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Abstract
The project will study class of n-power operators and their properties. The
study will focus n-power normal operators, n-power hyponormal operators,n-
power posinormal operators,n-power quasi-normal operators and n-power quasi-
isometry operators. We shall look at their basic properties as well as their
spectral and numerical properties.
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1 Chapter One:Introduction

1.1 Literature Review

Operator theory including its subtopics such as spectral theory came into focus
after 1900.Around this time, Fredholm’s report on the theory of integral equa-
tions was published. He gave a complete analysis of integral equations which
he referred to as Fredholm’s equations that extended results from linear algebra
to a class of operators. He also defined the determinant to a class of operators
and was the first to use the term resolvent operator.

1902, Lebesque introduced an important category of spaces known as LP . Around
the same time, Hilbert founded spectral theory as a result of a series of articles
by Fredholm. Now, the word ”spectrum” was adopted by Hilbert in 1897 from
an article by Wilhelm Wirtinger. Hilbert used the notion of integral equations
and found results underL2spaces,square-integrable functions and discussed also
some results for the scenario where integral operator was symmetric. In 1906,
Hilbert discovered continuous spectrum,a work away from integral equations.

Around 1913, Frigyes Riez,introduced the concept of algebra of operators where
he studied of bounded operators on the Hilbert space L2.In his work,he intro-
duced other concepts like Riez representation theorem, orthogonal projectors
and spectral integrals.

In 1916, Riez found the theory of completely continuous operators now referred
to as compact operators. He further extended Fredholm’s work on the spectral
theorem of compact operators. Further developments came in between 1929-32
when spectral theorem of self-adjoint and normal operators were discovered by
Marshall Stone and John Von Neumann.
Neumann also introduced concepts that are widely used in operator theory like
closure of an operator, adjoint operators, unbounded operators and extension
of operators. In 1932, Stefan Banach published a first text on operator theory
which included the closed-graph theorem, Weak convergence and the fixed point
theorem.

Israil Gel’fand in 1941 extended the spectral theorem to elements of a normed
algebra and introduced the spectral radius formula as well as C - algebra and
the character of an algebra.
Since Gel’fand’s time, operator theory has been an enormous branch of Mathne-
matics. Many authors have defined new classes of operators and new interesting
results have been captured. Patel and Ramanujan (1981) introduced and stud-
ied normal operators. An operator T is called normal if T T = TT

Adnan Jibril(2008) extended the notion of normal operators to n-power nor-
mal operators and showed that an operator T B(H) is n-power normal operator
if and only if Tn is normal. An operator T is n-power normal if T commutes
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with Tn, that is TnT = T Tn.

A. brown in 1953 introduced the concept of quasi-normal operator. An op-
erator T is quasi-normal if T commutes with T T . Sid Ahmed(2011) studied the
concept of n-power quasi-normal operators as an extention quasi-normal oper-
ators. An operator TB(H) is n-power quasi-normal if Tn commutes with T T .

Panayappan and Sivaman(2012) coined the concept of n-binormal operators.P.R
Halmos and Stampfli introduced hyponormal operators in 1962. T is called hy-
ponormal if TT≥TT

Guesba et al. extended the concept of hyponormal operators to n-power hy-
ponormal operators in 2016. An operator T is called n-power-hyponormal if
TTn≥TnT

.
In this project, we shall study the fundamental properties of n-power operators.
For each class of n-power operator, we shall study their subclasses and spectral
and numerical range properties where applicable.

1.2 Notation and Definitions

Notations
Hilbert spaces will be denoted by H and B(H) will denote the algebra of
bounded operators in the Hilbert space H. T and S will denote operators and I
will denote the identity operator on the Hilbert space.

The spectrum, the point spectrum and the residual spectrum of an operator
T will be denoted by σ(T ), σa(T ) and σp(T ) respectively.

The residual spectrum of T is denoted by σr(T ), Ker(T) is used as the ker-
nel of T and λ as the eigenvalue of T.

The range of T will be denoted R(T ) while the nullity of T will be denoted
by N(T )

Definitions
Definition
Let X be a vector space over a field of complex numbers.A norm on X is a
mapping ∥.∥ : X → C such that it satisfies the following axioms

1) ∥ax∥ = |c|∥x∥c ∈ C, x ∈ X

2) ∥x∥ ≥ 0

3)∥x∥ = 0 if and only if x = 0 for all x ∈ X
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4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X
Definition
Let T inB(H),then there exists an operator T ∗ known as the adjoint of T such
that < x, Ty >>=< T ∗x, y > for all x, y ∈ H
An operator T∈ B(H) is said to be

Self-adjoint if T = T ∗

Normal if T ∗T = TT ∗

Isometry if T ∗T = I

Quasinormal if T (T ∗T ) = (T ∗T )T
Hyponormal if T ∗T ≥ TT ∗

Subnormal if it has a normal extension

Binormal if T ∗T and TT ∗ commute

Unitary if T ∗T = TT ∗ = I

Partial isometry if T = TT ∗T

Seminormal if either T or T is hyponormal

Involution if T 2 = I

Idempotent if T 2 = T

Co-isometry if TT ∗ = I

Nilpotent if Tn = 0 for some n

Quasi-nilpotent if σ(T ) = {0}

Definition
An operator T is called a normaloid if and only if the spectral radius is equal
to its operator norm. i.e r(T ) = ∥T∥

Definition
An operator T is called posinormal if it has a positive interrupter or in other
words if there exists a positive operator P such that the self commutator [T ∗, T ]
of [T ∗, T ] = T ∗(I − P )T
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Definition
An operator Lk is called an integral operator with the kernel k is defined by

Lkf(x) =
∫
k(x, y)f(y)dy

Definition
An operator T is called a quasi-isometry if T ∗2T 2 = T ∗T

Definition
An operator P is called an interrupter for T if TT ∗ = T ∗PT

Definition
The commutator of two operators K and L which is denoted by [K, L] can de-
fined as [K, L] = KL - LK

Definition
Two bounded linear operators K and L in the Hilbert space H are said to be
unitarily equivalent if there exists a unitary operator A ∈ G(K, L) such that
AK = LA

Definition
The set of all λ ∈ C such that λI − T is not invertible is called the spectrum of
T and λ ∈ C is an eigenvalue of the operator T if there exists x ∈ H
Definition
For λ ∈ σ(T ) such that λI−T is not bounded from below is known as the point
spectrum of T.

Definition
For λ ∈ σ(T ) such that λI − T is one-to- one but unbounded from below is
called the approximate spectrum of T.

Definition
For λ ∈ σ(T ) such that λI − T has no dense range is known as the residual
spectrum of T.

Furthermore, An operator T ∈ B(H) is called:

n-power normal operator if TnT ∗ = T ∗Tn.

n- power hyponormal if T ∗Tn ≥ TnT ∗.

n-power Quasinormal if TnT ∗T = T ∗TTn.

n-power posinormal if R(Tn) ⊂ R(T ).
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n-power quasi-isometry if Tn−1T ∗2T 2 = T ∗TTn−1 for some integer n.

Definition
T∈B(H) is called an isoloid if every isolated point of the σ(T) is a member of
the point spectrum of T.
Definition
λ ∈ C is an eigenvalue of T if ker(TλI) ̸= 0

Definition
The Numerical range W (T ) of an operator T is a subset of the complex num-
ber C given by: W (T ) = {< Tx, x >, x ∈ H, ∥x∥ = 1 with the property that
W (αI + βT ) = α+ βW (T )for all α, β ∈ C

Definition
The numerical radius denoted by r(T ) of an operator T on the Hilbert space H
is given by r(T ) = sup{|λ| : λ ∈ W (T )} i.e sup {| < Tx, x > |, ∥x∥ = 1}

Definition
A set X is called convex if for every two points x, y ∈ X we have tx+(1−t)y ∈ X
for all t ∈ [0, 1].

Defition
The convex hull of an operator T is the smallest convex set containing T.

5



2 Chapter Two

2.1 n-Power normal operators

Before we go to n-power normal operators, we start with a discussion of normal
operators
Normal operators
Definition
An operator T on a Hilbert space H is said to be normal if it commutes with
its adjoint.i.e TT ∗ = T ∗T

These operators include self-adjoint operators, non-negative operators such as
orthogonal projections skew-adjoint, Unitary operators and normal matrices

The following inclusion hold.
Normal ⊂ Quasinormal ⊂ Subnormal ⊂ Hyponormal ⊂ Paranormal ⊂ Nor-
maloid.

Basic properties of normal operators
Theorem

Let T=[
a b
c d

] where a, b, c, d ∈ C be a normal operator. Then T is said to

be a normal operator if |c| = |b| and also if a = d or c = b
Proof

Suppose T = [
a b
c d

]. Then T ∗ = [
a c
b d

].

Therefore

TT ∗ = [
a b
c d

][
a c
b d

]

=[
a2 + b2 ac+ bd
ca+ db c2 + d2

]

T ∗T = [
a c
b d

][
a b
c d

]

=[
a2 + c2 ab+ cd
ba+ dc b2 + d2

]

Thus, TT ∗ = T ∗T implies that,

a2 + c2 = a2 + b2

⇒ c2 = b2 and hence |c| = |b|
Also note that

ac + bd = ab + cd

⇒ ac- ab = cd-bd
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⇒a(c-b)= d(c-b)

⇒a(c-b)-d(c-b)=0

⇒ a-d = 0 or c-b =0
i.e a=d or c=b
This completes the proof
Theorem
Let T ∈ B(H) be a normal operator and if S ∈ B(H) unitarily equivalent to T,
then S is a normal operator
Proof
S∗S = (U∗T ∗U)(U∗TU)

= U∗T ∗TU

=U∗TT ∗U

=SU∗T ∗U

=SU∗US∗

=SS∗

This completes the prove.
Remark
The sum of two normal operators is not in general normal as shown in the ex-
ample below.
Example.
Let A and B be matrices defined as

A = (
1 0
0 −1

) and B = (
1 1
0 −1

). Then A and B are normal operators .How-

ever,

A + B = (
2 1
0 −2

) is not normal.

