THEORETICAL CONSIDERATIONS OF
DRAWING A ROJND TUBE THROUGH A
CCNICAL DIE AND A POLYGONAL PLUG

By
STEPHEN PHARES ^NG'ANG'A
B.Sc. Mechanical Engineering

A thesis submitted in partial fulfilment
for the award of the degree of Master of Science in Engineering in the University of Nairobi

Mechanical Engineering Department

This thesis is my original work and has not been presented for a degree in any other University.

This thesis has been submitted for examination with my approval as University Supervisor

Dr. S.M. Maranga
CONTENTS Page
Frontispiece
Contents iii
Acknowledgements vii
Abstract
Notations x
CHAPTER CNE: A GENERAL LYIRODUCTION . ~ 1
CHAPTER TO: REVIEW OF THE LITERATURE 5
2.1 Introduction 5
2.2 Equilibrium approach in drawing 7
2.2.1 Axisyrcmetric bar drawing 7
2.2.2 Axisynmetric tube drawing 8
2.3 Upper and lower bound solutions 11
2.3.1 Drawing of section rods 14
2.3.2 Hibe drawing 14
CHAPTER THREE: DERIVATION OF THEORY FOR THE UPPER AND LOWER BOUND SOLUTIONS 17
3.1 Introduction 17
3.2 Upper bound solution 19
3.3 Deformation pattern 21

iv

Page

3.4 Velocity field 25
3.5 Strain rates 30
3.6 Total pcwer required for deformation 33
3.6.1 Internal power of deformation 33
3.6.2 Pcwer loss in shearing material at inlet and exit shear surfaces 38
3.6.3 Frictional losses at the tool-workpiece interfaces 42
3.6.3.1 Apparent strain method 43
3.6.3.2 The mean equivalent strain 50
3.6.3.3 Work hardening factor B 52
3.6.3.4 Evaluation of and I_{2} 53
3.7 Lower bound solution 55
3.7.1 Deformation pattern of' the lower boundsolution55
3.7.2 Derivation of the lower bound solution 56
3.8 Computer program g_{2}Flow chart for the upper bound solutionfor polygonal drawingFlow chart for the lower bound solution forpolygonal drawing72672
Page
Flow chart for the upper bound solution for axisyrrmetric drawing 75
Flow chart for the lower bound solution foraxisyrrmetric drawing76
CHAPTER FOUR: RESULTS 77
CHAPTER FIVE: DISCUSSION OF RESULTS 90
5.1 Introduction 90
5.2 Upper bound 90
5.3 Lower bound 93
5.4 Limitation of achievable reduction of area 96
CHAPTER SIX: CONCLUSIONS 98
CHAPTER SEVEN: SUGGESTIONS FOR FURTHER WORK 100
REFERENCES 102

APPENDICES

Page
A-1 Upper bound solution
A-1.1 Detailed deformation pattern Al
A-1.2 Derivation of the flow path parameters Al5
A-1.3 Equivalent plug semi-angle and cross-sectionalarea of tube materialA23
A-1.4 Derivation of velocity discontinuity sufferedby an element entering the deformation zoneA29
A-2 Lower bound solution -^33
A-2.1 Lower bound numerical integration A33
A-2.1.1 Gecmetrical derivations A34
A-2.1.2 Development of the recursive equations toevaluate the draw stress and the meanpressureA34
A-3 Canputer programmes
A-4 Tabulated sample solutions of the upper andlower bound for polygonal and axisynmetricdrawingA57
A-5 Equations for equivalent axisynmetricdrawingA72

I express my appreciation to my supervisor Dr. S.M. Maranga who has given me valuable guidance, advice and encouragement in the preparation of the thesis. Prof J.K Musuva deserves special thanks for the encouragement he has given me during the preparation of the thesis.

I thank the staff of the mechanical engineering workshops and particularly the chief technician Mr. Paul Ndegwa for the assistance he has given during the final stages of the project.

I wish to thank the DAAD Secretariat for the financial assistance they gave throughout the research period.

Finally, special thanks go to Ms F. Kollikho for typing the manuscript to very high standards.

ABSTRACT

Theoretical and practical investigations in the drawing of the following sections directly from an entirely round stock have been reported: polygonal bars, polygonal tubes with the outside and bore surfaces geometrically similar, and tubes with the outside polygonal surface and circular bore. The derived theoretical solutions enabled the industrialists to design tools to manufacture tubing or bar stocks directly from round with minimum amount of energy being dissipated in the drawing process; the resulting optimal tools also produced relatively superior polygonal stocks. This thesis extends the theoretical analysis to the manufacture of a polygonal tube by drawing an entirely round stock through a deformation passage formed by a conical die and a polygonal plug.

Using a prescribed shape of the plug and a regular conical die, two solutions of the drawing loads were derived: the lower bound and the upper bound. The lower bound load considered the homogeneous deformation and the friction work and thus ignored the redundant work. The upper bound value of the drawing force was derived from the minimum energy associated with the velocity pattern obtained by conformal napping. Unlike the axisynmetric drawing on a mandrel, the

Abstract

plug profile was corrplex; an equivalent plug semi-angle was therefore used to enable comparisons to be made between deformation passages formed by a known die profile and the polygonal plugs and also to facilitate the optimization of the process parameters.

The graphs of the drawing forces drawn against the various parameterrs such as the die angle, the equivalent plug angle, the reduction of area as well as friction snowed trends similar to those tried practically and reported in the literature of polygonal tube drawing directly from round stock.

NOTATION

	Diameter of the inlet circular section
$\mathrm{D}_{\mathrm{a}}\left(=2 \mathrm{R}_{\mathrm{a}}\right)$	Diameter of the outlet circular section
H_{a}	Diagonal length of the drawing plug equal to the
	diameter circumscribing the polygon
L	Die length measured along the draw axis
$\mathrm{N}_{\text {s }}$	Nurrber of sides of the drawn polygonal tube
t.	Inlet tube wall thickness
$\mathrm{d}^{\wedge}\left(=2 \mathrm{r}_{\mathrm{b}}\right)$	Plug diameter equal to the bore of input stock
Ak	Cross-sectional area at entry
A_{a}	Cross-sectional area at exit
A_{f}	Ratio of cross-sectional area at entry to that at
	the exit
red, 'r'	Reduction of area
t_{a}	Minimum tube wall thickness along the diagonal
	of the drawn tube
K	Factor ($0 \lll i$) expressing the tube wall thickness
	at the diagonals in terms of D_{a} i.e. $\mathrm{t}_{\mathrm{a}}=<\mathrm{D}_{\mathrm{a}}$
$\mathrm{d}_{\text {e }}$	Diameter of an equivalent circular section of the
	plug at the exit
a	Die semi-angle of the conical surface
ct	The equivalent plug semi-angle; it is the semi-angle
	of a conical plug corresponding to the polygonal
	tube drawing plug through a conical die for the same

 reduction of area and the same die length
 | ${ }^{\text {a }}$ c | Plug semi-angle of the conical surface of a polygonal section drawing plug |
| :---: | :---: |
| a_{s} | Plug semi-angle of the flat surface of a polygaial |
| | section drawing plug |
| $\mathrm{X}_{\text {c }}$ | Angle subtended by the conical surface of a symmetric |
| | section of the plug at the draw axis |
| A_{3} | Angle subtended by the flat surface of a symnetric |
| | section of the plug at the draw axis |
| 3 | Included angle of a syrrmetric section of the plug |
| p, 9, <p | General spherical co-ordinates |
| p | Radial distance frem the virtual apex of the conical |
| | surface of die to the centroid of the assumed shape |
| | element at the inlet section |
| 9 | Inclination of the radius to the tube axis |
| 4> | Inclination of a particle measured in a plane |
| | perpendicular to the draw axis |
| f | Relative angular deflection of an element measured |
| | in the $\mathrm{p}-\mathrm{Q}$ plane |
| n | Relative lateral displacement of the assumed shape |
| | element referred to the inlet |
| | Velocities in the p, 9 and 4> directions |
| | The mean coefficient of friction at the die-tube |
| | and plug-tube interfaces |

1. A GENERAL INTOCDUCTICN

The prevailing economic factors such as manpower, equipment and energy facing the world today force industry to be en the look-out for alternative ways of manufacturing products for exajrple the manufacture of polygonal products by drawing or extrusion.

Hie project undertook to investigate the mechanics of drawing polygonal tube from round through a cylindrical die on a polygonal plug. This is a process whereby the bore of the tube changes from round to the polygonal shape whilst the external surface remains circular. The process would be Important to industry in for exanple the manufacture of spanners and locking devioes. Such a process would bring significant savings in the cost of raw materials, tooling, pcwer and labour. In addition the process would inpart improved mechanical properties on the final product.

The aim of the investigation was to establish a theore solution. The solution provides an estimate of the forces on the drawing tools, the optimum design of the tools and an understanding of the flow of the deforming metal. This leads to an efficient utilization of material and selection of a draw
bench.

The project is an extension of the work in polygonalbar and -tube drawing. The drawing of regular polygonal bars was investigated experimentally and theoretically by Basily \{3\}; the drawing of regular polygonal tube from round through a polygonal die on a polygonal plug by Kariyawasam \{4\}; and the drawing of regular polygonal tube from round on a cylindrical plug by Muriuki \{5\}. In each of the forementicned drawing processes, the theoretical predictions agreed reasonably with the actual data. There is havever, no known literature on the drawing of regular polygonal tube from round through a cylindrical die on a polygonal plug. This project therefore undertakes to study the drawing process and establish a theoretical model to predict the drawing- and plug- forces for a range of the process parameters.

In the works of the three forementioned authors (3, $4 \& 5$) on polygonal drawing, the workpiece of initially circular section had to transform to a polygonal section in a single pass. The passage through which the workpiece deformed into the final product combined both conical and plane surfaces of different inclinations to the draw axis to allow for gradual deformation. The shapes of the dies and the plugs in case of tubing included

Abstract

the pyramidical plane surfaces, the elliptical plane/conical surfaces, the triangular plane/conical surfaces and the inverted parabolic plane/conical surfaces. In this project, the elliptical plane/conical surface profile of the plug and a straight conical surface for the die were selected for the theoretical analysis.

In chapter (2), a review of the drawing theories is presented. Unlike the case of axisyrrmetf'ic drawing, in the polygonal drawing processes, the flow pattern is very complicated and the resulting theoretical models are solved numerically using a computer. Two solutions are established in this project: the first is based on the equilibrium of forces and predicts a lcwer bound solution; and the second predicts an upper bound solution and is based on a velocity field that minimises the energy required for the process and incorporates an apparent strain method and Coulomb friction. The actual draw load is bracketed by the two solutions.

The corresponding axisyrrmetric tube drawing solutions are also analysed with the aid of a computer to facilitate comparison between polygonal tube drawing and axisyrrmetric tube drawing.

Details of the derivations are in chapters (3) and the
appendix. The oamputer programs developed to solve the solutions are in the appendix.

2. REVIEW OF THE LITERATURE

2.1 INTRODUCTION

Drawing of metal is an ancient craft, dating back to ancient Egypt where the process was used to draw ornamental wires. Today, large quantities of rods, tubes, wires and special sections are finished by cold drawing \{6\}.

Cold drawing gives a good dimensional control, a good surface finish and irrproved strength of the drawn metal $\{6\}$.

However, a limit on the reduction of area possible in a single pass is determined by the condition that the longitudinal stress at the exit cannot exceed the strength of the drawn metal. It is important, therefore to have the tensile stress on the drawn metal as lew as possible.

A lot of literature, both theoretical and experimental has been published on the drawing process. The factors considered in the various theories include the die geometry, mechanical properties of the work material, the coefficient of friction, etc. A wide review of the drawing process is given by Wistreich \{l\}.

Recently, investigators have been mainly working on the drawing of non-circular sections e.g. polygonal rods and tubes, channels, etc. which had not received attention in the past. In these cases, the flow is either syirmetric or asynmetric as opposed to plane strain deformation for drawing sheets or axisyrrmetric drawing of bars and tubes. Among recent investigators on polygonal drawing include Juneja and Prakash \{2\}, Basily \{3\}, Kariyawasam \{4\} and Muriuki \{5\}. There is however, no known literature, experimental or theoretical on the direct drawing of round tube to a tubular section having an external circular surface and a polygonal bore inspite of the importance of this type of shape in engineering works such as manufacture of spanners and locking devices. This project therefore undertakes to establish a general theoretical solution on the direct drawing of such a tube.

Metal working theories can be grouped broadly under the following headings:-
(i) equilibrium approach,
(ii) slipline field approach/
(iii) upper and lower bound solution,
(iv) energy approach where the total work consists of homogeneous, redundant and friction components,
(v) visioplasticity, and
(vi) finite element method.

A comprehensive review for the equilibrium approach is presented in the next section and that for the upper and lower bound solution in section 2.3. These two theories formed the basis of the theoretical analysis presented in chapter (3).

2.2 EQUILIBRIUM APPROACH IN DRAWING

This method is based on the equilibrium of forces.
It therefore takes into account only that distorsion necessary for the shape change and neglects any redundant deformation. When using the theoretical models derived by this method, the errors involved for exairple in the drawing forces may be large especially for large die angles with small reductions.

However, the loads determined by this method have been found to agree closely with experimental results in seme processes especially wire drawing \{l\}.

2.2.1 AXISYMMFIBIC BAR DRAWING

One of the first useful equations in wire drawing was proposed by Sachs \{6\} in 1927. It was assumed that plane cross-sections of the workpiece remain plane as they pass through the die; the stress distribution on such planes is uniform;
the die surface is a principal plane; the mean yield stress (Y) is a constant; Coulomb friction applies and that this friction does not affect the stress distribution. By considering the equilibrium of forces and applying Tresca's yield criterion, the following expression for the drawing stress was obtained:-

$$
\begin{equation*}
a_{z a}=Y_{m}\left(\frac{1+B}{B}\right) \quad 1-\binom{D_{-}}{D_{b}}^{2 B} \tag{2.1}
\end{equation*}
$$

where $B=u \cot a$,
U is the mean coefficient of friction
a is the mean die semi-angle
Y_{m} is the mean yield stress
D_{a} is the diameter at exit and
D^{\wedge} is the diameter at entry.

Several papers on drawing processes using Sach's approach have been published; a comprehensive review is presented by Blazynski \{7\}.

2.2.2 AXI5YVIMETRIC TUBE DRAWING

The methods of deforming tubes by cold drawing are based on three fundamental processes, viz. sinking, plug drawing and mandrel drawing. In the sinking process, the tube is drawn without any internal support resulting in a decrease in tube
diameter with ideally no change in wall thickness. Wall thickening may take place but it rarely exoeeds 7\%. In the plug drawing process, the tube is drawn over a fixed or floating plug positioned in the die throat. In practice, a small amount of sinking is present in the process using a plug; there is a reduction in both the diameter and the wall thickness. In the mandrel drawing process, the internal tool moves with respect to both the tube and the die.

In 1946, Sachs and Baldwin \{ll\} derived a formula for the draw stress in the sinking of thin walled-tubing: -

$$
\begin{equation*}
\left.\sigma_{z a}=Y_{m}^{\prime}\left(\frac{1+B}{B}\right) \right\rvert\, 1-\left(\frac{D_{a}}{D_{b}}\right)^{B} \tag{2.2}
\end{equation*}
$$

where $B=u \cot$ oi
D_{a} and D^{\wedge} are the mean diameters at exit and entry respectively and
$Y_{m}^{\prime}{ }^{\wedge} 1-1 \quad Y$ is the modified mean yield stress from the von Mises yield criterion.

The solution was based on the following assumptions: -

A pressure normal to the working tool-metal interface exists on the interface of tube and die and is a principal stress; a shear stress exists on the interface because of fricticn; transverse sections are free of shear stresses; the
normal stress acting on the transverse sections is uniformly distributed over the cross-section and is a principal stress; the wall thickness is small in corrparison to the tube diameter; the wall thickness of the tube remains constant throughout the process.

Oie of the limitations on the application of the equilibrium solutions is that they only account for homogeneous work and friction work and no account is taken for the redundant work. Hcwever, various investigators have proposed the incorporation of a redundancy factor in the theories and a carprehensive review is presented by Blazynski \{7\}. A more general method of accounting for the effect of redundancy on the parameters and mechanics of various processes was proposed by Blazynski and Cole \{ll\}. The authors extended Baldwin and Sachs \{17\} theory to account for redundant work by obtaining the difference between the loads of the total and useful deformation. An upper bound solution for the sinking process incorporating the effect of redundancy has been extensively treated by Avitzur \{12\}. Avitzur assumed the deforming zone to be bounded by spherical shear surfaoes with their centres at the virtual apex of the die. The flew through the die was thus expressed by kinematically admissible velocity field.

2.3 UPPER AND LOWER BOUND SOLUTIONS

Prager and Hodge (16) formulated the upper bound theorem for a rigid perfectly plastic material. The theorem states that among all kinematically admissible strain rate fields, the actual one minimises the power required to effect a given process. With the additional assumption that the material is a von Mises material \{12\}, the final upper bound expression beccmes: -

$$
\begin{equation*}
J^{*}=2 k \int_{v} \sqrt{\frac{\varepsilon_{2}}{i j}} \dot{\varepsilon}_{i j} d v+\int_{S_{\Gamma}} \tau|\Delta \dot{u}| d s-\int_{S_{t}} T_{i} \dot{u}_{i} d s \tag{2.3}
\end{equation*}
$$

The actual externally supplied power J is never higher than that carputed by using equation (2.3). The first term expresses the power for internal deformation over the volume of deforming body. The second term includes shear power over the surfaces of velocity discontinuities including the boundaries between the tool and material. The last term includes power supplied by predetermined body tractions e.g. the back tension in wire drawing.

The normal component of velocity across a shear boundary between two zones must be continuous because of volume constancy. Parallel to the shear surface, a velocity discontinuity may exist. Also since the velocity of the tool is prescribed, the normal

Abstract

compcnent of the postulated velocity field for the deforming material should be equal to the normal caipcnent of the velocity of the tool over the surface of contact. When the postulated velocity field satisfies the relaxed continuity requirements, i.e. permitting velocity discontinuities parallel to the shear boundary, it is called a kinematically adnissible velocity field \{12\}.

Kinematically actnissible solutions are useful in that in addition to predicting the loads required for a certain process, it is also possible to optimise the process taking into consideration the effects of various parameters. Also the proportion of the redundant deformation and the defects such as shaving, central burst, dead metal zone, etc. can be predicted. The approach also unveils information to eliminate the various defects.

The lower bound theorem states that among all statically admissible stress fields, the actual one maximizes the expression

$$
\begin{equation*}
\mathrm{I}=\mathrm{V}_{\mathrm{v}} \mathrm{~T}_{\mathrm{i}}^{\mathrm{u}} \mathrm{i}_{\mathrm{i}}^{\mathrm{ds}} \tag{2.4}
\end{equation*}
$$

where I is the computed power supplied by the tool over surfaces over which the velocity is prescribed, T^{\wedge} is the normal component of traction over the prescribed surfaces and
ii_{i} is the relative velocity between the tool and workpiece.

The stress field describing the stress distribution within the deforming zone should satisfy the following requirements:- It should be a smooth function; it should obey the equilibrium equations; it should satisfy the surface conditions when surface tractions are prescribed and the state of stress does not violate the yield criterion. Such a stress field is called a statically admissible stress field.

Different kinematically admissible velocity fields can be assumed to determine a value of J*. For the lowest value of J*, it is presumed that the velocity field that led to it is approaching the actual velocity field.

Several statically admissible stress fields can be assumed with a view to obtaining a value for I. For the highest value of I, it is presumed that the stress field that led to it is closer to the actual stress field. For actual stress and strain rate fields, $\mathrm{J} *=\mathrm{I}=$ actual power.

A nurrber of investigators have developed the upper bound technique and applied it to specific problems. A brief recount of the more recent work relevant to the current research is presented in the next two subsections.

2.3.1 DRAWING OF SECTION RODS

In 1975, Juneja and Prakash \{2\} obtained an upper bound solution for the symmetric drawing of polygonal sections. The solution predicted the cptimum convergent angles of the die surfaces for the minimum drawing stress and the critical convergent angles for the formation of a dead metal zone. The draw stress was observed to decrease rapidly to that of the axisymnetric solution by Avitzur \{12\} as the nunber of sides of section increases.

Concurrently but independently, Basily \{3\} obtained an upper and lover bound solution for the asynmetric drawing of regular polygonal bars from round bar. It was shown that the equivalent die angle can be optimised for every relevant combination of the coefficient of friction and reduction of area. It was further shewn that as the number of sides of the drawn section rod increases, results of both the upper and lower bound solutions approach those of the corresponding axisyrrmetric case.

2.3.2 TUBE DRAWING

A general upper bound solution was derived for axisymnetric contained plastic flow occuring in processes like
drawing and extrusion of tubes and wires by Juneja and Prakash \{13\}. The solution was extended to particular cases for instance plastic flow through conical dies using a plug or a mandrel.

Kariyawasam \& Sansome \{4\} investigated the process of direct drawing of round tube to any regular polygonal shape both experimentally and theoretically. In addition to designing draw tools optimised to give the least work of deformation, the effect of diameter to thickness ratio of the undrawn tube and the effect of reduction of area on the draw force was also investigated.
wa Muriuki \{5\} investigated the direct drawing of regular polygonal tube from round on a cylindrical plug both experimentally and theoretically. The derived theoretical solutions were based on a method of conformally mapping triangular elements in the inlet plane to corresponding triangular elements in the exit plane. Several sets of the die profiles shown in Figure 3.2 on page (20) were tested experimentally. The elliptical plane/conical surface die produced results which agreed fairly well with the predicted values. Hie reports by Basily \& Sansome \{3\} and Kariyawasam \& Sansome $\{4\}$ also recommended this type of the die profile to be the optimal

This project therefore selected the elliptical plane/ surfaces to be the profile of the plug to be investigated.

3.1 INTRODUCTION

Equations for the upper and lower bound solution in the drawing of regular polygonal tube from round through a cylindrical die on a polygonal plug are developed in this chapter (See Figure 3.l). Close pass drawing is assumed in the derivations.

The deformation passage is complex and numerical integration was used to obtain the solutions for any given set of drawing parameters. The deformation pattern was selected such that the difference between the two bounding loads is as small as possible since the actual load lies between the two limits.

The upper bound solution was obtained by equating the total power derived for the prescribed deformation pattern to the applied power. The development of the velocity field for the upper bound solution is described in section 3.4 and Coulomb friction was incorporated by an apparent strain method presented in section 3.6.3.1 on page (43).

Figure 3.1 ISCMmiC DRAWING OF THE DEFORMATION PItOCESS IN THE DRAWING OF POLYQDNAI TOI3E FRCM ROUND ON A POLYGONAL PLUG

The derivation for the lcwer bound solution was based on the equilibrium of forces and Tresca's yield criterion. The solution was developed for the elliptical plane/conical surface plug (Figure 3.2) and a cylindrical die.

Equations for the lower and upper bound solution for axisyrrmetric drawing are presented in appendix $A-5$ on page (A72)

The computer programmes presented in Section 3.3 provides the results for the upper and lower bound solution for polygonal drawing and also for axisyrrmetric irawing for the purpose of comparison.

3.2 UPPER BOUND SOLUTION

In the upper bound solution, the minimum energy required to deform the material is calculated. In addition to the homogenous deformation, relative shearing at the inlet and outlet regions of the deformation zone is considered. FUrther relative shearing of the material elonents in the deformation zone is also considered and finally, friction between the deforming metal and the tools is accounted for using Coulomb's relationship.

Figure 3.2 ISOMETRIC DRAWING CF THE GENERAL FEATURES OF THE FOUR BASIC SHAPES OF THE PLUG, SIMILAR TO DIE SHAPES INVESTIGATED IN REFERiiNOES 3, 4 AND 5.
(a) Pyramidical plane surface
(b) Elliptical plane/conical surface
(c) Triangular plane/conical surface
(d) Inverted parabolic plime/conical surface

A velocity field is assumed and if the deforming metal obeys von Mises yield criterion and the Levy-Mises flow rule, the upper bound solution described in section 2.3 of Chapter 2 indicates that the actual strain rate field e^{\wedge} is the one that minimises the expression given by equation (2.3) on page 11

The velocity field is derived from a ccnformally mapped deformation pattern described in section 3.3. Having derived the velocity field, the minimum value of $J *$, the power to effect the process, is obtained for the given set of drawing parameters.

3.3 DEFORMATION PATTERN

The entry plane ($\mathrm{X}^{\wedge} \quad$ (see Figure 3.3) is defined as the plane normal to the die axis through the point where the outermost tube elements $\left(D=D^{\wedge}\right)$ first contact the die and start to deform.

Similarly the exit plane ($\mathrm{X}_{\mathrm{cl}} \underset{2 L}{\mathrm{Y}}$) (Figure 3.3) is the plane normal to the draw axis through the point where the outermost material ($D=D_{a}$) starts to flew parallel to the draw axis and deformation ceases.

(a) ENIRY PLANE

FIOTRE 3.3 DEFORMATION PATITSRN TOR THE DRAWING OF REGUUR POLYGONAL TUBE FRCM ROUND

The method applied for obtaining the deformation pattern is based on conformally mapping each triangular element in the inlet plane to the corresponding triangular element at the exit plane (Figure 3.3).

At the exit plane, the cross-sectional area of the polygonal tube is banded by (N-2) hyperbolae, in each of which the focal distance a^{\wedge} is adjusted to suit the asymptotes such that the hyperbola corresponding to the inner surface is almost coincident with the flat surface of the polygonal tube. The outermost curve remains circular corresponding to the die surface. The area between consecutive curves is calculated. Assuming a constant reduction in area, the corresponding crosssectional area at the inlet plane is determined and hence the radii bounding it (see Figure 3.4).

The banded area at the inlet cross-section of the tube is divided into ($M-1$) equal sectors. Each sector, say ABCD, is further divided into two triangles, the large triangle ADB and the small triangle DCB . The area of each triangle can be determined and frcm the known co-ordinates of the vertices, the centroid is located.

Assuming a constant reduction in a_rea of the large triangle ADB on the inlet plane, the corresponding area of the

(a) EXIT PLANE

(b) ENTRY PLANE

FIGURE 3.4 MAPPING THE ENTOY PLANE TO THE EXIT PLANE
l*irge triangle $A^{\prime} D^{\prime} B^{\prime}$ on the exit plane can be determined. Let this triangle at the exit plane be defined by the co-ordinates $\left(X_{r} Y_{x}\right) .\left(X g, Y_{2}\right)$ and (X3, Y3) (or (X_{a}) Y 」 and $\left.\left(X_{a}, Y_{\&}\right)_{i} j_{+1}\right)$ of which ($\left.\mathrm{X}^{\wedge}, \mathrm{Y}^{\wedge}\right)$ lies on the hyperbola i . Starting with kncwn vertices (1) and (2) (or ($\mathrm{X}^{\wedge}, \mathrm{Y}^{\wedge}$) and $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$), the third unknown vertex can be found by solving the equation of the triangle in which $\left(\mathrm{X}^{\wedge}, \mathrm{Y}^{\wedge}\right),\left(\mathrm{X}_{2>} \mathrm{Y}_{2}\right)$ and the area are kncwn and the third point satifies the hyperbola i. Having determined the third vertex (X,., YJ (or (X , Y). .,)" do a a i,j+i the point is then substituted for ($\mathrm{X}_{2}, \mathrm{Y}_{9}$) of the small triangle D'C'B' and the third unknown vertex which satifies the hyperbola $i+1$ is found from the known area of triangle. The procedure is repeated until the whole exit section is mapped into triangles. The centroids of the large and small triangles can now be located.

Details of the conformal mapping are given in Appendix A-l, section $A-1.1$.

3.4 VELOCITY FIELD

It is assumed that before meeting the die, all particles of the tube material travel parallel to the draw axis towards the die entry. Within the die, the velocity of a
particle is expressed 3-dimensionally by a spherical co-ordinate system, $l_{i}=u\left(u_{p}, u_{Q}, u^{\wedge}\right)$ and changes as the deformation proceeds. Beyond the exit plane, the particle travels parallel to the draw axis without further plastic deformation. A boundary therefore exists which separates the undeformed metal zone to the zone where relative deformation occurs. A particle on reaching this surface shears and changes direction.

A similar distortion occurs at the exit except that the particles pass through the boundary from the deforming zone into a region subject to elastic distortion cnly.

There is no general theoretical method to determine the shape and position of these boundaries. It is usual to assume that the boundaries are plane, spherical or conical.

In the current problem, the deformation mode is complex. A general shear surface was defined such that a particle on any streamline cn entry was assumed to shear at an angle (--10) to th draw axis where $-1<t<1$ (see Figures 3.5 and $A-1.6$). The position of the particle was defined on the general spherica surface ($\mathrm{pb}, 0,4>$). The parameter t was used to optimise the shear surface by minimizing the shear work. A general pyramidical shear surface was defined at the exit of the deformation zone.

