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Continuous mixture:

f(t) =

∫ ∞

0

f(t|u)f(u)du.

Posterior distribution:

f(u|t) = f(t|u)f(u)∫∞
0

f(t|u)f(u)du
.

Survivor function:

S(t) =

∫ ∞

t

f(u)du.

Intensity function:

h(t) = lim
∆t→0+

P(t ≤ T < t+∆t|T ≥ t)

∆t
.

Cumulative intensity function:

H(t) =

∫ t

0

h(x)dx.

Mean actuarial value of a joint-life annuity payment of amount Ksh 1 per
annum paid in arrears provided either (x) or (y) is alive.

axy =
∞∑
t=1

vtSxy(t).
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Abstract

Observable risk factors (e.g., health condition) can explain heterogeneity in
mortality among assureds; but modeling the risk profile of a heterogeneous
life from unobservable risk factors, such as genetics is complex. This lim-
its the application of only reported rating classes adopted for underwritten
annuities. Insurance firms routinely disregard unreported risk factors per-
haps because of difficulties in modeling. Although a number of research has
been done in univariate frailty modeling to account for unobserved risks, the
widely applied frailty mixture is the gamma. One major drawback of the
gamma is that it is time-invariant. The scientific interest of the study is
to account for time-varying heterogeneity using compound processes. For
single-life insurance contracts, the non-central gamma compound process is
suggested with the generalized exponential and generalized Weibull base-
lines to account for time-varying frailties and carry out valuations. On the
other hand, grouping insureds in clusters such as joint annuities imposes
statistical dependence between lifetimes. The dependence is a result of an
unreported risk factor called the frailty that represents a weighted sum of
shared lifestyles on mortality risk of group members. In fact, standard in-
surance valuation considers independence when pricing joint-life products.
Different approaches to dependence modeling have been proposed in liter-
ature. However, these models consider separately either only the negative
effects of dependence alone or positive effect of dependence. The study fur-
ther proposes to apply the shared compound frailty approach in valuation of
joint annuities to address time-varying heterogeneity effects positively and
negatively associated with dependence. The positive stable distribution used
entails the frailty distribution with the weighted exponential, generalized ex-
ponential and weighted Weibull as the base force of mortality distributions.
In this study, Bayes inference based on Gibbs sampling is used to calibrate
the base force of mortality distributions using a large Kenyan insurer term
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insurance and joint-life last-survivor data. Subsequently, the performance of
the candidate models is compared following the information criteria values.
The findings shows that the gamma-generalized Weibull model overestimates
the intensity rates at all ages compared to the non-central gamma generalized
Weibull model. The non-central gamma generalized Weibull fits well to the
insurers claims experience. Thus using the gamma as the frailty distribution
may lead to inappropriate term assurance valuations resulting in high prices
that negatively impacts marketability of term contracts. The non-central
gamma is recommended for valuation of term assurance contracts. Further,
application of the positive stable frailty mixture with generalized exponential
baselines shows a declined policyholder’s annuity payments at early stages
when dependence is incorporated. Later on in the contract the annuity pay-
ments increase. A good explanation for this trend is that we expect the frail
couples to have died early and the less frail ones to survive to extreme ages.
It is therefore recommended to account for dependence in modeling joint-life
products.
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Chapter 1

General Introduction

This chapter introduces the topic and objectives of the thesis. It provides
some background information to the main goal of the thesis. Both hetero-
geneity and dependence modeling is discussed. Section 1.2 describes the
problem statement of the thesis. The main and specific objectives are out-
lined in Section 1.3 followed by the significance of the study i.e. applications
in insurance valuation to account for both heterogeneity (in single life prod-
ucts) and dependence (in joint-life products).

1.1 Background Information

In actuarial valuations, any population or class of insureds is heterogeneous
with respect to mortality. Sometimes, certain unobservable heterogeneity fac-
tors linked to an event of interest are disregarded because of limited modeling
knowledge or economic reasons. Statistical dependence may further arise in
clustered survival data when the individuals under study are in groups such
as in joint-life insurance contracts for married couples. This thesis aims at
outlining models that considers time-varying unobservable heterogeneity and
dependence to avoid bias in pricing life insurance products. These two re-
search themes that are of current interest in frailty modeling are described
below.

Frailty models use mixture distributions to account for heterogeneity by con-
sidering the study population risk as a mixture of reported (e.g., health con-
dition) and unreported (e.g., health-seeking behavior) mortality risk factors.
The frailty model builds on the Cox Proportional Hazards Model (CPHM)

1



(Cox (1972)) that only considers reported risk factors affecting mortality.
The frailty is a random effects model in which individual frailty informa-
tion determines additional risks. Frailty theory was first proposed by Beard
(1959) to account for age-pattern of mortality, where the term ”longevity fac-
tor” was used instead of ”frailty”. It was Vaupel et al., (1979) who coined the
term ”frailty” in his seminal work that modeled heterogeneity effect on indi-
vidual mortality using Sweden mortality data-sets. Homogeneity in respect
of observable risk factors is assumed in standard models. The implication
is that study subjects are pooled in the same risk profile at a given age.
However, statistical evidence suggest a different model as indicated by other
researchers, such as Su & Sherris (2012); Gatzert et al., (2012); Fong (2015)
; Olivieri & Pitacco (2016) and Pitacco (2018) with references therein. Fur-
ther, observations of medical statistics e.g. Haberman (1996) shows that
individuals differ greatly. Thus, due to unobservable risk factors, the study
population must be regarded as heterogeneous. Hence, this one of the moti-
vations of study.

Clayton (1978) proposed the multivariate frailty model to account for de-
pendence when two or more lives are not independent and thus assumed
to share frailty risk. Clusters based on survival times are considered condi-
tionally independent sharing a common risk. This commonality introduces
dependence to initially independent lives. Many authors have applied shared
frailty models see e.g., Hanagal (2020) to model dependence but the ap-
plication has been in medical and bio-statistical fields. This thesis scientific
interest is in utilizing the shared frailty approach in insurance setting to
explain both negative and positive effects of dependence. Dependence mod-
eling in insurance (Frees et al., (1996); Luciano et al., (2016); D’Amato et
al., (2017); Yang (2017); Gildas et al., (2018) and Arias & Cirillo (2021))
has mainly examined either the negative effects of association alone or pos-
itive effects of association. This thesis develops a model that can account
for the effects of association both negatively and positively associated with
dependence relations between life times.

1.2 Research Problem

Observable demographic risk factors can explain heterogeneity in mortality
among assureds; but modeling the risk profile of a heterogeneous life from
unobservable risk factors, such as survival-related health-seeking attitudes
and/or genetics is complex. This limits the application of only reported

2



risk factors for underwriting life annuities. Insurers routinely disregard un-
reported risk factors perhaps because of difficulties modeling heterogeneity
due to these factors. The risk of adverse selection is inevitable if only an-
nuitants in optimal health conditions bought standard life annuities whose
pricing relies on a mortality table based on the assumption of above-average
longevity. The outcome is joint-life annuities that are overpriced.

The standard assumption for the frailty distribution is the gamma, but this
restriction implies constant frailty over time. For a more accurate valuation,
better expression of time-varying heterogeneity due to unobserved risk fac-
tors is needed.

Grouping insureds in clusters such as joint or group insurance imposes sta-
tistical dependence between paired lifetimes. This dependence is a result of
sharing aggregate effects of similar lifestyle or exposure to disaster. Stan-
dard insurance practice considers independence when valuing joint-life an-
nuity insurances. This is because modeling the dependence structure based
on survival data is complex. Researchers have developed various dependence
models for actuarial evaluations. However, these approaches model sepa-
rately the negative or positive effects of dependence.

1.3 Objectives

Main Objective:

The main objective of this study is to apply the shared compound frailty
processes in modeling joint-life annuity insurance.

Specific Objectives:

The specific objectives of this study are

i. To construct compound shared frailty processes.

ii. To apply compound mixtures in explaining heterogeneity and dependence
effects.
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iii. To develop the non-central gamma compound frailty to account for uni-
variate unobserved heterogeneity effects.

iv. To apply the positive stable frailty approach to account for positive and
negative effects of dependence.

v. To construct the positive stable frailty life-table for collective valuation of
joint-life annuity products.

1.4 Significance of Study

Risks between joint-life insurance contracts are heterogeneous but within the
joint-life contracts the risks are dependent. Therefore, to adequately price
and allocate reserves that represent the insurance contracts all relevant fac-
tors affecting mortality and dependence needs to be considered. Neglecting
unobserved heterogeneity and dependence or usage of only reported risk fac-
tors could result in biased insurance products pricing and reserves allocation.
This thesis outlines a heterogeneous and dependence model that will improve
the underwriting process to ensure fair pricing and reserving of joint-life prod-
ucts consistent with the insured risk.

Annuity insurance pricing is determined by the expected present values
(EPVs) that is applied in valuation. A suitable model for the intensity rates
is needed when computing EPVs to minimize the risk of biased valuations.
See for instance, Frees et al., (1996), Olivieri & Pitacco (1999), Coppola et
al., (2000), Luciano et al., (2016), Gildas et al., (2018) and Arias & Cirillo
(2021), to cite a few important contributions. Frailty models account for
heterogeneity in insured lives due to unreported risk factors (Su & Sherris
(2012); Gatzert et al., (2012); Fong (2015)). Frailty methodology has been
adopted by many researchers, see for instance, Gatzert et al., (2012) applies
a frailty model to represent mortality heterogeneity in risk classes optimiza-
tion for sub-standard annuities that incorporates reported risks. Olivieri &
Pitacco (2016) suggests frailty modeling to classify risk factors for life annu-
ity portfolios. Specifically, the authors identify risk clusters in a population
based on assigned frailty estimates for each cluster. Pitacco (2018) modeled
the effect of frailty on life insurance variables such as cash flow and profitabil-
ity for life annuity portfolios and risk groups. This thesis develops a model
for adjusting insurance prices to account for heterogeneity and dependence
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in mortality risk.

The underwriting process in insurance policies considers heterogeneity in
respect of reported risk factors to guarantee appropriate premiums for the
insured risk. The purpose of underwriting is to assign each insured a frailty
factor Û as an estimate of U to determine the pricing intensity rates. This
results in a split of the insureds into super preferred, preferred, standard
and substandard risk classes for which additional mortality can be applied
(Batty et al., (2010)). While heterogeneity may be reduced due to under-
writing, mortality heterogeneity still varies within risk classes (Meyricke &
Sherris (2013)). Thus, to improve the underwriting process the frailty model
is applied.

1.5 Outline

The research is organized as follows: In chapter two, detailed review of the lit-
erature is given together with similarities between frailty and copulas. Chap-
ter three introduces the shared compound frailty distributions and baselines
that will be applied in the analysis which forms the basis for Chapters four.
Both the univariate and bivariate compound frailty models are discussed in
Chapter four. Applications to real life insurance data is shown in Chapters
five & six. Finally, Chapter seven contains the conclusions and recommen-
dations of the thesis.

5



Chapter 2

Literature Review

2.1 Introduction

The first part of this chapter describes relevant literature according to a re-
view framework. This is followed by sections that explain the various choices
of frailty models, frailty distributions and base force of mortality distribu-
tions. Similarity between frailty modeling and the Clayton Archimedean
copula dependence modeling is also discussed.

The literature review is organized in the following review framework. Firstly,
the Cox Proportional Hazards Model (CPHM) is described and its extension
to frailty model framework outlined. An extensive review of the various
types of frailty models and choices of frailty mixing distributions is discussed.
Researchers reasons for selecting those distributions and the research gaps
are identified. Secondly, the frailty distribution is mixed with the base force
of mortality distribution to give the frailty mixture. This can either be a
univariate frailty mixture or bivariate frailty mixture. Since the thesis is also
aimed at dependence modeling, the univariate frailty is extended to bivariate
frailty mixtures. Finally, the areas of applications and parameter estimation
strategies for the reviewed models is discussed thus further research gaps are
identified.
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Figure 2.1: Model Framework.
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2.2 Cox Proportional-Hazards

The CPHM (Cox (1972)) is a technique that explores the connection between
several reported risk factors affecting mortality and the intensity rate of an
individual. An individual’s intensity rate positively correlates with the base
force of mortality h0(t) and thus the intensity rate is fully determined by the
covariate vector. The individual’s intensity rate at time t, h(t) is written as:

h(t|z) = h0(t) exp (θ1z1 + θ2z2 + . . .+ θnzn), (2.1)

where θ′s are the regression coefficients and z′s are covariate vectors.

Covariates are entered into this model to determine their effect on mortality.
However, not all risk factors may be considered since some may be unobserved
or due to cost implications. Frailty models are able to tackle such issues.

2.3 Frailty Model

Vaupel et al., (1979) modeled the multiplicative frailty as:

h(t|u) = uh0(t), (2.2)

h0(t) denotes the standard intensity function assumed to have a frailty U = 1
that is equivalent to a ”standard” individual. U includes all variables affect-
ing mortality except age and can take either zero or a positive value. U > 1
denotes a higher proportional risk of mortality across a lifetime, whereas
U < 1 denotes lower intensity rates.

In the literature various differential frailty models have been proposed. For
instance, Aalen (1989) non-parametric additive frailty model describes the
frailty effect as acting additive on the base force of mortality differing from
the multiplicative representation. This model is useful in dealing with right
censored times-to-event data, especially data that includes time-varying co-
variates. Eriksson & Scheike (2015) applies the gamma additive frailty model
to analyse competing hazards in relatives.

The age shift approach presumes that mortality experience of a group of
impaired lives accepted for life insurance should have an increased premium
rating determined by assuming that the insured’s age is higher than the real
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current age, hence adopting the ”age shift”. An alternative is the constant
mortality model that represents mortality increments occurring at a fixed
rate and is unrelated to initial age. This model is useful in dealing with
occupational or sports accident-linked mortality increase.

Different types of frailty models have been applied to model unobserved risks
depending on the nature of the problem and the study subjects. The univari-
ate frailty models considers heterogeneity due to unreported risk factors for
independent life times in a proportional-hazards model. The heterogeneity
includes two components: a hypothetically predictable part that is depen-
dent on reported risk factors and a component that cannot be predicted, even
when there are no unknowns. This model has been used by many authors see
(Wang & Brown (1998); Eriksson & Scheike (2015)) to show that unpre-
dicted results can be explained by these two sources of heterogeneity. The
frailty approach can also be applied in cases where observed covariates are
not available or when only survival data is present. However, the model can-
not be identified from survival data only, since different aggregations of the
base force of mortality and frailty distributions results in similar marginal
intensity rate. If two conditions are met, that is, the baseline parametric
structure is fixed and the frailty variable is assumed to be parametrically
distributed, then the model becomes identifiable.

Bivariate frailty models are used to analyse dependence effects in correlated
lifespans. This model estimates the impact of dependence on the regression
coefficients of the CPHM. Hanagal & Alok (2013), Hanagal & Pandey (2015)
proposes the bivariate frailty model for analysing bivariate survival data due
to kidney infection by McGilchrist & Aisbett (1991) using frailty model and
proposes an improved model. An example of the bivariate approach is the
correlated frailty model. In this model, the measured cross-ratio risk deter-
mines the frailty of each member of a pair whose frailty effect is determined
using associated random variables. Two variables can be randomly assigned
to the husband and the wife to remove the effect of common frailty. These
linked variables would exhibit a joint distribution. For paired individuals,
frailties may not be similar. Yashin & Iachine (1995) first used the corre-
lated frailty approach with gamma mixtures on related lifetimes. Wienke
et al., (2003) applies correlated frailty models in an experimental research
to investigate the effect of various estimation methods on the behavior of
parametric estimates. The study detected significant dependence between
variance and frailty correlation.
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The nested frailty approach explains hierarchical grouping of data using two
nested random variables with a multiplicative effect on the intensity function.
The type of datasets that can be modeled this way include data grouped ac-
cording to hierarchical levels, for example, geographical units (Rondeau et
al., (2006)). Joint frailty models provides a way to investigate how two study
subjects evolve jointly by taking a major event occurring as informative cen-
soring (Rondeau et al., (2007)). In this case, the lifespan for a cohort in
a study are limited by natural attrition, conclusion of study, or a terminal
event like death. Here, the failure event could be related to recurrences of
particular events.

The frailty factor normally exhibits a continuous distribution. Sometimes,
it is reasonable to express heterogeneity as a discrete mixture using discrete
frailty models. A zero frailty indicates immunity and population-level het-
erogeneity can be determined from discrete frailty models. Continuous frailty
distributions must involve risks. Aalen (1992) used the discrete model to
explain heterogeneity risks in a data-set concerning marriage rates and fertil-
ity. In this thesis however continuous frailty models will be considered since
the application is in joint life annuity insurance where mortality risk must
occur.

2.4 Shared Frailty Model

This model is proposed by Clayton (1978) and is applied to event times
of related subjects or observations that fall into geographical clusters such
as cities that are presumed to share the same frailty U . A fundamental
assumption is that lifetimes are independent with regard to the shared risk.
The shared frailty intensity rate is defined as:

hij(t|ui) = uih0(t) exp (θ
′zij), (2.3)

where hij(t|ui) is the conditional hazard function for the jth individual in
the ith group and ui is the frailty variable of the ith group. Assuming:
i = 1, 2, ..., n; j = 1, 2, ..., k; and θ′ = (θ1, θ2, . . . , θk).

Fulla & Laurent (2008) propose a shared frailty Gompertz model for the rep-
resentation of lifetimes stochastic dependence. Non-linear pricing measures
and reinsurance premiums are thus computed. Their results shows that even
a small amount of dependence can dramatically increase risk measures. The
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shared model has been further adopted by Hanagal & Alok (2013) in the
analysis of kidney infection data.

Shared Frailty and Archimedean Copula Approach
The copula approach is widely applied in actuarial literature to model joint-
life’s survivor rates (Carriere (2000); Arias & Cirillo (2021)). We dis-
cuss similarity between the copula and frailty methodologies by applying the
Archimedean copula approach. The Archimedean copula families (Cossette
et al., (2017); Li & Lu (2018)) is outlined in relation to a generator function
τ(.).

C[x1, . . . , xn] = τ

(
n∑

j=1

θ(xj)

)
.

In the bivariate case:

Cϕ[y, x] = τ ((θ(y) + θ(x))) . (2.4)

The generator τ(.) denotes a decreasing positive function and positive sec-
ond derivative with τ(0) = 1 and θ(.) its pseudo-inverse function. When
τ(s) = LU(s) and y = S(ti1), x = S(ti2) the shared frailty model is obtained
with U being the unreported shared risk. If τ(.) denotes a gamma (scale=1)
distribution Laplace, the result is a Clayton copula model having a gamma-
distributed frailty. If τ(.) denotes an identifiable positive stable distribution
Laplace, then the Gumbel-Hougaard copula is obtained having a positive
stable distributed frailty. However, the modeling of the marginals differs in
both approaches leading to different joint survivor functions (Goethals et al.,
(2010)).

To incorporate the copula methodology the researcher has to specify both
the association structure and survivor marginals (Nelsen (2007); Czado et
al., (2012)). Whereas in the shared frailty approach association is introduced
indirectly via continuous mixtures.

2.5 Frailty (Mixing) Distributions

A frailty distribution is selected considering mathematical suitability i.e.
closed-form expression is required for Laplace transform. Choices can vary
widely. Congdon (1995) shows that patterns of change in mortality and age
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slope against intensity rate is dependent on the intensities analytic form, the
frailty distribution and the level of heterogeneity. Therefore the specific ap-
plication of the model determines the choice of frailty model. Other criteria
for choosing between different distributions include; checking for a low mean
squared error and high goodness of fit indicator. All arguments and counter-
arguments are based on mathematical scenarios no biological reason exists.
For further explanation of the frailty methodology see Hougaard (2000) and
Wienke (2011).

Vaupel et al., (1979) discusses the effect of heterogeneity on Sweden times-
to-death dataset using the gamma mixture. Their findings showed that the
present standard life tables overestimate life expectancy and the effect of
public health programs and safety precautions on life expectancy and un-
derestimates aging rates. This model is applied by various researchers see
for instance, Avanzi et al., (2015) and Eriksson & Scheike (2015). Clayton
(1978) further introduces a shared frailty approach to examine impact of the
same type of failure in a related pair of individuals using the gamma mixture
as frailty distribution. A unique property of the gamma frailty is that its
coefficient of variation and cross-ratio function is constant with age. This
implies constant frailty from birth to death.

Hougaard (2000) applies the work to other distributions to model hetero-
geneity that are consistent with the CPHM. Distributions that describe ”U”
as exp(θx). In particular, the inverse Gaussian is considered. Hanagal &
Sharma (2015) compare the inverse Gaussian and gamma as shared frailty
distributions for bivariate survivor data-sets. Their findings showed that the
inverse Gaussian fits better to the bivariate data-set. The frailty mixture
has also been applied by; Whitmore & Lee (1991), Su & Sherris (2012),
Wienke (2011) and Hanagal & Pandey (2015). Unlike the gamma frailty,
the inverse Gaussian coefficient of variation decreases with age implying that
the population becomes homogeneous with time.

The stable Probability Density Function (PDF) is derived from the III pa-
rameter family mixtures see Hougaard (1986). The model is applied to
life-table construction for heterogeneous lives. Qiou et al., (1999) and Nalini
& Dey (2000) discuss models for associated multivariate survival data-sets
by applying positive stable mixtures to a data-set on survival times for pa-
tients with kidney infection. Their choice was based on the idea that the
stable model permits the proportional-hazards to apply conditionally as well
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as unconditionally. Secondly, the first and second moments of the positive
stable mixture is infinite. This enables greater level of heterogeneity to be
modeled that could not have been possible to account for using a finite vari-
ance distribution. Further, when covariates are present the association and
heterogeneity parameters are confounded (Clayton & Cuzick (1985)). Elbers
& Ridder (1982) shows that this drawback is present when considering finite
mean frailty model. Positive stable models have not been adopted in joint-
life annuity valuation. However, most applications have been in medical and
bio-statistical fields such as survival times for patients with kidney infection
or in myocardial infarction studies.

