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ABSTRACT

Perovskite materials have proven to be good absorber materials for photovoltaic devices by virtue
of their desirable optical and electrical properties, which include tunable band gap and high
dielectric constant that make them interesting research materials. The perovskite materials that
have shown the best photo conversion efficiency to date are those composed of hybrid inorganic-
organic material and plumbum. However, the hybrid organic-inorganic perovskites exhibit
intrinsic instability as the organic compounds present are sensitive to moisture, air, and oxygen.
The presence of lead is also toxic to the environment. This study addressed the duo challenges by
using fully inorganic elements and lead substitutes. We present a detailed first principle
investigation of the structural, elastic, electronic and optical properties of KGeXs (X=Cl, Br) in
three phases, i.e., the tetragonal, (P4mbm) trigonal (R3c) and cubic (Pm3m) structures. All ab
initio calculations in this work were performed within the Density Functional Theory (DFT)
formalism as implemented in the Quantum ESPRESSO (Q.E) computational code. The self-
consistent calculations were performed to solve the Kohn-Sham equations using a generalized
gradient approximation (GGA) for the exchange correlation (XC) potential. The approximation of
the one-body Green’s function, G and the screened coulomb interaction, W (GW approximation)
was used alongside the Generalized Gradient Approximation - Perdew-Burke-Ernzerhof (GGA-
PBE) approximations to calculate the electronic band gaps. The optical and mechanical properties
were calculated using THERMO_PW within Quantum ESPRESSO (Q.E). The materials had
reliable structural stability with the tetragonal structures having the highest bulk moduli showing
incompressibility. The distorted perovskites had the lowest energies proving energetic stability.
From the electronic properties, all materials had direct band gaps with the bandgap increasing from
cubic-tetragonal-trigonal showing that structural distortion widens band gap values. The elastic
properties showed that the trigonal structures are hard, mechanically unstable and hard hence
unsuitable for photovoltaics. The theoretical efficiencies calculated from the Shockley-Queisser
limit showed that the tetragonal structures had the highest power conversion efficiency (PCE)
suitable for photovoltaics. Generally, we concluded that apart from the ideal cubic perovskite
structure, the tetragonal structures can also be considered for photovoltaics because they were

consistent in proving their excellent candidacy.
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CHAPTER ONE: INTRODUCTION

1.1: Introduction
The research background overview, goals, problem statement and the research gap addressed by

this study is provided in this chapter.

1.2: Background of the Study

Materials with the perovskite structure have garnered interest in the past few decades for their
excellent applications as dielectrics, superconductors, and photovoltaic devices. Perovskite solar
cells (PSC) are emerging as potentially life-changing devices due to their high and rapidly
improving power conversion efficiency, over a very short period, more than any other solar cell
type since the introduction of the first working solar cell concept by Chapin et al., (1954).
Perovskite-based solar cells' conversion efficiency has grown from 3.8%, since their first
application in 2009, where MAPbI; served as a photosensitizer in dye sensitized solar cells (DSSC)
by Kojima et al., (2009), to 22.1% [ Giustino and Snaith, 2016; Yang et al., 2017], to 25.2% in
2019 and to 26% recently in 2020. This is remarkable comparing to other photovoltaic cells.
Silicon, for example, required 60 years to accomplish comparable PCE achievements, that is, from
4%-29%, perovskite photovoltaics taking just over a decade. As perovskite materials are mostly
prepared by cheap solution methods [Giustino and Snaith, 2016], studies on the perovskite
materials in PSCs could help in the potential replacement of the currently dominant silicon solar
cells [Nishat et al., 2021]. Currently, silicon solar cells are the most commercially used type of
photovoltaic cells due to their high incident photon to electron conversion efficiency (IPCE). The
main disadvantage in commercialization of these PSCs is their instability and toxicity since so far,
the best perovskite materials are not environmentally friendly due to the presence of lead content,
while the presence of organic compounds such as methylammonium (MA) and Formamidinium
(FA) usually contributes to the instability problem due to their sensitivity to heat, moisture, and
oxygen. One technique to circumvent the bottlenecks caused by instability and toxicity is to
develop and optimize lead-free inorganic perovskites as this would lead to greener and more
efficient devices that could be game changers in photovoltaics and other industries. This can only
happen if the best perovskite material compositions are selected through studies and ensuring that
the resulting materials would be suitable even after replacing lead. This study attempts to

contribute to this quest by proposing an inorganic KGeX3 perovskite and varying the anion of

1



element X between chlorine and bromine. The perovskite materials find a broad range of
application such as in making optoelectronic devices, energy storage and in memory devices
[Glazer, 1975]. The perovskite materials have been studied by experimental methods as well as by
computational techniques. This study was done by performing first principle calculations done
using the density functional theory (DFT). Enkovaara et al., (2017) described DFT as a technique
that has become one of the most widely used methods for simulating and predicting electronic
structure properties of periodic systems. The relevance of DFT and application in research has

been growing rapidly over the years.

The density functional theory (DFT) as an approximation method is used when it becomes
obviously difficult to solve the many- body Schrédinger equation (S.E) while keeping in mind the
degrees of freedom, and the external potentials. In DFT, we are shifting from the wave function
Schrodinger equation problem, to the electron density, and this in turn reduces the already
complicated 3 N-dimensional problem to one with only 3 dimensions. This is one of the reasons
DFT has come to be easily accepted in research areas. Among the simulation codes used by
physicists in carrying out DFT calculations are the Quantum ESPRESSO [Giannozzi et al., 2020;
Romero et al., 2018; Scandolo et al., 2005], VASP, SIESTA, and Octopus [Wan et al., 2021]. This
work utilizes the Quantum ESPRESSO code because it is an open-source code, not overly
demanding in terms of computational resources, and friendly to users because of the already large

user community.

1.2.1: DFT ab initio simulation packages
Most of the scientific research work is conducted through experimental work, which involves

laboratory, or field work, and computational means which utilize computer softwares to make
simulations and predictions while making comparisons with the experimental results. Computer
simulations involving DFT make use of the electron-electron interactions and the electron-nucleus
interactions, which aids in the better understanding of materials in the nano scale [Kresse and
Hafner, 1993]. These simulations only apply approximations to solve S.E and need no other
empirical information about the system, hence the name “first principles” or “ab initio”. In the
study of material properties, the use of computer simulations is widely employed [Romero et al.,

2018], and the study of electronic structure of materials centering on DFT have been made



possible. These simulation methods are flexible and can be carried out from various computing
systems, depending on the properties investigated. In principle, DFT calculations are geared
towards getting the exact density of the system by use of the exchange correlation (XC) potentials.
These calculations aid in finding the thermo- mechanical [Malakkal er al., (2016], structural,
electrical, optical and mechanical properties of materials [Roknuzzaman et al., 2017]. Quantum
ESPRESSO (QE) has a wide range of software used in calculating properties for example, the
phonon lattice vibrations, cell dimensions, unit cell to Bravais lattice, Birch-Murnaghan equation
of state, etc. QE makes use of auxiliary software like Xmgrace, Xcrysden, VESTA, GNUplot, and
many more for visualization and post processing of the data obtained from calculations. The
availability of numerous open-source software and being less resource demanding are part of the

reasons as to why QE is utilized in this research work.

1.3: Problem Statement

Perovskite materials are a game changer in photovoltaics and other applications. Despite their
attractive properties, they are still not yet commercialized and marketable because of their
instability and the toxicity of lead halide perovskites. Without addressing these challenges, these
materials will remain to be a theoretical compound. These challenges can be counteracted by using
inorganic elements and by replacement of lead by less toxic materials. The quest for potential
perovskite materials has been limited to studying the structurally ideal cubic perovskite. Since
perovskites are prone to phase distortions, it is crucial to give distorted perovskites equal attention
in the search for dependable and sustainable photovoltaic materials. This study investigates three
phases of the KGeX3 perovskite materials where X is interchanged between chlorine and bromine.
The three phases are cubic, tetragonal and trigonal. In this way, this study attempts to investigate
whether the overall material properties can be improved when the symmetry is lowered from the
ideal cubic perovskite structure. This study also examines the effect of changing the X-site on the
structural, elastic, electronic, and optical properties of KGeX3 perovskites. The use of lead-free
and purely inorganic compounds would make the proposed KGeX3 (X=CI/Br) perovskite material

less toxic and more stable.

1.4: Objectives

1.4.1: General objective
This study focuses on the investigation of the structural, elastic, electronic, and optical properties
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of KGeX;3 perovskite materials using density functional theory for photovoltaic applications.

1.4.2: Specific objectives
The specific objectives of this study are to:
1. Examine the structural and elastic properties of cubic, tetragonal, and trigonal KGeX3
perovskite material.
2. Study the electronic attributes of cubic, tetragonal, and trigonal KGeX; perovskite
material.
3. Determine the optical characteristics of cubic, tetragonal, and trigonal KGeX3 perovskite

material.

1.5 : Justification and Significance of the Study

Perovskite materials are inexpensive, solution processable, and can be synthesized in a number of
ways by altering the stoichiometry or altering the occupancy of the A, B, and X sites. The power
conversion efficiency of solar cells based on perovskite materials has grown at the fastest rate in
photovoltaic history, with the only obstacle to commercialization being stability and toxicity.
Inorganic materials are known to be more stable than their organic counterparts, and for this
reason, this study seeks to provide insight for developing a multi-phase inorganic perovskite
material that is stable and less toxic for photovoltaic applications. A stable inorganic perovskite
with high power conversion efficiency will be a welcome alternative to the expensive silicon
material that has dominated the photovoltaic industry. By examining some of the different
perovskite phases, this study aims to investigate the structural, electronic, stable, and optical
properties as a result of the reduction in perovskite symmetry. This will help in understanding and
selection of the best perovskite phases for photovoltaic applications, which in turn will support
their commercialization and the gradual shift of the environment towards clean and sufficient

energy.



CHAPTER TWO: LITERATURE REVIEW

2.1: Introduction
This chapter explores the previous work on perovskite materials, perovskite solar cells (PSCs) and

the silicon solar cell, the latter being the most used in the market.

2.2: Perovskite Materials
Perovskite materials are named after Lev Perovski, the Russian minerologist who proposed its

structure and classification [Giustino and Snaith, 2016; Yang et al., 2017]. A perovskite is any
material that has ABX3 structure hence though properties of various perovskites might be different,
their structures are not. The most common natural occurring type of mineral perovskite is the
calcium titanate oxide (CaTiOs) and all perovskites take its form. The A site can be occupied by
materials such as Formamidinium (FA), Methylammonium (MA), Cesium (Cs), and Rubidium
(Rb), the B site with Tin (Sn), Bismuth (Bi1) or Lead (Pb) and the X site with Chlorine (Cl),
Bromine (Br), Nitrogen (N) or lodine (I). Here, B is a divalent metal cation, A is a monovalent
organic cation and X is a monovalent halide anion Wang et al., (2019). Perovskites can either be
inorganic or hybrid inorganic-organic. The structure of perovskite materials is dependent on the
Goldschmidt tolerance value, 7, which is given as equation (2.1);

. Nt

 V2(rp +1y)

Where 14, 5 and ry are the radii of A, B and X atoms, respectively. Figure 2.1 shows how the

(2.1)

ABX; cubic structure looks like.

® A

® X
& B

Figure 2.1: Structure of the cubic ABX; perovskite with A and B as monovalent cations and X a
halogen: Cheng et al., (2018)



As stated earlier, different perovskite materials can be generated following the ABX3 structure.
Figure 2.2 shows the periodic elements that can occupy these three sites.
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Figure 2. 2 Periodic table with possible ABX; perovskites; De, (2020)

In terms of the properties, perovskites are yellow, brown or black minerals that have tunable
bandgaps, high light absorption, broad absorption spectrum and good superconductivity Idrissi, et
al., (2021). Though they can occur in different structures depending on the temperature, their basic
form is the cubic structure. The first ever reported perovskite material was MAPbI3; which proved
to be excellent in optoelectronics (Kojima et al., 2009; Tang et al., 2017). In the quest to improve
stability, reduce toxicity and increase the PCE of perovskite materials, several compositions have
been studied and optimized such as the introduction of mixed (Cheng et al., 2018; Ju et al., 2017,
Ma et al., 2017) and double halide perovskites (Anderson et al., 1993; Igbari et al., 2019; Liu et
al., 2021; Singh et al., 2021). Mixed perovskites have mixed cations in the A and B sites and the
structure given as ABB’X; for a double halide perovskite and can have up to triple cations such as
the MA/FA/Cs combination. Double perovskites, in the other hand, have the A’A"B'B"Os formula
(Anderson et al., 1993) or A;M'"M?*X¢ and have been applied in solar cells (Singh et al., 2021).
Perovskite materials are applied in energy storage (Zhang et al., 2020), pollutant degradation (Wei

et al., 2021) and optoelectronic devices such as solar cells (Liu et al., 2016; Roknuzzaman et al.,
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2018; Yuan and Tang, 2020) because of their efficiency in transporting charges. Due to their stable
structures and suitable band gaps, perovskite oxides are used in the production of gas sensors,
spintronic devices and thermal barrier coatings (Assirey, 2019). They are also applied in catalytic
activity in reactions like oxygen and hydrogen evolutions and reduction reactions (Risch, 2017).
These vast applications of perovskite oxides are attributed to their low toxicity and abundance in

the elements (Wu and Gao, 2018).