Once a shear surface has been defined, a plane parallel to -exit' or 'entry' planes and passing through the centroid of the particle on the respective shear surfaces can be drawn. Such planes are denoted by $\left(\mathrm{X}^{\wedge}, \mathrm{Y}^{\wedge}\right)$ and $\left(\mathrm{X}^{\wedge}, \mathrm{Y} £\right)$ for the exit and entry shear surfaces respectively. Let the centroid of the triangular elonent at entry be denoted by ($\mathrm{X}^{\wedge}, \mathrm{Y} .{ }^{\wedge} \mathrm{Ki} . j$) and that of the corresponding triangular element at the exit by (XW $\left.{ }_{a}^{\prime}{ }_{a}^{\prime}\right)(i, j) . \quad B y$ joining the centroids of the corresponding triangular elements, the drawn vector was assumed to define the path followed by the element. Detailed derivations of the flew path parameters are in Appendix $A-1$, section $A-1.2$.

Having defined the flew path, the velocity field
$u(p, 9,4>)$ is established and therefore the strain rates (see Figure A-1.12) .

Let $1 i^{\wedge}$ be the velocity of an element before shear at the assumed velocity discontinuity surface and $u(p, 9,4>)$ the velocity immediately after shear. The component of velocity normal to the shear surface must be of the same magnitude on both sides of the shear surface for continuity of flew (Figure 3.5) i.e.
$11 \operatorname{ccstQ}=u \operatorname{cosncosf} \cos (1-t) 9$

SHEAR SURFAC^${ }^{\wedge} \mathrm{v}_{\mathrm{s}} \mathrm{ipe}-\mathrm{te}$ GENERATOR
a tef-

FIGURE 3.5 DETAILED DIAGRAM SHOWING VELOCITY OF THE PARTICLE IMMEDLATELY AFTER SHEAR AT THE ENTRY SHEAR SURFACE

```
or d = a }\begin{array}{c}{\mathrm{ S2S* }}\\{\mathrm{ cosncosfcos(l-t)9 (3>1)}}
```

For convenience of analysing the final results, an equivalent plug semi-angle a was defined as the semi-angle of the axisynmetric tube drawing plug which produces the same reduction of area as the polygonal tube drawing plug for the same die length. Detailed derivation of the cross-sectional area (A) of the tube material at any radius p frem the assumption of an equivalent plug is in Appendix A-1, section A-1.3.

Due to continuity of flow, equation (3.1) becomes

$$
\begin{equation*}
u A=O_{D D} A, \quad-\quad \operatorname{cosn} \cos Y \cos (1-t) 6 \tag{3.2}
\end{equation*}
$$

where A and A^{\wedge} are obtained from equations ($A-1.67$) and ($\mathrm{A}-1.73$) on pages (A28) and (A29) respectively.

Therefore, $a-t^{\wedge} \quad$ costQ
v/here

$$
\begin{equation*}
\mathrm{p} ;^{2}=\mathrm{Pk}-\mathrm{C}_{3} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{\prime 2}=\left({ }^{\wedge} P^{\wedge}\left(g+p^{\prime}\right)^{2}\right) \tag{3.5}
\end{equation*}
$$

The velocity a can be resolved into three components,
namely u_{p}, u^{\wedge} and u^{\wedge} in the $p, 8$ and $<p$ directicns. Considering the geometry of Figure A-1.4 on page (Al6) and substituting for u from equation (3.3), the velocity conponents of the particle thus become:

$$
i_{\mathrm{p}}=\mathrm{u} \cos ^{2} \cos ^{\wedge}
$$

costQ

$$
P^{\prime} 7 \quad \cos (l-t) 0
$$

$\mathrm{Uq}=\mathrm{u} \operatorname{cosncosT}$

2	
$\left({ }^{\text {P }} \mathrm{bl}\right.$	cos t6 tan Y
"b $\mathrm{p}^{\mathrm{n}} \mathrm{i}$	cos(l-t)9

$\mathrm{u}=\mathrm{u} \mathrm{smn}$

$$
\% \quad \frac{\operatorname{costQ} \operatorname{tann}}{\cos (1-t) 9 \operatorname{cosy}}
$$

3.5 STRAIN RATES

a

The general expressions for strain rates as functions of velocity components u_{p}, Uq and in the directions $\mathrm{p}, 0$ and \$ respectively, in the general spherical polar co-ordinate system (15) are as follows:-

u
y $\quad \mathrm{p} 30$ p
3ue ue i 3UQ
$(3)^{12)}$
${ }^{\mathrm{Y}} \mathrm{PO} 0=30 \sim 0^{-+} \mathrm{P} 3 \mathrm{E}$ -

${ }^{\prime} \mathrm{Y}\left\langle\mathrm{J}>\mathrm{p} \quad 3 \mathrm{p} \quad \mathrm{p} \quad \begin{array}{c}1 \\ \mathrm{p} \sin 9\end{array}\right.$

Equations (3.9) to (3.14) were applied to the derived velocity expressions (equations (3.6) to (3.8) to yield the strain rates.

The final expressions for the strain rates become:

$$
\begin{align*}
& \text { _ }={ }^{2 C} L \text { "b. CC6t9 } \quad \text { [fbW }\left\{p-\left(C_{2}+p\right) / P l_{-} \mid\right\}_{p} \tag{3.15}\\
& \text { P"2 p os(l-t)e Wp"/ }{ }^{\mathrm{p}} \sim{ }^{\mathrm{P}} \mathrm{bl}
\end{align*}
$$

where C^{\wedge}, and p^{\prime} are given in Appendix ($A-1.3$) by the equations $(A-1.68),(A-1.59)$ and $(A-1.70)$ respectively, while $\mathrm{p}_{\mathrm{b}}^{2}$ and $\mathrm{p}^{2}{ }^{2}$ are evaluated using equations (3.4) and (3.5) on
on page (29).
li $/{ }^{\mathrm{p}} \mathrm{bl}^{2}$ ocstQ

$$
\begin{equation*}
\left.+\frac{-\overline{o s} f^{\prime}}{}\right) \tag{3.16}
\end{equation*}
$$

$$
\begin{align*}
& \text { - ^ (fbf coste . } 11+\tan ^{*}+W 00 t f 0 Q B\left(\wedge_{A}\right)_{t} \tag{3.17}\\
& \text { P WP'7 cos(l-t)9 tanQ } \mathrm{Z}_{\mathrm{g}} \mathrm{Oosf} \quad \text { ' }
\end{align*}
$$

where 0_{A} and Z_{S} are given by equations ($A-1.53$) and ($A-1.44$) on pages (A22) and (A15) respectively.
${ }^{\text {Y }} \mathrm{P} 6$

$$
\begin{equation*}
\left.\left.\left(-\frac{£}{\mathrm{p}}-\overline{\mathrm{P}_{\mathrm{b}}}\right) \quad\right\} \mathrm{p}-\mathrm{t} \tan \mathrm{Q}+(1-\mathrm{t}) \tan (1-\mathrm{t}) 9\right\} \tag{3.13}
\end{equation*}
$$

3.6 TOTAL POWER REQUIRED FOR DEFORMATION

3.6.1 INTERNAL POWER OF DEFORMATION

The following assumptions were made when deriving the rate of internal work to deform the material in the deforming zone: (i) The material obeys von Mises yield criterion,

$$
\begin{equation*}
a^{\prime} j a^{\prime} .=2 k^{2} \tag{3.23}
\end{equation*}
$$

where $\mathrm{a}<.=\mathrm{a}$. . -
and k is the yield stress of the material in shear.
(ii) The flow obeys the Levy-'lises stress-strain relationship $i_{j}=a_{i j}^{\prime} d X$ where $d A$ is a constant
of proportionality. *
(iii) The material is rigid perfectly plastic and non workhardening.
(iv) The inccmpressibility condition is satisfied
i.e. $\wedge=\quad=0$

The rate of work required to deform an elemental
volixne dV is

$$
d W j=a_{i j 6 i J} d V
$$

Therefore power to deform material of volume V is

$$
W_{I}=f_{v} o_{i j}^{i}{ }_{i j} d V
$$

Multiplying each side of the Levy-Mises expression
by gives

$$
\begin{equation*}
e_{i j} . e_{i j}=d A \underset{i j}{\prime} e_{i j} \tag{3.24}
\end{equation*}
$$

Also multiplying the equation by a ! \mathbf{j} gives

$$
\begin{equation*}
a!_{i j}^{i}{ }_{i j}=d A a!_{i j} a_{i J}^{\prime} \tag{3.25}
\end{equation*}
$$

Therefore, $o!_{\dot{J}} \mathrm{e}_{i n j}=2 \mathrm{dAk}^{2}$
from von Mises equation (3.20).

Equation (3.21) can be rewritten as

$$
\begin{align*}
a^{\prime} i y & -C a_{t j}-i a^{\wedge} j i y \\
& =a_{i j} i \dot{i j} \tag{3.27}
\end{align*}
$$

and from equations (3.24) and (3.25),

Substituting equations (3.27) and (3.28) into equation (3.25) gives

By substituting equation (3.29) into the expression for W_{r} gives

$$
\mathrm{W}_{x}=I k A \mathbf{e}_{\cdot \mathrm{j}} \mathbf{e}_{\mathrm{i} \mathrm{j}} \mathrm{dV}
$$

If k is assumed constant,

$$
\begin{equation*}
\mathrm{Wj}=\mathrm{k} / 2 . / \mathrm{v} \quad \mathrm{dV} \tag{3.31}
\end{equation*}
$$

If the mean yield stress is Y_{m} then for the von Mises condition,

$$
\mathrm{k}-\begin{gathered}
\mathrm{Y} \\
\mathrm{~J} \\
\mathrm{I}
\end{gathered}
$$

Substituting for the strain rates from equations
(3.9) to (3.19).

Therefore, the expression for the internal power of deformation becomes
where

$$
\begin{aligned}
& 2 \\
& +2\{-(1+\tan Y C-t \operatorname{tante}+(1-t) \tan (1-t) 9+\underset{\text { oos } Y}{-1)\}} \\
& +2\left\{1_{+} \tan B \bar{\square}_{\tan \left(\wedge-\wedge_{A}\right) \cos 4 ' \sin 9}\right\} \\
& 2
\end{aligned}
$$

+ . (. (tanr^jJ. ttant9 $\left.\left.\left.{ }^{\text {fan }} 8+(1-t) \tan (1-t) 9+\tan *\right)\right\}\right)$ $\tan ^{\wedge} \tan Q$
'tan? ${ }^{\wedge \wedge \wedge I J へ へ>2 \wedge ~}$

The elemental spherical volume is
$\mathrm{dV}=\mathrm{p}^{2} \sin 8 \mathrm{dpd} 9 \mathrm{ckj}>$

Therefore,

$$
\begin{align*}
& \text { a } \\
& \text { (3.37) } \tag{3.37}\\
& \text { Y ' ,,2 }
\end{align*}
$$

The elemental spherical surface area at entry-

$$
\text { is } \quad d A^{\wedge}=\stackrel{2}{P_{b} \sin 6 d 9 \mathrm{cfc}>}
$$

Equation (3.38) becomes:-

$$
\begin{align*}
& 3 \quad{ }^{\mathrm{p}} \mathrm{~b} \quad{ }^{9=\mathrm{ct}} \text { e } \quad 4>=0 \quad \mathrm{P}=\mathrm{P}_{\mathrm{a}} \quad \operatorname{oos}(1-\mathrm{t}) 9 \tag{3.40}
\end{align*}
$$

Equation (3.4) can be rewritten as

$$
\left.\frac{\mathrm{p} " \prime}{0}\right)^{\wedge}=\mathrm{c}_{1}-\frac{\mathrm{Q}}{\mathrm{P}_{\mathrm{b}}^{2}}
$$

Substituting for C^{\wedge} and C_{3} from equations ($\mathrm{A}-1.68$) and ($\mathrm{A}-1.74$) on pages (A28) and (A29) respectively and rearranging,

$$
\begin{gather*}
\mathrm{D} " 2 \\
(-£) \tag{3.41}\\
\left.{ }^{\mathrm{p}} \mathrm{~b}\right)
\end{gather*}=\begin{aligned}
& \mathrm{A}, \\
& \mathrm{P},{ }^{2}
\end{aligned}
$$

Therefore,

$$
\left.=\mathrm{Y} \mathrm{~m} \mathrm{~V} \mathrm{~V}(\mathrm{~s}) \quad<{ }^{3}-{ }^{42}\right\rangle
$$

where

$$
\begin{equation*}
f(s)=\quad{ }^{3} 2^{=a} J^{27 T}\left(\mid P_{b} £_{-} / K \text { do }\right) d A \tag{3.43}
\end{equation*}
$$

b
$\mathrm{f}(\mathrm{s})$ is evaluated numerically by dividing the inlet section into $\underset{\mathbf{N}}{\mathrm{N}} \mathrm{x}(\mathrm{M}-1) \mathrm{x}(\mathrm{N}-2)$ elemental areas which are themselves subdivided into large and small triangles i.e.

$$
\begin{align*}
& \mathrm{f}(\mathrm{~s})=\mathrm{V} \\
& \mathrm{E}_{\mathrm{B}} 13 \quad \mathrm{M}-\mathrm{l}^{1=1}{ }_{\mathrm{J}=1}^{1} \quad\left(\mathrm{~A} \mathrm{P}_{\mathrm{a}} \quad \mathrm{P}^{2}\right. \tag{3.44}\\
& E_{B}{ }^{13} \quad M-1=1 \quad J=1 \quad P_{a} \quad P^{2} \quad \cos (1-t) 6
\end{align*}
$$

3.6.2 POWER LOSS IN SHEARING MATERIAL AT INLET AND EXIT SHEAR SURFACES

The internal power Wj derived in the last section is required to overcome the homogeneous deformation and the necessary relative shearing within the material itself as it progresses through the deforming zone. Power is also required to corrpensate for the losses due to the shearing
of material on both the inlet and exit shear surfaces.

```
            The rate of work on crossing a. shear boundary of
elemental area dA is given by
            3
    dW
```

where
u* is the velocity discontinuity along the surface,
k is the yield stress of the material in shear equal
Y
to $\quad m$ by the von Mises yield criterion.
/3

The velocity discontinuities at the entry and exit shear boundaries are derived in Appendix $A-1.4$, equations ($A-1.78$) and ($A-1.79$) respectively. The rate of work dissipation at the entry shear surface is

$$
\begin{aligned}
& =1 \\
& =1^{\mathrm{k}} \mathrm{~V} \text { SSI? }{ }^{46)} \\
& =\quad<3-{ }^{47)}
\end{aligned}
$$

The rate of work dissipation at the exit shear surface is

$$
\begin{equation*}
\mathrm{W}_{\mathrm{Ra}}=\int_{\mathrm{a}} \mathrm{k}^{\prime \mathrm{u}} \mathrm{ra}^{\mathrm{dA}!}{ }_{\mathrm{S}} \tag{3.48}
\end{equation*}
$$

where
$\mathrm{k}^{\prime}=\mathrm{k}$ for a non work-hardening material and
dA' is the elemental area on the shear boundary at S exit.

Therefore, $W^{\wedge}=/ \mathrm{k} \mathrm{u}_{\mathrm{ra}} \wedge^{\wedge * A} \mathrm{f}_{\mathrm{t} 9}$

Assuming a passage formed by an equivalent conical plug and a conical die,

$$
\begin{align*}
& \begin{array}{c}
\mathrm{dA} \\
\mathrm{dA}_{\mathrm{a}}
\end{array} \\
& \begin{array}{c}
\mathrm{p}^{\prime \prime} \\
(-£) \\
\mathrm{p}^{\prime \prime} \\
\mathrm{a}
\end{array} \tag{3.50}\\
\text { and } \mathrm{u}_{\mathrm{ra}} & =(-) \mathrm{ur}^{\wedge}
\end{align*}
$$

$$
=\left\{_{D}{ }^{k u} \mathrm{rbSt} 9-\right.
$$

$$
\left\langle{ }^{3,52}\right\rangle
$$

The total rate of work of shear at the inlet and exit surfaces of velocity discontinuity is

$$
\begin{aligned}
W_{R} & =W_{R a}+W_{R b} \\
& =2 /{ }_{A_{b}} k \dot{u}_{r b} \operatorname{dA} \operatorname{cost} 6
\end{aligned}
$$

$-\quad ; 3^{\mathrm{Y}} \mathrm{mVb}$ R(s)
(3-53)
where

$$
\begin{aligned}
& \mathrm{B}(8)-\mathrm{A}_{\mathrm{fa}}^{-} / \quad, \cos (1-\mathrm{t}) 9 \tan 4^{\mathrm{i}^{2} \cdot\{-\sin * \cdot} \\
& \text { cost9 tanf } \left.+\operatorname{cost9} \tan (1-t) 6\}^{2}\right) * \\
& \text { frcm equation }(\mathrm{A}-1.78) \text { on page }(32) .
\end{aligned}
$$

$R(s)$ is evaluated numerically by dividing the inlet section into $N_{S} x(M-1) x(N-2)$ elemental areas which are themselves subdivided into large and small triangles.

Therefore,

$$
\begin{align*}
& \left.R(s)=\frac{N}{A} \quad \lim \underset{i=1}{N-2} \underset{j=1}{M-1} \underset{(\{\operatorname{costetan} n}{\cos (l-t) 8 t a M}\right\}^{2}+ \\
& \left.\{-\sin t 9+\cos t 9 \tan 4+\operatorname{cost} 9 \tan (1-t) 9\}^{2}\right)^{*} —^{\text {b }} \tag{3.55}
\end{align*}
$$

Values of $-1<t<1$ are used to select the shear surface that gives the minimum value of $R(s)$. This if. then the optimum shear surface for the given draw conditions.
3.6.3 FRICTICNAL LOSSES AT THE TOOL-WORKPIECE INTERFACES

Abstract

Besides the internal paver W^{\wedge} and the shear power additional power is required to overccme the frictional losses which occur as the tube slides between the die and the plug.

In the case of Coulomb friction, a mean coefficient of friction y is usually assumed for the given relative sliding surfaces. The rate of work loss is given by:-

$$
\begin{equation*}
» \mathrm{~F}=\mathrm{V}_{\mathrm{SI}} \mathrm{~W} \mathbf{\mathrm { s }} \wedge \mathbf{s}^{+}{ }^{f} A \underset{\mathrm{~S}<\mathrm{S}}{\mathrm{~W}} \mathrm{~S} \wedge \mathbf{s} \tag{3,56}
\end{equation*}
$$

where the first term on the right calculates the loss at the die-tube interface and the second term calculates the loss at the plug-tube interface.

The die and plug pressures and the coefficients of friction are unknown. A mean pressure at both interfaces can be assumed and if the distribution of pressure and the mean coefficient of friction axe known, the frictional loss can be calculated. The values are however unknown. To avoid this difficulty, \quad can be obtained indirectly by the apparent strain method. The method .allows the calculation of the draw load in the case of Coulcrrb friction without
obtaining the distributicn of pressure at the tube-tool interfaces.

3.6.3.1 APPARENT STRAIN METHOD

This is an energy method where the work done 6er unit volume is divided into the plastic work and the surface frictional energy \{14\}.

Friction produces shear stresses and strains at the interface and these have two major effects on the work done. Energy is dissipated at the interface as a result of the relative motion and when the surface shear stress is significant compared with the yield shear stress, additional internal distortion results within the deformation zone. The two effects increase the work done.

The total work done per unit volume of the material is equated to an area under the equivalent stress-strain curve (see Figure 3.6). The strains i and e corresponding đ to the total work and plastic work per unit volume are known as the apparent and mean.equivalent strains, respectively.

FIGURE 3.6 THE EQUIVALENT STRESS-STRAIN DIAGRAM SHOVING THE TERMS USED IN THE APPARENT STRAIN ANALYSIS

By definition, work dene per unit volime

$$
\begin{equation*}
\mathrm{W}=\int_{0}^{\mathrm{a}} \mathrm{adi}=\mathrm{Y}_{\mathrm{ma}}^{\mathrm{e}} \tag{3.57}
\end{equation*}
$$

Assuming that the presence of friction at the die-tube and plug-tube interfaces has a negligible effect on the plastic work,

$$
\begin{equation*}
\mathrm{e}_{\mathrm{a}}=\mathrm{e}_{\mathrm{m}}^{+} \mathrm{s}_{\mathrm{f}} \tag{3.58}
\end{equation*}
$$

For a drawing process with no back pull, the total work done per unit volume equals the draw stress.

$$
\begin{equation*}
\text { i.e. } \quad{ }^{w}=a_{z a} \tag{3.59}
\end{equation*}
$$

It is assured that a mean coefficient of friction $\left(y_{m}\right)$ and a mean pressure $\left(p_{m}\right)$ occur at both the die-tube and the plugtube interfaces during the drawing process.

Using subscripts s^{\wedge}, C^{\wedge} and C_{9} to denote the straight, conical plug and die surfaces respectively:-

From Figure 3.7 for steady draw, the equilibrium of horizontal forces gives,

$$
\begin{aligned}
& £\left(U_{m} \operatorname{cosa}_{s}-s i<x_{s}\right) d A_{s l} \cdot I\left(P_{m} C 06 a_{c}-S i m,\right) d A_{c l}
\end{aligned}
$$

FIGURE 3.7 STRESS AND THE DEFORMATION PATTERN IN THE DRAWING OF POLYGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE

$$
\begin{equation*}
\mathrm{e}_{\mathrm{a}} \equiv \frac{\mathrm{a}_{\mathrm{za}} \mathrm{TY}_{\mathrm{m}}}{} \tag{3.61}
\end{equation*}
$$

Substituting for a_{za} in (3.60) gives,
$+\wedge\left(u_{m} \operatorname{cosa}_{s}-\sin a_{s}\right) d A_{s l}+£\left(U_{m} \cos >_{c}-\operatorname{siroJdA}{ }^{\wedge}\right\}$

$$
\begin{array}{llll}
\text { or } & \mathrm{e} & \mathrm{P}_{-} & \tag{3.32}\\
\mathrm{a} & \mathrm{~V}_{\mathrm{m}} & \mathrm{I}_{\mathrm{l}}
\end{array}
$$

where

$$
\begin{align*}
& I_{1}=\frac{-}{A}\left\{Z\left(u_{m} \operatorname{cosa}+\operatorname{sim}\right) d A_{c 2}\right. \tag{3.63}\\
& +E\left(M_{m} \operatorname{cosa}_{s}-\operatorname{sir}{ }_{s}\right) d A_{s 1}+£\left(u_{m} C Q s a_{c}-\operatorname{sinaJdA} \wedge\right\} \\
& =\text { Apparent strain factor. } .
\end{align*}
$$

Frcm the definition of friction strain work done against friction per unit volume of material

$$
\begin{equation*}
W_{\dot{f}}=\left(Y_{m}\right)_{\wedge} £_{f} \tag{3.64}
\end{equation*}
$$

The friction work W_{f} can also be determined by the energy dissipated as the material slides between the die and the plug surfaces as follows:-

Using $u_{s 1}, u_{Q 1}$ and $u_{c 2}$ to represent the respective surface
velocities, equation (3.66) gives,

$$
\begin{align*}
& \cdot{ }^{\mathrm{w}} \mathrm{f} \times \mathrm{x} \quad \mathrm{~V} \mathrm{~m} \mathrm{~V} \text { s l }+\mathrm{V} \text { A A l } \\
& \quad+U_{n P a F \%} 2{ }^{\text {KiA } c 2} \tag{}
\end{align*}
$$

By expressing the elemental surface velocities in terms of the input velocity u^{\wedge} gives

$$
\begin{align*}
& \mathrm{V}^{01}=\quad \mathrm{dA}_{\mathrm{s} 1}+\quad>\mathrm{dA} \mathrm{~A}_{\mathrm{c} 1} \\
& +E\left({ }^{U} \underset{\sim}{C}\right) d A J \tag{3.66}\\
& \text { 응 }
\end{align*}
$$

Substituting for

$$
\begin{align*}
& \text { 'V/f } \mathrm{V}^{\mathrm{l}}=\quad<*_{8} \mathrm{i}^{+} \\
& \left.d A_{c 1}+£\left(\wedge_{£ 2}\right) d A_{c 2}\right\} \\
& \text { "b } \\
& \text { or E. } \cdot \frac{\mathrm{P}_{-}}{\left(\mathrm{Y}_{\mathrm{n}}\right)_{f}} \mathrm{I}_{9} \tag{3.67}
\end{align*}
$$