Proposition
Let T ∈ B(H) and S ∈ B(H) be two normal operators. Then, if T commutes
with S∗ then T + S is normal
Proof
We show that T + S is a normal operator
Now, (T + S)(T + S)∗ = (T + S)(T ∗ + S∗)

= TT ∗ + TS∗ + ST ∗ + SS∗

=T ∗T + S∗T + T ∗S + S∗S
Since T and S are normal operators, we have that
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=(T ∗ + S∗) + (T + S)

=(T + S)∗(T + S)
This implies that T+S is a normal operator

Remark
The product of two commuting normal operators T and S is again normal if T
commutes with S∗ and S commutes with T ∗.
Proof
Let us consider
(TS)(TS)∗ = (TS)(T ∗S∗)

=TSS∗T ∗

=TS∗ST ∗

S∗TT ∗S

=S∗T ∗TS

=(TS)∗(TS)
This implies that TS is a normal operator
Theorem
Let T ∈ B(H). Then T is normal if and only if ∥Tx∥ = ∥T ∗x∥ for all x ∈ H
Proof
Now, for all x ∈ H we have that
(T ∗Tx, x)− (TT ∗x, x) = (Tx, Tx)− (T ∗x, T ∗x) = ∥Tx∥2 − ∥T ∗x∥2.
Also, if T1, T2 ∈ B(H) then we have that (T1x, x) = (T2x, x) if and only if
T1 = T2.
Hence ∥Tx∥ = ∥T ∗x∥.
Corollary
Let T ∈ B(H). If T is a normal operator, then σ(T ) ⊂ {(Tx, x)|∥x∥ = 1}
Proof
Now, suppose that λ ∈ σ(T ), then there is a sequence (xn) of unit vectors such
that

∥Txn − λxn∥ → 0

Therefore, this implies that

(Txn − λxn, xn) → 0

(Txn, xn) → λ

Theorem
If T is a normal operator, then T and T has the same kernel and range i.e
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Ker(T ) = ker(T ) and R(T ) = R(T ).

Theorem
The range of a normal operator T is dense if and only if T is injective.This
implies that the kernel of T is the orthogonal complement of its range

Theorem(Putnam-Fuglede Theorem)
The Putnam-Fuglede theorem states that if A and B are normal operators and
if X is an operator such that AX = XB. Then A∗X = XB∗

n-power normal operator
Definition
An operator T on a complex Hilbert space H is said to be an n-power normal
operator if TnT ∗ = T ∗Tn for any positive integer n. T ∈ B(H) is called an
n-power normal operator if Tn commutes with T ∗

Remark
1- power normal operators are normal operator
2-power normal operators
Definition
An operator T is said to be 2-power normal if T 2T ∗ = T ∗T 2. We denote the
class of 2-power normal operators by [2N].

Basic properties of 2-power normal operators

An operator T = (
a b
c d

) where a, b,c,d ∈ C is said to be 2-power normal if

and only if (a + d) = 0 and |b| = |c| or b(d a) = c(d a).
Proof

T 2 = (
a b
c d

)(
a b
c d

)

=[
a2 + bc ab+ bd
ac+ dc bc+ d2

]

T ∗ = [
a c
b d

]

T 2T ∗ = [
a2 + bc ab+ bd
ac+ dc bc+ d2

][
a c
b d

]

=[
a3 + abc+ ab2 + bd2 a2c+ bc2 + abd+ bd2

a2c+ acd+ b2c+ bd2 ac2 + dc2 + b2c+ d3
]

T ∗T 2 = [
a c
b d

][
a2 + bc ab+ bd
ac+ dc bc+ d2

]

[
a3 + abc+ ac2 + dc2 a2b+ abd+ bc2 + cd2

ba2 + b2c+ acd+ d2c ab2 + b2d+ bcd+ d3
]

Then T 2T ∗ = T ∗T 2 implies that

a3 + abc+ ab2 + b2d = a3 + abc+ ac2 + dc2
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⇒ ab2 + b2d = ac2 + dc2

=b2(a+ d) = c2(a+ d)
⇒ b2(a+ d)− c2(a+ d) = 0

=(b2 − c2)(a+ d) = 0

b2 − c2 = 0 or a+d = 0

⇒ |b| = |c| or a+d = 0

Remark
The sum of two commuting 2-power normal operators need not be 2-power nor-
mal.
Example

Let S = (
1 1
1 0

) and T = (
1 1
0 −1

). S and T are two commuting 2-power

normal. But S + T = (
2 1
0 0

), (S + T )2 = (
4 2
0 0

) is not normal.

Thus S +T is not 2-power normal.
Lemma
Let S, T ∈ B(H) be 2-power normal operators such that ST = TS = 0 then T
+ S is n-power normal
Proof
Now, since ST + TS = 0 , S2T 2 = T 2S2. Therefore,
(S + T )2 = S2 + T 2 is normal. This implies that (S + T) is an 2-power normal
operator.

Theorem
Let S, T ∈ B(H) be 2-power normal operators and ST + TS = 0 then TS is
n-power normal
Proof
since ST + TS = 0, we have (ST )2 = −S2T 2 = −T 2S2. This shows that ST is
a 2-power normal operator.
Remark
2-power normal operators may not necessarily have a translation-invariant as
shown in the following Example

Let T=(
0 T1

0 0
) where T1 : H1 → H. Then the operator T is a 2-power normal

operator but [(T −λ)∗2, (T −λ)2] = (
−4|λ|2T1T 1 0

0 4|λ|2T ∗
1 T1

) not necessarily

equal to 0 unless λ = 0. This implies that (T − λ)2 is not normal and therefore
(T − λ) is not necessarily a 2-power normal operator
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Remark
A 2-power normal operator is 2k-power normal for any integer k.

3-power normal operators
An operator T is said to be 3-normal if T 3T ∗ = T ∗T 3

Proposition

Let T = (
a b
c d

) where a, b, c, d ∈ C. Then T is 3-normal if and only if

(a2 + bc+ ad+ d2) = 0 and (|a| = |c| or C(d− a) = b(d− a)
Example

Consider T = (
2 1

0 −1 +
√
3i

). T is 3-power normal since T 3 = [
8 0
0 8

] is

normal. Hence T is 3-power normal
Remark
A 3-power normal operator is 3k-normal for any integer K
Remark
Example

Let T = (
2 1
0 −2

). Then T 2 = (
4 0
0 4

) is a normal operator. But T 3 =

(
8 4
0 −8

) is not normal. So T is 2-power normal but is not 3-normal

Example

Suppose T = (
2 2
−2 0

). Then T 3 = (
−8 0
0 −8

) is a normal operator.

T 2 = (
0 4
−4 −4

) is not a normal operator. This implies that T is a 3-normal

operator and not a 2-power normal operator.

General properties of n-power normal operators

Proposition
An operator T ∈ B(H) is n-normal if and only if Tn is normal for some integer
n.
Proof
If T is n-power normal, then this implies that TnT ∗ = T ∗Tn.
This shows that Tn(T ∗)n = T ∗Tn(T ∗)n−1=T ∗(TnT ∗)(T ∗)n−1=T ∗TnT ∗)(T ∗)n−2

=(T ∗)nTn.
Hence T is n-power normal.
Conversely, let Tn be normal, then TnT = TTn. This implies that by Fuglede
theorem that (Tn)∗T = T (Tn)∗ that is T ∗Tn = TnT ∗. Hence T is n-normal.
Corollary
n-power normal operators are closed under scalar multiplication and unitary
equivalence.
Proof
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Suppose T is an n-power normal operator and α is a scalar, then (αT )n(αT )∗ =
αnα(TnT ∗) = ααn(T ∗Tn) and (αT ∗)(αnTn = (αT )∗(αT )n. This implies that
αT is n-normal

Theorem
Suppose T is k-power normal and (k+1)-power normal. If T or T ∗ is injective,
then T is a normal operator.
Proof
T is (k+1)-normal implies that T k+1T ∗ = T ∗T k+1. Also, T is k-normal implies
T kT ∗ = T ∗T k. Therefore, T k(TT ∗ − T ∗T )= 0. Now, since T is injective, this
implies that TT ∗−T ∗T= 0. Hence T is a normal operator. Also, T ∗ is injective
and since T ∗ is k-power normal and (k+1)-power normal, this implies T ∗ is
normal and therefore, T is a normal operator.

Corollary
Let T ∈ B(H) be n-power normal. Then Tm is n-power normal for any positive
integer m.

Remarks
A bounded normal operator is n-normal for any integer n.

2. All non zero nilpotent operators are n-normal for any n.

Proposition
Suppose T is a bounded linear operator which is n-normal. Then
i) T ∗ is n-normal

ii) If T−1 exists then (T−1) is n-power normal

iii)If S∈ B(H) is unitarily equivalent to T, then S is n-normal
iv) Suppose M is a closed subspace of H such that it reduces T, then S = T/M
is an n-power normal operator
Proof
i) Let T be n-power normal, then Tn is normal. This implies that (T ∗)n = (Tn)∗

is a normal operator. Hence T ∗ is n-normal.
ii) Let T be n-power normal, then Tn is normal. Now, (Tn)−1 = (T−1)n , T−1

is n-power normal.
iii)Suppose T is n-power normal and S is unitarily equivalent to T. This implies
that there exists a unitary operator U such that S = UTU∗. Tn normal implies
Sn is normal. Hence S is n-power normal.
iv) T n-normal implies Tn is normal. Therefore, Tn/M is a normal operator.
Since M is a closed subspace of H and reduces T implies M is invariant under
T and Tn/M = (T/M)n. This shows that (T/M)n is normal and hence T/M
is an n-power normal operator.
Theorem
If S, T are n-power normal operators which commute, then ST is an n-power
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normal operator
Proof
Since S, T are commuting n-power normal operators,
Sn, Tn are commuting normal operators. So SnTn is a normal operator.
Since SnTn = (ST )n, (ST )n is normal. ST is n-normal.
Two commuting n-normal operation their sum not necessarily n-normal.
Corollary
If T is an n-power normal operator, then T k is an n-normal operator for any
integer k.
Example.

