hrs up to about 

1700 hrs. 

 

Figure 4.10: 3G (RNC) Hourly Voice Traffic Trend per Day 
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In Figure 4.10, the 3G hourly voice profile indicates a peak at 1200 hrs and maintains a fairly 

constant profile afterwards for the rest of the day and evening. It is generally accepted that 

broadband (3G/4G) voice traffic would peak during midday as there would be a large 

concentration of users in urban centres (towns /CBDs) as opposed to early in the morning or later 

in the evenings when users would have migrated back to sub-urban areas where they live, and 

where 2G services have a higher availability. This is because 3G/4G network nodes are more 

concentrated in urban settings to cater for the increased peak traffic during business hours 

 

Figure 4.11: 3G (RNC) Hourly Data Traffic Trend per Day 

Figures 4.11 and 4.12 show 3G and LTE data at an hourly profile. It can be seen that both 3G and 

LTE data volumes follow the same trend peaking at about 2200 hrs and lowest volumes 

witnessed at about 0500 hrs. However, the trend exhibits a fairly constant volume of about 7,000 

GB per hour from 1200 hrs to 2000 hrs. 

 

Figure 4.12: LTE Hourly Data Traffic Trend per Day 
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An arbitrary week of 14th to 20th September 2020 which was in the period under research was 

selected. Weekly traffic trends generally follow a varying trend across all technologies and 

services. Voice and data traffic volumes show significant variations in daily patterns as shown in 

the Figures 4.13, 4.14, 4.15, and 4.16. Demand and usage for most of the cellular traffic recorded 

at the network nodes is similar over the days analyzed as viewed from this perspective with no 

evidence of a particular day of the week exhibiting peak traffic loads except for the 3G voice 

traffic trend that shows lower volumes on the 19th and 20th of September 2020 which fell on a 

weekend.  

However, some variations such as the sudden traffic dips indicated by the trend line for 

KSMBSC2, can be attributed to network outages as noted in Figure 4.13. This network node 

underwent scheduled maintenance on 17th and 18th September 2020 which affected its normal 

traffic trend. Similarly, NKUBSC4 had low traffic volumes on 14th and 15th September 2020 

attributed to transmission failure. 

 

Figure 4.13: 2G (BSC) Hourly Voice Traffic Trend per Week 

Network outages will affect the target values in the training of artificial neural networks as they 

give uncommon conditions that cannot be used as a baseline to perform a forecast. 
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Figure 4.14: 3G (RNC) Hourly Voice Traffic Trend per Week 

Variations in traffic trends experienced over different days as seen in Figure 4.14 which shows 

3G voice traffic volumes can be attributed to the general mobility of users and service usage 

trends which vary depending on the day of the week and location of the users which results in 

having different network nodes providing connectivity services over different periods. In Figure 

4.14, PKSRNC1 can be seen to follow a different traffic trend as compared to the other RNCs. 

This is due to the fact that it serves the central business district in Nairobi, which is the main 

business hub in Kenya, which has a high number of users during business hours on weekdays. 

Additionally, the trend shows a variation on the last day of the week, where the traffic is seen to 

reduce. This can be attributed to the understanding that Kenya, being a predominantly Christian 

religious society, will have a significant number of users not contributing to network traffic 

especially on Sunday morning. 

 

Figure 4.15: 3G (RNC) Hourly Data Traffic Trend per Week 
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LTE data hourly traffic, as seen in Figure 4.16 was recorded as a single node for the whole 

network as at the time of study, the mobile network operator was conducting a pilot deployment 

of the LTE service technology on their network. The hourly trend for the sampled week indicates 

a similar traffic profile for each day as shown in Figure 4.16. 

 

Figure 4.16: LTE Hourly Data Traffic Trend per Week 

Small traffic volumes variations can generally be attributed to temporary network faults which 

are impossible to predict. Additionally, network maintenance and equipment upgrades may lead 

to disruption of services and traffic. Due to the sensitivity and the financial implications of the 

cellular services market, such faults are fixed as soon as they occur to prevent customer 

churn/attrition and loss of revenue. 

 

The different traffic patterns underscore the importance of forecasting traffic to allow for the 

dynamic allocation of available network resources as well as monitoring of the long term growth 

of traffic. In addition, the dimension of the evolution of traffic transfer from traditional circuit 

switched to packet switched could be forecast and analyzed to allow for the re-farming of 

spectrum resources and financial outlay planning.  
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It is also of note that different access technologies have different distribution frequency of their 

bouncing busy hours (BBH). This is shown in Figures 4.17, 4.18, 4.19, and 4.20. Majority of the 

daily busy hour at the BSC and RNC nodes occur during the evenings.  

 

Figure 4.17: 2G (BSC) Voice Traffic BBH Distribution 

The Figure 4.17 for 2G voice traffic shows that the BBH mostly occurs from 1900 hrs with the 

highest concentration of busy hours occurring at 2000 hrs and 2100 hrs when most voice calls are 

made presumably from homes. However, a small sample of BBH occur at 1300 hrs and can be 

attributed to BSC nodes serving town centers and business centres because at that time, such 

localities have a high concentration of users. 

 

Figure 4.18: 3G (RNC) Voice Traffic BBH Distribution 
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As can be seen from Figure 4.18, 3G voice has a more distributed occurrence of BBH, however, 

the period between 2000 hrs and 2100 hrs has the bulk of network traffic. As 3G technology is 

more prevalent in urban settings, it can be noted that there are more occurrences of BBH in 3G 

voice as compared to 2G voice traffic around midday. Most RNC nodes serve urban and business 

districts due to heavier user presence and proliferation of smart devices. 

 

Figure 4.19: 3G (RNC) Data Traffic BBH Distribution 

The 3G and LTE data traffic BBH have almost identical distribution with a large portion of 

traffic occurring at 2100 hrs and to a lesser extent at 2200 hrs. As can be seen from Figures 4.19 

and 4.20, a large amount of browsing on mobile devices is done using mobile data at these times 

as most of the users of these smart devices tend to use Wi-Fi as an internet connectivity 

mechanism during the day. Many users will resort to the use of mobile data in their homes where 

there may be lack of access to Wi-Fi and outside official working hours. 

 

Figure 4.20: LTE Data Traffic BBH Distribution 
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4.4 SUMMARY 

The analysis of the input and target data in this work confirm the application and suitability of 

neural networks in mobile traffic prediction. There exists a non-linear relationship between the 

proposed network inputs and their target values. A neural network is therefore a powerful tool 

that can be used to establish the non-linear mapping relationships which can be used to forecast 

various elements of the network across all the technologies such as voice and data traffic values 

in addition to the likelihood of occurrence of busy hours at each network node that is of interest.  
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CHAPTER 5 

DESIGN OF THE ARTIFICIAL NEURAL NETWORK 

5.1 DESIGN STEPS 

The structure of an ANN determines the level of freedom available to model the data. If the ANN 

is too simplistic, then the network will not have the ability to learn the function associating the 

input to output. Resolution of more intricate problems require networks with additional neurons 

and therefore require more computation. In the instance that the hidden layer is too large, the 

network must optimize more parameters than there are data vectors in an effort of constraining 

these parameters. The computational problem could be under-characterized which results in 

unnecessary computation. An over-complex network will learn the noise (irrelevant or 

meaningless data) in the data and will not have the ability to generalize. Additional layers need 

additional computation, however, complex problems will be more efficiently solved.  

 

Learning processes involve input processing elements obtaining input data from an external 

source and passing this data to hidden processing elements, which conduct uncomplicated, yet, 

practical mathematical computations with the involvement of input values and weight of the 

connections. Outputs coming from the hidden processing elements are mapped onto the 

appropriate threshold function of every processing element and the final outputs are generated. 

These outputs subsequently form inputs to all processing elements in the succeeding layer, and 

the computation operations are replicated all through the layers until eventually, outputs are 

created at the output processing elements. Once output values are created, an output error value is 

computed through calculating variance between the neural network outputs and target outputs. 

The whole training operation is iterative, and ceases when a suitably minimal error is obtained. 

On finalization of a learning operation, the ANN should have the capability of giving output 

solution(s) when provided with an input dataset hinged on the developed generalized mapping 

capability. The proposed model in this research had a network architecture composed of an input, 

an output, and one hidden layer and was trained using supervised learning process with the back-

propagation algorithm. In the multilayer neural network, the output is a non-linear functions of 

the weights which connect the input and hidden units to the output unit. Accordingly, non-linear 
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equations can be resolved for each output weight. During every epoch (iteration) across the 

training data, the output weight optimization training method utilizes regular back propagation to 

refine hidden unit weights and subsequently determine the output weights’ non-linear equations. 

Target vectors and their corresponding input vectors are used to train a NN up to the point it can 

estimate a function relating input vectors to a particular target value. 

 

Regular back propagation can be looked at as a steep descent algorithm, where progression of the 

network weights is done in the direction of the negative of the performance function gradient. 

Appropriately trained back propagation networks tend to provide outputs that are near to 

expected values when provided with new inputs that have not been encountered before by the 

network. In general, fresh inputs lead to outputs that resemble the true output for the input vectors 

that were utilized during the network training that are alike to the new provided inputs. The 

generalization ability creates a possibility of training networks using indicative sets of target and 

input pairs and obtain proper solutions and outputs without having to train networks on all 

conceivable input/output pairings. 

Four general stages constitute the training process: 

1) Assembling of the training data  

2) Creation of the network object 

3) Selection of the optimal algorithm and ANN architecture 

4) Fine testing and finally selecting neural network modules. 

5.2 ASSEMBLING OF THE TRAINING DATA 

The input and target data was assembled on a spreadsheet forming a matrix composed of input 

and target vectors. The matrix composition was (n x p) for input values and (1 x p) for target 

values. ‘n’ is the number of rows with input elements while ‘p’ represents the number of columns 

which have unique samples of the inputs. A data clean-up was done to eliminate input values 

associated with target values that were deemed to be outliers to the general data trends. These 

were low values approaching zero which would serve to eliminate values recorded at the network 

nodes during network downtime and outages. Figures below fifty (50) Erlangs for voice traffic 

and one (1) Gigabyte for mobile data were chosen for elimination from the target data. However, 
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high values were maintained in the data as these represented recorded peak traffic values. This 

process is necessary to improve the accuracy of forecasts by eliminating improbable values in the 

input and target matrices. The resultant matrices are as in Table 5.1 and 5.2. 

Table 5.1: Input and Target Matrices for Cellular Traffic Prediction 

 Input Matrix (n x p) Target Matrix (1 x p) 

BSC Voice Traffic 18 x 191,754 1 x 191,754 

RNC Voice Traffic 17 x 69,099 1 x 69,099 

RNC Data Traffic 17 x 72,186 1 x 72,186 

LTE Data Traffic 13 x 6,744 1 x 6,744 

Table 5.2: Input and Target Matrices for BBH Prediction 

  Input Matrix (n x p) Target Matrix (1 x p) 

BSC Voice BBH 13 x 8,254 1 x 8,254 

RNC Voice BBH 12 x 3,086 1 x 3,086 

RNC Data BBH 12 x 3,074 1 x 3,074 

LTE Data BBH 8 x 281 1 x 281 

 

Table 5.1 and 5.2 show the sizes of input and target matrices that resulted from the data cleanup. 

It is noted that the value of ‘n’ in Table 5.2 is less by 5 as compared to Table 5.1 since the hour 

variable is a target element in the determination of BBH whereas it is an input element in the 

determination of the cellular traffic which results in a reduction of 5 columns (hour 1 to hour 24 

takes up 5 columns in binary code). Additionally, the value of ‘p’ is significantly less in Table 5.2 

as compared to Table 5.1 as BBH is determined once for each day whereas cellular traffic is 

determined for each hour of the day. Samples of the matrices in Table 5.1 and 5.2 are in the 

appendix A1. 

5.3 CREATION OF THE NETWORK OBJECT 

A two-layer feed-forward networks is feasibly able of representing all input-output relationships 

with a sparse amount of discontinuities, assuming that there are an adequate number of neurons 

in the hidden layer. A feed-forward NN having a linear transfer function in the output layer and a 

tan-sigmoid transfer function in the hidden layer was created. The linear output layer allows the 

NN to process values outside the range –1 to +1 since forecasts given are expected to be 

continuous / non-discrete values of traffic and busy hours. The tan-sigmoid function is most 
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suitable to be used in MATLAB neural network design because the default ‘mapminmax’ 

processing function transforms outputs to the range (-1,1) for which the tan-sigmoid transfer 

function is most adequate. The feedforward network is useful for approximation of functions of 

any order (or regression) and therefore was deemed suitable for creation of a neural network for 

purposes of cellular traffic forecasting which is basically a function approximation problem.  

 

The optimal number of neurons in the hidden layer was tested through various trials and selected 

through adjusting the design of the network and going through the training process and 

comparing the performance of the Levenberg- Marquardt (LM), Scaled Conjugate Gradient 

(SCG) and Bayesian Regularization (BR) algorithms on various network architectures. The work 

in this thesis investigates the variation of the number of neurons in the hidden layer, with the 

number ranging from ten to fifty in steps of ten neurons. The range and step size were arbitrarily 

chosen as there is no set rule in the selection of the quantity of neurons in the hidden layer. Cross-

validation was used to compare accuracy of forecasts by comparing the average MSE of the 

trained networks. The networks each had a single output neuron, based on the fact that there is 

only a single target value (cellular traffic or busy hour) associated with each input vector.  

5.4 SELECTION OF OPTIMAL ALGORITHM AND ANN ARCHITECTURE  

The different network architectures were trained using a selection of three training algorithms to 

identify best performance. These algorithms were: 

1. Levenberg-Marquardt: This algorithm generally needs more memory but less 

computing time. It is a repetitive method which locates the minimum of a function that is 

exhibited as the sum of squares of non-linear functions. Training automatically ceases 

when generalization stops improving, which is evidenced by an increment of the mean 

square error (MSE) of validation samples [34]. 

2. Bayesian Regularization: This algorithm provides good generalization for noisy, 

difficult, or small datasets but generally needs more computing time. Training ceases as 

per adaptive weight minimization (shrinkage/ regularization). The minimization methods 
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involve applying certain initial distributions on the parameters of the model and penalizes 

bigger weights in expectation of attaining smoother mapping [35]. 

3. Scaled Conjugate Gradient: This algorithm needs reduced memory. Training 

automatically ceases when generalization ceases getting better, as demonstrated by a 

growth in the mean square error (MSE) of the validation samples [36]. 

These algorithms operate in such a way the weights are advanced in the negative gradient 

direction. There is no fixed rule on deciding the division ratios for training, validation and testing. 

However, as a general rule, smaller datasets require a larger ratio of training data as they are 

prone to problems of overfitting and loss of generalization. Typically, researchers would use a 

ratio of 80: 10: 10 for smaller datasets and 60: 20: 20 for larger datasets. The default MATLAB 

ratio is 70: 15: 15 which formed a good compromise for the size of datasets in this research. The 

MATLAB application performs a random division of target vectors and input vectors into three 

sets using the ‘dividerand’ function as below: 70% is used for training, 15% is used to perform 

validation on the network generalizing and also ceasing of training prior to over-fitting and the 

final 15% is utilized as an entirely independent test of network generalization. 