where

$$
\begin{aligned}
& \text { Vol "b }
\end{aligned}
$$

```
        + ldA C2}
    = Friction strain factor.
Dividing equation (3.62) by (3.67),
```



```
\[
\text { where } \quad \begin{align*}
\mathrm{B}= & -  \tag{array}\\
& <\mathrm{V}_{\mathrm{f}}
\end{align*}
\]
Therefore \(\mathrm{e},=\mathrm{B}-£\)
\[
\begin{equation*}
=\mathrm{He}_{\mathrm{C}} \tag{3.70}
\end{equation*}
\]
I,
where \(\mathrm{f}=\mathrm{B}\) -

Substituting equation (3.58) into (3.70) and rearranging,
\[
\begin{align*}
& e_{a}=e^{e}+Y e_{a} \\
& \quad-\quad e_{m} \quad-\quad l-V \tag{3.72}
\end{align*}
\]

From equations (3.62) and (3.72),
\[
\begin{align*}
& \hat{\mathrm{p}}_{\mathrm{m}} \sim{ }^{\mathrm{Y}} \mathrm{~m} \mathrm{~T}_{\mathrm{a}}^{\mathrm{T} 7} \\
& =\mathrm{y}  \tag{3.73}\\
& \mathrm{~m}_{\mathrm{L}}(\mathrm{l})
\end{align*}
\]

Fran equation (3.61),

Therefore, if the value of \(e_{m}\) is known, the draw stress and the mean pressure (equations (3.73) and (3.74))aan be calculated from the geometry of the deforming passage, the velocity distribution, the strain factors and \(I_{2}\) and the work hardening factor \(B\). \(e_{m}\) can be derived from the total plastic work as shewn below.

\subsection*{3.6.3.2 THE MEAN EQUIVALENT STRAIN}

It is assumed that the metal undergoing deformation
obeys von Mises yield criterion and Levy-Mises flow rules. The plastic work dene per unit volume can be expressed as
\[
\begin{equation*}
W_{p}=\int_{0}^{\varepsilon} m \bar{\sigma} d \bar{\varepsilon} \tag{3.75}
\end{equation*}
\]
where \(a=/ 5\left(a!. a!{ }_{2}\right.\)
(3.77)

The mean equivalent strain is defined as the strain which bounds an area under the equivalent stress-strain curve
(Figure 3.6) equal to the total plastic work done per unit volume of the material.
\[
\begin{array}{lllll}
i & o & W & -f^{\wedge} \\
& & p & 0^{5 \mathrm{den}}
\end{array}
\]
\[
\left\langle{ }^{3}-{ }^{78}\right\rangle
\]

The plastic work \(\mathrm{W}^{\wedge}\) consists of the internal work of deformation (VT) and the redundant work (W ) of shearing the material at the assumed surfaces of discontinuity at both the inlet and outlet boundaries.
i.e. \(W_{p}=W_{I}+W_{r}\)

In terms of pcwer,
\[
\begin{array}{cc}
\mathrm{W}  \tag{3.3Q}\\
\mathrm{P} & \mathrm{x} \text { Vol }={ }^{{ }^{\mathrm{t}} \mathrm{AT}_{\mathrm{t}}} \\
\mathrm{l} & +\mathrm{W}_{\mathrm{D}} \\
\mathrm{v}
\end{array}
\]

From equations (3.42) and (3.53),
\[
\left.{ }^{\prime} i=y_{m V V}^{s}\right)
\]
and \(W=\frac{Y}{/ 3} \wedge \wedge(s)\)
Equation (3.78) beccmes
< \(\left.{ }^{\mathrm{Y}} \mathrm{m}^{\mathrm{S}} \mathrm{m}\right\rangle\) Vol " VbV(s) + W s )

Therefore, \(\left.\left.\quad= \pm \wedge H \operatorname{s}) * \wedge \mathrm{Vb}^{\mathrm{Rts}}\right)\right\}\)
\(f(s)\) and \(R(s)\) are evaluated numerically by the use of a computer and hence the value of the mean equivalent strain.

\subsection*{3.6.3.3 WORK HARDEN DC FACTOR B}

This is the ratio of the mean flow stress over the whole strain range \(\quad \int_{C L}^{\text {) to the mean flow stress over the }}\) strain range \(\mathrm{e}_{\mathrm{m}} \wedge \mathrm{e}\). The value will therefore depend on not only the material characteristics but also on the process and the friction.

If the coefficient of friction is anall, the strain range \(e_{m} \wedge I_{a}\) is also small. The mean flow stress over this range can therefore be approximated as,
\[
\begin{equation*}
\left\langle Y_{\mathrm{f}}\right)_{\mathrm{f}}=\wedge \tag{3.82}
\end{equation*}
\]

By definition,
\(V a=\int_{0}^{/ a} f(O d i\)
or \(\quad{ }^{Y} m \quad \begin{array}{cc}1 & e \\ \sim \text { "a } & \text { fa } \\ & f(e) d e\end{array}\)
Therefore \(B=\begin{aligned} & Y \\ & =\quad f^{\text {a }} f(e) d e ~\end{aligned}\)
\(<\mathrm{V}_{\mathrm{f}} \underline{0}\)
\[
{ }^{5} \mathrm{sr}=\mathrm{e}{ }_{\mathrm{a}}
\]

If the equivalent stress-strain curve of the material
follows the pcwer law or
\[
\begin{equation*}
\mathrm{f}(\mathrm{e})=\mathrm{o}=\mathrm{o}_{\mathrm{Q}} \mathrm{C}^{\mathrm{n}} \tag{3.85}
\end{equation*}
\]
where \(O\) is the true stress and \(O_{Q}\) is the stress
corresponding to unit strain, then equation (3.84) gives
\[
\begin{equation*}
B=\frac{-}{1+n} \tag{3.86}
\end{equation*}
\]

\section*{3.G.3.4 EVALUATION OF AND}

Ij and \(I_{2}\) given by equations (3.C3) and (3.63) are found by integrating the respective expressions over the relative sliding • surfaces of the deforming tube.

To determine \(I_{2}\), the product of the elemental respective area and the velocity on the relative sliding surface between the workpiece and the tools must be known. The deforming die is conical but the plug has a corrplex shape. The longitudinal velocity increases towards the plug exit as well as circumferentially. Therefore the flow especially at the intersection of the conical and plane surfaces is very complicated. An approximate method is used to evaluate \(I_{2}\) when the sliding velocity distribution is estimated for an equivalent conical plug.
surface; then


For a convergent plug and conical die passage and the continuity of flow,
\[
\mathrm{u}=\sim \mathrm{u}_{\mathrm{b}} \mathrm{COSO}_{\mathrm{te}}
\]
and \(\mathrm{dA}_{g}=2 \operatorname{Tr}\left(\mathrm{r}_{\mathrm{b}}-(\mathrm{p} .-\mathrm{p}) \operatorname{cosa}\right.\) tanae \() \mathrm{dp}\)

Therefore,
\[
\begin{aligned}
& \left\langle{ }^{3.91}\right\rangle \\
& \text { r }
\end{aligned}
\]

For the die-tube interface, the mean sliding velocity
\(\mathrm{u}_{\mathrm{g}}\) g is given by:-
\(\left(u^{\wedge}+u_{a}\right) \cos a\)
\({ }^{u}\) s 2

\subsection*{3.7 LOVER BOUND SOLUTION}

The upper bound solution developed in the previous sections is an overestimate of the load required to effect the process. The value overestimates the load. A lower bound solution which neglects the effect of redundant work is thus necessary; the actual load lies within the two limits.

By considering the equilibrium of forces on an elemental volume and applying Tresca's yield criterion, an expression for the draw stress is obtained. A computer prograirme is developed to solve the problem numerically.
3.7.1 DEFORMATION PATTERN OF THE LOWER BOUND SOLLTICN

The four basic tool profiles in the deforming zone are the pyramidical plane surface, the elliptical plane/conical surface, the inverted parabolic plane/conical surface and the triangular plane/conical surface (see Figure 3.2). The lower bound solution is developed for a conical die and the elliptical, plane/conical surface plug. This type of plug allows a gradual deformation in the die-plug deforming passage and the surface equation is readily derived.

The conical surface of the plug is inclined at an angle to the draw axis while the elliptical plane surface is inclined at an angle a to the draw axis.

\subsection*{3.7.2 DERIVATION OF THE LOWER BOUND SOLUTION}

The lower bound solution is derived by considering the equilibrium of forces acting on an element at a distance Z from the selected origin (see Figure 3.8). Figure 3.3 shows a round tube deforming through a conical die on an elliptical plane/conical surface plug to produce a polygonal tube. The following geometrical relations are derived:-
(i) General parameter's for the plug
\[
\begin{equation*}
\underset{\mathrm{D}}{\mathrm{ft}}-{\stackrel{l}{N_{s}}}^{2} \tag{3.92}
\end{equation*}
\]
\[
A^{\wedge}=\text { Area ratio }
\]

Area at entry ^b
Area at exit
rb " 2
\(a=\tan ^{1}\left(-\sim_{2 L}^{\sim}{ }^{\mathrm{H}}(\mathrm{A}-1.61)\right.\)
\(\left.a_{S}=\tan ^{-1} \hat{v}^{1} \hat{-}^{-{ }^{H}-\cos 3}\right)\)
(A-1.62)
2 L


FIGURE 3.8 STRESS AND DEFORMATION PATTERN FOR THE DRAWING OF REGULAR POLYGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE


FIGURE 3.8 STRESS AND THE DEFORMATION PATTERN FOR THE DRAWING OF REGULAR POLYGONAL TUBE FROM ROUT® THROUGH A CYLINDRICAL DIE
\[
\begin{aligned}
& V \mathrm{~d} e \\
& 2 \operatorname{tam} e
\end{aligned}
\]
\[
(A-1 . e O)
\]
where
\[
\mathrm{d}_{0}=/\left\{\mathrm{H}^{2}(\mathrm{SPAR}) \mid\right\}
\]
\[
\left(3.9_{4}\right)
\]
and \(\operatorname{SPAR}=\begin{aligned} & N \\ & 4\end{aligned} \quad \operatorname{ccsSsin} B\)
(ii) Parameters for the elliptical plane surface
\(\% \quad \operatorname{cosa}^{\mathrm{c}}\)
\(a=2 \sin \left(o c{ }_{c}+{ }_{S}{ }_{s}\right)\)
(iii) At any section Z,
\[
\begin{align*}
& \mathrm{R}=\mathrm{R}^{\wedge}-\mathrm{Ztam}  \tag{3.98}\\
& \mathrm{r}=\mathrm{r}_{\mathrm{b}}-\mathrm{Z} \operatorname{tam}_{\mathrm{c}}  \tag{3.99}\\
& \mathrm{r}_{\mathrm{s}}=\mathrm{r} \cos *_{\mathrm{s}} \tag{3.100}
\end{align*}
\]
b \(/\left(2 \mathrm{aZccsa}_{\mathrm{s}}-Z^{2}\right)\) \(\mathrm{cosa}_{\mathrm{S}}\)

\(6<A_{c}+A_{g}\)
\[
\begin{align*}
& \text { ccsot } \\
& 6=\mathrm{H}^{\wedge} \mathrm{T}_{\mathrm{C}} \tag{3.97}
\end{align*}
\]

The cross-sectional area of the tube at any section \(Z\) in the deformation zone is given by
\[
\begin{align*}
A & =* R^{2} Z-\left(h r j+i r^{2} X_{C}>\right. \\
& -* R V\left(K r_{\mathrm{h}}-Z \operatorname{tamJ}{ }^{2}\left(\cos A \sin A O_{0}+A\right)\right\} \tag{3.103}
\end{align*}
\]

For a small element dZ at Z,
\[
\begin{align*}
& \text { flat surface area } d A_{s i l_{\prime}}=y \frac{d Z}{\operatorname{dZsa}_{s}}  \tag{3.104}\\
& \text { oonical surface area } \mathrm{dA}_{\mathrm{cl}}=\frac{\mathrm{rX} \mathrm{dZ}}{-}
\end{align*}
\]
tube-die surface area \(\mathrm{dA}_{\mathrm{c} 2}=\mathrm{RB}\) cQsa
\[
\begin{aligned}
& o A=r\left\{\left(\cos X_{s} \sin X_{s}+X_{c}\right) \tan a_{c}+\sin ^{2} X_{c}\right. \text {; } \\
& \operatorname{cosa} \cos X_{s}
\end{aligned}
\]
\[
\begin{aligned}
& -\left(X_{0}+X_{S}\right) \text { Rtana }
\end{aligned}
\]

Hie forces are resolved in the Z direction and for equilibrium

\[
\begin{align*}
& \left(a_{z}+d a_{z}\right)(A+d A)-C_{z} d A-P j d A^{\wedge} \operatorname{sim} \\
& { }^{+} P_{2}\left(d A_{s l} \operatorname{sim}{ }_{s}+d A_{c l} \operatorname{sirt} x_{C}\right)-W^{\wedge} C c \& L \\
& -M_{2} P_{2}\left(d A_{s 1} \operatorname{cosa}_{s}+d A_{c l} \operatorname{coscc}_{c}\right)=0
\end{align*}
\]
which on rearranging becomes
\[
\begin{align*}
& d a_{z}(A+d A)=-o^{\wedge} d A+p^{\wedge} d A^{\wedge} \operatorname{sirtt} \\
& -p_{2}\left(d A_{s 1} \sin p_{t s+} d A_{c 1} \operatorname{si}_{n} a_{c}\right)+p^{\wedge} d A^{\wedge} \cos a \\
& \left.+{ }^{p} 2^{y} 2^{(d A} s l^{\operatorname{cosa}} s^{+d A} c l^{\operatorname{cosa}} C^{\prime}\right) \tag{3.109}
\end{align*}
\]

Equation (3.109) is siirplified by making the following assumptions:-
(i) a mean pressure \(\mathrm{p}_{\mathrm{m}}\) acts at both the die-tube and plugtube interfaces,
(ii) a mean coefficient of friction \(u_{m}\) acts at both the die-tube and plug tube interfaces,
(iii) the horizental stress \(\mathrm{a}^{\wedge}\) and the mean normal pressure \(P_{m}\) are principal stresses
(iv) a mean yield stress \(Y_{m}\) applies.

Applying Tresca's yield criterion,
\[
\begin{align*}
& \text { or }{ }_{*}^{\circ}=Y_{m}-a_{Z} \tag{3.110}
\end{align*}
\]

Equation (3.109) after simplifying beccmes
\[
\begin{align*}
& \left.\left.+\left(M_{m} \cos a_{s}-\operatorname{sinoi}{ }_{s}\right) d A_{s 1}+\left(y_{m} \cos a_{c}-\sin a_{c}\right) d A_{c 1}\right\}\right\} \tag{3.111}
\end{align*}
\]

A computer programme is developed to solve equation (3.11l) numericallv.

\subsection*{3.8 COMPUTER P ROCRAMME}

The four sub-programmes consist of:-
(i) the development of the deformation pattern and hence the velocity field,
(ii) the upper bound solution for the polygonal tube drawing ,
(iii) the lower bound solution for the polygonal tube drawing, and
(iv) the upper and lower bound solutions for the corresponding axisyrrmetric drawing of tube cn a conical or cylindrical plug.

In each of the sub-progranmes are the following
four main components of the flow chart:
(i) the input statement,
(ii) three major Do loops,
(iii) the main programme, and
(iv) print out statements.

The input statement consists mainly of the incoming and outgoing tube dimensions and the stress-strain properties of the material. The three major Do loops generate the nurrber of sides of the bore of drawn section, the die semi-angle
and the coefficient of friction.

The main parts of the upper bound solution
```

are: -

```
(i) conformally mapping triangular elements in the inlet plane to corresponding triangular elements in the exit plane,
(ii) calculation of the flow path parameters for each element,
(iii) optimization of the entry and exit shear surfaces,
(iv) calculation of the mean equivalent strain,
(v) calculation of strain factors and \(\mathrm{I}_{2}\),
(vi) calculation of the mean draw stress and the die pressure ,
(vii) tabulation of the mean draw stress and the mean die pressure.

The equations for the upper and lower bound solution for axisyrrmetric drawing are reproduced in appendix A-5. The complete programmes are presented in appendix A-3. Sample solutions for the upper and lower bound solution are tabulated in appendix \(A-4\).

Sampled graphical output of the mapped entry and exit tabular sections are shown in Figures 3.9, 3.10 and 3.11 where the points plotted are the centroids of the large triangles at the entry and exit. The flow charts for the

^a) entry plane

b) exit plane

JRE 3.9 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF THE SQUARE TUBE FOR THE REDUCTION IN AREA OF 9\%


FIGURE 3.10 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF THE S^ARE TUBE FOR THE REDUCTION IN AREA OF 25\%



FIGURE 3.11 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF TEE HEXAGCNAL TUBE FOR THE REDUCTION IN AREA OF 15\%

FLOW CHART FDR THE UPPER BOUND SOLUTION FOR POLYGONAL DRAWING


CALCULATE SECTION PARAMETERS
i.e. \(A_{a}, A_{b}, A_{r}, R_{e}, H_{a}\),


USE SINGLE SYMMETRIC SECTION FOR THE CALCULATIONS THAT FOLLOW. BAND INLET WITH M-l EQUAL SECTORS AND MAP OUTLET WITH N-2 HYPERBOLIC CURVES, M=10 AND N=10

DEFINE VARIOUS KNOWN PARAMETERS AT
ORIGIN
e.q. \(\mathrm{t}^{\wedge} \mathrm{l}_{ \pm}\),
\(A^{\wedge}, E_{r}\)

GENERATE N-2 HYPERBOLIC CURVES AT EXIT CORRESPONDING TO CIRCULAR CURVES AT ENTRY

\section*{CALCULATE GEOMETRICAL PARAMETERS e.£}
\[
l_{\mathrm{v}} \quad \mathrm{x} ., \quad \mathrm{y}_{\mathrm{v}} \mathrm{~A} \quad \mathrm{E}_{\mathrm{r}}, \quad \mathrm{~A}_{\mathrm{s}}, \quad \wedge
\]

CALCULATE CO-ORDINATES OF TRIANGLES AT
INLET AND CORRESPONDING CENTROEDS


PRINT RESULTS FOR THE ENTRY PLANE i.e. V V ^ W *bcs' \({ }^{\mathrm{Y}} \mathrm{bcs} \wedge{ }^{\mathrm{E}} \mathrm{r}\)

TO MAP CORRESPONDING TRIANGLES AT EXIT PLANE, BEGIN WITH TWO KNOWN CO-ORDINATES. BEGIN WITH LARGE TRIANGLES


CALCULATE THIRD CO-ORDINATE FROM KNOWN AREA OF TRIANGLE AND EQUATION OF CURVE i.e. A CIRCLE

CALCULATE THIRD CO-ORDINATE BY SUBSTITUTING X AND SOLVING FOR Y AREA OF TRIANGLE AND EQUATION OF CURVE i.e. HYPERBOLA

MAP SMALL TRIANGLES AT EXIT BY BEGINNING WITH TWO KNCWN CO-ORDINATES, AREA AND EQUATION OF CURVE i.e. HYPERBOLA

CALCULATE THE CENTROIDS OF THE LARGE AND SMALL TRIANGLES AT EXIT

PRINT RESULTS FOR TIE EXIT PLANE i.e. \(X_{a}, Y_{a}, X_{a c s}, Y_{a c s}^{i} X_{a c l}^{i} X_{a c l}\)

CALCULATE PERCENTAGE ERROR IN AREA OBTAINED FROM MAPPING AND ACTUAL VALUE A

\section*{PRINT THE RESULT}

CALCULATE RADIAL DISTANCE OF PARTICLES \(\mathrm{R}_{\mathrm{a}} \mathrm{R}^{\wedge}\) DEFLECTICN ANGLES n» <P AND LENGTH OF FLOW PATH Z FOR ALL (i,j)

OPTIMIZE THE SHEAR SURFACES i.e.
MINIMIZE R(s) FOR \(0<t<+1\)

CALCULATE INTERNAL POWER OF DEFORMATION
FACTOR \(f(s)\) FOR OPTIMAL VALUE OF \(t\)


TABULATE THE RESULTS



FLON CHART FOR THE UPPER BOUND SOLUTION FOR AXISYMMETRIC DRAWING


FLOW CHART FOR THE LOWER BOUND SOLUTION FOR AXISYMMETRIC DRAWING


\subsection*{4.1 INTRODUCTION}

The theoretical account deals with the effect of the following parameters on the drawing process; namely, the draw force, the mean coefficient of friction, the die semi-angle, the equivalent semi-angle of the plug as well as the limitation of the achievable reduction of area. In both the upper and lower bound solutions, the influence of the forementioned drawing parameters in the design of the draw tools i.e. the die and the polygonal plug are presented. The results of axisymmetric drawing are presented for the purpose of comparing the mode of analysis.

\subsection*{4.2 THE LOWER BOUND SOLUTION}

The lower bound analysis was based on the equilibrium of forces of an elemental slug of the material undergoing plastic deformation leading to a differential equation (3.1ll) on page (61). The method neglects the increase in the drawing stress produced by the onset of the redundant shearing and as a result it underestimates the magnitude of the draw forces especially at large die angles where the redundant work is at its greatest (for a fixed plug). The draw load obtained by the integration
```

of the basic differential equation (3.lll) can be shown,
for the case of }\mp@subsup{\mathbf{N}}{\mathbf{g}}{}=\Omega\mathrm{ to comprise approximately of a
constant term and a second term which incorporates the mean
coefficient of friction and the die semi-angle (7). The
former term represents the homogeneous component which is
virtually a constant for a given reduction of area. The
later term represents the frictional component and decreases
with die semi-angle (i.e. shorter contact lengths), for a
given input-output tubing.

```

Although the lower bound analysis oversimplifies the mechanics of the process by ignoring the effect of the pattern of flow, the analysis involved is usually straightforward and forms an important conjugate in the upper bound analysis.

Figures 4.1 to 4.5 show the effect of different parameters on the draw force for the axisymmetric tube drawing.
Figures (4.3) and (4.4) show that for a particular
reduction, the total draw stress decreases as the die semi-
angle increases. The explanation for this is that increasir
the die angle implies decreasing the die length and hence
surface area of tool-workpiece contact. This results in
lower friction work. The homogenous work remains constant


FIGURE 4.1 VARIATION CF THE MEAN DRAW STRESS WITH THE DIE SEMIANGLE AND THE EQUIVALENT PLUG SEMI-ANGLE FOR THE LOWER BOUND SOLUTION FOR AXISYWMETKIC DRAWING



FIGURE 4.3 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE AND REDUCTION OF AREA FOR THE LCWER BOUND SOLUTION FOR AXISYMETRIC DRAWING



XJRE 4.5 VARIATION OF THE MEAN DRAW STRESS WITH REDUCTION OF AREA AND COEFFICIENT OF FRICTION FOR THE LCWER BOUND SOLUTION FOR AXISYMMETRIC DRAWING

fRE 4.6 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE AND COEFFICIENT OF FRICTION FOR THE LOWER BOUND SOLUTION FOR
for a particular reduction of area.

It is also seen that as the reduction increases from \(20 \%\) to \(40 \%\) for a particular die semi-angle, the tot draw stress increases. The result is expected since increasing the reduction implies increasing the area rat and from the equation of homogenous work (W • Yfcn there is a corresponding increase in the homogenous work component.

Another feature that is observed from the graphs that when the die semi-angle is small (about \(4^{\circ}\) ), the cu are very steep but when the die semi-angle is large (abc \(20^{\circ}\) ), the curves are almost horizontal. The explanation that at very low die semi-angles, the die length is larg implying a large frictional work component as the main contribution to the total draw stress. For large die se angles, the die length is small and the main contributio of the total draw stress is the homogenous component whi is independent of the die angle.

Figure (4.5) shows that for a particular coeffic of friction, the total draw stress increases almost line with reduction. The explanation is that increasing redu implies increasing the homogenous work component. Furth for a particular coefficient of friction, e.g. u « 0, th.
curve crosses the abscissa at a reduction of about \(16.5 \%\). This is the minimum possible reduction for the given set ol draw parameters. A smaller reduction implies a smaller an ratio which would occur if the plug semi-angle is less thar \(0^{\circ}\) which is inadmissible.

\author{
It is further observed that as the coefficient of friction increases from 0.0 to 0.1 for a particular reducti the total draw stress increases since the frictional work i directly proportional to the coefficient of friction.
}

In the case of polygonal drawing, figures (4.6) and (4.7) show that for any coefficient of friction not equal \(t\) zero, the total draw stress decreases as the die semi-angle increases. This result is expected since as the die semiangle increases the frictional work component decreases whi the homogenous work component remains constant for constant reduction of area. When \(u=0\), the frictional work component is zero and the graph is a straight horizontal line representing the homogenous work component.

Figure (4.8) shows that for any particular die, the total draw stress increases with reduction since the homogenous work component increases with reduction.

Figures (4.9), (4.10) and (4.11) show the variation of the total draw stress with the number of sides of drawn


FIGURE 4.7 VARIATION OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLi AND COEFFICIENT OF FRICTION FOR THE LOWER BOUND SOLUTION FOR POLYGONAL TUBE DRAWING
1.2

\begin{tabular}{rl} 
Tube outer i ameter & \(=280 \mathrm{mn}\) \\
Die size & \(=251 \mathrm{mn}\) \\
Thickness & \(=9525 \mathrm{~mm}\) \\
\(\mathrm{~N}_{0}\) & \(=4\) \\
& \(=0.02\)
\end{tabular}
\[
\begin{aligned}
& -\mathrm{J} \\
& \mathrm{M} \\
& \mathrm{I}^{2} \\
& 0.41
\end{aligned}
\]
a
s



4
8
12
Nurrber of sides of drawn section ( \(N_{s}\) )
FIGURE 4.9 VARIATION OF TEE MEAN DRAW STRESS WITH NTM3ER OF SIDES POLYGONAL TUBE AND DIE SEMI-ANGLE FOR THE LOWER BOUND SOLUTION" FOR POLYGONAL TUBE DRAWING
1.2,
\[
\begin{array}{ll}
\text { Tube outer diamiter } & =28.6 \mathrm{~mm} \\
\text { Die size } & =25.4 \mathrm{~mm} \\
\text { Thickness } & =9.525 \mathrm{rr} \\
\mathrm{a} & =8^{\circ}
\end{array}
\]
0.8J
0.41 \begin{tabular}{l}
\(u=\) \\
\(\cdot 0.10\) \\
\(m\) \\
\\
\\
\\
\end{tabular}
\begin{tabular}{ll} 
Tube outer diameter & 28.6 mm \\
Die size & 25.4 mn \\
Thickness & 9.525 nm \\
& 0.06
\end{tabular}
0.25

«T
50.243
©
i
0.24

0
8
12
Number of sides of drawn section (N )

FIGURE 4.11 VARIATION OF THE MEAN DRAW STRESS WITH NUMBER OF SIDES OF POLYGONAL PLUG FOR THE LOWER BOUND SOLUTION FOR POLYGONAL TUBE DRAWING

section for a given tube using the concept of close \{ drawing. For a given input tube and drawing die, and constant coefficient of friction, the draw stress dec slightly with the number of sides. Although the surfc increases with consequential increase in the frictior component, there is a decrease in the homogeneous wor component because of the decrease in reduction of are 4.3 THE UPPER BOUND SOLUTION

The upper bound solution was obtained from a velocity field that minimizes the energy to effect th deformation and incorporates an apparent strain metho< include Coulomb friction. The velocity pattern was developed by conformal mapping of triangular elements entry plane to the positions at the exit plane. The solution therefore accounts for the mode of deformatic

Figure (4.12) shows that for a given die semj angle and coefficient of friction, the total draw stre increases with the reduction of area for the case of o symmetric drawing. Figures (4.13) and (4.14) show the variation of the total draw stress with the die semi-a for axisymmetric drawing.

Figure (4.16) shows the variation of the draw ratio against the die semi-angle in the upper bound so for drawing a square tube directly from round. At ver die angles the draw stress ratio tends to infinity. \(T\)

88


FIGURE 4.13 VARIATION CF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE AND REDUCTION OF AREA FOR THE UPPER BOUND SOLUTION FOR AXISYMMETRIC DRAWING
1. 2 t
\[
\begin{aligned}
\text { Tube diarreter } & =28.61771 \\
\text { Product c iameter } & =25.4 \mathrm{~mm} \\
\text { Thickness } & =9 . ? 25 \mathrm{~mm} \\
& =0 .) 6
\end{aligned}
\]
\[
H
\]
\[
\begin{aligned}
& -\mathrm{a} \\
& \mathrm{r}_{0}+
\end{aligned}
\]
o.a
\[
\begin{aligned}
& \mathrm{I} \\
& \stackrel{M}{\mathrm{M}} \\
& { }_{c i} 0.4
\end{aligned}
\]

4.15 THREE DIMENSIONAL PLOT OF THE VARIATION. OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AND THE EQUIVALENT PLUG SEMI-ANGLE FOR THE LOVER BOUND SOLUTION FOR POLYGONAL TUBE DRAWING
\begin{tabular}{ll} 
Tube outer diameter & 31.75 mm \\
Die size & 25.4 rm \\
Thidkness & 9.525 mm \\
r & \(35.9 \%\) \\
N & 4
\end{tabular}


Die semi-angle (oc)
[GURE 4.16 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE AND COEFFICIENT OF FRICTION FOR THE UPPER BOUND SOLUTION FOR POLYGONAL TUBE DRAWING
expected because for very low die angles, the die must be very long to achieve a certain reduction for a given coefficient of friction. A large die length implies a large surface area of tool-workpiece contact and hence a large component of frictional work. As the die angle increases for a given coefficient of friction the draw stre decreases to a certain die angle where the combined effect of friction work and redundant work is a minimum. At highe die angles, the effect of redundant work is much greater than that of the friction work and the draw stress increase It is therefore possible to predict the optimum die angle for the given set of drawing parameters that gives the leas work of deformation.

Figures (4.17) and (4.18) show a comparison of the upper and lower bound solution for drawing a square tube. In the case of square drawing, the particles of the tube undergo severe distortion as they pass through the deformat passage. Therefore, the upper bound analysis which account for the redundant work required to deform these particles a the entry and exit to the deformation zone shows very high values (see ref. (5) for the case of polygonal tube drawi using a cylindrical plug).

Figures (4.19) and (4.20) shows the values of the upper and lower bound solution for the hexagon and octagon


FIGURE 4.17 VARIATION OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AND COEFFICIENT OF FRICTION FOR THE UPPER AND LOVER BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING


FIGURE 4.18 VARIATION OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AMD COEFFICIENT OF FRICTION FOR THE UPPER AND LOWER BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING


FIGURE 4.19 VARIATICN OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AND COEFFICIENT OF FRICTION FOR THE UPPER AND LOWER BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING


FIGURE 4.20 VARIATICN OF THE MEAN DRAW STOESS WITH THE DIE SEMI-ANGLE AM) COEFFICIENT OF FRICTION FOR THE UPPER AND LOVER BCIJND SOLUTIONS FOR POLYGONAL TUBE DRAWING

\begin{abstract}
sections drawn for the same input tube. In each of the graphs, the upper bound values are higher than the lower bound values for \(y<0.04\) for all values of the die angle a. However, for \(\mathrm{p}>0.4\), the upper bound values are only higher than the lower bound values for large and low die angles. At low die angles, the friction contribution is higher because of the increased contact surface area and hence the values of the two solutions almost agree since the redundant work would be low for low reductions. In the case of large die angles, the redundant work predominates and the upper bound solution takes it into account.
\end{abstract}

At the intermediate die angles, the effects of friction and redundant work on the draw load are comparable. The upper bound analysis assumes an equivalent plug-tube interface which in effect reduces the surface area on which the friction acts. The term is therefore lower. In the case of the lower bound analysis, the frictional term is evaluated numerically on the geometrical surface of the plug. This may give rise to a frictional term which is lower than that of lower bound analysis and hence lower bound values which are higher than the upper bound values. The foregoing explanation holds for figure 4.20 which is drawn for a different input-output tubing.

Figure 4.21 shows the variation of the draw stress against the number of sides of the drawn section from the same input tube. The lower bound curve shows that as the number of sides of drawn section increases the draw stress increases slightly due to the increase in reduction of area. However, in the case of the upper bound values which are higher than the lower bound values, the load decreases with increased number of sides though the homogeneous work increases. This is due to the reduced distortion the element undergo with increased number of sides.

The variation of the draw stress with the semiangle (a) of the conical die and the plug shape described by the equivalent plug semi-angle (ae) is shown in Figures (4.15) and (4.23). The graphs enable the capacity of the draw bench to be estimated to produce a given input-output tubing, the selection of the optimum draw tools and lubricant which give the least work of deformation.

\begin{tabular}{ll} 
Tube outer diameter & 26.99 \\
Die size & 25.4 \\
Thickness & \(\underline{9.525}\) \\
& 0.24 \\
& \(10^{*}\)
\end{tabular}
r for \(N=4,6\) and 8
9.0,10.9
and 11.64
©
W


Nunber of sides of drawn section \(\left(\mathrm{N}_{3}\right)\)
FIGURE 4.21 VARIATION OF THE MEAN DRAW STRESS WITH NUMBER OF SIDES OF DRAWN SECTION FOR THE UPPER AND LOWER BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING


FIGURE 4.22 VARIATION OF THE MEAN DRAW STRESS WITH DIE ^ AND COEFFICIENT OF FRICTION FOR THE UPPER AND LOWER BCUMD SOLUTIONS FOR POLYGONAL TUBE DRAWING


FIGURE 4.23 THREE DIMENSIONAL PLOT OF THE VARIATION* OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AND THE EQUIVALENT PLUG SEMI-ANGLE FOR THE UPPER AND LOWER BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING

\subsection*{5.4 LIMITATION OF ACHIEVABLE REDUCTION OF AREA}

The expressions for the cross-sectional area of the tube material at entry and exit are:-
\[
\begin{align*}
& { }^{A} b=\wedge b \quad "  \tag{5.1}\\
& A_{a}=-D_{a}^{2}-H_{a}^{2}(S P A R), \text { respectively, }  \tag{5.2}\\
& \text { Where SPAR is a shape parameter equal to } \\
& \cos \mid 3 \sin 8\left(N_{s}\right) \\
& \text { Therefore the reduction is given by: }
\end{align*}
\]

For close pass drawing, \(H_{a}=d_{b}\) and the reduction of area is given by
\[
\begin{align*}
& \left.r=1 \quad \mathrm{ID}^{2}-\underset{\mathrm{b}}{\mathrm{~d} ?(\mathrm{SPAR})}\right\}  \tag{5.5}\\
& \left.{ }^{*} \mathbf{t}_{\mathrm{b}}{ }^{2} \mathrm{t}_{\mathrm{b}}-\mathbf{1}\right)
\end{align*}
\]

In practice, \(H_{a}<d_{b}\) to allow for sinking.
i
The maximum reduction of area possible occurs when \(H_{a}=d_{b}=D_{a}\) and \(t_{b}=D_{b}-D_{a}\) and is given \(b y:\)
\[
r=1-\wedge^{4 D^{2}(t t / 4-S P A R) x} \frac{\mathrm{MD} *-D 2)}{\text { (tt }}
\]

An extensive investigation of the mechanics of drawing polygonal tube from round stock through a cylindrical die and a polygonal plug has been accomplished theoretically to enable the following conclusions to be drawn.
1. In general for any given set of draw parameters, the derived upper bound solution predicts a higher value of draw stress due to the account taken for redundant work whilst the simpler lower bound solution underestimates the draw stress as it neglects the redundant effect.
2. Unlike the axisymmetric tube drawing problem, the shape of the die deforming passage forms an integral part of the analysis of drawing polygonal tube directly from round stock through a cylindrical die.
3. The predicted loads in the drawing of a square section proved to be the severest of all polygonal sections implying that it may be very difficult to draw the section (Figures 4.16, 4.17 and 4.18). This is because the material suffers the greatest lateral displacement as the bore of the workpiece transforms
```