Corollary
If T is a 2-power normal operator and also partial isometry, then T is n-power
normal for all integers n∈ B(H)

Theorem
Let T ∈ B(H) be an n-power normal operator. If T is quasinilpotent,then T is
nilpotent and hence T is a subscalar.
Proof
Now, since T is quasinilpotent, σ(T ) = {0}. By spectral mapping theroem,we
have that σ(Tn) = σ(T )0 = {0}. This implies that Tn is quasinilpotent and
normal. Therefore, Tn = 0that is T is nilpotent and T is algebraic operator and
hence T is a subscalar.
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2.2 n-power hyponormal operators

We now go to n-power hyponormal operators. Before we look at this new class
of operators, we gather some basic facts about hyponormal operators which
forms the foundation of n-power hyponormal operators.

Hyponormal operators

Definition
An operator T ∈ B(H) is called hyponormal if T ∗T ≥ TT ∗ or the self commu-
tator of T is a positive operator i.e [T ∗, T ] = T ∗T − TT ∗ ≥ 0. Hyponormal
operators include Normal, quasi-normal, subnormal and integral operators.
Examples of hyponormal operators

Let T = [
2 1
1 0

] is a hyponormal operator since it is a normal operator

Remark

An operator T ∈ B(H) is called cohyponormal if T ∗ is hyponormal i.e T ∗T −
TT ∗ ≤ 0
Theorem
Let T ∈ B(H). Then T is hyponormal if and only if ∥Tx∥ ≥ ∥T ∗x∥ for every
x ∈ H.
Proof
Suppose T ∈ B(H). Then T ∗T ≥ TT ∗ if and only if < T ∗Tx, x >≥<
TT ∗x, x >. This means that ∥Tx∥2 ≥ ∥T ∗x∥2 for every x ∈ H and hence
∥Tx∥ ≥ ∥T ∗x∥.

Theorem
Let T be a bounded operator on H. If T is hyponormal, then |T k+1| = |T |k+1

Proof
If T is hyponormal, then

∥T 2x∥ = (Tx, Tx) = (T ∗Tx, x)

≤ ∥T ∗Tx∥∥x|

≤ |TTx||x|

=∥T 2x∥∥x∥
If ∥x∥ = 1, implies that ∥Tx∥2 ≤ ∥T 2x∥ and hence sup{∥Tx∥2} ≤ sup{∥T 2x∥}∥x∥=1

⇒ ∥T∥2 ≤ ∥T 2∥
Now if we suppose that the above result holds for n= 1,2,3...., k, then we have
that,
∥T kx∥2 = (T kx, T kx) = (T ∗T kx, T k−1x)

≤ ∥T ∗T kx∥∥T k−1x∥
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≤ ∥T k+1x∥∥T k−1x∥(T is hyponormal)

≤ ∥T k+1∥∥x∥∥T k−1∥∥x∥

=∥T k+1∥∥T k−1∥∥x∥2
If ∥x∥ = 1 then we have
∥T kx∥2 ≤ ∥T k+1∥∥T k−1∥ and hence we have, sup∥T kx∥2 ≤ ∥T k+1∥∥T k−1∥ for
∥x∥ = 1.
By inductive hypothesis we have that,

∥T k∥2 = [∥T∥]2 ≤ ∥T k+1∥∥T∥k−1.

Or ∥T∥k+1 ≤ ∥T k+1∥
But ∥T k+1∥ ≤ ∥T∥k+1

hence we have that ∥T k+1∥ = ∥T∥k+1

Theorem
Let T ∈ B(H) be a hyponormal operator and λ1, λ2 ∈ σa(T ) that λ1 ̸= λ2.
Suppose that xn and yn are sequences of unit vectors of the hilbert space H
such that ∥T − λ1I∥ → 0 and ∥T − λ2I∥ → 0 then < xn, yn >→ 0
Lemma
If T is a hyponormal on H, such that Tx = λx then T ∗ = λx
Lemma
Let T be hyponormal on H, then ∥T∥ = r(T )
Proof
Let x ∈ H, ∥x∥ = 1, then ∥Tx∥2 = (Tx, Tx) = (T ∗Tx, x) ≤ ∥T ∗Tx∥ ≤ ∥T 2x∥.
But ∥T∥2 ≤ ∥T 2∥ ≤ ∥T∥2 which shows that ∥T∥2 = ∥T 2∥
Therefore,
∥Tnx∥2 = (Tnx, Tnx) = (T ∗Tnx, Tn−1x)

≤ ∥T ∗Tnx∥.∥Tn−1x∥ ≤ ∥Tn−1x∥.∥Tn−1x∥
Hence, ∥Tn∥2 ≤ ∥Tn−1∥.∥Tn−1∥ and combining the two equality from above,

yields ∥Tn∥ = ∥T∥2. Since r(T ) = limn→∞∥Tn∥ 1
n = limn→∞∥T∥.

n-power hyponormal operators
Definition
An operator T in a complex Hilbert space H is said to be n-power hyponormal
if T ∗Tn ≥ TnT ∗ for any positive integer n
For n = 1,
then T ∗T 1 ≥ T 1T ∗.
which is equivalent to T ∗T ≥ TT ∗. Hence 1-power hyponormal operators are
hypo-normal operators.
For n=2,implies T ∗T 2 ≥ T 2T ∗ or equivalently, T ∗T 2 − T 2T ∗ ≥ 0, then T is
called 2-power hyponormal operator
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Proposition
Suppose S, T ∈ B(H) are 2-hyponormal operators, such that TS∗ = S∗T and
ST = TS = 0, then T+S and ST are 2-power hyponormal.
Proof
(T + S)∗(T + S)2 = (T + S)∗(T 2 + TS + ST + S2)
Since ST = TS = 0 implies that
(T + S)∗(T + S)2 = (T + S)∗(T 2 + S2)

=T ∗T 2 + T ∗S2 + S∗T 2 + S∗S2

Using the fact that TS∗ = S∗T we have that

≥ T ∗T 2 + T 2S∗ + T 2S∗S∗S2

= T ∗(T 2 + S2) + S∗(T 2 + S2)

(T + S)2(T + S)∗

This shows that T+S is 2-power hyponormal
Also
(ST )2(ST )∗ = S2T 2T ∗S∗

≤ S2T ∗T 2S∗

= T ∗S2S∗T 2

≤ T ∗S∗S2T 2

=(ST )∗(ST )2

Hence, ST is a 2-power hyponormal operator
For n=3,implies T ∗T 3 ≥ T 3T ∗ or equivalently, T ∗T 3 − T 3T ∗ ≥ 0, then T is
called 3-power hyponormal operator
Denoted as [3HN]
Proposition
Suppose T is [3HN] and T 2 = −T ∗2. Then T is 3-normal operator.
Proof
T 3T ∗ = TT 2T ∗ = −TT ∗3

and
T ∗T 3 = T ∗T 2T = −T ∗3T
Hence T is 3-power hyponormal
Proposition
Let T be [3HN] which is idempotent. Then T is [2HN]
Proof
Since T is [3HN], implies T ∗T 3 ≥ T 3T ∗

Since T is idempotent imply
T ∗T 2 ≥ T 2T ∗

Hence [2HN].

General properties of n-power hyponormal operators
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N-power hyponormal operators contain normal as well as n-power normal oper-
ators.
Proposition
If S, T ∈ B(H) are unitarily equivalent and T is n-power hyponormal, then S is
also n-power hyponormal
Proof
Let T be an n-power-hyponormal operator and S be unitary equivalent of T.
Then there exists unitary operator U such that S= UTU∗ so Sn= UTnU . We
have SnS∗ = (UTnU∗)(UTU∗)∗

= UTnU∗UTU∗

=UTnT ∗U∗

≤ UT ∗TnU∗

=S∗Sn

Hence, SnS∗ ≤ S∗Sn, which implies that S is a n-power hyponormal opera-
tor.

Proposition
If T is an n-power hyponormal operator, then T ∗ is also an n-power hyponormal
operator
Proof
If T is an n-power hyponormal operator, then we have that
T ∗Tn ≥ TnT ∗

Now, this implies that (T ∗Tn)∗ ≥ (TnT ∗)∗

⇒ (Tn)∗(T ∗)∗ ≥ (T ∗)∗(Tn)∗

⇒ (T ∗)nT ≥ T (T ∗)n

This implies that T ∗ is n-power hyponormal operator.
Corollary

If T and T ∗ are n-power hyponormal operators, then T is a n-normal
Theorem
If S and T are commuting n-power hyponormal operators such that ST ∗= T ∗S,
then ST is an n-power hyponormal operator

Proof
Since ST = TS, so SnTn = (ST )n and ST ∗ = T ∗S, soSnT ∗ = T ∗S2

Therefore
ST ∗ = T ∗S ⇒ TS∗ = S∗T

Now,
(ST )n(ST )∗ = SnTnT ∗S∗
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≤ SnT ∗TnS∗

=T ∗SnS∗Tn

≤ T ∗S∗SnTn

Hence
(ST )n(ST )∗ ≤ (ST )∗(ST )n This shows that ST is an n-power hyponormal op-
erator

Proposition
Let T ∈ B(H)be an n-power hyponormal operator. Then T ∗ is co-n-power
hyponormal
Proof
Since T is n-power hyponormal operators, implies that
T ∗Tn ≥ TnT ∗ ⇒ (T ∗Tn)∗ ≥ (TnT ∗)∗

⇒ (Tn)∗(T ∗)∗ ≥ (T ∗)∗(Tn)∗

⇒ (T ∗)nT ≥ T (T ∗)n

This further implies that T (T ∗)n ≥ (T ∗)nT and hence T ∗ is a co-n-power hy-
ponormal operator.