2.2.1: Inorganic perovskites
These perovskite types consist of inorganic elements in the ABX3 structure. They are emerging as

a new study area in photovoltaic applications though their counterpart, the organic-inorganic
hybrid materials have been preferred because they are comparable to silicon solar cells in terms
of PCE (Liu et al., 2016). Inorganic perovskites are more stable in air, have suitable band
gaps and simulation of these materials is easy because the structure of inorganic materialsis
already known. This is why these materials seem promising in obtaining stable PSCs for solar cells
applications. The importance of finding the best ABX3 combination has led to researchers like
Korbel et al., (2016) to perform a complete sweep of the Periodic Table. In their study, high
throughput calculations were used to narrow down from 32000 compounds to 20 possible
materials. The study showed that Pb, Sn and Ge halide perovskites are potential prospects for
photovoltaic applications because they are stable and have suitable band gaps. The improved
thermal stability and conversion efficiency in solar cells was concluded just recently by Idrissi et
al., (2021) who investigated the electrical, structural, optical and electronic properties of the all-
inorganic CsPbls using DFT and the Time Dependent Density Functional Theory (TDDFT)
methods of calculation and employing the Quantum ESPRESSO code. On the same perovskite
structure, the CsPbls, which is chemically stable, was found to be unstable under ambient
atmosphere as recorded by Ouedraogo et al., (2020) who on further investigation trying to solve
this instability problem found that doping, solvent additives engineering, and 2D nanocrystal
engineering are suitable ways to do so. Of all the studied inorganic perovskites, cesium-based

perovskites, CsPbX3 have proven to be most stable (Faheem et al., 2020).

2.2.2: Inorganic- organic perovskites
These perovskite materials have both inorganic and organic compositions. The two organic

compounds commonly used are the Methylammonium (MA, CH3NH3) and Formamidinium (FA,
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NH>CHNH:). Perovskite materials of this kind are versatile because they can be processed by
various technologies (Saliba et al., 2016). These types of perovskites are favorable because they
have long charge carrier diffusion lengths, low exciton binding energies and high light
absorption coefficient (Wang et al., 2019). The most studied inorganic-organic perovskite is the
MAPbDI; owing to its solution processability and broad absorption spectrum though its counterpart,
the FAPbI; has a broader spectrum. Hybrid perovskites are mostly studied for photovoltaic
application with their PCE being greater than 23% (Park and Seok, 2019). Despite their wonderful
photocatalytic properties, these perovskite types have low intrinsic stability because ofthe presence
of organic compounds. Apart from solar cells, hybrid perovskites are also applied in X-ray

detectors, thin film transistors, memory devices and Light Emitting Diodes (LEDs).

2.2.3: Towards lead-free perovskite materials
The presence of lead which is soluble in water as in the Methylammonium Lead lodide

(CH3NH3Pbls) perovskite material produces Pblx by-products which on decomposing introduce
toxicity into the environment. Lead- free perovskites can be obtained by replacing Pb with any of
the group 14 elements such as carbon (C), tin (Sn), germanium (Ge), silicon (Si) and Flevorium
(F1). Though getting rid of lead is crucial, it is important to ensure that its replacement does not
alter the proven excellence of lead halide perovskites (Giustino and Snaith, 2016) and this tasks
researchers into carefullyexamining and finding the best combinations whose properties can match
or even exceed lead halide perovskites. Studies like that of (Filip and Giustino, 2016) who selected
25 compounds from a possible 248 found that Mg and Ni have suitably lower band gaps. According
to (Liu ef al., 2016) bandgap and environmental toxicity reduction have been made possible by
replacing Pb with Sn. In the study of Liu et al., the A site was taken to be Cs, B site interchanged
between Sn and Ge and the X as I, Br and Cl. The material properties were then studied and it was
concluded that the stability was increased because of the resulting reduction in the crystallization
rate. The overall efficiency and performance of the material solar cells also improved. In another
study by (Roknuzzaman et al., 2007), inorganic lead-free perovskites CsBX3 (B= Ge, Sn; X= Br,
Cl, I) were simulated using first principles DFT and the resulting properties studied with
comparison to lead containing materials. They concluded that the materials simulated had high
optical conductivity, low reflectivity and a high absorption coefficient making them suitable for
applications in optoelectronic and solar cell devices. The material CsGelz was found to be ideal in

device applications and that Sn perovskites had lower optical absorption than Ge containing
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perovskites. The study also showed that CsSnl3 was not an ideal perovskite material owing to its
brittle nature. Apart from solar applications, lead-free perovskites are also applied in ceramics and
can be used to replace the piezoelectric ceramics, (Takenaka et al., 2007) in applications such as

filters, transducer and resonator devices.

2.2.4: Replacing Pb with Ge

Other than tin (Sn), germanium has also been explored as a potential substitute for Pb since the
band gaps of these materials are suitable for light harvesting. As recorded by (Krishnamoorthy et
al., 2015) who were the first to venture into germanium perovskite solar cells, Ge-based
perovskites have excellent potential to replace Pb and in the application of the same material in
device application. In their study, they synthesized germanium iodide perovskite materials, AGels,
(A=Cs, MA, FA) which produced both inorganic Cesium Germanium lodide (CsGels) and
organic-inorganic perovskite materials of Methylammonium lead iodide (MAGels) and
Formamidinium lead iodide (FAGels). This study found that CsGels showed a higher stability.For
PV applications, however, these perovskites had a low PCE with 0.11% for CsGels and 0.2% for
MAGels. To try and improve this, (Kopacic et al., 2018) modified the chemical composition
of these perovskites by addition of bromide ions into the hybrid MAGels. This resulted in a
considerable rise in the PCE of the solar cells and showed that with further studies and
modifications, the germanium-based perovskites can be improved for solar cell and other
applications. Other than using solely germanium, other lead-free studies such as that done by
Cheng et al., (2018) have incorporated germanium and tin to synthesize mixed perovskites. In this
case, the organic component Phenethylamine (PEA) was used to synthesize materials with the
formula (PEA)>Ge1.¢Snals and was found that increasing the Sn levels decreased the bandgap. At
d= 0.5, the material was found to have better stability and a bandgap of 1.95eV. All-inorganic
germanium perovskites have also been studied, e.g., the study by Houari et al. (2019) who applied
first principlecalculations to find the properties of AGels where the A cations were interchanged
between kalium, plumbum and cesium. In that study, the germanium iodide perovskites were
found to be good light harvesters in photovoltaics due to their broad absorption spectrum and high
reflectance. Apart from photovoltaics, germanium halide perovskites have also been used in LEDs
(Yang et al., 2021) where mixed halide Pb- Ge perovskites were synthesized and showed potential

of being environmentally cleaner than their counterparts, lead halide perovskites.



2.2.5: Distorted perovskite structures

The ideal perovskite structure is in the cubic phase with Pm3m as the space group (Howard and
Stokes, 2005; Lufaso and Woodward, 2001; Tilley, 2016). The corner-sharing octahedra of the

idea cubic structure looks like as shown in Figure 2.3.

Figure 2. 3 The Pm3m cubic perovskite structure with BX; octahedra; Howard and Stokes,
(2005)
From Figure 2.3, the BXs octahedra is located at the corners with the B cations sitting at the center

and the A cations located in the spaces between the octahedra (Howard and Stokes, 2005; Lufaso
and Woodward, 2001). The most common cause of distortion in perovskites is octahedron tilting.
Here, the octahedra are tilted lowering the symmetry of the perovskite to other Bravais lattices like
the trigonal, tetragonal, monoclinic and orthorhombic structures. The tilting occurs mainly if the
sizes of the atoms vary. Another form of distortion is the cation displacement (Tilley, 2016).
Distorted perovskites can be best described by the Goldschmidt tolerance factor in equation (2.1)
which can measure if a perovskite is octahedrally tilted using the size of cation A with respect to
the corner-sharing BXs octahedra (Lufaso and Woodward, 2001). Figure 2.4 shows the top and
middle cross sections of a cubic perovskite. This geometry is used to calculate the dimensions of
lattice constant a. Using Figure 2.4 and considering the top cross- section, the value of lattice

constant a is given by equation (2.2)

a=2(g+1) (2.2)
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B-site

Figure 2. 4 Top and middle cross- sections of a perovskite; Burger et al. (2018)
Considering the middle cross- section, the value of lattice constant a is given by equation (2.3)

a=v2(ry, +1y) (2.3)

Then equation (2.1) gives the tolerance factor, that is, equation (2.3) divided by equation (2.2).
The Goldschmidt tolerance factor (GTF) is equal to unity for the structurally ideal perovskites and
the perovskite is distorted otherwise. If the cation A is too big, the Goldschmidt tolerance factor
(GTF) is more than unity and the BXs corner-sharing link is broken making the octahedra to bulge
outwards. If the cation A is too small, then equation (2.1) dictates that the tolerance factor becomes
less than unity. This makes the octahedra to tilt inwards since the A cations are not able to touch
its neighbors. Figure 2.5 shows a distorted perovskite with a smaller A cation.

The structure changes have adverse effects on the macroscopic and microscopic material

Figure 2. 5 Octahedra tilting in distorted perovskite; Howard and Stokes, (2005)
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properties and these can also affect applications such as photovoltaics (Krishnamoorthy et al.,
2015) and optoelectronics (Luo et al., 2021). To study these property changes caused by distortion,
studies like that of (Mao et al., 2018), who carried out first principle screening of all inorganic
perovskites, found out that indeed, electronic properties can be altered through distortion. They
studied 260 inorganic perovskites with A= Li, K, Rb, Na, Cs, B= Sn, Pb and Ge and X=1, F, Cl,
Br in the cubic, orthorhombic and tetragonal phases and found that as the symmetry was being
lowered to the other phases, the bandgap increased. The increase was also noted when the X
element changed from I-Br-CI-F. This, however, is not always the case as in the work by Ghaithan
et al., (2020) who looked into the optical, structural and electronic properties of CsPbBr; in the
cubic, tetragonal and orthorhombic phases using different exchange correlation functionals and
concluded that the optical properties of the materials remained unchanged. The question on which
perovskite crystal structure is stable is a controversial one and is still being probed. Luo et al.,
(2021), who studied CsGels existing in three distorted structures namely, trigonal R3m,
orthorhombic Pmmm and the tetragonal P4mbm found that the most stable structure was found in
the trigonal phase followed by the orthorhombic phase. For most perovskite structures, structural
changes occur in a series as conditions such as pressure and temperature are changed. In most

cases, the cubic structures form in cases of high temperatures and pressure (Tilley, 2016).

2.3: Solar Cell Efficiency

The percentage of energy that is transformed into electricity is referred to as the solar cell
efficiency. This parameter is crucial in the desirability of solar cells. Some of the elements
influencing the solar cells efficiency are the cell temperature, solar cell shading and the solar cell
inclination as well as orientation. Figure 2.6 shows a comparison of efficiency of silicon solar

cells, organic photovoltaics, dye sensitized solar cells (DSSC) and PSC through the years.
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Figure 2. 6 The efficiencies of different solar panels through the years where a-Si, OPV, DSSC and P!
represents the amorphous silicon solar cell, organic photovoltaic cell, dye-sensitized solar cell and
perovskite solar cell, respectively Sundaram et al. (2018)
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In the figure 2.6, the efficiency of PSCs has remarkably increased over a short span of years and
this is attributed to the research and improvement of the perovskite materials and the other layers

of the solar cell.

2.4: The Shockley-Queisser Limit

Also called the detailed balance limit, the Shockley-Queisser limit is a theoretical limit in solar
cells that gives the maximum theoretical efficiency a solar cell made from a single p-n junction
can have (Shockley and Queisser, 1961). The maximum theoretical efficiency, 7, is the ratio of
the generated photon energy to the input power and is given by equation (2.4). (Shockley and
Queisser, 1961)

Prnax Eg Qs
= = 2.4

where B4y is the maximum power output, F; is the incident power, Ej is the materials’ band gap

and @, gives the number of absorbed photons (Shockley and Queisser, 1961)
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From equation (2.4), the number of absorbed photons is given by equation (2.5) which is obtained

from integration of the Planck’s law (Marr and Wilkin, 2012);

lkalu)® [ xXPdx
Qs = h3c? f eX —1

(2.5)

Xg
Where Ty, h, kg, and c are the sun’s temperature, Planck’s constant, Boltzmann’s constant, and

the speed of light, respectively.

E
XgkpToun = hv, ; X, = —0— 2.6
g"“B{sun g ] kBTsun ( )
Finally, P is given by equation (2.7)
2n(kpTan)® 12 2%dx
P N0 SHR 2.7
: h3c? o e*—1 &7
Using equation (2.8);
J“"’ x*dx nm* -
Equation (2.7) becomes equation (2.9), that is;
2 (kaToic)?
- > ( B sun) (2.9)
15h3c¢?