 

Training on the input and target vectors proceeds as long as the training results in a reduction of 

the neural network’s overall error on the validation vectors. However, to prevent the training 

going on indefinitely when convergence is not being achieved, the process is programmed to 

terminated once 1,000 epochs is achieved. This process termination criterion could be set higher 

or lower depending on the problem complexity and the size of the dataset. Training will also stop 

when the error increases over 6 cycles as it is deemed that the network has converged to the point 

where its output will have the least error when optimized at that point. Any further training 

results in divergence as opposed to convergence as the network weights are not being optimized 

in the error reduction gradient. In the wake of the network memorizing the training set (which 

will be at the cost of poorer generalizing), the training is ceased. This occurs when generalization 

error starts increasing and it is determined that the performance of the model on the holdout 

validation dataset begins to degrade. This method spontaneously circumvents the issue of over-

fitting, which afflicts many optimization and learning algorithms. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

Training, validation and testing were conducted on the cellular traffic data and the performance 

of the training algorithms summarized. The neural network training stopping criterion was set at 

a threshold of 1,000 epochs to prevent overfitting and overtraining and further to allow the tested 

networks to have a degree of generalization. As earlier discussed, this number of epochs was 

selected as a compromise between the problem complexity and the size of the dataset. However, 

this figure can be adjusted upwards if general convergence is not achieved during network run 

simulations. This further prevents a scenario where the training process goes on indefinitely and 

does not approach convergence (when the error does not fall below a threshold value). The 

training will cease when the error value does not improve over 6 epochs as the network cannot 

learn additional input and output relationships past that point. The results and discussions are 

categorized into: 

1. Cellular traffic forecasting, and 

2. Bouncing busy hour forecasting 

6.1 CELLULAR TRAFFIC FORECASTING 

6.1.1 Initial Training, Validation and Testing  
The results of performance of the training the different architectures through the Levenberg- 

Marquardt (LM) algorithm. Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) 

algorithms is as shown in Tables 6.1 to 6.4. Values of individual MSE for Training, Validation 

and Testing are used to calculate the average MSE.   

6.1.1.1 BSC Voice Traffic 

Comparison of performance is quantified by consideration of the lowest average MSE across the 

combination of training algorithms and the hidden layer architecture. As can be seen from the 

Table 6.1, the training algorithm exhibiting best performance as regards to convergence for BSC 

Voice is the Levenberg- Marquardt (LM) algorithm. Convergence of the training process depends 

on the initialization of weights, which is random. This results in different outputs and in 

extension the performance will vary each time the neural network is trained using the same 
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algorithm, inputs and target values.  The initial round of training, validation and testing has the 

purpose of selecting and eliminating network and training models that take too long to converge 

and those with high MSE values through the process of cross-validation. 

Table 6.1: BSC Voice Training Algorithm Performance 

BSC 

Voice Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) Time (hrs:min:secs) 

  

LM 10 701 0.94995 00:06:10 

LM 20 138 0.97092 00:03:01 

LM 30 586 0.97389 00:56:35 

LM 40 854 0.97682 02:08:03 

LM 50 654 0.97752 02:54:37 

 

        

BR 10 764 0.96234 00:13:39 

BR 20 1000 0.97293 00:43:21 

BR 30 1000 0.97503 01:37:40 

BR 40 739 0.97737 01:53:11 

BR 50 514 0.97835 01:50:44 

 

        

SCG 10 518 0.95163 00:02:47 

SCG 20 1000 0.96236 00:06:34 

SCG 30 1000 0.96387 00:03:26 

SCG 40 1000 0.96711 00:03:06 

SCG 50 1000 0.96892 00:03:25 

 

The BR and SCG algorithms exhibit challenges in achieving convergence to a minimum error 

value and fail in some instances especially when the network size increases past 10 neurons in the 

hidden layer. This makes the LM algorithm most suitable to use for the BSC voice traffic dataset. 

 

The lowest average MSE, which is the average of the squared differences between actual values 

and estimated values, was noted at 0.94995 and a training time of 6 minutes and 10 seconds using 

the LM algorithm with a network architecture consisting of 10 hidden layer neurons. This was the 

lowest value of MSE obtained in the results. 

6.1.1.2 RNC Voice Traffic 

RNC Voice traffic was used as inputs in five different network architectures trained using the 

LM, BS and SCG algorithms providing the results captured in Table 6.2. 
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Table 6.2: RNC Voice Traffic Training Algorithm Performance 

RNC 

Voice Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) Time (hrs:min:secs) 

  

LM 10 238 0.95665 00:00:45 

LM 20 161 0.96538 00:01:01 

LM 30 133 0.96732 00:01:44 

LM 40 111 0.96885 00:03:10 

LM 50 113 0.96819 00:04:24 

 

        

BR 10 1000 0.95747 00:03:27 

BR 20 364 0.96604 00:04:58 

BR 30 598 0.96827 00:09:32 

BR 40 921 0.96917 00:36:35 

BR 50 609 0.9696 00:43:31 

 

        

SCG 10 265 0.94517 00:00:07 

SCG 20 611 0.95963 00:00:23 

SCG 30 429 0.95301 00:00:20 

SCG 40 848 0.96423 00:00:50 

SCG 50 361 0.95744 00:00:53 

 

The BR algorithm performed unpredictably with changes in the number of neurons in the hidden 

layer with no convergence being achieved in one instance. The LM algorithm’s 10 neuron 

architecture had the best average MSE of the LM trained networks with a value of 0.95665, while 

the BR trained 10 neuron architecture performed with an average MSE value of 0.95747. The 

best performing test was for the 10 neuron SCG trained network which had an average MSE of 

0.94517 and a training time of 7 seconds. It should be noted that cross-validation is the best 

method to compare performance of trained neural networks due to the variations of performance 

that appear monotonic because neural networks are stochastic in nature and therefore utilize 

randomness in initializing weights. 

6.1.1.3 RNC Data Traffic 

The performance on training of the networks using RNC data traffic as captured in Table 6.3 and 

shows the performance across network architectures and training algorithms. 
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Table 6.3: RNC Data Training Algorithm Performance 

RNC 

Data Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) Time (hrs:min:secs) 

  

LM 10 515 0.95777 00:01:49 

LM 20 59 0.97403 00:00:47 

LM 30 76 0.97597 00:01:18 

LM 40 64 0.97700 00:02:55 

LM 50 94 0.97742 00:07:08 

 

        

BR 10 179 0.96689 00:00:41 

BR 20 697 0.97572 00:07:20 

BR 30 410 0.97659 00:09:43 

BR 40 755 0.97743 00:28:42 

BR 50 710 0.97795 00:44:46 

 

        

SCG 10 555 0.96402 00:00:16 

SCG 20 567 0.96924 00:00:21 

SCG 30 794 0.97200 00:00:41 

SCG 40 519 0.97147 00:00:30 

SCG 50 748 0.97212 00:00:57 

 

There was convergence in all scenarios tested, however the LM algorithm trained 10 neuron 

architecture exhibited the best average MSE results at 0.95777 and a training time of 1 minute 

and 49 seconds. 

6.1.1.4 LTE Data Traffic 

Table 6.4 shows the results for the test scenarios for LTE data traffic. It can be noted that across 

all training algorithm tests, convergence times were achieved fairly fast, because the dataset was 

smaller than those used to train for BSC and RNC traffic. All tested network architectures 

exhibited nearly similar average MSE results of approximately 0.98. Only one result exhibited 

lower average MSE across the tests at 0.97896, and this was a 40 neuron architecture trained 

using the SCG training algorithm Which makes it the best performing network to forecast LTE 

data traffic according to the dataset provided. 
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Table 6.4: LTE Data Training Algorithm Performance 

LTE 

Data Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) Time  (hrs:min:secs) 

  

LM 10 104 0.9866 00:00:01 

LM 20 33 0.9877 00:00:01 

LM 30 25 0.98851 00:00:01 

LM 40 18 0.98828 00:00:03 

LM 50 15 0.98769 00:00:03 

 

        

BR 10 122 0.98764 00:00:03 

BR 20 228 0.98881 00:00:10 

BR 30 429 0.98921 00:00:31 

BR 40 816 0.98931 00:01:39 

BR 50 806 0.98932 00:03:34 

 

        

SCG 10 177 0.98112 00:00:01 

SCG 20 271 0.98209 00:00:01 

SCG 30 183 0.98165 00:00:01 

SCG 40 167 0.97896 00:00:01 

SCG 50 225 0.98395 
00:00:01 

 

In conclusion, the best performance, based on average MSE for the traffic samples is as in Table 

6.5: 

Table 6.5: Summary of Initial Training, Validation and Testing Performance 

  No. of Neurons in Hidden Layer Training Algorithm 

BSC Voice Traffic 10 Levenberg-Marquardt 

RNC Voice Traffic 10 Scaled Conjugate Gradient 

RNC Data Traffic 10 Levenberg-Marquardt 

LTE Data Traffic 40 Scaled Conjugate Gradient 

 

The table 6.5 is a general indication of performance, however, during the training of artificial 

neural networks, random weights and values of gains are assigned at the first iteration which 

results in differing starting points for each training simulation. Due to the diversity of the data 

and the numerous non-linear relationships between input and target values, different algorithms 

and network configurations will have varying error values in their forecasts. Additionally, as 
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neural networks operate on a “black-box” model, it is difficult to identify what data points 

resulted in the adjustments of the weights in the hidden layer of the neurons. 

 

Therefore, to fine-tune the cellular traffic forecasting networks, a further five simulation runs 

were conducted on each with the network architecture used per data set as captured in Table 6.5. 

They were subsequently trained with the algorithm that exhibited the best performance per data 

category.  

6.1.2 Fine testing and final selection of neural network modules 

Five simulation runs were conducted per dataset were tested according to the results obtained in 

Table 6.5.   

6.1.2.1 BSC Voice Traffic 

In Table 6.6, the 5 networks tested in this data category showed variations in training, validation 

and testing time with varying degrees of average MSE.  

Table 6.6:  BSC Voice Traffic ANN Fine Testing Results 

BSC 

Voice 

Training 

Algorithm 

Number of Neurons in 

Hidden Layer 

Simulation 

Identifier Epochs 

Average MSE (Training, 

Validation, Test) 

Time 

(seconds) 

  

LM 10 A 303 0.9577 308 

LM 10 B 563 0.9561 394 

LM 10 C 128 0.96194 75 

LM 10 D 397 0.95989 234 

LM 10 E 263 0.96087 171 

Average 330.8 0.9593 236.4 

 

Comparing the five simulation runs, Simulation B was the best performing simulation with an 

MSE of 0.9561.  However, it was noted that the run that was conducted in the initial training, 

validation and testing using the LM algorithm 10 neuron network had a better performance with 

an average MSE of 0.94995 as seen in Table 6.1. As explained before, different runs on the same 

network using the same training algorithm will post varying results due to the stochastic nature of 

neural networks. An average of 330.8 epochs, MSE value of 0.9593 and processing time of 236.4 

seconds was obtained from five networks A to E.  A detailed breakdown of the results can be 

found in the appendix A3. 
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6.1.2.2 RNC Voice Traffic 

RNC voice traffic prediction results of performance are shown in Table 6.7. The fine tuning 

network selection indicated Simulation G as the best performing network. 

Table 6.7: RNC Voice Traffic ANN fine testing results 

RNC 

Voice 

Training 

Algorithm 

Number of Neurons in 

Hidden Layer 

 Simulation 

Identifier Epochs 

Average MSE (Training, 

Validation, Test) 

Time 

(seconds) 

  

SCG 10 F 769 0.95327 45 

SCG 10 G 405 0.93557 20 

SCG 10 H 445 0.95625 12 

SCG 10 I 427 0.95263 21 

SCG 10 J 678 0.95575 34 

Average 544.8 0.950694 26.4 

 

It is of importance in noting that the input vector size has an impact on processing time and 

larger data sets require more computation and processing time. As the RNC voice has 69,099 

samples as compared to the BSC voice dataset which has 191,754 samples, the processing 

times in Table 6.7 are lower than those seen in Table 6.6. Simulation G had an average MSE 

of 0.93577 which was much better than the other networks tested for this data set. An average of 

544.8 epochs, MSE value of 0.950694 and processing time of 26.4 seconds was obtained from 

five networks F to J.  A detailed breakdown of the results can be found in the appendix A3. 

6.1.2.3 RNC Data Traffic 

Simulation K exhibited the best average MSE results as indicated in Table 6.8 for the simulation 

runs conducted on the RNC data dataset. 

Table 6.8: RNC Data Traffic ANN fine testing results 

RNC 

Data 

Training 

Algorithm 

Number of Neurons 

in Hidden Layer 

Simulation 

Identifier Epochs 

Average MSE (Training, 

Validation, Test) 

Time 

(seconds) 

  

LM 10 K 515 0.95777 89 

LM 10 L 196 0.96444 43 

LM 10 M 147 0.96272 21 

LM 10 N 245 0.96075 52 

LM 10 O 197 0.96542 43 

Average 260 0.96222 49.6 

The MSE result for simulation K was 0.95777 although it had the longest training time of 1 

minute 29 seconds due to the number of epochs it took to reach convergence which was 
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significantly more than what networks L, M, N, and O took. However, the MSE value of 

simulation K was better by 0.3% to that of simulation N which was closest in terms of 

performance. An average of 260 epochs, MSE value of 0.96222 and processing time of 49.6 

seconds was obtained from five simulations K to O.  A detailed breakdown of the results can be 

found in the appendix A3. 

6.1.2.4 LTE Data Traffic 

The LTE data traffic dataset was used to perform five training runs using the SCG algorithm in a 

40 neuron network as a fine-tuning exercise to the initial network selection performed in Table 

6.5. The results are as captured in Table 6.9. 

Table 6.9: LTE Data Traffic ANN fine testing results 

LTE 

Data 

Training 

Algorithm 

Number of Neurons 

in Hidden Layer 

Simulation 

Identifier Epochs 

Average MSE 

(Training, Validation, 

Test) 

Time 

(seconds) 

  

SCG 40 P 318 0.98743 2 

SCG 40 Q 213 0.97998 1 

SCG 40 R 262 0.98379 1 

SCG 40 S 146 0.97684 1 

SCG 40 T 219 0.9833 2 

Average 231.6 0.982268 1.4 

 

Simulation S had the lowest average MSE of 0.97684 as compared to simulations P, Q, R, and T 

tested on this dataset. It can be noted that the time required to reach convergence for all the runs 

was 2 seconds or less and this could be ascribed to the small size of the LTE data traffic dataset 

which was composed of 6,744 samples. An average of 231.6 epochs, MSE value of 0.982268 and 

processing time of 1.4 seconds was obtained from five networks P to T.  A detailed breakdown of 

the results can be found in the appendix A3. 

 

6.1.3 Discussion of Results for Artificial Neural Network Performance on 

Cellular Traffic Data 
In general, results on algorithm performance and network architecture exhibited a variety of 

outcomes as regards to achieving convergence and MSE. It was apparent that larger data sets 

(BSC voice, RNC voice and RNC data, in that order) had better performance results when a 
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smaller number of neurons were utilized in the design of the hidden layer of the network. It could 

be said that with more data points (input and target vectors) to develop a baseline for forecasting, 

the neural network requires fewer hidden layer neurons to discover patterns in the data due to the 

larger quantity of input to target mapping examples to learn from. Table 6.10 shows the test 

results of the networks selected for every set of the traffic data with the average MSE expected in 

the forecasting of network traffic at the hourly basis. This can be seen in the summary of the fine 

testing of the selected networks and training algorithms. BSC voice, RNC Voice and RNC Data 

all had best forecasting performance exhibited by networks that had ten (10) hidden layer neurons 

while LTE data traffic exhibited best average MSE performance in networks that had forty (40) 

neurons.  