from round to square with the external surface
remaining circular for a particular reduction of area.

```
4. The upper bound solution predicts the optimum die semiangle a and the corresponding plug semi-angle \(a_{e}\). The predicted values form a useful guide in the design of draw tools that would dissipate the least amount of energy.
5. The developed theory and accompanying computer program form a useful guide when producing draw schedules and in the design of draw tools for any given set of draw parameters.

\author{
On the basis of the present study of mechanics of drawing regular polygonal tube directly from round stock through a cylindrical die and a polygonal plug, further work is suggested as follows:-
}
1. Experimental investigation of the process:

Because of the unavailability of a draw bench, the experimentation was not part of the project study. It it suggested that experimental investigations be carried out using dies and plugs designed according to the proposed theory. The study would provide the actual data for the drawing process and hence the verification of the theoretical solutions. It is expected that the actual draw loads would lie between the upper and lower bound values.
2. Irregular polygonal tube drawing:

The derived theoretical solution was limited to regular polygonal sections. The solution could be extended to include irregular polygonal sections.

Other plug profiles:

The theoretical solutions were confined to the drawing on plug made of elliptical plane/conical surfaces. The study could be extended to other profiles such as those shown in Figure 3.2.

Equivalent plug semi-angle cc^:

In the present study, the theory was developed for a conical die with a semi-angle a and a plug with an equivalent semi-angle . The results however were obtained for close pass drawing where \(\mathrm{H}^{\wedge}=\mathrm{d}^{\wedge}\). It is suggested that adjustments be made for the case where \(\mathrm{H} \ll \pm\) by taking account of the prior sinking.

\section*{REFERENCES}

Wistreich, J.G. Investigation of the mechanics of wire drawing, Proc. Instn. Mech. Engrs., 1955, Vol. 169, pp 654-665

Juneja, B.L. \& An analysis for drawing and extrusion of PraJkash, R polygonal sections, Int. J. Mach. Tool. Des. Res., 1975, Vol. 15, pp 1-18

Basily, B.B. \& Some theoretical considerations for the Sans one, D.H. direct drawing of section rod from round bar, Int. J. Mech. Sci., 1976, Vol. 18, pp 201-208

Kariyawasam, V.P. An experimental study of the direct \& Sansome, D.H. drawing of round tube to any regular polygonal section pp l-14
wa Muriuki, \(M\) The mechanics of drawing polygonal tube frcm round on a cylindrical plug. PhD thesis (1980) University of .Aston in Birmingham

Rove, G.W. An introduction to the principles of metal working, Edvard Arnold (publishers) Ltd., 1965.

Blazynski, T.Z. Metal forming, tool profiles and flow, The Maanillan Press Ltd., 1976

Swift, H.W. Stresses and strains in tube drawing, SER. 7, No. 308, 1949, Vol. 40, pp 882-903

Chung, S.Y. Theory of hollow sinking of thin walled tubes, Metallurgia, 1951 pp 215-218

Moore, G.G. Theories and experiments on tube sinking \& Wallace, J.F. through conical dies, Proc. Instn. Mech. Engrs., 1967-68, Vol. 182, pp 19-27

Blazynski, T.Z. An investigation of sinking and mandrel \& Cole, I.M. drawing processes, Proc. Instn. Mech. Engrs., 1963-64, Vol. 178.

Avitzur, B. Metal forming: Processes and analysis, Mcgraw-Hill book carpany, 1968
13. Juneja, B.L. \& A general solution to axi-symnetric Prakash, R. contained plastic flow processes, Proc. Indo Brit. Conf. Engg. Prod., 1976, pp C93-Cl07
14. Thonpson, P.J. \& Apparent strain method for analysis of Sansome, D.H. steady-state metal-working operations, Metals Technology, November 1976 pp 497-5C2
15. Ford, H. \& Advanced mechanics of materials Alexander, J.il. Ellis Horwood Ltd., 1977.
16. Prager, W. \& Theory of perfectly plastic solids, Hodge, P.G. Chapman \& Hall, London, 1951.
17. Sachs, J. \& Stress analysis of tube sinking, Trans. Baldwin, W.M. A.S.M.E. 68, 1946 pp 655-662.

1

APPENDIX

A-L UPPER BOUND SOLUTION

A-L.L DETAILED DEFORMATION PATTERN

The general equation of a hyperbola with respect
to the \(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\) axis (Figure 3.3 on page 22) is
\begin{tabular}{|c|c|}
\hline \(x .2{ }^{2}{ }^{2}\) & \\
\hline - i - \(4=\mathrm{i}\) & ( \(A-i . i)\) \\
\hline & \\
\hline
\end{tabular}

The equation with respect to the \(\mathrm{X}_{\mathrm{a}}\), Yaxis beccmes


The orientation of the \(X_{a}, Y_{a}\) axis is selected such that \(5=0(=0)\).

The equation of the line inclined at 25 to the \(Y_{a}\) axis is
\[
\begin{equation*}
y_{1}=-x \cdot \tan \langle\mathrm{f}\rangle+I_{1} \tan \$ \tag{A-1.3}
\end{equation*}
\]
and its intersection with the hyperbola \(i\) (equation \(A-1.1\) ) is

which yields

1
\[
\left(b_{i}^{2}-a_{1}^{2} \cdot \tan ^{2} \cdot s^{N}\right)
\]
\[
(A-1.4)
\]

Equation ( \(A-1.1\) can be re-written in the form \(\mathrm{x}_{\mathrm{i}}^{2}={\underset{1}{2,}, 2 .}_{\mathrm{W}}^{\mathrm{W}} \underset{\mathrm{i}}{\stackrel{2}{i}}\)

2
\(2^{a} i\)
Urn. = y. -2
i
b.x.

Therefore, \(y^{\wedge}= \pm \pm 1\) is the equation of the asynptotes of the hyperbola i.

Also from Figure \(A-1.1\), the slope of the asynptotes with respect to the \(x^{\wedge}\), \(y\). axis is \(\tan \left(\operatorname{Tr} / 2^{\wedge}>\right)\).
The foregoing analysis yields
\[
\begin{equation*}
\mathrm{b}_{\mathrm{I}}={ }_{t a i t p} \tag{A-1.5}
\end{equation*}
\]

Referring to equation \((A-1.4)\) let \((v, w)=\left(x_{i}, y_{i}\right)\) the point of intersection; then



and \(\mathrm{w}=\underset{\mathrm{y}_{i}}{\mathrm{Y}_{\mathrm{i}}}=-\underset{\mathrm{l}}{\mathrm{x}}+\underset{\mathrm{I}}{ }\)

Hie total area bounded by the hyperbola \(i\), the straight line \(\left.\mathrm{y}^{\wedge}=\operatorname{tanp} 0-x^{\wedge} H^{\wedge}\right)\), the die surface and the \(Y_{a}\) axis is found to be
\[
\begin{aligned}
& A_{T}(i)=-2 \tan \left\{2+\frac{a^{2}}{\tan 9}+\frac{a^{2}}{2 \tan \$} \operatorname{Un}\left\{w+\left(w^{2}+\frac{a^{2}}{\tan \$}\right) *\right\}\right) \\
& a^{2} \quad a . \quad D^{2} \\
& \text { " ian }{ }^{2} /{ }^{\prime \prime} \wedge \text { \} } \wedge \\
& +\mathrm{v}^{2} \tan p-\mathrm{JL}(\mathrm{w}+\mathrm{v} \tan 0)
\end{aligned}
\]
a (see Figure 3.3) is the distance frcm the origin \(\left(0,0^{\wedge}\right.\) to the vertex of the hyperbola and is adjusted as the \(\mathrm{X}^{\wedge}, \mathrm{Y}^{\wedge}\) axis translate along the straight line \(X_{a}=Y_{a}\) tan; the line of symmetry. The value of \(a_{i}\) is selected to suit the corners \(o\) the asymptotes drawn for every \(l_{j L}\) e.g. \(\mathrm{a}_{\mathrm{L}}=1-\wedge\).

The diagonal wall thickness is divided into \(\mathrm{N}-2\) elemental lengths. Let the elemental lengths be \(A t_{2}, A t_{3>} A t_{4}\)



Let \(A t_{2}=A t_{3}=A t_{N_{-1}}=A t\)
\(\begin{aligned} & \text { Then } A t=\frac{\mathrm{D}_{\mathrm{a}} \quad \mathrm{H} \mathrm{a}}{N-2} \\ & \mathrm{i}_{ \pm}= \\ & D_{r 2}-(\mathrm{i}-1) \mathrm{At}\end{aligned}\)

Assuming a constant reduction in area, the inner
radius \(u\) (i) (Figure \(A-1.2\) ) of the cross-sectional area at the entry plane corresponding to the area \(A^{\wedge}\),(i) can be deteirnined.

Let \(A_{r}=\) Area ratio
- Area at entry

Area at exit
\(\mathrm{f} b\)
( \(\mathrm{A}-1.10\) )
Aa

Then, -J § \(-\mathrm{mi}^{2}(!)(\S)-\)
which simplifies to
\[
{ }^{u} r^{(i)}=\left\{{ }^{\mathrm{D}} \mathrm{~b} \sim \mathrm{r}^{\mathrm{i}\}}\right\rangle \text { * }
\]
\[
(A-1 . I I)
\]

The area banded by the radii \(u_{r}(i+1)\) and \(u_{r}(i)\) (Figure \(A-1.2)_{t}\) is divided into \(M-1\) equal sectors each subtending an angle \(d t\). where \(j\) refers to the element between the radial lines j and \(\mathrm{j}+\mathrm{l}\). Let the inclination of the radial line \(j\) to the axis be \# then \(d t{ }_{J}=4>{ }_{J}-\$_{J}\).

Let \(+d \$_{2}+\quad+c t t^{\wedge}=Z d f r=2 D\)
and \(\mathrm{dO}_{1}=\mathrm{CtD}_{2}=\quad \mathrm{dsp}{ }^{\wedge}=d p\),
then \(\quad d p=-\overline{M-1}\)

Frcm Figure ( \(A-1.2\) ),
\[
\begin{array}{rl}
J & J-1+j-1 \\
= & +d t>_{2}+ \\
= & (j-1)<\# \\
= & (j-1) \bar{M}-1  \tag{A-1.13}\\
M-1
\end{array}
\]

The elemental area enclosed by the radial lines and circular bands, say \(A B C D\) is divided into two triangles; a large triangle \(A D B\) and a small triangle \(D B C\). Let the angle subtended at the centre \(\underset{\mathrm{J}}{ }=\mathrm{dy}\) and the radial increment \(A D=\langle S R\), where \(u(i)=R\).

The approximate area of the large triangle \(A D B\) is
\[
\begin{equation*}
\text { AL }-\& R 6 R 5 Y \tag{A-1.14}
\end{equation*}
\]


FIGURE A-1.2 (a) DIVIDING THE ENTRY PLANE INTO (N-2)
BANDS X(M-1) SECTORS
(b) EACH ELEMENTAL AREA IS FURTHER SUBDIVIDED INTO A LARGE AND SMALL TRIANGLE
and that of the small triangle DBC is
\[
\begin{equation*}
A_{s}=£ R c R 5 y-* 6 R^{2} 6 y \tag{A-1.15}
\end{equation*}
\]

The difference between the two areas
\[
\begin{aligned}
A_{\mathrm{d}} & =A_{\mathrm{L}}-A_{S} \\
& =* 6 R^{2} 6 y
\end{aligned}
\]
\[
(A-1.16)
\]
and the sum of the two areas
\[
\begin{equation*}
A_{1}+A_{s}=R 6 R 6 y-i<5 R^{2} 5 y \quad(=A B C D) \tag{A-1.17}
\end{equation*}
\]

Therefore,
\[
\begin{equation*}
\left.A_{1}=K A B C D+A_{d}\right) \tag{A-1.18}
\end{equation*}
\]
and \(A_{s}=*\left(A B C D-A_{d}\right)\)

Substituting for \(A^{\wedge}\) and area \(A B C D\),
\[
\begin{equation*}
\left.A_{1}=J \quad\left(u_{r}(i)\left\{u_{r}(i)-u_{r}<i+1\right)\right\}\right) \tag{A-1.20}
\end{equation*}
\]
and \(A_{s}=i f^{\wedge}\left(\left\{\left(u_{r}(i)-u_{r}\left(i+l » u_{r}(i)\right\}-\left\{u_{r}(i)-u_{r}(i+l)\right\}^{2}\right)\right.\right.\)
\[
(\mathrm{A}-1.21)
\]

Equations ( \(A-1.20\) ) and ( \(A-1.21\) ) are the expressions for the elemental areas of the large and small triangles.

The co-ordinates of the vertices \(A, B, C\) and \(D\) are obtained as follows;
\[
\text { At } \begin{aligned}
& A,j) \\
&=u(i) \sin \langle J\rangle \\
& Y_{b}(i, j)=u_{r}(i) \cos 0^{\wedge}
\end{aligned}
\]

At \(B, y i, j+1)=u_{r}(i)\) siat>. \({ }_{\text {. }}\)
\[
Y_{b}(i, j+l)=u_{r}(i) \cos 0_{j+1}
\]

At \(C, Y i+1 j+1)=u . U+1) \operatorname{sir} * J)_{j+1}\)
\[
Y_{b}\left(i+l_{f} j+1\right)=u_{r}(i+1) \quad \operatorname{ccs} \$_{j+1}
\]

At \(D, X_{b}(i+1, j)=u_{r}(i+l) \sin\) ?.
\(Y_{b}(i+1, j)=u_{r}(i+1)\) cast.

The centroids of the large and small triangles are located as follows:-

The centroid of the large triangle \(A B D\)
\(\left.\left.\left.\left.x^{\wedge} \mathrm{cLCi}, j\right)=\mathrm{cyi}, j\right)+-y i+i, j\right)+y i . j+i\right) / / 3 \quad\) CA-I.26)
\(Y_{b} C L(i, j)=\left(Y_{b}(i, j)+Y_{b}(i+l, j)+Y_{b}(i, j+l)\right) / 3\)
and the centroid of the small triangle DCB,
\(\left.\left.\left.\left.{ }^{\wedge} C S d J\right)=(y i+l j)+y i+l, j+l\right) * y i, j+1\right)\right) / 3(A-1.27)\)
\(\left.\left.Y_{b} C S(i, j)=C y i+l, j\right)+Y_{b}(i+l, j+1)+Y_{b}(i, j+l)\right) / 3\)

Assuming the same constant reduction \(A^{\wedge}\), each
triangle at the entry plane is transformed into a corresponding triangle at the exit plane where
r
and \({ }^{A} \mathrm{~S}=\wedge\)
r
Considering the \(\mathrm{Y}_{\mathrm{a}}\) axis and its intersection with the hyperbola
\(i\) and \(i+1\), the vertices © and ( 2 ) (or ( \(\left.X_{a}, Y_{a}\right)_{i, j}\) and

is known and the third vertex must lie on hyperbola i.
To determine the third vertex, consider the triangle \(A^{\prime} B^{\prime} D^{\prime}\) (Figure A-l.3a). Let the co-ordinates of the triangle be \(A^{\prime}\left(X_{1}, Y_{1}\right), B^{\prime}\left(X_{2}, Y_{2}\right)\) and \(D^{\prime}\left(X_{3}, Y_{3}\right)\). Applying the trapezium rule,

(A.1 - \({ }^{29)}\)

Vertex (I) lies on the intersection of the outer curve
(a circle) and the \(Y_{a}\) axis (Figure A-l.3b).
Therefore, \(\quad X_{a}(=X)=\),
and \(\quad Y_{a}\left(=Y_{1}\right)= \pm \frac{}{2}\)
where the appropriate value of \(\mathrm{Y}^{\wedge}\) is the positive value.
Vertex © lies on the intersection of the hyperbola \(i\) and the \(Y_{a}\) axis,
\[
\begin{equation*}
\text { i.e. } \quad X_{a}\left(=x_{d}\right)=0 \tag{A-1.31a}
\end{equation*}
\]
\(Y_{a}\left(=Y_{2}\right)\) is obtained frcm equations \((A-1.2)\) and (A-1.3) as

(a)

(b)

FIGURE A-1.3 (a) APPLICATION of TRAPEZIUM RULE
(b) DETAILED LOCATION CF TAJBD VERTEX


The appropriate value of \(Y_{9}\) is the smaller positive value.

TWo vertices are new known and the third vertex lies on the outer curve corresponding to the die surface. The vertex is obtained fran the simultaneous solution of the equation of the curve and the area of the triangle.

The equation of the curve is
\[
\begin{equation*}
{ }^{2}+{ }_{3}^{2}+{ }^{\mathrm{D}} \mathrm{a}^{2} \tag{A-1.32}
\end{equation*}
\]
and equation ( \(A-1.29\) ) is re-written in the form
rearranging and dividing through by \(\left(X g-X^{\wedge}\right)\) gives
\[
\begin{align*}
& "\left(\mathrm{~W}^{\mathrm{Y}} \mathrm{X}_{2}\right) \quad \mathrm{Y}_{1}-\mathrm{Y}_{2} \\
& { }^{\mathrm{Y}} 3 \\
& { }^{\mathrm{x}} 2{ }^{\mathrm{x}}{ }^{\mathrm{x}} 1 \\
& \text { Let } \quad 2 A £-\left(Y^{\wedge}-Y^{\wedge}\right)  \tag{A-1.34}\\
& \mathrm{V}^{\mathrm{x}} \mathrm{l} \\
& \text { and } \quad \mathrm{v}_{2} \\
& =\mathrm{K} \text {-, }  \tag{A-1.35}\\
& \mathrm{V}^{\mathrm{X}} \mathrm{I} \\
& \text { Then } Y_{3}=\quad \sim \tag{A-1.36}
\end{align*}
\]

\section*{Al3}


The appropriate value of Xg is the larger positive value.

Having determined vertex (3) ( \(\mathrm{X}^{\wedge} . \mathrm{Y}^{\wedge}\) ) of the large triangle, vertex (2) \(\left(X_{2}, Y_{2}\right)\) of the large triangle becomes vertex a of \({ }^{3 n a l l}\) triangle and vertex (D \(\left(X_{3}>Y_{3}\right)\) of the large triangle becomes vertex (2) of the small triangle.

Two vertices of the small triangle are known and the third one lies on the hyperbola i, i.e.
\[
\left(\mathrm{XgS} \text { in } £+\mathrm{Y}_{3} \operatorname{COS} £-I_{ \pm}\right)^{2} \quad\left(\mathrm{X}^{\wedge} \operatorname{ccsC}-\mathrm{YgS} \text { in } £\right)^{2}
\]

and \(Y_{3}=\left(m^{\wedge}-K^{\wedge} X^{\wedge}\right)\)
where \(m^{\prime}=\frac{2 A^{\prime}-(Y J C,-Y}{Z-1}-\)
\[
\begin{equation*}
\mathrm{x}_{2}{ }^{\prime \mathrm{x}_{1}} \tag{A-1.40}
\end{equation*}
\]

Equations ( \(A-1.39\) ), ( \(A-1.38\) ) and ( \(A-1.5\) ) are solved
simultaneously to yield \(\mathrm{X}^{\wedge}\) as

\section*{Al4}

which on factorizing gives
\[
3 \cdots \frac{-\left(\mathrm{C}_{2}-\mathrm{d}_{2}\right) \pm /\left\{\left(\mathrm{C}_{2}-\mathrm{d}_{2}\right)^{2}-4\left(\mathrm{C}_{3} \wedge_{2}\right)\left(\mathrm{C}_{1}-\mathrm{d}_{1}-\mathrm{af}\right)\right\}}{2\left(\mathrm{C}_{3}-\mathrm{d}_{3}\right)}
\]
where
\[
\begin{aligned}
& \mathrm{C}^{\wedge}=\sin ^{9} \mathrm{C}-\wedge \sin ^{\wedge}+\mathrm{k}^{\wedge}{ }^{2} \mathrm{CCs}^{2-} \\
& \mathrm{C}_{9}=\mathrm{rn}^{\wedge} \sin 2^{\wedge}-2 £_{\mathrm{i}} \sin ^{\wedge}-a 7 \mathrm{i}^{\wedge} \mathrm{k}_{1} \cos ^{2} \mathrm{C}^{+} 2 \mathrm{k}_{1} \mathrm{i} \mathrm{l}_{\mathrm{i}} \cos \mathrm{C} \\
& C_{1}=m^{\wedge 2} \operatorname{ccs}^{2} \mathrm{C}-2 \mathrm{~m}^{\wedge} \mathrm{il}_{\mathrm{i}} \cos ^{\wedge}{ }^{\wedge} \mathrm{i} \\
& \mathrm{~d}_{3}=\tan ^{2} 0\left(\cos ^{2} \mathrm{C}+\mathrm{kjSii}{ }^{\wedge}+\mathrm{kjSin}^{2}{ }^{2}\right. \text { ) } \\
& d_{2}=\tan ^{2} \$\left(-H n J \sin 2 \&-2 m^{\wedge} k^{\wedge} \sin ^{2} S\right)
\end{aligned}
\]

The appropriate value of \(\mathrm{X}^{\wedge}\) is the smaller positive value,

The centroids of the triangles at the exit plane can now be obtained.

For the large triangle,
\(X_{a} C L(i, j)=\left(X_{a}(i, j)+X_{a}(i, j+1) \cdot X_{a} C i+1 . j\right)>/ 3 \quad(A-1.42)\)
\(Y a(i, j)=\{Y(i . j) * Y(i, j+l) * Y(i+1, j)\} / 3\)

For the small triangle,
\[
X C S(i J)=\left(X_{a}(i+1 J)+X_{a}(i+1, j+1)+X_{a}(i, j f l)>/ 3\right.
\]
\(\left.Y_{a} C S(i, j)=\left(Y_{a}(i+l, j)+Y^{\wedge} C i+l, j+l\right)+Y_{a}(i, j+l)\right\} / 3\)

\section*{A-1.2 DERIVATION OF THE FL£W PATH PARAMETERS}
\(6_{b}(i, j)\) is the horizontal distance a particle travels after shearing at the assumed discontinuity boundary, .neasured relative to the entry plane (see Figures A-1.4 and A-1.5). \(<5_{a}(\mathrm{i}, \mathrm{j})\) is the horizontal distance the particle travels after shear at the assumed discontinuity boundary, measured relative to the exit plane.

Therefore the total distance covered by the particle in the deforming zone is
\[
\begin{equation*}
\left.Z_{s}(i, j)=L+5_{b}(i, j)-5_{a}(i, j) \quad \text { (Figures } A-1.6 \text { and } A-1.7\right) \tag{A-1.44}
\end{equation*}
\]

The length of the flow path \(\mathrm{Z}_{\mathrm{t}}\) for each element and the relative angular diflections n and V as the element flews through the deformation zone are determined from geometry as follows;
\[
\operatorname{Sin} 0(i, j)=\frac{\mathrm{RuCU})}{} \text { or } 6(i, j)=\sin (-) \quad(A-1.45)
\]


FIGURE A-1.4 FLOY PAW OF AN EIMARY PARTICLE FOR TiULi DRAWING OF POL/ TUBE DIRECTLY IBOM ROUND


FIGURE A-1.5 GENERAL PCSITICN OF SHEAR SURFACES AT THE ENTRY and EXit id the deformation zone


FIGURE A-1.6 DIAGRAM TO ILLUSTRATE THE APPROXIMATE FLOW PATH OF AN ELEMENT IN THE DEFORMATION ZONE

\(\begin{array}{cl}\text { FIGURE A-1.7 } & \text { THE PYRAMIDICAL SURFACE AT THE EXIT TO } \\ & \text { THE DEFORMATION ZONE SHOWING THE } \\ & \text { DEFINITION OF <S }{ }^{\text {('i, } \mathbf{J} \text { J })}\end{array}\)
where \(\mathrm{p}^{\wedge}\) is derived frcm gecmetry as
\[
\begin{array}{ll}
P_{b}=\frac{L a}{l^{2}} \\
(\wedge \circ \circ w & (A-1.46) \\
<\$_{b}(i, j)=P_{b}\{\cos 9(i, j)-\operatorname{ccsa}\} & (A-1.47)
\end{array}
\]
\[
X j i j)+Y^{2}(i, j)=R^{\wedge}(i, j)
\]
where \(X^{\wedge} i, j\) ) and \(\left.Y^{\wedge} d . j\right)\) are defined by equation ( \(A-1.22\) ) on page

Therefore \(\left.\left.\mathrm{R}_{\mathrm{b}}(\mathrm{i}, \mathrm{j})=A X^{\wedge} U . j\right)+\mathrm{Y}^{2}(\mathrm{i}, \mathrm{j})\right\}\)

Similarly \(R(i, j)=/\{x f(i, j)+Y f(i J)\} \quad(A-1.49)\)

Considering the geometry of Figures \(\mathrm{A}-1.5\) and \(\mathrm{A}-1.6\),

where
\[
\left.\tan { }^{\frac{1}{1}} \underset{\left\{Y_{A}(i, j)\right.}{X}(i, j) \quad \cdot\right\} \text { for * }<6
\]
\[
\left(A^{11} 51\right)
\]
\[
\begin{gathered}
\left.\left.20-\tan ^{-1} \underset{\left\{-{ }_{-}^{x} a^{(i J)}\right\}}{Y_{a}(i J)}\right\} \text {, for }\langle J\rangle_{A}\right\rangle 0
\end{gathered}
\]

Considering Figure A-1.3a,
\[
\left.\left.Z_{t}(i J)=(C y i J)-X_{a}(i, j)\right\}^{Z}+\left\{Y_{b}(i, j)-Y_{a}(i, j)\right\}^{\wedge}(i, j)\right)
\]


FIGURE A-1.8 (a) DETAILED DERIVATION OF \(\left.\mathrm{Z}^{\wedge} \mathrm{ti}, \mathrm{j}\right)\)
(b) PLANE THROUGH THE ELEMENT ( \(i, j\) )

WHERE IT CEASES TO DEFORM
```