Figure 2.7 shows a graphical representation of the Shockley Queisser limit.
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Figure 2. 7 Graphical representation of the Shockley- Queisser limit. E ; represents the band gap
values in eV and AM gives the air mass coefficient. Riihle, (2016)

2.5: Solar Cells Generations

Solar cells can be classified into first, second, third and fourth generation solar cells. The quest for
efficient solar cell technologies has resulted to many years of research, alterations and
developments (Badawy, 2015). Thus, solar cell generations are classified according to the type of
material used and the periodic aspect of their developments. First generation solar cells are the
oldest type of solar cells present and are mainly based on single crystals of silicon wafers (Khatibi
etal.,2019; Sharma et al., 2015). Second generation solar cells were developed after and comprise
of low-cost thin film photovoltaics including amorphous silicon and Gallium arsenide (Green,
2002; Khatibi et al., 2019). Perovskite solar cells fall in the third-generation solar cells together
with the dye sensitized solar cells and polymer-based solar cells (Green, 2002). Figure 2.8 gives a

more detailed summary of the types of solar cells available.
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Figure 2. 8 Various solar cell technologies available (Sharma et al., 2015)

From this chapter, perovskites have potential in revolutionizing the photovoltaic sector. Since
perovskites can be synthesized in different ways using different components in the A, B and X
sites, our study will study the effectiveness of potassium and germanium-based perovskites in
photovoltaics by calculating their material properties. Since the B site contains germanium, which
studies have shown is as equally good in photovoltaics as the toxic lead, this study’s overall
material will be environmentally ideal. It is also expected to be more stable and last longer since
all the elements used are inorganic. Furthermore, this chapter shows that the properties of
perovskites change when structural distortions happen within the perovskite materials. It is
therefore crucial to compare structural, electronic, mechanical, optical and dynamical properties
across the different structural phases available. This will help in choosing the best structural phases

needed to produce the optimal property characteristics for different application in optoelectronics.
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CHAPTER THREE: THEORETICAL BACKGROUND

3.1: Introduction
In materials physics and chemistry, understanding the structure is important and many theories

have emerged to explain it. This chapter investigates the theoretical background of DFT and the

theorems and approximations around it.

3.2: The Schriédinger Equation (S.E)

The transition from classical mechanics to quantum mechanics is made easy by the S.E which
succeeds in explaining the dynamics of quantum systems with profound precision (Sholl and

Steckel, 2009).

From Hy = E, (Schrodinger, 1926; Zerfass, 2015) the many-body S.E is given by equation (3.1):
B 50w B B« Rig) = B0 2w B B s Bi) (31)

Where 7; and R; represent the electron and nuclear coordinates, respectively and H is the
Hamiltonian and is the sum of all potential and kinetic energies of the system, that is, equation
(3:2);

H=T, +Ty+Voee + Vo + Voo (3.2)

Where T, and T,, are the kinetic energy of the electron and neutron, respectively V,_, is the
electron-electron interaction, V,_,, is the electron-neutron interaction and V,_,, is the neutron-
neutron interaction.

Since we are dealing with spatial coordinates, solving the many-body S.E becomes impossible
since we have to keep into account the three dimensions of the individual electrons and it becomes
more unsolvable when considering the electron-electron interactions. For example, solving the
equation for COz results in a 66-dimensional problem (Sholl and Steckel, 2009) and getting closer
home with our perovskite material, solving for KGeCls and KGeBr3 would result to 306 and 468
dimensional problems, respectively which will take ages to solve. This is because K has 19
electrons, Ge has 32 electrons, Br has 35 electrons and CI has 17 electrons. A one-dimensional
problem would then have (19 + 32 + (X X 3)) electrons with the three-dimensional problem
having 306 and 468 electrons for the KGeCls and KGeBrs perovskite, respectively. The Born-

Oppenheimer approximation attempts to simplify the S.E.
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3.3: Born-Oppenheimer Approximation

This is an approximation for the motion of molecules. Since electrons are light and small in size,
they have a more rapid response to atomic changes. The nucleus, on the other hand, is heavy and
much bigger in size hence slow and for this reason; they can be treated as fixed points (Zerfass,

2015). The Born- Oppenheimer approximation separates the nucleus and electrons into two
distinct ground state quantum mechanical problems. Using this, the molecular Hamiltonian is
given by equation (3.3):

A=Ay+A, 33)
where H is the total Hamiltonian, H, is the electronic Hamiltonian and Hy is the nucleic
Hamiltonian. The electronic Hamiltonian constitutes of the electronic kinetic and potential
energies and is as in equation (3.4), (Toulouse, 2019),

H=Te+Veee + Ve (34)

From equation (3.4), T, is the Kkinetic energy of the electron, V,_, is the electron-electron
interaction and V,_,, is the electron-nucleus interaction. This approximation is used to simplify
the S.E in the many-body case by only focusing on theelectrons. By only dealing with the
electrons, the Time Independent Schrédinger Equation (T.L.S.E) in equation (3.1) becomes equation
(3.5) (Harrison, 2005):

By, 7: ¥ ) = EP@Eut %) (3.5)
where from this, the wavefunction ¥, is given by equation (3.6);
Y= -Th) (3.6)
From the S.E in equation (3.5), replacing the electronic Hamiltonian gives equation (3.7)
(Te + Ve—e + Ve-n)(r, 72 .ty ) = E(r,1z ot ) (3.7)
and from Sholl and Steckel, (2009), this can be expanded as in equation (3.8)

N

[—Zv§+ZU(r.)+ZZU(TUG Y=E¥ (38

i=1 i=1 j<i

In this case, h represents the Planck’s constant, N gives the total number of electrons, m is the
mass of the electron, U(r;) is the potential energy of the electron-nucleus interaction and U (73, 7;)
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represents the electron-electron interaction. From the above equation (3.8), the electron- electron

interaction still poses a problem in the solving ofthe equation and DFT ‘takes care’ of that.

3.4: The Hohenberg- Kohn (H-K) Theorems

The Hohenberg and Kohn theorems jump-started the transition into DFT by showing that the
density function contains all the information we need about a system (Epstein and Rosenthal, 1976;
Gaa et al., 1964.) and proves to be less complicated since the density has only three coordinates
hence easier to solve the many- body problems. In this case, the example given above of CO2 and
the perovskite atoms all reduce to a 3-dimensional problem. In DFT, the Hamiltonian involves
the interaction of electrons with one another and external potential, which is in many cases the
nucleus-electron interaction. Since there exists a one-to-one mapping from the potential to the

ground state density as shown in equation (3.9), that is (Sholl and Steckel, 2009.; Toulouse, 2019),

Uur)—n(@) (39
Hohenberg and Kohn showed that the inverse is true as in equation (3.10); that there is a mapping

from the ground state density to the potential (Toulouse, 2019)

n(r) — U(r) + Const (3.10)
From this, the ground state density determines the potential (Harrison, 2005.) from which the
Hamiltonian of the system is obtained thus everything about the system. The first Hohenberg-
Kohn theorem, proven by the contradiction method, showed that the ground state energy is a
unique functional of the electron density, hence the name DFT. The main limitation of this theorem
is that it only proves that there exists an energy functional but does not specify further on what
exactly the functional is (Sholl and Steckel, 2009). The second Hohenberg-Kohn theorem probes
whether a given density is the lowest density possible, i.e., the ground state density py. This
optimization is done following the variational principle where trial densities are used to find the

minimum energies.

3.5: The Kohn- Sham Equations
Applying the S.E from the H-K theorems, the energy functional can be expressed by equation
(3.11) (Harrison, 2005);

Elp]l = Tlp] + Vexelp] + Ve—elp]  (3.11)
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Where V,,, is the external potential. From equation (3.11), the K.E and e-e interaction functionals
can only be approximated since their exact values are unknown. Since the K.E makes up almost
all the total energy of the system, proper approximation of its functional is crucial. This is where
the K-S equations come in and they make it possible to calculate nearly all the K.E by the
introduction of a system of non-interacting electrons that have the same p, as the usual system
with interacting electrons. These equations (Kohn and Sham, 1965) also solve the variational
principle problem of looking for trial densities that will give the ground state energies. Since the
P are the same, the two systems are said to have the same position and atomic numbers. We can
then shift to the non-interacting system since the Hamiltonian will be calculated from the electron

independence. Equation (3.11) then becomes equation (3.12);

Elp] = Tslp] + Vexelpl + Vulpl + Exclpl  (3.12)

From the energy functional, the K-S equations are expressed by equation (3.13) (Sholl and Steckel,
2009.);

2
-h—-\?z +U@) + Vy(r) + Ve (M) |Vi(r) = E;¥;(r) (3.13)

2m
From the K-S equation above, notice that it differs from the S.E because we are dealing with
individual electrons. Vy is the Hartree potential and Vy, represents the exchange and correlation
potential. Solving the K-S equations proves to be a loop because the electron density, n(r) , needs
to be known to solve the equation and at the same time the solution of the K-S equation is needed
for the electron density to be found (Sholl and Steckel, 2009). To be able to solve it therefore, an
iterative method is used by first solving using a trial density first after which the wavefunction can
be obtained. From this, the density is then calculated and compared with the trial density andif
they converge, then this is the ground state electron density from which the energy can be
calculated. If not, then the process is repeated. This can be summarized from the flow chart in
Figure 3.1. Errors arise from the fact that the K.E above is not for a real system and that an electron
cannot interact with itself and this error is taken care of by the additional exchange correlation
functional [p]. This [p] can then be approximated using various methods which will in turn give

the Hamiltonian and the density functional. The commonly used approximation methods include
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the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA).

n(r) - initial guess

"
Calculate effective potential:
Vis [1]= V. [1]+ Viasree 1]+ Vi [1]

|

Solve Kohn-Sham equation:

[_ ;_:vz + Vs (r)] ¥, (r) =, (r)

m
Calculate the density:

nlr) =3 e of
{

Self Consistent?

NO

I
vrs

Energies, Forces, Stresses = Geometry optimization

Figure 3. 1 The Kohn-Sham equation flowchart (Ciucivara, 2007)

3.6: The Local Density Approximation (LDA)

The LDA was proposed by Hohenberg and Kohn and is the oldest exchange-correlation functional.
It makes use of the case of uniform electron gas where n(r) is taken to be constant everywhere.
From the name, the LDA approximates the exchange-correlation functional using the local density
only. In many systems, the LDA provides a good exchange-correlation approximation. This is
because it underestimates the correlation functional but overestimates the exchange functional,
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making the overall exchange-correlational functional very concise (Capelle, 2006). LDA only
works in situations where the n(r) is constant hence limiting (Malakkal er al., 2016; Sholl and
Steckel, 2009). This is because real systems are inhomogeneous (Capelle, 2006). In LDA, the
exchange-correlation energy Eyq[n(r)] of the system is locally approximated and is given by

equation (3.14) (Zerfass, 2015),

Eg24[n(r)] :fExc(n(r))n(r)dr (3.14)

3.7: The Generalized Gradient Approximation (GGA)
The Generalized Gradient Approximation (GGA) was developed after LDA mainly because LDA

fails in real systems (Sholl and Steckel, 2009). The GGA tends to give a more accurate
approximation and is the mostly used, though it is computationally more expensive than LDA. Its
accuracy stems from the fact that it contains additional physical information about the system than
LDA (Sholl and Steckel, 2009). It considers the local electron density and the local gradient in the
electron density hence giving better results than LDA. It should be noted, however, that GGA does
not accurately predict the lattice parameters and the hydrogen bond is also not treated accurately.
GGA consists of many unique functionals. Some of GGA functionals include the Perdew-Burke-
Ernzerhof-Generalized Gradient Approximation ( GGA-PBE), the Perdew-Burke-Ernzerhof for
solids (PBEsol) and the Perdew-Wang-91 (PW91). This study used the GGA-PBE functionals

for the exchange-correlation approximation.

3.8: Pseudopotentials
In solids, the electrons are divided into the inner core electrons and the valence electrons. The core

electrons are inert and do not participate in chemical bonding hence only the valence electrons
take part in chemical bonding, and ultimately determine the physical properties of materials
(Rasander, 2010; Sholl and Steckel, 2009). For this reason, the core electrons can be fixed and
focus is put only on the valence electrons after which the effective potential (V,y) is found. This
was done by replacing the core electrons by a weaker pseudopotential which mimicked the effect
of the core electrons. Doing this reduced the computational burden caused by the electrons Sholl
and Steckel, (2009). Pseudopotentials were obtained from the Q.E website where they were
downloaded and the right pseudopotential file chosen according to the chosen approximation
functional (GGA-PBE). Alternatively, they can also be obtained from the GBRV pseudopotentials

site. This site is named after the creators using the initials, that is, Kevin F. Garrity, Joseph W.
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Bennett, Karin M. Rabe, and David Vanderbilt. Figure 3.2 shows the pseudo electrons and the all-
electron potentials and their wavefunctions. The dashed lines show the pseudo potential and
wavefunctions which are smoothened and correspond to the true potential and wavefunction,

respectively.

e

pseudo wavefunction Full wavefunction

'

[—— seudo potential
o p po

\\/

-

Ic

_~ Full potential

Figure 3. 1 Illustration of the full and pseudo potentials with 1 ¢ as the cutoff radius of the system
(Rdsander, 2010).