Table 6.10: Summary of Fine Testing Traffic Training Algorithm Performance 

  
No. of Neurons 

in Hidden 

Layer 

Algorithm 

Average 

Epoch 

Count 

Average of 

Average MSE 

Achieved 

Average 

Processing Time 

(Seconds) 

BSC Voice Traffic 10 LM 330.8 0.9593 236.4 

RNC Voice Traffic 10 SCG 544.8 0.950694 26.4 

RNC Data Traffic 10 LM 260 0.96222 49.6 

LTE Data Traffic 40 SCG 231.6 0.982268 1.4 

 

Training algorithm performance demonstrated clear preference for Levenberg-Marquardt (LM) 

and the Scaled Conjugate Gradient (SCG) algorithms across all networks tested. Convergence 

was achieved in all tested scenarios before the maximum epoch count of 1,000 was reached. The 

Bayesian Regularization algorithm did not achieve convergence in some instances with the 1,000 

epoch count reached before optimal performance of training and testing was achieved. 

Additionally, the average MSE was higher than the other tested algorithms. 

 

Table 5.1 showed the sizes of the data matrices tested and a relationship can be seen where larger 

sample data sets (BSC voice, RNC voice and RNC data) require a larger number of hidden layer 

neurons to perform best results for network fitting and pattern recognition as compared to smaller 

data sets such as the data for LTE data traffic.  

 

Availability of clean data is a major influence on the size of the datasets that are used in the 

training of artificial neural networks and as was seen in Table 5.1, the input and target vectors 
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vary from 191, 754 for BSC voice to 6,744 for LTE data traffic which contributed to the variation 

of the time performance for the networks and algorithms tested. Therefore, comparison can only 

be done for runs within the same dataset and conclusions drawn from each as captured in Table 

6.10. 

 

6.2 BOUNCING BUSY HOUR (BBH) FORECASTING 

Prediction of BBH follows a similar procedure as the one used for cellular traffic. 

6.2.1 Training, Validation and Testing  
 The performance of the Levenberg- Marquardt (LM), Bayesian Regularization (BR) and Scaled 

Conjugate Gradient (SCG) algorithms were employed across different network architectures and 

on the input and target vectors, as shown in Table 5.2. The input and target data are used to train, 

validate and test varying number of neurons in the hidden layer with the number varying from ten 

to fifty in steps of ten neurons. As neural networks are stochastic models, weights are initialized 

randomly which results in varying degrees of MSE and outputs. Cross-validation was then used 

to compare performance by comparing the average MSE of the trained networks. 

 

However, the number of elements and samples per element reduce in number as a BBH is 

calculated for each day unlike network traffic that is predicted in an hourly manner. It follows 

that the processing time is much lower. Due to small size of input and target matrices for the 

BBH as seen in Table 5.2, it is assumed that fine testing will not add much value because 

overfitting and over validation can occur when using small data sets which leads to a loss of 

generalization. Therefore, one round of training, validation and testing was conducted per BBH 

data category. Table 6.11 is a summary of the BBH distribution seen in Figures 4.17, 4.18, 4.19, 

and 4.20. 

 

The results of performance of the training the different architectures for BBH prediction through 

the different algorithms is given in Tables 6.14 to 6.18. 
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Table 6.11: BBH Distribution per Technology 

Hour 
BSC BBH 

Distribution 
RNC Voice Traffic 
BBH Distribution 

RNC Data Traffic 
BBH Distribution 

LTE BBH 
Distribution 

0 0 0 0 0 

1 0 0 0 0 

2 1 2 1 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 1 0 0 

8 2 1 0 0 

9 3 2 0 0 

10 4 68 3 0 

11 19 240 10 0 

12 12 38 8 0 

13 123 7 9 0 

14 6 5 3 0 

15 8 5 6 0 

16 2 6 2 0 

17 7 10 4 0 

18 7 72 1 0 

19 133 70 10 0 

20 5277 1204 74 3 

21 2637 1305 1726 239 

22 12 2 1132 39 

23 1 48 85 0 

Total 
Samples 

8254 3086 3074 281 

 

6.2.1.1 BSC Voice BBH 

Table 6.12 shows that a network architecture of 20 neurons in hidden layer trained using the 

Scaled Conjugate Gradient (SCG) algorithm gives the best performance for BSC voice BBH 

forecast. The average MSE is 0.17546 with an epoch value of 56 that converges in less than 1 

second.  
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Table 6.12: BSC Voice BBH Forecasting Tests 

BSC 

Voice Algorithm 

Quantity of Neurons in 

Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) 

Time 

(hrs:min:secs) 

  

LM 10 21 0.34264 00:00:01 

LM 20 10 0.28210 00:00:01 

LM 30 15 0.35219 00:00:02 

LM 40 12 0.34616 00:00:02 

LM 50 19 0.97752 00:00:06 

 

        

BR 10 220 0.36531 00:00:01 

BR 20 573 0.37053 00:00:41 

BR 30 547 0.36128 00:05:26 

BR 40 838 0.37292 00:02:22 

BR 50 459 0.97835 00:03:19 

 

        

SCG 10 111 0.23130 < 00:00:01 

SCG 20 56 0.17546 < 00:00:01 

SCG 30 70 0.19219 <00: 00:01 

SCG 40 89 0.20144 < 00:00:01 

SCG 50 100 0.19804 < 00:00:01 

            

 

From Table 6.12, an observation can be made that the SCG algorithm outperforms the LM and 

BR algorithms in terms of processing time and the average MSE achieved for all the network 

architectures that were investigated.  

 

The convergence time of the training were all below 1 second for the SCG algorithm, however 

the MATLAB software rounds these times to the nearest second. The performance metrics for the 

network configuration for BSC voice BBH which was the SCG trained 20 neuron network is 

found in the appendix A3.  

6.2.1.2 RNC Voice BBH 

Network training, validation and testing of RNC voice BBH gave the results captured in Table 

6.13. Overall processing times for all algorithms and architectures considered were quite fast. 

The Scaled Conjugate Gradient algorithm with a 30 neuron architecture posted best results with 

an average MSE of 0.67827 which converged at epoch 25.  
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Table 6.13: RNC Voice BBH Forecasting Tests 

RNC 

Voice Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) 

Time 

(hrs:min:secs) 

  

LM 10 26 0.88874 < 00:00:01 

LM 20 17 0.89213 <00: 00:01 

LM 30 51 0.89521 < 00:00:01 

LM 40 13 0.89295 < 00:00:01 

LM 50 17 0.89743 < 00:00:01 

 

        

BR 10 313 0.8911 00:00:02 

BR 20 322 0.90183 00:00:05 

BR 30 448 0.90306 00:00:14 

BR 40 420 0.90359 00:00:25 

BR 50 932 0.90552 00:01:31 

 

        

SCG 10 72 0.84981 <00: 00:01 

SCG 20 47 0.81424 < 00:00:01 

SCG 30 25 0.67827 < 00:00:01 
SCG 40 39 0.76285 < 00:00:01 

SCG 50 76 0.8306 < 00:00:01 

            

 

The performance metrics for the best performing network configuration for RNC voice BBH is 

found in the appendix A3. Time for convergence was less than 1 seconds for the SCG trained 30 

neuron network. 

6.2.1.3 RNC Data BBH 

Table 6.14: RNC Data BBH Forecasting Tests 

RNC 

Data Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) 

Time 

(hrs:min:secs) 

  

LM 10 10 0.094561 <00: 00:01 

LM 20 10 0.23165 < 00:00:01 

LM 30 10 0.22297 < 00:00:01 

LM 40 10 0.16633 < 00:00:01 

LM 50 13 0.16585 <00: 00:01 

 

        

BR 10 198 0.33025 00:00:01 

BR 20 467 0.34021 00:00:07 

BR 30 435 0.32464 00:00:17 

BR 40 850 0.36427 00:00:58 

BR 50 1000 0.28815 00:01:46 

 

        

SCG 10 19 0.083091 < 00:00:01 
SCG 20 41 0.087673 <00: 00:01 

SCG 30 43 0.11532 <00: 00:01 

SCG 40 57 0.19465 < 00:00:01 

SCG 50 89 0.18783 < 00:00:01 
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Table 6.14 shows that a network architecture of 10 hidden layer neurons trained with the SCG 

algorithm giving the best performance for RNC Data BBH forecast. The performance metrics for 

the best performing network configuration for RNC Data BBH has an average MSE of 0.083091 

with an epoch value of 19 that converges within 1 second. The details of the performance of this 

network is found in the appendix A3. 

6.2.1.4 LTE Data BBH 

Forecasting of LTE Data BBH gave the results captured in Table 6.15. Overall processing times 

for all algorithms and architectures considered were fairly fast overall. The Scaled Conjugate 

Gradient algorithm with a 10 neuron architecture posted best results with an average MSE of 

0.049477 which converged at epoch 10. 

Table 6.15: LTE Data BBH Forecasting Tests 

LTE 

Data Algorithm 

Quantity of Neurons 

in Hidden Layer Epochs 

Average MSE (Training, 

Validation, Testing) 

Time 

(hrs:min:secs) 

  

LM 10 10 0.37486 <00: 00:01 

LM 20 9 0.34035 < 00:00:01 

LM 30 6 0.41204 < 00:00:01 

LM 40 5 0.49976 < 00:00:01 

LM 50 5 0.47871 < 00:00:01 

 

        

BR 10 1000 0.25769 00:00:08 

BR 20 1000 0.25556 00:00:07 

BR 30 1000 0.25063 00:00:12 

BR 40 1000 0.23793 00:00:21 

BR 50 1000 0.25104 00:00:33 

 

        

SCG 10 10 0.049477 < 00:00:01 

SCG 20 26 0.44341 <00: 00:01 

SCG 30 27 0.38111 <00: 00:01 

SCG 40 65 0.38801 < 00:00:01 

SCG 50 39 0.42951 < 00:00:01 

            

 

The performance metrics for the best performing network configuration for LTE Data BBH are 

found in the appendix A3. 
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6.2.2 Discussion of Results for Artificial Neural Network Performance on 

Bouncing Busy Hour (BBH) Data 
In all tested scenarios, the Scaled Conjugate Gradient (SCG) algorithm achieved the best 

performance for all BBH datasets. The average MSE of networks trained by the SCG algorithm, 

was lower than the one achieved using the Levenberg-Marquardt (LM) algorithm and that of the 

Bayesian Regularization (BR) algorithm as captured in Table 6.12 to 6.15. The LM and BR 

trained networks reported higher average MSE when compared to the SCG trained networks. The 

BR algorithm did not achieve convergence before the maximum epoch count of 1,000 in some 

instances when tested against RNC data and LTE Data BBH samples. 

 

Table 5.2 shows the sizes of the data matrices used in the training of the BBH forecasting neural 

networks. No definitive relationship can be identified which shows that dataset sample sizes 

exhibit better performance based on the number of neurons in the hidden layer of the designed 

networks. The best performance of the networks was exhibited between 10 to 30 neurons as 

shown in Table 6.16 which shows the performance of the networks selected for each of the BBH 

data sets with the average MSE that is expected in the forecasting of BBH. 

Table 6.16: Summary of BBH Training Algorithm Performance 

  
Quantity of Neurons 

in Hidden Layer Algorithm 

 

 

Epoch 

Count 

 

Average 

MSE 

Achieved 

 

Processing 

Time 

(hr:min:secs) 

BSC Voice BBH 20 Scaled Conjugate Gradient 56 0.17546 <00:00:01 

RNC Voice BBH 30 Scaled Conjugate Gradient 25 0.67827 < 00:00:01 

RNC Data BBH 10 Scaled Conjugate Gradient 19 0.083091 < 00:00:01 

LTE Data BBH 10 Scaled Conjugate Gradient 10 0.049477 < 00:00:01 

6.3 SUMMARY OF RESULTS 

The results confirm the applicability of neural network techniques to the forecast of cellular 

network traffic and bouncing busy hour (BBH) prediction. Neural networks are capable of 

identifying the non-linear relationships between the influencing factors, which form the input 

vectors, and cellular traffic and busy hours, which form the target vectors. The low MSE values 

obtained during the runs and simulations indicates that the performance of the designed networks 

will achieve fairly accurate forecasts with a low deviation between actual and predicted values. 

The lower the MSE values, the closer the forecast value is to the actual value. Performance 
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details of the training, validation and testing of the best performing networks are found from 

Figures A 3.1 to A 3.8 in the appendix. 

 

The MATLAB designed networks is capable of giving outputs based on inputs at the command 

line prompts where the input variables relevant to a future date, time, network node identifier, 

and special day identifier in the similar format that the neural network had been trained with. The 

output would be a value that depicts the cellular traffic or the BBH depending on the type of 

forecast required. It is assumed that due to the dynamic nature of telecommunications sector, the 

neural networks will require periodic fine tuning and further training on any additional 

quantifiable factors which could influence traffic patterns that would become apparent during the 

passage of time and change in technology.  

 

The conditions vary from one test case to another, such as the size of datasets, the input elements 

(factors), the traffic type (voice/ data), the type of network node, time, the technology platform of 

the dataset (2G, 3G, LTE). Therefore, average MSE evaluation has been done for the training 

algorithms and tested architecture of the neural networks that were considered in this research. 

 

In the creation and simulation of the NNs, the networks exhibited different optimal results with 

different training algorithms and various network architectures. Due to the multi factor approach 

used in this work (period of the day, day of the week, special days, type of network node, type of 

cellular traffic, technology in use), and the various cellular network elements targeted (Base 

station controllers, radio network controllers, LTE relay nodes), data set sizes across the different 

technologies had an influence on the specific algorithm and network configuration that could be 

used to give best prediction values. Therefore, due to the diversity of the sample and element 

types, a diversified approach for each dataset was used to identify the most suitable algorithms 

and network configurations to be used for each cellular technology under study.  

 

After the fine testing stage/process that was used to test the error performance that is to be 

expected in forecasting cellular traffic and busy hours, the selected neural networks chosen as the 

most suitable for making cellular traffic forecasts had average MSE values that ranged from 
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0.950694 to 0.982268 as recorded in Table 6.10 which shows the suitability of neural networks in 

forecasting cellular traffic. 

 

The implication is that the neural networks have a high degree of accuracy and at the same time it 

has a degree of generality, much similar to human reasoning process. This generalizing capability 

allows the network to process a set of input vectors that it has not encountered before and be able 

to come up with forecasts for cellular traffic across all the target technologies (2G, 3G, LTE). To 

make a forecast, the trained network will be provided a set of input vectors which is in the same 

format as the dataset that was used to train it. For example, in this research, a prediction can be 

made of a particular hour on a particular day/date and a specific cellular network node such as 

BSC voice traffic by giving an input of: month, day of the week, special days (public holidays), 

hour of the day, and BSC/ RNC/ LTE node identifier (which is of interest) in the 18 row binary 

format described in Chapter 4 of this thesis. 

 

BBH prediction had average MSE values ranging from a minimum of 0.049477 for LTE Data 

and a maximum of 0.67827 for RNC voice as seen from Table 6.16. Due to the fewer neural 

network input vectors needed (as busy hour is predicted once a day as opposed to traffic which is 

predicted for every hour in a day), and the limited variance of chances of occurrence of the BBH 

outside Hour 20 or 21 in a day, the neural network can quickly learn the pattern of occurrence of 

a busy hour in a particular day. In summary, larger input and target training datasets provide a 

higher degree of generalization due to exposure to a wide range of possible test conditions (as 

evidenced by higher MSE value) while smaller input and target data sets give near perfect models 

that give high accuracy (low MSE value) but low generalization capability. However, the neural 

network has to have a degree of accuracy and generalization to perform forecasting tasks. 