Considering Figure A-l. 8b,
X(i,j) -1 /V V', JW /A-1 53)
a

```

```

^ B^ "j) = Y^Ij I or * B (1,J) = tan Yj|(iJ)
tann(i,j)=- - Ra(i,j)Sin4> B/A (i>j)
Zp(i.j)
or n(i.j) = tan }\frac{\mp@subsup{R}{a}{}(\textrm{i}.j)Sln>\mp@subsup{|}{B/A}{}(i.j)}{{\mp@code{~}

```
where
(A-1.59)
\[
j)=|e c \pm . J\rangle " ~ \oplus(i . J>1
\]
\[
\begin{aligned}
& \left.R_{b}(i, J)-R^{\wedge} i i J\right) \underline{\operatorname{Cosl}>_{B / A}(i » J)} \\
& \operatorname{tanG}= \\
& Z_{s} \\
& \text { or } 0=\tan \quad\left\{\begin{array}{l}
B_{h}(\underline{l}, 3)-1 t .(i . J) 0<* B / A^{(1, J)}
\end{array}\right. \\
& \text { (A-1.58) }
\end{aligned}
\]

A-1.3 EQUIVALENT PLUG SE? II-ANGLE AND CROSS-SECT ICNAL AREA OF TUBE MATERIAL

In the drawing of polygonal tube from round through cylindrical die on a polygonal plug, a circular section at entry transforms into a polygonal section at the exit in a single pass. The die-plug passage consists of conical and plane surfaces of different inclinations to the tube axis to allow for gradual deformation (Figure A-1.9). The conventional plug conical semi-angle is not applicable since the plug angle changes from a minimum at the diagonals to a maximum at the mid-section of the plug. It is therefore necessary to define an equivalent plug semi-angle ' a ^ to facilitate comparison between plugs used for drawing tubes with the same number of sides and with different number of sides.

From the equivalent axisynmstric drawing,

Figure A-1.10,
\[
\begin{equation*}
\operatorname{tana}_{e}={ }^{d . \cdot-d} \quad \text { or } \quad L=\frac{d .-d}{2 \tan a_{e}} \tag{A-1.00}
\end{equation*}
\]

The inclinations of the conical and plane surfaces of the polygonal tube drawing plug become;


FIGURE A-1.9 SKETCH SHOWING THE DRAWING OF REGULAR POLYGONAL TUBE FRCM ROUND THRGjGH A CYLINDRICAL DIE
(A)SQUARE TUBF. DRAWING,


FIGURE A-1.IO SKETCH SHOWING THE SQUARE AND THE CORRESPONDING AXISYMMFTRIC TUBE DRAWING PLUG

The cross-sectional area of the tube material at any radius \(p\) (Figure \(A-1 . l l a)\) is given by
\[
\begin{equation*}
A_{p}=7 r\left(R^{2}-r^{2}\right) \tag{A-1.63}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{R}=\text { psinct } \tag{A-1.64}
\end{equation*}
\]
and \(r\) Is obtained from the expression
\[
\begin{gather*}
\operatorname{tana}_{e}=\frac{r .-r}{\left(p_{b}-p\right) \operatorname{cosa}} \\
\text { as } r=-\left(p_{b}-p\right) \operatorname{cosatan} a_{e} \tag{A-1.65}
\end{gather*}
\]

Substituting for \(r\) and \(R\) into equation ( \(A-1.63\) ) and factorizing,
\[
\begin{equation*}
A_{p}=\operatorname{Tr} 3 \operatorname{in}^{2} 3(p^{2}-\{\underset{\text { sine }}{j \star}-\underbrace{+}_{d} \underset{d}{\left(p-P_{K}\right) \operatorname{cotatam}}\}^{2}) \tag{A-1.66}
\end{equation*}
\]


FIGURE A-1.11 (a) DETAILED DIAGRAM SHOWING THE CROSSSECTIONAL AREA OF THE TUBE MATERIAL AT ANY RADIUS p
(b) SPECIAL CASE OF POLYGONAL TUBE DRAWING WHERE THE DIE AND EQUIVALENT PLUG SURFACES CONVERGE TO ONE VIRTUAL APEX

Equation ( \(A-1.66\) ) can be re-written as
\[
\begin{align*}
A= & \left.\left.C^{\wedge} P^{\wedge} C g+p^{\prime}\right)^{2}\right)  \tag{A-1.67}\\
\text { where } C_{I}= & \pi \sin ^{2} \alpha  \tag{A-1.68}\\
\text { and } \quad p^{\prime}= & (p-p,) \text { coman } w  \tag{A-1.69}\\
& \text { sina } \tag{A-1.70}
\end{align*}
\]

Considering a case where the nurrtoer of sides of the polygonal tube drawing plug tend to infinity (i.e. the equivalent diameter of the plug is approximately equal to \(\mathrm{H}_{\mathrm{a}}\) ), the solution reduces to that of axisyrrmetric tube drawing on a conical plug. Assuming a further condition that tends to zero, the solution reduces to axisymnetric tube drawing on a cylindrical plug. Equation ( \(A-1.66\) ) becomes
\[
2
\]
\[
\begin{equation*}
\text { area }=\operatorname{Tr}(\text { psina })-A_{p} \tag{A-1.71}
\end{equation*}
\]

Considering the case when the plug radius tends to zero, then \(A_{P}=0\) and the solution reduces to axisyrrmetric wire (or bar) drawing. Equation ( \(\mathrm{A}-1.66\) ) becomes
\[
\begin{equation*}
\text { area }=\operatorname{Tr}(p s i n a) \tag{A-1.72}
\end{equation*}
\]

When \(\mathrm{p}=\mathrm{p}\). (equation \(A-1.66\) ), the cross-sectional area of
the tube material at entry is obtained as
\[
W=\operatorname{Tr}\left\{\left(\mathrm{p}_{\mathrm{b}} \operatorname{siflc} 0^{2}{ }^{-}{ }^{0} \mathrm{r}\right\}\right\}
\]

This expression can be re-written in the form
where \(C_{3}=\operatorname{Trr}_{\text {fa }}^{2}\)
and \(C\), is equation ( \(A-1.38\) ).

A-1.4 DERIVATION OF VELOCITY DISCONTINUITY SUFFERED BY AN ELEMENT ENTERING THE DEFORMATION ZONE (Figures A-1.12 and A-1.13)

Referring to Figure A-1.13a,
\[
\begin{equation*}
\wedge_{\mathrm{rsl}}=-\% \operatorname{sint} 9^{\wedge} \cos (\mathrm{e}-\mathrm{t} 9)+\mathrm{u}_{\mathrm{p}} \sin (6-\mathrm{t} 9) \tag{A-1.75}
\end{equation*}
\]

Referring to Figure A-1.13b,
\(u\) is the corponent of velocity nonral to the p-8 plane and \$
\[
\begin{aligned}
{ }^{u_{r b}} & =, .2-2 \quad \text { rsl } \\
& \left.\left.=\left\{u^{\wedge} C-i^{\wedge} \operatorname{sintS}+U g C O s C e-t f i\right) n i_{p} \sin (9-t 9)\right)^{2, i}\right\rangle
\end{aligned}
\]

The resultant velocity (of the tangential carponents) on bo* sides of the shear surface gives the velocity discontinuity.



FIGURE A-1.13 (a) RESULTANT VELOCITY DISCONTINUITY TANGENTIAL TO THE SHEAR SURFACE IN THE \(p-\&\) PLANE
(b) RESULTANT VELOCITY TANGENTIAL TO THE SHEAR SURFACE i.e. VELOCITY DISCONTINUITY SUFFERED BY AN ELEMENT ON ENTERING THE DEFORMATION ZCNE

From Figures \(A-1.12\) and \(A-1.13\), the entry shear surface yields
\[
\left.u_{r b}=C u^{2}+\left\{-u_{b} \sin t 9+u_{9} \cos (1-t) 9^{\wedge}{ }_{p} \sin (1-t) e\right\}^{2}\right)^{i}
\]

From equations C3.6) to (3.8), the values of the velocity components are substituted in the above equation to yield,
```

 a rb a or (1-cstetann cos(l-t)9tanf
    ```
\[
\begin{equation*}
\left.+\operatorname{ccst} 9 \tan (1-t) 6\}^{2}\right)^{i} \tag{A-1.78}
\end{equation*}
\]

Any particle with initial velocity \(u^{\wedge}\) before deformation, travels through the deformation zone with a velocity \(\mathrm{LI}=\mathrm{U}\left(\mathrm{U}_{2}, \mathrm{Uq} \quad\right.\) ). At the exit boundary, the velocity of a particle just before shear is \(u=d\left(u_{p}, U Q^{\wedge}\right)\). After shear, the particle travels parallel to the tube axis with a velocity il. Assuming an equivalent divergent deformation passage,
\[
\begin{equation*}
u_{r a}=u_{r b}\left(\frac{p^{\prime \prime}}{{ }_{n}^{\prime \prime}}\right)^{2} \tag{A-1.79}
\end{equation*}
\]
where \(\mathrm{p}_{\mathrm{b}}^{2}\) is equation (3.4) and \(\mathrm{P}_{\mathrm{a}}^{2}\) is obtained from equation C3.5).

\subsection*{2.1 LOWER BOUND NUMERICAL INTERORATION}


\section*{cz^il z. IS THE POSITION \\ ! OF SURFACE \(\mathrm{j}=\mathrm{i})\)}


FIGURE A-2.I ROUND TUBE DRAWN THROUCE A CYLINDRICAL DIE ON A POLYGONAL PLUG DIVIDED INTO ELEMENTS FOR THE LOWER BOUND SOLUTION

A-2.1.1 GEOMETRICAL DERIVATIONS
Referring to Figure A-2.1, the die length is divided
into (NL-1) elemental lengths such that
\[
\stackrel{\mathrm{NL}-1}{\dot{£} \quad \text { AZ. }=\mathrm{L}}
\]

Using Figure A-2.1 and the geometrical relationships derived in section (3.7), and starting frcm the inlet plane where \(=0\), the following calculations are done:-
(a) At any section \(\mathrm{Z}_{\mathrm{i}}\) c calculate \(\mathrm{R}(\mathrm{i}), \mathrm{r}(\mathrm{i})\), and \(\mathrm{A}^{\wedge}\). From Figure \(\mathrm{A}-2.1\), the following relationship is developed:-
\[
\begin{align*}
A_{i} & =A_{i}+{ }_{j .2}^{i} A A_{j}-1  \tag{A-2.2}\\
\text { and } \quad Z_{i} & =Z_{i}+\underset{j=2}{i} A Z .
\end{align*}
\]
(b) Considering the tube element \(i\), between the surfaces \(i\) and \(i+1\), the die-tube surface area \(\mathrm{dA}_{\mathrm{c} 9}\) and the plug-tube surface areas \(d A_{s i}\) and \(d A_{e l}\) are calculated. The change in cross-sectional area over the element \(i, A A_{i}\) is also determined.

A-2.1.2 DEVELOPMENT OF THE RECURSIVE EQUATIONS TO EVALUATE THE DRAW STRESS AND THE MEAN PRESSURE

Starting frcm the inlet plane surface \(i=1\), and assuming no backpull ( \(\mathrm{a}=0\) ), the stress on the surface \(\mathrm{i}=2\)
can be determined from the equilibrium equation (3.11). The calculated value of is used to determine \(a^{\wedge}\), etc.
\[
\begin{equation*}
\text { From Figure } A-2.1, a_{z i}=a_{z 1}+{ }_{j=2}^{L} A a_{z j-1} \tag{}
\end{equation*}
\]

The equilibrium equation (3.111) applied to the element i can be conveniently re-written as
\[
\begin{aligned}
& A\left(\underset { Y } { A _ { 1 } + A _ { 1 } A _ { 1 } } \left\{-(!\mathrm{zi}) A A_{1}+(1-\{-£\})\right.\right. \\
& \left({ }^{K} C 2^{M} C 2^{\left.(i)+K_{S} i^{a A} S l^{(i)}+K_{C l}^{A A} C l^{(i))}\right\}}\right.
\end{aligned}
\]
vhere
\[
\begin{aligned}
& K_{s i}=\left(W_{\mathrm{W}}^{\mathrm{m}} \operatorname{cosa}_{\mathrm{s}}-\operatorname{sim}_{\mathrm{s}}\right)=\text { constant } 1 \\
& K_{\mathrm{cl}}=\left(\mathrm{p}_{\mathrm{m}} \cos \mathrm{C}_{\mathrm{C}}-\operatorname{sim}_{\mathrm{c}}\right)=\text { constant } 2 \\
& \mathrm{~K} \sim=(\mathrm{u} \text { cosot }+\operatorname{sim})=\text { constant } 3
\end{aligned}
\]

\section*{Example:}

Starting at \(Z_{ \pm=1}=0\) where the conditions of stress are known \(\underset{\mathrm{Y}}{\mathrm{fzl}}=0\) ), the change of stress over element \(\mathrm{i}=1\) can be determined;
\[
A\left(!f^{i}\right)=\left\{,(0) A A i^{+}\left(1 \_(0)\right)\right.
\]
\[
\wedge \mathrm{s} \wedge+{ }^{\mathrm{K}} \mathrm{C} l^{\mathrm{AA}} \mathrm{C} l^{(1)}+{ }^{\mathrm{K}} \mathrm{C} 2^{\mathrm{AA}} \mathrm{C} 2^{\left(l_{»}\right.}
\]
which yields \(A(--)\).
But

\(a, \quad=A(\stackrel{0-}{\wedge})\)
Y
Y
Y
Y

Therefore,
\(\wedge\left(A^{\wedge} A A_{2}\right) \quad\{-Z f<>\)
which yields \(A\binom{a_{z 2}}{Y}\) etc.

The mean pressure at the die-tube (or plug-tube) interface can be calculated from the total normal force for elements \(\mathrm{i}=1,2\), NL divided by the total die-tube surface area. For the element (i), the normal force \(\mathrm{NF}^{\wedge} \mathrm{Ci}\) ) at the die-tube interface is given by;
\[
\begin{align*}
& \mathrm{NF}_{1}(\mathrm{i})=\mathrm{P}_{\mathrm{mi}}\left(\mathrm{AA} \mathrm{C}^{2}(\mathrm{i})\right)  \tag{A-2.9}\\
& \mathrm{V} \quad=\left\{1-\left(!5 \mathrm{i}_{1)\}} \lll \ll\right.\right. \tag{A-2.10}
\end{align*}
\]

Therefore, the total normal force for elements \(i=1,2,3\),
NL is
\[
(A-2 . i 1)
\]

The dimensionless pressure ratio becomes
\[
\&=!V^{Y}
\]
\[
\begin{gathered}
\mathrm{a} \\
\mathrm{E}(1-\mathrm{H} \mid \mathrm{i})\} \mathrm{M}_{\mathrm{c} 2}(\mathrm{i})
\end{gathered}
\]
\[
\mathrm{ZAA}_{\mathrm{c} 2}(\mathrm{i})
\]
\[
(A-2.12)
\]

The expression for the mean pressure at the plug-tube interface is
3. ,
\[
\begin{aligned}
& \mathrm{E} \\
& \mathrm{Z}\left(\mathrm{AA}_{\mathrm{c} 1}(\mathrm{i})+\mathrm{A} \mathrm{~A}_{\mathrm{s} 1}(\mathrm{i})\right)
\end{aligned}
\]
\[
(\mathrm{A} \cdot 213)
\]
\[
\begin{aligned}
& \text { NF, NL-1 . a . } \\
& \text { £ へ ("f)>AA^i) }
\end{aligned}
\]

A-3 COMPUTER PROGRAMMES
A-3.1 UPPER BOUND SOLUTION FOR POLYOONAL DRAWING
```

 TRAEE 2
 MASIER IIEFPID
 3C UPFR BOND SOULION ROR POMCCNAL TIEE IRANING
| DINENSTON PL(IO),A(10),AT(!0),ER(10),X(10),Y(IQ),XA(11,11),
1YAdl, 11) ,ARLIT(10) ,ARSIB(10),ARLTACi10),ARSTA(10),XBCL(11,11),
2Y8CL(1l,11),X3CS(11,11),YBCS(11,11),KACL(11,11),fACL(11,11),
3XAC5(11,11), YASS (11,11), KB(11,11),YB(11,11),RAS(11,11),
4R2S (11,11), THETAS(11,11),DAS(11,11),PHISBA(11,11),ZS(11,11),
5ZTS(11,11),ETAS(11,11) HENALC (11,11) ,RAL11,11),
6RBL(11,11),0BL(11,11),DAL(U,11),PHILBA(U,11),ZL(11fl1),
7ZTL(11,11) ,PSIS(11,11) ,HETASC(11,11),PSL(11,11),
IDBS(11,U),THETAL(1l,11),ETAL(ll,11)
4RITE(2.10)
10 FORMAT</IXXUPPER BOND SOUITON FRR POYCONLL TIE IRANING)
t>RITE(2,2)
20 FORMAI(5X,SOLUTION FRR SQARE HXXCON AND OUODECASON)
C SIOCK OIER QAMENER=OBBPFDUCT OIFR OAMEJER-DOA GALSE=IB
18 C FRICTION COFFFCINNTMU
\#RITE(2,30)
30 FORMAT(5X, DOBDOA AND IB AE FIXED')
NPUT STRAPMENS
READ(1,31)DOB,00A,TB
3l FORMAT(3F0.0)
DIB=QGB-(2.0*I8)
ROB-COB/20
ROA=DOA/2.0
RIB=0tB/2.0
PI=3.1415927
GFNERAIE NMER GF SIDES OF SECHION REQ\IRED BY GENERAIING HEIA
DO 100 ISETA=15,45,15
*RITE(2,40) IEETA
40 FORMAT(5X, 'BETA',14)
BETA=PI*EETA/130.0
CBETA=COS(BETA)
SBEIA-SIN(BETA)
T\&ETA=TAN(BETA)
TB2=T8ETA **2
T84=T82"2
TB8=TB4/2
T828=1.0/TB2
TB18=10/TBETA
SPAR=CBEIT*SBETP*P I / < 40*6ET A)
CALUAAIE SECHON PARAMEIERS IE.AA,A8,AR,ETC
HA=Oi3

```
```

 AB=PIt|(ROB**2MRI8"2))
 AA*PI *RQA*t2-HA**2*SPAR
 REMSQRT (ROft**2-(AA/PI))
 AR-AB/AA
 RED-1.0-1.0/AR
 RA=HA/2.0
 #RITE (2, 42> HA, RE, TB, ftED
 42 FORMAT (21, 4F10.5)
 RADIUS OF INSCRIBED CIRCLE AT EW (RAI)
 RAI=HA\CBETA/2.0
 SINGLE SYHHETRIC SECTION USED TO SAVE COMPUTER TI*E,DENOTED
 HEREAFTER BY 'DOUBLE! SYMMETRIC
 BAND THE INLET (DOUBLE)SYHIIETRIC INTO .1-1 EQUAL
 SECTORS AND MP OUTLET rfITH N-2 HYPERBOLIC CURVES, (I,J)
 DEFINES GENERAL INTERSECTION AND (I.DDENOTES THE ORIGIN
 M=10
 M=10
 C FIRST CURVE OF OUTLET CIRCULAR SECTION CORRESPONDS TO THE
 C DIE ,PL!I) REFERS TO THE POSITION OF HYPERBOLA VIRTUAL ORIGIN
 ALONG LINE OF SYMMETRY AND A(I) IS THE FOCAL LENGTH
 TA=ROH-RA
 PL(I>=D0A/2
 PL(10)=0.0
 TA IS THE THICKNESS OF SECTION ALONG TUBE DIAGONAL AND IS
 DIVIDED INTO N-2 EQUAL LENGTHS
 DT=(TA*¥ROA* (<1. 0/CBETA)-1.0 >))/(N-2)
 INCLUDED AREA OF THE DIE AT(I),ATilO) CORRESPONDS TO THE
 ORIGIN
 AT (1) =0.0
 AT (10) =PI* (R0A《2)/(2.0*PI/BETA)
 ER (1) =ROB
 ER(10)=0.0
 DETAILED HAPPIN6 STARTS HERE ittUUMtt
 DO 305 1=2, N-I
 PL (I) = (ROA/CBETA) - ((I-1)*DT)
 A(I)~(i. 0-I. 0*I/N)*5.00
 CALCULATE CO-ORDINATES AT INTERSECTION OF HYPERBOLA AND
 LINE INCLINED TO(DOUBLE) BETA BY THE YA-AIIS
 IF (IBETA, EQ, 45) GO TO 55
 T (I) = (-PL<I) 》T84*SQRT (PL (I) **2》T88* (1.0-T84)*(A(I) **2*PL (I)*>2
 I*TB4)M/U. 0-TB4)
 GO TO 56
 55 X (I) = (PHI)《2+A(I >**2)/I 2.0*PL (I))
 56 Y (I)=TBETA*<-X i I >< PLLH))
    ```
\begin{tabular}{|c|c|}
\hline 89 C & CO－ORDINATES OF INTERSECTION TO 5L3AL IA－YA AXES \\
\hline 90 & \(\mathrm{V}=\mathrm{X}\)（I） \\
\hline 91 & K» Y （I） \\
\hline 92 & \(\star \mathrm{A}<1, \mathrm{H})=\)＜ \\
\hline 93 & \(\mathrm{YA}(\mathrm{I}, \mathrm{N})=-\mathrm{VfPL}(\mathrm{I})\) \\
\hline 94 C & AREA ENCLOSED \(3 Y\) HYPERBOLA 1 AND THE DIE I＝DENOTED 3Y AT CI） \\
\hline 95 &  \\
\hline 96 &  \\
\hline 97 & \(2 *\) ALQ6（A（I）tRBIB））MBETA \(\left.{ }^{\text {d DOA } * * 2 / 4.0) *(V H 2 f T 3 E T A) ~-~(P L ~(~} \mathrm{I}\right)\) \\
\hline 98 & 3IBEIA）） \\
\hline 99 C & AREA ENCLOSED BY THE DIE AND THE CURVE ReFERRED TO THE INLET \\
\hline 100 & A8T＝AT（I）＊AR \\
\hline 101 C & EQUIVALENT RADIUS AT INLET ER（I） \\
\hline 102 & ER（I）\(=\) SGRT（D08》＊2／4． 0 －ABT／BETA） \\
\hline 103 C & AREA OF THE BAND AT INLET ENCLOSED BY THE CIRCULAR ARC I t i－l \\
\hline 104 & ABAND \(=(E R(I-I) \geqslant 2-E R(1) * * 2 H B E T A / 2.0\) \\
\hline 105 C & DIVIDE THE AREA OF THE 3ANO INTO fl－1 EQUAL SECTORS AND ALSO \\
\hline 106 C & CALCULATE THE RADIAL MIDTH OF SAND \\
\hline 107 & A8CD＝ABAND／（M－1） \\
\hline 108 & DR＝€R（I－I）－£R（ n \\
\hline 109 & DPHIJ＝BETA／（ \(\mathrm{H}-1\) ） \\
\hline 110 C & Calculate areas of large and shall triangles at inlet plane \\
\hline 111 & DD \(=0.5 *\) OR《 \(2 *\) DPHIJ \\
\hline 112 & ARLT8（11 \(=0.5 *\)（ABCD＊DD） \\
\hline 113 & AfiSTB（I）\(=0.5 *\)（A8CO－0D） \\
\hline 114 C & EQUIVALENT TRIANGULAR AREAS AT EXIT PLANE \\
\hline 115 & ARLTA（I）＝ARLT8（I）／AR \\
\hline 116 & AfiSTA（I）＝ARSTB（I）／AS \\
\hline 117 C & INTERSECTION OF HYPERBOLA I AND YA－AIIS \\
\hline 118 & \(<\mathrm{A}(\mathrm{I}, \mathrm{I})=0.0\) \\
\hline 119 & IF（I3ETA．E9．45）G0 T0 107 \\
\hline 120 & YAR3＝（PL（I）＋SQRT（PL（I）＂2－（1．0－TB4）＊（PL i IJ＂ \(2-\mathrm{A}(\mathrm{I})\) 《2）））／ \\
\hline 121 & HCBETAM1．0－TB4）） \\
\hline 122 & YAR4＝（PL（I）－SQRT（PL（I）＊＊2－（1．0－TB4）＊（PL（I） \(2 * 2-\mathrm{A}(1) \geqslant * 2 \mathrm{I})\) ）／ \\
\hline 123 & 1 （C8\＆TA＊（1．0－TB4）） \\
\hline 24＂ & IF＜YAfi3．LT．VAR4）SO T0 103 \\
\hline 25 & YA（ \(\mathrm{I}, 1)=\mathrm{YAR4}\) \\
\hline 126 & GO TO 305 \\
\hline \(127 \quad 103\) & YA（I，\()=Y A R 3\) \\
\hline 28 & 60 TO 305 \\
\hline 29107 & \(\mathrm{YA}(\mathrm{l}, \mathrm{t})=\mathrm{PL}(\mathrm{l}) * \mathrm{~A}(\mathrm{l})\) \\
\hline 30305 & CONTINUE \\
\hline 31 C & CURVE 1＝1 IS A CIRCLE AND C0－ORDINATES OF INTERSECTION HITH \\
\hline 32 C & LINE INCLINED AT SETA TO YA－AHS CAN 3E FOUND \\
\hline
\end{tabular}
```

 YAU, M)=(DOA/2)《SSRTII. O/U. OfTB2)>
 KA(1,ll>*fAU,ft)*T9&TA
 YA (1, 1)=ROA
 XAtI, I)=0.0
 XAilO, 10)=0.0
 YaUO, 10) =0.0
 HRITE (2, 70)
 70 FORMAT (SX LIHITIN6 CO-QftOIMATES AT EXIT PLANE ,11)
 i iRITE(2,7I) (XA(I,N), 1=1,N)
 *RITE<2,71) <YACl,H\1*_]_M\
 71 FORNAT (2X, 10(2X^,6),/)
 CO-ORDINATES OF TRIANGLES AT INLET
 00 310 I=I,N-I
 DO 315 . 3=1,11
 PH1J*(J-1) *BETA/ (H-1)
 X8!I, J)=ER(I)*SIN(PHiJ)
 YB(I,J)=ER(D*COS(PHIJ)
 3 1 5 ~ C O N T I N U E
 310 CONTINUE
 LOCATE CENTRGIOS OF LARGE AND SHALL TRIANGLES AT INLET
 DO 320 l*1.(1-2
 DO 325 . j=I,H-l
 XBCL(Ifl,Jfl)a}(X8(I,J)fX8(Ifl,J)fXB(I,Jfl))/3.0
 YBCL(lfl,Jfl)=<YB(I,J)fYB(Ifl_J)fYB(I,Jfl))/3.0
 XBCSi!fI,JfI> = aBU*I, J)*<B(IfI, JM>《-XBiI, JfI))/3.0
 Y3C3(I+t, JfI)=(YB(IfI . JWBdM, MI fYB(I, Jft)>/3.0
 325 CONTINUE
320 cONTINUE
80 TO 503
CALL FOR A FRESH PAGE TO PRINT RESULTS
WRITE (2, 350)
350 FORMAT<1HI)
PRINT CO-ORDINATES OF INLET TRIANGLES AND EQUIVALENT RADIUS
WRITE (2, 352)
352 FORMAT (5X, VALUES OF XB, YB AT INLET PLANE AND EQUIVALENT
IRADIUS ER'/)
<RITE (2, 353>
353 FORMAT (2X, 1=',5X,'J=1',7X,'J=2',7X, J'3',7X,'J=4',7X, 3=5 ,
17X,'J=6',7X, J=7',7X,'J=8',7X,'J=9',7X, J=10',2X,'E9 RADIUS',
2/)
DO 370 1=1, N
*RITE (2, 355) KI, (XBiI, J), J=t《M) , ERU) >)
JjRITE (2, 356) (YB(I, J), J=I, i1)

```
```