3.9: k-point Sampling

k-points exist in reciprocal space. In crystal structure calculations, it is crucial to integrate periodic
functions over the Brillouin zone. To ensure efficiency, sampling of the k-points in the reciprocal
space was done to only pick and use special points of high symmetry. The commonly used method
for k-point sampling is the Monkhorst-Pack method (Monkhorst and Pack, 1976) which uses

equally spaced mesh in the Brillouin zone. Here, the sequence used is (nd1 nd2 nd3 dl d2 d3)
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where the last three terms specify the displacement from the origin and is set to 0 for situations
where there is no offset. The first three give the k- points and differs from the dimensions used. In
3D for example, the k- points willbe (nnn 11 1)and (nn 11 1 1)in the 2D case and so on. k-
points were optimized to acquire the desired size of the Brillouin-zone for the band structure
calculations. In this work, the k-points used in the band structure calculations were obtained from
the Materials Cloud website (Hinuma et al., 2017; Togo and Tanaka, 2018.). The k-path chosen
was unique to the crystal structure obtained (Setyawan and Curtarolo, 2010). The density of states
and the projected density of states (DOS and PDOS) were obtained from the electronic structure
calculations and the k- points need to be dense as well (Sholl and Steckel, 2009). From the DOS,
the material can be categorized as an insulator, semiconductor or metal and the band structure plot

shows if the bandgap is direct or indirect and tell the type of semiconductor a material is.

3.10: Structural Properties
The structural properties investigated were the lattice constant a, the bond lengths and angles and

the bulk modulus and its first derivative. The materials studied were in three phases, that is, the
cubic, tetragonal and trigonal. The cubic phase has a =b = ¢ = 5.89A anda = 8 =y = 90°.
The tetragonal phase has a = b = 7.97A # ¢ = 5.81A and @ = § = y = 90°. The trigonal phase
has a=b=c=767A anda = B =y <120°+# 90° = 60.04°. For the lattice constant,
optimization was done first to ensure the kinetic energy cut off (ecut) and k-point values were
converging. Convergence ensures accuracy of calculated results compared to reported
experimental findings (Sholl and Steckel, 2009). The k-point convergence was done first after
which the converged value was used for the ecut convergence. The k-point sampling was done
using the Monkhorst- Pack grid. The k-points convergence was done in the range of 2x2x2 to
24x24x24 at intervals of 2x2x2 with the convergence criterion at 10 Ry. The ecut convergence
was then carried out in the range from 10-125 Ry at intervals of SRy with the convergence criterion
also at 10 Ry. The ecut convergence was expected to obey the variational method with the total
energy monotonically decreasing with increase in the cutoff energy. Finally, lattice constant
convergence was carried out in which both the converged ecut and k-point were used. For trigonal
structures, the lattice constant convergence was done in the range of 12-17.4 Bohr at intervals of
0.2 Bohr. For cubic structures, the lattice constant convergence was done in the range of 8.9-12.0
Bohr at intervals of 0.1 Bohr. Lastly, for the tetragonal structure, lattice constant convergence was

done at 12.9-16.0 Bohr at intervals of (.1 Bohr. After convergence, structural optimization was
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done using ve-relax to fix the atoms in their positions and to get the optimized lattice constant.

3.10.1: Tetragonal structures
Information about the different structural symmetries was obtained from the Automatic FLOW for

materials discovery (AFLOW) (Hicks et al., 2019, 2021; Mehl et al., 2017). Tetragonal structures
have two types of Bravais lattices, that is, the body-centered tetragonal and the simple tetragonal.
The simple tetragonal has 49 space groups including the P4mbm. The tetragonal perovskite studied
belongs to the P4mbm space group. The unit cell is made up of 10 atoms, that is, 2 K atoms, 2 Ge
atoms and 6 Br/Cl atoms Ge atoms are located at the corner and the base centered positions with
fractional coordinates of (0, 0, 0) and (0.5, 0.5, 0). The Cl and Br atoms occupy the face-centered
positions around the germanium atoms. Figure 3.3 shows the tetragonal structure of the perovskite
studied in this work. According to Tilley, (2016), the tetragonal structures with space groups
P4mbm undergo one tilt in their corner-sharing octahedra. This tilt is symbolized by a’a’c* which

indicates that the tilting occurs around the z-axis.

Figure 3.3: Schematic representations of the tetragonal KGeCl.perovskites using the VESTA
spackage Momma and Izumi, (2011).

Trigonal symmetries are formed when cubic structures are pulled along the diagonals (Hicks et
al., 2019). These structures have two types of Bravais lattices, that is, the hexagonal and the
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rhombohedral lattice (Hicks et al., 2021). The trigonal perovskite studied belongs to the R3¢ space
group which is part of the rhombohedral lattice. The unit cell is made up of 10 atoms, that is, 2 K
atoms, 2 Ge atoms and 6 Br/Cl atoms. Figure 3.4 shows the trigonal perovskite structure that was
studied. The octahedra tilting in trigonal R3¢ is symbolized by a'a'a". This means that the structure

undergoes three equal tilts which occur in the opposite directions. (Tilley, 2016)

Figure 3.4: Schematic representations of the trigonal KGeCl.perovskites using the VESTA package
Momma and Izumi, (2011) .

3.10.3: Cubic structures

The ideal cubic perovskite is in space group Pm3m and is illustrated in figure 3.5. Since the
structure is ideal, the tilt is symbolized by a’a’a’. This shows that there are zero tilts. The unit cell
is made up of 5 atoms, that is, 1 K atom, 1 Ge atom and 3 Br/Cl atoms. The K atoms are located
at the corner positions with fractional co-ordinates of (0, 0, 0). Ge is located at the body-centered
positions at (0.5, 0.5, 0.5) and the X atoms (Cl and Br) occupy the face centered positions at (0.5,
0.5,0),(0,0.5,0) and (0.5, 0, 0.5). Figure 4.5 shows the visualized cubic structure of the perovskite

studied. Since potassium-based perovskites have not been explored experimentally, this study
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could not point out the temperature and pressure ranges in which the structural phase transitions

happen.

Figure 3.5: Schematic representations of the cubic KGeCls.perovskites using the VESTA package
Momma and Izumi, (2011).

From schematic representation of the ideal cubic structure in figure 3.5, figure 3.6 shows all the
possible tilt systems in perovskites and the respective space groups. From this figure (4.6), C, T,
O, Tr, M represents the cubic, tetragonal, orthorhombic, trigonal and monoclinic phases,

respectively.
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aa’a’(23)
C, Pm3m (221

a‘a‘a*(3) a’b*b* (16) a’a’c* (21) a’a’c (22) a’bb-(20) aaa (14)
C, Im3 (204) | [T, 14/mmm (139) [T, P4/mbm (127)| |T, 14/mcm (140)| |O, Imma (74)| | Tr, R3c (167)

a*b'c* (1) a*a‘c (5) a’b*c (17) a'bb(10) abc (19) || abb (13)
O, Immm (71)||T, P4,/nmc (137)||0, Cmem (63) O, Pnma (62)| |M, C2im (12)| M, C2/c (15)

a‘bc (8) abc(12)
M, P2/m (11)| | Tri, PT (2)

Figure 3. 6 The octahedra tilting that can occur in perovskites and their respective space groups. C, T,
O, Tr and M denotes the cubic, tetragonal, orthorhombic, trigonal and monoclinic phases, respectively.
Tilley, (2016)

3.10.4: Murnaghan equation of states

The Murnaghan Equation of States (EoS) was used to obtain the equilibrium volume, the bulk
modulus and its derivative. This was done by fitting the values of the energy versus volume data
to this equation of state (Allan et al., 2022). From thermodynamics definition, an EoS relates the
volume, temperature and pressure of a material in a thermodynamic equilibrium (Mansour, 2020;
Tyuterev and Vast, 2006). The pressure-volume relationship of a material with fixed number of

particles is given by equation (3.15) (Tyuterev and Vast, 2006).

pvy = B l(ﬁ)aﬁ » 1‘ (3.15)

To find the energy with respect to the volume, equation (3.15) is integrated leading to equation
(3.16).

_ ByV (V0)33 1
E(V) = BT [ v Bé—1+l + Constant  (3.16)

In Q.E, the energy-volume (ev.x) command was used to fit the energy and volume values into the
Murnaghan equation. This fitting was done after the lattice constant convergence was carried out

from which the energies of different volumes were obtained.
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3.11: Elastic Properties

The elastic properties are crucial in determining the mechanical stability of materials. The
properties studied in this work are the elastic constants, the bulk, Young’s and shear moduli and
the Poisson’s ratio. The elastic properties were calculated using the thermo_pw within Q.E. The
elastic constants are denoted by C;; and vary from one crystal system to the other. The elastic
constants obtained from the second derivative of the crystal energy with respect to the strain are

given by equation (3.17) as shown by Mouhat and Coudert, (2014); Thakur, (1982).

1( 9%
Cy = v_o(asiae,-) (3.17)

Where Vj, is the equilibrium volume, E is the energy of the crystal and ¢ is the strain. The elastic

constants C;; make up the elastic matrix which then describe the elastic behaviors of materials
(Mouhat and Coudert, 2014). The elastic constant matric is a 6x6 matrix. In order for a material to
be stable, the principal minor determinant of the elastic constant matrix should be positive. From
this condition, a set of inequalities can then be obtained for which the elastic constants C;; must
satisfy. From the Born stability criteria (Born, 1940; Mouhat and Coudert, 2014), these elastic
constants need to meet certain conditions for the materials to be considered mechanically stable.
As shown by Mouhat and Coudert, (2014) the elastic constants matrix for cubic phases is the

simplest and is given by equation (3.18)

Ci1 G2 Gy
Ciz G (i
Ciz G2 (i
3.18
Cos (3.18)

‘:44
C44

The cubic phases have three independent elastic constants, that is, Cy4, Cy, and C44 as shown on
the matrix. Alers and Neighbours, (1957) investigated that for cubic materials, the inequalities

arising from the fact that the principal minor determinants are positive are that Cy; + 2C;, and
%(CH — () are positive. From these two relations then, equations (3.19) are obtained. These then
make up the necessary stability conditions for materials in the cubic phase as reported by Hou,
(2008); Li et al., (2017); Mouhat and Coudert (2014);

Ci1—C2 >0,

Cyy +2C,, >0,
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Cis>0 (3.19)
Tetragonal phases have six independent elastic constants, that is, Cy4, Ci3, Cy3, C33, C44 and Cgg

The elastic constant matrix for the tetragonal phases is given by equation (3.20).

Cl 1 l‘:"1 2 Cl 3
ClZ Cl 1 613
CI3 ClB C33

3.20
Cas (3.20)

C44
C66

From the relations that arise, a tetragonal material is regarded mechanically stable if equations
(3.21) from Dong et al., (2013); Mouhat and Coudert, (2014) are met;
C11 > |Cyzl,
2CE; < C33(Cy1 + Cy2),
Css > 0,
Ces >0 (321)
Finally, for a trigonal structure, the elastic constant matrix is given by equation (3.22)

Cll 612 C‘13 Cl4
612 Cll Cl3 _Cld-
613 Cl3 C33

3.22
By =i Bia (3:22)

Cas  Cia
Cis  Ces

Trigonal phases have seven independent elastic constants, that is, Cy4, Cy3, C13, Cy4, C33, C44 and
Cee- In this case, Cgq = (Cy1 — C12)/2. The stability conditions for trigonal phases are given by
equation (3.23) as reported by Liu ez al. (2016); Mouhat and Coudert, (2014)
Ci1 > |Cral,
Css >0 , Csa >0, G >0

1
€% < 5633 (C11 +Cy2)

[(C11 = C12) Cas — 2CE] > 0 = C44Ces (3.23)
After the calculation of the elastic constants, the moduli are calculated using the Reuss
approximation in Liu et al. (2016) and Voigt approximation as reported by Shiferaw and
Woldemariam, (2019); Liu et al., (2016). The average of the Reuss and Hill approximation are

then obtained from the Hill averaging scheme (Hill, 1932). From the elastic constants (C;;) and
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using the Voigt theory Voigt (1910), the bulk By and shear G, moduli are given by equations
(3.24) and (3.25), respectively (Dong et al., (2013).

1
BV = 5[(611 + CZZ + ng) + 2((,‘12 e C23 + CSl)] (324)

1
GV — E[(Cll + sz + C33) - (CIZ + 623 & C31) + 3(644 + CSS 3 666)] (325)

From the Reuss theory Reuss, (1929), the bulk By and shear Gz moduli are obtained from the

elastic constants using equations (3.26) and (3.27), respectively.

il
B = (811 + S22 + S33) + 2(812 + S23 + S31) (3.26)
R
15
. = 4(S11 + S22 + S33) —4(S12 + Sz3 + S31) + 3(S44a + Ss5 + Se6)  (3:27)
R

The §;; are the elastic compliances. The elastic compliance matrix is the inverse of the elastic
constant matrix, that is, as in equation (3.28)

§=C" (3.28)
Where S is the elastic compliances matrix and C is the elastic constant matrix. From the Hill
averaging scheme, the bulk By and shear Gy moduli are given by the average of the two theories,

that is equation (3.29) and (3.30), respectively.

