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ABSTRACT
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans 
terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell 
(IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the 
double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic 
component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing 
RV particles from the gut. The composition of the intestinal mucus is regulated by complex 
O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we 
highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to 
IECs. A better understanding of the role of mucus is essential for the development of alternative 
therapeutic tools including the use of pre- and probiotics to control RV infection.
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Introduction

Rotaviruses (RVs) are the major causative agents of 
acute diarrhea in children and young animals 
globally.1 RV infects small intestinal epithelial cell 
(IEC) leading to villus atrophy, increased epithelial 

cell turnover, enhanced apoptosis, and formation of 
large vacuoles in enterocytes.2 To infect/enter IECs, 
RV binds several surface molecules such as sialic 
acids (SAs)3,4 and histo-blood-group antigens 
(HBGAs) in genotype-specific manner.5,6 However, 
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presence of RV in the luminal content does not 
immediately result in its attachment on IECs, since 
they are protected from external environment by the 
mucus layer whose major organic component is 
represented by a variety of mucins, highly glycosy-
lated molecules with complex oligosaccharides, 
O-glycans, including forementioned HBGAs with 
or without SA residue.7 Secreted mucins (not 
attached to IECs) are known to bind RVs thus ser-
ving as decoy receptors.8

The mucus layer is also a niche for the gut 
microbiota whose composition is predetermined 
by the host factors including the O-glycan 
profile.9 Growing evidence indicates that microor-
ganisms including beneficial bacteria possess 
a wide range of factors enabling direct interactions 
with different components of the host mucus.10 

There are several types of interactions between 
bacteria and mucus in the gut, including selective 
attachment, mucus degradation, and bacterial reg-
ulation of mucus production and composition.8 

These bacteria-mucus interactions in the gut also 
influence the RV pathogenesis and disease out-
come. The initial bacterial attachment to 
O-glycans present in mucus is provided by non- 
enzymatic glycan-binding proteins referred to as 
lectins.11 While presence of specific enzymes allows 
members of the gut microbiota to gradually 
degrade mucin O-glycans12, some bacteria stimu-
late O-glycan production by IECs.13 In addition, 
a wide range of bacteria have also been shown to 
produce glycans.14 Prior and our recent studies 
have demonstrated the presence of glycans recog-
nized by human HBGA-specific monoclonal anti-
bodies (Abs) on nonpathogenic phylogenetically 
diverse Gram-negative and Gram-positive 
bacteria.15,16 More importantly, bacteria expressing 
glycans have been shown to bind enteric viruses 
such as polioviruses17, noroviruses15 and RVs16 

in vitro and in vivo. Thus, these bacterial glycans 
provide additional attachment sites for RV bind-
ing. Taken together, complex interactions within 
the intestinal mucus result in changes in composi-
tion/concentration of decoy receptors for RV thus 
affecting RV attachment and entry into IECs. This 
review focuses on the role of O-glycans in the host- 
microbiota-RV interactions within the GI tract and 
the implications of these findings on RV disease 
control strategies.

O-glycans – are major organic constituents of 
the intestinal mucus

Mucus represents an ancient constituent of the 
epithelial barrier regulating crucial functions in 
a wide range of invertebrate and vertebrate 
species.18 In mammals, mucus is produced by spe-
cialized (goblet) epithelial cells scattered in the lining 
of the gastrointestinal (GI), the respiratory, and the 
reproductive tracts, as well as the ocular surface.19 

Mucus is a complex of proteins, lipids, water, epithe-
lial cells, leukocytes, mucins, and inorganic salts that 
form a gel-like structure.20 The mucus layer facil-
itates transport of nutritional components toward 
the epithelium in the GI tract and the exchange of 
gases within the respiratory tract. It maintains the 
viscoelastic properties of the reproductive tract and 
the preocular tear film. The mucus functions in the 
gut are mostly determined by mucins, glycoproteins 
encoded by the family of MUC genes.21

As part of host defense system, mucus within the 
GI tract serves as a physical barrier that reduces 
damage to IECs caused by food antigens, commen-
sal microorganisms and the digestive secretions in 
the gut.20 It also protects IECs from being directly 
accessed and harmed by various pathogens includ-
ing parasites, viruses and bacteria.22 Mucus anti-
pathogenic function is achieved in part by the 
expulsion of pathogen-containing mucus controlled 
by peristaltic movements23 and contracting/swaying 
villi motions24 contributing to elimination of patho-
genic organisms and other particles. Besides these 
“restrictive” functions, the gut mucus provides 
attachment sites for certain commensal bacteria pro-
moting GI tract colonization.25 Thus, GI mucus is 
the primary site where interactions occur between 
the host and gut microorganisms.