 

Due to the stochastic properties of an ANN, and the opaqueness of the hidden layer that follows a 

“black-box” model where any function can be approximated but any study of its structure will not 

provide any insight on its inner workings.  Therefore, the design and selection of an ideal neural 

network to make an accurate yet generalized forecast is an iterative trial and error process, that 

requires cross-validation, as the neural networks are data specific.  
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 CONCLUSION 

Results achieved in this research confirm the relevance and application of neural networks in 

cellular voice and data traffic and BBH forecasting. The ANN was capable of determining the 

non-linear association which was existent connecting the historical traffic and hourly data it was 

supplied in the training phase as indicated by the low average MSE observed that give a bearing 

on the accuracy of predictions of what the traffic and likelihood of the occurrence of the busy 

hour in a particular network node (BSC, RNC, LTE relay node) in a particular day would be 

when given suitable input and target variables. The design and testing of the artificial neural 

network modules adopted a multi-factor approach that incorporated input vectors that were 

composed of the network node identity (which identifies the location and area served), radio 

access network (RAN) technology (2G, 3G, LTE), traffic type (voice, data). time factors (hour, 

day of the week), special days (public holidays) as well as maximum hourly traffic per day (to 

determine the busy hour). 

 

As outlined in the methodology, the created networks have been designed and trained to have a 

accuracy and generalization in the prediction of:  

1. The hourly volumes for BSC and RNC voice traffic 

2. The hourly volumes for RNC and LTE data traffic 

3. The Bouncing Busy Hour for BSC and RNC voice traffic 

4. The Bouncing Busy Hour for RNC and LTE data traffic 

 

To make predictions, an input matrix is created composed of the variables such as the time, date 

(of interest) as well as the target network node identifier. As highlighted in previous chapters, this 

input matrix would have to be in the same format (order) that was used in training the neural 

network. The trained neural network will give output values that are predictions of traffic and 

BBH. With accurate predictions of hourly traffic, a trend of the expected traffic growth can be 

obtained by summing predicted volumes over a time period of interest i.e. to get the total traffic 
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in a day/ week, the predicted traffic values in each hour are totaled over the time horizon of 

interest. Armed with this information, a network planner can dimension a network and design for 

expansion and optimization to seamlessly accommodate future traffic demands so as to maintain 

QoS and QoE requirements.  

 

From this research, a number of factors were identified to influence traffic and BBH. These were 

time/ day/ month factors, occurrence of special days, type of network node and the radio access 

technology in use. These factors were used in tandem with traffic and BBH values spanning one 

year to train networks that had the capability to predict hourly traffic and daily BBH. From the 

results of this research, Table 7.1 summarizes the recommendations for design of neural networks 

for cellular traffic and BBH. 

Table 7.1: Recommended network design per data category  

  
No. of Neurons 

in Hidden Layer 
Algorithm 

BSC Voice Traffic 10 Levenberg- Marquardt 

RNC Voice Traffic 10 Scaled Conjugate Gradient 

RNC Data Traffic 10 Levenberg- Marquardt 

LTE Data Traffic 40 Scaled Conjugate Gradient 

      
BSC Voice BBH 20 Scaled Conjugate Gradient 

RNC Voice BBH 30 Scaled Conjugate Gradient 

RNC Data BBH 10 Scaled Conjugate Gradient 

LTE Data BBH 10 Scaled Conjugate Gradient 

 

Artificial neural networks, therefore can be powerful tools for decision making and planning in 

mobile service provision companies in as far as deployment of network elements and radio 

resources. ANN’s ability to learn non-linear relationships between input and target vectors speaks 

to their flexibility and power. Additionally, it is unnecessary to conceive an algorithm to conduct 

a particular task; i.e. it is unnecessary to know or make sense of the internal workings of that 

problem.  

 

The specific objectives of the work carried out in this report, as highlighted below, have been 

addressed and accomplished. 
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i. To determine the factors influencing cellular traffic volumes and incorporate them as 

inputs to improve the accuracy of forecasts. The factors identified and used in this 

research were: month of the year, day of the week, special days such as public holidays, 

hour of the day and BSC/ RNC/ LTE node identifiers. 

ii. To implement a neural network based forecasting model for cellular traffic. Through 

design and cross validation through performance comparison between various designed 

and tested networks, a model was developed for cellular voice and cellular data based on 

data from a Kenyan MNO spanning one year. 

iii. To validate the accuracy of the method by analysis the predicted values to actual values 

using the mean square error (MSE). Validation and testing with the results of this analysis 

was conducted in Chapter 6 of this research with a breakdown and comparison of the 

average MSE achieved through simulation runs. 

 

In conclusion, the overall objective of this research was to explore the viability of the utilization 

of ANNs in the forecasting of cellular traffic volumes and further, to design artificial neural 

networks using MATLAB software with an aim to ascertain the combination of algorithm and 

neural network architecture that would give high accuracy in the prediction of cellular traffic and 

BBH. This was achieved with the ANN modules developed using MATLAB software and the 

performance of the modules analyzed by cross-validation. The resultant MSE values as 

enumerated in the discussion of results in Chapter 6, show the usability of the created ANN 

modules in predicting cellular voice and data traffic as well as the bouncing busy hours. 

7.2 RECOMMENDATION FOR FUTURE WORK 

Future research on this field can assimilate information pertaining to the economic factors such as 

consumer expenditure on services, mobile service penetration levels and subscriptions, special 

service offerings and availability of feature/smart devices in a particular area so as to provide a 

bigger set of input vectors for the neural network to learn from. This will improve the accuracy of 

forecasts by incorporating factors that influence cellular traffic.  
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In this research, the created neural networks were based on the service technology and traffic 

type. However, the aspect of network specialization, which is the utilization of a NN for peak 

traffic periods of the day and a different NN for other hours of the day, could be incorporated to 

provide better accuracy of forecasts especially at peak traffic times.  

 

The accuracy of the forecasts of a neural network is dependent on the quality of data that it is 

trained on. Missing data and outliers negatively impact the performance of the neural network. 

Data preprocessing techniques could be employed to develop good quality datasets through 

methods such as stochastic neighbour embedding which reduces the high dimensional map of 

features into a lower dimensional, probability density distribution.  
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APPENDIX 

A1  INPUT AND TARGET MATRICES 

A1.1  Sample BSC Voice Input (Blue) and Target (Yellow) Matrix for Hour 0 

(0000 to 0100 hrs) and Hour 1 (0100 to 0200 hrs) for 8th September 2019 

 

Month Binary 
Code 

Day of the 
Week in 

BC 

Special 
Day in 
BC Hour Hour Binary Code BSC_Name BSC Binary code 

Voice 
traffic 
(Erl) 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 RNGBSC2 1 0 0 1 1 439.26 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 NKUBSC3 0 1 1 1 1 1054.81 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 BGMBSC2 0 0 0 0 1 601.89 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KTIBSC1 0 1 0 1 1 339.32 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 ELDBSC2 0 0 0 1 0 583.58 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KISBSC3 0 0 1 1 0 800.33 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KSMBSC2 0 1 0 0 0 920.42 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 PKSBSC5 1 0 0 0 1 628.92 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 PKSBSC6 1 0 0 1 0 2009.27 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 RUKBSC2 1 0 1 0 0 1012.29 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 IKUBSC2 0 0 1 0 0 746.97 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KIAMBA_BSC 0 0 1 0 1 340.84 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 FTRBSC1 0 0 0 1 1 130.6 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 VPKBSC2 1 0 1 0 1 321.19 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 MDIBSC2 0 1 1 0 1 419.13 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 MSABSC4 0 1 1 1 0 1205.06 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KRTBSC2 0 0 1 1 1 529.68 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KTLBSC2 0 1 1 0 0 249.05 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 NKUBSC3 0 1 1 1 1 398.94 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 RUKBSC2 1 0 1 0 0 334.19 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 KIAMBA_BSC 0 0 1 0 1 117.06 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 VPKBSC2 1 0 1 0 1 110.32 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 KISBSC3 0 0 1 1 0 275.78 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 KTLBSC2 0 1 1 0 0 84.03 
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A1.2  Sample RNC Voice and Data Input (Blue) and Targets (Yellow) Matrix 

for Hour 0 (0000 to 0100 hrs) and Hour 1 (0100 to 0200 hrs) for 8th 

September 2019 

 

Month Number  
in BC 

Day of the 
Week in 

BC 

Special 
Day in 
BC HOUR ID Hour number in BC rnc_name RNC Binary code 

Voice 
traffic 
(Erl) 

Data 
Volume 
(GB) 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 NKURNC2 0 1 1 0 304.52 348.54 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KRTRNC1 0 0 1 0 0 0 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 KSMRNC2 0 1 0 0 835.67 791.06 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 PKSRNC1 0 1 1 1 1080.79 1337.69 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 MSARNC2 0 1 0 1 564.76 764.13 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 RUKRNC1 1 0 0 1 328.11 363.05 

1 0 0 1 1 1 1 0 0 0 0 0 0 0 VPKRNC2 1 0 1 0 870.64 1193.88 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 NKURNC2 0 1 1 0 120.88 216.22 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 RUKRNC1 1 0 0 1 138.14 224.16 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 KRTRNC1 0 0 1 0 0 0 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 KSMRNC2 0 1 0 0 306.36 450.73 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 PKSRNC1 0 1 1 1 481.85 882.86 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 MSARNC2 0 1 0 1 291.38 530.24 

1 0 0 1 1 1 1 0 1 0 0 0 0 1 VPKRNC2 1 0 1 0 363.76 770.67 
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A1.3  Sample LTE Data Input (Blue) and Target (Yellow) Matrix for Hour 0 

(0000 to 0100 hrs) to Hour 23 (2300 to 0000 hrs) for 3rd February 2020 

 

Month Number  
in BC 

Day of the 
Week in 

BC 

Special 
Day in 
BC Hour Hour number in BC Data_Volume (GB) 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 3268.9024 

0 0 1 0 0 0 1 0 1 0 0 0 0 1 1830.727473 

0 0 1 0 0 0 1 0 2 0 0 0 1 0 1118.509809 

0 0 1 0 0 0 1 0 3 0 0 0 1 1 875.1222832 

0 0 1 0 0 0 1 0 4 0 0 1 0 0 868.4543173 

0 0 1 0 0 0 1 0 5 0 0 1 0 1 1384.766502 

0 0 1 0 0 0 1 0 6 0 0 1 1 0 2696.950598 

0 0 1 0 0 0 1 0 7 0 0 1 1 1 4072.005837 

0 0 1 0 0 0 1 0 8 0 1 0 0 0 4692.341674 

0 0 1 0 0 0 1 0 9 0 1 0 0 1 4908.244876 

0 0 1 0 0 0 1 0 10 0 1 0 1 0 5112.9291 

0 0 1 0 0 0 1 0 11 0 1 0 1 1 5190.640786 

0 0 1 0 0 0 1 0 12 0 1 1 0 0 5235.479092 

0 0 1 0 0 0 1 0 13 0 1 1 0 1 5297.043561 

0 0 1 0 0 0 1 0 14 0 1 1 1 0 5271.396329 

0 0 1 0 0 0 1 0 15 0 1 1 1 1 5224.80168 

0 0 1 0 0 0 1 0 16 1 0 0 0 0 5325.564619 

0 0 1 0 0 0 1 0 17 1 0 0 0 1 5449.872474 

0 0 1 0 0 0 1 0 18 1 0 0 1 0 5533.517317 

0 0 1 0 0 0 1 0 19 1 0 0 1 1 5870.521343 

0 0 1 0 0 0 1 0 20 1 0 1 0 0 6594.488233 

0 0 1 0 0 0 1 0 21 1 0 1 0 1 7269.939226 

0 0 1 0 0 0 1 0 22 1 0 1 1 0 7082.638393 

0 0 1 0 0 0 1 0 23 1 0 1 1 1 5506.66749 
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A2 SELF-ORGANIZING MAPS (SOM) PLOTS 

A2.1 BSC Voice 

 

Figure A2.1.1 Sample Hits Plot for Input Variables for BSC Voice Traffic 

 

Figure A2.1.2: BSC Voice Traffic Input Variables Weight Planes 
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A2.2 RNC Voice  

 

 

Figure A2.2.1: Sample Hits Plot for Input Variables for RNC Voice Traffic 

 

Figure A2.2.2: RNC Voice Traffic Input Variables Weight Planes 
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A2.3 RNC Data 

 

Figure A2.3.1: Sample Hits Plot for Input Variables for RNC Data Traffic 

 

 

Figure A2.3.2: RNC Data Traffic Input Variables Weight Planes 
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A2.4 LTE Data 

 

Figure A2.4.1: Sample Hits Plot for Input Variables for LTE Data Traffic 

 

 

Figure A2.4.2: LTE Data Traffic Input Variables Weight Planes 
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A3  PERFORMANCE RESULTS FOR BEST SIMULATION RUNS 

 

 

Figure A3.1: BSC voice traffic training performance results 

 

Figure A3.2: RNC voice traffic Network G performance results 

 

Figure A3.1 to A3.4 show a snapshot of the optimal performance results as obtained from the 

MATLAB simulations. A summary of the same is captured in Table 6.1 to 6.4. 
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Figure A3.3: RNC data traffic Network K performance results 

 

Figure A3.4: LTE data traffic Network S performance results 
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Figure A3.5: BSC Voice BBH SCG trained (20 Neurons) performance results 

 

Figure A3.6: RNC Voice BBH SCG trained (30 Neurons) performance results 

 

Figure A3.5 to A3.8 show a snapshot of the optimal performance results as obtained from the 

MATLAB simulations. A summary of the same is captured in Table 6.12 to 6.15. 
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Figure A3.7: RNC Data BBH SCG trained (10 Neurons) performance results 

   

Figure A3.8: LTE Data BBH SCG trained (10 Neurons) performance results 
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A4  PROGRAM LISTING 

A4.1 Cellular Traffic Forecasting 
A4.1.1 BSC Voice ( LM Algorithm, 10 Hidden Layer Neurons) Script 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 04-May-2021 12:37:54. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx18 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-1.2764382934686320237;-17.774302175477174615;-

2.0580067857312340784;2.9422321457463764816;2.2149674015187970078;6.4334212812265842985

;4.2057480502980144621;-

5.3902234236662183164;5.3184528175760030777;5.7552192487958651057]; 

IW1_1 = [0.0017014917743573331008 0.0021538349452580327417 7.4642027329476051917e-05 -

0.00044908877009884324953 -0.0034369803778680463845 -0.0036383911720904997707 -

0.00066271058828519188461 -0.0037380812196891512883 -1.9875110585067641278 -

1.9953795564322682754 0.015427883162162061431 0.012984587726920559028 

0.006821515320304892202 0.086834075078332503828 0.042604002674872479273 

0.082557285211570727301 0.078141448984457573257 -

0.0013757851568895072738;0.53683029586364017227 -0.014631532381605969959 

0.10406992147723077846 0.17150278252204406715 -0.048929235120565926775 -

0.021322273496277886068 -0.046161376737821155358 0.19496790667490568327 

12.46671324838867001 3.8748157837795478287 10.905825485317684809 -8.1980556168762692693 

0.32311221318691424331 6.241611508432382216 -5.348151949688420892 10.298482803530232488 