_ By +Bg

Bi; 5 (3:29)
Gt
Gy = — 5 - (3.30)

From the Pugh method (Dong et al. 2013; Pugh, 1954) the ductility or brittleness of a material can
be obtained by checking the relation of % to the critical value of 1.75. If the ratio g is more than

the value, the material is considered ductile and vice versa. After calculating the elastic constants
and the moduli, the Poisson’s ratio and the Youngs modulus are obtained from the shear and bulk
moduli using equations (3.31) and (3.32), respectively (Dong et al., 2013; Hou, 2008).

3By — 2Gy

Y= m (3.31)
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- 9B;Gy
B (3B, +Gi)

The degree of anisotropy of materials aids in explaining the bonding between atoms in different

(3.32)

planes. The anisotropy indices calculated are the shear (A4;,A4,,43) and the Zener’s (4y)
anisotropic factors. Materials with indices equal to unity are isotropic and anisotropic otherwise.
The deviation from unity gives the materials’ degree of anisotropy. For the shear anisotropic
factors, A, gives the measure in the {100} planes between the <101> and <001> directions, 4, in
the {010} planes between the <101> and <001> directions and A5 gives the measure in the {001}
planes between the <110> and <010> directions. The anisotropic factors are given by equations
3.33-3.36.

A, = s 3.33
'+ Gy — 20 o)
Aq = 3.34
S —T )
As= 3.35
P — i)
o
Ay = —— 3.36
Al (3.36)

The hardness of the materials was measured using Vickers hardness, which is given by equation
3.3L
(1-2v)Ey
Hy = ———
6(1+v)

The machinability index is crucial in determining the mechanical properties of materials. It is used

(3.37)

to measure the hardness of materials and indicates how easily a material can be cut and machined
during engineering processes. Materials with a high machinability index are hard and not easy to
cut through, indicating that they would require more time to produce finely finished surfaces. The

machinability index is given by equation 3.38

O (3.38)
= '

The Cauchy pressure, Poisson ratio and the Pugh’s criterion are used to identify ductility or

brittleness in materials with great accuracy. From the Poisson’s ratio, materials with v > 0.26 are
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ductile while those with v < 0.26 are brittle. The Cauchy pressure is calculated by (Cy5 — C44).
Materials with a positive value of the Cauchy pressure are ductile while those with a negative value

are considered brittle.

3.11.1: Bulk modulus and its pressure derivative
The bulk modulus measures the resistance of a material to compression. The volume and bulk

modulus of materials are inversely related as reported by (Singh and Dwivedi, 2012). The bulk

modulus is given by equation (3.39)

B = VaP 3.39

Where B is the bulk modulus, V the volume and P is the pressure. The pressure is given by
equation (3.40).

P= = 3.40

Equation (3.40) then reduces equation (3.39) into equation (3.41)
’E
B=V— 341

The pressure derivative of the bulk modulus is given by equation (3.42).

, 0B _1( 9 9%

3.12: Electronic Properties
The electronic properties studied in this work were the electronic band gap and density of states.

These properties are crucial in knowing how the material interacts in the electronic level and this

helps in understanding the material in the larger scale (Saikia et al., 2022).
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Figure 3. 7 First Brillouin zones of the cubic lattice. The k-path followedisI' — X —M — T — R —
X|M — R., Setyawan and Curtarolo, (2010)

= I

b/ X

Figure 3. 8 First Brillouin zones of the tetragonal lattice. The k-path followedis ' — X — M —TI' —
Z—R—-A-Z|X — R|M — A, Setyawan and Curtarolo, (2010)
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Figure 3. 9 First Brillouin zones trigonal lattice. The k-path followedisI' — L — BB —Z —TI' —
X|Q — F — Py — Z|L — P Setyawan and Curtarolo, (2010)
The respective band gaps for the materials are calculated from the obtained band structure
information. The electronic density of states is important in describing the number of states at each
energy level that are available to be occupied by electrons. This characteristic is crucial in modern
electronic structure theory (Mahmoud et al., 2020). To obtain the number of available states in a
material, that is, the density of states, we consider the electrons occupying the solid as a free
electron gas. Then by representing the state of the electron as a vector in the reciprocal k-space,
the energy of the electron becomes as in equation (3.43)
h2|k|2
2m

hz
Ei= ﬁ(k% + kJZ, + k}_’) = (3.43)

Where is the E energy, m the mass,h the reduced Planck’s constant and k,, ky and k, are the
coordinates in k space. The visualization of the electrons in reciprocal space for a spherical surface

is given in figure 3.10.
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Figure 3.10: The spherical surface in k-space for electrons in 3D. k,, k, and k, give the coordinates
in the x, y and z directions, respectively

The total density of solids is given by equation (3.44).

2
g(E) = @Z f 8(E — Ep,(k))dk (3.44)

ng Q1
Where g(E) is the density of states, Vg is the volume of the Brillouin zone, ny is the band index
and Q' is the volume of the unit cell in the reciprocal space.
3.13: Optical Properties
The optical properties were studied as a function of the energy in eV with the energy range from
(0-20 eV). The study of the optical properties is crucial in photovoltaics since it explains how a
material behaves with light (Saikia er al., 2022.). To study the optical properties, the complex
dielectric function is investigated (Mbilo et al. 2022). This function is dependent on the electronic
band structure of the given material and affects its properties (Kittel, 2005). By obtaining the
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dielectric function, the band behavior of solids can be extensively investigated (Amin et al., 2011).
From the dielectric function, the other optical properties of the material like the refractive index,
reflectivity, absorption coefficient and the extinction index can be obtained. Like all complex
functions, the dielectric function is made up of the real and imaginary part (Mulwa et al., 2016)

and is given by equation (3.45) Amin et al., 2011; Hamideddine et al., 2020; Tian et al., 2017).
€ =¢(w)+is(w) (3.45)
Where &, (w) is the real part and &, (w) is the imaginary part. £;(w) can be obtained by using the

Kramers- Kronig relation as described by (Butt et al., 2021; Kumar et al., 2014) as in equation
(3.46).

2 [ gleH)o!
£ = 1 +—pf _S@)e” (3.46)

L, w¥ —w?+in
The imaginary part, &;(w), is then obtained after the real part is found. The two indices, that is,
the refractive index and the extinction index, are related to the reflectivity at normal by equation
(3.47) (Kittel, 2005)
n+iK—-1
n+iK+1
In this case, n(w) is the refractive index, K (w) the extinction index and R(w) is the reflectivity.

R(w) = (3.47)

In relation to the dielectric function £(w), the refractive and extinction indices have the

relationship in equation (3.48) Kittel, (2005)

VE€(w) = n(w) + iK(w) = N(w) (3.48)
Where N (w) is the complex function of €(w). The optical absorption coefficient a(w) measures
how light penetrates into a material at different energies Roknuzzaman et al., (2017). a(w) can

be obtained from &; (w) and &, (w) using the equation (3.49),

1
a(w) = V2w (\,ef(m) + e2(w) — & (a)))2 (3.49)

the refractive index n(w), which measures the banding of light in different media, is given by

equation (3.50)
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e (\/sf(w) + e;fz(w) + sl(w))2 s
the reflectivity R(w) is given by equation (3.51)
_ (n=2)" K"
N T G
the exciton index K (w) as in equation (3.52) Saikia et al., (2022).
1
- (Jef(w) T s%z (@) - sl(w))z i

The energy loss, which measures the amount of energy lost through absorption, scattering,
radiation and other causes is given by equation (3.53) Saikia et al., (2022.)

& (w)
&2 (w) + &2(w)

L(w) =

(3.53)
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CHAPTER FOUR: MATERIALS AND METHODS

4.1: Introduction

This chapter deals with the computational methods that were carried out on the KGeX3(X=Cl, Br)
perovskite materials.

4.2: Computational Methods

Calculations were done within the plane wave basis set implemented in Q.E code with GGA-PBE.
(Perdew et al., 1996) and the GW as the exchange-correlation approximations employed. The GW
approximation was used to correct the band gaps obtained from the GGA-PBE approximations.
GGA-PBE was the preferred exchange correlational functional because it contains more physical
information hence more accurate than the LDA. The GGA-PBE was also more compatible with
Q.E since methods like Hubbard_U could not be used because the germanium atom was not
compatible with the Hubbard term U. The Crystallographic Information Files (CIF) were
downloaded from the Materials Project website (Jain et al., 2013). After which they were used to
obtain the input files from the Materials Cloud website (Talirz et al., 2020). All the calculations
were submitted to the Centre for High-performance Computing (CHPC) cluster in Cape Town
South Africa (S.A). The Quantum ESPRESSO Code is utilized in materials modeling from the
first principles and predicting the properties of materials (Giannozzi et al., 2009; Malakkal et al.,
2015). The term ESPRESSO is coined from opEn-Source Package for Research in Electronic
Structural, Simulation and Optimization. Being an open-source code, it has attracted wide usage
in Physics, Chemistry and other research fields. The code has advantage over other codes in that,
it comprises several softwares, for example, pw.x, ph.x, kpoint.x, cif2cell.x, etc., and other
auxiliary softwares like Xmgrace, XCrySDen, Vesta, GNUplot, etc. enabling a wide scope of
calculations to be done. Quantum ESPRESSO is a plane-wave based code where the PWscf is used
in solving the Kohn-Sham equation to get an exact density from the exchange-correlation potential.
Density is a scalar field quantity in space and can never be exact because the exchange-correlation
potential is an approximation, therefore the self-consistent field calculations are computed until
minimum energy is achieved. Before characterization was done, structural optimizations were
carried out by performing convergence tests to the k-points, ecut and the lattice constant. k-points
optimization was done by varying the k-points mesh from 2x2x2 to a denser mesh of 24x24x24 at
intervals of 2x2x2. The converged value for the k-points was used in the calculation of kinetic

energy (ecut) convergence. The ecut convergence was done as a function of the total energy in Ry.
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The values obtained from the k-points and ecut convergence were then used for the lattice constant
optimization. The equilibrium bulk modulus and its pressure derivative were obtained by fitting
the Murnaghan EoS to the lattice constants and their respective energy values using the ev.x
command within QE. The band structure calculations were done by using high symmetry points
instead of the normal Monkhorst and Pack mesh that was used in the convergence and lattice
parameter calculations. The high symmetry points for each material were obtained from the
Materials Project site (Hinuma er al., (2017; Togo and Tanaka, 2018). These special points for
each of the materials are shown in figure 3.7 - 3.9 (Setyawan and Curtarolo, 2010). & (w)
and &, (w), the real and imaginary parts of the dielectric constant, were calculated using
thermo_pw, a Q.E package. Equations (3.46) — (3.53) were used to obtain the optical properties
from the complex dielectric function. Mechanical stability of the materials was checked using the
elastic constants, which were calculated using thermo_pw. Other elastic properties such as the
Cauchy pressure, Vickers hardness, machinability, anisotropy, shear and bulk moduli were derived

from the elastic constants.

4.3: The Quantum ESPRESSO Input File

The input file varies from the calculation being done i.e., whether it is for self-consistent field (scf)
or band structure calculation or variable cell (vc) relax calculation for relaxing and optimizing the
structure and contains the parameters needed for the ab initio calculations. Periodic elements were
accessed from the Materials project site by downloading the required elements after which DFT
parameters such as the formation energy, volume, density and band gap were generated of the
various forms of the compound under study. Selecting a particular structure then generated all the
information about the structure including the lattice parameters, stability and the phonon dispersion
graphs. Figure 4.1 shows a typical input file. From the Figure 4.1, the first image shows the input
file and the flow chart shows how the K-S equations were calculated in Q.E. The &control,
&system and &electrons are called name-lists and the atomic species, atomic positions and k-
points are the input cards. &Control specifies the flux of computation, the &system gives the
specific system, the atomic species specifies the atom and the pseudopotential file used. The

atomic position shows where the atoms are located (Hung er al. 2018).



| &CONTROL ; {Construct Vion (r)]
- calculation="scf', :
' resta rt_mode— "from_scratch', !

prefix="si'

pseudo_dir='. ./pseudo/", § [Initial guess n(r)]
/outd1 r=* /tmp/ | l

. &SYSTEM :

. ibrav=2, : 4-[Compute Vuln) + Vxe [n]J

: ce'[]dm(l) =10.2625, :

i nat=2, l
:gg:%éso_o, [Vrf,r = Vion + Va[n] + V.\'(.-[n]}
ecutrho=720.0, : l

éELECTRONS 1

5 m1x1ng_beta—0 -4 {SOWG [- §V2 + Vess(r)]vi(r) = s.-f;’);-(r')]
conv_thr=1d-8 ; l

ATOMIC_SPECIES :

. Si 28.0855 Si.pbe-rrkj.uPF Compute n(r Z"’*(’

: ATOMIC_POSITIONS (al atg :

©Si 0.00 0.00 0.00
vt 0.25 0.25 0.25

i : 5 NO YES
. K_POINTS automatic : : Energy
444111 : Self-consistent? Forces

Figure 4. 2 A Quantum ESPRESSO mput file relating to the Kohn-Sham self-consistency
scheme. Hung et al, (2018)
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CHAPTER FIVE: RESULTS AND DISCUSSIONS

5.1: Introduction
Results obtained from the structural, elastic, electronic and optical property calculations are

discussed in this chapter. This is followed through with the analysis and discussions of the same.