Theorem
Let T be an n-power hyponormal operator such that it is idempotent. Then T
is n-1 -power hyponormal operator.
Proof
Since T is n-power hyponormal operator, then
T ∗Tn ≥ TnT ∗. Now, since T is also idempotent implies that
T ∗Tn−1 ≥ Tn−1T ∗

Hence T is n-1 power hyponormal.

Theorem
Suppose T1, T2, ...Tm are n-power hyponormal operators. Then,(T1⊕T2⊕ ......⊕
Tm) is an n-power hyponormal operator.
Proof
(T1, T2, ....Tm) is n-power hyponormal means that
(T1 ⊕ T2 ⊕ ....⊕ Tm)n(T1 ⊕ T2 ⊕ ......⊕ Tm)∗

=(Tn
1 ⊕ Tn

2 ⊕ .....⊕ Tn
m)(T ∗

1 ⊕ T ∗
2 ⊕ .....⊕ T ∗

m)

=Tn
1 T

∗
1 ⊕ .........⊕ Tn

mT ∗
m

≤ T ∗
1 T

n
1 ⊕ .......⊕ T ∗

mTn
m(since T is n-power hyponormal)

=(T ∗
1 ⊕ T ∗

2 ⊕ .....⊕ T ∗
m)(Tn

1 ⊕ Tn
2 ⊕ .....⊕ Tn

m)
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=(T1 ⊕ T2 ⊕ ......⊕ Tm)∗(T1 ⊕ T2 ⊕ ....⊕ Tm)n

This implies that (T1, T2, ....Tm) is an n-power hyponormal operator.

Theorem
Suppose T1, T2, ...Tm are n-power hyponormal operators. Then (T1⊗T2⊗ ......⊗
Tm) is an n-power hyponormal operator.
Proof
Let x1, x2, ..., xm ∈ H. Since implies that (T1⊗T2⊗ ......⊗Tm)n(T1⊗T2⊗ ......⊗
Tm)∗(x1 ⊗ ....⊗ xm)

=(Tn
1 (T1⊗T2⊗ ......⊗Tm) is a hyponormal operators Tn

2 ⊗ ......⊗Tn
m)(T ∗

1 ⊗
T ∗
2 ⊗ ......⊗ T ∗

m)((x1 ⊗ ....⊗ xm)

=Tn
1 T

∗
1 x1 ⊗ .......⊗ Tn

mT ∗
mxm

≤ T ∗
1 T

n
1 x1 ⊗ .....⊗ T ∗

mTn
mxm

= (T ∗
1 ⊗ T ∗

2 ⊗ ......⊗ T ∗
m)(Tn

1 ⊗ Tn
2 ⊗ ......⊗ Tn

m)(x1 ⊗ ....⊗ xm)

= (T1 ⊗ T2 ⊗ ......⊗ Tm)∗(T1 ⊗ T2 ⊗ ......⊗ Tm)n(x1 ⊗ ....⊗ xm)
This implies that
(T1 ⊗ T2 ⊗ ...... ⊗ Tm)n(T1 ⊗ T2 ⊗ ...... ⊗ Tm)∗ ≤ (T1 ⊗ T2 ⊗ ...... ⊗ Tm)∗(T1 ⊗
T2 ⊗ ......⊗ Tm)n

Therefore (T1 ⊗ T2 ⊗ ......⊗ Tm) is a hyponormal operator
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2.3 n-power posinormal operators

3.1 Posinormal operators
Definition
An operator T∈ B(H) is posinormal if there exists a positive operator P∈B(H)
such that TT ∗ = T ∗PT . In this case P is called an interrupter for T.
If T ∗ is posinormal then T is coposinormal
Remark
T ∈ B(H) is a posinormal and coposinormal operator if and only FR(T ) =
R(T ∗).
Posinormal operators are normal operators where P is the identity operator.

Remark
The integral powers of a posinormal operator need not be posinormal, Kubrusly
et al (2016).

Examples of posinormal matrices

Let T = [
1 0
0 0

] and N = [
0 1
1 0

]. Then T and N are posinormal matrices.

Basic properties of Posinormal operators.
Theorem
The product of two posinormal operators need not be posinormal.
Example

Let T = [
1 0
0 0

] and N = [
0 1
1 0

]. Then TN = [
0 1
0 0

] is not posinormal.

Theorem
Let T ∈ B(H) be a posinormal operator. If P is an interrupter and S is an
isometry, then STS∗ is posinormal

Theorem
Let T be a posinormal operator with a closed range, then Tn is posinormal for
all n ≥ 1
Proof
If T is a posinormal operator with a closed range,then it implies that T 2 has
also a closed range. Since R(T ) and R(T 2) are closed, the same applies to
R(T ∗) and that of R(T ∗2). This result yield kerT = kerT 2 and this shows
that (kerT )⊥ = (kerT 2)⊥ such that R(T ∗) = R(T ∗2). These two ranges are
closed which implies that R(T ∗) = R(T ∗2) and thus R(T ∗) = R(T ∗2) for all
n ≥ 1. Since T is a posinormal operator, we have that R(T ) ⊆ R(T ∗) and thus
R(Tn) ⊆ R(T ) ⊂ R(T ∗) = R(T ∗n). Hence Tn is a posinormal operator for all
n ≥ 1.
Theorem
Let T be a bounded operator on the Hilbert space H. Then the following are
equivalent statements.

a) T is a posinormal operator
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b)R(T ) ⊆ R(T ∗)

c)TT ∗ ≤ λ2T ∗T equivalently ∥T ∗x∥ ≤ λ∥Tx∥, x ∈ H,λ ≥ 0

d)There exists C ∈ B(H) such that T = T ∗C
Moreso, if (1), (2), (3) and (4) holds, then thereis a unique operator S such that

(i) ∥S∥2 = inf{λ, TT ∗ ≤ λ2T ∗T}

(ii) N(T ) = N(S)

(iii) R(S) ⊆ R(T )

Theorem
Let T ̸= 0 be a posinormal operator and S is unitarily equivalent to T. Then S
is also posinormal.

Theorem
Let T ∈ B(H) be a posinormal operator with interrupter P,then ∥P∥ ≥ 1
∥T∥2 = ∥TT ∗∥ = ∥T ∗PT∥ ≤ ∥T ∗∥∥p∥∥T∥ = ∥P |∥T∥2. Now, on cancellation we
get 1 ≤ ∥P∥. This completes the prove.
Theorem
Every invertible positive operator is posinormal
Proof
Suppose T is an invertible operator. This implies that

T ∗ = T ∗(T−1T ) = (T ∗T−1)T and so T ∗ is also posinormal.

Let T ∈ B(H) be a posinormal operator on the Hilbert space H with the
interrupter P. If λ ̸= 0, then we have that λT is also a posinormal operator.
Proof
(λT )(λT )∗ = |λ|2TPT

=(λT )∗P (λT )
This implies that λT is a posinormal operator
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Theorem

Definition
An operator T∈B(H) is called an n-power posinormal if R(Tn) ⊆ R(T ∗).

T is called n-power coposinormal if T ∗if T is an n-power posinormal.

1.The class of 1-power-posinormal operators is a class of posinormal opera-
tors which was introduced by Rhaly

2-power posinormal operators
An operator T is said to be 2-power posinormal if R(T 2) ⊆ R(T ∗) and T is
2-power coposinormal if T ∗ is 2-power posinormal.
Remarks
Suppose n is a positive integer, then the following holds for a 2-power posinor-
mal operator.
a) If T is a 2-power posinormal operator, then T is n-power posinormal for any
integer m≥ 2.
b) If T is a 2-power posinormal operator, then N(T ) ⊆ N(T ∗2)
c)If T is 2-power posinormal, then T is 3-power posinormal
Proposition
If T is a 2-power posinormal and T ∗ is an isometry, then T is unitary
Proof
Let T be posinormal and P be an interrupter for T. We have that,
TT ∗ = T ∗PT
Since T ∗ is an isometry,we have
TT ∗ = I. This gives
I = T ∗PT
Multiplying the later identity from the left by T and from the right by T ∗, we
obtain
I = TT ∗ = P and hence we have
I = TT ∗ = T ∗T

General properties of n-power posinormal operators
Theorem
Let T ∈ B(H)be an n-power-posinormal operator. Then T is an n-power-normal
operator
Proof
Suppose that T is an n-power normal operator. This implies that Tn is nor-
mal.This further implies that Tn is posinormal and hence T is an n-power-
posinormal operator.

Theorem
Let T be an n-power posinormal operator such that R(T ) = R(Tn), then T is
a posinormal operator.
Proof
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T being an n-power posinormal operator implies that R(Tn) ⊆ R(T ∗). Since
R(T ) = R(Tn) further implies that R(T ) = R(T ∗) and hence T is posinormal.

Theorem
Let T be a k+n-power posinormal operator and T ∗n be an isometry. Then T is
a k-power posinormal operator.
Proof
Suppose P is an n+k-power-interrupter which is positive for the operator T.This
implies that Tn+kT ∗n+k = T ∗PT

Since T ∗n is an isometry implies that TnT ∗n = I we have that Tn+kT ∗n+k =
T kT ∗k

This shows that T kT ∗k = T ∗PT and hence T is a k-power-posinormal op-
erator

2.If N(T) = 0, implies T ∗ is surjective and consequently, T is an n-power-
posinormal operators

3.(i) If T is n-power posinormal operator, then T is m-power posinormal for
m≥ n

(ii) If T is n-power-posinormal, then N(T) ⊆ N(T ∗n)

(iii) If T is n-power posinormal, then T is n+1-power posinormal.