McGilchrist & Aisbett (1991) considers regression in frailty modeling where
times-to-event occurs more than once using the lognormal as a frailty dis-
tribution. One major drawback is that the unconditional likelihood has no
explicit form. However, increased computational power has overcome such
limitations. The distribution has also been adopted as a frailty mixture
by Wienke et al., (2003). The compound Poisson distribution (CPD) ac-
counts for zero-susceptibility and susceptible risks on the event of interest.
Aalen (1992) proposes the compound Poisson frailty and applies it to a zero-
susceptible study subjects. The model is then fitted to a data-set concerning
marriage rates and fertility. The CPD has also been applied in bivariate
frailty models by Wienke et al., (2010).Rocha (1994) considers modeling
heterogeneity for a zero susceptible group using the non central chi-squared
(NCC) frailty. The Non-Central Gamma (NCG) is regarded as a general
form of the NCC mixture.

Aalen & Tretli (1999) considers the compound negative binomial distribution
(CNBD) to analyse testis cancer where X ∼ denotes damages caused and
N ∼ frequency of damages. The CNBD represents the number of damages
until outset of cancer. Hanagal & Alok (2013) apply the CNBD to kidney
infection-related joint survivor dataset adopted by McGilchrist & Aisbett
(1991) to assess non-susceptible cases. The CNBD as applied is useful to
cases where there is possibility of zero susceptibility on the event of interest.
Hakon et al., (2003) generalized the standard frailty models by modeling risk
as a weighted Levy process. Thus, the individuals’ risk is assumed to evolve
with time and not constant value. Tron & Aalen (2009) have adopted the
Levy distribution on hierarchical models in the study of infants mortality in
a Norwegian data-set.
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Table 2.1: Summary of Frailty Distributions in Literature.
Frailty Distributions Reasons
1. Gamma. Chosen due to mathematical tractability
(Vaupel et al., (1979); and convenience.
Hanagal & Pandey (2015))
2. Inverse Gaussian. To model frailty that is dependent on age e.g. when
(Whitmore & Lee (1991); survivors become homogeneous with time. Also useful in
(Su & Sherris (2012)) modeling various dependence structures in the data.
3. Positive Stable Preserves population’s proportional-hazards assumption
(Hougaard (1986); to apply conditionally as well as unconditionally.
Nalini & Dey (2000))
4. Lognormal Easier estimation of partial likelihood procedures. Used to
(McGilchrist & Aisbett (1991); mimic random normal effects from a linear mixed model.
(Gustafson (1997))
5. Compound Poisson Has a positive probability of zero frailty, useful when
(Aalen (1992); Hanagal (2020)) individuals may be immune to the event of interest.
6. Non Central Chi-squared Has a positive probability of zero frailty, useful when
(Rocha (1994)) individuals may be immune to the event of interest.
7. Compound Negative Binomial Useful when the frequency of events occurring
(Aalen & Tretli (1999); is not constant.
Hanagal & Alok (2013))
8. Levy (Tron & Aalen (2009)) Used when risk is assumed to evolve with time and not

a constant value.

Identifiability
The unreported and integrated frailty U results in a model with unspecified
components. This raises the question of identifiability, that is, whether the
frailty or distribution due to age is distinguishable. Following research by
Elbers & Ridder (1982) we can explain identifiability if valid assumptions
about frailty-related probability distributions are considered.

In the univariate case, the frailty distribution is presumed to have mean=1
and finite unknown variance to ensure the model is identifiable. However,
for multivariate survival data, the intensity function can be calculated using
mean frailty distributions that are finite or infinite.

Covariates for shared frailty distributions with finite mean have confounding
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effect on heterogeneity (Elbers & Ridder (1982)). To eliminate the effect of
these confounds, a positive stable frailty model with infinite mean is used.
The use of this distribution also allows for even greater heterogeneity among
the groups, since the variance is theoretically infinite.

2.6 Base Force of Mortality Distributions

For annuity valuation purposes parametric base force of mortality estima-
tion is desired (see Frees et al., (1996)). The chosen distribution is largely
selected as per the nature of the accessed data and the objectives of the
study. For instance, the Gompertz distribution (Wienke (2011)) is widely
applied to model human mortality as it fits well to middle and old age inten-
sity rates. For cases where the intensity is presumed to remain constant e.g.
mortality for individuals who remain in good health in a population then the
exponential model (Qiou et al., (1999)) is applied. For most applications in
reliability studies where the intensity rate is monotonically rising, declining
or unchanged the Weibull (Santos & Achcar (2010)) is utilized. The loglo-
gistic distribution (Hanagal & Sharma (2015)) and lognormal provides a
flexible functional form and can achieve non-monotonic shapes i.e. bathtub-
shaped or hump-shaped. The humped hazard can model patients who are at
a higher mortality risk at the initial stages of infection.

The generalized distributions on the other hand, such as the generalized
Weibull (Hanagal & Pandey (2015)), generalized exponential (Hanagal &
Alok (2013)),generalized loglogistic (Hanagal & Pandey (2015)) and gener-
alized Pareto (Arvind et al., (2018)) models are applied as an improvement
of the aforementioned models. These distributions give higher flexibility in
modeling and are used in instances where the intensity is expected to ei-
ther rise, decline or remain unchanged. Further, representing non-monotonic
and/or unimodal intensity rates.
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Chapter 3

Construction of Generalized
Inverse Gaussian Distribution
and their Properties

3.1 Introduction

We wish to construct and obtain distributions that will be used in this study.
The distributions are expressed in terms of probability density functions and
Laplace transforms used to derive the means and variances. Generalized
inverse-Gaussian distribution (GIG), its special cases and limiting cases are
discussed. Other distributions considered are: positive stable, compound
Poisson and compound negative binomial distributions.

In literature there are a number of parametrizations and transformations
that have been used. In this chapter we are using Sichel (1974) approach
since the other parametrizations are as a result of Sichel’s parametrization
and also due to mathematical convenience.

3.2 The GIG Frailty

The frailty can be constructed under various parametrizations. For instance;
considering Sichel (1974) parametrization ϵ =

√
ϖϑ.

Let Kη(ϵ) denote a modified Bessel function of III kind, where ϵ and η are
the order and index, respectively.
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Kη(ϵ) =
1

2

∫ ∞

0

xη−1 exp

(
− ϵ

2
(x+

1

x
)

)
dx. (3.1)

Under the parametrization

Kη(
√
ϖϑ) =

1

2

∫ ∞

0

xη−1 exp

(
−
√
ϖϑ

2
(x+

1

x
)

)
dx.

The transformation x =
√

ϖ
ϑ
u, dx =

√
ϖ
ϑ
du, yields

Kη(
√
ϖϑ) =

1

2

∫ ∞

0

(√
ϖ

ϑ

)η

uη−1 exp

(
−
√
ϖϑ

2
(

√
ϖ

ϑ
u+

1√
ϖ
ϑ
u
)

)
du,

1 =
1

2

∫ ∞

0

(
√

ϖ
ϑ
)ηuη−1 exp (−1

2
(ϖu+ ϑ

u
))du

Kη(
√
ϖϑ)

.

It can be seen that the above expression gives the density function say, g(u).

g(u) =
(
√

ϖ
ϑ
)η

2Kη(
√
ϖϑ)

uη−1 exp

(
−1

2
(ϖu+

ϑ

u
)

)
;u > 0, ϑ ≥ 0, ϖ ≥ 0,−∞ < η < ∞.

(3.2)
The above Equation (3.2) is the GIG density function. Thus U ∼ GIG(ϑ,ϖ, η)

Proposition 3.1 The Laplace transform of the GIG distribution is

LU(s) =

(√
ϖ

2s+ϖ

)η
Kη(

√
(2s+ϖ)ϑ)

Kη(
√
ϖϑ)

.

Proof.

LU(s) =

∫ ∞

0

exp (−su)
(
√
ϖ/ϑ)η

2Kη(
√
ϖϑ)

uη−1 · exp
(
−1

2
(ϖu+

ϑ

u
)

)
du,

=
(
√

ϖ/ϑ)η

2Kη(ϖϑ)

∫ ∞

0

uη−1 exp

(
−1

2
[u(2s+ϖ) +

ϑ

u
]

)
du,

=
(
√
ϖ/ϑ)η

2Kη(ϖϑ)

2Kη

√
(2s+ϖ)ϑ

(
√

2s+ϖ
ϑ

)η
,

=

(√
ϖ

2s+ϖ

)η
Kη(

√
(2s+ϖ)ϑ)

Kη(
√
ϖϑ)

. (3.3)
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3.3 Special Cases of GIG

The special cases of the GIG presented in this section includes: the inverse
gaussian, reciprocal inverse gaussian, harmonic and positive hyperbolic dis-
tributions.

Inverse Gaussian (IG) Distribution:
Let U ∼ IG(ϖ,ϑ) the PDF is obtained from the GIG when η = −1

2
.

f(u) =
(
√

ϖ
ϑ
)−1/2

2K−1/2(
√

ϖϑ)
u−3/2 exp

(
−1

2
(ϖu+

ϑ

u
)

)
;u > 0, ϑ,ϖ ≥ 0.

Applying the Bessel function’s even and recursive relation (Sichel (1974))

K1/2(ϵ) = K−1/2(ϵ) =

√
π

2ϵ
exp(−ϵ),

substituting for ϵ =
√
ϖϑ we get

f(u) =
(
√

ϖ
ϑ
)−1/2

2[ π
2
√
ϖϑ

]1/2 exp (−
√
ϖϑ)

u−3/2 exp

(
−1

2
(ϖu+

ϑ

u
)

)
,

=

√
ϑ

2πu3
exp (

√
ϖϑ) exp

(
−1

2
(ϖu+

ϑ

u
)

)
. (3.4)

The subsequent, result gives the closed form of the corresponding IG Laplace
transform derived from a GIG distribution when η = −1

2
, see Sichel (1974).

Proposition 3.2 To ensure the model is identifiable, the IG distribution
Laplace transform is expressed as:

LU(s) = exp

(
1− (1 + 2sσ2)1/2

σ2

)
.

Proof. When η = −1
2
in Equation (3.3)
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LU(s) =

(√
ϖ

ϖ + 2s

)−1/2
K−1/2(

√
(ϖ + 2s)ϑ)

K−1/2(
√
ϖϑ)

,

=

(√
ϖ

2s+ϖ

)−1/2 [ π

2
√

(2s+ϖ)ϑ
]1/2 exp (−

√
(2s+ϖ)ϑ)

[ π
2
√
ϖϑ

]1/2 exp (−
√
ϖϑ)

,

=

(√
ϖ

2s+ϖ

)−1/2(√
ϖ

2s+ϖ

)1/2

exp (
√
ϖϑ−

√
(2s+ϖ)ϑ),

= exp (
√
ϖϑ−

√
(2s+ϖ)ϑ). (3.5)

Using the parametrizations ϖ = 1
Θ2 , ϑ = µ2 leads to

LU(s) = exp
(
− µ

Θ
[(1 + 2Θ2s)1/2 − 1]

)
. (3.6)

E[U ] = − d

ds
LU(s)|s=0 = −L′

U(s)|s=0 = µΘ,

var[U ] =
d2

ds2
LU(s)|s=0 − (E[U ])2 = L′′

U(s)|s=0 − (µΘ)2 = µΘ3.

To ensure the model is identifiable set the mean E[U ] = 1. That is; µΘ = 1
implying µ = 1

Θ
thus the variance is σ2 = Θ2. The Laplace therefore becomes

LU(s) = exp

(
1− (1 + 2sσ2)1/2

σ2

)
. (3.7)

Reciprocal Inverse Gaussian (RIG) Distribution
Given that U = 1

X
where X ∼ IG(ϖϑ) then U is said to be the reciprocal

of the IG. The density is obtained from the GIG when η = 1
2
.

f(u) =

(√
ϖ
ϑ

) 1
2

2K 1
2
(
√

ϖϑ)
u− 1

2 exp

(
−1

2
(ϖu+

ϑ

u
)

)
,

=

(√
ϖ
ϑ

) 1
2

2[ π
2
√
ϖϑ

]1/2 exp (−
√
ϖϑ)

u− 1
2 exp

(
−1

2
(ϖu+

ϑ

u
)

)
,

=

√
2ϖ

uπ
exp (

√
ϖϑ) exp

(
−1

2
(ϖu+

ϑ

u
)

)
. (3.8)
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Proposition 3.3 The RIG distribution Laplace transform allowing for iden-
tifiability is

LU(s) = (1 + 2sΘ2)−1/2 exp

(
1−Θ2

Θ2
[1− (1 + 2Θ2s)1/2]

)
.

Proof. When η = 1
2
in Equation (3.3)

LU(s) =

(√
ϖ

2s+ϖ

)1/2
K1/2(

√
(2s+ϖ)ϑ)

K1/2(
√
ϖϑ)

,

=

(√
ϖ

2s+ϖ

)1/2 [ π

2
√

(2s+ϖ)ϑ
]1/2 exp(−

√
(2s+ϖ))

[ π
2
√
ϖϑ

]1/2 exp(−
√
ϖϑ)

,

=

√
ϖ

2s+ϖ
exp(

√
ϖϑ−

√
(2s+ϖ)ϑ). (3.9)

Substituting ϖ = 1
Θ2 , ϑ = µ2 leads to

LU(s) = (1 + 2sΘ2)−1/2 exp
( µ
Θ
[1− (1 + 2Θ2s)1/2]

)
. (3.10)

E[U ] = −L′
U(s)|s=0 = Θ2 + µΘ.

To ensure the model is identifiable set the mean E[U ] = 1. That is; Θ2+µΘ =

1 and ∴ µ = 1−Θ2

Θ
.

var[U ] = L′′
U(s)|s=0 − (E[U ])2,

= 3Θ4 + µΘ3 + 2µΘ3 + (µΘ)2 − (Θ2 + µΘ)2 = Θ2(2Θ2 + µΘ).

Substituting µ = 1−Θ2

Θ
leads to σ2 = Θ2(Θ2 + 1).

Laplace transform becomes

LU(s) = (1 + 2sΘ2)−1/2 exp

(
1−Θ2

Θ2
[1− (1 + 2Θ2s)1/2]

)
. (3.11)
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Harmonic Distribution
The Harmonic is derived from the GIG distribution when η = 0, ϑ = an,ϖ =
a
n
.

f(u) =
u−1 exp {−a

2
(u
n
+ n

u
)}

2K0(a)
;u > 0, ϖ ≥ 0, ϑ ≥ 0. (3.12)

Proposition 3.4 To ensure the model is identifiable, the harmonic distri-
bution Laplace transform is described as

LU(s) =
K1(

√
2ans+ a2)

nK1(a)
.

Proof. Letting η = 0, ϑ = an,ϖ = a
n
in the GIG Laplace we obtain

LU(s) =
K0(

√
2ans+ a2)

K0(a)
. (3.13)

To ensure the model is identifiable set the mean E[U ] = 1.

f(u) =
u−1 exp {−1

2
(au
n
+ an

u
)}

2K0(a)
.

E[U ] =

∫ ∞

0

exp {−1
2
(au
n
+ an

u
)}

2K0(a)
du

=
2K1(

√
a
n
× an)

2K0(a)
√

a
n
× 1

an

,

=
nK1(a)

K0(a)
= 1.

The Laplace becomes

LU(s) =
K1(

√
2ans+ a2)

K1(a)
. (3.14)
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Positive Hyperbolic Distribution
The Positive Hyperbolic is derived from the GIG distribution when η = 1.

f(u) =

√
ϖ
ϑ

2K1(
√
ϖϑ)

exp

(
−1

2
[ϖu+

ϑ

u
]

)
;u > 0, ϑ,ϖ ≥ 0. (3.15)

Proposition 3.5 For identifiability reasons, Equation (3.15) Laplace trans-
form is given by

LU(s) =

(
ϖ

2s+ϖ

)
K2(

√
(ϖ + 2s)ϑ)

K2(
√
ϖϑ)

.

Proof. Letting η = 1 in the GIG Laplace we obtain

LU(s) =

(√
ϖ

2s+ϖ

)
K1(

√
(2s+ϖ)ϑ)

K1(
√
ϖϑ)

. (3.16)

To ensure the model is identifiable set the mean E[U ] = 1.

E[U ] =

√
ϖ
ϑ

2K1(
√

ϖϑ)

∫ ∞

0

u exp

(
−1

2
[ϖu+

ϑ

u
]

)
du,

=

√
ϖ
ϑ

2K1(
√
ϖϑ)

· 2K2(
√
ϖϑ)

(
√

ϖ
ϑ
)2

,

=

√
ϑ
ϖ
K2(

√
ϖϑ)

K1(
√
ϖϑ)

= 1.

The Laplace becomes

LU(s) =

(
ϖ

2s+ϖ

)
K2(

√
(ϖ + 2s)ϑ)

K2(
√
ϖϑ)

. (3.17)
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3.4 Limiting Cases of GIG

The limiting cases of the GIG presented includes: the gamma, inverse gamma
and levy distributions.

Gamma Distribution
The PDF is a limiting case of the GIG obtained when ϑ = 0; η,ϖ > 0.

f(u) =
uη−1 exp {−1

2
(ϖu+ ϑ

u
)}∫∞

0
uη−1 exp {−1

2
(ϖu+ ϑ

u
)}du

;u > 0, ϑ,ϖ ≥ 0,−∞ < η < ∞.

=
uη−1 exp {−1

2
(ϖu)}∫∞

0
uη−1 exp {−1

2
(ϖu)}du

,

=
(1
2
ϖ)η

Γ(η)
uη−1 exp {−1

2
(ϖu)}. (3.18)

Proposition 3.6 Equation (3.18) Laplace transform allowing for identifia-
bility is

L(s) = (1 + sσ2)−1/σ2

.

Proof. When ϑ = 0; η,ϖ > 0 in Equation (3.3)

LU(s) =
(
√

ϖ
ϖ+2s

)η ·Kη(
√

(ϖ + 2s) · 0)
Kη(

√
ϖ · 0)

,

=

(
ϖ

ϖ + 2s

)η/2

. (3.19)

Using the parametrization ϖ = 2β; η
2
= k. Equation (3.19) becomes

LU(s) =

(
1 +

s

β

)−k

. (3.20)

The mean frailty at birth

E[U ] = −L′
U(s)|s=0 =

k

β

(
1 +

s

β

)−k−1

|s=0 =
k

β
.
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var[U ] = L′′
U(s)|s=0 − (E[U ])2,

=
−k

β2
(−k − 1)

(
1 +

s

β

)−k−2

−
(
k

β

)2

|s=0,

=
k

β2
.

The coefficient of variation (CV)

CV (U) =

√
var[U ]

E[U ]
=

1√
k
.

If k → ∞, then CV (v) → 0, i.e. the population can be considered homoge-
neous.
To ensure the model is identifiable set the mean E[U ] = 1 (k = β) and
σ2 = 1

β
.

Thus

LU(s) = (1 + sσ2)−1/σ2

. (3.21)

Inverse Gamma Distribution
The case when η < 0, ϑ > 0, ϖ = 0

f(u) =
uη−1 exp (− ϑ

2u
)∫∞

0
uη−1 exp (− ϑ

2u
)du

. (3.22)

Let

x =

∫ ∞

0

uη−1 exp

(
− ϑ

2u

)
du

Using the transformation

u =
1

y
, du = −dy

y2
.

x =

∫ ∞

0

(
1

y

)η−1

exp

(
−ϑ

2
y

)(
dy

y2

)
,

=

∫ ∞

0

(
1

y

)η+1

exp

(
−ϑ

2
y

)
dy =

Γ(−η)

(ϑ/2)−η
,
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∴ f(u) =
(ϑ/2)−η

Γ(−η)
uη−1 exp

(
− ϑ

2u

)
;u > 0. (3.23)

Let η = −β where β > 0

f(u) =
(ϑ/2)β

Γ(β)
u−β−1 exp

(
− ϑ

2u

)
. (3.24)

This is an inverse gamma density function.

Proposition 3.7 The inverse gamma Laplace transform allowing for iden-
tifiability is

LU(s) = 2
(β − 1)β

Γ(β)
·

(√
β − 1

s

)−β

·K−β(
√
4s(β − 1))

Proof. The Laplace transform is

LU(s) =
(ϑ/2)β

Γ(β)

∫ ∞

0

u−β−1 exp

(
−1

2
[2su+

ϑ

u
]

)
du,

= 2
(ϑ/2)β

Γ(β)

K−β(
√
2sϑ)

(
√

2s
ϑ
)−β

LU(s) = 2
(
√
ϑs/2)β

Γ(β)
K−β(

√
2sϑ). (3.25)

To ensure the model is identifiable set the mean E[U ] = 1.

E[U ] =
(ϑ/2)β

Γ(β)

∫ ∞

0

u−β exp

(
−ϑ

2u

)
du.

Let

u =
1

y
, du = − 1

y2
dy.

E[U ] =
(ϑ/2)β

Γ(β)

∫ ∞

0

yβ−2 exp

(
−yϑ

2

)
dy.

Let

x =
yϑ

2
, dx =

ϑ

2
dy.
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E[U ] =
(ϑ/2)β

Γ(β)

∫ ∞

0

xβ−2

(ϑ/2)β−1
exp (−x)dx =

ϑΓ(β − 1)

2(β − 1)Γ(β − 1)
.

Since

E[U ] =
ϑ

2(β − 1)
= 1 ∴ ϑ = 2(β − 1)

The Laplace becomes

LU(s) = 2
(
√

(β − 1)s)β

Γ(β)
K−β(

√
4s(β − 1)). (3.26)

The Levy Distribution
The Levy is obtained from the inverse gamma whose PDF derived in Equa-
tion (3.23)

f(t) =
(ϑ/2)−η

Γ(−η)
tη−1 exp

(
− ϑ

2t

)
,

when η = −1
2
;ϑ = µ2 the Levy density is obtained

f(t) =
(µ2/2)1/2

Γ(1/2)
exp

(
−µ2

2t

)
t−1−1/2,

=

√
µ2/2

t32π
exp

(
−µ2

2t

)
. (3.27)

Proposition 3.8 To ensure the model is identifiable, the Laplace transform
for Equation (3.27) is

LU(s) = exp (−
√
2s).