355 FORNAT (2X, I2, 10 (2X, F8. 4), 2X, F9. 4)
356 FORHAT (7X 10 (2X F9. 4)>
370 cONTINUE
C CENTftOIDS OF TRIANGES AT INLET AND RESPECIIVE AREAS
MR ITE (2, 3591
359 FORMAT(//5X,'VALUES OF IBCS,YBCS,XBCL,Y8CL AND AREAS OF
ITRIAN6LES',/)
DO 375 1=2,N-I
*RITE (2, 3560> (I, (XBCS(IJ) ,J=2,?I) ,ARST8(H))
MRITE (2, 3561) (YBCS (I, J) , J*2! !f)
\#RITE (2, 3560)(I, (KBCL(IJ) , J2, i1) , ARLTI (I)))
WRITE (2, 3561) tYBCL (I, J), J=2, M)
3560 FOR《AT (5X, I2, 8X? (2X, F8.4), 2X, F8.4)
3561 FQRf!ATiI5X, 9t2X, F8.4))
375 CONTINUE
C NAPPING CORRESPONDING TRIANGLES AT EXIT PLANE
503 AZERO=0.0
DO 330 1=1,N-2
DO 335 J=1,N-1
NAPPING LARGE TRIANGLES
AREAL=AftLTA (IH)
X|《A(I, J)
YI-YA(I, J)
X2 XA (I+1, J)
Y2*YA(H-I, J)
IF(I.ST. I) SO TO 97
IF(J.EQ. i) GO TO 72
Df11'(2. 0*AREAL-(XI*Y2-YUX2))/(X2-XI)
DK1=(Y1-Y2)/(X2-X1)
X3R1》 (COW 1 <DK1) *SQRT ((SHt *OK11" 2-U1. 0^Wt|<*2) t tDHI **2
1-R0A《2))))/<!. 0*DKt《2)
X3R2 ((DM frDKI) -SGiRT ((DM *IK 1) <2- € € I - OHDKI <2) * (DM »2
I-ROA**2))))/It. 0*OKIH2)
Y3RI=CM-DK1*X3R1
Y3R2=OM-DKi*X3R2
SELECT CO-ORDINATE OF THIRD VERTEX
IFU3Ri.6T. X3R2) GO TO 75
YA(I, J+1)=Y3R2
(A(I, Jft)=X3R2
30 TO 76
75 YA(I, JH)*Y3RI
XA(I,JM)=X3Ri
76 GO TO 77
NAPPING THE INITIAL LARGE TRIANGLES BY SUBSTITUTING (

```
\begin{tabular}{|c|c|c|}
\hline 220 & & AND SOLVING FOR \(Y\) \\
\hline 221 & 72 &  \\
\hline 222 & & DK1》（X2－n＞／m－Y2＞ \\
\hline 223 & &  \\
\hline 224 & & 1－ROA《2）））＞／（1．＜W）K1M2） \\
\hline 225 & &  \\
\hline 226 & & i－RQA《2）＞\})/(1.0*OKI《2) \\
\hline 227 & & X 3 R1＝0《I－OK1》Y3《1 \\
\hline 228 & & X3R2＝DH1－DKUY3R2 \\
\hline 229 & C & THIRD VERTEX OF TRIANGLE \\
\hline 230 & & IFIY3R1．ST．Y3R2） 50 T0 78 \\
\hline 231 & & XA（ \(\mathrm{I}, \mathrm{M}\) ）\(=\mathrm{X} 3 \mathrm{R} 2\) \\
\hline 232 & & YA \((\mathrm{I}, \mathrm{J}+1)^{\text {S }} \mathrm{Y} 3 \mathrm{R} 2\) \\
\hline 233 & & SO TO 77 \\
\hline 324 & 73 & \(X A<I, ~ J+1) ~{ }^{\text {¢ }} \times 3 \mathrm{RI}\) \\
\hline 235 & & YAiI，JfI）》Y3RI \\
\hline 236 & & 30 TO 77 \\
\hline 237 & C & happing larse triangles｀Efte the third vertex lies on \\
\hline 239 & C & HYPERBOLA I \\
\hline 239 & C & NAPPING LARGE TRIANGLES SY SUBStituting＜AND SOLVE FOR 1 \\
\hline 240 & 97 & HH1 \(=(2.0 * A R E A L-(X 1 * Y 2-Y I * X 2)) /(Y I-Y 2)\) \\
\hline 241 & & HK1＝（X2－X1）／（Y1－Y2） \\
\hline 242 & & HC I＇PL（I）《2－T81＊HNt》＊2 \\
\hline 243 & & HC2 \(=-2.0 * \mathrm{PL}(\mathrm{I})+2.0 * \mathrm{HK} 1 * \mathrm{HHUTB} 2\) \\
\hline 244 & & HC3 \({ }^{3}\) 1．0－HK1》2》 \({ }^{\text {P }} 82\) \\
\hline 245 & & 30T＝SQRT（HC2《＊2－4．0＊HC3（HC1－A（I）《2）） \\
\hline 246 & & Y3LI＝（－HC2tSQT）／I2．OfHC3） \\
\hline 247 & & Y3L2＝（－HC2－SST）／（2．O＊HC3） \\
\hline 248 & & X3LI＝ttHI－HKI＊Y3LI \\
\hline 249 & & X3L2＝HN1－HK1＊Y3L2 \\
\hline 250 C & & SELECT THE THIRD VERTEX \\
\hline 251 & & IF（Y3LI．LT．Y3L2．AND．X3Li．5T．AZERO）S0 T0 112 \\
\hline 252 & & XA（I，JH）＊X312 \\
\hline 253 & & YAiI， \(\mathrm{J}+\mathrm{I})=\) Y3L2 \\
\hline 254 & & 50 TO 77 \\
\hline 255 & 112 & \(X A(1, J+1){ }^{\text {P }} \times 3 \mathrm{U}\) \\
\hline 256 & & YAU， \(\mathrm{J}+1)^{\text {8 }} \mathrm{Y} 3 \mathrm{LI}\) \\
\hline 257 & & G0 TO 77 \\
\hline 253 C & － & HAPPIN6 SHALL TRIANGLES AT INLET \\
\hline 259 & ＇11 & XU＝XAIIH，J \({ }^{\text {l }}\) \\
\hline 260 & & YU＊YAU＊I，J＞ \\
\hline 261 & & X22＝XA（I，J +1 ） \\
\hline 262 & & Y22＝〈A（L，JH＞ \\
\hline 263 & & AREAS＝ARSTA（ \(\mathrm{I}+1\) ） \\
\hline
\end{tabular}
```

 FNIs (2. OAREAS-(YIUX22-Y22#XI t) I /(X! i-X22>
 FK1=(Y22-Y11)/ (X11-X22)
 C3=FK1《2=TB2
 C2--2. 0*FH1*FK I +2.0*FK I *PL(IH>
 Cl=FMI》*2*PL (I+I)《2-2.0*PL (I) »FM
 SQT>SSRT (C2>2-4. Otf3*(Ct-A (!*I)**2I)
 X3SI-(-C2+SOT) / (2. O#C3)
 X3S2=<-C2-3QT>/ (2. 0+C3)
 Y3SI'FNI-FKI*X3SI
 Y3S2=FIU-FKIfX3S2
 SELECT THIRD VERTEX
 IF(X3S2.LT. X3S1. QR. X3S2. 6T. AZERO) 80 T0 91
 XftU+t, J+I)=X3St
 YA(I*I,J+I) 'Y3SI
 50 TO 335
 91 XAU*I,JM)*X3S2
YA(U*I, J*I)*Y3S2
CONTINUE
CONTINUE
LOCATING THE CENTROI OS OF THE HAPPED TRIANGLES AT EXIT PLANE
DO 340 1=1,N-2
DO 345 J=1, K-1

```

```

 YACLUM J*I)=(*A<I,J)*YA(I,JM>*YA (I*M)>/3.0
 XACS (IM
 YACSiM, JfI)=(YA (IM,J)+YA(Ifi,JfI)<' YA(I, JfI)>/3.0
 CONTINUE
 CONTINUE
 SO TO 504
 CALL FOR A FRESH PASE TO PRINT RESULTS
 *RITE (2, 349)
 349 FORMAT(1 Hi)
 PRINTOUT FOR EXIT PLANE
 *RITE (2, 3565)
 3565 FOPNAT (//5X, ' VALUES OF XA, YA AND FOCAL DISTANCE A(I) OF
 IHYPERBOIA I',/)
 *RITE (2, 353)
 A(10)=0.0
 At U *ROA*(1.0/CBETA-i. 0)
 DO }380\mathrm{ 1=1,N
 *R!TE<2,355M(I,(XA(I, J=M>, A<1))>
 *RITE (2,356) (YA (M》, J'M>
 380 CONTINUE
<RITE (2, 3570)

```
```

3570 FORMAT (//5X, VALUES OF IACS. YACS. XACIJACI AMD AREAS OF
ITRIN6ALE3',^
DO 385 1=2, N-I
*ftITE (2,3560()U, UCASU, J) J
2, H) +ARSTAU) \>
WfiITE (2, 356IMYACS (I, J),J=2,M)
KRtTE (2, 3560) ((I, (XACL (I, J) , J=2, M), ARLTA (I)))
HRITE (2, 356I) (YACI iI, J), J=2, R)
CONTINUE
PER CENTAGE ERROR IN AREA OBTAINED FROM MAPPING AND ACTUAL
VALUE AA
AS8=AA/ (PI/BETA)
ERRCR=((ASB-AT (N-I) I/ASB)*100.0
WRITE (2, 3571) ERROR
3571 FORMAT (//5X, 'PERCENTAGE DIFFERENCE OF TOTAL (-SECTIONAL AREA
ls', f8.4, //>

 《*$*$**$ END OF CONFORiIAL MAPPING *$$W$ms
 ttttt&ttt UPPER BOUND SOLUTION NO* BEGINS MfcttttM
 WRITE (2,400)
 FORMAT I//,5X,'i*ttfc UPPER 3OUND SOLUTION BEGINS HERE Itttit')
 gENERATE THE DIE SEMI ANGLE
 DO 200 IALPHA=2,13,4
 ALPHA= <Pf /180.0) HALPHA
 TAD>TAN (ALPHA)
 DIEH-(ROB-ROA)/TAD
 ALPHAE=ATAN(RIB-ftE) /DIEH)
 ALFAEM180. 0/P I) ALPHAS
 CALCULATIONS OF THE RADIAL DISTANCE OF THE PARTICLES AND
 DIFLECTIQN ANGLES PSI_ XI ETA...ETC AND LENGTH OF FLOW PATH
 CAD=COS (ALPHA)
 SAD=SIN《ALPHA)
 TAE=TAN (ALPHAE)
 CAE=COS (ALPHAE?
 SAE=SIN(ALPHAE)
 RH08=0IEH》ROB/ICAD*(RGB-ROA)
 CALCULATIONS FOR THE SHALL TRIANGLES AT EIIT(A) AND ENTRY(8)
 DO 405 I=2,N-I
 DO 410 d=2, M
 RAS (I, JI=SOftT(KACS (I, J) #>2*YACS (I, J) " 2)
 RBSii.J) =SQRT (I8CS (I, J) " 2+YBCS (I, JI " 2)
 THETAS (I, J) 'ASIN(R8S (I, J)/RHQ8)
 PHIA=ATAN() (ACS (I I J>/YACS<I I J \>
 DB=RH08Mi.O-CAO)
 BET2=2. 0*BETA
 DBS (I, J)=RHOB* (COS (THETAS (I, J))-CAD i
 DA=DB
    ```
```

 IF (PHIA. ST. BETA) 50 TO 402
 DAS (I I J)=0AHQOA/ (2. 0*RAS (U)*CQ3<PHIA) 1-1.0)
 80 TO 403
 403I DAS (I, J) 'Oft* (DOA/ (2. 0*RAS (I, J) *COS (BET2-PHI A)) -1.0)
i PHI8=ATAN(X8CS(I, j)/Y5CS(I, J))
PHISBA(I, Ji =PHIB-PHIA
ZSIt, J)=D[EH*D8S II, J)-DAS(I_J)
TOTAL LENGTH OF PLOW PATH IN DEFORMING ZONE
ZT3 (I, J) =S6RTC (XBC5 (If J) -XACS (1, J) > YBC3Ct, J) -
|YACSfI, J))*\2+ZS(I, J)**2)
ZPS=SQRT ((R3S (I, J) -RAS ! I, J) *COS <PHISBA (I,J))) §*2*
IZS (!, J)>2)
ETASi I,J)=ATAN (RA3 (I, J) *SIM (PH1S8A (I, J) I/ZPS)
HETASC (I, J) =ATAN ((RBS (I, J>-RAS (I. J) *CGS (PHISBA ([, J)
I))/ZS(I, J)>
PSIS (I, J)=A8S (HETALC (I, J)-THETAS11, J) >
4 1 0 ~ C O N T I N U E ~
4 0 5 ~ C O N T I N U E
CALCULATIONS FOR THE LARGE TRIAN6LE3 AT EKIT(A) AND ENTRY(8)
.00 415 1=2, N-I
DO 420 J=2,.i
RAL(I, J i=SQRT (KACL (I, J) **2+YACL (I, J) **2)
R8L (I, J) =SfiRT (XBCL (I, J) 《2+YBCL (I, J) 《2)
THETAL (I, J) =ASIN (RBL (I, J)/RH08)
DBL (I, J)=ROB*(COS (THETAL i I, J))-CAD)
PHIA=ATAN(XACL (I, J)/YACL (I, J) I
IF <PHI A. ST. BETA) 50 TO 406
DAL'.I, J)=DA* (00A/ (2. 0*RAL (I, J)*COS (PHIft))-1.0)
SO TO 407
406 DAL (I, J)=DA*<DOA/ (2. 0*RAL (I, J)*COS i8ET2-PHI A) -1.0)
407 PHIB-ATAN (XBCL (\&, J>/Y8CL(I, J) >
PHILBA (I, J)=PHI8-PHIA
ZL' I, J)=DIEH*D3L!I, J)-DALi J. I, J)
TOTAL LENGTH OF FLOW PATH IN DEFORMING ZONE
ZTL(I,J)=S8RT((X8CL(I,J)-J(ACL(I,J))**2Mf8CL(I,J)-
IYACLU, J))《2*ZL(I, J><2)
ZPL=SQRT { (RBL' I, J) -RAL(I, J)*CGS iPHILBA(I, J)I)*\2*
IZL (I, J)**2)
ETAL (I, J)=ATAN (RALU, J) 《SIN{PHILBA (I, J>)/ZPL>
HETALC (E, J>=ATAN (RBL i }\mp@subsup{\AA}{f}{}\textrm{J}>-RAL (I J J>>COS (PHILBA (E《J)))
I/ZL(I,J)>
PS IL<I, J\rangle 'A8S (HETALC 11, J)-THETAL (I, J))
42O CONTINUE
4 1 5 ~ C O N T I N U E
SO TO 18

```
\begin{tabular}{|c|c|c|}
\hline 398 & & WRIIE（2，408＞ \\
\hline 39 ？ & 408 & FORMAT（5X \({ }_{\text {t }}\)＂LENGTH OF FLOW PATH IN THE DEFQMIIN6 ZONE ITS \\
\hline 400 & & I，ZTL＇，／） \\
\hline 401 & & rfRITE \((2,353)\) \\
\hline 402 & & DO 425 I》2，N－I \\
\hline 403 & & NRITE（2，411）（I，（ZTSU，J），J 2 ，H）） \\
\hline 404 & & WRITE（2，4t2）（ZTL（I，J），J＝2，M） \\
\hline 405 & 411 &  \\
\hline 406 & 412 & FORMAT（15X， 9 （3X，F9．4＞） \\
\hline 407 & 425 & CONTINUE \\
\hline 408 & C & OPTIMIZATION OF SHEAR WORK IE VALUE OF T That minimizes \\
\hline 409 & C & SHEAR WORK FACTOR R（S） \\
\hline 410 & 18 & MR1TE \((2,413)\) \\
\hline 411 & 413 & FORMAT（51，＇PARAMETER T SHEAR FACTOR R（S）＇，／I \\
\hline 412 & C & GENERATE T BETWEEN 0 AND 1 \\
\hline 413 & & DO \(430 \mathrm{IT}=1,10\) \\
\hline 414 & & MTifl．l \\
\hline 415 & & TP \(=1.0-\mathrm{T}\) \\
\hline 416 & & \(\mathrm{RS}=0.0\) \\
\hline 417 & & DO \(460 \mathrm{I}=2 \mathrm{~N}-\mathrm{I}\) \\
\hline 418 & & DO \(465 \mathrm{j}=2\) ， H \\
\hline 419 & c & VALUE OF RS FOR SMALL TRIANGULAR ELEMENTS \\
\hline 420 & & AREAS＝ARST8－： n \\
\hline 421 & & THETA＝THETAS（I，J） \\
\hline 422 & & ETA＝ETAS（I，J） \\
\hline 423 & & P3I \(=\) PSI5（I，J） \\
\hline 424 & & RSSF＝SQRT（ \((C O S\)＜WHETA＊TAN（ETA）／（COS（TPHHETA）HAN（PSI \\
\hline 425 & & I）））＊＊2＋（－SIN（ T ＊THETA）\(* \operatorname{COS}\)（ \(\mathrm{T} *\) THETA \() * T \mathrm{TAN}\)（PSI）《－CGS（T＊TKETA \\
\hline 426 & & 2＞＊TAN（TP＊THETA\gg＊＊2＞ \\
\hline 427 & & RSS－（RSSF＊（2． 0 》PI／8ETA）／A8）＊AAftEAS／COS（T＊THETA） \\
\hline 423 C & c & VALUE OF RS FOR SMALL TRIANGULAR ELEMENTS \\
\hline 429 & & AREAL＝ARLT9（ i \\
\hline 430 & & THETA \(=\) THETAL（ \(\mathrm{I}_{\mathrm{f}} \mathrm{J}\) ） \\
\hline 431 & & ETA＝ETAL！ 1 ，J） \\
\hline 432 & & PSI＝PSIL（I，J） \\
\hline 433 & & RSTF＝SQRT（TCOS（T＊IKEIA）tTAN（ETA）／CQS（TP＊THETA）＊IAN（PSS \\
\hline 434 & &  \\
\hline 435 & & 2）＜TAN（TP＊THETA＞）＊＊2） \\
\hline 436 & & RSL＊（RSLF＊（2．0＊P I／BETA）／AB）＊AREAI／CQS（T＊THETA） \\
\hline 437 & & RS＝RS＊RSL＊RSS \\
\hline 438 & 465 & CONTINUE \\
\hline 439 & 460 & CONTINUE \\
\hline 440 & & HRITE（2，414）T，RS \\
\hline 441 & 414 & FORMAT（9X｜F5．，3，8X，F10．6） \\
\hline 442 & & SSV－RS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 443 & & IF（IT．EQ．1） 60 T0 416 \\
\hline 444 & C1 & SELECT MINIMUM SHEAR FACTOR \\
\hline 445 & & IF（RSV．LT．RSH） 60 T0 416 \\
\hline 44b & & 60 T0 430 \\
\hline 447 & 416 & RSN \({ }^{\text {R }}\) SV \\
\hline 443 & & TM \(=\) T \\
\hline 449 & 430 & CONTINUE \\
\hline 450 & & ＊RITE（2，4t7）TM，RSM \\
\hline 451 & 417 & FORMAT 1／／，5）（，OPTIMAL T＝F5．3，5X，AND MINIMUM RS＝＇\({ }_{\text {f }}\) \\
\hline 452 & & IF10．6／／） \\
\hline 453 & & T＝TM \\
\hline 454 & & RS＝RSM \\
\hline 455 & & TP \(=1.0-\mathrm{T}\) \\
\hline 456 & & CALCULATE SHAPE FACTOR FS US IMS OPTIMAL T FOR INTERNAL \\
\hline 457 C & & PGNER OF DEFORMATION \\
\hline 458 & & C1 \(=\) PI＊SAD＊＊2 \\
\hline 459 & & C2＝RI8／SA0 \\
\hline 440 & & C3－PI＊RIB＊＊2 \\
\hline 461 & & RH08D0＝RHOB＊＊2CI－C3 \\
\hline 4 e 2 & & RHOA＝RHOB＊RQA／ROB \\
\hline 463 & & FS＝0． 0 \\
\hline 464 & & \(004351=2, \mathrm{~N}\)－ \\
\hline 465 & & DO \(440 \mathrm{~J}=2, \mathrm{M}\) \\
\hline 466 C & & VALUE OF FS FOR SMALL TRIANGULAR ELEMENTS \\
\hline 467 & & AREAS＝ARST8（I） \\
\hline 468 & & THETA＝THETAS（I，J） \\
\hline 469 & & HETA＝HETA3C（I，J） \\
\hline 470 & & ETA＝ETAS（I，J） \\
\hline 471 & & ZDIE＝ZS（I，J＞ \\
\hline 472 & & PS1＝PSIS（I，J） \\
\hline 473 & & RAD＝RAS（I，J） \\
\hline 474 & & PHI＝PHISBA＜I \({ }_{\text {d }} \mathrm{J}\) ） \\
\hline 475 & & RHOE \(=(\) RHOB－ZS（I，J）\(\} *\) COS（THETA） \\
\hline 476 C & & DIVIDE（RHOB－RHOA）INTO 10 ELEMENTAL LENGTHS \\
\hline 477 & & ORHG＝＇RHOA）／ 10.0 \\
\hline 478 & & DO 445 IRHO＝1，9 \\
\hline 479 & & RHO＝RHOA＊（DRH0＊IRHO！ \\
\hline 430 & & RHOD＝＇RH0－RH08）＊TAE／TAD \\
\hline 481 & & RHOOD＝C \(1 *\)（RHO《2－（C2＊RHOD）《2） \\
\hline 482 & & \(\mathrm{ft} 1=(2 * \mathrm{CI}\)＊fiHO／RHODD）\(*\)（RHO－（C2＋RHOD \() * \mathrm{i}\) RHOO／（RHO－RHOB）＞\()\) \\
\hline 433 & & R2＝2．0＊RU＊2 \\
\hline 484 & & R3＝\(-(1.0+\) TAN（PSI）》（ - T》TAN（T》THETA）tTP＊TAK（TP《THETfI） \\
\hline 485 & & \(1+(1.0 /(\operatorname{COS}(\) PSI））））））《2 \\
\hline 486 & & R4＝（1．0＊RAD＊COS（PHI）／（ RHOB－RHOE）－COS（THETA）fSIN（THETA） \\
\hline 487 & & I－COS（PSI＞）HAN ！PSI）／TANUHETA））《2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 483 & & R5＝（－T AW＜PSI）－ft I＊TAN PSI）－TETAII（T＊IHETA）（TP＊ \\
\hline 439 & & ［THETA）））＊＊2 \\
\hline 490 & &  \\
\hline 491 & & ITHETA）＋TAN（THETA）«－TPHANHP》IHETA）＊TAN（PST）））） 2 \\
\hline 492 & & R7＝（＜TAN（ETA）／TAN（PSI））tll．0＊R1））»2 \\
\hline 493 & & ROQTK \(=59 \mathrm{RT}\)（R2fR3＋R4＊R5＊R6＊R7＞ \\
\hline 494 & & ROOTKS \(=\) POOTK＊RHO＊ORHO／RHODD \\
\hline 495 & & FSS－RQGIKS＊AREAS \(\bigcirc\) CQS！IHHEIA）／COS（IP，THEIA） \\
\hline 49a & C & VALUE OF FS FOR LAPSE TRIANGUAR EEMENIS \\
\hline 497 & & AREAL＝ARLT6（I） \\
\hline 498 & & THETA＝THETALtI，J） \\
\hline 499 & & HETA＝HETALC（I，J） \\
\hline 500 & & ETA＝£TAL（I，J） \\
\hline 501 & & PSI＝PSIL（I，J） \\
\hline 502 & & ZDIE＝ZL（I，J） \\
\hline 503 & & PHI＝PHIL3A（I，J） \\
\hline 504 & & RAD \(=\) RAL（ \(\mathrm{J}, \mathrm{J}\) ） \\
\hline 505 & & RHOE＝（ RHG8－Z（I，J））＊COS（THEIA） \\
\hline 506 & & S3＝（＝（1．0＋TAN（PSI／－（－T＞TANTT＊IHE TA）＋TP＊IHETA \()\) \\
\hline 507 & & ｜＊（t．0／＜COS（PSI＞）＞））＞＜ 2 \\
\hline 508 & & S4＝（1．0＊RAD \(+008(\mathrm{PH}) /\)／（RHOB－RHQE）\(<\) CQSTITHETA \() *\) SIN（ \(T H E T A)\) \\
\hline 509 & & I＊COS（PS I））＊TPN（PS I）／TPN（IHET A））＊＊2 \\
\hline 510 & & \(55 *((-T A N(P S I)-\mathrm{RI} \star\) TAN（PSI）－T＊TAN（T＊THETA）＊TP＊TAN（TP＊ \\
\hline 511 & & ITHETA）））《2 \\
\hline 512 & & S6＝（（TAN（ETA）／TAN（PST））＊（－1．0／TAN（THETA）－T＊TAN（T＞ \\
\hline 513 & & ITHETA）＊TAN（THETIA）＊IP＊TAN（TP＜THETA）＋TANIPST）））《2 \\
\hline 514 & & S7 \({ }^{\circ}((\) TAN（ETA）／TAN（PS I））\(*(1.0+\mathrm{fil}) \cdot) *\rangle 2\) \\
\hline 515 & & RQGTK＝SQRT（S2fS3＜－S4＊S5＊S6＊S7） \\
\hline 516 & & RCQTKL＝RGQTK＊RHC＊DRHO／RHODD \\
\hline 517 & & FSL＝ROOTKL＊COS（T 》HETA \()\)＊AREAL／COS（TP 》HETA） \\
\hline J13 & & FS＝FS＋－FSL＋F3S \\
\hline 519 & 445 & CONTINUE \\
\hline 520 & 440 & continue \\
\hline 521 & 4 & Continue \\
\hline 522 & & ＊RITE（2，441）FS \\
\hline 523 & 441 & FORMAT（5）1，＇VALUE OF F（S）＝WF10．6，／／） \\
\hline 524 & & FSFFS＊（PI／8ETA）／（RH08t＊2»S6RT（3．0）） \\
\hline 525 & c & CALCUIAIE TE MEAN EQUIVALENT SIRAIN（E3STH） \\
\hline 526 & & E9STH＝FS＞（2．0／SfiRT（3．0））＊RS \\
\hline 527 & & ＊RITE（2，442）E3STIN \\
\hline 528 & 442 & FORMAT＜51，VALUE OF HFAN EQUIVAIENT SIRAIN＊＇，flo．s》 \\
\hline 529 & C & PRINT HEADING FOR FINAL TABIE OF RESUIS \\
\hline 530 & & ＊RITE（ 2,443 ） \\
\hline 531 & 443 & FORMAT（7X，＇ALPHA＇，2X，＇AL？HAE＇，5X，RED＇，，＇NU＇，3K，＇0SR＇ \\
\hline 532 & & I，7X，＇OPR＇） \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 533 & & MITE（2，444） \\
\hline 534 & 444 & format（2x，\＄\＄\＄st\＄mm＊t\＄m＊m\＄sfmtmm＊\＄tf\＄\＄s\＄） \\
\hline 535 & & UA《3． \(0 * 25.4\) \\
\hline 536 & & UB＝UA／AR \\
\hline 537 & & VOL＝UB＊A8 \\
\hline 538 & C & TO FIND FRICTION FACTORS II AND 12 \\
\hline 53 ？ & & USBARI＝UB 》CAE《AL08（AR）／RED \\
\hline 540 & & USBAR2 \({ }^{\text {¢ }}\) UB＋UAJ \({ }^{\text {P }}\) CAD／2．0 \\
\hline 541 & & DE \({ }^{\text {s }} 1818 * 8 \mathrm{ETA} /\)（ IH\()\) \\
\hline 542 & & OA32＝iBETA／2．0）＊CAD＊（R08＊RHOB－ROA＊RHCA） \\
\hline 543 & C & GENERATE COEFFICIENT OF FRICTION \((0,0.02, \ldots . .0 .11\) \\
\hline 544 & & DO 450 ICOEFF＝0．10， 2 \\
\hline 545 & & CMU＝I COEFF＊0． 01 \\
\hline 546 & & Fli－0．0 \\
\hline 547 & & FI2 \(=0.0\) \\
\hline 548 & C & INTEGRATE EXPRESSIONS OVER PLUS－TUBE INTERFACE \\
\hline 54 ？ & & DO \(455 \mathrm{~J}=1\) ，11－1 \\
\hline 550 & & THETA＝THE TAL \(\cdot \mathrm{N}-1, \mathrm{~J}+1>\) \\
\hline 551 & & DOEu＝Sfi？．T \((\mathrm{ilA}(\mathrm{N}-\mathrm{I}, \mathrm{jH})-\mathrm{j}(\mathrm{A}(\mathrm{N}-\mathrm{I}, \mathrm{J})\) ）《2MYA＇ \(\mathrm{N}-\mathrm{I}, \mathrm{JH})-\) \\
\hline 552 & & \(1 \mathrm{YA}(\mathrm{N}-1, \mathrm{~J})\) ）\({ }^{\text {2 }}\) ） \\
\hline 553 & & OASI＝0．5＊（DE＊DDE！）IfZTL（ \(\mathrm{N}-\mathrm{I}, \mathrm{J} * \mathrm{i}\)＞ \\
\hline 554 & & FII＝FII＋DASIKCf！\(*^{\text {COSS }}\)（THETA）－SIN！THETA）J \\
\hline נЈs & & FI2＝FIH－DAS1 \\
\hline 550 & 455 & CONTINUE \\
\hline 557 & & FACT \(1 \mathrm{D}=(<\mathrm{C}\) U \(* C A O+5 A D)\) 《DAS2MF I1））／AA \\
\hline 558 & & FACT20 \(=((\) USBAR \(1 / \mathrm{UB}) * \mathrm{~F} 12 *\)（US8AR2／U8）\(* 0 \mathrm{AS} 2) *\) CNU／AB \\
\hline \(55 ?\) & & NS＝PI／BETA \\
\hline 560 & & FACT1＝FACT1D＊NS＊2．0 \\
\hline 561 & & FACT2＝FACT2D＊NS＊2． 0 \\
\hline 562 & c & ASSUME A TYPICAL VALUE FOR THE＊GRK HARDENING FAGTOR \\
\hline 563 & & \(\mathrm{YN}=0.232 \mathrm{i}\) \\
\hline 564 & & BFACT \({ }^{3} 1.0 /(\mathrm{i} .0 * \mathrm{YNI}\) \\
\hline 565 & c & hence draw stress ratio and die pressure ratio can \\
\hline 566 & － & BE FOUND \\
\hline 567 & & DSR＝EQSTM／（I，0－BFACT＊FACT2／FACTI i） \\
\hline 568 & & DPR＝EQS TH／iFAC r I＊U．0－8FACT＊FACT2／FACTt） \\
\hline 56 ？ & & HRITE（2，456＞I ALPHA，ALFAE，KRED，CNLI，DSR，DPR \\
\hline 570 & 456 & FORMAT（2X，I8，F10．4，I3 3 FI0．4i \\
\hline 571 & 450 & CONTINUE \\
\hline 572 & 300 & CONTINUE \\
\hline 573 & 200 & CONTINUE \\
\hline 574 & 100 & continue \\
\hline 575 & & STOP \\
\hline 576 & & END \\
\hline 577 & & FINISH \\
\hline
\end{tabular}