(iv) If T is posinormal, then T k is n-power-posinormal for any integer k

If T is a posinormal operator, then T 2 is not posinormal

In general if T is n-power-posinormal, then Tn may not be posinormal for any
integer n.
Theorem
Let A, B ∈ B(H) on the Hilbert space H. Then the following statements are
equivalent

1) R(A) ⊆ R(B)

2) AA∗ ≤ λ2BB∗

3)There exists C ∈ B(H) such that A = BC
If (1), (2) and (3) holds, then there exists a unique operator T such that the
following also hold

(a) ∥T∥ = inf{λ,AA∗ ≤ λ2BB∗}
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(b)N(A) = N(T )

(c) R(T ) ⊆ R(B∗)

Theorem
Let T∈B(H), then the following statements are equivalent

i) T has a positive n-interrupter

ii) TnT ∗ ≤ λ2T ∗T

iii) T is an n-power posinormal operator that is R(Tn) ⊆ R(T ∗)

iv) There exists C∈ B(H) such that Tn = T ∗C.
If (i), (ii), (iii), and (iv) hold, then there exists a unique operator S such that
a) ∥S∥2 = inf{λ, TnTn∗ ≤ λ2T ∗T}
b)N(Tn) = N(T )
c)R(S) ⊆ R(Tn)
Proof
(i) ⇒ (ii)
Suppose that TnT ∗n = T ∗PT where P is the positive interrupter for the oper-
ator T.
From we have, < TnT ∗nx, x >=<

√
PTx,

√
PTx >

∥
√
PTx∥ ≤ ∥

√
P∥2∥Tx∥2

=∥
√
P∥ < T ∗Tx, x >

This implies that (ii) holds with λ > ∥
√
P∥.

Also applying the above theorem and by taking A = Tn and B = T ∗ we have
that (ii) ⇒ (iii) ⇒ (iv). Also, if (iv) holds, then this implies that (i) holds if
we take P = C∗C.
For (a) ⇒ (b) ⇒ (c) we take A = Tn and B = T ∗ as in (a) , (b) and (c) the
theorem above.
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2.4 n-power Quasi-normal operators

Definition
Quasi-normal operators
A bounded linear operator T on a complex Hilbert space is said to be Quasi-
normal if T and TT ∗ commute i.e TT ∗T = T ∗TT . This class contains all normal
operators as well as isometries.
Example of a Quasi-normal operator is a unilateral or foward or right shift op-
erator.
Theorem
Any invertible Quasi-normal operator is a normal operator.
Proof
Suppose that T is a quasi-normal operator. Then this implies that T (T ∗T ) =
(T ∗T )T

⇒ T (T ∗T )T−1 = (T ∗T )TT−1

Since T is a normal operator, we have that
TT ∗(TT−1) = (T ∗T )TT−1

⇒ TT ∗ = T ∗T
Hence T is a normal operator

Theorem
If T and S are two quasi-normal operators such that TS = ST = T ∗S = S∗T =
0, then we have that T + S is quasi-normal
Proof
(T + S)[(T + S)∗(T + S)] = (T + S)[(T ∗ + S∗)(T + S)]

= (T + S)[(T ∗T + T ∗S + S∗T + S∗S)]

= (T + S)(T ∗T + S∗S)(Since T ∗S = S∗T = 0)

= T (T ∗T ) + T (S∗S) + S(T ∗T ) + S(S∗S)

= T (T ∗T ) + S(S∗S) Since T and S are quasinormal operators
= (T ∗T )T + (S∗S)S

(T + S)∗(T + S)(T + S)
This implies that T + S is a quasi-normal operator

We look at n-power Quasi-normal operators.
Deinition
An operator T is said to be n-power Quasi-normal if TnT ∗T = T ∗TTn for some
integer n
This class of n-power quasi-normal operators contains n-normal and quasi-
normal operators
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Remark
(i) 1- power quasi-normal operator is quasi-normal

2-power Quasi-normal operators

Definition
An operator T∈ B(H) is called 2-power Quasi-normal operator if T 2T ∗T = T ∗T 3

Theorem
Let T be a self adjoint operator. Then T is a 2-power quasi normal operator if
and only if it is binormal
Proof
Since T is self adjoint implies that T ∗ = T
Now, let T be a 2-power quasi normal operator, then

T 2T ∗T = T ∗TT 2

⇒ TTT ∗T = T ∗TTT

⇒ TTT ∗T = T ∗TTT ∗

⇒ TT ∗T ∗T − T ∗TTT ∗ = 0

⇒ [TT ∗, T ∗T ] = 0. This implies that T is binormal.
Conversely, let T be binormal, by definition we have that,
TT ∗T ∗T = T ∗TTT ∗

Since T is a self adjoint operator, we have that, T ∗ = T

⇒ TTT ∗T = T ∗TTT

⇒ T 2T ∗T = T ∗TT 2

Hence, T is a 2 power quasi normal operator

Theorem
Let T ∈ B(H) be a 2-power quasi-normal and also 3-power quasi-normal oper-
ator such that [T ∗T, TT ∗ = 0], then T 2 is quasi-normal.
Proof
(T ∗2T 2)T 2 = T ∗(T ∗T )T 3

=T ∗T 2T ∗T 2

=(T ∗T )(TT ∗)T 2

=(TT ∗)(T ∗T )T 2

=TT ∗T 2T ∗T
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=T (T ∗T )(TT ∗)T

T ∗(T ∗2T 2)
This completes the prove

Theorem
Let T ∈ B(H) be n-power quasi-normal operator which is partial isometry,then
T is an n+1-power quasi-normal
Proof
Since T is a partial isometry operator, it implies that

TT ∗T = T
If we multiply the above equation on the left by T ∗Tn+1 and using the fact that
T is an n-power quasi-normal operator, we have

T ∗Tn+2 = T ∗Tn+2T ∗T

=TnT ∗TTT ∗T

= Tn+1T ∗T
Hence T is n+1-power quasinormaloperator.

Remarks
(i)All quasi-normal operators are n-power quasi-normal for any integer n.
(ii) n-power normal operators are n-power quasi-normal operators.
(iii) T∈ B(H) is n-power quasinormal if and only if [Tn ,T ∗T] = [Tn, T ∗]T = 0.
(iv) T∈ B(H) is n-power quasi-normal if and only if Tn[T ]2 = [T ]2Tn

Theorem
Let T be n power quasi normal which is a self adjoint operator. Then T ∗ is also
n power quasi normal operator
Proof
Given that T is a n power quasi normal operator implies that TnT ∗T = T ∗TTn...................(i)
Also, since T is self-adjoint implies T ∗ = T .......................(ii)
Now, replacing T ∗ by T in (i), we get,
(T ∗)n(T ∗)∗T ∗ = (T ∗)nTT ∗ = TnT ∗T ...................(iii)
and also, (T ∗)∗T ∗(T ∗)n = TT ∗(T ∗)n = T ∗TTn.............(iv)
Now, from (i), (iii) and (iv) we have that T ∗ is also n-power quasi normal op-
erator
Lemma
Self adjoint operators are n power quasi normal operators
Proof
Let T be a self adjoint operator. This implies that T = T ∗

Therefore,
TnT ∗T = TnTT = Tn+2....................(i)
T ∗TTn = TTTn = T 2+n

Hence, TnT ∗T = T ∗TTn..................(ii)
Therefore T is n power quasi normal operator
Theorem
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Let T be a self adjoint operator. Then T−1 is also n power quasi normal oper-
ator
Proof
If T is a self adjoint operator implies T = T ∗

We also have (T−1)∗ = (T ∗)−1 = T−1 [Since T = T ∗]
(T−1)∗ = T−1 which shows that T−1 is a self adjoint operator
From the above thereom that every self adjoint operator is n power quasi normal
operator and hence T−1 is a self adjoint operator and therefore T−1 is n power
quasi normal.

Theorem
Let T ∈ B(H) be an n-power quasi-normal operator, then T is a 2n-power
quasi-normal operator
Proof
(i)Since T is an n-power quasi-normal operator, it implies that

TnT ∗T = T ∗TTn If we Multiply the left by Tn, we obtain

T 2nT ∗T = T ∗TT 2n

Thus T is a 2n-power quasi-normal operator

Theorem
Let T ∈ B(H) be an n-power normal operator which has a dense range in H .
Also, suppose that T is invertible, then T−1 is an n-power quasi-normal opera-
tor
Proof
Since T is of class [nQN], we have for y∈ R(T) : y = Tx, x ∈ H, and ∥(TnT ∗ −
T ∗Tn)y∥ = ∥(TnT ∗ − T ∗Tn)Tx∥ = ∥(TnT ∗T − T ∗Tn+1)x∥ =0
Thus, T is n-power normal on R(T) and hence T is of class [nN]. In case T is
invertible, then it is an invertible operator of class [nN] and so

TnT ∗ = T ∗Tn

This in turn shows that
T−n(T ∗−1T−1 = [(TT ∗)Tn]−n = [Tn+1T ∗]−1 = [T ∗−1T−1]T−1

Which proves the result.