Proof. Substituting ϖ = 0 in Equation (3.5) the Laplace of the Levy is
obtained

LU(s) = exp (−
√

2sµ2). (3.28)

To ensure the model is identifiable set the mean E[U ] = 1.
The Laplace becomes

LU(s) = exp (−
√
2s). (3.29)
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3.5 Other Frailty Distributions

Other distributions presented are the compound Poisson, positive stable,
compound negative binomial and non-central gamma distributions.

Compound Poisson Distribution
Let N ∼ Poisson (ρ > 0) and let Xj, j = 1, 2, . . . be identically distributed
random variables, independent of N . U ∼ CPD expressed as:

U =

{
X1 + . . .+XN , N > 0

0, N = 0

Proposition 3.9 The CPD Laplace transform with gamma distributed ran-
dom variables is

LU(s) = exp

(
−k

α
[(β + s)α − βα]

)
. (3.30)

Proof.

LU(s) = E[exp (−sU)] = E{E[exp (−s(X1 + . . .+XN))|N = n]},
= E{E[(exp (−sX)× exp (−sX)× . . .× exp (−sX))]},
= E{[E(exp (−sX))]n},
= F(LX(s)) = exp {ρ(LX(s)− 1)}. (3.31)

Since X ∼ Γ(k, β) applying its Laplace transform we have

LU(s) = exp

(
ρ[(1 +

s

β
)−k − 1]

)
,

by parametrization substitute ρ = −kβα

α
and k = −α.

LU(s) = exp

(
−kβα

α
[(1 +

s

β
)α − 1]

)
,

= exp

(
−k

α
[(β + s)α − βα]

)
. (3.32)
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For 0 < α ≤ 1 the Power-Variance-Function (PVF) distributions is attained.
For α < 0 the CPD is obtained, these two sub-classes are separated by the
gamma distribution α = 0.
The first raw moment and second central moment is given by

E[U ] = −L′
U(s) = k(β + s)α−1 exp

(
−k

α
[(β + s)α − βα]

)
,

= −L′
U(s)|s=0 = kβα−1.

var[U ] = L′′
U(s)|s=0 − (E[U ])2

= −k(α− 1)(β + s)α−2 exp

(
−k

α
[(β + s)α − βα]

)
+ (k(β + s)α−1)2

· exp
(
−k

α
[(β + s)α − βα]

)
|s=0 − (kβα−1)2,

= −k(α− 1)βα−2

=
1− α

β

Allowing for identifiability i.e. E[U ] = kβα−1 = 1 and var[U ] = 1−α
β

the

Laplace becomes

LU(s) = exp

(
α− 1

ασ2
[(1 + s

σ2

1− α
)α − 1]

)
. (3.33)

Positive Stable Distribution
The stable mixture is defined using the parameters described below: skewness
θ ∈ [−1, 1], location µ, scale k > 0, and index α ∈ (0, 2] which characterizes
the peakedness and tail behavior.

When µ = 0, θ = 1 and 0 < α ≤ 1 a series approximation of the PDF for
the positive stable is obtained (Samorodnitsky & Taqqu (1994)):

f(u) = − 1

πu

∞∑
j=1

Γ(jα + 1)

j!
(−u−αk/α)j sin(αjπ); k > 0, u > 0, 0 < α ≤ 1.

(3.34)
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Proposition 3.10 The positive stable distribution Laplace is obtained as a
special case of the three parameter PVF Laplace as

L(s) = exp

(
−k

α
sα
)
. (3.35)

Proof. Let N ∼ Poisson (ρ > 0) and Uj, j = 1, 2, 3, . . . denote independent
and identically distributed risk variables. Y is CPD represented as:

Y =

{
U1 + U2 + . . .+ UN , N > 0

0, N = 0

The Laplace

LY (s) = E[exp (−sY )] = E[E[exp {−s(U1 + U2 + . . .+ UN)}|N = n]],

= E[E(exp (−sU))]n = F(LU(s)),

= exp {ρ(LU(s)− 1)}.

Since U ∼ Γ(k, β) applying its Laplace transform we have

LY (s) = exp

(
ρ[(1 +

s

β
)−k − 1]

)
.

Using the parametrization substitute ρ = −kβα

α
and k = −α.

LY (s) = exp

(
−kβα

α
[(1 +

s

β
)α − 1]

)
,

= exp

(
−k

α
[(β + s)α − βα]

)
,

when β = 0

LU(s) = exp

(
−k

α
sα
)
. (3.36)

To ensure identifiability let α = k.

LU(s) = exp (−sα). (3.37)
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Compound Negative Binomial Distribution
The CNBD is represented as:

U =

{
X1 + . . .+XN , N > 0

0, N = 0

Where X ∼ Gamma and N ∼ Negative Binomial. If N > 0, U can be
interpreted as collective heterogeneity due to failures before the first αth

success. The Laplace transform is

LU(s) = E[exp (−sU)] = E{E[exp (−s(X1 + . . .+XN))|N = n]},
= E{[E(exp (−sX))]n} = F(LX(s)),

=

(
p

1− qLX(s)

)α

=

(
p

1− q(1 + s
β
)−k

)α

. (3.38)

Where p denotes success probability and q failure probability of the α success
occurrences.
The first raw and second central moments is given by

E[U ] = −L′
U(s)|s=0 =

αqk

βp
,

var[U ] = L′′
U(s)|s=0 − (L′

U(s)|s=0)
2,

=
αq2k2 + αqpk + αqpk2

(βp)2
,

=
αq2k2 + αqk2(1− q) + αqpk

(βp)2
,

=
αqk(p+ k)

(βp)2
.

Allowing for identifiability i.e.

E[U ] =
αqk

βp
= 1.

var[U ] =
p+ k

βp
.

The Laplace becomes
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LU(s) =

(
p

1− q(1 + sσ2p
p+k

)−k

)α

. (3.39)

Non-Central Gamma Distribution.
The NCG distribution is a special case of the CPD with gamma distributed
random variables. The PDF of the variable Y , denoted f(u), where Y =
U1 + . . .+ UN and U ∼ Γ(b, β) with shape parameter b and scale parameter
β. N ∼ Poisson(aβ) with the the non-centrality parameter a leads to the
following proposition

Proposition 3.11 Given that Y = U1 + U2 + . . . + UN with respective

weights exp (−β) (β)
n

n!
such that U ∼ Γ(b, β) and N ∼ Poisson(aβ) leads to

the convolution;

f(u) =
∞∑
n=0

exp (−aβ)(aβ)n

n!
·

[
ub+n−1 exp (−u

β
)

Γ(b+ n)βb+n

]
. (3.40)

Proof.

f(u) =
∞∑
n=0

P(U1 + U2 + . . .+ UN and N = n),

=
∞∑
n=0

P(U1 + U2 + . . .+ UN |N = n) · P(N = n),

=
∞∑
n=0

[
ub−1 exp (−u/β)

Γ(b)βb

]n∗

· exp (−aβ)(aβ)n

n!
,

where
[
ub−1 exp (−u/β)

Γ(b)βb

]n∗

is the nth fold convolution power of
[
ub−1 exp (−u/β)

Γ(b)βb

]
.

f(u) =
∞∑
n=0

[
ub+n−1 exp (−u/β)

Γ(b+ n)βb+n

]
· exp (−aβ)(aβ)n

n!
.

Proposition 3.12 The Laplace transform for Equation (3.40) is

LU(s) =
1

(1 + βs)b
exp

(
− saβ2

1 + βs

)
.
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Proof.

LU(s) = E[exp (−sU)] =

∫ ∞

0

exp (−su)f(u)du,

= exp (−aβ)
∞∑
n=0

(aβ)n

n!Γ(b+ n)βb+n

∫ ∞

0

ub+n−1 exp

(
−u(

1

β
+ s)

)
du,

Let y = u

(
1

β
+ s

)
and dy = du

(
1

β
+ s

)
.

LU(s) = exp (−aβ)
∞∑
n=0

(aβ)n

n!Γ(b+ n)βb+n

∫ ∞

0

yb+n−1 exp (−y)

( 1
β
+ s)b+n

dy,

=
1

(1 + βs)b
exp

(
− saβ2

1 + βs

)
. (3.41)

When b = 0

LU(s) = exp

(
− saβ2

1 + βs

)
. (3.42)

Allowing for identifiability i.e.

E[U ] = −L′
U(s)|s=0 = aβ2 = 1.

var[U ] = L′′
U(s)|s=0 − (L′

U(s)|s=0)
2 = 2aβ3.

Let mean=1 ∴ σ2 = 2β.
The Laplace becomes

LU(s) = exp

(
− s

1 + 0.5σ2s

)
. (3.43)

In this chapter we have shown the construction of the PDFs and identifiable
Laplace transforms that will be used in the study. In particular, the GIG
limiting distributions and the compound distributions will be applied in the
subsequent chapters 4 & 5. The Laplace transform is the main tool that will
be used to obtain both the univariate and bivariate frailty marginal survival
functions.
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Chapter 4

Frailty Model

4.1 Univariate Frailty

For completeness of our presentation, we first begin by describing the frailty
approach in a univariate context. We start with the derivation of CPHM and
then extend it to a univariate frailty approach which is a continuous mix-
ture. The frailty mixture is then presented in terms of the density, intensity
and survivor function. There is some similarity between frailty mixture and
exponential mixture as shown in Section 4.3.

4.2 Cox Proportional-Hazards Model

The exponential(β) PDF is

f(t|β) = β exp{−βt}, t > 0, β > 0.

The survivor function
S(t|β) = exp{−βt},

intensity function
h(t|β) = β, (4.1)

which is a constant.

Suppose

log β = Θ0 +Θ1x1 +Θ2x2 + . . .+Θnxn,
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Then

β = β0 exp{Θ′x},

where Θ′ = (Θ1,Θ2, . . . ,Θn) and x′ = (x1, x2, . . . , xn).

Replace β by h

∴ h = h0 exp{Θ′x},

which implies that
h(t) = h0(t) exp{Θ′x}, (4.2)

which is the CPHM where h0(t) is the base force of mortality function Θ are
the regressors and x the covariates.

4.3 Frailty

Observable demographic risk factors can explain heterogeneity in mortality
among assureds; but modeling the risk profile of a heterogeneous life from
unobservable risk factors, such as survival-related health-seeking attitudes
and/or genetics is complex. The frailty methodology is aimed to account for
unobservable covariates affecting mortality in the CPHM.

Construction of Frailty Mixture
Suppose the CPHM is extended to

h(t|x, z) = h0(t) exp{Θ′x+ c′z},

where z represents the unobserved covariates and c′ vector of the correspond-
ing regressors. Then

exp{Θ′x+ c′z} = U, say;

where Θ′ = (Θ1,Θ2, . . . ,Θn) and c′ = (c1, c2, . . . , cn) and U is a random
variable called frailty.

∴ h(t|u) = h0(t) exp{Θ′x+ c′z} = h0(t)u. (4.3)

The frailty U is presumed to follow some distribution g(u) with positive
support and has a multiplicative effect on the base force of mortality.
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∴ h(t) =

∫ ∞

0

h(t|u)g(u)du.

This is a continuous mixture where h(t) is the mixed rate of mortality, h(t|u)
is the conditional rate of mortality and g(u) is the mixing distribution which
is the frailty distribution.
Thus the conditional survivor is

S(t|u) = exp{−
∫ t

0

h(x|u)dx},

= exp{−
∫ t

0

uh0(x)dx} = exp{−uH0(t)},

where

H0(t) =

∫ t

0

h0(x)dx.

∴ S(t) =

∫ ∞

0

S(t|u)g(u)du,

i.e. S(t) = E[S(t|u)] = E[exp{−uH0(t)}],
= LU [H0(t)]. (4.4)

Which is the Laplace of U at H0(t). Thus the survivor function frailty mix-
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ture is the Laplace of U assessed at the cumulative base force of mortality.

f(t|u) = h(t|u) · S(t|u),
= h0(t)u · exp (−uH0(t)),

∴ f(t) =

∫ ∞

0

f(t|u)g(u)du,

=

∫ ∞

0

h0(t)u · exp (−uH0(t))g(u)du,

= h0(t)

∫ ∞

0

u exp (−uH0(t))g(u)du,

= h0(t)E[u exp (−uH0(t))].

But; LU [H0(t)] = E[exp (−uH0(t))],

∴ L′
U [H0(t)] =

d

dt
LU [H0(t)],

=
d

dt
E[exp (−uH0(t))],

= −h0(t)E[u exp (−uH0(t))].

∴ f(t) = −L′
U [H0(t)]. (4.5)

h(t) =
f(t)

S(t)
=

−L′
U [H0(t)]

LU [H0(t)]
. (4.6)

Similarity with Exponential Mixture
The exponential (β) PDF is

f(t|β) = β exp (−βt), t > 0, β > 0,

where β is varying taking the distribution h(β)

Since f(t) =

∫ ∞

0

f(t|β)h(β)dβ,

=

∫ ∞

0

β exp (−βt)h(β)dβ,

which is an exponential mixture expressed in-terms of a PDF. For survivor
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function we have

S(t) =

∫ ∞

0

S(t|β)h(β)dβ,

=

∫ ∞

0

exp (−βt)h(β)dβ,

= E[exp (−βt)] = Lβ(t). (4.7)

Thus, the survivor function of an exponential mixture is the mixing distri-
butions Laplace.

4.4 Positive Stable Distribution

Hougaard (2000) derived the positive-stable mixture from the PVF distri-
bution. A distribution is strictly stable if the aggregation of independent
random variables from the distribution normalized follows the same distri-
bution. The choice was based on the fact that the stable mixture permits the
proportional-hazards model to apply conditionally as well as unconditionally
since the frailty mixture preserves the proportional-hazards assumption in
the unconditional intensity rate after integrating out the frailty as shown
below:
The conditional intensity rate is

hϵ(t|u) = uh0(t)ϵ, (4.8)

where u represents the unobserved covariates only and ϵ = exp (Θ′x) the
observed covariates.

∴ Sϵ(t|u) = exp{
∫ t

0

−uh0(x)ϵdx} = exp{−uH0(t)ϵ},

Sϵ(t) = E[Sϵ(t|u)] = E[exp{−uH0(t)ϵ}].

Since L(s) = E[exp (−sU)] = exp (−sα) as derived in Equation (3.37) for
the positive stable random variable U then

Sϵ(t) = exp{−(H0(t)ϵ)
α}.

hϵ(t) = − d

dt
logSϵ(t) = αh0(t)(H0(t))

α−1ϵα.
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The unconditional intensity rate is

h(t|u) = uh0(t). (4.9)

∴ S(t|u) = exp{−uH0(t)},
S(t) = E[S(t|u)],

= E[exp{−uH0(t)}] = exp{−(H0(t))
α}.

h(t) = − d

dt
logS(t) = αh0(t)(H0(t))

α−1.

Therefore

hϵ(t)

h(t)
=

αh0(t)(H0(t))
α−1ϵα

αh0(t)(H0(t))α−1
= ϵα. (4.10)

Thus the positive stable permits the proportional-hazards approach to apply
unconditionally as well as conditionally.

Construction of Positive Stable Univariate Frailty Model
The positive stable PDF as a series approximation is represented as:

f(u) = − 1

πu

∞∑
j=1

Γ(jα + 1)

j!
(−u−αk/α)j sin(αjπ); k > 0, u > 0, 0 < α ≤ 1.

The Laplace derived in Equation (3.35) is

LU(s) = exp

(
−k

α
sα
)
,

Since S(t) = LU(H0(t)) = exp

(
−k

α
H0(t)

α

)
.

f(t) = −L′
U(H0(t)) = − d

dt
· exp

(
−k

α
(H0(t))

α

)
,

= kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
.

h(t) =
kH0(t)

α−1h0(t) · exp {− k
α
(H0(t))

α}
exp {− k

α
H0(t)α}

= kH0(t)
α−1h0(t).

Considering various choices of h0(t) the base force of mortality function, we
have the following positive stable frailty models.
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Gompertz-Positive Stable Frailty Model
The Gompertz distribution is mostly adopted to describe adult lifespan dis-
tribution from a vast literature on human mortality (Frees et al., (1996)).
The intensity rate is represented as:

h0(t) = A exp (Bt), t > 0, A > 0, B > 0, (4.11)

where A and B are constants.

∴ H0(t) =

∫ t

0

A exp (Bx)dx =
A

B
exp (Bx)|x=t

x=0,

=
A

B
(exp (Bt)− 1). (4.12)

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α

[
A

B
(exp (Bt)− 1)

]α)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k

[
A

B
(exp (Bt)− 1)

]α−1

A exp (Bt) · exp
(
−k

α

[
A

B
(exp (Bt)− 1)

]α)
.

h(t) =
k(A

B
(exp (Bt)− 1))α−1A exp (Bt) · exp {− k

α
(A
B
(exp (Bt)− 1))α}

exp {− k
α
(A
B
(exp (Bt)− 1))α}

,

= k

[
A

B
(exp (Bt)− 1)

]α−1

A exp (Bt).

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
Gompertz-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp

(
−
[
A

B
(exp (Bt)− 1)

]α)
.

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= αA exp (Bt)

[
A

B
(exp (Bt)− 1)

]α−1

· exp
(
−
[
A

B
(exp (Bt)− 1)

]α)
.

h(t) = αh0(t)H0(t)
α−1 = αA exp (Bt)

[
A

B
(exp (Bt)− 1)

]α−1

.
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Weibull-Positive Stable Frailty Model
The Weibull distribution function is represented as:

f0(t) = βρtρ−1 exp (−βtρ); β, ρ > 0; t ≥ 0.

We can express survivor, mortality and cumulative intensity rates as:

S0(t) = P(T > t),

=

∫ ∞

t

βρxρ−1 exp (−βxρ)dx. = exp (−βtρ).

h0(t) =
βρtρ−1 exp (−βtρ)

exp (−βtρ)
= βρtρ−1. (4.13)

H0(t) =

∫ t

0

βρxρ−1dx = βtρ. (4.14)

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α
(βtρ)α

)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k(βtρ)α−1βρtρ−1 · exp
(
−k

α
(βtρ)α

)
.

h(t) =
k(βtρ)α−1βρtρ−1 · exp {− k

α
(βtρ)α}

exp {− k
α
(βtρ)α}

= k(βtρ)α−1βρtρ−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
Weibull-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp (−(βtρ)α).

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= αβρtρ−1(βtρ)α−1 · exp (−(βtρ)α).

h(t) = αh0(t)H0(t)
α−1 = αβρtρ−1 · (βtρ)α−1.
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Generalized Weibull-Positive Stable Frailty Model
The generalized Weibull (GW) density function is represented as:

f0(t) = b(1− exp (−λtρ))b−1 · λρtρ−1 · exp (−λtρ); t > 0, ρ, b, λ > 0.

We can express the survivor, mortality and cumulative intensity rates as:

S0(t) =

∫ ∞

t

b(1− exp (−λxρ))b−1 · λρxρ−1 · exp (−λxρ)dx.

Let y = exp (−λxρ); and
dy

dx
= −λρxρ−1 exp (−λxρ)

∴ S0(t) =

∫ 0

exp (−λtρ)

−b(1− y)b−1dy = (1− y)b|y=0
y=exp (−λtρ)

= 1− [1− exp (−λtρ)]b,

h0(t) =
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
, (4.15)

H0(t) = − logS0(t) = − log(1− [1− exp (−λtρ)]b). (4.16)

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α
(− log(1− [1− exp (−λtρ)]b))α

)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k(− log(1− [1− exp (−λtρ)]b))α−1 b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

· exp
(
−k

α
(− log(1− [1− exp (−λtρ)]b))α

)
h(t) =

k(− log(1− [1− exp (−λtρ)]b))α−1 b(1−exp (−λtρ))b−1λρtρ−1 exp (−λtρ)
1−[1−exp (−λtρ)]b

exp {− k
α
− log(1− [1− exp (−λtρ)]b)α}

· exp
(
−k

α
(− log(1− [1− exp (−λtρ)]b))α

)
= k(− log(1− [1− exp (−λtρ)]b))α−1 b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
Generalized Weibull-positive stable mixture becomes:
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S(t) = exp (−H0(t)
α) = exp (−(− log(1− [1− exp (−λtρ)]b))α).

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= α

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
· (− log(1− [1− exp (−λtρ)]b))α−1

· exp (−(− log(1− [1− exp (−λtρ)]b))α)

h(t) = αh0(t)H0(t)
α−1,

= α

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
· (− log(1− [1− exp (−λtρ)]b))α−1.

Exponential-Positive Stable Frailty Model
The Exponential function is derived from the Weibull distribution when ρ =
1. Putting ρ = 1 in Equations (4.13,4.14) leads to

h0(t) = β.

H0(t) = βt.

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α
(βt)α

)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k(βt)α−1β · exp {−k

α
(βt)α}.

h(t) =
k(βt)α−1β · exp {− k

α
(βt)α}

exp {− k
α
(βt)α}

= k(βt)α−1β.

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
exponential-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp (−(βt)α).