-18.586611465124171616 -13.07519611195802689;0.00036539147780787211046 

0.0079694278415069885052 0.0010850531773203373354 0.0012109981458369690425 -

0.0034559805479776090249 0.00087855603538973341647 0.0044644197688713102221 -

0.013342962842604914539 1.0744257880743823819 0.30529338465920707879 

0.81534622271439294305 0.29518489711996392932 0.12702740821358879386 

0.04351086184439742488 -0.0016522539206111196836 0.021189426623919462023 

0.093536994072166451675 -0.11584331714663047286;0.035204568336705217846 

0.033424145221601017641 0.033463426638006062153 -0.0045302199027989079397 -

0.0087407138185738638553 -0.0081046145049968928292 0.00066546500050339654504 -

0.0011230979797206414039 2.197002638314172529 2.2842633597242651966 -

0.078665185656198649555 -0.0012398193013336668636 -0.011019005238961876447 -

1.6241181007914573531 -1.0095341717028338824 -1.4288406269675153482 

4.6221838142726037191 -0.26802642469475923548;-0.0026782602805556347293 -
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0.008886803579665685654 -0.0006160907882273558003 -0.0014950010925680841996 

0.0037722144699116593597 -0.00015091534446889503249 -0.0035274575591210037377 

0.010377449462774534367 2.77996873110718834 3.4848933471733474221 -

0.86242919025923625576 -0.30380062049226713716 -0.12924079180227396324 -

0.035635103040003196506 0.0013456884139533623057 -0.01887669125490890748 -

0.087922922460178187798 0.097613001412776442822;0.18910068823929443438 -

0.11424416874963459756 0.029704894268509293709 -0.018386880111536461901 

0.053532082602252395453 0.047984901729935490466 0.036109304944796700998 

0.021836001031347251899 1.4871474631231498265 1.0295307668878199703 

0.34597649518225709331 0.15718851794726540483 0.075079884645399386223 

3.2889065570805384731 -5.0185444297024472959 1.4290442876764601898 

7.8956390597864691827 -7.5486426926711231999;0.018527118903511632236 -

0.0027906099356373552378 -0.044561910364454629385 -0.017939642417732250268 

0.014390483042103136002 0.014263706295527046539 0.036049765940181964508 

0.014348419385174544446 2.2009843057761253604 0.8762760485220887352 

0.77905966846496710332 0.77337412445134656735 0.43478654246353448665 

5.0166272140305103733 10.781976905707759684 5.3138330009333269999 -

3.3512402055896317599 10.719130338866847296;-10.204947723113289015 -

5.246950277955008346 1.6023668616255191122 -7.003461398541179328 -8.5790878530150322945 

-8.4869055311451031542 0.014258456254262367319 0.0748512238979706368 -

8.3308797051933130007 -16.926554252149923485 0.06359963440281597713 

0.022330626935513984976 8.5922529154059912315 6.3120038378417104852 

8.9731658607543920425 1.2138081241536113897 -9.7817133195512528943 

8.9849655053318802089;-0.24086832380883582694 0.14363538670760331306 

0.1056989946338638825 0.079567513580289739306 0.0022808418864926783415 -

0.00025215681961784138648 -0.014565587851691801785 0.020795659013317788905 

1.4274521799412567269 1.8351072881008219095 -0.21277053150425689898 -

0.20634356878258025558 -0.15110963516078199098 -0.49952681676725307902 -

1.4592053134952205351 -0.93019180317378757916 -8.3296363856318862418 -

1.6583471806167158213;-0.071838020845830963257 0.10280350661553171177 -

0.014639304054397809726 -0.009686400549237056401 -0.028530297964709121217 -

0.029267880351509168585 0.015164430272550539006 -0.012110089888442875788 

3.8410634656682409727 0.42765823144188419569 1.6675794539182833276 

1.6450375039335756178 1.2549657177552071552 4.1998694583694309301 -

0.065807264275128105058 4.4145964365493304271 -4.2213786967738959888 -

0.080818339453036749931]; 

  

% Layer 2 

b2 = 5.7588465608022110231; 

LW2_1 = [9.6630668896769780218 0.03047779594867823863 7.2192518930103828367 

0.3374703021852111795 9.1107574233020720555 -0.16725294249319669349 -

0.1514379059265757721 -0.013111822468326239308 0.21475681788895942259 

0.11321295389560444289]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 8.55622660139407e-05; 

y1_step1.xoffset = 50; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 
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else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

A4.1.2 RNC Voice ( SCG Algorithm, 10 Hidden Layer Neurons) Script 

 
function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 
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%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 04-May-2021 14:07:29. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx17 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [1.5150118181666285544;-

3.5192719929615243757;2.087642133831082436;1.6100078859849642487;-

0.11926541570825524574;0.2585315844836101884;0.36450836217800963723;-

4.3559994860700443908;-0.78524005841525035265;-1.1333392966965423199]; 

IW1_1 = [-0.25544943288653437774 -0.23441461121138329471 -0.00038512434248238515151 -

0.19163755984994573778 -0.18025861053014280433 0.29896124443346511201 

0.4225983771541256262 0.30915631861349146536 1.1024778854380761217 -

0.1749345402760091317 -0.6878185502315060651 0.16534597416938479064 -

0.30978815091309602758 -0.3097219643285043511 0.62232828831591813223 -

0.31132451357724394425 -0.60936799776836647613;1.3488123601656640815 -

1.1953025903860621248 -0.23547835965465477304 -0.157823746118212066 -

0.032746352306673040533 -0.048414489057190292221 -0.022921265039214728382 -

0.22056555852931003514 1.0349200505819426965 1.005806908602132177 -

0.049919379777817712851 -0.067122247813543506334 -0.024597880228451232676 

0.53262182866557938876 0.71318683778499547543 0.071980329064474907197 -

0.0022099495250095858336;0.56604988680988443939 0.20151158441862054849 

0.055156360327085748874 0.10446038350524497473 0.049378187813921836646 

0.069293739308049898118 0.046264637855059145832 -0.047053010249260611431 -

1.6035290943612285908 -1.5127976084220513542 0.14158791613222895811 

0.22062694085360104457 0.10019432129095857953 -1.3274012552576848201 

0.33634893276107741267 0.79490096636986073975 

2.1257288271794698709;0.020127800364637737918 0.22480582746305430297 

0.0052785267051370559147 -0.0098348182227753055268 -0.31829718771265885779 -

0.33766425705866209839 -0.25417260756366855112 -1.2342134731741287723 

3.1373243232589516083 2.5691279652196015171 1.7675137940297611649 1.8277131281211294045 

1.0805927632395675442 3.2823941379189798262 3.2798363216833061884 -

0.076414778046131309752 0.16009171122737519966;0.53512765794277472597 -

1.0707115762679055848 -0.25584136043115240922 -0.45344428171170975128 

0.12027716591436468652 0.043148361585510344729 -0.087939867919356179415 

0.19672144762861928924 -1.0218810711808119507 -0.59759349013675966411 -

0.58871400893870451387 0.49679547944403712467 -0.034296834669847911514 

0.48889572393909214165 -0.58636990785725762176 -0.31439875581336573784 -

0.46856626536098522351;0.045670643094314095078 -0.10204733904535706612 

0.092010826015892555052 -0.028692075636958743606 0.26756060912249313155 

0.2953685145444583382 0.21763287104647738301 0.18433009444373615882 -

0.42810314854660130868 -0.0016699981439251823309 -0.58569678581568307418 -
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0.72403100865755820603 -0.17611311969443199654 0.028689091959147164368 

0.32832822422826385411 1.0834022591453640327 -1.078028692672237554;-

0.087318926307459285296 0.016172436014927314696 -0.052274862692227745675 -

0.023044005795686120508 -0.30788959040273689016 -0.3096635338398605608 -

0.14239725832444105613 -0.73301774171767608568 2.0114936702644929944 

0.7468195007975301225 1.2885210639972417557 1.4498155554995595384 

0.14674735460896418116 0.17687460143072517016 0.057186726285563427297 -

3.4057799690563714812 3.7984525765556806931;-0.16675479618901026257 

0.04244945807844799357 0.094373060169401196129 0.02091791505561819281 -

0.20632698860334489077 -0.18735018599144662166 -0.092150760347160451391 -

0.17487910181468033222 1.0014760410036593896 1.4911927010392316273 -

0.28838861704378526696 -0.27028541837070668707 -0.1177820371993459625 

0.67256388984075232695 0.997239267669645435 2.0490974969227084834 

2.3877662089540963031;-0.51788066221336581663 0.91177885894468480021 

0.451192929526887887 0.34006132430870600336 -0.038046741554673975394 -

0.014237262488254038423 -0.0046833599797337626541 0.12636069021870544038 

2.5880156728884662343 2.5004259057545188405 -0.17114120766060164636 -

0.21483525386176860472 -0.11503608994165769042 0.6524089481190383788 

1.3548233601111581148 -0.83764393224398325799 -0.4808060140771346358;-

0.18750364535436811475 0.034754352747803383961 -0.25348487364524530108 

0.18849899342742118535 0.40568274367887990906 0.33446131760628994289 

0.25501223667289130148 -0.61405236811384844575 -0.31269292536486359424 

0.58555501276006427513 -0.2243513696254704759 -0.028929264856925152039 -

0.24983403915516272376 1.0660729993283599715 -0.28273424956598069979 -

1.3794930045034710098 1.9397726463253492923]; 

  

% Layer 2 

b2 = 0.79623167579099718427; 

LW2_1 = [0.0019216448948164461131 0.6708480486067948112 -0.31051067688016981139 

0.14046174076988776624 -0.0036367988245196527543 0.13776254386076852709 

0.17073246656964649604 0.41882522336712613154 0.23607264746161690794 -

0.080796736876508748471]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.000222560534004334; 

y1_step1.xoffset = 50.013041171; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 
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    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

A4.1.3 RNC Data ( LM Algorithm, 10 Hidden Layer Neurons) Script 

 
function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 04-May-2021 15:38:07. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx17 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 
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%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = 

[0.0056935764533825160977;25.421713210193892962;5.4997375585570411616;75.04606759563475

2934;-8.6217675523331500642;-1.9357265499626143956;-7.6192407465626770247;-

0.9127433809717876434;-0.0056095949189850554534;4.3153335594914183915]; 

IW1_1 = [0.0011318476714934854431 0.0052330186427958034351 -0.00029607637478871773632 

0.00022136548944004381099 0.00015183716882228629982 0.00029187117845678968095 

5.1896815546951490232e-05 -0.00023840808231682182779 -0.010204635253298437875 -

0.0078837913272263217962 0.11643606143358781191 -0.012346457417190493874 -

0.0030117513222154795698 0.076531953065621299848 0.073573131765689123163 

0.091220165486575674474 0.0034043447451994799345;-2.8719844278494894851 

6.4525614378514903891 7.7355087772757178399 2.6284413341603296566 

0.094629268932834034733 -0.082092657895000475943 0.271152650252955707 

0.027055857753592121862 4.6295015278490909694 9.8596038356411419556 -

0.05645151617048337761 -0.12677804159355041125 0.19469833259312038787 

10.01528487874609219 -4.3672189449177096776 13.465838038765340912 

4.9903838996101912429;0.075584440863537993849 -0.062589937178449600585 

0.1062932583978902501 -0.010794982261374980528 0.046835018023735588977 

0.022515742544358358784 0.041794877702713228995 0.12158883021005671699 

10.093930632421711735 10.137504656235684308 5.1666278283510589375 5.1712045131161623601 

5.2001695944439187969 7.1200888383839773255 12.242187963884838098 1.647103238466476105 

-3.6757071457856271834;0.13085897658683390277 0.88148097810537007213 

1.3067962782237600994 1.0873105135258338549 0.018795941988058170041 -

0.021809900244183777485 -0.065051258687271781844 17.768163546614960779 

48.57752829804240946 32.016127937909544698 15.000145538475210927 14.433299530724209347 

19.390830361857009478 66.758450563910074038 61.578616300386009641 -

8.5777596572129066743 -49.077734664601109671;0.22760629203702595347 -

14.08705300517187986 -7.1486594659068698476 -6.9052270379031321923 -

0.13798700415924591844 0.0047248041932220520567 -0.023193011241507580783 -

0.13910199537167347583 -2.7737383261094996634 -1.5735060737650057305 -

0.53156285869563291158 0.16089836360808945637 0.21586102865408304807 -

21.998355689584418116 -10.873536069170729235 10.54615690094462721 

3.6639479204065552587;0.056626364136468432253 0.026316815779299326805 

0.025349720260114078779 0.023200729671636170087 -0.0067649954387801721281 -

0.0034824389202587424999 -0.00042633426493973573292 -0.014191921497111369133 -

2.1234869314445163901 -2.1010022330747553099 -0.011261281664594292515 

0.0027053880365397343227 0.012282237225291077129 -4.5559850092705254099 -

4.7135433359238687601 -3.4683940776833086517 0.19326575365105772009;-

13.442773770623810847 -0.051473518952233399126 0.25112529292912566525 

0.023898942218216534528 0.050247356699869495655 13.649018792653313525 

0.011959868063081904518 0.0780322229199455486 4.7590774216310736122 -

1.6757692161364712291 -5.3204221281168724289 3.1185882092272905197 -

11.504054730657058414 15.681037429077777645 2.1354803309276131351 -

15.095182858343397569 -1.0555518755420385535;-4.0715864844407576584 -

5.1034885367999809347 0.45308664119811731252 0.2820448823044878206 -

0.0024523936574709446351 0.00018187444254580143735 -0.0032266559249459099423 

0.088178240313671815698 0.20584784886010862315 0.20920733919446968252 

0.019299896002979915338 0.020612404260062066469 0.024412016756439482157 -
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0.23272402667622113515 -0.35608822759789798829 -1.3335675839562672884 -

0.86933691688909664474;-0.00033620494918532348822 0.0056241010156397337055 -

0.00096874135232637170485 0.00082952458920745441445 0.0058364867168828301128 

0.003260138966925264347 0.0015223677465235089731 0.0027487135943651602385 -

0.11692853058691107804 -0.098443976243061143139 1.0287744684171862275 -

0.19898464265858931133 -0.047658782525303429456 0.061088831745246124916 

0.065055042118730393996 0.039813680006409148115 

0.0034182523954572607838;0.74157165510574285516 -2.617306909761622169 -

0.16130907790306811544 -0.16052181459360925775 -0.0073665581999295560306 -

0.0089164023379311573708 0.0026233881412554044439 0.029530312696045016296 -

0.038774272609115624511 0.01750854148593923576 0.0041458129520467266321 

0.0019041066460859078918 0.0037315474091305640518 -0.07860222456044940742 

4.0426630064241066975 -8.5136173428515320438 -3.9896908210615036339]; 

  

% Layer 2 

b2 = 0.072062505845864238685; 

LW2_1 = [-32.665353725739812774 -0.029220649931067120553 0.10384385932160006272 -

0.049736521568582735264 -0.065743429821652141221 -2.7767963825702790537 

0.027637022281575336635 -0.18389256209477022885 4.9834740002870319131 -

0.44341981565920896013]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.000801191198990983; 

y1_step1.xoffset = 1.39657649025321; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 
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end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

A4.1.4 LTE Data ( SCG Algorithm, 40 Hidden Layer Neurons) Script 

 
function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 04-May-2021 19:25:39. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx13 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2;2]; 
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x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [1.7769345068624589068;2.0300068678461906657;-

1.7937796495891151771;1.6757982200682079998;-

1.4591618409584594662;1.3702944643444856521;0.95440127530179574844;-

1.3092414741421756208;0.67378551682963672143;-1.0585968230327853501;-

0.77089268838680424789;-0.6278478290695499453;-0.70894920095099678292;-

0.75125003151791303058;-

0.23242009736930860364;0.64304332929943797126;0.43155643050241232483;0.6700217968445525

4183;0.023934268656497621752;0.17674801870432657602;0.32922336653220585223;0.0579159466