Theorem
Let T ,S ∈ B(H) be n-power quasi-normal operators such that ST= TS = T ∗S=
ST ∗ = 0, then TS is an n-power quasi-normal
Proof
(TS)n(TS)∗TS = TnSnT ∗S∗TS

= TnT ∗TSnS∗S

=T ∗Tn+1S∗Sn+1

28



=(TS)∗(TS)n+1

This shows that TS is n-power quasi-normal

Theorem
Let S , T ∈ B(H) be n-power quasi-normal operators such that ST = TS =
T ∗S = ST ∗= 0, then S + T is an n-power quasi-normal
Proof
(T + S)n(T + S)∗(T + S)= (Tn + Sn)(T ∗T + S∗S)
= TnT ∗T + SnS∗S
=T ∗Tn+1 + S∗Sn+1

=(T + S)∗(T + S)n+1

Which proves that T+S is n-power quasi-normal.
Proposition
If T∈B(H) is a class of [2QN]∩[3QN], then T a n-power quasi-normal for any
integer n.
Proof
We proof by using mathematical induction. Suppose n=5 and since T∈[2QN]
T 2T ∗T = T ∗T 3

Multiplying to the left by T 3 we have
T 5T ∗T = T 3T ∗T 3

We have T 5T ∗T = T 3T ∗T 3

= T ∗T 4T 2

=T ∗T 6

Assuming that the result holds for n≥5 i.e
TnT ∗T = T ∗TTn

Then
Tn+1T ∗T = TT ∗Tn+1

TT ∗T 3Tn−2

T 3T ∗TTn−2

T ∗T 4T ∗(n−2)

=T ∗Tn+2

Which implies that T is of class [(n+1)QN]

Theorem
Let T ∈ B(H) be an n-power quasi- normal, then N(Tn) ⊂ N(T ∗n)
Proof
If we let Tnx = 0 then we have that T ∗n(T ∗T )Tn−1x = 0
By hypothesis, T ∗TT ∗nTn−1x = 0
This implies that TT ∗nTn−1x = 0,
Thus we have T ∗nTn−2x = 0
Since T is an n-power quasi-normal, T ∗TT ∗nTn−2x = 0
Hence, T ∗nTn−2x = 0
If we repeat this process we can find that T ∗n = 0

Theorem
Let T and T ∗ be n-power quasi-normal, then Tn is normal
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Proof
By the above theorem and hypothesis, we have N(T ∗n) = N(Tn)
Now that T is an n-power quasi-normal, it implies that [TnT ∗ − T ∗Tn]Tn = 0
that is [TnT ∗ − T ∗Tn] = 0 on R(T).Since N(T ∗) ⊂ N(Tn) gives [TnT ∗ −
T ∗Tn] = 0 on N(T ∗) and the hence the result.

Proposition
If T∈B(H) is n-power quasi-normal operator such that N(T ∗) ⊂ N(T ), then T
is n-power normal operator
Theorem
Let T be an n- power quasi normal and λ be any real scalar, then λT is also a
n-power quasi normal operator
Proof
Now, since T is a n power quasi normal operator implies that TnT ∗T = T ∗TTn.....................(i)
Also, λ as any real scalar shows that (λT )∗ = λT ∗ = λT ∗. We have that
[(λT )∗]n = (λT ∗)n = λnT ∗n

Using (i) above, we have,
(λT )n(λT )∗(λT ) = λnTnλT ∗λT = λn+2TnT ∗T ........................(ii)
(λT )∗(λT )(λT )n = λT ∗λTλnTn = λn+2T ∗TTn..............................(iii)
From (i) , (ii) and (iii), we have that λT is n power quasi normal operator.
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2.5 n-power quasi-isometry

5.1 Quasi - isometry
Definition
An operator T is called a quasi-isometry if T ∗2T 2 = T ∗T
The class of quasi-isometry is an extention of isometries. Thus, every isometry
is a quasi-isometry.
Theorem
If T is a quasi-isometry and if ∥T∥ = 1, then T is hyponormal.
Proof
We proof by hypothesis,
∥Tx− T ∗T 2x|2 = ∥Tx∥2 + ∥T ∗T 2x∥2 − 2Re < Tx, T ∗T 2x >
This implies that,

=∥Tx∥2 + ∥T ∗T 2x∥2 − 2∥Tx∥2

≤ ∥Tx∥2 + ∥Tx∥2 − 2∥Tx∥2 = 0
This shows that T = T ∗T 2 (2.1)
This further implies that T ∗ = T ∗2T . From this equation we have that N(T ) ⊂
N(T ∗) or N(U) ⊂ N(U∗). It is obvious that U∗U ≥ UU∗ and since P 2 ≤ I,
we have that U∗P 2U = U∗U ≥ UU∗ ≥ UP 2U∗. This results to the equation
PU∗(T ∗T )UP ≥ P (TT ∗)P (2.2)
Now that P 2(TT ∗) = TT ∗ (2.1), this implies that P commutes with TT ∗. Com-
bining this with (2.2) we have that
T ∗T = T ∗2T 2 ≤ P (TT ∗)P = P 2(TT ∗) = TT ∗

Hence T is a hyponormal operator

Corollary
Let T be a quasi-isometry. Then T is quasi-isometry if and only if it is a partial
isometry.
Corollary
Let T is a quasi-isometry and quasinilpotent, then T= 0
Proof
As r(T) = 0, |Tn| ≤ 1 for some positive integer n. Since Tn is also a quasi-
isometry, |Tn| = 1. Hence Tn is hyponormal and the desired assertion follows
from the relation ∥Tn∥ = r(Tn).
Example

Let T = [
1 0
1 0

]. Then T is a quasi-isometry matrix

We now introduce the new class operators called the n-power quasi-isometries
which is an extension of quasi-isometries.
Definition
An operator T∈B(H) is called an n-power quasi-isometry if Tn−1T ∗2T 2 =
T ∗TTn−1 for some integer n.
Suppose n= 1,then 1-power quasi-isometry is just a quasi-isometry operator.
The corresponding classes of n-power quasi-isometries are independent of each
other as illustrated in the example below
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Example 1

Let T = [
1 0
1 0

] is a quasi-isometry operator but not 2-power quasi-isometry

Example 2

Let T = [
0 1
0 0

] , by calculation, T is a 2-power quasi-isometry but not a

quasi-isometry operator

According to P.Vijayalakshmi et al. The following assertions hold:
Theorem
Let T ∈ B(H) be an n-power quasi-isometry. If S is unitarily equivalent to T,
then S is also an n-power quasi-isometry operator.
Proof
If S is unitarily equivalent to T, then S = UTU∗,where U is a unitary opera-
tor. Since T is an n-power quasi-isometry operator, implies that Tn−1T ∗2T 2 =
T ∗TTn−1.
This implies that,

Sn−1S∗2S2 = (UTn−1U∗)(UT ∗2U∗)(UT 2U∗)

=U(Tn−1T ∗2T 2)U∗

=U(T ∗Tn)U∗

=S∗Sn

Theorem
Let T , S ∈ B(H) be n-power quasi-isometries.If T doubly commute with S,
then TS is an n-power quasi-isometry operator.
Proof
(TS)n−1(TS)∗2(TS)2 = Tn−1Sn−1S∗2T ∗2T 2S2

=Sn−1S∗2S2Tn−1T ∗2T 2

=S∗SSn−1T ∗TTn−1

=(TS)∗(TS)(TS)n−1

Hence TS is an n-power quasi-isometry operator.

Theorem
Let T,S ∈ B(H) be two n-power quasi-isometry operators. If ST = TS =
T ∗S = ST ∗ = 0 then T+S is an n-power quasi-isometry operator
Proof
(T + S)n−1(T + S)∗2(T + S)2 = (Tn−1 + Sn−1)(T ∗2 + S∗2)(T 2 + S2) Since
TS = ST = T ∗S = ST ∗ = 0 we have that

32



= Tn−1T ∗2T 2 + Sn−1S∗2S2

=(T + S)∗(T + S)(T + S)n−1

Hence T + S is an n-power quasi-isometry operator

Theorem
Let T ∈ [QI]∩ [2QI] then T is an n-power-quasi-isometry operator, for all n¿2.
Proof
Since T ∈ [QI] ∩ [2QI] we have
T ∗2T 2 = T ∗T ( 2.1)

TT ∗2T 2 = T ∗TT (2.2)
Combining (2.1) and (2.2), we have
TT ∗2T 2 = T ∗2T 2T (2.3)
By equations (2.1) and (2.3),we have that (T ∗T )Tn−1 = (T ∗2T 2)Tn−1 = (T ∗2T 2T )Tn−2 =
(TT ∗2T 2)Tn−2

Again applying (2.3) in (T ∗T )Tn−1 = T (T ∗2T 2T )Tn−3, we get (T ∗T )Tn−1 =
T (TT ∗2T 2)Tn−3

Theorem
Let T ∈ [2QI] ∩ [3QI] then T is an n-power-quasi-isometry operator, for n ≥ 4
Proof
Since T ∈ [2QI] ∩ [3QI] implies that

T 2T ∗2T 2 = T ∗TT 2 (3.1)

We also have that TT ∗2T 2 = T ∗TT .(3.2)

Combining equations (3.1) and (3.2), we have

T (TT ∗2T 2) = (TT ∗2T 2)T (3.3)

Applying (3.2) and (3.3) above, we obtain the equation,

T ∗TTn−1 = (T ∗TT )Tn−2 = (TT ∗2T 2)Tn−2 = (TT ∗2T 2)TTn−3 = T (TT ∗2T 2)Tn−3 =
T 2T ∗2T 2Tn−3

Repeating the above process several times we get T ∗TTn−1 = Tn−1T ∗2T 2.
Hence T is an n-power quasi-isometry operator. Theorem
Let T ∈ B(H) be an n-power quasi-isometry operator.If T ∈ [QI][nQI], then T
is n-1 power quasi-isometry.
Proof
T ∈ [QI] ∩ [nQI] implies that

T ∗2T 2 = T ∗T (3.6)
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Tn−1T ∗2T 2 = T ∗TTn−1 (3.7)

By (3.7), we have that T ∗TTn−1 = Tn−1T ∗2T 2

Also by (3.6) we obtain T ∗TTn−1 = Tn−1T ∗T . This implies that T is an
n-1 power quasi-isometry.