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= αβ(βt)α−1 · exp (−(βt)α).

h(t) = αh0(t)H0(t)
α−1 = αβ · (βt)α−1.
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Generalized Exponential-Positive Stable Frailty Model
The generalized exponential (GE) function is derived from the GW distribu-
tion when ρ = 1. Putting ρ = 1 in Equations (4.15,4.16) leads to

h0(t) =
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b
, (4.17)

H0(t) = − log(1− [1− exp (−λt)]b) (4.18)

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α
(− log(1− [1− exp (−λt)]b))α

)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k(− log(1− [1− exp (−λt)]b))α−1 ·
(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
· exp

(
−k

α
(− log(1− [1− exp (−λt)]b))α

)
h(t) =

k(− log(1− [1− exp (−λt)]b))α−1( bλ(1−exp (−λt))b−1 exp (−λt)
1−[1−exp (−λt)]b

)

exp {− k
α
(− log(1− [1− exp (−λt)]b))α}

· exp
(
−k

α
(− log(1− [1− exp (−λt)]b))α

)
= k(− log(1− [1− exp (−λt)]b))α−1 ·

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
generalized exponential-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp (−(− log(1− [1− exp (−λt)]b))α).

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= α

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
·
(
exp {−k

α
(− log(1− [1− exp (−λt)]b))α}

)α−1

· exp
(
−
(
exp {−k

α
(− log(1− [1− exp (−λt)]b))α}

)α)
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h(t) = αh0(t)H0(t)
α−1,

= α

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
·
(
exp {−k

α
(− log(1− [1− exp (−λt)]b))α}

)α−1

.

Loglogistic-Positive Stable Frailty Model
The loglogistic density is expressed as:

f0(t) =
(Θ/λ)(t/λ)Θ−1

(1 + (t/λ)Θ)2
; t,Θ, λ > 0. (4.19)

We can express survivor, mortality and cumulative intensity rates as:

S0(t) =

∫ ∞

t

(Θ/λ)(u/λ)Θ−1

(1 + (u/λ)Θ)2
du.

Let y =
(u
λ

)Θ
and

dy

du
=

Θ

λ

(u
λ

)Θ−1

.

S0(t) =

∫ ∞

( t
λ
)Θ

dy

(1 + y)2
=

1

1 + ( t
λ
)Θ

.

h0(t) =
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
. (4.20)

The cumulative intensity rate is represented as:

H0(t) =

∫ t

0

(Θ/λ)(x/λ)Θ−1

(1 + (x/λ)Θ)
dx = log(1 + (

t

λ
)Θ). (4.21)

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α

(
log

[
1 +

(
t

λ

)Θ
])α)

.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k

(
log

[
1 +

(
t

λ

)Θ
])α−1

(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
· exp

(
−k

α

(
log

[
1 +

(
t

λ

)Θ
])α)

.

h(t) =
k(log(1 + ( t

λ
)Θ))α−1 (Θ/λ)(t/λ)Θ−1

1+(t/λ)Θ
· exp {− k

α
(log(1 + ( t

λ
)Θ))α}

exp {− k
α
(log(1 + ( t

λ
)Θ))α}

,

= k

(
log

[
1 +

(
t

λ

)Θ
])α−1

(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
.
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For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
loglogistic-positive stable frailty distribution becomes:

S(t) = exp (−H0(t)
α) = exp

(
−

(
log

[
1 +

(
t

λ

)Θ
])α)

,

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= α
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
log

[
1 +

(
t

λ

)Θ
])α−1

· exp

(
−

(
log

[
1 +

(
t

λ

)Θ
])α)

.

h(t) = αh0(t)H0(t)
α−1,

= α
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
log

[
1 +

(
t

λ

)Θ
])α−1

.

Lognormal-Positive Stable Frailty Model
The lognormal function is derived as;
let y = log x this implies x = exp (y), where y ∼ N(µ, σ2),

∴
dy

dx
=

1

x
,

f(x) = g(y)
1

x
=

1√
2πσ2

exp

(
−(y − µ)2

2σ2

)
1

x
,

=
1

xσ
√
2π

exp

(
−(log x− µ)2

2σ2

)
, 0 < x < ∞,−∞ < µ < ∞, σ > 0.

(4.22)

Which is a lognormal distribution.

∴ f(t) =
1

σt
ϕ

(
log t− µ

σ

)
,

where ϕ(.) is a standard normal distribution. The Cumulative Density Func-
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tion (CDF) is given by

F (t) =

∫ t

0

1

σx
ϕ

(
log x− µ

σ

)
dx.

Let, y =
log x− µ

σ
and dy =

1

σx
dx.

∴ F (t) =

∫ log t−µ
σ

−∞
ϕ(y)dy = Φ

(
log t− µ

σ

)
,

where Φ(.) is the CDF of a standard normal distribution.

∴ h(t) =
f(t)

1− F (t)
=

1
σt
ϕ( log t−µ

σ
)

1− Φ( log t−µ
σ

)
,

=
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
,

Since the lognormal represents the base force of mortality function we have

h0(t) =
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
. (4.23)

H0(t) = − log

[
1− Φ

(
log t− µ

σ

)]
. (4.24)

This implies that survivor and density functions become

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α

(
− log

[
1− Φ

(
log t− µ

σ

)])α)
.

f(t) = kH0(t)
α−1h0(t) · exp {−

k

α
(H0(t))

α},

= k

(
− log

[
1− Φ

(
log t− µ

σ

)])α−1 ϕ( log t−µ
σ

)

σt[1− Φ( log t−µ
σ

)]

· exp
(
−k

α

(
− log

[
1− Φ

(
log t− µ

σ

)])α)
.

h(t) =
k(− log[1− Φ( log t−µ

σ
)])α−1 ϕ( log t−µ

σ
)

σt[1−Φ( log t−µ
σ

)]
· exp {− k

α
(− log[1− Φ( log t−µ

σ
)])α}

exp {− k
α
(− log[1− Φ( log t−µ

σ
)])α}

,

= k

(
− log

[
1− Φ

(
log t− µ

σ

)])α−1

·
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
.
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For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
lognormal-positive stable frailty distribution becomes:

S(t) = exp (−H0(t)
α) = exp

(
−
(
− log

[
1− Φ

(
log t− µ

σ

)])α)
.

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

f(t) = α
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
·
(
− log

[
1− Φ

(
log t− µ

σ

)])α−1

· exp
(
−
(
− log

[
1− Φ

(
log t− µ

σ

)])α)
.

h(t) = αh0(t)H0(t)
α−1 = α

ϕ( log t−µ
σ

)

σt[1− Φ( log t−µ
σ

)]
·
(
− log

[
1− Φ

(
log t− µ

σ

)])α−1

.

Exponential-Power-Positive Stable Frailty Model
The exponential power mixture is a generalization of the normal distribution
expressed as:

f0(t) = exp (rtλ)rλtλ−1 · (exp{1− exp (rtλ)}); t, λ, r > 0. (4.25)

S0(t) =

∫ ∞

t

exp (rxλ)rλxλ−1 · (exp{1− exp (rxλ)})dx.

Let; y = exp (rxλ) and
dy

dx
= λrxλ−1 exp (rxλ).

∴ S0(t) =

∫ ∞

exp (rtλ)

exp (1− y)dy = − exp (1− y)|y=∞
y=exp (rtλ)

,

= exp{1− exp (rtλ)}.

h0(t) =
exp (rtλ)rλtλ−1 · (exp{1− exp (rtλ)})

exp{1− exp (rtλ)}
= exp (rtλ)rλtλ−1,

(4.26)

The intensity rate can achieve a bathtub-shape.

H0(t) = − log(S(t)) = exp (rtλ)− 1. (4.27)
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This implies that survivor and density functions become

S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α
(exp (rtλ)− 1)α

)
.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k(exp (rtλ)− 1)α−1 exp (rtλ)rλtλ−1 · exp
(
−k

α
(exp (rtλ)− 1)α

)
.

h(t) =
k(exp (rtλ)− 1)α−1 exp (rtλ)rλtλ−1 · exp {− k

α
(exp (rtλ)− 1)α}

exp {− k
α
(exp (rtλ)− 1)α}

,

= k(exp (rtλ)− 1)α−1 exp (rtλ)rλtλ−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
exponential-power-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp (−(exp (rtλ)− 1)α).

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= α exp (rtλ)rλtλ−1 · (exp (rtλ)− 1)α−1 · exp (−(exp (rtλ)− 1)α).

h(t) = αh0(t)H0(t)
α−1 = α exp (rtλ)rλtλ−1 · (exp (rtλ)− 1)α−1.

Pareto-Positive Stable Frailty Model
The Pareto I density is expressed as:

f0(t) =
ϑrϑ

tϑ+1
; t > r, r, ϑ > 0. (4.28)

S0(t) =

∫ ∞

t

ϑrϑ

xϑ+1
dx = −rϑ

[
1

xϑ

]
|x=∞
x=t =

rϑ

tϑ
,

h0(t) =
ϑrϑ

tϑ+1

rϑ

tϑ

=
ϑ

t
. (4.29)

H0(t) =

∫ t

r

ϑ

x
dx = ϑ log x|x=t

x=r

= ϑ log

(
t

r

)
= log

(
t

r

)ϑ

. (4.30)
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∴ S(t) = exp

(
−k

α
H0(t)

α

)
= exp

(
−k

α

[
log

(
t

r

)ϑ
]α)

.

f(t) = kH0(t)
α−1h0(t) · exp

(
−k

α
(H0(t))

α

)
,

= k

[
log

(
t

r

)ϑ
]α−1

ϑ

t
· exp

(
−k

α

[
log

(
t

r

)ϑ
]α)

.

h(t) =
k(log( t

r
)ϑ)α−1 ϑ

t
· exp {− k

α
(log( t

r
)ϑ)α}

exp {− k
α
(log( t

r
)ϑ)α}

= k

[
log

(
t

r

)ϑ
]α−1

ϑ

t
. (4.31)

For identifiability reasons we apply Laplace transform derived in Equation
(3.37). The univariate marginal survivor, density and intensity rate for the
Pareto-positive stable mixture becomes:

S(t) = exp (−H0(t)
α) = exp

(
−

[
log

(
t

r

)ϑ
]α)

.

f(t) = αh0(t)H0(t)
α−1 · exp (−H0(t)

α),

= α
ϑ

t

[
log

(
t

r

)ϑ
]α−1

· exp

(
−

[
log

(
t

r

)ϑ
]α)

.

h(t) = α
ϑ

t

[
log

(
t

r

)ϑ
]α−1

= α
ϑ

t

[
log

(
t

r

)ϑ
]α−1

. (4.32)

4.5 Compound Poisson Distribution

Aalen (1992) proposes the compound Poisson mixture and applies it to a
sub-group of zero-susceptibility. The choice is based on the fact that the
CPD has a positive probability of zero frailty and therefore useful in cases
where individuals may be immune to the event of interest.

Construction of Compound Poisson Univariate Frailty Model
Let N ∼ Poisson(ρ) and Xi, i = 1, 2, . . . be identically distributed random
variables independent of N . U ∼ CPD expressed as:
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U =

{
X1 + . . .+XN , N > 0

0, N = 0

The Laplace transform derived in Equation (3.32) is

LU(s) = exp

(
−k

α
[(β + s)α − βα]

)
.

Since S(t) = LU(H0(t)) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
.

f(t) = −L′
U(H0(t)) = − d

dt
exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
.

h(t) =
kh0(t)(β +H0(t))

α−1 exp {−k
α
[(β +H0(t))

α − βα]}
exp {−k

α
[(β +H0(t))α − βα]}

,

= kh0(t)(β +H0(t))
α−1. (4.33)

Considering various choices of h0(t) the base force of mortality function, we
have the following CPD frailty models.

Gompertz-CPD Frailty Model
The Gompertz function base force of mortality and cumulative intensity rate
is given in Equations (4.11,4.12) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α

[(
β +

A

B
(exp (Bt)− 1)

)α

− βα

])
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= kA exp (Bt)

(
β +

A

B
(exp (Bt)− 1)

)α−1

· exp
(
−k

α

[(
β +

A

B
(exp (Bt)− 1)

)α

− βα

])
.

h(t) =
kA exp (Bt)(β + A

B
(exp (Bt)− 1))α−1 exp {−k

α
[(β + A

B
(exp (Bt)− 1))α − βα]}

exp {−k
α
[(β + A

B
(exp (Bt)− 1))α − βα]}

,

= kA exp (Bt)

(
β +

A

B
(exp (Bt)− 1)

)α−1

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
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Gompertz-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1 +

A

B
(exp (Bt)− 1)

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= A exp (Bt) ·
(
1 +

A

B
(exp (Bt)− 1)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +

A

B
(exp (Bt)− 1)

σ2

1− α

)α

− 1

])
,

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

= A exp (Bt)

(
1 +

σ2

1− α
· A
B
(exp (Bt)− 1)

)α−1

. (4.34)

Weibull-CPD Frailty Model
The Weibull function base force of mortality and cumulative intensity rate is
given in Equations (4.13,4.14) respectively. Using the parametrization β = Θ
leads to

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α
[(β +Θtρ)α − βα]

)
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= kΘρtρ−1(β +Θtρ)α−1 exp

(
−k

α
[(β +Θtρ)α − βα]

)
.

h(t) =
kΘρtρ−1(β +Θtρ)α−1 exp {−k

α
[(β +Θtρ)α − βα]}

exp {−k
α
[(β +Θtρ)α − βα]}

= kΘρtρ−1(β +Θtρ)α−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
Weibull-CPD mixture becomes:
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S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1 + Θtρ

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= Θρtρ−1 ·
(
1 + Θtρ

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 + Θtρ

σ2

1− α

)α

− 1

])
.

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

= Θρtρ−1

(
1 +

σ2

1− α
Θtρ
)α−1

. (4.35)

Generalized Weibull-CPD Frailty Model
The GW function base force of mortality and cumulative intensity rate is
given in Equations (4.15,4.16) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= exp

(
−k

α
[(β − log(1− [1− exp (−λtρ)]b))α − βα]

)
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
·
(
β − log(1− [1− exp (−λtρ)]b)

)α−1

· exp
(
−k

α
[(β − log(1− [1− exp (−λtρ)]b))α − βα]

)
.

h(t) =
k( b(1−exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1−[1−exp (−λtρ)]b
)(β − log(1− [1− exp (−λtρ)]b))α−1

exp {−k
α
[(β − log(1− [1− exp (−λtρ)]b))α − βα]}

· exp
(
−k

α
[(β − log(1− [1− exp (−λtρ)]b))α − βα]

)
.

= k

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
·
(
β − log(1− [1− exp (−λtρ)]b)

)α−1
.
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For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
generalized Weibull-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2
((1− log(1− [1− exp (−λtρ)]b)

σ2

1− α
)α − 1)

)
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

=

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
·
(
1− log(1− [1− exp (−λtρ)]b)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1− log(1− [1− exp (−λtρ)]b)

σ2

1− α

)α

− 1

])
.

h(t) = h0(t)(1 +
σ2

1− α
H0(t))

α−1,

=

(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)(
1− σ2

1− α
log(1− [1− exp (−λtρ)]b)

)α−1

.

(4.36)

Exponential-CPD Frailty Model
The Exponential function is derived from the Weibull distribution when ρ =
1. Putting ρ = 1 in Equations (4.13,4.14) leads to

h0(t) = β.

H0(t) = βt.

Using the parametrization β = Θ

h0(t) = Θ.

H0(t) = Θt.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α
[(β +Θt)α − βα]

)
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= kΘ(β +Θt)α−1 exp {−k

α
[(β +Θt)α − βα]}.
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h(t) =
kΘ(β +Θt)α−1 exp

(−k
α
[(β +Θt)α − βα]

)
exp {−k

α
[(β +Θt)α − βα]}

= kΘ(β +Θt)α−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
exponential-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1 + Θt

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= Θ ·
(
1 + Θt

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 + Θt

σ2

1− α

)α

− 1

])
.

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

= Θ

(
1 +

σ2

1− α
Θt

)α−1

. (4.37)

Generalized Exponential-CPD Frailty Model
The GE base force of mortality and cumulative intensity rate is given in
Equations (4.17,4.18) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= exp

(
−k

α
[(β − log(1− [1− exp (−λt)]b))α − βα]

)
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
· (β − log(1− [1− exp (−λt)]b))α−1

· exp
(
−k

α
[(β − log(1− [1− exp (−λt)]b))α − βα]

)

54



h(t) =
k( bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b
)(β − log(1− [1− exp (−λt)]b))α−1

exp {−k
α
[(β − log(1− [1− exp (−λt)]b))α − βα]}

,

· exp
(
−k

α
[(β − log(1− [1− exp (−λt)]b))α − βα]

)
.

= k

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
· (β − log(1− [1− exp (−λt)]b))α−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
generalized exponential-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1− log(1− [1− exp (−λt)]b)

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

=

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
·
(
1− log(1− [1− exp (−λt)]b)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1− log(1− [1− exp (−λt)]b)

σ2

1− α

)α

− 1

])
.

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

,

=

(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
·
(
1− log(1− [1− exp (−λt)]b)

σ2

1− α

)α−1

.

(4.38)

Loglogistic-CPD Frailty Model
The loglogistic function base force of mortality and cumulative intensity rate
is given in Equations (4.20,4.21) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α

[(
β + log(1 + (

t

λ
)Θ)

)α

− βα

])
.
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f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
β + log(1 + (

t

λ
)Θ)

)α−1

exp

(
−k

α

[(
β + log(1 + (

t

λ
)Θ)

)α

− βα

])
.

h(t) =
k (Θ/λ)(t/λ)Θ−1

1+(t/λ)Θ
(β + log(1 + ( t

λ
)Θ))α−1 exp {−k

α
[(β + log(1 + ( t

λ
)Θ))α − βα]}

exp {−k
α
[(β + log(1 + ( t

λ
)Θ))α − βα]}

,

= k
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
β + log(1 + (

t

λ
)Θ)

)α−1

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
loglogistic-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1 + log(1 + (

t

λ
)Θ)

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

=
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
·
(
1 + log(1 + (

t

λ
)Θ)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 + log(1 + (

t

λ
)Θ)

σ2

1− α

)α

− 1

])
.

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

=
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
1 +

σ2

1− α
log(1 + (

t

λ
)Θ)

)α−1

. (4.39)

Lognormal-CPD Frailty Model
The lognormal function base force of mortality and cumulative intensity rate
is given in Equations (4.23,4.24) respectively.
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S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= exp

(
−k

α

[(
β − log[1− Φ(

log t− µ

σ
)]

)α

− βα

])
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
·
(
β − log

[
1− Φ(

log t− µ

σ
)

])α−1

· exp
(
−k

α

[(
β − log[1− Φ(

log t− µ

σ
)]

)α

− βα

])
.

h(t) =
k

ϕ( log t−µ
σ

)

σt[1−Φ( log t−µ
σ

)]
(β − log[1− Φ( log t−µ

σ
)])α−1 exp {−k

α
[(β − log[1− Φ( log t−µ

σ
)])α − βα]}

exp {−k
α
[(β − log[1− Φ( log t−µ

σ
)])α − βα]}

,

= k
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
·
(
β − log

[
1− Φ(

log t− µ

σ
)

])α−1

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
lognormal-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1− log[1− Φ(

log t− µ

σ
)]

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

=
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
·
(
1− log

[
1− Φ(

log t− µ

σ
)

]
σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1− log[1− Φ(

log t− µ

σ
)]

σ2

1− α

)α

− 1

])
.
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h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

,

=
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]

(
1− σ2

1− α
log

[
1− Φ(

log t− µ

σ
)

])α−1

. (4.40)

Exponential-Power-CPD Frailty Model
The Exponential-Power function base force of mortality and cumulative in-
tensity rate is given in Equations (4.26,4.27) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α
[(β + exp (rtλ)− 1)α − βα]

)
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k exp (rtλ)rλtλ−1(β + exp (rtλ)− 1)α−1 exp

(
−k

α
[(β + exp (rtλ)− 1)α − βα]

)
.

h(t) =
k exp (rtλ)rλtλ−1(β + exp (rtλ)− 1)α−1 exp {−k

α
[(β + exp (rtλ)− 1)α − βα]}

exp {−k
α
[(β + exp (rtλ)− 1)α − βα]}

,

= k exp (rtλ)rλtλ−1(β + exp (rtλ)− 1)α−1.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
exponential-power-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2

[(
1 + (exp (rtλ)− 1)

σ2

1− α

)α

− 1

])
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp (rtλ)rλtλ−1 ·
(
1 + (exp (rtλ)− 1)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 + (exp (rtλ)− 1)

σ2

1− α

)α

− 1

])
.
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h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

= exp (rtλ)rλtλ−1

(
1 +

σ2

1− α
exp (rtλ)− 1

)α−1

. (4.41)

Pareto-CPD Frailty Model
The Pareto function base force of mortality and cumulative intensity rate is
given in Equations (4.29,4.30) respectively.

S(t) = exp

(
−k

α
[(β +H0(t))

α − βα]

)
= exp

(
−k

α

[(
β + log

[
t

r

]ϑ)α

− βα

])
.

f(t) = kh0(t)(β +H0(t))
α−1 exp

(
−k

α
[(β +H0(t))

α − βα]

)
,

= k
ϑ

t

(
β + log

[
t

r

]ϑ)α−1

exp

(
−k

α

[(
β + log

[
t

r

]ϑ)α

− βα

])
.

h(t) =
k ϑ

t
(β + log( t

r
)ϑ)α−1 exp {−k

α
[(β + log( t

r
)ϑ)α − βα]}

exp {−k
α
[(β + log( t

r
)ϑ)α − βα]}

= k
ϑ

t

(
β + log

[
t

r

]ϑ)α−1

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.33). The univariate marginal survivor, density and intensity rate for the
Pareto-CPD mixture becomes:

S(t) = exp

(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

= exp

(
α− 1

ασ2
[

(
1 + log

[
t

r

]ϑ
σ2

1− α

)α

− 1

]
.

f(t) = h0(t) ·
(
1 +H0(t)

σ2

1− α

)α−1

· exp
(
α− 1

ασ2

[(
1 +H0(t)

σ2

1− α

)α

− 1

])
,

=
ϑ

t
·

(
1 + log

[
t

r

]ϑ
σ2

1− α

)α−1

· exp

(
α− 1

ασ2

[(
1 + log

[
t

r

]ϑ
σ2

1− α

)α

− 1

])
.

h(t) = h0(t)

(
1 +

σ2

1− α
H0(t)

)α−1

=
ϑ

t

(
1 +

σ2

1− α
log

[
t

r

]ϑ)α−1

. (4.42)
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4.6 Non-Central Gamma

The NCG is considered a special case of the CPD with gamma distributed
weights.