58811785774;0.34743487956385116222;0.32874205115729243643;0.43336143002123023171;0.6016

4307963371188581;-0.62030155599794711829;-

0.71926585289748379282;0.75141148314516625906;-

1.0597965148128301038;1.0921179446604141194;1.0764781119783624064;-

1.2160969547136943891;1.2724007513552653137;1.5198783349626956429;-

1.3956665034699784478;-1.5420726166452229933;-

1.7911330257746849171;1.777117991111398343;1.8144882003773594725]; 

IW1_1 = [-1.0187176352551758907 -0.22908757112125857636 -0.33653613152579503476 

0.038142225819071770565 -0.33030682376603598405 -0.11581723516496715554 -

0.50956759008925134324 0.58037536556707292057 -0.99893159317603841263 -

0.46912371048848400257 -0.011045866053684062075 -0.15150718812811600489 -

0.38284867933999028322;-0.052575531656011524617 -0.18653745352622691511 -

0.63998227412904273859 0.55839059802536794574 0.63610189812343531646 

0.39145638100915658431 0.060716868116689144685 -0.48386650610107356796 -

0.48408371844413722318 -0.7229722374320975975 0.40574517352651218172 

0.0010353126407589615526 0.23151139150202815209;0.3226814040194386779 -

0.34379218632751157303 -0.50472496416740264547 -0.0067466834267952430909 

0.089605906817161490308 0.16421191917422708895 0.56338528991844472049 

0.29065287555933705388 1.1159205521752824097 -0.47645580877665894004 

0.29968933255621293954 -0.27418904765834817283 -0.54210321895640600776;-

0.045956429772212321894 -0.66285982627652151322 -0.66010486213185104454 

0.19607862068304898751 0.6200943983074161947 -0.55888224410180098456 

0.38844390521984173414 0.17624305912001245189 -0.58682296245435017212 

0.20990508905943078277 -0.26593110457172081107 0.4980098208676024818 -

0.50061489960582883363;-0.15745097395357346426 -0.46211517553560010896 

0.47485797214411834544 -0.61618644892870677587 0.05795710168953020075 

0.82844390910819332152 0.26269881344416934343 -0.78182733977418705784 -

0.3860089454901844408 0.13445548215700556249 -0.52710068314460256644 -

0.78309802875354317386 -0.3168543145551593887;-0.16277049368648699446 -

0.097317423978861783418 -0.64224791771981526445 0.32288813583444425648 

0.60562138736208270817 -0.40696944886388664031 0.022707784684200902486 

0.12689396159249788365 -0.46630511502614196973 0.84842547242747590186 

0.56123627616768412274 0.1477786486767551366 -0.97055142721460019306;-

0.054941525797094749317 0.81655612238569541539 0.29307013972928164236 

0.32332616647934436793 -0.56841977022465894898 -0.061344535224081113423 -

0.54881396069582999431 0.38025528600098112975 0.63483148619081275488 

1.4033356518694262149 -0.17908762604273170682 0.09983557482556150442 -

0.07120723555650457226;0.93173538921111831446 0.05960208218231295707 

0.44785942084996632762 0.15862795289760839301 -0.50237420777354468981 -

0.14332303687029063211 -0.37379119229213764175 0.91631703113634055402 

0.25102980812936098731 -0.10871272625706036863 -0.41830111782240497753 -

0.14632499585878980253 -0.3602495437723371996;-0.60096842023970897806 -

0.57170821332047205843 -0.32360120405476555661 0.33369570265337988868 

0.3220230307974265016 0.044032538182417951811 0.032207509126013077194 -

0.30719104526754975604 -0.78012031500899148284 -1.0352608344862834766 -

0.54813918508369163796 -0.27324220477019550701 -0.17465738890958759644;-

0.12121960409976791084 -0.11360430434069722361 0.055111855358720922282 -

0.050743321866396573494 -0.090550791057735835476 -0.0075226043897679535991 -

0.00070993230661525047465 0.082140776243466898099 -1.5183065626939078463 -

0.93567263503128417224 0.99605458127873536256 0.79802226634074435729 
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0.59051451351459249839;0.37484103183680927973 -0.15214307485147401944 -

0.48474006848563344629 -0.12551632246466656873 -0.047898974611028807824 -

0.27915055572789237992 -0.080340065188366838189 -0.8953132856192008715 -

0.11459602162559161254 1.6215191810814657547 0.025103519290762640881 -

0.099987809363856733347 0.17600257563005602957;-0.077427834637959755404 -

0.069714978505972247103 -0.065089488530173697511 -0.046896733110483930507 -

0.098407646999807835142 -0.006323518825538646318 0.031115442035441955027 -

0.52880735524353761345 1.1403483352236725157 0.23705170029994745984 -

1.8126324156223858619 1.17976625451570305 

0.53149035575573033707;0.031289152305627475348 -0.3247274256340700882 -

0.18774198689532675677 -0.73871910795519601933 -0.25099603070554132866 

0.47292487653271375603 -0.12956014178897054534 -0.97003392810298005866 -

0.50942789682081157654 -0.73703883256818258918 -0.69756295735258988522 -

0.044579138661712737479 -0.24778907578824341251;0.6459891918105628017 

0.34989129775299376846 0.33970088541966336759 0.10506146748870009988 

0.63981406451104105848 0.11445367384409539657 -0.038836640970360387926 

0.68269034744722401076 1.1770851824605910174 0.073189725550425785427 -

0.41587308433097069926 -0.41181804299336094433 -

0.32803125875715766213;0.5246024622969174267 0.32263434463410817221 -

0.41643131494693186312 -0.021367117711959811993 -0.085677597647302622397 -

0.38305077980470958465 -0.36636995758883422747 -0.61991916303956318135 

0.66720446085691353932 0.81608680923501131232 -0.43673354888216980862 -

0.68608682690497002632 -0.68735394681026951158;-0.012752131799495839207 -

0.52239268627525337063 0.59067682407699417801 -0.6319552522118063731 -

0.37287026259555688945 0.59626380084462704545 -0.23203307687036575646 

0.25870648367680781909 0.88446255034896648084 -0.34740491159787689757 -

0.3961631155838918894 0.036864902232288658535 0.40462135856963687974;-

0.64463470893011598495 0.50618337282119585385 -0.065568630802482291697 -

0.050888110019011487117 -0.2645907804787390738 0.73852432165473225201 -

0.47661950794891222438 0.066296512013745645397 0.19714977394234103891 -

0.97813720131261561175 0.22957332588821718899 0.38560349173527258548 

0.74742986198896033123;-0.76778621685071335445 0.87220362173286170027 

0.87082844133096992678 0.32684049549038596272 -0.010850377830622030817 -

0.14084939049132791378 -0.13731343311202137691 -0.96956926050649028248 

0.94236226808385314957 0.66506596389258954005 0.036614193606473187381 

0.27580963064428759557 0.087444939370833918435;-0.24950640873448695634 

0.20454564698253660526 -0.15113231264172480306 0.098245254024894007605 

0.59745574149066227321 -1.0647878813932369901 0.23244762989319317503 

1.0673245644844058244 0.092728720170505846143 -0.32242106737546522011 

0.23033131734348677444 -0.43149633042282370399 

0.51815468027370348292;0.71450605508663256327 -0.017476887323763536791 

0.41472147379525148292 0.134013472999158334 -0.5342641988582178536 

0.021016995745662660211 -0.63249769878277961599 -0.51526685676498551469 

0.81129952562813656414 0.27721265872786493567 -0.5636885223960924618 -

0.18918600315595124339 -0.52267188591928226415;-0.24784290582698098593 

0.10853302561589367459 -0.12958949302660366376 -0.10890366995431562114 

0.10965878725184864673 0.16766020524696037541 0.040303850809405621092 -

0.17922193994408955331 -0.21718329269832631345 -1.7207395494373032285 -

1.1849831720890295905 -1.1434306832594895997 -

0.69003416899254754746;0.36116848426678321848 0.47350513316090087068 

0.13513285614953929326 0.72818751874139542313 0.67473585866170104897 

0.58000777476773190955 0.61294706675057208933 0.66768369637498425906 

0.50028086502854329787 0.34659673192027440347 0.12918155423132163251 -

0.61690129321166542464 0.022077683053164130073;0.21354203596758489225 

0.15905406810761354985 -1.0564461476217816838 0.41897865434188369393 -

0.86512563177481593968 0.17901856928865325647 -0.67870630447801016949 -

0.16765732021079199354 0.037086468227292460065 -0.25974421185291085568 

0.43629065123476667987 0.33277331116424235802 0.1496035762735569985;-

0.24898746269467492143 -0.80461841760414964941 -0.0080890082593530476807 -

0.097074706745615760295 0.1621275893886423014 -0.35714203277504524836 

0.8000331426104222432 0.96913411232336554857 -0.59530676739779941897 
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0.014133362184587293375 0.49102684410630564882 -0.025810224175010023501 

0.042026460293037172511;0.36523911244200646387 -0.036032300270747892601 -

0.4934420750221880092 0.097710299278526355216 0.036418118269106833362 -

0.98852482700793031789 0.39022374486157940243 -0.62846747691572779626 

0.96228575027204787951 -0.48240343650376277251 -0.081629368549380451614 -

0.26768518416592590459 -0.45722442366286397686;0.5051556691866911919 -

0.13384402142381121581 -0.19704440322991378931 -0.096274596308986229443 

0.44608908249181000727 0.42785102652224343833 -0.46882349925903843424 

0.34057528663847685957 1.071424501096088111 0.7312164775972194164 -

0.29288431394325165069 -0.26590813958985853871 0.10670484973750024582;-

0.53697711413482718257 0.61616406839285031705 0.055622046693455731714 -

0.73599010496757921729 -0.55383283875394095919 0.020233387744441576339 

0.55697870680630923168 0.51218738101062932788 -0.65653063206344131064 -

0.20591027051304477968 0.413343068224896526 0.7396107929476555265 -

0.19106118343018874128;-0.68232507548570464628 -0.17182175907218491528 -

0.35744604434032412055 0.053349602299798744298 -0.67110975705105802014 -

0.27585052802047427267 -0.51270647209361019936 0.47189002547293124046 -

0.94072313189422696045 0.12996615871779831908 0.24586575079632588814 -

0.29720349500086729044 -0.47261452018339733527;0.34600638179869558364 -

0.43472825299499240348 0.57332818989426803657 -0.22315192207122525048 

0.79460188749973403866 0.048926614242495149176 0.3127213830351920909 -

0.14621507095049474101 -0.79068697544682908784 -0.1687441251361746497 

0.6646615671669253711 0.51239100234050227733 0.77153943390398815882;-

0.30245046274242154416 -0.30353081671520459883 -0.53357140342378717168 -

0.39573799646451468526 0.50294627617294163091 0.71828848296861025347 

0.40868169309781038345 0.94547782779754963034 -0.037203486462533817691 

0.48805164156522545804 -0.1782249121995647112 0.49452850577388290931 

0.19937814146034296692;0.27675474440125980014 0.82107475435143784104 -

0.35954373198034522696 0.86766795085953973832 -0.68481141980841586658 -

0.10329184008367033043 0.32541284966014555335 0.0072604028857458993707 

0.20735250836339189084 0.21466595460115500682 -0.42973328636938318281 

0.69254436436144295453 -0.16165312026754508068;0.50869720728525913422 -

0.38905572116441250463 -0.11626129666020081077 0.19854582998480879708 

0.60055123601302340397 0.45830108329126284517 0.79755535780389574807 

0.035254554615281478991 -1.1263406340375132775 0.17621461568799717812 

0.18823060493073437427 0.13269724467967319859 -0.35076035543393235816;-

0.57260321586819362683 0.47059143854644486238 0.10280729203396199445 

0.054343708757518684183 -0.82671980180057047516 0.68005610704941765743 -

0.75980665888586207402 -0.4074674607368053425 -0.42747359783779409481 -

0.48025851847399991801 -0.30879934760891508683 0.012926069231589055325 -

0.38299781646701724913;0.58318812127211405727 -0.49853971288046000643 -

0.61573361319217068122 0.27545246676823215148 -0.16753129966743565693 -

0.589923297748286668 0.16107867965144168076 0.39628126937705632216 -

0.58745890384196719491 0.25727129167859802417 0.8453181955630496569 -

0.374690393328592386 -0.72953450594687596631;0.58328855237045429405 -

0.62603162271786083615 -0.63702705083991784107 -0.41428605854033107025 

0.10665621035237043968 -0.25312191974861419919 0.06602616046683743023 -

0.66618806195699464823 0.35718901038596473363 0.42162879461450203378 -

0.26188687676095900869 0.54769720427104773286 -0.057716067531464104734;-

0.2928592354642772233 0.089785855664017186206 -0.56654844743979770882 

0.96038636425561119125 -0.52972186614997396337 0.052440298777892052629 -

0.1588307444604281915 -0.72150290521954718592 -0.65463695733874971427 

0.20176685030377725094 -0.45323348104325911212 0.49822411362867580209 

0.13824516094164018831;-0.23979589763690309367 0.24713257893427917344 -

0.00042761797802725492242 -0.5683293358487815361 0.60989698125865132727 

0.38696874075433551621 -0.48897439147127247372 0.65555788376572565745 -

0.56862394202210220229 -0.3184869129614033012 -0.64148357079701812111 -

0.7141208171998000287 0.43117891565668392539;-0.5630473276294490903 -

0.35371525885517490773 -0.2770635547470743365 -0.13888742766756159708 

0.64902709140149728029 -0.033831087337707392571 0.6126027147844947951 -

0.61077648608264945018 0.14298953783117299143 0.18961013997714504242 
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0.34390399255648224086 -0.70976172983094321101 -

0.32073976149918020928;0.95169584531003137418 0.47385738394265319862 -

0.090234853830733943725 0.10400362920755142071 -0.022625362106657279787 -

0.030938235417945117445 0.0030493731935744968972 0.45232302348656427959 

1.0456061871942792241 -0.019720210552630405149 -0.46271053027249792189 

0.5652659073155443803 0.23848000132361679704;0.74236347815230308012 

0.54718656490651707003 0.15558712159472731784 -0.62309702441507930359 -

0.55869255056357447486 0.46508095479304856212 0.60794205262185818661 -

0.070834707382438438783 0.01899872922803730671 0.088469184563731789739 

0.86515631835440065522 -0.15076191174712946785 0.076086788079311240551]; 

  

% Layer 2 

b2 = 0.037014674657301502303; 

LW2_1 = [-0.13547833666447653411 0.038056942244190872238 0.022278255650280045369 -

0.005202006241318883617 -0.023818599886230470281 -0.0024861988576421593412 

0.038312104456639045624 0.075799915993217087395 -0.12728294196732825583 -

0.36631043768266896565 0.0081202050788539321957 -0.20428477579040793533 -

0.026158202273497164342 0.059215574073305139724 -0.020618136433103492755 

0.027046070188968727999 0.0021874403514608592447 0.11310608981770206571 -

0.024697049186870989601 -0.014366810423842994379 -0.21494101390456898937 -

0.00092673282474285700611 0.017436785562950793405 -0.036279009949787305311 

0.0074571876227458215938 0.0097672201606948793468 -0.0036931891748628519964 -

0.092301845219597486447 0.0027443539534420836878 0.013249989333218732332 

0.019656875851653446419 0.0044909097200043854997 -0.015933714168190102334 

0.0072682468755176019015 0.087592483561746453669 0.0039088575731136493766 

0.013020899058623433206 -0.031205317556497681047 0.13466911850543952789 

0.032239189096652333399]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.000172941358797959; 

y1_step1.xoffset = 684.922698687762; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 
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    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 
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A4.2 Bouncing Busy Hour (BBH) Forecasting 