5.2: Structural Properties

Understanding the structural properties of materials is important in their characterization and
optimization for different applications. The structural properties investigated in this work are the
lattice constant, equilibrium volumes, the bulk modulus and the first derivative. Convergence tests

were carried out first before any other structural calculations were done.

5.2.1: k-points convergence
The converged k-points for all the materials were found to be 8x8x8 and are shown in Figure 5.1(a-

c¢). Although any value above 8x8x8 could have been used, it is important to choose a k-points
mesh that is not too high because the higher the k-point grid chosen, the denser the structure
becomes making the calculations computationally expensive, even though the results would be
accurate. This then means that one should strike a balance between the computational cost and the
accuracy. The value of k-points used for the calculations is shown marked with the red circles in

the optimization figures 5.1(a-c).
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Figure 5. 1 c: k-points convergence for the (i) KGeCl; and (ii) KGeBr; trigonal perovskites

5.2.2: Energy cutoff (ecut) convergence

The energy associated with the plane wave basis is important in computational research methods.
Unlike in the k-points convergence, using higher ecut values only increases the computational time
but does not guarantee increase in the accuracy. For all the materials, convergence was achieved
at 100Ry since the energy remained unchanged beyond this point and is represented in Figure 5.2

(a-c), with the red circles showing the converged value of the ecut.
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Figure 5. 2¢: Ecut convergence for the (i) KGeCl; and (ii) KGeBr; trigonal perovskites

5.2.3: Lattice constant convergence

The length of the unit cell as a function of energy was investigated using GGA-PBE
approximations and it was realized that convergence was achieved for all the materials. Table 5.1
shows the recorded values for the converged lattice constants. Optimization was achieved at the

lowest energy points and this is indicated by the red circles in the graphs in figure 5.3(a-c)

Table 5.1: The obtained values for the lattice constant convergence tests for the KGeX3 materials
calculated using GGA-PBE approximation.

Structure Lattice constant
Material (Bohr)
KGeCls Cubic 9.957
Trigonal 14.426
Tetragonal 13.799
KGeBr3 Cubic 10.467
Trigonal 15.246
Tetragonal 14.538
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Figure 5.3c: Lattice constant convergence for the (i) KGeBr; and (ii) KGeCl; trigonal perovskites

The optimized lattice constants in A for the perovskites in both experimental and DFT work are
shown in the Table 5.2. From Table 5.2, the lattice constants are in agreement with previous work
by Houari et al. (2020), Hamideddine et al. (2022) and Saikia et al. (2022.). The Goldschmidt
Tolerance Factor (GTF) were calculated from equation (5.1).
- Ty + 17y
V2(r5 +1v)

The cubic structures had perfect fit of the cation K with the corner-sharing octahedra, having a

(5.1)

GTF of unity. For the distorted perovskites, the tetragonal structures have the K cation being too
small creating the octahedron tilting distortion. For the trigonal structures, because the GTF is
more than unity, the K cation is too big in relation to the GeCls and GeBrs octahedra making the

octahedra to bulge outwards.
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Table 5. 2: The calculated DFT- (GGE-PBE) lattice constants of the KGeCl: materials in A
compared to previous work by (Hamideddine er al., (2022); Houari et al., (2020); Saikia et al.,
(2020). and the respective tolerance factors.

Material Cubic Pm3m Tetragonal Trigonal R3m
P4mbm
Our Previous Our | Previous | Our Previous GTF
study work study work study work
KGeCls 5570 1.003 (Cubic)
5.269 | 5.290° 7.634 0.957(Tetragonal)
7.302
1.069(Trigonal)
KGeBr; 5.550* 1.000 (Cubic)
5.539 5.570° 7.693 8.068 0.959(Tetragonal)
5.61¢ 1.069(Trigonal)

*(Houari et al., 2020) *(Hamideddine et al., 2022) “(Saikia et al., 2022.)

5.2.4: Murnaghan equation of States

From the Murnaghan EoS, the bulk modulus, its pressure derivative and the equilibrium volumes
are shown in the Table 5.3. The minimum energies from the scf calculations and the Murnaghan
equation are also included. From Table 5.3, the trigonal structures of both the KGeCls and KGeBr3
materials are stable because they occupy the lowest energies of -349.705 Ry and -320.846 Ry,
respectively. Energetically stable materials are in their equilibrium positions hence do not
decompose to any other structure. It was also noted that the trigonal R3¢ and tetragonal P4mbm
have close energies for both the materials with the cubic structures having the highest energy of
the three phases. The results show that the cubic structures had the lowest volumes, thus this led
to the conclusion that the volume was increasing as the symmetry was deviating from the ideal
cubic structure. Additionally, using the total energies, it was noted that for all the structures, the

energy was increasing as the X anion changed from Cl to Br.
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Table 5.3: The calculated DFT- (GGE-PBE) equilibrium volumes in A3 | minimum energies in
Ry, bulk Modulus in GPa and its pressure derivative from Murnaghan EoS of the KGeX3 materials.

Material Volume (V,) | Bulk Modulus Pressure Minimum energy
(A3) (B) (GPa) derivative (B') | Scfcalc. | Murnaghan
(Ry) EoS
(Ry)
KGeCl3 Trigonal 326.330 20.700 4.040 -349.711 -349.705
KGeCls Cubic 145.010 25.800 4.590 -174.843 -174.842
KGeCls 284.470 27.800 4410 -349.696 | -349.696
Tetragonal
KGeBr3 Trigonal 383.230 19.600 3.670 -320.843 -320.846
KGeBrs Cubic 170.880 22.100 3.900 -160.413 -160.412
KGeBr3 330.870 23.800 4.170 -320.837 -320.837
Tetragonal

5.3: Elastic Properties
The elastic properties are necessary in determining the mechanical stability of materials. The

mechanical stability is determined by checking that the elastic constants, C;;, satisfy the Born

stability criteria and are positive. Other elastic properties such as the bulk and shear moduli, the

Young’s and Poisson’s ratios were calculated. Using equation (4.18), equation (4.20) and equation

(4.22), the cubic, tetragonal and KGeBrs trigonal perovskites satisfy the Born stability criterion

hence are stable. For the KGeCls trigonal, the condition C;; > |C;,| is not met and the elastic

constant C;, is negative, that is, C;,=-5.535. The Table 5.4 shows the values of the C;; for the

materials in GPa. There is no previous work reported in literature, to the best of our knowledge,

for the materials regarding their mechanical properties.
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Table 5. 4: The calculated elastic constants (C; j) of the KGeX3 materials in GPa using GGA-
PBE approximations.

Material Ci1 Ci2 Ci3 Ca2 C23 C33 Caa Css Ces
KGeBrs3 49.816 | 9.000 |[9.000 |49.816|9.000 |49.816|7.483 |7.483 |7483
Cubic

KGeCls 56.165 | 9.118 | 9.118 |56.165 [ 9.118 |56.165 | 8.339 | 8.339 | 8.339
Cubic

KGeBr3 36.731 | 21.019 | 11.422 | 36.731 | 11.422 | 51.952 | 9.223 |9.223 | 19.424
Tetragonal

KGeCls 43.844  25.028 | 14.084 | 43.844 | 14.084 | 60.639 | 10.590 | 10.590 | 22.296
Tetragonal

KGeBr3 12.118 | 5.116 |3.486 |12.118 3.486 |6.201 |7.271 |7.271 | 3.501
Trigonal

KGeCls 2058 |-5.535 | 1519 |2.058 (1519 |-0.890 |5.990 |5.990 |3.797
Trigonal

The bulk and shear moduli in the Voigt and Reuss approximations and their averages in GPa are

shown in the Table 5.5. The By, Gy, B, Gg, By, Gy are obtained from equations (3.24) -(3.27),

respectively. The bulk modulus results obtained from the Murnaghan EoS in Table 5.3 was found

to corroborate with the moduli derived from the elastic constants in the case of tetragonal and cubic

structures. From the MEoS, the calculated values of the bulk modulus were 22.100GPa and
25.800GPa for the KGeBr; and KGeCls cubic perovskites, respectively, 23.800GPa and
27.800GPa for the KGeBrs; and KGeCls tetragonal perovskites, respectively and 19.600GPa and
20.700GPa for the KGeBrs and KGeCls trigonal perovskites, respectively. The bulk modulus

obtained from the MEoS and elastic property calculations were not the same in the case of trigonal

structures.
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Table 5. 5: The bulk (By, By, By) and shear (Gy, Gg, Gy) moduli of the KGeX3 materials in GPa
under the Voigt, Reuss and Hill averaging schemes calculated using the GGA-PBE
approximations.

Material BV BR BH GV GR GH
KGeBr; Cubic 22.605 22.605 22.605 12.653 10.022 11.338
KGeCls Cubic 24.801 24.801 24.801 14.413 11.242 12.828
KGeBr3 23.683 23.596 23.639 13.011 11.173 12.092
Tetragonal

KGeCls 28.303 28.258 28.280 15.037 12.990 14.014
Tetragonal

KGeBr; Trigonal 6.069 5.687 5.878 4.832 -1.261 1.785
KGeCl; Trigonal -0.196 -1.742 -0.969 3.537 2412 2975

The Pugh criterion (Pugh, 1954), which is used to determine the ductile or brittle nature of
materials was employed, where a material is ductile if n> % and brittle otherwise. The % ratios are

1.994, 1.933, 1.955, 2.018, 3.293 for the KGeBr; and KGeCls cubic, KGeBr; and KGeCls

tetragonal and the KGeBrs trigonal structures, respectively. This implies that these materials
are ductile since they satisfy n > %. The KGeCls trigonal, whose ratio is -0.326 and way less

than 1.75, is brittle. Using the critical value of the Poisson’s ratio, the cubic and tetragonal
structures have v > 0.26 showing that they are ductile in nature. The bromide and chloride trigonal
perovskites have v < (.26 indicating that they are brittle. The cubic and tetragonal structures also
have positive values of the Cauchy pressure indicating ductility. From the calculations, the Pugh’s
criterion, Poisson ratio and the Cauchy pressure are consistent in identifying the tetragonal and
cubic perovskites as ductile and the trigonal as brittle. For photovoltaic applications, this implies

that the brittle trigonal structure would crack easily when used to make perovskite films for
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solar cells hence unsuitable for photovoltaics. Table 5.6 shows the calculated g, Poisson’s ratio,

Cauchy pressure and Young’s modulus of the materials.

Table 5.6: The Poisson’s ratio (v), Young’s modulus Ej; in GPa, Cauchy pressure and the gof
the KGeX3 materials calculated using the GGA-PBE approximations.

Matenal E v EH Clz = 644
G

KGeBr; Cubic 1.994 0.283 29.093 1..517

KGeCl; Cubic 1.933 0.277 32.761 0.779

KGeBr; Tetragonal 1.955 0.281 30.970 11.796

KGeCls 2.018 0.287 36.059 14.438

Tetragonal

KGeBr; Trigonal 3.293 0.032 3.685 -2.155

KGeCl; Trigonal -0.326 -0.049 5.657 -11.525

The anisotropy, machinability and hardness are given in table 5.7. The shear and Zener’s
anisotropic factors of the cubic perovskites are identical. A,,4, and A, for all the materials are not
equal to one, indicating that the materials are anisotropic in the respective directions. For A3, the
trigonal structures have A; = 1 showing that the materials are isotropic in the {001} planes. The
machinability index of the materials decreases as the material distorts to less structurally ideal
phases, that is, from cubic-tetragonal-trigonal, with trigonal structures having the lowest

machinability index.
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Table 5.7: The anisotropy factors, machinability and hardness of the perovskite materials
calculated using the GGA-PBE approximations.

KGeBr;3 Cubic 0.367 0.367 0.367 0.367 3.021 1.640
KGeCl3 Cubic 0.354 0.354 0.354 0.354 2.974 1.907
KGeBrs; 0.560 0.560 2473 1.174 2.563 1.768
Tetragonal

KGeCls 0.558 0.558 24161 1.148 2.670 1.994
Tetragonal

KGeBr3; 2.563 2.563 1.000 2.077 0.808 0.557
Trigonal

KGeCl3 -12.813 -12.813 1.000 1.578 -0.162 1.089
Trigonal

5.4: Electronic Properties
The electronic properties investigated were the partial density of states (PDOS) and band structure.