Construction of Non-central Gamma Univariate Frailty Model
The NCG density with a being the non-centrality parameter and β the scale
parameter is

f(u) =
∞∑
j=0

exp (−aβ)(aβ)j

j!
·

[
ub+j−1 exp (−u

β
)

Γ(b+ j)βb+j

]
.

The Laplace transform derived in Equation (3.42) is

LU(s) = exp

(
− saβ2

1 + βs

)
,

Since S(t) = LU(H0(t)) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
.

f(t) = −L′
U(H0(t)) = − d

dt
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
.

h(t) =

h0(t)aβ2

(1+βH0(t))2
exp {− H0(t)aβ2

1+βH0(t)
}

exp {− H0(t)aβ2

1+βH0(t)
}

=
h0(t)aβ

2

(1 + βH0(t))2
. (4.43)

Considering various choices of the base force of mortality function, we have
the following NCG frailty models.

Gompertz-NCG Frailty Model
The Gompertz function base force of mortality and cumulative intensity rate
is given in Equations (4.11,4.12) respectively.

60



S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
−

A
B
(exp (Bt)− 1)aβ2

1 + β A
B
(exp (Bt)− 1)

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
(A exp (Bt))aβ2

(1 + β A
B
(exp (Bt)− 1))2

exp

(
−

A
B
(exp (Bt)− 1)aβ2

1 + β A
B
(exp (Bt)− 1)

)
.

h(t) =

(A exp (Bt))aβ2

(1+β A
B
(exp (Bt)−1))2

exp {−
A
B
(exp (Bt)−1)aβ2

1+β A
B
(exp (Bt)−1)

}

exp {−
A
B
(exp (Bt)−1)aβ2

1+β A
B
(exp (Bt)−1)

}
=

(A exp (Bt))aβ2

(1 + β A
B
(exp (Bt)− 1))2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
Gompertz-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
−

A
B
(exp (Bt)− 1)

1 + 1
2
σ2 A

B
(exp (Bt)− 1)

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2A

B
(exp (Bt)− 1)

)−2

(A exp (Bt)) · exp

(
−

A
B
(exp (Bt)− 1)

1 + 1
2
σ2 A

B
(exp (Bt)− 1)

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

· h0(t)

=

(
1 +

1

2
σ2A

B
(exp (Bt)− 1)

)−2

· A exp (Bt). (4.44)

Weibull-NCG Frailty Model
The Weibull function base force of mortality and cumulative intensity rate
is given in Equations (4.13,4.14) respectively. Using the parametrization
β = Θ;
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S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
− Θtρaβ2

1 + βΘtρ

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
(Θρtρ−1)aβ2

(1 + βΘtρ)2
exp

(
− Θtρaβ2

1 + β(Θtρ)

)
.

h(t) =

(Θρtρ−1)aβ2

(1+βΘtρ)2
exp {− Θtρaβ2

1+β(Θtρ)
}

exp {− Θtρaβ2

1+βΘtρ
}

=
(Θρtρ−1)aβ2

(1 + βΘtρ)2
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
Weibull-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
− Θtρ

1 + 1
2
σ2(Θtρ)

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2(Θtρ)

)−2

(Θρtρ−1) · exp
(
− Θtρ

1 + 1
2
σ2(Θtρ)

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) =

(
1 +

1

2
σ2(Θtρ)

)−2

(Θρtρ−1). (4.45)

Generalized Weibull-NCG Frailty Model
The GW function base force of mortality and cumulative intensity rate is
given in Equations (4.15,4.16) respectively.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
log(1− [1− exp (−λtρ)]b)aβ2

1− log(1− [1− exp (−λtρ)]b)β

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
( b(1−exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1−[1−exp (−λtρ)]b
)aβ2

(1− log(1− [1− exp (−λtρ)]b)β)2
exp

(
log(1− [1− exp (−λtρ)]b)aβ2

1− log(1− [1− exp (−λtρ)]b)β

)
.

62



h(t) =

(
b(1−exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1−[1−exp (−λtρ)]b
)aβ2

(1−log(1−[1−exp (−λtρ)]b)β)2
exp { log(1−[1−exp (−λtρ)]b)aβ2

1−log(1−[1−exp (−λtρ)]b)β
}

exp { log(1−[1−exp (−λtρ)]b)aβ2

1−log(1−[1−exp (−λtρ)]b)β
}

,

=
( b(1−exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1−[1−exp (−λtρ)]b
)aβ2

(1− log(1− [1− exp (−λtρ)]b)β)2
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
generalized Weibull-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
log(1− [1− exp (−λtρ)]b)

1− log(1− [1− exp (−λtρ)]b)1
2
σ2

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1− log

(
1− [1− exp (−λtρ)]b

) 1

2
σ2

)−2(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
· exp

(
log(1− [1− exp (−λtρ)]b)

1− log(1− [1− exp (−λtρ)]b)1
2
σ2

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t),

=

(
1− log(1− [1− exp (−λtρ)]b)

1

2
σ2

)−2(
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b

)
.

(4.46)

Exponential-NCG Frailty Model
The Exponential function is derived from the Weibull distribution when ρ =
1. Putting ρ = 1 in Equations (4.13,4.14) leads to

h0(t) = β.

H0(t) = βt.
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Using parametrization β = Θ

h0(t) = Θ.

H0(t) = Θt.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
− Θtaβ2

1 + βΘt

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
Θaβ2

(1 + βΘt)2
exp

(
− Θtaβ2

1 + βΘt

)
.

h(t) =

Θaβ2

(1+βΘt)2
exp {− Θtaβ2

1+βΘt
}

exp {− Θtaβ2

1+βΘt
}

=
Θaβ2

(1 + βΘt)2
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
exponential-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
− Θt

1 + 1
2
σ2Θt

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2Θt

)−2

Θ · exp
(
− Θt

1 + 1
2
σ2Θt

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

· h0(t) =

(
1 +

1

2
σ2Θt

)−2

Θ. (4.47)

Generalized Exponential-NCG Frailty Model
The GE base force of mortality and cumulative intensity rate is given in
Equations (4.17,4.18) respectively.
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S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
log(1− [1− exp (−λt)]b)aβ2

1− log(1− [1− exp (−λt)]b)β

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
( bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b
)aβ2

(1− log(1− [1− exp (−λt)]b)β)2
exp

(
log(1− [1− exp (−λt)]b)aβ2

1− log(1− [1− exp (−λt)]b)β

)
.

h(t) =

(
bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b
)aβ2

(1−log(1−[1−exp (−λt)]b)β)2
exp { log(1−[1−exp (−λt)]b)aβ2

1−log(1−[1−exp (−λt)]b)β
}

exp { log(1−[1−exp (−λt)]b)aβ2

1−log(1−[1−exp (−λt)]b)β
}

,

=
( bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b
)aβ2

(1− log(1− [1− exp (−λt)]b)β)2

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
generalized exponential-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
log(1− [1− exp (−λt)]b)

1− log(1− [1− exp (−λt)]b)1
2
σ2

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1− log

(
1− [1− exp (−λt)]b

) 1
2
σ2

)−2(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
· exp

(
log(1− [1− exp (−λt)]b)

1− log(1− [1− exp (−λt)]b)1
2
σ2

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t),

=

(
1− log(1− [1− exp (−λt)]b)

1

2
σ2

)−2(
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b

)
.

(4.48)
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Loglogistic-NCG Frailty Model
The loglogistic function base force of mortality and cumulative intensity rate
is given in Equations (4.20,4.21) respectively.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
−

log(1 + ( t
λ
)Θ)aβ2

1 + β log(1 + ( t
λ
)Θ)

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=

(Θ/λ)(t/λ)Θ−1

1+(t/λ)Θ
aβ2

(1 + β log(1 + ( t
λ
)Θ))2

exp

(
−

log(1 + ( t
λ
)Θ)aβ2

1 + β log(1 + ( t
λ
)Θ)

)
.

h(t) =

(Θ/λ)(t/λ)Θ−1

1+(t/λ)Θ
aβ2

(1+β log(1+( t
λ
)Θ))2

exp {− log(1+( t
λ
)Θ)aβ2

1+β log(1+( t
λ
)Θ)

}

exp {− log(1+( t
λ
)Θ)aβ2

1+β log(1+( t
λ
)Θ)

}

=

(Θ/λ)(t/λ)Θ−1

1+(t/λ)Θ
aβ2

(1 + β log(1 + ( t
λ
)Θ))2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
loglogistic-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
−

log(1 + ( t
λ
)Θ)

1 + 1
2
σ2 log(1 + ( t

λ
)Θ)

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2 log(1 + (

t

λ
)Θ)

)−2
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
· exp

(
−

log(1 + ( t
λ
)Θ)

1 + 1
2
σ2 log(1 + ( t

λ
)Θ)

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

· h0(t)

=

(
1 +

1

2
σ2 log

[
1 +

(
t

λ

)Θ
])−2

(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
. (4.49)
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Lognormal-NCG Frailty Model
The Gompertz function base force of mortality and cumulative intensity rate
is given in Equations (4.23,4.24) respectively.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
−
(− log[1− Φ( log t−µ

σ
)])aβ2

1− β log[1− Φ( log t−µ
σ

)]

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
(

ϕ( log t−µ
σ

)

σt[1−Φ( log t−µ
σ

)]
)aβ2

(1− β log[1− Φ( log t−µ
σ

)])2
exp

(
−
− log[1− Φ( log t−µ

σ
)]aβ2

1− β log[1− Φ( log t−µ
σ

)]

)
.

h(t) =

(
ϕ(

log t−µ
σ )

σt[1−Φ(
log t−µ

σ )]
)aβ2

(1−β log[1−Φ( log t−µ
σ

)])2
exp {−− log[1−Φ( log t−µ

σ
)]aβ2

1−β log[1−Φ( log t−µ
σ

)]
}

exp {− (− log[1−Φ( log t−µ
σ

)])aβ2

1−β(log[1−Φ( log t−µ
σ

)])
}

=
(

ϕ( log t−µ
σ

)

σt[1−Φ( log t−µ
σ

)]
)aβ2

(1− β log[1− Φ( log t−µ
σ

)])2
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
lognormal-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
log[1− Φ( log t−µ

σ
)]

1− 1
2
σ2(log[1− Φ( log t−µ

σ
)])

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1− 1

2
σ2

(
log

[
1− Φ

(
log t− µ

σ

)]))−2
(

ϕ( log t−µ
σ

)

σt[1− Φ( log t−µ
σ

)]

)

· exp

(
log[1− Φ( log t−µ

σ
)]

1− 1
2
σ2(log[1− Φ( log t−µ

σ
)])

)
.
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h(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t),

=

(
1− 1

2
σ2

(
log

[
1− Φ

(
log t− µ

σ

)]))−2
(

ϕ( log t−µ
σ

)

σt[1− Φ( log t−µ
σ

)]

)
.

(4.50)

Exponential-Power-NCG Frailty Model
The exponential-power function base force of mortality and cumulative in-
tensity rate is given in Equations (4.26,4.27) respectively.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
− (exp (rtλ)− 1)aβ2

1 + β(exp (rtλ)− 1)

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
(exp (rtλ)rλtλ−1)aβ2

(1 + β(exp (rtλ)− 1))2
exp

(
− (exp (rtλ)− 1)aβ2

1 + β(exp (rtλ)− 1)

)
.

h(t) =

(exp (rtλ)rλtλ−1)aβ2

(1+β(exp (rtλ)−1))2
exp {− (exp (rtλ)−1)aβ2

1+β(exp (rtλ)−1)
}

exp {− (exp (rtλ)−1)aβ2

1+β(exp (rtλ)−1)
}

=
(exp (rtλ)rλtλ−1)aβ2

(1 + β(exp (rtλ)− 1))2
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
exponential-power-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
− (exp (rtλ)− 1)

1 + 1
2
σ2(exp (rtλ)− 1)

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2(exp (rtλ)− 1)

)−2

(exp (rtλ)rλtλ−1) · exp
(
− exp (rtλ)− 1

1 + 1
2
σ2(exp (rtλ)− 1)

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

· h0(t) =

(
1 +

1

2
σ2(exp (rtλ)− 1)

)−2

exp (rtλ)rλtλ−1.

(4.51)
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Pareto-NCG Frailty Model
The Pareto function base force of mortality and cumulative intensity rate is
given in Equations (4.29,4.30) respectively.

S(t) = exp

(
− H0(t)aβ

2

1 + βH0(t)

)
= exp

(
−

(log( t
r
)ϑ)aβ2

1 + β(log( t
r
)ϑ)

)
.

f(t) =
h0(t)aβ

2

(1 + βH0(t))2
exp

(
− H0(t)aβ

2

1 + βH0(t)

)
,

=
ϑ
t
aβ2

(1 + β(log( t
r
)ϑ))2

exp

(
−

(log( t
r
)ϑ)aβ2

1 + β(log( t
r
)ϑ)

)
.

h(t) =

ϑ
t
aβ2

(1+β(log( t
r
)ϑ))2

exp {− (log( t
r
)ϑ)aβ2

1+β(log( t
r
)ϑ)

}

exp {− (log( t
r
)ϑ)aβ2

1+β(log( t
r
)ϑ)

}
=

ϑ
t
aβ2

(1 + β(log( t
r
)ϑ))2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.43). The univariate marginal survivor, density and intensity rate for the
Pareto-NCG mixture becomes:

S(t) = exp

(
− H0(t)

1 + 1
2
σ2H0(t)

)
= exp

(
−

log( t
r
)ϑ

1 + 1
2
σ2 log( t

r
)ϑ

)
.

f(t) =

(
1 +

1

2
σ2H0(t)

)−2

h0(t) · exp
(
− H0(t)

1 + 1
2
σ2H0(t)

)
,

=

(
1 +

1

2
σ2 log

(
t

r

)ϑ
)−2

ϑ

t
· exp

(
−

log( t
r
)ϑ

1 + 1
2
σ2(log( t

r
)ϑ)

)
.

h(t) =

(
1 +

1

2
σ2H0(t)

)−2

· h0(t) =

(
1 +

1

2
σ2

[
log

(
t

r

)ϑ
])−2

ϑ

t
. (4.52)

4.7 Compound Negative Binomial Distribu-

tion

The CNBD has been applied by many authors in cases where there is possi-
bility of zero susceptibility on the event of interest. Aalen & Tretli (1999)
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considers the CNBD to analyse testis cancer where X ∼ represents amounts
of damages caused and N ∼ frequency of damages. The CNBD represents
the number of damages until outset of cancer.

Construction of Compound Negative Binomial Univariate Frailty Model
The CNBD with N ∼ negative binomial and X ∼ gamma distributed is
defined as

U =

{
X1 + . . .+XN , N > 0

0, N = 0

The Laplace transform derived in Equation (3.38) is

LU(s) =

(
p

1− q(1 + s
β
)−k

)α

.

Since S(t) = LU(H0(t)) =

(
p

1− q(1 + H0(t)
β

)−k

)α

.

f(t) = − d

dt

(
p

1− q(1 + H0(t)
β

)−k

)α

,

= qkα(pα)

(
1− q

[
1 +

H0(t)

β

]−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
.

=
qkα(pα)(1− q(1 + H0(t)

β
)−k)−α−1(1 + H0(t)

β
)−k−1 h0(t)

β

( p

1−q(1+
H0(t)

β
)−k

)α
,

h(t) = qkα

(
1− q

[
1 +

H0(t)

β

]−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
.

(4.53)

Considering various choices of h0(t) the base force of mortality function, we
have the following CNBD frailty models.

Gompertz-CNBD Frailty Model
The Gompertz function base force of mortality and cumulative intensity rate
given in Equations (4.11,4.12) respectively.
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S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

 p

1− q(1 +
A
B
(exp (Bt)−1)

β
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

1− q

(
1 +

A
B
(exp (Bt)− 1)

β

)−k
−α−1(

1 +
A
B
(exp (Bt)− 1)

β

)−k−1
A exp (Bt)

β

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

1− q

(
1 +

A
B
(exp (Bt)− 1)

β

)−k
−1(

1 +
A
B
(exp (Bt)− 1)

β

)−k−1
A exp (Bt)

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
Gompertz-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

 p

1− q(1 +
A
B
(exp (Bt)−1)σ2p

p+k
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

1− q

(
1 +

A
B
(exp (Bt)− 1)σ2p

p+ k

)−k
−α−1(

1 +
A
B
(exp (Bt)− 1)σ2p

p+ k

)−k−1

· A exp (Bt)σ2p

p+ k
.
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h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

1− q

(
1 +

A
B
(exp (Bt)− 1)σ2p

p+ k

)−k
−1(

1 +
A
B
(exp (Bt)− 1)σ2p

p+ k

)−k−1

· A exp (Bt)σ2p

p+ k
.

Weibull-CNBD Frailty Model
The Weibull function base force of mortality and cumulative intensity rate
given in Equations (4.13,4.14) respectively. Using the parametrizations β =
Θ, ρ = ϖ

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

(
p

1− q(1 + Θtϖ

β
)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1 +

Θtϖ

β

)−k
)−α−1(

1 +
Θtϖ

β

)−k−1
Θϖtϖ−1

β
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1 +

Θtϖ

β

)−k
)−1(

1 +
Θtϖ

β

)−k−1
Θϖtϖ−1

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
Weibull-CNBD mixture becomes:
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S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

(
p

1− q(1 + Θtϖσ2p
p+k

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1 +

Θtϖσ2p

p+ k

)−k
)−α−1(

1 +
Θtϖσ2p

p+ k

)−k−1
Θϖtϖ−1σ2p

p+ k
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1 +

Θtpσ2p

p+ k

)−k
)−1(

1 +
Θtpσ2p

p+ k

)−k−1
Θptp−1σ2p

p+ k
.

(4.54)

Generalized Weibull-CNBD Frailty Model
The GW function base force of mortality and cumulative intensity rate given
in Equations (4.15,4.16) respectively. Using the parametrization ρ = ϖ

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

(
p

1− q(1− log(1−[1−exp (−λtϖ)]b)
β

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1− log(1− [1− exp (−λtϖ)]b)

β

)−k
)−α−1

·
(
1− log(1− [1− exp (−λtϖ)]b)

β

)−k−1

·
b(1−exp (−λtϖ))b−1λϖtϖ−1 exp (−λtϖ)

1−[1−exp (−λtϖ)]b

β
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,
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h(t) = qkα

(
1− q

(
1− log(1− [1− exp (−λtϖ)]b)

β

)−k
)−1

·
(
1− log(1− [1− exp (−λtϖ)]b)

β

)−k−1

·
b(1−exp (−λtϖ))b−1λϖtϖ−1 exp (−λtϖ)

1−[1−exp (−λtϖ)]b

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
generalized Weibull-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

(
p

1− q(1− log(1−[1−exp (−λtϖ)]b)σ2p
p+k

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1− log(1− [1− exp (−λtϖ)]b)σ2p

p+ k

)−k
)−α−1

·
(
1− log(1− [1− exp (−λtϖ)]b)σ2p

p+ k

)−k−1 ( b(1−exp (−λtϖ))b−1λϖtϖ−1 exp (−λtϖ)
1−[1−exp (−λtϖ)]b

)σ2p

p+ k
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1

(1 +
H0(t)σ

2p

p+ k
)−k−1h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1− log(1− [1− exp (−λtϖ)]b)σ2p

p+ k

)−k
)−1

·
(
1− log(1− [1− exp (−λtϖ)]b)σ2p

p+ k

)−k−1 ( b(1−exp (−λtϖ))b−1λϖtϖ−1 exp (−λtϖ)
1−[1−exp (−λtϖ)]b

)σ2p

p+ k
.

(4.55)

Exponential-CNBD Frailty Model
The Exponential function is derived from the Weibull distribution when ρ =
1. Putting ρ = 1 in Equations (4.13,4.14) leads to

h0(t) = β.
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H0(t) = βt.

Using the parametrization β = Θ

h0(t) = Θ.

H0(t) = Θt.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

(
p

1− q(1 + Θt
β
)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1 +

Θt

β

)−k
)−α−1(

1 +
Θt

β

)−k−1
Θ

β
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1 +

Θt

β

)−k
)−1(

1 +
Θt

β

)−k−1
Θ

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
Exponential-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

(
p

1− q(1 + Θtσ2p
p+k

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1 +

Θtσ2p

p+ k

)−k
)−α−1(

1 +
Θtσ2p

p+ k

)−k−1
Θσ2p

p+ k
.
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h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1 +

Θtσ2p

p+ k

)−k
)−1(

1 +
Θtσ2p

p+ k

)−k−1
Θσ2p

p+ k
. (4.56)

Generalized Exponential-CNBD Frailty Model
The GE base force of mortality and cumulative intensity rate is given in
Equations (4.17,4.18) respectively.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

(
p

1− q(1− log(1−[1−exp (−λt)]b)
β

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1− log(1− [1− exp (−λt)]b)

β

)−k
)−α−1

·
(
1− log(1− [1− exp (−λt)]b)

β

)−k−1

·
bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b

β
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1− log(1− [1− exp (−λt)]b)

β

)−k
)−1(

1− log(1− [1− exp (−λt)]b)

β

)−k−1

·
bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
generalized exponential-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

(
p

1− q(1− log(1−[1−exp (−λt)]b)σ2p
p+k

)−k

)α

.
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f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1− log(1− [1− exp (−λt)]b)σ2p

p+ k

)−k
)−α−1

·
(
1− log(1− [1− exp (−λt)]b)σ2p

p+ k

)−k−1 bλ(1−exp (−λt))b−1 exp (−λt)
1−[1−exp (−λt)]b

σ2p

p+ k
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1− log(1− [1− exp (−λt)]b)σ2p

p+ k

)−k
)−1

·
(
1− log(1− [1− exp (−λt)]b)σ2p

p+ k

)−k−1

·
bλ(1−exp (−λt))b−1 exp (−λt)

1−[1−exp (−λt)]b
σ2p

p+ k
.