 
A4.2.1 BSC Voice BBH ( SCG Algorithm, 20 Hidden Layer Neurons) Script 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 25-Jul-2021 18:32:45. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx13 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-2.2628900194920338329;-1.6765233392630791709;1.4942111440970526903;-

1.1689313517185673241;-

1.1272576945451879826;0.85926928789802803355;0.67173066369418410471;-

0.37396598174943312953;-0.2903080424877578225;0.037292306194654498142;-

0.22389975277918860996;0.31945949265229695024;0.46196219047401321234;-

0.57620510272626590531;0.88948124729737076954;-0.98023408042284776442;-

1.199812774713133301;1.3971240435256206958;1.5813683736985604256;1.7871461330380749022]

; 

IW1_1 = [0.24598394115919161584 0.31759262479426092485 0.088153301871922662425 

0.3484073059330728972 -0.40815526460042772516 -0.30775487094839737434 -

0.42653286840139231773 0.61456767271465362334 0.64687843869983352452 

0.31289902486987453134 0.1609540995812643871 -0.21577776596809664089 -

0.35786671372127171198;0.59027192519241200586 -0.74134222093874646564 -

0.40630051306965442315 -0.17950589033712796572 0.2106608473979156293 

0.4030720695717833757 0.73196925087179676161 0.38850866068731693126 

0.096210922762482817272 -0.10637982503813142587 -0.30379811714282262125 

0.59137230326748335685 -0.41038463308678102548;-0.55533731189173562992 

0.48394556343494782302 0.2176572840842769252 0.14517105182675896224 -

0.13671319371824869338 -0.32899100769859074278 -0.7898287086959874248 -

0.25913906518222501463 -0.18418348149673124947 0.39207594302461584723 

0.19920457404766708787 -0.44329548282057640307 

0.53206189627371069939;0.84663653277080053172 0.7668654545584375759 

0.40901930912242612237 0.39689101398098153295 0.05303150680359387803 

0.027265619255687892353 0.47503202308199926618 0.018701853261289039937 -

0.11099673655053397814 -0.49011814441137285803 0.031187571594403776937 -

0.55588397930489541476 -0.81675559519002161046;0.066763240236826462692 

0.27715511887544663772 -0.20316010702586345671 0.43449885656516512578 

0.62424567491708204958 -0.50241433665276225007 0.56317858852776603307 -

0.1097827952816966407 -0.58864590328616606119 0.15950709693368933517 -
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0.30663637413393712849 0.49298577141856664285 0.6761950829614004066;-

0.55712331164147188556 0.3264600476522952488 0.032629121775689585994 

0.57071754754675152466 -0.26952259802175532188 0.17541515587328254666 

0.48512966704943449869 -0.63120408660470550544 -0.61412890364286665257 -

0.48631408157817468396 0.58340814074172475667 0.65023920114536959414 

0.36451400437749365002;-0.42205614374758559926 0.42303128825210750685 -

0.01864672637806437383 0.071559206314768822321 0.52774674074511118693 -

0.47167887259982438364 -0.82636029738713623338 -0.53210761772755954535 

0.78718661888694818618 -0.32491123223513462825 0.69316802204828986689 -

0.16285954489009360491 -0.017269575558550194494;0.1013994747236659083 -

0.26147707972017425471 0.24579182494113588353 -0.67103671537026643446 

0.55294490826455855448 0.33617337741414665686 -0.21216887747630008842 -

0.82618049506151614025 0.84840082524390836305 0.18791464990327139128 

0.13333270737174551801 -0.75319091885514588558 

0.15538409544717815547;0.73806376714468280298 0.19045292034247990332 

0.43934052012519159147 -0.56873796099741258381 -0.20383966734508968122 

0.26825104386178783011 -0.32822806238279500501 -0.63915238827291354085 -

0.018462630795984206339 0.26170699785138012983 0.18688823395496947932 -

0.6322698039643870338 -0.4594351401505066268;0.7587412468123664322 -

0.56682262175917152991 0.3628194894493546041 -0.37411058187081835946 

0.15588545116456770101 0.40133136926947876599 0.45838198278029596011 -

0.5516500594864165441 -0.81090012139494205279 -0.7207138632409320067 

0.1548035180867460836 -0.1199149881654885258 -0.032867688601041791796;-

0.52625710576678030872 0.34605595710852105062 -0.25343540741067560607 

0.39745918597505042191 -0.81053639927196230452 0.043266882437432638286 -

0.16019423326163684251 -0.021908703048187698481 -0.44690172257415361479 

0.62183672922344801481 -0.57062276725654259568 0.0014455602732028496969 

0.70206409408865988464;0.68400222008602695745 -0.69928564271515525341 

0.22213258382973358196 -0.33260141281722044315 -0.62522907622342205336 -

0.5787425510618919855 0.54952404375201568953 -0.69119731538086470746 -

0.2170361810011166015 0.4196275426643720774 -0.26795721152247831132 -

0.30977092561571833995 0.095593032322263959966;0.88942606998907713933 -

0.43389472090383013336 0.30495229178978827678 0.59022584737628358553 

0.056017822813614823185 -0.51951969843115586301 -0.61615719624049236636 

0.77511123674646587034 0.62001974406941251505 -0.026399268255536172123 -

0.054385747153324746905 0.19629518328017550588 0.043094285863110093349;-

0.099019171361694469091 -0.64329910963107728161 -0.60621875529031110652 -

0.27698136414875995648 0.43325730364445341758 0.61197092233797745209 -

0.44862704177665047034 0.63078909938746330344 -0.74450336268673555917 -

0.027625959221192205456 -0.35028420049425573746 0.39494830652059614851 -

0.37673385467276815364;0.54256813518626312298 -0.54797698467603850325 -

0.5784203813972638164 0.54476348100995042323 0.54923928107031383394 -

0.38141776275555777653 -0.57305937254157235383 -0.05769208056254472583 -

0.62636145720211477972 0.0027371068060371215973 0.55816663479915329393 -

0.21276386286354348476 -0.091237206078077698335;-0.56866133620373182644 

0.48972198369380842697 -0.20351995867796471296 -0.043549664361111899147 -

0.75739330784926961471 0.49691888566376390957 -0.56779270033559259279 -

0.045505749453079273603 -0.48502797208369219373 -0.26949462500121951214 -

0.54077263225084670761 -0.60547327339986400929 0.36149764568169912016;-

0.20014138934853409335 0.49771291749158796947 0.81613438485800793298 -

0.51359671364607928368 0.026775057204163000418 0.083525477515430657238 

0.88789876200075934509 -0.35548203589714760797 0.39307319263350087857 

0.064114674501944496354 -0.57291656623899367418 -0.32672148510845189229 

0.38866072225358955228;0.70898268348916038128 -0.37422825547898441734 -

0.23496521153015720307 -0.45580018536345923152 -0.046718976363884757996 

0.87599705967868857215 0.23919871418101093519 0.72718421321964588078 

0.4061302045431210983 -0.054070646250796702836 -0.60732045196948170052 -

0.32117170391695759601 -0.27826040727486189841;0.3477062183628588099 

0.84752175784086625221 0.21405962833123198807 0.22262565517289867323 -

0.73584000065772647847 -0.72416377566769551954 0.09401482780268437256 -

0.17418459586133830386 0.32526032694345391461 0.62833430510564625138 -



 
 

115 

0.41496747579871645639 -0.12294774579632489209 -

0.116589527896012915;0.71479790240606411178 -0.83113625989747674794 -

0.41765412653787581387 -0.026921363048695353543 -0.25995059648600948865 -

0.11671990689217767723 -0.49256466676086196887 -0.68104477351109904415 -

0.11805103063249232365 0.37346216114039859635 -0.10303079362364203631 -

0.044451008280126318162 0.77466829986740970426]; 

  

% Layer 2 

b2 = -0.35673437713084821254; 

LW2_1 = [-1.1208210139154004548 0.13250785859692376656 0.12893891627286435675 

0.0030697964519078792429 -0.0024088970685932019865 0.01236432052072429684 -

0.00030491776739102716912 0.0075224065866479530168 0.0066500579050709704432 -

0.0093332857792688857235 0.01148793763605894698 -0.00027779740321880061699 -

0.0053048850572361885142 -0.00063892646327660029739 -0.0050913016418679462802 -

0.0099082630952155373305 0.0034891473381264458478 0.004429094711002639316 

0.0063967294959621345124 -0.02609195557333231219]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.0952380952380952; 

y1_step1.xoffset = 2; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 
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Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

A4.2.2 RNC Voice BBH ( SCG Algorithm, 30 Hidden Layer Neurons) Script 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 25-Jul-2021 18:37:18. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx12 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-1.8196243288390214765;1.8281478639651662643;-1.5142712312920731943;-

1.4715558950111331527;-

1.3624021914870725336;1.4455566623456594932;1.0506311741181026953;-
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0.71602465672382276107;0.73778005929502643578;-

0.8237678095161304892;0.81731042830170286262;0.53736971294840696345;-

0.30647122389664704922;0.093869101695313442169;-0.060153047489819311267;-

0.047463068244932751782;-0.089877236870790244705;0.22184151299416773884;-

0.38826415519936352538;-

1.0962773284709703692;0.71623082621774314394;0.66579043133279158795;0.81075182529958833

566;1.4874080201010990709;-

1.1772778713246803139;1.0642709024857461841;1.5769145353252749242;-

1.9728713704719458288;-1.7506419636612009505;-1.8140610477798475575]; 

IW1_1 = [0.72027348756666442764 -0.58458836103995026612 -0.59900692621686046913 -

0.65931519654585490908 -0.59720921581029995373 -0.18002975963592426911 

0.40711201459111268086 -0.32497573864709144997 -0.5917160916935171322 -

0.64358376745190015722 -0.66637696581870220491 -0.29256112827858876679;-

0.66790315866447791393 0.36546260945291958455 0.070822880609050065104 -

0.64929774567027642718 0.17026628339193272677 -0.33814127428963297595 -

0.49928898965307033642 -0.53122458584766329981 0.53191597325376460681 -

0.35781909767922487342 0.63014446539576218775 -

0.2450586945257239857;1.0873186113667769881 -0.38102626664872740747 -

0.29705625951000269591 0.49999912868715318259 -0.2728636026814001414 -

0.42235111432709521173 -0.47326676559650521225 -0.68657075047352189578 -

0.41901214732358371684 -0.038197062567067702199 -0.47855741789369715677 

0.82899463748332924418;0.34315195115743796217 0.53622348275055398137 -

0.60231989784197492721 -0.78553853858587330272 -0.5873238439768884156 -

0.27433918116625732875 0.3603527077496063713 -0.81092688597300810471 

0.18973957113121128759 0.5688297209851024272 -0.31101009213047658974 -

0.60091884452652577497;0.32116032821741991032 -0.84775160712196862001 

0.15532060927353663615 0.4048481877109914584 0.33141329258717644457 -

0.14538075540151385034 0.12997031474125658734 0.85789876918978780207 -

0.68344492564191539064 0.81099936523479110306 -0.026983878881201451422 

0.43342284794734026176;0.026978615894649452672 -0.14372648352872063882 

0.22601006041269680602 0.21122025340659369985 -0.12005906202851371334 -

0.12323853441256228669 0.18121156487801634571 0.44123178724995748556 -

0.5632169501785435628 -0.049220610364420075422 1.5283564495992716381 -

1.4182376953959205945;-0.62551542244094593404 -0.44893614450221880352 

0.82902857114406525163 -0.66321994326807764963 -0.65205480626376233211 

0.19384411266922813022 0.6724077598919713239 0.40285164326835454229 

0.56316102980734161765 0.18241655862464603577 0.10790506418655113063 

0.20587096106580191068;0.02904634936333719622 0.20557545775676935862 -

0.50574730603554862718 -0.29225861987254764252 0.41482164310702540622 

0.80865404182940792133 0.097198412047415749804 0.48724901839294726402 -

0.64169447761549969211 -0.77409028937718182828 -0.75409502451072119023 -

0.9912172886016158424;-0.72645413060025465501 0.049676377354677975218 

0.16694753021181468755 -0.051036804065111060491 -0.51712664758784998575 -

0.6063898144980395255 0.33930561747469151213 0.40011489823551898981 

0.33569583588549090081 0.93742519820793102081 -0.91945372344456810509 

0.78567875205111481485;0.3606238396683955072 0.45789185904127338578 

0.15621374411980062935 -0.42938371408377373761 0.50034937436094972796 

0.30434433665738630514 -0.095137344748087590562 -0.24505096400310052984 -

0.66830611968517239507 1.0175693261774516607 -0.77770349652190595702 -

0.73719837315043468262;-0.30908581325210277013 -0.56409285273000620009 

0.45652847460362233623 0.2038177502168925237 -0.85073261147982937036 

0.89103530561964594536 0.60044322473574929244 -0.1728967333651509064 

0.58874065121608698536 -0.23237673156719579337 -0.13659311054554226783 

0.47453265747666867336;-0.36797534599770820307 0.64410271651541717297 

0.085571956003517898881 -0.027297151196818171537 -0.42871839865521982338 

0.74732351792136464397 0.36447386988234653504 -0.84325951115752995069 

0.19442012619468337919 -0.39312525029384820519 -0.17262985473270547887 -

0.94179876615655810923;0.77800707113955602789 -0.27361723406992816132 -

0.26695739989752348409 -0.83267473310726025648 0.6225008179902997707 -

0.32039127145244877815 0.31024751203944544997 -0.8930140788400416918 -

0.38175054656799167763 -0.34848953169607305158 -0.21482645330085783919 -
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0.48709767697130562647;-0.083249340958979428651 -0.55227426878829055656 