Figure 5.4 (a-f) shows the results of the electronic band structures and PDOS. The band gap of a
material, obtained from the band structure, is an important quantity that influences the efficiency
of photovoltaic materials. It is the difference between the minimum of the conduction band and
the maximum of the valence band. For easier calculation of the band gap, the top of the valence
band was shifted to be the same as the Fermi energy and is shown by the dashed line in the plots
in Figures 5.4(a-f). The k-paths used in the band structure calculations were unique to the structure
of the material. For the cubic structures, the k-path followed wasI' = X — M —I'— R — X|M — R.
The k-path for the tetragonal structures was ' — X —M —T—Z—-R—-A—-Z|X—R|M— A . For
the trigonal materials, the k-path followed wasT'— L —B;B—Z —-T - X|Q —F — P, — Z|L — P.
From the band gap values, it was noted that these were increasing as the perovskite was distorting
to lower symmetries, i.e., from cubic to tetragonal to trigonal. Focusing on the change in the X

anion in all the structures, it was observed that as the anion changed from ClI to Br, the band gap
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value decreased. This meant that as the mass of the X anion increased, the band gap was expected
to decrease; the vice versa being true.

The materials showed semiconducting behaviors and have direct band gaps because the maximum
of the valence band and the minimum of the conduction band are located at the same point of
symmetry. The cubic perovskites have the valence band (VB) maximum and the conduction Band
(CB) minimum located at the R. For the tetragonal structures, the CB and VB are located at the Z
and the trigonal structures have the CB and VB located at Z and X|Q.

The band structures had discontinuities at points X|M for the cubic perovskites and points Z|X and
RIM for the tetragonal perovskites. These discontinuities are indicated with blue fonts on the axes.
The trigonal perovskite band structures had no visible discontinuities. The type of semiconductor
can also be identified from the position of the Fermi energy in the band structure plots from Figures
5.4(a-f). For all the materials, since the Fermi energy is closer to the valence band than the
conduction band, it indicates that they are p-type semiconductors (Alsaeedi, 2014). Although the
band gap values were in agreement with previous DFT work, it should be noted that the values
calculated from PBE-DFT are generally expected to underestimate the actual experimental values.
Materials with band gaps in the range of 0.900-2.000 eV are the most efficient for solar energy
absorption since this is the range that solar radiation reaches the earth’s surface (Saikia et al.,
2022). These materials are therefore suitable in making photovoltaic absorber layers, tandem
structures and single junction solar cells. The tetragonal and cubic structures are well in this 0.900-
2.000eV range. For band gaps beyond 2.000 eV, that is, the trigonal structures, they are effective

in making the window and buffer layers of the solar cells.

The PDOS is useful in investigating the detailed band structure of materials. It gives the properties
of the electronic band structure in all the possible positions in the k-space. From the PDOS plots,
it was noted that the conduction band was dominated by the p orbitals of germanium and the
valence band mainly consists of the p orbitals of bromine and chlorine for KGeBr; and KGeCls,
respectively in the cubic structures. It can also be noted that the k orbitals do not contribute much

to the total density of states.
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Figure 5.4 Band structures and density of states of KGeX; perovskites using DFT-(GGA-PBE)
approximation. The Fermi energy level is shown by the horizontal red dashed line. VB maximum and
CB minimum are shown by the red and blue circles, respectively and the discontinuity points are
indicated on the axes with blue font.
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From the band structure graphs, the band gaps were recorded and compared with literature in Table
5.8, and all were direct band gaps, and whose values are in close agreement with those reported in
literature (Hamideddine er al., (2022); Houari et al., (2020); Saikia et al., (2020). The GW
approximation correction of the band gaps is also recorded in Table 5.8. The trigonal structures
were found to have the largest band gaps for both materials. The cubic and tetragonal structures
have band gaps of 0.800eV and 1.200eV for the KGeCls and 0.700eV and 0.900eV for the KGeBr3

materials, showing that they are in close agreement.

Table 5.8: The calculated band gaps in eV of the KGeX3 materials using GGA-PBE and GW
approximations compared to previous DFT reported work by (Hamideddine et al., (2022); Houari
et al., (2020); Saikia et al., (2020).

Band gap (eV) Band gap (eV)
Material | Structure
Our Work Previous work
GGA- GW
PBE
KGeCl3 Cubic 0.800 1.100 0.9007, 0.958"
Trigonal 2.700 2.900
Tetragonal 1.200 1.900
KGeBr; Cubic 0.700 1.040 0.610% 0.689°, 0.910°
Trigonal 2.493 2.58 o
Tetragonal 0.900 1.60 e

s(Houari et al., 2020) ®(Hamideddine et al., 2022) “(Saikia et al., 2022.)
5.5: Optical Characteristics

The real and imaginary parts of the dielectric constant were considered and the other optical
properties such as the reflectivity, refractive index, energy loss, exciton index and absorption
coefficient obtained from these. Figures (5.5) - (5.10) show these results. The minimum energy
range calculated was between 0 — 20.000 eV. In terms of wavelength, this is approximately equal
to 0 - 1242.000 nm. The relation between the energy and the wavelength is as in equation (5.1).
The range of the visible spectrum is 400.000-700.000nm and in terms of energy approximately
equals to 1.774 - 3.105eV.

_hc
T e

A (5.1)

In this case, h is the Planck’s constant, ¢ the speed of light and e is the energy. From Figure 5.5,

of the real part of the dielectric constant against the energy in eV, the &,(0), called the electronic
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part of the static dielectric function (Ghaithan er al., 2020; Saikia et al., 2022.) is 3.860, 4.380,
5.180, 6.320, 6.560 and 9.630 for KGeCls and KGeBrs trigonal, KGeCls and KGeBrs tetragonal
and KGeCls and KGeBr; cubic, respectively. From this, the electronic part of the dielectric function
increases from trigonal - tetragonal - cubic, that is, as the material moves to the structurally ideal
cubic perovskite. Furthermore, the &, (0) increases with increase in the mass of the X element, that
is, from chlorine to bromine. The static refractive index n(0) is the square root of the static
dielectric function (Azam et al., 2019) as shown by the relation in equation (5.2).
n(0) = /&, (0) (52)

From the same Figure 5.5, highest peaks were noticed at frequencies of 5.580, 6.460, 6.540, 8.400,
7.600 and 10.580 at 3.320eV, 2.890eV, 2.66eV, 2.190eV, 1.350eV and 0.480eV for KGeCls and
KGeBrs; trigonal, KGeBrs; tetragonal and KGeCls and KGeBrs cubic, respectively. The peaks are

indicated with red circles.

12 T . T 12 . T T
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10 KGeBr3-Trigonal & 10 KGeCl3-Trigonal =
: (i) ] 1 (ii) i
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1
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Energy (eV) Energy (eV)

Figure 5. 5 A graph of the real part of the dielectric function against the energy in eV for the (i) KGeBr;
and (ii) KGeCl; cubic, tetragonal and trigonal perovskite materials.

The imaginary part spectra, from figure 5.6, is important because it relates to the band structure of
materials (Benchehima et al., 2018; Ghaithan et al., 2020). The principal peaks of the imaginary
part, which are the highest and most noticeable peaks, are located at 3.700, 4.120, 4.330, 5.870,
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5.680 and 6.680 for KGeCls and KGeBrs; trigonal, KGeCls and KGeBrs; tetragonal and KGeCls and
KGeBr; cubic, respectively. These peaks are represented by the red circles in figure 5.6. The
critical onset points are the regions in the graphs before the first peaks are observed. The critical
onset points for the materials are at frequencies of 0.990, 2.748, 1.137, 0.951, 1.124 and 1.029 for
KGeCl; and KGeBr3 cubic, trigonal and tetragonal structures, respectively, represented by the
green circles. These onset points are closely related to the calculated electronic band gaps of the

materials recorded in table 5.8.
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Figure 5. 6 A graph of the imaginary part of the dielectric function against the energy in eV for the (i)
KGeBr; and (ii) KGeCl; cubic, tetragonal and trigonal perovskite materials.

From figure 5.7 of the energy loss against the energy, it is noted that the energy is lost from the
materials gradually from 0 — 5.000eV. At 15.000 — 20.000 eV, that is, in the UV spectrum the
energy loss from the materials increases with the highest peaks showing in this region. In the
visible region (1.774 — 3.105 eV), the energy loss is relatively low for all the materials. This is a
good indication that the materials are good for photovoltaics since most of the energy will be

retained and not lost to the environment,
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Figure 5.7 A graph of the energy loss,L(w), against the energy in eV for the (i) KGeBr; and (ii)
KGeCl; cubic, tetragonal and trigonal perovskite materials.

In figure 5.8 of the absorption coefficients, it is observed that the highest peaks are in the range of
3.917 - 12.568 eV and the materials have broad absorption spectra in the range of 2.500eV -
16.000eV which is in the UV-Vis region of the electromagnetic spectra. This shows that KGeX3

materials in all the three phases are suitable for photovoltaics.
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Figure 5. 8 A graph of absorption coefficient against the energy in eV for the (i) KGeBr; and (ii) KGeCl3
cubic, tetragonal and trigonal perovskite materials.

Figure 5.9 is a plot of the reflectivity against the energy, it shows that KGeBr;3 cubic has the highest
reflectivity in the visible region. For this material, reflectivity starts at the frequency of 0.262 at
0.000eV and gradually increases to the highest value of 0.298 located at 3.955eV. For the KGeBr3
tetragonal perovskite, reflectivity at 0.000eV is 0.186 after which it increases to reach the
maximum reflectance value of 0.267 at 3.735eV. Its chloride counterpart, KGeCls, has the
reflectivity value of 0.150 at 0.000eV and reaches the peak value of 0.234 at 2.669¢V. For the
KGeCls trigonal and (cubic) perovskites, reflectivity at 0.000eV is at 0.105 (0.194) and increases
to the maximum value of 0.189 (0.262) located at 3.515eV (2.485eV). The maximum reflectivity
of all the materials is in the visible region and is indicated on the graph by the red circles.
Comparing the materials’ rates of absorption in figure 5.8 with the reflectivity in figure 5.9, the
reflectivity of the materials is comparatively lower indicating that the materials are good for

photovoltaic applications. This is because the materials absorb more light than they reflect it.
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Figure 5.9 A graph of the reflectivity, R(w), against the energy in eV for the (i) KGeBr; and (ii) KGeCl;
cubic, tetragonal and trigonal perovskite materials.

The refractive index indicates how much light is bent or refracted in a material. Figure 5.10 gives
the refractive indices for the respective materials, the obtained refractive index values are given in
Table 5.9. It is evident that the refractive index and the energy have an inverse relationship and
that the refractive index is large in regions with small energies. For the absorption coefficient,
however the case is opposite because the absorption is smaller in low energy values. The highest
values of the refractive indices are located at 2.390, 2.570, 2.650, 2.910, 2.780 and 3.250 for
KGeCls and KGeBrs; trigonal, KGeCls and KGeBrs tetragonal and KGeCls and KGeBrs cubic,
respectively, indicated by the red filled circles. These correspond to the energy values of 3.180eV,
2.960eV, 2.670eV, 2.190eV, 1.350eV and 0.460eV for the respective materials. The tetragonal
and trigonal structures have the maximum values of the refractive indices in the visible region.
The cubic KGeCls and KGeBr; however, have them located at the infrared and near infrared
regions, respectively. KGeBrs cubic has the highest refractive index of all the materials indicating
that it is much denser and that light bends more as it moves through different media. The static
refractive index, n(0), is the refractive index at zero energy, that is, 0.000eV. For the materials,

the static refractive indices are located at 1.958, 2.094, 2.266, 2.511, 2.560 and 3.113 for KGeCl3
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and KGeBrs; trigonal, KGeCl; and KGeBrs tetragonal and KGeCls; and KGeBrs cubic, respectively,

represented by the green circles. The static refractive index is higher for the bromide materials and

relatively lower for the chloride materials. This index, n(0), is also seen to increase from trigonal-

tetragonal-cubic. The overall trend of the refractive index is similar to that of the real part of the

dielectric constant from figure 5.6.
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Table 5.9: The calculated DFT- (GGE-PBE) refractive indices of the KGeX3 materials
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Material n(w)
KGeCl;s Trigonal 1.926
KGeCl; Cubic 2.585
KGeCl; Tetragonal 2.279
KGeBr3 Cubic 3.092
KGeBr3; Tetragonal 2.512
KGeBr3 Trigonal 2.118
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Figure 5.10: A graph of the refractive index,n(w), against the energy in eV for the (i) KGeBr; and (ii)
KGeCl; cubic, tetragonal and trigonal perovskite materials.
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5.6: Theoretical Efficiency

The Shockley—Queisser limit gives the maximum theoretical efficiency of a solar cell. From the
band gaps obtained from the electronic property calculations, Table 5.10 gives the theoretical
efficiencies the perovskite KGeXs (X=Cl, Br) materials can have in a single p-n junction. It is
observed that the tetragonal structures have the highest theoretical power conversion efficiencies
followed closely by the cubic structures. As reported by Riihle, 2016; Shockley and Queisser,
1961, the maximum theoretical solar conversion efficiency that can be obtained by a solar cell is
33.7% when the band gap is at 1.400eV. The tetragonal structures are closely comparable to this
maximum value and show promising results in photovoltaics.