(4.57)

Loglogistic-CNBD Frailty Model
The loglogistic function base force of mortality and cumulative intensity rate
is given in Equations (4.20,4.21) respectively.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

 p

1− q(1 +
log(1+( t

λ
)Θ)

β
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1 +

log(1 + ( t
λ
)Θ)

β

)−k
)−α−1(

1 +
log(1 + ( t

λ
)Θ)

β

)−k−1
(Θ/λ)(t/λ)Θ−1

β[1 + (t/λ)Θ]
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1 +

log(1 + ( t
λ
)Θ)

β

)−k
)−1(

1 +
log(1 + ( t

λ
)Θ)

β

)−k−1
(Θ/λ)(t/λ)Θ−1

β[1 + (t/λ)Θ]
.
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For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
loglogistic-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

 p

1− q(1 +
log(1+( t

λ
)Θ)σ2p

p+k
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1 +

log(1 + ( t
λ
)Θ)σ2p

p+ k

)−k
)−α−1(

1 +
log(1 + ( t

λ
)Θ)σ2p

p+ k

)−k−1

· (Θ/λ)(t/λ)Θ−1σ2p

(p+ k)[1 + (t/λ)Θ]
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1 +

log(1 + ( t
λ
)Θ)σ2p

p+ k

)−k
)−1(

1 +
log(1 + ( t

λ
)Θ)σ2p

p+ k

)−k−1

· (Θ/λ)(t/λ)Θ−1σ2p

(p+ k)[1 + (t/λ)Θ]
. (4.58)

Lognormal-CNBD Frailty Model
The lognormal function base force of mortality and cumulative intensity rate
is given in Equations (4.23,4.24) respectively.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

 p

1− q(1− log[1−Φ( log t−µ
σ

)]

β
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,
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f(t) = qkα(pα)

1− q

(
1−

log[1− Φ( log t−µ
σ

)]

β

)−k
−α−1(

1−
log[1− Φ( log t−µ

σ
)]

β

)−k−1

·
ϕ( log t−µ

σ
)

βσt[1− Φ( log t−µ
σ

)]
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

1− q

(
1−

log[1− Φ( log t−µ
σ

)]

β

)−k
−1(

1−
log[1− Φ( log t−µ

σ
)]

β

)−k−1

·
ϕ( log t−µ

σ
)

βσt[1− Φ( log t−µ
σ

)]
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
lognormal-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

 p

1− q(1− log[1−Φ( log t−µ
σ

)]σ2p

p+k
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

1− q

(
1−

log[1− Φ( log t−µ
σ

)]σ2p

p+ k

)−k
−α−1(

1−
log[1− Φ( log t−µ

σ
)]σ2p

p+ k

)−k−1

·
ϕ( log t−µ

σ
)

(p+ k)σt[1− Φ( log t−µ
σ

)]
σ2p.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,
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h(t) = qkα

1− q

(
1−

log[1− Φ( log t−µ
σ

)]σ2p

p+ k

)−k
−1(

1−
log[1− Φ( log t−µ

σ
)]σ2p

p+ k

)−k−1

·
ϕ( log t−µ

σ
)

(p+ k)σt[1− Φ( log t−µ
σ

)]
σ2p. (4.59)

Exponential-Power-CNBD Frailty Model
The Exponential-Power function base force of mortality and cumulative in-
tensity rate is given in Equations (4.26,4.27) respectively.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

(
p

1− q(1 + (exp (rtλ)−1)
β

)−k

)α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

f(t) = qkα(pα)

(
1− q

(
1 +

(exp (rtλ)− 1)

β

)−k
)−α−1(

1 +
(exp (rtλ)− 1)

β

)−k−1

· exp (rt
λ)rλtλ−1

β
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1 +

(exp (rtλ)− 1)

β

)−k
)−1(

1 +
(exp (rtλ)− 1)

β

)−k−1

· exp (rt
λ)rλtλ−1

β
.

For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
Exponential-power-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

(
p

1− q(1 + (exp (rtλ)−1)σ2p
p+k

)−k

)α

.
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f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1 +

(exp (rtλ)− 1)σ2p

p+ k

)−k
)−α−1(

1 +
(exp (rtλ)− 1)σ2p

p+ k

)−k−1

· exp (rt
λ)rλtλ−1σ2p

p+ k
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2pp

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1 +

(exp (rtλ)− 1)σ2p

p+ k

)−k
)−1(

1 +
(exp (rtλ)− 1)σ2p

p+ k

)−k−1

· exp (rt
λ)rλtλ−1σ2p

p+ k
. (4.60)

Pareto-CNBD Frailty Model
The Pareto function base force of mortality and cumulative intensity rate is
given in Equations (4.29,4.30) respectively.

S(t) =

(
p

1− q(1 + H0(t)
β

)−k

)α

=

 p

1− q(1 +
log( t

r
)ϑ

β
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)

β

)−k
)−α−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα(pα)

(
1− q

(
1 +

log( t
r
)ϑ

β

)−k
)−α−1(

1 +
log( t

r
)ϑ

β

)−k−1
ϑ

tβ
.

h(t) = qkα

(
1− q

(
1 +

H0(t)

β

)−k
)−1(

1 +
H0(t)

β

)−k−1
h0(t)

β
,

= qkα

(
1− q

(
1 +

log( t
r
)ϑ

β

)−k
)−1(

1 +
log( t

r
)ϑ

β

)−k−1
ϑ

tβ
.
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For identifiability reasons we apply Laplace transform derived in Equation
(3.39). The univariate marginal survivor, density and intensity rate for the
Pareto-CNBD mixture becomes:

S(t) =

(
p

1− q(1 + H0(t)σ2p
p+k

)−k

)α

=

 p

1− q(1 +
log( t

r
)ϑσ2p

p+k
)−k

α

.

f(t) = qkα(pα)

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−α−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα(pα)

(
1− q

(
1 +

log( t
r
)ϑσ2p

p+ k

)−k
)−α−1(

1 +
log( t

r
)ϑσ2p

p+ k

)−k−1 ϑ
t
σ2p

p+ k
.

h(t) = qkα

(
1− q

(
1 +

H0(t)σ
2p

p+ k

)−k
)−1(

1 +
H0(t)σ

2p

p+ k

)−k−1
h0(t)σ

2p

p+ k
,

= qkα

(
1− q

(
1 +

log( t
r
)ϑσ2p

p+ k

)−k
)−1(

1 +
log( t

r
)ϑσ2p

p+ k

)−k−1 ϑ
t
σ2p

p+ k
.

(4.61)

4.8 Levy Distribution

Hakon et al., (2003) generalized the standard frailty models by modeling risk
as a weighted Levy process. Here, the individual risk is considered to be
evolving over time.

Construction of Levy Univariate Frailty Model
The Levy distribution is derived from the inverse gamma whose PDF derived
in Equation (3.27) is

f(u) =

√
µ2/2

u32π
exp

(
−µ2

2u

)
.

The Laplace of the Levy is

LU(s) = exp (−
√

2sµ2).
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Since S(t) = LU(H0(t)) = exp (−
√
2H0(t)µ2).

f(t) = − d

dt
exp (−

√
2H0(t)µ2),

= h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√

2H0(t)µ2).

h(t) =
h0(t)µ

2(2H0(t)µ
2)−1/2 · exp (−

√
2H0(t)µ2)

exp (−
√

2H0(t)µ2)
,

= h0(t)µ
2(2H0(t)µ

2)−1/2. (4.62)

Considering various choices of the base force of mortality function, we have
the following Levy frailty models.

Gompertz-Levy Frailty Model
The Gompertz function base force of mortality and cumulative intensity rate
is given in Equations (4.11,4.12) respectively.

S(t) = exp (−
√
2H0(t)µ2) = exp (−

√
2
A

B
(exp (Bt)− 1)µ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√
2H0(t)µ2),

= A exp (Bt)µ2

(
2
A

B
(exp (Bt)− 1)µ2

)−1/2

· exp

(
−
√
2
A

B
(exp (Bt)− 1)µ2

)
.

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 = A exp (Bt)µ2

(
2
A

B
(exp (Bt)− 1)µ2

)−1/2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
Gompertz-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp

(
−
√
2(

A

B
(exp (Bt)− 1))

)
.

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

= A exp (Bt)

(
2
A

B
(exp (Bt)− 1)

)−1/2

· exp

(
−
√
2
A

B
(exp (Bt)− 1)

)
.
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h(t) = h0(t)(2H0(t))
−1/2 = A exp (Bt)

(
2
A

B
(exp (Bt)− 1)

)−1/2

. (4.63)

Weibull-Levy Frailty Model
The Weibull function base force of mortality and cumulative intensity rate
is given in Equations (4.13,4.14) respectively.

S(t) = exp (−
√

2H0(t)µ2) = exp (−
√

2βtρµ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√
2H0(t)µ2),

= βρtρ−1µ2(2βtρµ2)−1/2 · exp (−
√

2βtρµ2).

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 = βρtρ−1µ2(2βtρµ2)−1/2.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
Weibull-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp (−
√
2(βtρ)).

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

= βρtρ−1(2βtρ)−1/2 · exp (−
√

2βtρ).

h(t) = h0(t)(2H0(t))
−1/2 = βρtρ−1(2βtρ)−1/2. (4.64)

Generalized Weibull-Levy Frailty Model
The GW function base force of mortality and cumulative intensity rate given
in Equations (4.15,4.16) respectively.

S(t) = exp (−
√
2H0(t)µ2) = exp (−

√
−2 log(1− [1− exp (−λtρ)]b)µ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√

2H0(t)µ2),

=
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
µ2(−2 log(1− [1− exp (−λtρ)]b)µ2)−1/2

· exp (−
√

−2 log(1− [1− exp (−λtρ)]b)µ2).
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h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2,

=
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
µ2(−2 log(1− [1− exp (−λtρ)]b)µ2)−1/2.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
generalized Weibull-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp (−
√
−2(log(1− [1− exp (−λtρ)]b))).

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

=
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
(−2 log(1− [1− exp (−λtρ)]b))−1/2

· exp (−
√

−2 log(1− [1− exp (−λtρ)]b)).

h(t) = h0(t)(2H0(t))
−1/2,

=
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
(−2 log(1− [1− exp (−λtρ)]b))−1/2.

(4.65)

Exponential-Levy Frailty Model
The Exponential function is derived from the Weibull distribution when ρ =
1. Putting ρ = 1 in Equations (4.13,4.14) leads to

h0(t) = β.

H0(t) = βt.

S(t) = exp (−
√

2H0(t)µ2) = exp (−
√
2βtµ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√
2H0(t)µ2),

= βµ2(2βtµ2)−1/2 · exp (−
√
2βtµ2).

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 = βµ2(2βtµ2)−1/2.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
exponential-Levy mixture is
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S(t) = exp (−
√
2(H0(t))) = exp (−

√
2(βt)).

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

= β(2βt)−1/2 · exp (−
√

2βt).

h(t) = h0(t)(2H0(t))
−1/2 = β(2βt)−1/2. (4.66)

Generalized Exponential-Levy Frailty Model
The GE base force of mortality and cumulative intensity rate is given in
Equations (4.17,4.18) respectively.

S(t) = exp (−
√
2H0(t)µ2) = exp (−

√
−2 log(1− [1− exp (−λt)]b)µ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√
2H0(t)µ2),

=
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b
µ2(−2 log(1− [1− exp (−λt)]b)µ2)−1/2

· exp (−
√
−2 log(1− [1− exp (−λt)]b)µ2).

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2,

=
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b
µ2(−2 log(1− [1− exp (−λt)]b)µ2)−1/2.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
generalized exponential-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp (−
√
−2(log(1− [1− exp (−λt)]b))).

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

=
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b
(−2 log(1− [1− exp (−λt)]b))−1/2

· exp (−
√

−2 log(1− [1− exp (−λt)]b)).

h(t) = h0(t)(2H0(t))
−1/2, (4.67)

=
bλ(1− exp (−λt))b−1 exp (−λt)

1− [1− exp (−λt)]b
(−2 log(1− [1− exp (−λt)]b))−1/2.
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Loglogistic-Levy Frailty Model
The loglogistic function base force of mortality and cumulative intensity rate
is given in Equations (4.20,4.21) respectively.

S(t) = exp (−
√
2H0(t)µ2) = exp

−

√√√√2 log

[
1 +

(
t

λ

)Θ
]
µ2

.

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√

2H0(t)µ2),

=
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
µ2

(
2 log

[
1 +

(
t

λ

)Θ
]
µ2

)−1/2

· exp

−

√√√√2 log

[
1 +

(
t

λ

)Θ
]
µ2

.

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 =
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ
µ2

(
2 log

[
1 +

(
t

λ

)Θ
]
µ2

)−1/2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
loglogistic-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp

−

√√√√2 log

[
1 +

(
t

λ

)Θ
].

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

=
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
2 log

[
1 +

(
t

λ

)Θ
])−1/2

· exp

−

√√√√2 log

[
1 +

(
t

λ

)Θ
].

h(t) = h0(t)(2H0(t))
−1/2,

=
(Θ/λ)(t/λ)Θ−1

1 + (t/λ)Θ

(
2 log

[
1 +

(
t

λ

)Θ
])−1/2

. (4.68)

Lognormal-Levy Frailty Model
The lognormal function base force of mortality and cumulative intensity rate
is given in Equations (4.23,4.24) respectively.
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S(t) = exp (−
√
2H0(t)µ2) = exp

(
−

√
−2 log

[
1− Φ

(
log t− µ

σ

)]
µ2

)
.

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√
2H0(t)µ2),

=
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
µ2

(
−2 log

[
1− Φ

(
log t− µ

σ

)]
µ2

)−1/2

· exp

(
−

√
−2 log

[
1− Φ

(
log t− µ

σ

)]
µ2

)
.

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 =
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]
µ2

(
−2 log

[
1− Φ

(
log t− µ

σ

)]
µ2

)−1/2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
lognormal-Levy mixture is:

S(t) = exp (−
√

2(H0(t))) = exp

(
−

√
−2 log

[
1− Φ

(
log t− µ

σ

)])
.

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

=
ϕ( log t−µ

σ
)

σt[1− Φ( log t−µ
σ

)]

(
−2 log

[
1− Φ

(
log t− µ

σ

)])−1/2

· exp

(
−

√
−2 log

[
1− Φ

(
log t− µ

σ

)])
.

h(t) = h0(t)(2H0(t))
−1/2 =

ϕ( log t−µ
σ

)

σt[1− Φ( log t−µ
σ

)]

(
−2 log

[
1− Φ

(
log t− µ

σ

)])−1/2

.

(4.69)

Exponential-Power-Levy Frailty Model
The exponential-power function base force of mortality and cumulative in-
tensity rate is given in Equations (4.26,4.27) respectively.
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S(t) = exp (−
√
2H0(t)µ2) = exp (−

√
2(exp (rtλ)− 1)µ2).

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√

2H0(t)µ2),

= exp (rtλ)rλtλ−1µ2(2(exp (rtλ)− 1)µ2)−1/2 · exp (−
√
2(exp (rtλ)− 1)µ2).

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 = exp (rtλ)rλtλ−1µ2(2(exp (rtλ)− 1)µ2)−1/2.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
Exponential-Power-Levy mixture is

S(t) = exp (−
√

2(H0(t))) = exp (−
√

2(exp (rtλ)− 1)).

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

= exp (rtλ)rλtλ−1(2(exp (rtλ)− 1))−1/2 · exp (−
√

2(exp (rtλ)− 1)).

h(t) = h0(t)(2H0(t))
−1/2 = exp (rtλ)rλtλ−1(2(exp (rtλ)− 1))−1/2. (4.70)

Pareto-Levy Frailty Model
The Pareto function base force of mortality and cumulative intensity rate is
given in Equations (4.29,4.30) respectively.

S(t) = exp (−
√

2H0(t)µ2) = exp

−

√
2 log

(
t

r

)ϑ

µ2

.

f(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 · exp (−
√

2H0(t)µ2),

=
ϑ

t
µ2

(
2 log

(
t

r

)ϑ

µ2

)−1/2

· exp

−

√
2 log

(
t

r

)ϑ

µ2

.

h(t) = h0(t)µ
2(2H0(t)µ

2)−1/2 =
ϑ

t
µ2

(
2 log

(
t

r

)ϑ

µ2

)−1/2

.

For identifiability reasons we apply Laplace transform derived in Equation
(3.29). The univariate marginal survivor, density and intensity rate for the
Pareto-Levy mixture is:
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S(t) = exp (−
√

2(H0(t))) = exp

−

√
2 log

(
t

r

)ϑ
.

f(t) = h0(t)(2H0(t))
−1/2 · exp (−

√
2H0(t)),

=
ϑ

t

(
2 log

(
t

r

)ϑ
)−1/2

· exp

−

√
2 log

(
t

r

)ϑ
.

h(t) = h0(t)(2H0(t))
−1/2 =

ϑ

t

(
2 log

(
t

r

)ϑ
)−1/2

. (4.71)

4.9 Bivariate Frailty

Bivariate frailty approach is applied to study dependence effects between
two life spans with random effects. The selected frailty mixing distribution
determines the association structure (Hougaard (2000)). In the construction
of bivariate frailty mixtures the following assumptions are applied:
1. Conditional on the shared risk Ui, residual lifetimes of insureds in the ith

group are independent.
2. The frailty Ui is presumed to have a multiplicative effect on the insureds
intensity rate: hij(t|u) = uih0(t), where j is an individual.

Proposition 4.1 Suppose assumption 1 holds for the residual lifetimes under
the shared risk. The bivariate marginal survivor function is expressed as

S(ti1,ti2) = LUi
(H0(ti1) +H0(ti2)). (4.72)

Proof. Assuming independence, the bivariate conditional survivor function
for a given shared frailty Ui is represented as:

S(ti1, ti2|ui) = S(ti1|ui) · S(ti2|ui),

applying

S(t|u) = exp (−
∫ t

0

h0(x|u)dx) = exp (−uH0(t)),

leads to
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S(ti1, ti2|ui) = exp (−ui[H0(ti1) +H0(ti2)]).

Using expectation

S(ti1,ti2) = E[exp (−ui[H0(ti1) +H0(ti2)])],

this simplifies to

S(ti1,ti2) = LUi
(H0(ti1) +H0(ti2)),

which is the Laplace transform for the shared risk solved at the sum of the
cumulative base force of mortality hazards.

The multivariate expression for say k observations is represented as:

S(ti1,...,tik) = E[exp {−u[H0(ti1) + . . .+H0(tik)]}] = LUi
(H0(ti1)+. . .+H0(tik)).

(4.73)

4.10 Positive Stable Distribution

Using the positive stable Laplace transform allowing for identifiability derived
in Equation (3.37), the marginal bivariate survivor function

S(ti1, ti2) = LU(H0(ti1) +H0(ti2)),

is expressed as

S(ti1, ti2) = exp {−(H0(ti1) +H0(ti2))
α}. (4.74)

The marginal bivariate density and intensity functions are:

f(ti1, ti2) =
∂2

∂ti1∂ti2
S(ti1, ti2),

= S(ti1, ti2) · h0(ti1)h0(ti2)

· [α2(H0(ti1) +H0(ti2))
2α−2 − α(α− 1)(H0(ti1) +H0(ti2))

α−2].

h(ti1, ti2) =
f(ti1, ti2)

S(ti1, ti2)

= h0(ti1)h0(ti2) · [α2(H0(ti1) +H0(ti2))
2α−2 − α(α− 1)(H0(ti1) +H0(ti2))

α−2].
(4.75)
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The local measure of association defined as the relative risk A(ti1, ti2) (Sect.
6.4 in Wienke (2011)) for the first lifetime given that the second lifetime has
died rather than surviving beyond a given lifetime is described as follows.
Let h(ti1|Ti2 = ti2) be the conditional intensity rate of Ti1 at ti1 given that
the second life died at ti2 and h(ti1|Ti2 > ti2) be the conditional intensity rate
of Ti1 at ti1 given that the second life survived beyond ti2. Then the relative
risk is:

A(ti1, ti2) =
h(ti1|Ti2 = ti2)

h(ti1|Ti2 > ti2)
. (4.76)

Since

h(t) = −∂ logS(t)

∂t
,

We have

A(ti1, ti2) =
− ∂

∂ti1
log(− ∂

∂ti2
S(ti1, ti2))

− ∂
∂ti1

logS(ti1, ti2)
,

=
S(ti1, ti2)

∂2

∂ti1∂ti2
S(ti1, ti2)

∂
∂ti1

S(ti1, ti2)
∂

∂ti2
S(ti1, ti2)

. (4.77)

Thus, A(ti1, ti2) > 1 represents positive association, A(ti1, ti2) < 1 represents
negative association and A(ti1, ti2) = 1 independence.

Theorem 4.1 Using the positive stable frailty mixing distribution and in-
tegrated base force of mortality the measure of local association A(ti1, ti2)
defined in Equation (4.77) is expressed as:

A(ti1, ti2) = 1−
(
1− 1

α

)
(H0(ti1) +H0(ti2))

−α. (4.78)

Proof. From Equation (4.74) we have

∂

∂ti1
S(ti1, ti2) = −α(H0(ti1) +H0(ti2))

α−1h0(ti1) exp {−(H0(ti1) +H0(ti2))
α},

∂

∂ti2
S(ti1, ti2) = −α(H0(ti1) +H0(ti2))

α−1h0(ti2) exp {−(H0(ti1) +H0(ti2))
α},

∂2

∂ti1∂ti2
S(ti1, ti2) = [α2(H0(ti1) +H0(ti2))

2α−2 − α(α− 1)(H0(ti1) +H0(ti2))
α−2]

· h0(ti1)h0(ti2) exp {−(H0(ti1) +H0(ti2))
α}.
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A(ti1, ti2) =
[α2(H0(ti1) +H0(ti2))

2α−2 − α(α− 1)(H0(ti1) +H0(ti2))
α−2]

−α(H0(ti1) +H0(ti2))α−1h0(ti1) exp {−(H0(ti1) +H0(ti2))α}

· h0(ti1)h0(ti2) exp {−(H0(ti1) +H0(ti2))
α} exp {−(H0(ti1) +H0(ti2))

α}
−α(H0(ti1) +H0(ti2))α−1h0(ti2) exp {−(H0(ti1) +H0(ti2))α}

,

= 1− α(α− 1)(H0(ti1) +H0(ti2))
α−2

α2(H0(ti1) +H0(ti2))2α−2
,

= 1−
(
1− 1

α

)
(H0(ti1) +H0(ti2))

−α.