\section*{A－3．2 LOWER BOUND SOLUTION FOR POLYGONAL DRAWING}
```

1
2
3C
4C
5
6 10
7
WRITE (2,30)
30 FORMAT (2X,' DOB, DOA AND TB ARE FIXED')
INPUT STATEMENTS
READ (1, 33) DOB, DOA, TB
33 FORMAT (3FO.0)
OIB=DOB- (2. 0*TB)
ROB=DOB/2.0
ROA=DQA/2.0
RIB=DI8/2.0
DIE ANGLE=ALPKA PLU6 EQUIVALENT AN6LE=ALPHAE DIMENSIONLESS STRESS
I RATIO=DSR DIE PRESSURE RATIO=')Pfi
PI=3.1415927
GENERATE NUMBER OF SIDES OF SECTION REQUIRED BY GENERATING BETA
DO 100 18\&TA '15,45,15
WRITE (2, 40) 2BETA
40 FOFMAr (2X, ' BETA=', I6)
BE TA=P1^I BETA/100.0
CBETA=COS (BETA)
S8ETA=SIN (BETA)
CALCULATE SECTION PARAMETERS I. E. AA, AB, AR, HA, 5PAfi, ETC
HA=0I8
AB=PHM (RQB>2HRiB**2))
SPAR》C8ETA*S6ETA*Pi/(4.0tBETA)
AA=PI*ROA**2-HA《2*SPAR
Aft-AB/AA
RED-1. 0-1.0/Aft
RE=SfifIT (RQA**2-(AA/PI))
*RITE (2, 43) HA, RE, TB, RED
43 FGRMAT2X,4F 10.5
PRINT HEADING FOR FINAL TABLE OF RESULTS
*RITE (2,50)
50 FORMAT (7X,' ALPHA', 2X,'ALPHAE',6X,'MU',IX,'DSR',
47X, 'DPR')
《RITE (2,70)

70 FORMAT (2X, tt\$$$
t$f
$$Sti$$
UtiS
$$$$
ft$99t*
$$iitSS\$\$$$
tS$tf
$$>
```

44 C	generate the die semi－angle
45	DO 225 IALPHA $=2,22,4$
46	ALPHA＊（PI／180．0）HALPHA
47	TAD＝TAN（ALPHA）
49	CAD $=$ COS（ALPHA）
49	5AD＝SIN（ALPHA）
50	DIEH＝（RQ8－RQA）／TAO
51	ALPHAE＝TAN（ （RI9－RE）／DIEH）
52	ALFAE $=(130.0 / \mathrm{PI} \mathrm{i}$＊ALPHAE
53	TAE＝ThN（ALPHAE）
54 C	CALCULATE CONICAL ANO FLAT SURFACE ANGLES
55	ALPHAC＝ATAN（DI3－HA）／（2．＇）＊DIEH））
56	ALPHAS＝ATAN（ i0I9－（HA》C\＆ETA））／（2．0＊DIEH））
57 C	CONSTANTS FOR THE ELLIPSE
53	CAC＝COS IALPHAC）
59	CAS $=\operatorname{COS}$（ALPHAS）
60	SAC＝SIN（ALPHAC）
61	SAS＝SIMKALPHAS）
62	TAC＝TAN（ALPHAC）
＊3	TAS $=$ TAN（ALPHAS）
64	8＝RIB＊（1．0／SIN（ALPHAC＋ALPHAS））＊S\＆RT（（CAC）＊＊2－＜CAS）《2
65	A－RIB＊〈CAC／SIN（ ALPHAOALPHAS））
66 C	NUMERICAL INTEGRATION OF THE DRAW STRESS
67 C	ACCUMULATIVE SURFACE AREA OF DIE 13 9SURFA
68	DSURFA $=0.0$
69 C	FOR NO BACKPULL THE NORMAL STRESS AT InLet PLANE IS ZERO
70	DSR＝0．0
71 C	EVALUATE FRICTION CONSTANTS KS1，KC1 AND KC2
72	DO 425 KCQEFF＝0，t0， 2
73	COEFF＝KCOEFF／100． 0
74	S1＝（COEFF＊CAS）－3AS
75	$\mathrm{Cl}=(\mathrm{COEFFtCAC})-$ SAC
76	C2＊（COEFF＜CAO）＊3A0
77 C	DIVIDE DIE LENGTH INTO 50 E3UAL LENGTHS
78	NL＝51
79 C	ACCuMULATE PRODUCT OF DSRI AND DIE SURFACE AREA
80	DSRSF＝0．0
31	DZ＝DIEH／（NL－1）
32	A11＝0．5＊8ETAMR08－R18）KRQ8＊－RI\＆）
33	DO $500 \mathrm{I}=2, \mathrm{NL}, 1$
34	$\mathrm{ZI}=(\mathrm{M}) * 0 \mathrm{Z}$
35	RIL＝R08－（ZItTAD）
36	RIS＝RI8－（ZI＊TAC）
37 C	Y VaLue on the ellipse
33	YI＝8＊S6RT（ $2.0 * A * Z I * C A S-(Z I * * 2)) /(A * C A S)$



## A－3．3 UPPER BOUND SOLUTION FOR AXISYVMETRIC DRAWING

```
l MASIER UBFAO
2 C UPPER BOUND SOLUTION FOR CORRESPONDING AXISVMMETRIC CASE
 KRITE (2, 15>
 15 FGRMAT (//,2X, UPPER BOUND SOLUTION FOR AXISYNHETRIC DRAWING',//)
£ DIMENSIONS FOR INCOMIN6 TUBE AND PROCESSED PRODUCT
c TUBE QD IS DO1 GAUGE(TI) PRODUCT OD IS 002 M FRICT FACTER FACT
 DO 1=0.0296
 D02=0.0254
 T1=0.004064
 PI=3.1415927
 ROI=001/2.0
 R02=DG2/2. 0
 RI1=RQ1-TI
f PRINT HEADING FOR FINAL TABLE OF RESULTS
 HRITE (2.10)
 20 FORMAT(//,5X,'IALPHAD',4X, ALPHAP',5X, RED', 4^,'1U'DSR',
 I7X, 'DPR')
 generate the die and plug semiangle
 DO 30 IALPHA=4, 16,4
 DO 40 <RED=5,50,5
 DO 45 IFACT=2,10,2
 FACT=IFACT/100.0
 ALPHAO=(PI>' 130.0) *IAL?HA
 TAD=TAN (ALPHAD)
 CAD=CQS (ALPHAD)
 CALCULATE GEOMETRICAL PARAMETERS AI A2 AR DIEH RED
 DIEH= (R01-tfG2)/TAD
 AR=100.0/(100.0-KRED)
 AI=PI*t(RGI《2)-iRU**2))
 A2=A1/AR
 RI2=S8RT<(R02**2)-(A2/PI))
 ALPHAP=ATAN(<RII-RI2)/DIEH>
 ALFAPO}\mp@subsup{}{}{\circ}(180.0/PI)*ALPHA
 CAP=COS (ALPHAP)
 TAO=TAN(ALPHAD)
 IF IRI2.6T.RII.OR.RI2.GT.RQ2) GO TO 40
 IF (ALPHAP. ST. ALPHAD) 30 TO 40
 NCK SOLVE THE DRAM STRESS EQUATION
 HI=ROI-ftli
 H2*fiQI》2-RII《2
 H3=R02-RI2
 H4=R02《2-RI2**2
 H5=<ROt《3-RI2《3)/3.0
 H6=(R02883-RI2H3)/3.0
```

```
H7>(RQ2*TADMR12*TAP)
4b H8=' RQ1*TAD) - (Rll*!AP)
47 H9=(R||*TAD)-(ROI*TAP)
43 HI(MRI2HADMRO2tTAf>
F FI*(RQ1《-RIU/(IHI2*R[2)
50
51
52
53
54
55
56
57
58 C
45 CONTINUE
40 CGNTINUE
30 continue
 WRITE (2,60)
60 FORMAT (5X, ' END OF UPPER ZOUNO SOLUTION')
 STOP
 END
 FINISH
```


## A-3.4 LOVER BOUND SOLUTION FOR AXISYMMETRIC DRAWING

```
 TRACE 2
 MASTER L8FAO
 *R1TE (2, 10)
10 FORMAT (//,5X,'LOWER BOUND SOLUTION FOR AXISYNMETRIC DRAN1N6',//)
C DIMENSIONS FOR INCOMIN6 TU8E ANO PROCESSED PROOUCT
C STOCK OUTER RADIUS IS ROB PRODUCT O R IS KOA MU IS COEFF
7 C SAU6E=TI STOCK INNER RADIU5=RI8 PRODUCT INNER RADIUS=RIA
 RQB=0.0143
 RQA=0.0127
 TH16=0.375*0.0254
 R18=RQ8-THI8
 PI=3.1415927
 WRITE (2, 20)
20 FORMAT (//, 5X, 'ALPHAD", 5X, RED', 4X, MU', 3X, 'DSR',
 17X, 'DPR')
 DO 30 IALPHA=4, 20,4
 DO 40 KRED=15,50,2
 DO 45 ICOEFF=2, LO, 2
 COEFF 'ICOEFF/I00. O
 ALPHAD=(P1/130.0) *IALPHA
 QIEH》 (RQB-RQA) / TAN (ALPHAD)
 AR-100.0/(100.0-KRED)
 A9=PI*((ROB**2) -iRI3**2))
 AA=AB/AR
 RI ASSORT ((R0A**2)-IAA/PI))
 ALPHAP=ATAN ((RI8-RIA)/DIEH)
 ALFAPO@(180.0/P t)*ALPHAP
 THIA=ROA-RIA
 IF (RIA. 3T. R18.OR. RIA. ST. ROA) 50 TO 40
 IF (ALPHAP. ST. ALPHAD) SO TO 40
 CALCULATE DRAW STRESS RATIO ANO DIE PRESSURE RATIO
 B= (2.0 tCOEFF)}/\langleTAN(ALPHAD)-TAN (ALPHAP))
 DSR}\mp@subsup{}{}{8}((1.0+8)/8)*|I.0-UTHIA/THI8)**B>)
 DRPM. 0-DSR
 IWITE (2,50) I ALPHA, ALFAPD , KRED, COEFF. DSR. DPS
 FORNATI2X, I8, Ft0. 4, I8, 3F10, 4)
 CONTINUE
 CONTINUE
 CONTINUE
 WRITE (2, 60)
60 FORMAT (5X, END OF LOWER BOUND SOLUTION)
 STOP
 END
 FINISH
```

TABULATED SAMPLE SOLUTIONS OF THE UPPER AND LOWER BOUND FOR POLYGONAL AND AXISYiWETRIC DRAWING

TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 28.6 mm O.D. x 9.52 mm THICKNESS REDUCTION OF AREA: 21.61\%
OUTPUT TUBE SIZE 25.4 mm O.D.

	-v	Upper bound			Lower bound	
		iv ;d ${ }^{\text {a }}$ $\text { 1) } \frac{H}{\mathrm{a}}$ $\begin{array}{ll} \mathrm{i} & \hat{1} \\ £ & 0 \end{array}$	Mean draw stress/yielci stress $\left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	Vfean die   i pressure/ yield stress ${ }^{(p / Y)}$ tn	Mean draw stress/yiel stress ${ }^{60} \mathrm{za}^{\left./ \mathrm{Y}_{\mathrm{nr}}\right)}$	Mean die   pressure/   yield stress
2	0.54	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.0661 \\ & 2.3101 \\ & 2.4587 \\ & 2.5648 \\ & 2.6484 \end{aligned}$	$\begin{aligned} & 3.9779 \\ & 2.8578 \\ & 2.2407 \\ & 1.8501 \\ & 1.5809 \end{aligned}$	$\begin{aligned} & 0.6077 \\ & 0.9416 \\ & 1.1501 \\ & 1.2298 \\ & 1.2309 \end{aligned}$	$\begin{aligned} & 0.9964 \\ & 0.9978 \\ & 0.9990 \\ & 0.9997 \\ & 1.0000 \end{aligned}$
6	1.63	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.0401 \\ & 1.1411 \\ & 1.2194 \\ & 1.2833 \\ & 1.3374 \end{aligned}$	$\begin{aligned} & 3.1860 \\ & 2.7135 \\ & 2.3696 \\ & 2.1083 \\ & 1.9031 \end{aligned}$	$\begin{aligned} & 0.5314 \\ & 0.8204 \\ & 1.0749 \\ & 1.2701 \\ & 1.3971 \end{aligned}$	$\begin{aligned} & 0.9971 \\ & 0.9981 \\ & 0.9987 \\ & 0.9992 \\ & 0.9996 \end{aligned}$
LO	2.73	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.3062 \\ & 0.8531 \\ & 0.3936 \\ & 0.9306 \\ & 0.9647 \end{aligned}$	$\begin{aligned} & 2.9125 \\ & 2.7252 \\ & 2.5635 \\ & 2.4226 \\ & 2.2987 \end{aligned}$	$\begin{aligned} & 0.5147 \\ & 0.7879 \\ & 1.0426 \\ & 1.2614 \\ & 1.4333 \end{aligned}$	$\begin{aligned} & 0.9973 \\ & 0.9982 \\ & 0.9987 \\ & 0.9991 \\ & 0.9994 \end{aligned}$
L4	3.86	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.1694 \\ & 2.3269 \\ & 2.4614 \\ & 2.5789 \\ & 2.6837 \end{aligned}$	$\begin{aligned} & 7.4811 \\ & 6.7690 \\ & 6.1917 \\ & 5.7145 \\ & 5.3137 \end{aligned}$	$\begin{aligned} & 0.5073 \\ & 0.7728 \\ & 1.0260 \\ & 1.2538 \\ & 1.4467 \end{aligned}$	$\begin{aligned} & 0.9974 \\ & 0.9982 \\ & 0.9987 \\ & 0.9991 \\ & 0.9994 \end{aligned}$
18	5.02	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.4043 \\ & 2.5088 \\ & 2.6064 \\ & 2.6983 \\ & 2.7853 \end{aligned}$	$\begin{aligned} & 8.7732 \\ & 8.3968 \\ & 8.0570 \\ & 7.7488 \\ & 7.4681 \end{aligned}$	$\begin{aligned} & 0.5031 \\ & 0.7641 \\ & 1.0159 \\ & 1.2484 \\ & 1.4533 \end{aligned}$	$\begin{aligned} & 0.9974 \\ & 0.9983 \\ & 0.9987 \\ & 0.9991 \\ & 0.9993 \end{aligned}$

TABLE A-4.1.2 THE UPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF HEXAGONAL TUBE FROM ROM) THROUGH A CYLINDRICAL DIE CN A POLTOCNAL PLUG

INPUT TUBE SIZE: 26.99 mm O.D. $x 8.89 \mathrm{~mm}$ THICKNESS REDUCTION OF AREA: 10.66\%
OUTPUT TUBE SIZE: 25.4xrm O.D.

			Upper bound		Lower bound	
		$\stackrel{\text {. }}{\text { H }}$      8 o	Mean draw stress/yiel stress $\left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	Mean die pressure/ yield stress5	Mean drav stress/yiel stress $\left.\downarrow_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	Mean die i pressure/ yield stress ( $\mathrm{p} / \mathrm{Y}$ )
2	1.05	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.2388 \\ & 3.6601 \\ & 3.9212 \\ & 4.1097 \\ & 4.2595 \end{aligned}$	$\begin{array}{r} 13.0959 \\ 9.5102 \\ 7.5060 \\ 6.2271 \\ 5.3409 \end{array}$	$\begin{aligned} & 0.3088 \\ & 0.5424 \\ & 0.7636 \\ & 0.9369 \\ & 1.0498 \end{aligned}$	$\begin{aligned} & 0.9980 \\ & 0.9984 \\ & 0.9989 \\ & 0.9993 \\ & 0.9996 \end{aligned}$
6	3.16	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.5355 \\ & 0.5920 \\ & 0.6367 \\ & 0.6738 \\ & 0.7055 \end{aligned}$	$\begin{aligned} & 3.4268 \\ & 2.9569 \\ & 2.6078 \\ & 2.3385 \\ & 2.1245 \end{aligned}$	$\begin{aligned} & 0.2541 \\ & 0.4136 \\ & 0.5793 \\ & 0.7396 \\ & 0.5848 \end{aligned}$	$\begin{aligned} & 0.9986 \\ & 0.9989 \\ & 0.9992 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
10	5.29	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.4945 \\ & 0.5328 \\ & 0.5663 \\ & 0.5962 \\ & 0.6233 \end{aligned}$	$\begin{aligned} & 3.4965 \\ & 3.2183 \\ & 2.9860 \\ & 2.7891 \\ & 2.6202 \end{aligned}$	$\begin{aligned} & 0.2427 \\ & 0.3841 \\ & 0.53 C 9 \\ & 0.6767 \\ & 0.8158 \end{aligned}$	$\begin{aligned} & 0.9987 \\ & 0.9991 \\ & 0.9993 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
14	7.46	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.5024 \\ & 0.5313 \\ & 0.5582 \\ & 0.5833 \\ & 0.6070 \end{aligned}$	$\begin{aligned} & 3.6041 \\ & 3.4441 \\ & 3.3002 \\ & 3.1702 \\ & 3.0522 \end{aligned}$	$\begin{aligned} & 0.2376 \\ & 0.3710 \\ & 0.5066 \\ & 0.6463 \\ & 0.7801 \end{aligned}$	$\begin{aligned} & 0.9987 \\ & 0.9991 \\ & 0.9993 \\ & 0.9994 \\ & 0.9996 \end{aligned}$
18	9.68	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.3719 \\ & 1.4254 \\ & 1.4767 \\ & 1.5261 \\ & 1.5737 \end{aligned}$	$\begin{array}{r} 10.7605 \\ 10.4497 \\ 10.1618 \\ 9.8943 \\ 9.6454 \end{array}$	$\begin{aligned} & 0.2348 \\ & 0.3635 \\ & 0.4956 \\ & 0.6282 \\ & 0.7583 \end{aligned}$	$\begin{aligned} & 0.9988 \\ & 0.9991 \\ & 0.9993 \\ & 0.9995 \\ & 0.9996 \end{aligned}$

TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 26.99 mm O.D. x 8.89 rm THICKNESS REDUCTION OF AREA: 8.15\%
OUTPUT TUBE SIZE: 25.4 mm O.D.

	H		Upper bound		Lower bound	
			Mean draw stress/yiel stress $\left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	Vie an die pressure/ yield stress ( $\mathrm{p} / \mathrm{Y}_{\mathrm{m}}$ )	Mean draw stress/yiel stress $\left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	Mean die d pressure/ yield stress
2	2.34	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.9176 \\ & 4.4468 \\ & 4.7769 \\ & 5.0157 \\ & 5.2056 \end{aligned}$	$\begin{array}{r} 16.4255 \\ 11.9934 \\ 9.4961 \\ 7.8949 \\ 6.7820 \end{array}$	$\begin{aligned} & 0.2550 \\ & 0.4709 \\ & 0.6847 \\ & 0.8602 \\ & 0.9814 \end{aligned}$	$\begin{aligned} & 0.9983 \\ & 0.9986 \\ & 0.9989 \\ & 0.9993 \\ & 0.9996 \end{aligned}$
6	7.02	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.2232 \\ & 2.4637 \\ & 2.6554 \\ & 2.8148 \\ & 2.9520 \end{aligned}$	$\begin{array}{r} 14.6811 \\ 12.7423 \\ 11.2872 \\ 10.1558 \\ 9.2517 \end{array}$	$\begin{aligned} & 0.1986 \\ & 0.3336 \\ & 0.4792 \\ & 0.6250 \\ & 0.7617 \end{aligned}$	$\begin{array}{r} 10.9989 \\ 0.9991 \\ 0.9993 \\ 0.9994 \\ 0.9995 \end{array}$
10	11.66	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.3528 \\ & 2.5361 \\ & 2.6980 \\ & 2.8433 \\ & 2.9755 \end{aligned}$	17.0116 15.7551 14.6926 13.7831 12.9962	$\begin{aligned} & 0.1868 \\ & 0.3 C 23 \\ & 0.4259 \\ & 0.5522 \\ & 0.6760 \end{aligned}$	0.9990 0.9992 0.9994 0.9995 0.9996
14	16.27	$\begin{aligned} & \text { o.ce } \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.5528 \\ & 3.7628 \\ & 3.9584 \\ & 4.1416 \\ & 4.3144 \end{aligned}$	$\begin{aligned} & 26.3100 \\ & 25.1762 \\ & 24.1542 \\ & 23.2285 \\ & 22.3868 \end{aligned}$	$\begin{aligned} & 0.1816 \\ & 0.2883 \\ & 0.4013 \\ & 0.5172 \\ & 0.6324 \end{aligned}$	$\begin{aligned} & 0.9990 \\ & 0.9993 \\ & 0.9994 \\ & 0.9995 \\ & 0.9996 \end{aligned}$
18	20.83	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.5060 \\ & 3.6813 \\ & 3.8469 \\ & 4.0041 \\ & 4.1542 \end{aligned}$	$\begin{aligned} & 27.6629 \\ & 26.6545 \\ & 25.7351 \\ & 24.8939 \\ & 24.1218 \end{aligned}$	$\begin{aligned} & 0.1787 \\ & 0.2804 \\ & 0.3871 \\ & 0.4964 \\ & 0.6058 \end{aligned}$	0.9991 0.9993 0.9995 0.9996 0.9996

TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 26.99 rnn O.D. x 7.93 mm THICKNESS REDUCTION OF AREA: 10.24\%
OUTPUT TUBE SIZE: 25.4 mm O.D.

		Upper bound		Lower bound	
		Mean draw   stress/yield   stress   ( $\mathrm{O}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}$ )	Mean die pressure/ yield stress	$\begin{array}{ll} \text { ( } & \text { Mean draw } \\ \text { stress/yieJI } \\ 5 & \text { stress } \\ & \left(0_{\text {za }} M_{\mathrm{m}}\right) \end{array}$	Mean die Ld pressure/ yield stresi
$2 \quad 1.27$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.8058 \\ & 3.1259 \\ & 3.3152 \\ & 3.4507 \\ & 3.5594 \end{aligned}$	$\begin{array}{r} 10.8644 \\ 7.4976 \\ 5.7596 \\ 4.6996 \\ 3.9863 \end{array}$	$\begin{array}{r} 0.3090 \\ 0.5506 \\ !\quad 0.7754 \\ 0.9453 \\ 1.0498 \end{array}$	$\begin{array}{ll} \text { I } 0.9980 \\ 0.9984 \\ & 0.9989 \\ 0.9993 \\ & 0.9996 \end{array}$
$6 \quad 3.81$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.4839 \\ & 0.5347 \\ & 0.5727 \\ & 0.6031 \\ & 0.6287 \end{aligned}$	$\begin{aligned} & 3.1570 \\ & 2.6138 \\ & 2.2384 \\ & 1.9637 \\ & 1.7542 \end{aligned}$	$\begin{aligned} & 0.2478 \\ & 0.4083 \\ & 0.5757 \\ & 0.7369 \\ & 0.8814 \end{aligned}$	$\begin{aligned} & 0.9986 \\ & 0.9989 \\ & 0.9992 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
$10 \quad 6.37$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.6869 \\ & 0.7423 \\ & 0.7886 \\ & 0.8286 \\ & 0.8640 \end{aligned}$	$\begin{aligned} & 5.0665 \\ & 4.5139 \\ & 4.0796 \\ & 3.7297 \\ & 3.4418 \end{aligned}$	$\begin{aligned} & 0.2349 \\ & 0.3752 \\ & 0.5216 \\ & 0.6671 \\ & 0.8054 \end{aligned}$	$\begin{aligned} & 0.9987 \\ & 0.9991 \\ & 0.9993 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
$14 \quad 8.87$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7468 \\ & 0.7927 \\ & 0.8337 \\ & 0.8710 \\ & 0.9053 \end{aligned}$	$\begin{aligned} & 5.6508 \\ & 5.2568 \\ & 4.9212 \\ & 4.6322 \\ & 4.3808 \end{aligned}$	0.2283 0.3604 0.4965 0.6329 0.7654	$\begin{aligned} & 0.9988 \\ & 0.9991 \\ & 0.9993 \\ & 0.9995 \\ & 0.9996 \end{aligned}$
1811.63	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7300 \\ & 0.7644 \\ & 0.7966 \\ & 0.8270 \\ & 0.8557 \end{aligned}$	$\begin{aligned} & 5.4422 \\ & 5.2103 \\ & 5.0012 \\ & 4.8119 \\ & 4.6397 \end{aligned}$	$\begin{aligned} & 0.2261 \\ & 0.3519 \\ & 0.4818 \\ & 0.6125 \\ & 0.7407 \end{aligned}$	$\begin{aligned} & 0.9988 \\ & 0.9992 \\ & 0.9993 \\ & 0.9995 \\ & 0.9996 \end{aligned}$
2214.35	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.1558 \\ & 3.2763 \\ & 3.3920 \\ & 3.5032 \\ & 3.6105 \end{aligned}$	9.4421   8.8023   8.2062   7.6498   7.1295	$\begin{aligned} & 0.2240 \\ & 0.2240 \\ & 0.4722 \\ & 0.5989 \\ & 0.7239 \end{aligned}$	$\begin{aligned} & 0.9988 \\ & 0.9992 \\ & 0.9994 \\ & 0.9995 \\ & 0.9996 \end{aligned}$

A 62
TABLE A-4.1.7 THE UPPER AND LOWER BOUND SOUUTIOTS FOR THE DRAWING OF OCTAOCNAL TUBE FRCM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 31.75 mm O.D. x 9.52 mm THICKNESS REDUCTION OF AREA: 39.56\%
OJTFUT TUBE SIZE: 25.4 mm OD.

Lower bound

Mean draw	Mean die	Mean draw I Mean die
stress/yield	pressure/	stress/yield pressure/
stress	yield stress	stress


1.0980	0.9941
1.3702	0.9982
1.3654	1.0000
1.2859	1.0003
1.2226	1.0002
1.0511	0.9946
1.4762	0.9972
1.7089	0.9988
1.7642	0.9998
1.7097	1.0002
1.0389	0.9947
1.4979	0.9969
1.8244	0.9984
1.9991	0.9993
2.0419	0.9999
1.0333	0.9948
1.5071	0.9968
1.8812	0.9981
2.1300	0.9990
2.2541	0.9996
1.0301	0.9948
1.5122	0.9968
1.9151	0.9980
2.2132	0.9988
2.3989	0.9994
1.0279	0.9948
1.5155	0.9968
1.9378	0.9979
2.2710	0.9987
2.5041	0.9992

TABLE A－4．1．1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE： 31.75 mn O．D．x 9.52 mm THICKNESS REDUCTION OF AREA：35．94\％ OUTPUT TUBE SIZE： 25.4 mm OS）．

$r$		Upper bound		Lower bound	
		Mean draw   stress／yielc   stress ${ }^{\prime} \mathrm{a} \mathrm{za} / \mathrm{V}$	Mean die pressure／ yield stress； $<\mathrm{p} / \mathrm{V}$	Mean draw stress／yiel． stress	Mean die d pressure／ yield stress ＜p／v
20.81	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 5.9384 \\ & 6.4796 \\ & 6.7877 \\ & 7.0030 \\ & 7.1726 \end{aligned}$	$\begin{aligned} & 5.2951 \\ & 3.5707 \\ & 2.7065 \\ & 2.1877 \\ & 1.8418 \end{aligned}$	$\begin{aligned} & 1.0071 \\ & 1.2958 \\ & 1.3187 \\ & 1.2551 \\ & 1.1989 \end{aligned}$	0.9944 0.9980 0.9999 1.0 G 03 1.0002
162.43	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	2.2836 2.4819 2.6242 2.7349 2.8260	$\begin{aligned} & 3.4704 \\ & 2.8015 \\ & 2.3560 \\ & 2.0383 \\ & 1.8004 \end{aligned}$	$\begin{aligned} & 0.9411 \\ & 1.3432 \\ & 1.5803 \\ & 1.6564 \\ & 1.6259 \end{aligned}$	$\begin{aligned} & 0.9951 \\ & 0.9973 \\ & 0.9988 \\ & 0.9997 \\ & 1.0001 \end{aligned}$
1104.08	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.7829 \\ & 1.9053 \\ & 2.0032 \\ & 2.0848 \\ & 2.1551 \end{aligned}$	$\begin{aligned} & 3.0463 \\ & 2.7233 \\ & 2.4059 \\ & 2.1590 \\ & 1.9617 \end{aligned}$	$\begin{aligned} & 0.9246 \\ & 1.3474 \\ & 1.6597 \\ & 1.8400 \\ & 1.9009 \end{aligned}$	0.9952 0.9972 0.9984 0.9993 0.9998
J14 5.76	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.3474 \\ & 2.4748 \\ & 2.5833 \\ & 2.6780 \\ & 2.7625 \end{aligned}$	$\begin{aligned} & 4.4302 \\ & 3.9861 \\ & 3.6289 \\ & 3.3354 \\ & 3.0903 \end{aligned}$	$\begin{aligned} & 0.9171 \\ & 1.3482 \\ & 1.6973 \\ & 1.9394 \\ & 2.0718 \end{aligned}$	$\begin{aligned} & 0.9953 \\ & 0.9971 \\ & 0.9982 \\ & 0.9990 \\ & 0.9996 \end{aligned}$
1187.48	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.3003 \\ & 3.4435 \\ & 3.5706 \\ & 3.6853 \\ & 3.7903 \end{aligned}$	6.4454   5.9495   5.5312   5.1740   4.8653	$\begin{aligned} & 0.9127 \\ & 1.3483 \\ & 1.7192 \\ & 2.0016 \\ & 2.1866 \end{aligned}$	$\begin{aligned} & 0.9954 \\ & 0.9971 \\ & 0.9981 \\ & 0.9989 \\ & 0.9994 \end{aligned}$
I 229.28	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	5.9063   6.1130   6.3023   6.4774   6.6409	$\begin{array}{r} 11.7439 \\ 11.0431 \\ 10.4310 \\ 9.8918 \\ 9.4136 \end{array}$	$\begin{aligned} & 0.9099 \\ & 1.3482 \\ & 1.7337 \\ & 2.0444 \\ & 2.2692 \end{aligned}$	$\begin{aligned} & 0.9954 \\ & 0.9971 \\ & 0.9981 \\ & 0.9987 \\ & 0.9992 \end{aligned}$

A 64
TABLE A-4.1.7 THE UPPER AND LOWER BOUND SOUUTIOTS FOR THE DRAWING OF OCTAOCNAL TUBE FRCM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 37.75 mm O.D. x 9.52 am THICKNESS REDUCTION OF AREA: 40.96\%
OUTPUT TUEE SIZE: 25.4 mm O.D.