0.34400731099133441404 0.16389090045429535736 -0.40242304434918907408 -

0.68026624878724351042 -0.53182046723577880432 -1.0637893787096353027 

0.33506531292458263671 -0.73820878256083299895 0.058465976282797857411 

0.47430305575110254246;0.56517566128314666862 0.68800607651597334158 

0.75633989118440192456 0.40299596139393939476 0.0079502855147389125956 

0.35560558819369531003 0.089663785351352706665 -0.71075770362361245791 -

0.88921565302456739843 0.3726700182562540653 0.35528402389197660804 -

0.51539666280359264228;-0.77718595247299682161 0.32499821955072388802 

0.74619168622817200198 -0.60910996214498902557 -0.18209845327407492288 -

0.68900430304528714753 -0.10128009596987173901 -0.66006057750354263369 

0.46541265843610457598 -0.32857371919917338632 -0.081010066009468861825 -

0.62972527227932062477;-0.53012216106068232868 -0.1497547376379832762 

0.36513306217555591138 0.48705922360083842015 0.45343715770742926141 -

0.18108800964130486455 0.17876120262318029308 0.035326325505243838521 

0.78090052202393633873 -0.54429158060136306752 -0.96087176981572253176 -

0.5212853875970301365;0.69847203536537871837 0.25513004151770690697 

0.29988389874817511505 -0.42178587801426725701 0.056220875312539178581 -

0.17097756816177434036 0.02037954431930057847 -0.024922289383269412982 

0.38479486823715403077 -0.73032688416622915106 -1.1231669338162102445 

0.84630372120033603434;-0.48635154779742306719 -0.26750445552078028211 

0.73948178984179391282 -0.90046141871352369801 0.74281022125086504371 

0.053707039683138307895 -0.42154146865229102925 0.059900862575632561613 

0.3925205519336043003 0.74552445288532520618 -0.036812447551721472205 -

0.20549399652203509392;-0.0086320787294669430734 -0.14286299585018058522 -

0.27880356175363246729 -0.066718166631595868243 -0.62535814968144831649 -

0.57181680204993368122 -0.14110213476235730634 -0.47663895465059874512 -

0.27330872816518525514 0.73970982546502217492 1.0610609161357407171 -

0.84878255311914863057;0.18847712530064245073 -0.98218840714149102666 -

0.22841659282348641957 0.94206996348132843178 -0.64969681394728795443 

0.23670831783686871463 0.74282079574332759986 0.24433642325304341658 

0.56678631203979057407 0.01582325478989604281 0.080969432603504740142 

0.2235929987636738614;-0.12286284669025167304 -0.047513924752870924373 -

0.47124998220483027556 -0.10890432391040935634 -0.20905637540216195913 -

0.1908246456479631703 -0.070332778626158179436 0.88474700976864173452 -

0.73177467834474141384 -0.71457827801816808933 0.45502907497533023884 -

1.5226100195820149175;0.21107067702534676457 -0.0066462693329144449314 

0.2222525962492110374 0.069070114781707395157 -0.61070504198251807093 -

0.49614388038568613126 -0.4823151005052589424 -0.2118029998064443753 

0.10385158989642295779 -0.3929984720498937989 -1.0384115539591685096 -

1.2801578293272379838;-0.21122066539966674603 -0.29704885403288394663 

0.097866168125161995262 -0.046844959420279629059 0.76665593869385917358 

0.67113722578735701685 0.36217199117877141301 -0.77145044829276421261 -

0.38587347885164458017 -0.88001909622014762302 -1.5304494495768730111 -

1.7175476416628678855;-0.64296744932908267423 -0.3156435235031317954 

0.24735044523673427319 0.0075144693933962281029 -0.28289525006510168881 -

0.23621077857719338655 -0.42509763999966515557 -0.61551485525784355168 -

0.0061497914022639122225 0.59203425561099620733 0.16108459157999652223 -

1.3009244053814807973;0.10964018957141417887 0.12920470346426413122 -

0.087745125339159277256 -0.1305845542861092945 0.70356868881019407613 

0.81337728678026022244 0.28058305826341256584 -0.86079778916362081898 

0.96998091994145030359 -0.65836815790653557823 0.71127394161162005304 

0.38316831760565811527;0.61296364154260174484 -0.41260672024115102596 -

0.86718306210908491227 0.6807181149878317461 -0.36594548107807384207 -

0.26195247381812120091 -0.078237443088304950423 -0.21382789959964410009 

0.46314406535582236524 0.84402118347775600959 -0.23460644191053689478 

0.36108894694088861099;0.090467276876092239668 -0.11184180726489549584 

0.16864999191628071706 -0.066345944860988478875 0.79162453334179128106 

0.75720461570018193775 0.35884855481790428611 1.0896662391267024628 -

0.1848509441612447568 0.45463217604586164677 0.46920645976820579692 

0.33803356514509658171;-0.97115915781081041391 0.64256905506615391577 
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0.10076819220105466546 0.62035404793413861935 0.5864200816423531526 -

0.50184528950667084413 0.22979275852142308501 -0.47034290308389048452 

0.34527197745586862832 0.70724696029833045152 -0.18743348739471535347 

0.18416457538960501195;-0.60526899744961060179 -0.5218689699932806958 -

0.62408745509011154251 0.58574376029807007082 0.61471571770201272056 -

0.24108903622990132676 -0.708847253181280057 -0.57843554008078257311 -

0.64589953484370388193 0.3848357682620111575 -0.054138333688360629203 

0.2823774767565208621]; 

  

% Layer 2 

b2 = 0.74920461183928832583; 

LW2_1 = [0.041111756643350066964 -0.022676019660268397632 -0.076331701338816740354 -

0.01736086592275532664 -0.045435768206633406208 -0.1006862752748510087 -

0.036156384897980183013 -0.10009207348844603724 -0.051972775616041258506 

0.022305301509040767471 0.03548027529810229147 -0.05589794132208676658 

0.0077006450103245952313 -0.05477749366819599508 -0.025873367309896463939 -

0.01798315149780534139 0.00044805949365996858985 0.0050200621468747923248 -

0.041823605440821538803 -0.10102917929777895101 -0.019228250852969881041 

0.076179677541501955584 0.071950353139461534213 0.25265665867713099635 

0.060148149268784451005 -0.10278378675952862253 -0.036421246581646832263 

0.23159380678834581846 -0.01298919186788975548 -0.014835972021690266992]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.0952380952380952; 

y1_step1.xoffset = 2; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 
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    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

A4.2.3 RNC Data BBH ( SCG Algorithm, 20 Hidden Layer Neurons) Script 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 25-Jul-2021 18:39:14. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx12 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2;2;2;2;2]; 
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x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-

1.8669275804009648478;1.6012413868722519261;1.4417615313075069494;1.2446523011480228327

;1.0710650908133168002;-

0.78230150892941185958;0.52187928101465685948;0.33891814555103788598;0.2542353846602962

153;0.13615030619906887122;0.026091674455060335364;-0.31622224359154305073;-

0.49270356214896071645;-0.598430287938447103;-

0.85986542678613142598;1.0558204761155309814;-

1.2605961983447788732;1.4109282958585014356;1.5161999412204405502;1.9077821799504799394

]; 

IW1_1 = [0.068004928701636435662 -0.7528177274168810218 0.5797795216085287473 -

0.045552282794384703346 -0.31139854349077306095 -0.73783029027255442323 -

0.75828025946962596127 0.68094478631344479425 0.17912593161526957353 -

0.45387816533991387491 0.053732742884089725044 0.26812717243596490002;-

0.22394759324572305337 0.0077423032325045493263 0.40057620919633585288 -

0.78778374791178684688 -0.71015097467251153684 0.36927098909183975195 -

0.36379841131958523537 -0.13994880380913993223 0.0083109379055960955207 

0.65165112222165955114 -0.87244347677547839925 -0.60891037795818114819;-

0.54192901445684948936 0.36735836837653368381 0.61757828349997123674 

0.026656131621971758394 0.54161360966067251255 0.11106672615923515735 

0.10627527467641863235 -0.65222181552907332325 0.21707440989729484548 -

0.32840986604237243363 0.71245380483249587389 -0.91149546253671998031;-

0.40046331372377708124 0.31037661358164869707 -0.79399219114729746583 -

0.69806914479046433541 0.45330376199630950662 0.025299184727700284314 

0.55591857486606599537 -0.3779551625498508427 -0.50129136908082561064 

0.39782328682047224389 0.63999059363675192547 -0.57169159201076602539;-

0.10796026744743723869 0.57289647180032199358 -0.64944477251349730373 -

0.61931056892790881108 0.18334664743539003107 -0.36490979760206310178 

0.26883769342600072338 -0.75880264444605116658 0.29560664736290415133 -

0.5451163163812261514 -0.75583853343523554891 -

0.45594710723815190523;0.68469389141441960867 0.34297405541334857748 

0.074234925046904778889 0.40467689585243188377 -0.6158675722983290024 

0.51013550473693591858 0.52148002982410412987 -0.74026193453368449582 -

0.7395012682109579627 0.11513939402019490732 0.22069318326775097527 

0.41528772736359781392;-0.2821454384254469816 0.78676432186111511236 

0.59098840329137292127 -0.22280980217034418445 -0.42573145109399718189 

0.38032891137740698628 0.29432554881139494363 -0.60261369835867073519 -

0.35127793781353289226 -0.81050809556663860889 0.65863082013715268381 

0.22501444280745516724;-0.31826952042686823541 -0.60686169640445364326 -

0.40097166458472788264 -0.2647981366994505148 0.28522055935140400162 -

0.92724575170896861298 -0.53667075677435294168 0.19518235809954875837 

0.71717470038198383175 0.11222787071824048832 -0.072948753062074184195 -

0.80595262792815347552;-0.35157025599887786749 0.58863666395889047145 

0.56730479626635921253 0.55704563875512602689 -0.15612067222239520148 

0.046422699017709040392 0.78121875785558303473 0.15817297662027815508 

0.70875211952347461075 -0.84294410490962723426 0.28381612680130896553 -

0.13166882727019385557;0.02452932644532236639 -0.81636747675667376001 

0.26630832620701866409 0.90299381835703251831 0.4991180806318771257 

0.687951376268732262 -0.21165719706090535546 -0.36546819296290905532 

0.00041694818385905059021 0.80386088261011234835 -0.040146452648433673949 

0.24049696033161138686;0.58510411116864669001 -0.052739619580238782104 

0.45742737425858537303 0.90179922269587875494 -0.66457474128439142369 

0.10012290879589867687 0.19753883626836868381 0.5576732402332869043 -

0.81472146821804092287 0.3299862647249039993 -0.21888904447235491002 -

0.18063641892478465856;-0.37172158273964134301 0.42693942580152488553 

0.7629097139010145856 0.25276688214289044776 0.13743401789225981324 

0.47743883598551473124 0.49859433060695135254 0.33609830507788013287 -

0.71464709291601202779 -0.47112436783919781069 -0.75500506736248584883 

0.11382701709314951843;-0.76427288249755842564 0.39772084354498848935 
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0.41076117292896530131 -0.43053523685611100325 -0.44488369296639607153 

0.092195190133874033167 0.5578317079079299079 0.70034835483945367951 -

0.75125746560434758514 -0.10404650569890254441 0.55555257267088098416 -

0.43264151904883357824;-0.27196425330719664615 -0.38836558507743035307 -

0.58173672012057286995 -0.32830232703397005389 -0.31038141839293487134 -

0.18263399738953300933 -0.31166621374165015546 -0.077558465083139307983 

0.77926012140311418097 0.75382663294160834333 0.84535429026408748232 -

0.61173588060840977665;-0.42091810677167257326 0.22757304049848847693 -

0.94355120467626540925 0.35209600061726742393 -0.31839443653810028945 -

0.990691840118814393 -0.11613802748009086074 0.047350944333044570067 

0.68779226150231143055 0.022026692330503205158 -0.051630106183390575558 -

0.61154136807851589008;0.5626042526454951842 0.64984753827941366122 -

0.64604473635704806611 0.093318787729909258299 0.7910821453433981576 

0.045487947415723040123 -0.5704026643221999926 0.51026543946576752298 -

0.081004939599092662394 -0.77259423136414140387 0.13343553746978198404 

0.41703538962860869921;-0.56035105963239173477 0.37380192085513824773 

0.38090396876143334248 -0.36309167637872979961 0.32752848853248150984 

0.51541677903621507806 0.067819181685181487151 0.16111833682282450386 

0.78881668293125450919 0.19519950341869002353 0.91476005289408324206 -

0.45802300219348512922;0.59398472175733307843 0.55619456499015973439 -

0.67644638849209770548 0.88094124078243540854 0.21350156307034484637 

0.71264618263901335915 -0.075794598377262975553 0.49011428554397346025 

0.53748861077124199248 -0.12244688375479963194 -0.17625279414177000281 -

0.43049356993675386152;0.64111059115349122717 0.11204820956111347097 -

0.49078388267527200961 -0.19909413099242256884 0.52946793042137019203 -

0.41899804096278059351 -0.68900935725718948088 0.87714379394701291748 

0.037377872103131225268 -0.83312221462284208329 -0.42818248503078704115 -

0.085137088930583249002;-0.0045489622272585177043 -0.20548259213718098048 -

0.072422435778179097832 -0.52730273190944443318 -0.39568126012237736511 -

0.62444677639630408184 0.19776929217005731476 -0.65949322684440414566 -

0.61771596686920038355 0.44100597306704680811 0.65965275774661735753 -

0.46181764886968873496]; 

  

% Layer 2 

b2 = 0.8150358630787665204; 

LW2_1 = [0.0012709486552648615112 0.0043352645110647783019 -0.00068137221015313140932 -

0.013979377983237275748 0.024847529642296882491 -0.024727361909873190465 -

0.0016365322500814000369 -0.01747071965043949654 0.013054082331007844237 

0.00032134730246722708474 0.024310709444513640964 0.0003045751410993807317 -

0.031772930936930003643 0.0027109382619553562543 0.0075252054040103287524 

0.0076755220497079432174 0.010010383851404527911 -0.01203051523904382844 -

0.0087713866224117288672 0.037323417384380490336]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.0869565217391304; 

y1_step1.xoffset = 0; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 
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    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

A4.2.4 LTE Data BBH ( SCG Algorithm, 10 Hidden Layer Neurons) Script 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 
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% 

% Generated by Neural Network Toolbox function genFunction, 25-Jul-2021 18:43:30. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx8 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0;0]; 

x1_step1.gain = [2;2;2;2;2;2;2;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-1.841070826128158977;-1.5300060628821479103;-

1.2068045755102507766;0.67699506495029870834;0.29384465623219291341;0.24257582342308797

729;-0.63818312700885204691;1.0403380537983835108;-1.5254825877322828465;-

2.1637219370156115517]; 

IW1_1 = [1.1848246747757413821 -0.45176574968034466373 -0.0079326367088919345905 -

0.11037434403661426641 -0.4177754807965828876 1.1919463020989931046 

0.55542837260158228752 -0.094247319256036909962;0.91678358986345565018 

0.77543267345607003183 0.76113539332838908713 0.82477562480772070863 

0.16097095898432997596 -0.36503007676620591315 0.4807398199095806457 -

0.11673866105527358483;0.3375344734107957323 -0.28707761356803424002 

0.54088397920001496377 1.0633603992587905562 -0.10968140291163813727 -

0.24005277237964930959 0.078766834419021852787 1.2263041146557207561;-

1.0384361668465769135 0.029754714625310325904 1.3787688305692764601 

0.27469143126774825392 -0.34298459192258706763 0.23629096786113601425 

0.16457522641622518433 -0.31719101919934600264;-0.65482046071117328001 -

0.54802462046520927785 0.8989652867841417816 0.34420792339460232201 -

0.438115783518322921 -0.71887016667184977514 -0.27518919335117270064 

0.98606164211970770417;0.062561238848485398178 0.17135043479127601285 

0.043814108967061865529 -0.78238253293513693176 1.11485240190217616 -

1.1763697830716435266 0.12730552589635241167 -0.27413344489377983182;-

0.27489475470955027081 -0.79079482689325231171 -0.55595841637943910207 

0.039528788665624939314 0.82216691206869152442 0.69625964600435441554 

0.73713185896515187601 -0.81392275201919039862;0.56836532614282009312 -

0.39979059755114731978 -0.78576781143465190826 1.0339222333441291379 -

0.70972972209287121803 -0.091300598455414869181 -0.41874755154144238656 

0.74132283946542210096;-0.27673507759283832996 0.12968682149501098433 -

0.41879171514601248871 -0.57637593991666646875 -1.1245653103740946843 -

0.81434124839406984986 0.78537942990075138017 0.042269637313261131106;-

0.34905575419456691399 0.18573267694522843652 0.17674992582645973616 -

0.22693865614746575043 -0.82074882539417670646 -0.51098068122174511441 -

1.1334320288955670453 0.13345871115632723658]; 

  

% Layer 2 

b2 = 0.49491381820111651768; 

LW2_1 = [0.08434097792928171855 0.16677466569730414747 -0.079119040641708604511 -

0.1452833294933391084 0.055230619436454464477 0.018311286893213013505 -
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0.0020445785352372451704 -0.05106404669849021194 -0.00012396529544786427657 

0.23639605737666016805]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 1; 

y1_step1.xoffset = 20; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 
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y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