When α takes on values near zero high dependence is observed between Ti1

and Ti2, while α near one indicates low dependence. α = 1 corresponds to
maximal independence and α = 0 maximal dependence. α can be determined
from a global association measure say τ using the simple form α = 1− τ

4.11 Non-Central Gamma

Using the Laplace transform derived in Equation (3.43)

LU(s) = exp

(
− s

1 + 1
2
σ2s

)
.

The marginal survivor, density and intensity rates are:

S(ti1, ti2) = LUi
(H0(ti1) +H0(ti2)) = exp

(
− H0(ti1) +H0(ti2)

1 + 1
2
σ2(H0(ti1) +H0(ti2))

)
,

(4.79)

f(ti1, ti2) = exp

(
− H0(ti1) +H0(ti2)

1 + 1
2
σ2H0(ti1) +H0(ti2)

)

·

(
h0(ti1)h0(ti2)

[(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−4

+ σ2

(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−3
])

,

h(ti1, ti2) = h0(ti1)h0(ti2)·

[(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−4

+ σ2

(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−3
]
.

(4.80)
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Theorem 4.2 Using the NCG frailty mixing distribution and integrated base
force of mortality H0(t), the measure of local association A(ti1, ti2) defined in
Equation (4.77) is expressed as:

A(ti1, ti2) = 1 + σ2

(
1 +

σ2

2
(H0(ti1) +H0(ti2))

)
. (4.81)

Proof. From Equation (4.79) we have

∂

∂ti1
S(ti1, ti2) = − h0(ti1)

(1 + 1
2
σ2(H0(ti1) +H0(ti2)))2

exp

(
− H0(ti1) +H0(ti2)

1 + 1
2
σ2(H0(ti1) +H0(ti2))

)
,

∂

∂ti2
S(ti1, ti2) = − h0(ti2)

(1 + 1
2
σ2(H0(ti1) +H0(ti2)))2

exp

(
− H0(ti1) +H0(ti2)

1 + 1
2
σ2(H0(ti1) +H0(ti2))

)
,

∂2

∂ti1∂ti2
S(ti1, ti2) = exp

(
− H0(ti1) +H0(ti2)

1 + 1
2
σ2H0(ti1) +H0(ti2)

)

·

(
h0(ti1)h0(ti2)

[(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−4

+ σ2

(
1 + (H0(ti1) +H0(ti2))

σ2

2

)−3
])

,

Since, A(ti1, ti2) =
S(ti1, ti2)

∂2

∂ti1∂ti2
S(ti1, ti2)

∂
∂ti1

S(ti1, ti2)
∂

∂ti2
S(ti1, ti2)

,

we get A(ti1, ti2) = 1 + σ2

(
1 +

σ2

2
(H0(ti1) +H0(ti2))

)
.

4.12 Compound Poisson Distribution

Using the Laplace transform derived in Equation (3.43)

LU(s) = exp

(
−k

α
((β + s)α − βα)

)
.

Allowing for identifiability i.e. E[U ] = kβα−1 = 1 and var[U ] = 1−α
β

the

Laplace becomes
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LU(s) = exp

(
α− 1

ασ2

[(
1 + s

σ2

1− α

)α

− 1

])
.

The marginal survivor, density and intensity rates are:

S(ti1, ti2) = LU(H0(ti1) +H0(ti2)) = exp

(
α− 1

ασ2

[(
1 + (H0(ti1) +H0(ti2))

σ2

1− α

)α

− 1

])
,

f(ti1, ti2) =
∂2

∂ti1∂ti2
S(ti1, ti2)

= S(ti1, ti2) · (h0(ti1)h0(ti2))

[(
1 + (H0(ti1) +H0(ti2))

σ2

1− α

)2α−2

+ σ2

(
1 + (H0(ti1) +H0(ti2))

σ2

1− α

)α−2

,

h(ti1, ti2) = (h0(ti1)h0(ti2)) ·

[(
1 + (H0(ti1) +H0(ti2))

σ2

1− α

)2α−2

(4.82)

+ σ2

(
1 + (H0(ti1) +H0(ti2))

σ2

1− α

)α−2

.

4.13 The Levy Distribution

The Levy is derived from the inverse gamma distribution. The Laplace is
also derived from the IG Laplace in Equation (3.5).

LU(s) = exp {
√
ϖϑ−

√
(2s+ϖ)ϑ},

when ϖ = 0,ϑ = µ2.

LU(s) = exp {−
√

2sµ2}.

For identifiability reasons assume the distribution of U has mean normalized
to 1. The Laplace becomes

LU(s) = exp {−
√
2s}.
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The marginal survivor, density and intensity rates are:

S(ti1, ti2) = LU(H0(ti1) +H0(ti2)) = exp {−
√
2(H0(ti1) +H0(ti2))}.

f(ti1, ti2) =
∂2

∂ti1∂ti2
S(ti1, ti2),

= exp {−
√

2H0(ti1) +H0(ti2))} · h0(ti1)h0(ti2) · {(2(H0(ti1) +H0(ti2)))
−1

+ (2(H0(ti1) +H0(ti2)))
−3/2}.

h(ti1, ti2) = h0(ti1)h0(ti2) · {(2(H0(ti1) +H0(ti2)))
−1 + (2(H0(ti1) +H0(ti2)))

−3/2}.
(4.83)
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Chapter 5

Application: Term Insurance
Data Graduation Using
Non-Central Gamma Frailty
Mixture

In this chapter, we proposed an alternative to the commonly adopted gamma
frailty mixture. The gamma is widely applied due to mathematical conve-
nience but this distribution implies frailty level is constant with regard to
time. The NCG is proposed as an alternative to the gamma which is a
compound approach to time-varying frailty that is used to model real-life
insurance data. The base force of mortality distributions considered are the
GE and GW. Bayes inference based on Gibbs sampling is used to calibrate
the base force of mortality variables. A comparison of the fit of the afore-
mentioned models is done with the Deviance Information Criteria (DIC).
Based on the results, the NCG-GW frailty model can effectively indicate the
insurers’ liability in the presence of heterogeneity. The implications of these
findings on pricing term insurance products is discussed.

5.1 Introduction

The mortality model selected in valuation determines how term insurance
and annuity products are priced (Batty et al., (2010); Gildas et al., (2018)).
Life insurance-based frailty models measure population-level heterogeneity
caused by unreported risks. On the other hand, heterogeneity caused by

97



reported risk factors is determined during underwriting before issuing a policy
to guarantee an optimal assignment of premium equivalent to insured risk
for each contract. Excluding relevant factors or relying solely on age and sex
may contribute to incorrectly priced assurance products. Term insurance
contract is a policy in which a certain payment, say Ksh A per annum, is
provided if the insured passes on within a stated period, say m years. This
benefit is determined from the EPV as:

A

∫ m

0

vtSx(t)h(x+ t)dt, (5.1)

where: x is the insured’s age, vt the present value factor, Sx(t) is the survivor
probability and h(x+ t) the intensity function. The type of mortality model
applied to h(x + t) influences how the policy is priced. The expected time-
to-death for the insured is represented as:

E[Tx] =

∫ ∞

0

Sx(t)dt. (5.2)

For this exercise, we considered 732 term insurance contracts between calen-
der years 2010-2015 from a large Kenyan insurance company. Demographic
information of policyholders includes; age, date of signing the contract and
mortality date. This data-set will be used to compute the times-to-death
and crude intensity rates experienced by the insureds in the 22-64 age group
as shown in Appendix I. Our aims of study are firstly to show that when
the gamma is applied as a frailty distribution the intensity rates are overes-
timated at all ages compared to the NCG. Secondly, is to show the relevance
of the NCG frailty mixture to graduate the insurance firm’s crude intensity
rates. For the study we assume that the force of mortality is pair-wise con-
stant, assuming a fixed value across all ages consistent with Brouhns et al.,
(2002) and Dodd et al., (2018) assumption. We further assumed our frailty
model has no observed covariates as only survival data was obtained for this
analysis also in life insurance due to the underwriting procedures groups
should be homogeneous with respect to observed covariates. Finally, and as
given in the actual dataset we presumed that policyholders purchase term
assurance policy at the age of 22-64 years.
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5.2 The Proposed Model

Firstly, the GE distribution is proposed as the base force of mortality with
the gamma frailty resulting in the gamma-GE frailty mixture intensity rate
described explicitly as

h(t) =
bρ(1− exp (−ρt))b−1 exp (−ρt)

1− [1− exp (−ρt)]b
· (1− σ2 log(1− [1− exp (−ρt)]b))−1.

(5.3)
The NCG is further adapted as a frailty distribution resulting in the NCG-GE
frailty intensity rate given by

h(t) =
bρ(1− exp (−ρt))b−1 exp (−ρt)

1− [1− exp (−ρt)]b
· (1−0.5σ2 log(1− [1−exp (−ρt)]b))−2.

(5.4)
The GE intensity rate is decreasing (b < 1), increasing (b > 1) or constant
(b = 1).

Secondly, the GW distribution is proposed as the base force of mortality with
the gamma frailty giving the gamma-GW frailty intensity rate expressed as

h(t) =
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
·(1−σ2 log(1−[1−exp (−λtρ)]b))−1.

(5.5)
Similarly, the NCG-GW frailty intensity rate is described as

h(t) =
b(1− exp (−λtρ))b−1λρtρ−1 exp (−λtρ)

1− [1− exp (−λtρ)]b
·(1−0.5σ2 log(1−[1−exp (−λtρ)]b))−2.

(5.6)
The GW intensity curve is monotone decreasing if (ρ ≤ 1) and (bρ ≤ 1);
monotone increasing if (ρ ≥ 1) and (bρ ≥ 1); unimodal if (ρ < 1) and
(bρ > 1) and bath-tub shaped if (ρ > 1) and (bρ < 1).

5.3 Parameter Estimation

Butt & Haberman (2004) apply the frailty-based survival model to insurance.
The authors first consider different choices of models and then apply them to
two large life insurance mortality datasets. The results indicate a potential
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range σ2 ≈ (2.916, 14.444) in an insured population with σ2 = 14% for
the heterogeneous case. From the findings of the investigation by Butt &
Haberman (2004), in this study we consider σ2 = 14% for the heterogeneous
case.
The base force parameters of mortality distributions are then determined by
Bayes inference based on Gibbs sampling and Metropolis algorithm using
intensity rates derived from actual insurance data. The posterior density de-
rived from observed data likelihood corresponds to the likelihood-joint prior
product, assuming all model parameters are independent.
For the GE distribution:

P(ρ̂, b̂|Data) ∝ L(ρ̂, b̂|Data)× P(ρ̂)× P(b̂),

where: L(.) is the likelihood.
The priors: P(ρ̂) = P(ρ1)P(ρ2|ρ1) . . .P(ρh|ρ1 . . . ρh−1) and

P(b̂) = P(b1)P(b2|b1) . . .P(bh|b1...bh−1) where h denotes the time partitions.

Using Gibbs sampler, samples from posterior density P(ρ̂, b̂|Data) were de-
rived indirectly, without having to calculate the density explicitly. From the

starting points ρ̂0, b̂0 parameter samples were obtained recursively ρ̂, b̂ from
their conditional posterior densities;
P(ρj|ρ̂j, Data) ∝ f1(ρj); j = 1, 2, . . . , h and

P(bj|b̂j, Data) ∝ f2(bj); j = 1, 2, . . . , h.
Finally, the target (posterior) distribution is approximately converged from
the prior distribution via the Metropolis-Hastings acceptance-rejection rule.
The algorithm is implemented as follows:

Step 1: The log-likelihood is derived from the GE(ρ, b) and GW(ρ, b, λ)
densities i.e.
ℓ(ρ, b|t) = k log(ρ× b) + (b− 1)

∑k
i=1 log(1− exp (−ρti))− ρ

∑k
i=1 ti;

ℓ(λ, ρ, b|t) = k log(λ × ρ × b) + (b − 1)
∑k

i=1 log(1 − exp (−λ(ti)
ρ)) + (ρ −

1)
∑k

i=1 log(ti)− ρ
∑k

i=1(ti)
ρ.

Step 2: Prior for all parameters is defined as:
ρ ∼ Γ(0.001, 0.001) ; b ∼ Γ(0.001, 0.001) ; λ ∼ Γ(0.001, 0.001)).

We use non-informative priors because prior information about the base force
of mortality parameters is lacking. The prior distributions picked fall within
the range of parameter estimates.
Step 3: The initially chosen parameter estimates used for iteration represent
the MLE estimates (obtained outside of Open Source Bayesian Inference
using Gibbs Sampling (OpenBUGS)).
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Step 4: Actual data values is specified as the times-to-death data obtained
from the real-term assurance dataset.
Step 5: For posterior simulation, 2 Markov chains are considered in-order
to monitor convergence.
Step 6: The computation of estimates is considered to take 100000 itera-
tions.
Step 7: The burn-in level, that is, simulations to be rejected initially, is
taken as 30000 (obtained from Brooks-Gelman-Rubin (BGR) plots).
All computations are performed with OpenBugs in R statistical package.
The codes are shown in Appendix IV.
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Figure 5.1: MCMC Trace Plots and BGR Diagnostics representing conver-
gence for GW(ρ, b, λ) where a = ρ, l = b, r = λ
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The MCMC trace plots displayed in Figure 5.1 is observed to be reverting
around the mean and the chains appear to mix freely implying stationar-
ity is attained. The BGR diagnostics is also presented in Figure 5.1. As
the Markov chains iterations progresses, the total-sequence simulated values
(green curvature) and average within-sequence interval width (blue curva-
ture) values are monitored. Their ratio (red curvature) is observed to con-
verge to 1 beyond 30000 simulations giving a probable burn-in period. The
parameter estimates for the base force of mortality distributions are shown
in Table 5.1.

Table 5.1: Base Force of Mortality Parameter Estimates.
BASELINE MODEL PARAMETER ESTIMATES DIC
1. Generalized Exponential ρ = 0.1479, b = 319.7 4995.0
2. Generalized Weibull ρ = 2.973, b = 4.98, λ = 0.00003135 4895.0

Decision: OpenBUGS provides the DIC measure that penalises both exces-
sive use of parameters and poor data fitting. From the above results, the
least DIC suggests that the GW gives a better fit.

5.4 Results

The Gamma-GW frailty and NCG-GW frailty models given in Equations
(5.5) and (5.6) respectively are as shown in Figure 5.2 where t is the time-to-
death, σ2 = 0.14, ρ = 2.973, b = 4.98, λ = 0.00003135; h0(t) ∼ GW (2.973, 4.98, 0.00003135).
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Figure 5.2: Crude intensity rates and frailty intensity functions

In Figure 5.2 graduation is done using the Gamma-GW (blue curve) and
NCG-GW (red curve) frailty model both calibrated on the real term assur-
ance times-to-death data. This is compared with the real term assurance
intensity rates (black curve). As shown the Gamma-GW overestimates the
intensity rate at all ages compared to the NCG-GW model. The NCG-GW is
observed to fit well to the actual claims experience hazards. The chi-square
test Table 5.2 and Kolmogorov-Smirnov (KS) hypothesis test Table 5.3 for
overall goodness of fit is significant for NCG-GW. The chi-squared goodness-
of-fit test has p-value greater than 0.01, indicating that the model fits well.
Similarly, the KS goodness of fit test has p-value greater than 0.01, indicating
that the distribution is a good fit.

Table 5.2: Chi-squared Goodness-of-fit of NCG-GW to the Crude Intensity
Rates.
Name Value
Chi-squared statistic 1722
Degree of freedom 1681
Chi-squared p-value 0.2379
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Table 5.3: Goodness of fit using Kolmogorov-Smirnov test.
Name p-value Test Statistic
Kolmogorov-Smirnov test 0.06448 0.28571

5.5 Discussion

Our main goal in this chapter is to model time-varying frailties by apply-
ing NCG-GW frailty mixture. We applied our model to real term insurance
times-to-death data. Using Bayesian inference the GW turns out to give a
better fit since the DIC is smallest compared to the GE. As shown in Fig-
ure 5.2 the Gamma-GW model overestimates the intensity rates at all ages
compared to the NCG-GW model since the intensity curve shifts upwards.
The NCG-GW fits well to the insurers claims experience as shown in the chi-
squared goodness of fit test Table 5.2 and KS hypothesis test Table 5.3 that is
significant. The conclusion arrived at is that using the gamma as the frailty
distribution may lead to inappropriate term assurance valuations resulting
in high prices that negatively impacts marketability of term contracts. The
gamma frailty index is time invariant and frailty remains constant through-
out life. The NCG compound process represents time-varying frailty and is
recommended for better term assurance valuations.
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Chapter 6

Application: Life-Table
Dependence Modeling Using
Positive Stable Frailty

The positive stable frailty mixture is proposed to model dependence among
insureds. A number of research in life insurance has focused on mortality de-
pendence modeling (see, e.g., Luciano et al., (2016); Yang (2017); D’Amato
et al., (2017); Gildas et al., (2018); Arias & Cirillo (2021)). Focusing sepa-
rately on either negative or positive effects of dependence. Frailty dependence
modeling (Hougaard (2000); Fulla & Laurent (2008); Wienke (2011)) is a
methodology that considers association in times to event of related individu-
als. Here, we assume conditional independence to explain both negative and
positive effects of association.

The study adds to the existing body of knowledge in many ways. Firstly,
we adopt the shared frailty methodology to life annuity risk determination
and valuation outside the widely applied medical and bio-statistical fields.
Secondly, lower-tail and upper-tail association are considered separately in
most dependence models but here we apply a positively stable frailty model
and assume conditional independence for an observed association measure
to explain both upper-tail and lower-tail association. Thirdly, we apply an
association measure through a positive-stable mixture to account for time-
evolving common risk where the time-invariant gamma is mostly applied in
literature. The implications of these findings on pricing joint-life insurance
products is discussed.
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6.1 Joint-life last survivor annuity

The proposed methodology is applicable to any type of joint-life annuity
contracts. Its application to joint-life last survivor annuities is discussed.
Conceptually, this refers to a policy that commences payment as long as
two or more annuitants are alive and continues for the entire life of the
last survivor. The goal is to guarantee steady income upon attaining the
retirement age; hence, annuities are comparable to single-life pensions. We
can express this as a series of payments beginning at time 1 for one single
payment with an EPV of, for example, C annually:

EPV = C · axy,

= C ·
∞∑
t=1

vtSxy(t), (6.1)

where the time-to-death random variable T = Max(ti1, ti2). Assuming i =
1, 2, ..., n represents the number of joint-life contracts in a portfolio of in-
sureds.
Considering dependence we have

Sxy(t) = Sx(t) + Sy(t)− Sxy(t), (6.2)

under independence

Sxy(t) = Sx(t) + Sy(t)− Sx(t) · Sy(t). (6.3)

The EPV in Equation (6.1) becomes

EPV = C·
∞∑
t=1

vt[exp{−
∫ t

0

hx+sds}+exp{−
∫ t

0

hy+sds}−exp{−
∫ t

0

(hxy+s)ds}],

(6.4)

EPV = C·
∞∑
t=1

vt[exp{−
∫ t

0

hx+sds}+exp{−
∫ t

0

hy+sds}−exp{−
∫ t

0

(hx+s+hy+s)ds}],

(6.5)
respectively. Here to simplify the notation, we assume an infinite limiting
age for our mortality table. Supposing an annuity buying price of B, then
by applying the equivalence principle we get the series of payments C:

C =
B

axy
. (6.6)
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Traditionally, due to simplicity in computations most insurers assume in-
dependence in valuation of joint-lives thereby adapting the EPV shown in
Equation (6.5). Frailty dependence modeling accounts for both heterogene-
ity and dependence thus adapting the EPV as shown in Equation (6.4).