		$\stackrel{\mathrm{M}}{ }$	Upper bound		Lower bound	
		; ${ }^{\text {a }}$   ${ }^{4} \mathrm{M}$ S   $\mathrm{VH} \underset{\mathrm{H}}{ }$ 8 筑 $\begin{aligned} \mathrm{b} \\ \text { 㐫 } \\ -\mathrm{S} \\ \hline \end{aligned}$	Mean draw stress/yield stress $\left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{nr}}\right)$	Mean die pressure/ yield stress ( p/v	Mean draw s tress/yiel< stress ( $\mathrm{a}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}$ )	Mean die pressure/ yield stress $\left(\mathrm{p} / \mathrm{Y}_{\mathrm{m}}\right)$
2	0.20	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.4639 \\ & 2.6750 \\ & 2.7946 \\ & 2.8780 \\ & 2.9436 \end{aligned}$	$\begin{aligned} & 1.9868 \\ & 1.3357 \\ & 1.0107 \\ & 0.8159 \\ & 0.6862 \end{aligned}$	$\begin{aligned} & 1.1341 \\ & 1.3992 \\ & 1.3834 \\ & 1.2977 \\ & 1.2319 \end{aligned}$	$\begin{aligned} & 0.9940 \\ & 0.9982 \\ & 1.00 \mathrm{Cl} \\ & 1.0003 \\ & 1.0002 \end{aligned}$
6	0.62	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.8747 \\ & 0.9463 \\ & 0.9974 \\ & 1.0370 \\ & 1.0695 \end{aligned}$	$\begin{aligned} & 1.2001 \\ & 0.9650 \\ & 0.8094 \\ & 0.6988 \\ & 0.6162 \end{aligned}$	$\begin{aligned} & 1.0951 \\ & 1.5290 \\ & 1.7594 \\ & 1.8062 \\ & 1.7420 \end{aligned}$	$\begin{aligned} & 0.9944 \\ & 0.9971 \\ & 0.9988 \\ & 0.9998 \\ & 1.0002 \end{aligned}$
10	1.03	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7882 \\ & 0.8306 \\ & 0.8805 \\ & 0.9143 \\ & 0.9434 \end{aligned}$	$\begin{aligned} & 1.2627 \\ & 1.0871 \\ & 0.9565 \\ & 0.8556 \\ & 0.7753 \end{aligned}$	$\begin{aligned} & 1.0848 \\ & 1.5581 \\ & 1.8897 \\ & 2.0617 \\ & 2.0969 \end{aligned}$	$\begin{aligned} & 0.9945 \\ & 0.9968 \\ & 0.9983 \\ & 0.9993 \\ & 0.9999 \end{aligned}$
14	1.46	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7574 \\ & 0.7971 \\ & 0.8305 \\ & 0.8595 \\ & 0.8852 \end{aligned}$	$\begin{aligned} & 1.3125 \\ & 1.1725 \\ & 1.0612 \\ & 0.9708 \\ & 0.8959 \end{aligned}$	$\begin{aligned} & 1.0800 \\ & 1.5708 \\ & 1.9545 \\ & 2.2055 \\ & 2.3258 \end{aligned}$	$\begin{aligned} & 0.9946 \\ & 0.9967 \\ & 0.9981 \\ & 0.9990 \\ & 0.9996 \end{aligned}$
18	1.90	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7445 \\ & 0.7763 \\ & 0.8042 \\ & 0.8291 \\ & 0.8518 \end{aligned}$	$\begin{aligned} & 1.3567 \\ & 1.2410 \\ & 1.1451 \\ & 1.6643 \\ & 0.9953 \end{aligned}$	$\begin{aligned} & 1.0772 \\ & 1.5779 \\ & 1.9933 \\ & 2.2973 \\ & 2.4828 \end{aligned}$	$\begin{aligned} & 0.9946 \\ & 0.9967 \\ & 0.9979 \\ & 0.9988 \\ & 0.9994 \end{aligned}$
22	2.37	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.7388 \\ & 0.7648 \\ & 0.7883 \\ & 0.8 C 09 \\ & 0.8298 \end{aligned}$	$\begin{aligned} & 1.3976 \\ & 1.3002 \\ & 1.2168 \\ & 1.1447 \\ & 1.0817 \end{aligned}$	$\begin{aligned} & 1.0754 \\ & 1.5826 \\ & 2.0194 \\ & 2.3613 \\ & 2.5972 \end{aligned}$	$\begin{aligned} & 0.9946 \\ & 0.9966 \\ & 0.9978 \\ & 0.9986 \\ & 0.9992 \end{aligned}$

TABLE A-4.1.8 THE tPPER AND LOWER BOUND SOLUTIONS FOR THE DRAWING OF OCTAGONAL TUBE FRCM ROUND THROUGH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 26.99 inn O.D. x 8.89 mm THICKNESS REDUCTION OF AREA: ll.63\%
CUIPUT TUBE SIZE: 25.4 rm O.D.

Upper bound

Mean draw	Mean die
stress/yield	pressure/
stress	yield stress
"W V	$\langle\mathrm{P} / * \mathrm{~m}\rangle$

Lower bound

Mean dray/	LMean die
stress/yield	pressure/
stress	yield stress
« $\quad \mathrm{W}$	<p/V


$0.59 \quad 0.02$
1.9488
$0.04 \quad 2.2017$
$0.06 \quad 2.3587$
0.08 2.4721
$0.10 \quad 2.5621$
7.7633
5.0491
4.4634
3.7053
3.1793
3.4408
2.9708
2.6214
2.3515
2.1369
2.9498
2.7135
2.5163
2.3493
2.2063

0.04	0.4560
0.06	0.4845
0.08	0.5100
0.10	0.5330

3.4992
$\begin{array}{ll}0.2597 & 0.9986 \\ 0.4035 & 0.9990 \\ 0.5507 & 0.9993 \\ 0.6969 & 0.9994 \\ 0.8380 & 0.9995\end{array}$
$0.10 \quad 0.5952$
3.3397
3.1966
3.0676
2.9509
$18 \quad 5.501$

0.02	0.7526
0.04	0.7856
0.06	0.8174
0.08	0.8480
0.10	0.8776

5.2569
5.1423
5.0336
4.9306
4.8327
0.2569
0.3961
0.5383
0.6800
0.8181
0.9987
.

0.3300	0.9979
0.5704	0.9984
0.7942	0.9989
0.9666	0.9993
1.0762	0.9996
0.2760	0.9985
0.4451	0.9989
0.6185	0.9991
0.7844	0.9993
0.9329	0.9995

$10 \quad 2.99$

14
4.22
$0.04 \quad 0.5211$
$\begin{array}{ll}0.06 & 0.5475 \\ 0.08 & 0.5721\end{array}$
2.9509

0.2646	0.9986
0.4163	0.9990
0.5721	0.9992
0.7255	0.9994
0.8705	0.9995

14
0.10
0.8776
0.9991
0.9993
0.9994
0.9995

TABLE A-4.1.9 THE UPPER A>D LOWER BOUND SOLUTIONS FOR THE DRAWING OF SQUARE TUBE FROM ROUND THKXXH A CYLINDRICAL DIE ON A POLYGONAL PLUG

LWT TUBE SIZE: 26.99 mm O.D. x 7.62 mn THICKNESS REDUCTION OF AREA: 5.61\%
OJTPtrr TUBE SIZE: 25.4 mn O.D.

			Upper bound		Lower bound		
$\begin{gathered} s \emptyset \\ \& \\ M \\ M i \\ S_{n} \\| \\ \text { "ut } \end{gathered}$			Mean draw stress/yield stress $\left(a_{z a} / Y_{m}\right)$	Mean die pressure/ yield stresss ${ }^{\prime}$ e/y	$\begin{aligned} & \text { l Mean draw } \\ & \text { stress/yiel<i } \\ & \text { stress } \\ & \left(\mathrm{a}_{\mathrm{za}} / \mathrm{Y} \mathrm{Y}\right. \text { ) } \end{aligned}$	Mean die pressure/ yield stress <e/V	
2	2.99	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 14.9998 \\ & 16.7400 \\ & 17.7631 \\ & 18.4973 \\ & 19.0892 \end{aligned}$	$\begin{aligned} & 60.6583 \\ & 41.5045 \\ & 31.7552 \\ & 25.8551 \\ & 21.9046 \end{aligned}$	$\begin{array}{r} 10.2160 \\ 0.4324 \\ 0.6498 \\ 0.8258 \\ 0.9438 \end{array}$	$\begin{array}{r} 0.9984 \\ 0.9986 \\ 0.9989 \\ 0.9993 \\ 0.9996 \end{array}$	
6	$8.92$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.9367 \\ & 3.2575 \\ & 3.4957 \\ & 3.6858 \\ & 3.8455 \end{aligned}$	$\begin{aligned} & 20.3027 \\ & 16.7174 \\ & 14.2646 \\ & 12.4826 \\ & 11.1307 \end{aligned}$	$\begin{array}{r} 0.1487 \\ 0.2679 \\ 0.4030 \\ 0.5424 \\ 10.6752 \end{array}$	$\begin{aligned} & 0.9991 \\ & 0.9992 \\ & 0.9993 \\ & 0.9994 \\ & 0.9996 \end{aligned}$	
10	14.75	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.4550 \\ & 3.7438 \\ & 3.9846 \\ & 4.1917 \\ & 4.3746 \end{aligned}$	$\begin{aligned} & 26.9145 \\ & 23.9277 \\ & 21.5898 \\ & 19.7116 \\ & 18.1711 \end{aligned}$	$\begin{aligned} & 0.1345 \\ & 0.2297 \\ & 0.3369 \\ & 0.4504 \\ & 0.5646 \end{aligned}$	$\begin{aligned} & 0.9992 \\ & 0.9994 \\ & 0.9995 \\ & 0.9995 \\ & 0.9996 \end{aligned}$	
14	20.42	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3.6085 \\ & 3.8394 \\ & 4.0449 \\ & 4.2308 \\ & 4.4011 \end{aligned}$	$\begin{aligned} & 28.9524 \\ & 26.8472 \\ & 25.0647 \\ & 23.5371 \\ & 22.2143 \end{aligned}$	$\begin{aligned} & 0.1283 \\ & 0.2126 \\ & 0.3062 \\ & 0.4056 \\ & 0.5072 \end{aligned}$	0.9993 0.9994 0.9995 0.9996 0.9997	
18	25.89	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.7363 \\ & 1.8280 \\ & 1.9123 \\ & 1.9904 \\ & 2.0634 \end{aligned}$	$\begin{aligned} & 14.5340 \\ & 13.7299 \\ & 13.0245 \\ & 12.4012 \\ & 11.8469 \end{aligned}$	$\begin{aligned} & 0.1248 \\ & 0.2028 \\ & 0.2884 \\ & 0.3790 \\ & 0.4721 \end{aligned}$	$\begin{aligned} & 0.9993 \\ & 0.9995 \\ & 0.9996 \\ & 0.9996 \\ & 0.9997 \end{aligned}$	
22	31.11	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 6.1123 \\ & 6.4033 \\ & 6.6714 \\ & 6.9208 \\ & 7.1550 \end{aligned}$	$\begin{aligned} & 57.1004 \\ & 53.9408 \\ & 51.1712 \\ & 48.7251 \\ & 46.5507 \end{aligned}$	$\begin{aligned} & 0.1226 \\ & 0.1965 \\ & 0.2766 \\ & 0.3612 \\ & 0.4483 \end{aligned}$	$\begin{aligned} & 0.9993 \\ & 0.9995 \\ & 0.9996 \\ & 0.9997 \\ & 0.9997 \end{aligned}$	

A67

TABLE A-4.1.10 TOE UPPER AND LOWER BOUND SOLUTION FOR THE DRAWING OF HEXAGONAL TUBE FRCM ROUND THRCUCH A CYLINDRICAL DIE ON A POLYGONAL PLUG

INPUT TUBE SIZE: 26.99 mm O.D. x 7.62 mm THICKNESS REDUCTION OF AREA: 10.06\%
OUTPUT TUBE SIZE: 25.4 mm O.D.

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE A-4.1.11 THE UPPER AND LOWER BOUND SOLUTIONS POR THE DRAWING OF OCTAGONAL TLBE FROM ROUND THROUGH A CYLLVDRICAL DIE ON A POLYGONAL PLUG

INPUT TLBE SIZE: 26.99 mm O.D. x 7.62 mm THICKNESS REDUCTION OF AREA: 11.78\% OUTPUT TUBE SI2Z: 25.4 mm

			Upper bound		Lover bound	
			Mean draw stress/yield stress $<^{\circ} \mathrm{za} / \mathrm{V}$	Mean die pressure/ yield stress	Mean draw stress/yield stress $\left(a_{z a} / Y_{m}\right)$	Mean die pressure/ yield stress
2	0.76	$\begin{aligned} & \dot{j} . c Q \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.8572 \\ & 2.0586 \\ & 2.1763 \\ & 2.2605 \\ & 2.3282 \end{aligned}$	$\begin{aligned} & 6.9106 \\ & 4.7019 \\ & 3.5858 \\ & 2.9129 \\ & 2.4634 \end{aligned}$	$\begin{aligned} & 0.3458 \\ & 0.6013 \\ & 0.8303 \\ & 0.9953 \\ & 1.0900 \end{aligned}$	$\begin{aligned} & 0.9976 \\ & 0.9983 \\ & 0.9989 \\ & 0.9993 \\ & 0.9997 \end{aligned}$
6	2.26	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0 . C 6 \\ & 0.08 \\ & 0.10 \end{aligned}$	4.3332   4.7807   5.1096   5.3702   5.5884	$\begin{aligned} & 27.6833 \\ & 22.6025 \\ & 19.1729 \\ & 16.7043 \\ & 14.8441 \end{aligned}$	$\begin{aligned} & 0.2836 \\ & 0.4609 \\ & 0.6418 \\ & 0.8119 \\ & 0.9602 \end{aligned}$	$\begin{aligned} & 0.9984 \\ & 0.9988 \\ & 0.9991 \\ & 0.9993 \\ & 0.9995 \end{aligned}$
10	3.81	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.5139 \\ & 0.5555 \\ & 0.5897 \\ & 0.6188 \\ & 0.6443 \end{aligned}$	$\begin{aligned} & 3.7612 \\ & 3.3068 \\ & 2.9582 \\ & 2.6824 \\ & 2.4590 \end{aligned}$	$\begin{aligned} & 0.2706 \\ & 0.4280 \\ & 0.5896 \\ & 0.7475 \\ & 0.8947 \end{aligned}$	$\begin{aligned} & 0.9985 \\ & 0.9989 \\ & 0.9992 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
14	5.38	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.5190 \\ & 0.5515 \\ & 0.5001 \\ & 0.6058 \\ & 0.6291 \end{aligned}$	$\begin{aligned} & 3.9477 \\ & 3.6256 \\ & 3.3579 \\ & 3.1321 \\ & 2.9392 \end{aligned}$	$\begin{aligned} & 0.2648 \\ & 0.4132 \\ & 0.5652 \\ & 0.7156 \\ & 0.8594 \end{aligned}$	$\begin{aligned} & 0.9986 \\ & 0.9990 \\ & 0.9992 \\ & 0.9994 \\ & 0.9995 \end{aligned}$
18	7.00	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	3.2430   3.4008   3.5463   3.6813   3.8090	$\begin{aligned} & 24.5271 \\ & 23.2122 \\ & 22.0548 \\ & 21.0287 \\ & 20.1135 \end{aligned}$	$\begin{aligned} & 0.2615 \\ & 0.4047 \\ & 0.5510 \\ & 0.6965 \\ & 0.8374 \end{aligned}$	$\begin{aligned} & 0.9986 \\ & 0.9990 \\ & 0.9993 \\ & 0.9994 \\ & 0.9995 \end{aligned}$

TABLE A-4.1.12 THE UPPER AND LOWER BOUND SOUTH (US FOR AXISYMMETTUC TUBE DRAWING

INPUT TUBE SIZE: 28.6 mm O.D. x 9.525 nm THICKNESS
REDUCTION OF AREA: VARYING FRCM $15 \%$ TO $40 \%$ CUTFUT TUBE SIZE: 25.4 am O.D.

Upper bound

Mean draw	Mean die	Mean draw	Jean die
stress/yield	pressure/	stress/	l pressure/
stress	yield	yield	yield
	stress	stress	stress
		$\left(\mathrm{o}_{\mathrm{za}} / \mathrm{Y}_{\mathrm{m}}\right)$	$(\mathrm{p} / \mathrm{Y})$

3

7.4450	15	0.0200	0.1322	0.8678	10.1339	0.8661
7.445 C	15	0.0400	0.1144	0.8856	10.2284	0.7716
7.445 C	15	0.0600	0.0966	0.9034	0.3126	0.6874
7.4450	15	0.0000	0.0788	0.9212	0.3878	0.6122
7.4450	15	0.1000	0.0610	0.9390	0.4548	0.5452
6.0631	20	0.0200	0.2175	0.7825	0.2070	0.7930
6.0531	20	0.0400	0.2142	0.7858	0.3006	0.6995
6.0531	20	0.0600	0.2108	0.7892	0.3834	0.6166
6.0531	20	0.0800	0.2075	0.7925	0.4569	0.5431
6.0531	20	$0.1 C 00$	0.2042	0.7958	0.5220	0.4780
4.6962	25	0.0200	0.3077	0.6923	0.2833	0.7167
4.6962	25	0.0400	0.3192	0.6808	0.3755	0.6245
4.6962	25	0.0600	0.3308	0.6692	0.4567	0.5433
4.6962	25	0.0800	0.3424	0.6576	0.5283	0.4717
4.6962	25	0.1000	0.3540	0.6460	0.5912	0.4088
3.3729	30	0.0200	0.4036	0.5964	0.3632	0.6368
3.3729	30	0.0400	0.4306	0.5694	0.4538	0.5462
3.3729	30	0.0600	0.4576	0.5424	0.5330	0.4670
3.3729	30	0.0800	0.4846	0.5154	0.6023	0.3977
3.3729	30	0.1000	0.5116	0.4884	0.6627	0.3373
2.0816	35	0.0200	0.5061	0.4939	0.4474	0.5526
2.0816	35	0.0400	0.5492	0.4508	0.5360	0.4640
2.0816	35	0.0600	0.4576	0.5424	0.5330	0.4670
2.0816	35	0.0800	0.4846	0.5154	0.6023	0.3977
2.0816	35	0.1000	0.5116	0.4884	0.6627	0.3373

## A70

TABLE A-4.1.12 TOE UPPER AND LOWER BOUND SOLLTTIONS FOR AXISYWWmiC TUBE DRAWLNG

CONTD.

8	0.8213	40	0.0300	0.6164	0.3836	0.5366	0.4634
8	0.8213	40	0.0400	0.6765	0.3235	0.6227	0.3773
8	0.8213	40	0.0000	0.7365	0.2635	0.6966	0.3034
8	0.8213	40	0.0000	0.7965	0.2035	0.7599	0.2401
8	0.8213	40	0.1000	0.8565	0.1435	0.8140	0.1800
12	11.1797	15	0.0200	0.1380	0.8620	0.0994	0.9006
12	11.1797	15	0.0400	0.1250	0.8741	0.*I655	0.8345
12	11.1797	15	0.0000	0.1139	0.8861	0.2269	0.7731
12	11.1797	15	0.0800	0.1018	0.8982	0.2838	0.7162
12	11.1797	15	0.1000	0.0898	0.9102	0.3365	0.6635
12	9.1114	20	0.0200	0.2185	0.7815	0.1727	0.8273
12	9.1114	20	0.0400	0.2163	0.7837	0.2384	0.7616
12	9.1114	20	0.0000	0.2141	0.7859	0.2991	0.7009
12	9.1114	20	0.0800	0.2118	0.7882	0.3551	0.5932
12	9.1114	20	0.1000	0.2096	0.7904	0.4068	0.5932
12	7.0823	25	0.0200	0.3009	0.6961	0.2493	0.7507
12	7.0823	25	0.0400	0.3116	0.6884	0.3143	0.6857
12	7.0823	25	0.0000	0.3194	0.6806	0.3741	0.6259
12	7.0823	25	0.0800	0.3272	0.6728	0.4291	0.5709
12	7.0823	25	0.1000	0.3350	0.6650	0.4796	0.5204
12	5.0936	30	0.0200	0.3947	0.6053	0.3296	0.6704
12	5.0936	30	0.0400	0.4128	0.5872	0.3937	0.6063
12	5.0936	30	0.0600	0.4309	0.5691	0.4524	0.5476
12	5.0936	30	0.0800	0.4490	0.5510	0.5061	0.4939
12	5.0936	30	0.1000	0.4671	0.5329	0.5552	0.4448
12	3.1465	35	0.0200	0.4919	0.5081	0.4143	0.5857
12	3.1465	35	0.0400	0.5208	0.4792	0.4773	0.5227
12	3.1465	35	0.0600	0.5497	0.4503	0.5868	0.4132
12	3.1465	35	0.0800	0.5785	0.4215	0.6342	0.3658
12	3.1465	35	0.1000	0.6074	0.3926	0.5042	0.4957
12	1.2420	40	0.0200	0.5966	0.4034	0.5043	0.4957
12	1.2420	40	0.0400	0.6368	0.3632	0.5658	0.4342
12	1.2420	40	0.0600	0.6770	0.3230	0.6214	0.3786
12	1.2320	40	0.0800	0.7172	0.2828	0.6717	0.3283
12	1.2320	40	0.1000	0.7574	0.2426	0.7170	0.2830
16	14.9288	15	0.0200	0.1408	0.8592	0.0814	0.9186
16	14.9288	15	0.0400	0.1316	0.8684	0.1319	0.8681
16	14.9288	15	0.0000	0.1224	0.8776	0.1797	0.8203
16	14.9288	15	0.0800	0.1131	0.8869	0.2248	0.7752
16	14.9288	15	0.1000	0.1039	0.8961	0.2675	0.7325

TABLE A-4.1.12 TOE UPPER AND LOWER BOUND 9OLUTCONS FOR AXISYVMETRIC TUBE DRAWING

CONTD.

16	12.2061	20	0.0200	0.2191	0.7809	0.1549	0.8451
16	12.2081	20	0.0400	0.2174	0.7826	0.2051	0.7949
16	12.2081	20	0.0600	0.2157	0.7843	0.2524	0.7476
16	12.2081	20	0.0800	0.2140	0.7860	0.2970	0.7030
16	12.2081	20	0.1000	0.2123	0.7877	0.3391	0.6600
16	9.5148	25	0.0200	0.3020	0.6980	0.2316	0.7684
16	9.5148	25	0.0400	0.3079	0.6921	0.2813	0.7187
16	9.5148	25	0.0600	$0.3 J 38$	0.6862	0.3281	0.6719
16	9.5148	25	0.0800	0.3197	0.6803	0.3721	0.6279
16	9.5148	25	0.1000	0.3256	0.6744	0.4134	0.5866
16	6.8567	30	0.0200	0.3903	0.6097	0.3121	0.6879
16	6.8567	30	0.0400	0.4040	0.5900	0.3613	0.6387
16	6.8577	30	0.0600	0.4177	0.5823	0.4073	0.5927
16	6.8567	30	0.0800	0.4314	0.5686	0.4505	0.5495
16	6.8567	30	0.1000	0.4451	0.5549	0.4908	0.5092
16	4.2412	35	0.0200	0.4848	0.5152	0.3971	0.6029
16	4.2412	35	0.0400	0.5067	0.4933	0.4455	0.5545
16	4.2412	35	0.0600	0.5285	0.4715	0.4906	0.5094
16	4.2412	35	0.0800	0.5503	0.4497	0.5327	0.4673
16	4.2412	35	0.1000	0.5721	0.4279	0.5720	0.4280
16	1.6753	40	0.0200	0.5867	0.4133	0.4873	0.5127
16	1.6753	40	0.0400	0.6171	0.3829	0.5347	0.4653
16	1.6753	40	0.0000	0.6474	0.3526	0.5787	0.4213
16	1.6753	40	0.0800	0.6778	0.3222	0.6196	0.3804
16	1.6753	40	0.1000	0.7081	0.2919	0.6574	0.3426

The corresponding upper bound solution for tube axisymnetrtc drawing \{13\} is as follows:-

$$
\mathrm{V} \circ \mathrm{~b}-\mathrm{y}, \quad \mathrm{ln}^{\mathrm{n}}(!* 3 \mathrm{~b})
$$

$$
\mathrm{R}-\mathrm{R} . \quad-\quad \mathrm{a}_{--}+\mathrm{R}
$$

$$
\begin{aligned}
& { }_{\left({ }_{\mathrm{J}} *\right.} \tan a-\mathrm{R}_{\mathrm{ia}} \tan { }^{-}{ }_{1\}}+9 \\
& { }^{R} o b^{\operatorname{tam}}-{ }^{R} i^{\tan B} \quad 13 \quad{ }^{i R} d b-* l b^{12} \\
& \left\{^ { ( R ^ { \wedge } - R _ { i b } ^ { \wedge } ) } { } _ { 3 } \left(R_{i b}^{\tan 8-R}{ }_{o b}^{\operatorname{tana})} \cdot\right.\right.
\end{aligned}
$$


where $\mathrm{m}^{\wedge}$ and $\mathrm{m}_{2}$ are constant friction factors on the die-tube and plug-tube interfaces respectively.
a is the mean die semi-angle
8 is the mean plug semi-angle
$R_{\text {ob }}$ is inlet tube external radius
$R_{1 b}$ is inlet tube bore radius
$\mathrm{R}_{\mathrm{oa}}$ is outlet tube external radius
$R_{i a}$ is outlet tube bore radius

The corresponding lower bound solution for tube axi-symnetric drawing (6) is as follcws:-

$$
\begin{aligned}
& \mathrm{Ha}=1 * 1 \quad\left(1-(-*){ }^{\mathrm{t}}{ }^{\mathrm{B}}\right. \text { * } \\
& Y_{m} \quad B * \\
& \text { where } \quad B *=\begin{array}{l}
{ }^{U} i^{n} \cdot 2 \\
\text { tarn-tang }
\end{array} \\
& u_{1} \text { and } u_{2} \text { are the mean coefficients of friction on the } \\
& \text { die-tube and plug-tube interfaces respectively, }
\end{aligned}
$$

a is the mean die semi-angle,
8 is the mean plug semi-angle,
$\mathrm{t}^{\wedge}$ is inlet tube wall thickness,
t is outlet tube wall thickness. a

The die or plug pressure in both cases is

$$
\begin{equation*}
\frac{\mathrm{p}}{Y_{m}}=1-{ }_{Y_{m}}^{o} \tag{3.114}
\end{equation*}
$$