Series of inclusions of n-power operators
(i) n-nilpotent operators ⊂ n-normal operators
(ii) n-normal operators ⊂n-hyponormal operators
(iii) n-normal operators ⊂ n-posinormal operators
(iv) n-normal operators ⊂ n-quasi normal operators
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3 Chapter Three: Spectral properties of n-power
operators

Spectral properties of normal operators
In this chapter, we discuss basic results on the spectral properties of n-power
operators. Spectral theory of operators goes beyond the eigenvalues and eigen-
vectors of matrices to a wider perspective of arrangements of operators in a num-
ber of mathematical spaces. Franklin(1968) presented a foundation of studying
spectral properties from algebraic to proving spectral theorem for normal opera-
tors.Ghaemi(2000), introduced the relationship between spectral decomposition
of operators, the functional calculii of operators and the structure of Banach
space. Curie(2005), presented a thesis that focused on the spectral structure of
second order self-adjoint differential operators on a graph.
Before we discuss the spectral properties of n-power operators, we first look at
various results on normal operators.
Spectral properties of Normal operators
Theorem
λ is an eigenvalue of an operator T if and only if its conjugate λ is an eigenvalue
of T ∗

Proof
By the normality of the operator T, for each x ∈ H we have that∥(T −λI)x∥ =
∥(T − λI)∗x∥ = ∥(T ∗ − λI)x∥
Hence this proves the theorem.
Theorem
Let T ∈ B(H) be a normal operator. Then if λ1 ̸= λ2 are complex numbers,
then ker(T − λ1I)⊥ker(T − λ2I)
Proof
Let x, y ∈ H and λ1 ̸= λ2 ∈ C such that Tx = λ1x and Ty = λ2y. Then,
λ1(x, y) = (Tx, y) = (x, T ∗y) = (x, λ2y) = λ2(x, y)
Now, since λ1 ̸= λ2, we have that (x, y) = 0
Theorem
Let T be a normal operator. Then r(T ) = w(T )
Theorem
Eigenvectors of a normal operator T that corresponds to different eigenvalues
are orthogonal and stabilize the orthogonal complement to its eigenspaces.

Theorem
3.The residual spectrum of a normal operator T is always empty.
Proof
Let T ∈ B(H) be a normal operator.Also let x ∈ H. Then we have that
∥T ∗x∥2 =< T ∗x, T ∗x >=< x, TT ∗x >=< x, T ∗Tx >=< Tx, Tx >= ∥Tx∥2
This implies that ker(T ∗) = ker(T ). Now, since λ, λ−T is normal, we therefore
have that ker(λ− T ∗) = ker(λ− T ). This shows that λ ∈ σp(T

∗) if and only if
λ ∈ σp(T ) completing the proof.

Theorem
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4.The operator norm of a normal operator T is equal its spectral radius
Proof
If T is a self- adjoint operator, then < Tx, Tx >=< x, T 2x > , therefore,
∥T 2∥ = ∥T∥2 and ∥T 2n∥ = ∥T∥2n. Therefore r(T ) = limn→∞∥T∥. For the
case where T is normal, we have that ∥Tx∥2 =< Tx, Tx >=< x, T ∗Tx >,
Therefore,∥T ∗T∥ = ∥T ∗∥. Hence, |(T ∗T )n∥ = ∥Tn∥2 and then ∥T ∗T∥ =
ρ(T ∗T ) = ρ(T )2 = ∥T∥

Theorem
Every point in the spectrum of a normal operator is an approximate eigenvalue
Proof
Let T be a normal operator, then T − λ is also a normal operator for every
complex number λ. Therefore, ∥(T − λ)x∥ = ∥(T − λ)∗x∥ = ∥(T ∗ − λ)x∥ for all
vectors x. This shows that λ is an eigenvalue of T if and only if λ is an eigen-
value of T ∗. This implies that σp(T ) = σcomp(T ). Hence the residual spectrum
is empty and therefore the rest of the spectrum is σa(T )

3.1 Spectral properties n-power normal operators

spectral properties of 2-normal operators
Theorem
Let T be a 2-normal operator satisfying the condition σ(T )∩ (−σ(T ) ⊂ 0, then
σ(T ) = σa(T )
Proof
It is already known that σ(T ) = σa(T ) ∪ σr(T ), Owing to this, we now only
show that σr(T ) ⊂ σa(T ). Now, let λ ∈ σr(T ). This implies that there exists

a non-zero vector x ∈ H such that T ∗x = λx. Furthermore,T ∗2x = λ
2
x and

therefore we have that T 2x = λ2x.
1) If λ ̸= 0, implies that (T + λ)(T − λ)x = 0. Since −λ /∈ σ(T ) shows that
(T − λ)x = 0 and therefore λ ∈ σp(T ).
2) If λ = 0, then T 2x = 0, therefore we have that 0 ∈ σp(T ) and hence
σ(T ) = σa(T )
Theorem
Let T ∈ B(H) be a 2-normal operator satisfying the condition σ(T )∩ (−σ(T ) ⊂
0,
1) If λ ̸= w are eigenvalues of T such that x, y ∈ H are corresponding eigenvec-
tors respectively then < x, y >= 0
2) If λ ̸= w are eigenvalues of T σa(T ) and xn, yn are the sequence of unit vec-
tors in H such that (T − λ)xn → 0 and (T − w)yn → 0asn∞, then limn→∞ <
xn, yn >= 0
Proof
1. follows from 2, therefore we shall only proof part 2 2. Now, from the previous
theorems, (T 2 − λ2)xn → 0 as n → ∞ and (T 2 − w2)yn → 0 and T 2 is normal,
it therefore holds that (T ∗2 − w2)yn → 0. Hence
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limn→∞λ2 < xn, yn >= limn→∞ < λ2xn, yn >= limn→ < T 2xn, yn >=
limn→ < xn, T

2yn >= limn→w2 < xn, yn >.
If λ2 = w2 then (λ + w)(λ − w) = 0. Since λ ̸= w, we have that λ = −w. By
σ(T ) ∩ (−σ(T ) ⊂ 0,implies that λ = w = 0 which is not possible for distinct
values. Therefore, limn→ < xn, yn >= 0 which completes the prove.
Remark
If T is 2-normal operator, then the ker(T) is not its reducing subspace

We now show the spectral properties of n-normal operators
n-normal operators
Theorem
The following statements are equivalent
1) T − λ is n-normal for all λ ≥ 0
2) T is normal.
3) T − λ is an n-normal operator for all λ ∈ C
Proof
We show that (1) ⇒ (2). T and T − λ are n-normal, implies that
(T − λ)∗(T − λ)n − (T − λ)n(T − λ)∗

= Σn−1
j=1 (−1)j(nj )t

j(T ∗Tn−j − Tn−jT ∗)

=(−1)n−1ntn−1(T ∗T − TT ∗) + Σn−2
j=1 (−1)j(nJ)t

j(T ∗Tn−j − Tn−jT ∗) = 0
Therefore, we have that

(−1)n−1n(T ∗T − TT ∗) + Σn−2
j=1 (−1)j(nJ)

tj

tn−1 (T
∗Tn−j − Tn−jT ∗) = 0

Taking t → ∞ it holds that T ∗T − TT ∗ = 0 and hence T is normal

3.2 Spectral properties of n-power hyponormal operators

spectral properties of hyponormal operators
Theorem
The operator norm ∥T∥ of a hyponormal operator is equal to it’s spectral radius
Proof
Let x ∈ H and for a positive integer n, by assumption, we have that
∥T ∗Tnx∥ ≤ ∥Tn+1x∥
This implies that
∥T ∗Tn∥ ≤ ∥Tn+1∥
Therefore
∥Tn∥2 = ∥T ∗nTn∥ ≤ ∥T ∗(n−1)T ∗Tn∥ ≤ ∥T ∗(n−1)∥∥T ∗Tn∥ ≤ ∥T ∗(n−1)∥∥Tn+1∥ =
∥Tn−1∥∥Tn+1∥
Now, if we let ∥T k∥ = ∥T∥kp <≤ n and we get
∥T∥n+1 ≤ ∥Tn+1∥ and hence ∥T∥n+1 = ∥Tn+1∥

3.3 Spectral properties of n-power posinormal operators

we begin a discussion of basic spectral properties of posinormal operators
Theorem
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Let T be a posinormal operator. Then kerT = kerT 2

Proof
It is always obvious that kerT ⊆ kerT 2. Now let x ∈ kerT 2. Since T is a posi-
normal operator, it implies that Ran(T ) ⊆ Ran(T ∗) and this further implies
that there exists y ∈ H such that Tx = T ∗y. We have that 0 = T (Tx) = T (T ∗y)
so that 0 =< TT ∗y, y >=< T ∗y, T ∗y >= ∥T ∗y∥2. This implies that T ∗y = 0
and Tx = T ∗y = 0. Thus x ∈ kerT and hence kerT 2 ⊆ kerT . This completes
the prove

3.4 Spectral properties of n-power quasi-isometry

We begin with basic spectral properties of quasi-isometry operators
Theorem
Let T ∈ B(H) be a quasi-isometry operator. If λ ∈ σp(T ) then λ ∈ σp(T

∗)
Proof
Suppose that λ ∈ σp(T ). Let λ = 0. If 0 ∈ C \ σp(T

∗) then from T ∗2T 2 =
T ∗T, T ∗T 2 = T or T ∗T = T ∗. This implies that T is an isometry and this
is a contradiction because 0 ∈ σp(T ). Now we consider a case where λ ̸= 0.
For a vector x ̸= 0 we have that Tx = λx. Since, T ∗2T 2 = T ∗T we obtain
λT ∗x = λ2T ∗2x. If |λ| = 1 we have (T ∗ − λI)T ∗x = 0. We establish that
λ ∈ σp(T

∗).We now need to show that T ∗x ̸= 0 and if T ∗x = 0 implies that
0 =< x, T ∗x >=< Tx, x >= λ < x, x > and hence λ = 0 because x ̸= 0. This
contradicts the fact that |λ| = 1

Theorem
Let T be a quasi-isometry operator. If λ ∈ σa(T ), then λ ∈ σa(T

∗)
Proof
λ ∈ σa(T ). If λ = 0, then we can show that 0 ∈ σa(T

∗). Now we suppose that
λ ̸= 0 and we choose a sequence (xn) of unit vectors such that (T −λI)xn → 0.