The Data
Major Kenyan insurance firm annuitants members data for 398 joint and last
survivor contracts for the period 2001-2018 is applied to estimate the baseline
parameters and to compute the insureds level of association. Demographic
information of policyholders includes; gender, main life date of birth, spouse
date of birth, effective date, main life term and spouse term. (see Appendix
III)

6.2 The Positive Stable Mixture

The suggested positive stable frailty mixture has many merits. Firstly, it
is easily implementable due to its simplified Laplace. Secondly, the positive
stable variance is infinite. As a result, more heterogeneity can be accounted
for than when a frailty mixture is used with fixed variance. Thirdly, the
positive stable mixture permits the proportional-hazards to apply condition-
ally as well as unconditionally. In dependence frailty, it easy to define frailty
distribution using the (Sect. 6.4 in Wienke (2011)) relative risk measure,
describing how dependence of bivariate intensity rates changes with time.
Two examples are presented below with specified frailty mixing densities to
obtain the relative risk.
Example 1.
Using the positive stable frailty mixing distribution and integrated base force
of mortality H0(.) the relative risk A(ti1, ti2) defined in Equation (4.77) is ex-
pressed as:

A(ti1, ti2) = 1− (1− 1

α
)(H0(ti1) +H0(ti2))

−α. (6.7)

(See Theorem 4.1 for proof.) This relative risk is time-varying and dependent
on times-to-death. When α takes on values near zero high dependence is
observed between Ti1 and Ti2, while α near one indicates low dependence.
α = 1 and α = 0 corresponds to maximal independence and dependence
respectively. α is determined from a global dependence measure say Kendall’s

108



tau τ using the simple form α = 1− τ .
Example 2.
Using the Gamma frailty mixing distribution and integrated base force of
mortality H0(.), the relative risk A(ti1, ti2) is represented as:

A(ti1, ti2) = (1 + σ2). (6.8)

Where σ2 is the frailty variance.
Using the identifiable gamma Laplace LUi

(s) = (1 + sσ2)−1/σ2
and bivariate

survivor S(ti1, ti2) = (1+ σ2(H0(ti1)+H0(ti2)))
−1/σ2

we have From Equation
(4.77):

∂

∂ti1
S(ti1, ti2) = h0(ti1)(1 + σ2(H0(ti1) +H0(ti2)))

−1/σ2−1

∂

∂ti2
S(ti1, ti2) = h0(ti2)(1 + σ2(H0(ti1) +H0(ti2)))

−1/σ2−1

∂2

∂ti1∂ti2
S(ti1, ti2) =

h0(ti1)h0(ti2)(1 + σ2)

(1 + σ2(H0(ti1) +H0(ti2)))1/σ
2+2

A(ti1, ti2) =
(1 + σ2(H0(ti1) +H0(ti2)))

−1/σ2 · h0(ti1)h0(ti2)(1+σ2)

(1+σ2(H0(ti1)+H0(ti2)))1/σ
2+2

h0(ti1)(1 + σ2(H0(ti1) +H0(ti2)))−1/σ2−1 · h0(ti2)(1 + σ2(H0(ti1) +H0(ti2)))−1/σ2−1

= (1 + σ2)

This relative risk is constant and independent of times-to-death.

Sensitivity Test
To test the importance of the dependence specification in our model, we
compared the variation in relative risk under different estimates of α, say;
α = 0.1, α = 0.74,α = 0.9 and α = 1. When the positive stable is adopted
as frailty distribution, the Equation (4.77) is expressed as:

A(ti1, ti2) = 1− (1− 1

α
)(H0(ti1) +H0(ti2))

−α.

If h0(t) ∼ Weibull(ρ,ϖ)

A(ti1, ti2) = 1− (1− 1

α
)(ϖ1t

ρ1
i1 +ϖ2t

ρ2
i2 )

−α,

where ρ1 = 0.67, ϖ1 = 7.15; ρ2 = 0.75, ϖ2 = 10.17
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Figure 6.1: Sensitivity Test of Relative Risk A(ti1, ti2) Versus Male and Fe-
male Ages at Different Levels of Dependence α = r.
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From Figure 6.1, it is seen that lower α estimate closer to zero suggest that
Ti1 and Ti2 are strongly associated, while α estimate nearer 1 indicate a weak
association between them. α = 1 corresponds to independence. If one of the
paired lives has a high survival rate since dependence between them is a
result of potential concurrent failure, this declines when survival for one of
the paired lives increases.

6.3 The Model

If the base force of mortality follows the GE with pdf f0(t) = ϖρ(1 −
exp (−ϖt))ρ−1 exp (−ϖt); t > 0, ρ,ϖ > 0. Where ρ,ϖ represents the shape
and scale specifications. Then the log-likelihood ℓ(ϖ, ρ) considering a given
set of times-to-death data t = (t1, t2, . . . , tk) is expressed as

ℓ(ϖ, ρ|t) = k log(ϖρ) + (ρ− 1)
k∑

i=1

log(1− exp (−ϖti))−ϖ
k∑

i=1

ti. (6.9)

The estimates ϖ̂, ρ̂ can be derived from the non-linear equations ∂ℓ
∂ϖ

= 0

and ∂ℓ
∂ρ

= 0 using any iterative methods. In the study we apply OpenBUGS

algorithms.

If the baseline follows theWE with pdf f0(t) = (1−exp (−aλt))1+λ
λ
a exp (−at); t >

0, λ, a > 0. Where λ, a represents the shape and scale specifications (Gupta
& Kundu (2009)). The WE is applied to model intensity rate that is ris-
ing, declining or unchanged. The survival, intensity and cumulative intensity
functions are respectively;

S0(t) =
1+λ
λ
[exp (−at)− exp−(1+λ)at

1+λ
],

h0(t) =
(1−exp (−aλt))a exp (−at)

exp (−at)− exp{−(1+λ)at}
1+λ

,

H0(t) = − log(1+λ
λ
[exp (−at)− exp{−(1+λ)at}

1+λ
]).

The log-likelihood ℓ(a, λ) considering a given set of times-to-death data t =
(t1, t2, . . . , tk) is represented by

ℓ(λ, a|t) = k log(
a

λ
(1 + λ)) +

k∑
i=1

log(1− exp (−aλti))− a

k∑
i=1

ti. (6.10)

The estimates â, λ̂ can be derived from the non-linear equations ∂ℓ
∂a

= 0 and
∂ℓ
∂λ

= 0.
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If h0(t) follows theWWwith pdf f0(t) = abxb−1 1+λb

λb exp{−atb}(1−exp{−aλxb}); t >
0, λ, a, b > 0. Where a, b are the shape specifications and λ the scale speci-
fication (Roman, R. (2010)). The WW includes an additional shape spec-
ification that models bimodal data. The survival, intensity and cumulative
intensity functions are respectively;

S0(t) =
1+λb

λb [exp{−atb} − 1
1+λb exp{−atb(1 + λb)}],

h0(t) =
abxb−1 exp{−atb}(1−exp{−aλxb})
exp{−atb}− 1

1+λb
exp{−atb(1+λb)} ,

H0(t) = − log(1+λb

λb [exp{−atb} − 1
1+λb exp{−atb(1 + λb)}]).

The log-likelihood ℓ(a, b, λ) considering a given set of times-to-death data is
given by

ℓ(a, b, λ|t) = k log(
ab(1 + λb)

λb
)−a

k∑
i=1

tbi+(b−1)
k∑

i=1

log ti+
k∑

i=1

log(1−exp (−aλti
b)).

(6.11)

The estimates â, b̂, λ̂ can be derived from the non-linear equations ∂ℓ
∂a

=

0, ∂ℓ
∂b

= 0 and ∂ℓ
∂λ

= 0

Parameter Estimation
In the Bayes technique, any unknown parameter is regarded as a varying
quantity and its distribution is derived from what is known about them.
This technique is used as estimation procedures in actuarial studies e.g. by
Scollnik (1993) in analyzing concurrent mathematical statements for assur-
ance pricing also by Rosenberg & Young (1999) in studying time-varying
dependence when there exists shifts in variance estimation. The Bayes spec-
ification technique is executed in the following procedure using OpenBUGS.
Firstly, we defined log-likelihood functions as shown in Equations (6.9,6.10
and 6.11) respectively. Since earlier information about the base force of
mortality specifications is lacking, non-informative priors are selected and
presumed to be flat. That is, Gamma(0.001, 0.001) for the positive specifi-
cations see Hanagal (2020).
Actual data for males and female times-to-death is derived from the large
Kenyan insurance firm last-survivor dataset. Model specifications will be
obtained by considering the life terms from 39 exact through to 68 exact
as given in the real dataset. The burn-in value is fixed at 30000 as shown
in the Brooks-Gelman-Rubin Figure 5.1 this ensures posterior distributions
sequences of draws have low auto-correlation and is obtained from the values
of a run of Markov chain (Brooks & Gelman (1998)). Thereby diminishing
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the effects of the initial density. We simulate 2 chains in parallel and there-
after stationarity will be monitored upon completion of 100000 replications.
If convergence is achieved the average value of the posterior simulations is
selected as a point estimate. Low DIC, Akaike Information Criteria (AIC)
and Bayesian Information Criteria (BIC) would indicate a better model.
1. DIC=Ā+pA where Ā = E[−2×logL] this is the posteria average indicat-

ing the goodness of fit quality of the proposed methodology. Â = −2× logL
is the stochastic nodes posterior average and pA = Ā− Â measures the ulti-
mate parameters specifications (see Spiegelhalter et al., (2002)).

2. AIC=Â+ 2ρ where; ρ is the aggregate specifications.
3. BIC=Â+ ρ× log(m) ; m represents sample size. The BIC is useful as it
considers the BIC penalty for all parameters being estimated.
OpenBUGS algorithm applied to analyse the GE model is shown in the Ap-
pendix B.

Figure 6.2: BGR Diagnostics and Trace Graphs for GE(ρ,ϖ) where b =
ρ, a = ϖ.

The diagnostic graphs for BGR nodes convergence examined is illustrated in
Figure 6.2. As the simulation chains continues, the total-sequence simulated
value (green curvature) and average within-sequence intervals (blue curva-
ture) are examined. Their ratio (red curvature) is observed to merge to one
after 30000 simulations hence providing a good burn-in period.
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Table 6.1: Base Force of Mortality Parameter Estimates.
Baseline Parameters AIC DIC BIC

1. GE ρ1 = 7050;ϖ1 = 0.1816 2483 2477 2491
ρ2 = 4514;ϖ2 = 0.1579 2604 2602 2612

2. WE a1 = 0.03896; l1 = 0.006283 3626 3623 3627
a2 = 0.03571; l2 = 0.009485 3699 3697 3700

3. WW a1 = 6.302E − 6; b1 = 3.074; l1 = 2.642 3037 3019 3036
a2 = 1.49E − 5; b2 = 2.881; l2 = 3.151 3283 3038 3282

On the basis of Bayes inference based on Gibbs sampling the GE density is se-
lected as the AIC, DIC and BIC values is lower in comparison with the other
distributions. The model specifications applied in this study is displayed in
Table 6.1 upon implementing the Bayes technique discussed previously.

Figure 6.3: Kaplan-Meier (black curve) versus GE (red curve) survivor
curves.

Comparing Kaplan-Meier survival function plot (black curve) for the real
dataset verses the GE model survivor functions for males and females (red

114



curves) we visually observe a good fit (see Figure 6.3).

Figure 6.4: Q-Q Plot for GE model to the Kenyan last-survivor rates.

Table 6.2: Chi-square and Kolmogorov-Smirnov Goodness-of-fit of GE to the
Kenyan Last-survivor Rates.
Name Value (Males data) Value (Females data)

Chi-squared statistic 812 1056
Degree of freedom 784 1024
Chi-squared p-value 0.2371 0.2374

Kolmogorov-Smirnov test statistic 0.19231 0.2222
Kolmogorov-Smirnov p-value 0.6069 0.3047

Further, a chi-square and Kolmogorov-Smirnov goodness of fit for the dataset
to GE survivor rates is displayed in Table 6.2. As shown, the chi-square and
Kolmogorov-Smirnov test p-values are ≥ 5%. Therefore, we do not reject
the claim that Kenyan last-survivor rates can be effectively modeled using
a GE survivor function at 5% significance level. The GE quantile-quantile
(Q-Q) graph in Figure 6.4 displays a straight line through a majority of the

115



quantiles further justifying the GE as a better fit. We can thus conclude that
the GE best fits the data.

6.4 Results

The positive stable GE frailty bivariate survivor function is described explic-
itly as

S(ti1, ti2) = exp{−(− log(1−[1−exp (−ϖ1ti1)]
ρ1))−log(1−[1−exp (−ϖ2ti2)]

ρ2))α}.
(6.12)

The positive stable GE dependence mixture is displayed in Figure 6.5 where
(ti1, ti2) represents the male and female annuitants times-to-death. The base-
line intensity rate parameters are ρ1 = 7050;ϖ1 = 0.1816; ρ2 = 4514;ϖ2 =
0.1579 computed from the Bayes inference technique.
The joint last-survivor local measure of association is determined from the
large Kenyan insurance firm joint-life last survivor data-set. We consider
398 joint-life annuitants data in-force between 2001-2018. The dependence
S(ti1, ti2) survivor rates is computed using Kendall’s tau (τ = 0.7357) ob-
tained from the Kenyan joint lives dataset. Here α = 0.2643 obtained using
the simple relation α = 1− τ .
The independence survivor rates S(ti1) · S(ti2) is computed from Equation
(6.12) when α = 1. The EPVs and net single premiums are generated as
discussed in Equation (6.1) at 7% interest rate (central bank of Kenya inter-
est rate as at May 2022). Considering a case where the annuitants expect to
receive Ksh 200000 annually.
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Figure 6.5: Dependence (red curve) versus Independence (black curve) Sur-
vival Rates

As shown in Figure 6.5 the survivor function under independence is higher
initially compared to the dependence assumption. This is explained by down-
side impacts of association incorporated in the frailty methodology (e.g., oc-
currence of a contagious disease or an accident). Thus incorporating short-
term association that exists. Afterwards, there is an underestimation of sur-
vival rates in the independence approach in comparison with the dependence
approach because of longevity risk. I.e the longer the joint lives survive be-
yond a given time period, the better their survival probabilities are. In this
case, the long-term association is catered for. Therefore the independence
approach under-values the survival risk at extreme advanced ages.
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Figure 6.6: Dependence (red curve) versus Independence (black curve) Net
Single Premium Rates

Moreover, in Figure 6.6 when the annuity net single premiums are compared
it is observed that the independence approach leads to over-valuation of the
insurance firm’s product at the start of the policy and under-valuation later
because mortality increase decelerates at extreme old ages. This can be
explained by the fact that the insurance firm offers high prices when the
survivor rates are high and vice versa because the benefits are paid for the
entire life of the last survivor.

6.5 Discussion

The findings arrived at is that the GE baseline PDF gives a better fit to the
Kenyan last-survivor data-set compared to the other baseline distributions
following the models comparison criteria. Further, applying the positive sta-
ble GE frailty approach demonstrates that the relative risk is time-varying
and dependent of lifetimes when compared to the independence approach.
The shared frailty shows a decrease in the expected obligation of the insur-
ance firm at early annuitants ages (due to low survivor rates) but an increase
in liability at extreme old ages (due to high survivor rates) when association
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is considered. A good explanation for this trend is that the survivor rates
for frail couples is assumed to be low in the initial stages of the policy, later
increase in survivor rates at very old ages since high-risk couples have already
died, emphasizing the importance of dependence modeling in collective valu-
ation of annuity contracts. Thus assumptions of joint-life independence can
result in biased annuity valuation.
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Chapter 7

Conclusions and
Recommendations

Although a number of research has been done in univariate frailty modeling
to improve underwriting of single life insurance products, the widely applied
frailty mixture is the gamma. One major drawback of the gamma is that it
is time-invariant, thus in this research compound distributions are proposed
to account for time-varying frailties. The NCG compound frailty mixture
is proposed for single life contracts (Chapter 5) and positive stable mixture
for joint-life contracts (Chapter 6). Dependence frailty modeling has been
widely applied in medical and bio-statistical fields. Whereas, in actuarial
literature the dependence models consider either only the negative or posi-
tive effects of dependence separately. In this thesis, our novel contribution is
to apply the shared compound frailty approach in joint-life insurance valua-
tion using the positive stable mixture to explain both negative and positive
effects of association. The discussions below summarizes the main findings
and recommendations.

The NCG-GW compound frailty mixture is proposed for single life contracts
to account for time-varying risks. In particular, a term insurance data-set is
fitted to the model. The findings shows that the Gamma-GW model over-
estimates the intensity rates at all ages compared to the NCG-GW model
since the intensity curve shifts upwards. The NCG-GW fits well to the in-
surers claims experience. The conclusion arrived at is that using the gamma
as the frailty distribution may lead to inappropriate term assurance valua-
tions resulting in high prices that negatively impacts marketability of term
contracts. The gamma frailty index is time invariant and frailty remains
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constant throughout life. The NCG shared process represents time-varying
frailty and is recommended for better term assurance valuations.

The thesis further presents the positive stable frailty dependence approach
calibrated on the Kenyan joint-life last-survivor dataset for both male and
female lives. It is applied to construct joint lifetables and generate net single
premiums for annuities. The methodology involves applying the conditional
independence assumption to explain both positive and negative effects of as-
sociation. The results shows a declined policyholder’s annuity payments at
early stages when dependence is incorporated. Later on in the contract the
annuity payments increase. A good explanation for this trend is that we
expect the frail couples to have died early and the less frail ones to survive
to extreme ages. The so called ”longevity risk”. The positive stable frailty
model is therefore recommended to account for dependence in modeling joint-
life products. This will ensure accurate valuation of joint-life products.

Further Research
Despite the contributions in this thesis, a number of extensions exists in the
work. First, in the positive stable shared frailty approach negative associa-
tion, for instance, death of one couple leading to a positive effect on survival
of the other (though not common in most applications) is not accounted for.
This constraint comes in due to the positive stable index parameter (asso-
ciation parameter) that can only take positive values between zero and one.
Second, the shared frailty approach may not be applicable in cases where
risks within a group are correlated since the model accounts for dependence
and heterogeneity by applying a single parameter. Future research is required
to suggest advanced compound models that can overcome this limitations.

Similarities and differences between the shared frailty and the Archimeadean
copula model widely applied in actuarial literature have been discussed in
Section 2.4. A comparison between the two methodologies can be studied in
reference to mortality/longevity risk management applications.
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Appendix I

This appendix shows the term assurance times-to-death data and construc-
tion of crude intensity rates from real term insurance data-set. The construc-
tion of the expected residual lifetimes is also shown.

Figure 7.2 columns description

Age(x): is the age at death.

dx: the insureds who died aged x.

Ex: the insureds.under observation.

h(x) = dx
Ex

: the intensity function for the insurance firm, AKI 2010 data and
NCG model respectively.

S(x) = exp (−h(x)) is the survival function for the insurance firm and NCG
model respectively.

f(x) = h(x)× S(x) density rate for insurance firm.

ex =
∑

S(x) the expected residual lifetime for the insurance firm, AKI 2010
data and NCG model respectively.
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Figure 7.1: Real Term Insurance Member Data from a Major Insurance Firm.
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Figure 7.2: Construction of Crude Intensity Rates from Real Term Insurance
Dataset.
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Appendix II

In this appendix the construction of the joint-life life-table under the inde-
pendence and dependence mortality assumptions is shown.

Figures 7.3 & 7.4 columns description

x, y: represents the male and female times-to-death
Using the independence mortality assumption described in chapter 7 the sur-
vivor rates are calculated as: S(xy)ind = S(x)× S(y).

Consequently, using the frailty model obtained intensity rates the survivor
rates is given by: S(xy)frailty.

lxy: is the total number of insureds with times-to-death (x,y) in the Kenyan
joint lives dataset.

The number of deaths dxy = lxy × qxy

The joint probability of dying is qxy = 1− S(xy).

The commutation functions: Dxy = lxy
(1+i)(x+y)/2 , Nxy =

∑
Dxy assuming a

deterministic interest rate of 7%.

The net single premium is then approximated by PRICE FOR 200000 p.a.
= 200000× Nxy

Dxy
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Figure 7.3: Constructions of Joint Life-table under the Independence Mor-
tality Assumptions.
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Figure 7.4: Constructions of Joint Life-table Under the Dependence Mortal-
ity Assumptions.

135



Appendix III

In this appendix we show the annuitants member data from a large insurance
data-set. Only in-force policies between 2001-2018 are considered.
Figure 7.5 columns description

Column 1. V-GENDER: This is the main annuitant (contributor) gender.
I.e X(male) and Y(female)

Column 2. MAIN LIFE DOB: This is the main annuitant age at birth.

Column 3. SPOUSE DOB: This is the spouse age at birth.

Column 4. EFFECTIVE DATE: is the date when the contracted was ef-
fected.

Column 5. MAIN LIFE AGE AT PURCHASE: This is the main annuitant
age when contract was bought.

Column 6. SPOUSE AGE AT PURCHASE: This is the spouse age when
contract was bought.

Column 7. MAIN LIFE TERM: This is the main annuitant time-to-death.

Column 8. SPOUSE TERM: This is the spouse time-to-death.

Column 9. T-MAX(x,y): The maximum time-to-death of the main and
spouse annuitants.

Column 10. AGE DIFFERENCE: is the age difference between the annui-
tant and spouse.
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Figure 7.5: Annuitants Member Data from a Major Insurance Firm Dataset.
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Appendix IV
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R-Program

OpenBUGS GW distribution parameter estimation (Chapter 5)
MOD = function(){
for(j in 1:42){
simul[j]=0
simul[j] ∼ dloglik(loglikelihood[j])
loglikelihood[j] = log(b ∗ l ∗ a) + (a− 1) ∗ log(s[j]) + (b− 1)
*log(1− exp(−l ∗ pow(s[j], a)))− l ∗ pow(s[j], a)}
a ∼ dgamma(0.001, 0.001)
b ∼ dgamma(0.001, 0.001)
l ∼ dgamma(0.001, 0.001)}
write.model(MOD,”MOD.txt”)
INIT=function() {
list(a=2.01,b=0.65,l=5.45)}
DATASET=list(s=times-to-death)
BUGS=bugs(inits=INIT,data=DATASET,parameters.to.save=c(”b”,”l”,”a”),
n.chains=2,model.file=”MOD.txt”,n.iter=100000,
n.burnin=30000,debug=T)

OpenBUGS GE distribution parameter estimation (Chapter 6)
MOD = function(){
for(j in 1:398){
simul[j]=0
simul[j] ∼ dloglik(loglikelihood[j])
loglikelihood[j] = log(b ∗ a) + (b− 1) ∗ log(1− exp(−a ∗ s[j]))− a ∗ s[j]}
b ∼ dgamma(0.001, 0.001)
a ∼ dgamma(0.001, 0.001)}
write.model(MOD,”MOD.txt”)
INIT=function() {
list(b=7040,a=0.1723)}
DATASET=list(s=X-lifetime)#for the females ’s=Y-lifetime’
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BUGS=bugs(data=inits=INIT,DATASET,parameters.to.save=c(”b”,”a”),
n.chains=2,model.file=”MOD.txt”,n.iter=100000,
n.burnin=30000,debug=T)
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