Table 5.10: The maximum theoretical power-conversion efficiencies of the KGeX3; materials

calculated from the Shockley-Queisser limit alongside their respective band gaps.

Structure Band gap Theoretical efficiency
Material (eV) (%)
KGeCls Cubic 0.800 275
Trigonal 2.700 9.3
Tetragonal 1.200 325
KGeBr3 Cubic 0.700 23.0
Trigonal 2493 12.9
Tetragonal 0.900 30.0
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS

6.1: Introduction
This chapter gives the conclusions drawn from the results, and recommendations for further work.

6.2: Conclusions
This work investigated the structural, elastic, electronic and optical properties of all-inorganic

KGeX3 perovskites for use in photovoltaics. Three phases of the materials were investigated, that

is, the cubic, tetragonal and trigonal phases. All the calculations were done in the Q.E code using

the GGA-PBE approximations. All the calculations were well converged and for the cubic phases,

the lattice constant and band gap values agreed with previous DFT work done. To the best of our

knowledge, the tetragonal and trigonal KGeX3 perovskites have not been studied both

experimentally and computationally hence could not be compared to previous work.

L

In the structural calculations and using the total energies of the materials, the study found out
that the trigonal structures were the most energetically stable compared to the tetragonal and
cubic structures because they had comparatively lower energies of -349.705 Ry and -320.846
Ry for the chloride and bromide perovskites, respectively. Noticing that the cubic structures
had the highest energy, it was concluded that as the symmetry of the perovskite lowered, the
energy decreased to more stable structures. The chloride perovskites for all the three phases
had lower energies than their bromide counterparts showing that the energies increased as the
X atoms were replaced with elements with a high mass number. The tolerance factor for the
trigonal and tetragonal structures were unequal to unity showing that the two structures were
truly distorted. From the tolerance factors, it was found out that for the tetragonal structures,
the cause of the distortion was through an octahedra shift with the octahedra tilting inwards.
However, for the trigonal structures, the K cation was too big in relation to the octahedra

making the octahedra to bulge outwards causing the distortion.

From the elastic properties, the calculated elastic constants were employed in the Born stability
criteria which classified the trigonal structures as mechanically unstable. Furthermore, the
chloride trigonal structure was brittle ruling it out for photovoltaics since the perovskite films
for photovoltaics would crack easily. The brittleness was checked using the Pugh’s ratio,

Cauchy pressure and the Poisson’s ratio. All the three methods identified the trigonal structures
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4.

as brittle. The calculation of the anisotropic factors showed that all the materials were
anisotropic structures save for the trigonal perovskites which are isotropic in the {001} planes

since A; =1

In the electronic calculations, it was found that the tetragonal structures had the most suitable
band gaps for use in photovoltaics, that is, 1.200 eV and 0.900 eV for the chloride and bromide
perovskite, respectively. All the materials had direct band gaps with the maximum of the VB
and minimum of the CB located at R and Z points of the x- axis for the cubic and tetragonal

structures and the Z and X|Q of the trigonal structures, respectively.

From the calculation of the maximum theoretical efficiency from the detailed balance limit,
also known as the Shockley -Queisser limit, the tetragonal structures have theoretical power-
conversion efficiencies of 32.5% and 30% for the chloride and bromide perovskites,
respectively. This phase was found to have the highest efficiencies which were closely
comparable to the maximum attainable theoretical efficiency of 33.7%. The trigonal
structures, because of their wide band gaps, had the lowest theoretical efficiencies. From this
calculation, it was then concluded that the tetragonal structures would make the best materials

for optoelectronic and photovoltaic applications.

For photovoltaic applications, the tetragonal structured materials appear to be more consistent
according to the properties investigated in this study. The trigonal structure, though being
energetically stable, had very large band gaps, that is, 2.700 eV and 2.493 eV for the chloride
and bromide structures, respectively, which are not suitable for photovoltaics. Additionally,

they were found to be mechanically unstable and brittle.

6.3: Recommendations
Studying the electronic, elastic, optical and structural properties is important in determining if a

material can be considered for photovoltaic and other applications.

1. For photovoltaics, we highly recommend the tetragonal structures because they have
shown consistently good properties from the structural, electronic, mechanical and optical

property calculations and the theoretical efficiencies. The trigonal structures would be
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least recommended.

. For the band gap calculation, the GGA-PBE exchange correlational functional used in this
work is known to underestimate the band gap. Work still needs to be done using different
approaches like the A-sol and other hybrid exchange correlation approximations for more

accurate band gap precisions.

It is also recommended for future work to employ full potential linearized augmented plane

wave plus the local orbital (FP-LAPW+Lo) method.

. For structures like the trigonal phase where the band gap was found to be way high for
photovoltaics, we recommend band gap engineering studies to be done to tune the band

gaps for photovoltaics.

In comparison with the cubic structures, the distorted tetragonal perovskites proved to be
more stable and better suited for photovoltaics. Therefore, there is still the need to
investigate the other lower symmetry perovskites like the monoclinic, orthorhombic and

trigonal R3m in the quest for more stable and better suitable photovoltaic materials.

. We also recommend that other stoichiometries of KGeX3 perovskite be studied with

inclusion of the double, triple and mixed halide perovskites.

. Other than photovoltaics, we recommend that these materials be studied for other

applications as well.
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APPENDICES

APPENDIX A: Pseudopotential files

Four pseudopotential files were used in this calculation, that is, for potassium, germanium,

chlorine and bromine. They are as shown below.

Al: Potassium pseudopotential file- K.pbe-spn-rrjkus_psl.1.0.0.UPF
<UPF version="2.0.1">

<PP_INFO>

Generated using "atomic" code by A. Dal Corso v.6.2.2

Author: ADC

Generation date: 4May2018

Pseudopotential type: USPP

Element: K

Functional: PBE

Suggested minimum cutoff for wave functions: 41. Ry

Suggested minimum cutoff for charge density: 277. Ry

The Pseudo was generated with a Scalar-Relativistic Calculation

Local Potential by smoothing AE potential with Bessel fncs, cutoff radius: 1.5000

Pseudopotential contains additional information for GIPAW reconstruction.

Valence configuration:

nl pn 1 occ Reut Reut US E pseu
3S 102.00 1.200 1.300 -2.597645
4520 1.00 1.200 1.300 -0.170438
3P 2 16.00 1.400 1.600 -1.382750
4P 31 0.00 1.400 1.600 -0.059132
Generation configuration:

35 102.00 1.200 1.300 -2.597649
4S 20 1.00 1.200 1.300 -0.170441
3P 2 16.001.400 1.600 -1.382755
4P 31 0.00 1.400 1.600 -0.059133
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3D 32 0.00 1.200 1.700 0.050000
3D 32 0.00 1.200 1.700 1.000000

Pseudization used: troullier-martins

A2: Germanium pseudopotential file- Ge.pbe-n-rrjkus_psl.1.0.0.UPF
<UPF version="2.0.1">

<PP_INFO>

Generated using "atomic" code by A. Dal Corso v.6.3

Author: ADC

Generation date: 4Sep2018

Pseudopotential type: USPP

Element: Ge

Functional: PBE

Suggested minimum cutoff for wave functions: 20. Ry
Suggested minimum cutoff for charge density: 116. Ry

The Pseudo was generated with a Scalar-Relativistic Calculation
L component and cutoff radius for Local Potential: 2 2.2000
Pseudopotential contains additional information for GIPAW reconstruction.
Valence configuration:

nl pn 1 occ Reut Reut US E pseu

4S 1 02.00 1.500 1.700 -0.862224

4P 2 1 2.00 1.500 2.000 -0.286299

Generation configuration:

4S 1 02.00 1.500 1.700 -0.862222

4S 1 00.00 1.500 1.700 0.300000

4P 2 1 2.00 1.500 2.000 -0.286298

4P 2 1 0.00 1.500 2.000 0.300000

4D 32 -2.00 2.200 2.200 0.500000

Pseudization used: troullier-martins

A3: Chlorine pseudopotential file- Cl.pbe-n-rrjkus_psl.1.0.0.UPF
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<UPF version="2.0.1">

<PP_INFO>

Generated using "atomic" code by A. Dal Corso v.6.3

Author: ADC

Generation date: 4Sep2018

Pseudopotential type: USPP

Element: Cl

Functional: PBE

Suggested minimum cutoff for wave functions: 45. Ry
Suggested minimum cutoff for charge density: 223. Ry

The Pseudo was generated with a Scalar-Relativistic Calculation
Local Potential by smoothing AE potential with Bessel fncs, cutoff radius: 1.8000
Pseudopotential contains additional information for GIPAW reconstruction.
Valence configuration:

nl pn 1 occ Reut Reut US E pseu

35S 102.00 1.200 1.600 -1.520835

3P 215.00 1.300 1.600 -0.631741

Generation configuration:

35S 102.00 1.200 1.600 -1.520832

3S 100.00 1.200 1.600 6.200000

3P 215.00 1.300 1.600 -0.631738

3P 21 0.00 1.300 1.600 3.200000

3D 32 0.00 1.300 1.600 0.100000

3D 32 0.00 1.300 1.600 0.300000

Pseudization used: troullier-martins

Ad4: Bromine pseudopotential file- Br.pbe-n-rrjkus_psl.1.0.0.UPF

<UPF version="2.0.1">
<PP_INFO>
Generated using "atomic" code by A. Dal Corso v.6.3

Author: ADC
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Generation date: 4Sep2018

Pseudopotential type: USPP

Element: Br

Functional: PBE

Suggested minimum cutoff for wave functions: 49. Ry
Suggested minimum cutoff for charge density: 196. Ry

The Pseudo was generated with a Scalar-Relativistic Calculation
L component and cutoff radius for Local Potential: 2 1.7000
Pseudopotential contains additional information for GIPAW reconstruction.
Valence configuration:

nl pn | occ Reut Reut US E pseu

45 102.00 1.200 1.500 -1.479845

4P 2 1 5.00 1.400 1.700 -0.577675

Generation configuration:

4510 2.00 1.200 1.500 -1.479837

4S 1 00.00 1.200 1.500 6.300000

4P 2 1 5.00 1.400 1.700 -0.577671

4P 2 1 0.00 1.400 1.700 6.300000

4D 32 -2.00 1.700 1.700 0.500000

Pseudization used: troullier-martins

APPENDIX B: Sample input file

The input files contain all the information needed for the first principle calculations.

B1: Sample input file for cubic structure (KGeCl3)
&Control

calculation = "scf'

restart_mode="from_scratch’,

prefix="KGeCl3',
pseudo_dir="mnt/lustre/users/mnamisi/pseudo’,

outdir= *. /tempdir’,

tprnfor =. true.,
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tstress=. true.

/

&System

ibrav=1,

celldm (1) =9.95687,

nat=35,

ntyp=3

ecutwfc = 100.0,

ecutrho = 800.0,

occupations="'smearing’,

smearing='m-v',

degauss=0.0146997236,

/

&Electrons

mixing_mode = "plain’

mixing_beta = 0.3

conv_thr = 1.0d-6

mixing_fixed_ns =0

/

ATOMIC_SPECIES

Cl 35.453 Cl.pbe-n-rrkjus_psl.1.0.0.UPF
Ge 72.64 Ge.pbe-n-rrkjus_psl.1.0.0.UPF

K 39.0983 K.pbe-spn-rrkjus_psl.1.0.0.UPF
ATOMIC_POSITIONS (crystal)

K 0.000000000 0.000000000 0.000000000
Ge 0.500000000 0.500000000 0.500000000
C10.500000000 0.000000000 0.500000000
C10.500000000 0.500000000 0.000000000
C1 0.000000000 0.500000000 0.500000000
K_POINTS {automatic}

888000
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APPENDIX C: Murnaghan Equation of states

The Murnaghan equation of states was used to obtain the volumes, bulk moduli and its first
derivative. Figures 6.1 (a-f) show the results obtained.
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perovskite materials.
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APPENDIX D: Publications from this Work

With this work, we managed to write up three research articles which are as follows;

 ®

DFT study of cubic, tetragonal and trigonal structures of KGeCls perovskites for
photovoltaic applications, Computational Condensed Matter, Elsevier.

Photovoltaic efficiency of Rb2InAgCls double perovskites: A DFT study, (Under peer
review in the Royal Chemical Society)

DFT study of cubic, tetragonal and trigonal structures of KGeCls perovskites for
photovoltaic applications (Under peer review in AIP advances)

APPENDIX E: Relevant Conferences and Workshops Attended

1

Materials Science and Solar Energy Network for Eastern and Southern Africa MSSEESA)
Conference (16" - 18" November 2022)- Eldoret University, Kenya (Hybrid)

Science Communication and Data Management Workshop (25" - 29" April 2022) -
University of Nairobi, Kenya

DFT & MD Workshop (7™ - 8" April 2022) - Masinde Muliro University of Science and
Technology, Kenya

Computational Physics Workshop (24™ - 25" February 2022) - Egerton University, Kenya
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