−λ2T ∗2xn + λT ∗xn = T ∗2(T 2xn − λ2xn)− T ∗(Txn − λxn) → 0 as n → ∞

(λT ∗ − I)T ∗xn → 0. Since λ = lim < Txn, xn >= lim < xn, T
∗xn >

If λ ̸= 0 means that (T ∗xn) ↛ 0. We can choose a subsequence (T ∗xnk) of
(T ∗xn)so that ∥T ∗xnk∥ ≥ M for some positive integer M.

The set yk = T∗xnk

∥T∗xnk∥ . Then (yk) is a sequence of unit vectors such that

(λT ∗ − I)yk → 0 or (T ∗ − λI)yk → 0as |λ| = 1.

Theorem
Let λ1 ̸= λ2 ̸= 0 be two distinct eigenvalues of a quasi-isometry operator T.
Then the corresponding eigenspaces of λ1 and λ2are orthogonal.
Proof
Let λ1 and λ2 be two nonzero eigenvalues of T. If Tx = λ1x and Ty = λ2y.

Then we have that 0 =< T 2x, T 2y > − < Tx, Ty >= λ1λ2(λ1λ2 − 1)) < x, y >
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Since λ1 ̸= 0 and λ2 ̸= 0 implies that λ1λ2 ̸= 0 and |λ| = 1.
Also, if λ1 ̸= λ2, this will mean that λ1 = 1

λ2
or λ1λ2 = 1. Thus we have that

< x, y >= 0
Spectral properties of n-power quasi-isometry
Theorem
Let T ∈ [2QI] ∩ [3QI] such that ker(T ∗) ⊂ ker(T ) then T is a quasi-normal
operator and ker(T ∗) = 0
Proof
By hypothesis, we have can have TT ∗2T 2 = T ∗TT and also T 2T ∗2T 2 = T ∗TT 2

T (TT ∗2T 2) = (T ∗T )T 2

⇒ T (T ∗TT ) = (T ∗T )T 2.This further implies that (TT ∗ − T ∗T )T 2 = 0
equivalently T ∗2(TT ∗ − T ∗T ) = 0. But since ker(T ∗) ⊂ ker(T ) we have
TT ∗(TT ∗ − T ∗T ) = 0 and ker | T ∗ |2= ker(T ∗) ⇒ T ∗(TT ∗ − T ∗T ) = 0
thus (TT ∗ − T ∗T )T = 0
Hence T is a quasinormal operator
Theorem
Let T ∈ [QI] ∩ [2QI] then r(T ) = 1
Proof
Since T ∈ [QI]∩ [2QI] by the previous theorem implies that T is a quasinormal
operator and hence r(T ) = ∥T∥ = 1.
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4 Chapter Four: Numerical Ranges of N-power
operators

Definition
Let T ∈ B(H). The set W (T ) = {< Tx, x >| x ∈ H, ∥x∥ = 1} is known as the
numerical range of T.
Remark
For any x ∈ H, such that ∥x∥ = 1 we have that |< Tx, x >|≤ ∥Tx∥∥x∥ = ∥Tx∥

≤ ∥T∥∥x∥ = ∥T∥.
Thus |< Tx, x >|≤ ∥T∥ for all x ∈ H
Hence, this implies that W (T ) is a bounded set
General properties of numerical ranges of operators
Theorem
Let T ∈ B(H). Then λ ∈ W (T ) if and only if λ ∈ W (T ∗)
Proof
Suppose that λ ∈ W (T ). This implies that there exists x ∈ H, ∥x∥ = 1 such
that λ ∈< Tx, x >. Thus λ ∈ < Tx, x > = < x, T ∗x >

= < T ∗x, x >
Hence λ ∈ W (T ∗)
Conversely, suppose that λ ∈ W (T ∗)
Then by definition there exists x ∈ H, ∥x∥ = 1 such that λ ∈< T ∗x, x >. Now,

λ = λ = < T ∗x, x >

= < x, Tx >

=< Tx, x >
Hence λ ∈ W (T )
Theorem
Let T ∈ B(H). Then σ(T ) ⊂ W (T )
Proof
Let λ ∈ σ(T ). By definition, there exists x ∈ H, ∥x∥ = 1 such that (T−λI)x = 0.
This implies that Tx = λx.
Now, λ = λ∥x∥ = λ < x, x >

=< λx, x >
Since Tx = λx we have

=< Tx, x >
Hence λ ∈ W (T )
Theorem
Let λ ∈ W (T ) such that | λ |= ∥T∥, then λ ∈ σp(T )
Proof
Suppose that λ ∈ W (T ). By definition there exists x ∈ H, ∥x∥ = 1 such that
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λ =< Tx, x >

| λ |=|< Tx, x >|< ∥Tx∥∥x∥ = ∥Tx∥ ≤ ∥T∥.
Therefore, we have that |< Tx, x >|= ∥Tx∥∥x∥ → Tx = λx for some λ ∈ C
However, λ ∈< Tx, x >=< λx, x >= λ
Hence Tx = λx

Numerical properties of normal operators

Theorem
The convex hull of the spectrum of a normal operator is equal to its closed
numerical range
Proof
Let T be a normal operator and λ be a complex number.By the normality of
T − λI implies that the following statements are equivalent

(i) λ ∈ W (T )

(ii) 0 /∈ W (T − λI)

(iii) The spectrum of T − λI lies on the one side of the origin

(iv) 0 is not in the convex hull of σ(T − λI)

(v) λ is not in the convex hull of σ(T )

Lemma
If W (T ) = ∥T∥ this implies that r(T ) = ∥T∥
Proof
Now, without loss of generality,when we multiply by a suitable constant we have
that
∥T∥ = 1. It is always obvious that W (T ) = ∥T∥ and there exists a sequence xn

of unit vectors such that | < Txn, xn > | → 1.
Hyponormal operators

Let T ∈ B(H) be a hyponormal opeartor. Then the closure of the numerical
range of T coincides with the convex hull of its spectrum
Proof
In general, the inclusion σ(T ) ⊂ W (T ) holds.Now suppose that λ ∈ W (T ) which
is not in the convex hull of the spectrum. By an affine change of variables, we
can assume that σ(T ) is contained in a disk centered at zero of radius r and
λ > r. Since the spectral radius of the operator T equals its norm, we therefore
find that ∥T∥ ≤ r and on the other hand < Tx, x >= λ for a unit vector x.
This implies that |λ| ≤ | < Tx, x > | ≤ r, a contradiction.
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Conclusion
n-power operators is a class of operators that has been extensively been re-
searched on with a keen focus on their sum, product and unitary equivalence.
These classes of operators is growing so fast and many reslts are being discov-
ered.
My project has focused on five classes of n-power operators that is n-power nor-
mal, n-power hypormal, n-power quasi-normal, n-power posinormal and n-power
quasi-isometry operators. We have seen that n-power operators is an extension
of lower classes of operators such as normal, hyponormal, quasi-normal, posi-
normal and quasi-isometries respectively.

We have also seen that these classes of operators are unitarily invariant and
if they doubly commute, then their sum and product are also n-power operators
However, we have also seen that little research has been done about their spec-
tral and numerical properties. My keen interest in future is study and discover
results on their spectral and numerical ranges.

42



5 References

A.A.S Jibril,on n – power normal operators, The Journal of Science and engi-
neering, Volume 33, Number 2A, (2008) , 247 –251.

[2]Alzuraiqi, S. A. and Patel, A. B. (2010) On normal operators. General Math-
ematical Notes. Vol. 1, No. 2, pp:61-73

[3].Ould Ahmed Mahmoud Sid Ahmed, On the class of n – power quasi normal
operators on the Hilbert space, Bull. Of Math.Anal.Appl.Vol 3, 2 (2011), 213 –
228.

[4] S. A. Alzuraiqi, A. B. Patel, On n-normal operators, General Mathematics
Notes, Vol 1, No 2 (2010), 61-73.

[5] T. Ando, On Hyponormal operators, Proc. Amer.Math.Soc.,14(1963), 290-
291.

[6] J. Conway, A course in Functional analysis, Second Edition, Spring-Verlag,
New york, 1990.

[7] A. A. S. Jibril. On n-power normal operators. The journal. for Sc and Emg,
vol 33. number 2 (2008) 247-251.

[8] T. Furuta, A remark on a class of operators, proc. Japon. Acad, (43)(1967),
607-609.

[9] W. Rudin, Functional Analysis, (1973)

[10]J. Agler and M. Stankus, m-isometries transformations of Hilbert space, I,
IntegralEquations and Operator Theory,(1995),383-427.

[11] J.B coway,A course in functional analysis, (1981) New
york:Springer

[12] S.M Patel, A note on quasi-isometries, Glasnik Matematicki,35(55)(2000),307-
312

[13] P.R Halmos,Normal dilations and extensions of operators, summa Bras.Math,2

43



[14] H.Crawford Rhaly,jr,Posinormal operators,J.math.Soc.Japan

[15] A.Brown, On a class of operators,proc.Amer.Math.Soc..,4(1953) 723 - 728

[16] J. G Stampfli, hyponormal operators,Pacific J.Math 12(1962) 1453 - 1458

44