Mucus comprises two layers whose composition 
and thickness vary throughout the intestine.20 It is 
the thinnest in the small intestine, while, in the 
large intestine the mucus layer is up to four times 
thicker.20 The inner layer is dense and non- 
penetrable to bacteria under normal physiological 
conditions. The outer layer, at least two times 
thicker, is loosely attached, allowing for bacterial 
binding.26 The permeability of the mucus layer has 
been found to be age-dependent in swine: it is more 
penetrable in 2-week old piglets compared to adult 
pigs.27 Besides, mucus density varies across the 
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intestine,28 which correlates with regional bacterial 
abundance.20 Taken together, these unique proper-
ties of the mucus layers facilitate the corresponding 
functions of the small and large intestine: nutrient 
and water absorption (small intestine) and mostly 
water absorption (large intestine) and protection of 
IECs against microbial (pathogenic and nonpatho-
genic) invasion. The latter function is further pro-
vided by another important feature of the mucus 
layer, that of clearing the trapped material by lumi-
nal content movement with the average turnover 
time of the human small intestinal mucus gel and 
glycocalyx of 6–12 hours.19

Up to 95% of mucus consists of water, while the 
remaining 5% are the dry matter that contains cell 
debris, lipids, glycans and various proteins. The 
major organic part (80% of the total dry matter) 
of mucus consists of molecules of the mucin family, 
highly glycosylated proteins. The vast majority of 
mucin-type glycans are O-linked glycans; however, 
some N-linked glycans can be found on regions 
flanking the central protein backbone.29 All mucins 
are encoded by 22 genes and consist of 80% carbo-
hydrates and 20% proteins.30 There are two struc-
turally and functionally distinct groups of mucins: 
secreted (gel-forming and non-gel-forming) and 
membrane-associated. Secreted polymeric gel- 
forming mucins (MUC2, 5AC, 5B, 6 and 19) that 
create gel-like structure covering IECs are pro-
duced by goblet cells (Figure 1) and secreted 

monomeric non-gel forming mucins (MUC7 and 
MUC20) which are water soluble mostly found in 
bodily fluids such as saliva and tears where they 
lubricate and protect the eyes and mouth 
surfaces.31,32 Studies have shown that these struc-
tures have region-specific distribution. For exam-
ple, MUC2 is more abundant in small intestine and 
colon while MUC5AC and MUC6 predominate the 
stomach and duodenum.33–35 Secreted mucins (gel 
forming) lubricate the intestinal mucosa, provide 
attachment sites for the commensal bacteria, reg-
ulate the gut microbiota composition and protect 
the IECs against pathogen invasion.36 Secreted 
mucin monomers aggregate via electrostatic and 
hydrophobic interactions resulting in a net-like 
polymeric gel structure (Figure 1) that facilitates 
all the mucus functions.37,38 Both, α-2,3 and α-2,6 
N-acetylneuraminic acids (the major SAs) provide 
a critical role in gel-formation via electrostatic 
interactions (Figure 1).37 Mucin core hydrophobic 
domains further provide gel polymerization 
(Figure 1).38 The membrane-associated (trans-
membrane) mucins (MUC1, 3A, 3B, 4, 12, 13, 15, 
16, 17, 18, 20, 21) do not form multimers but bind 
to IECs via short cytoplasmic domains and form 
glycocalyx (Figures 1 and 3).39 These mucins play 
a critical role providing connection between IECs 
and habitants of the outer mucus layer.40

The diversity of the GI mucin-type O-glycans is 
determined by the glycan core structure (cores 1–8, 

Figure 1. Schematic representation of secreted and transmembrane mucins. Transmembrane mucins are large and attached to IEC 
surface via transmembrane and cytoplasmic regions. Cysteine molecules widely present in PTS domains of secreted mucins form intra- 
disulfide bonds (hydrophobic interactions). In addition, the gel-like structure of secreted mucins is provided by electrostatic 
interactions within highly glycosylated regions.
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with cores 1–4 being most common), type of 
HBGA precursor and different terminal modifica-
tions that can include fucose, galactose (Gal), 
N-acetylgalactosamine (GalNAc) and SA 
(Figure 2).44 Glycosyltransferases (GTs) provide 
a critical role in formation of this mucin-type 

O-glycan biodiversity, while inhibition of these 
enzymes’ activity results in increased mucus 
permeability.45 The expression of secreted 
ABO(H) antigens and the Lewis b (Le b) antigen 
is regulated by fucosyltransferase 2 (FUT2), 
encoded by the FUT2 gene, while the expression 

Figure 2. Schematic representation of the mucin family and their structure. Tandem repeat domains – enriched in proline (Pro), 
threonine (Thr) and/or serine (Ser) (PTS domain) are highly glycosylated [including N-acetylgalactosamine (GalNac), 
N-acetylglucosamine, fucose, galactose and sialic acid (SA)]. These O-linked glycan domains, represent 50% (w/w) of all mucins.41 

Mucin glycosylation occurs within the endoplasmic reticulum and the Golgi apparatus; once glycosylated they are secreted on the 
apical surface of goblet cells.42 The initial step of mucin-type O-glycosylation in mammals (addition of GalNAc to PTS domain – Tn 
antigen) is provided by the activity of N-acetylgalactosaminyltransferases (ppGalnac-Ts) - enzymes which are encoded by one of 20 
genes. This antigen is further extended by addition of GalNAc, galactose, N-acetylglucosamine and SA (provided by activity of different 
glycosyltransferases) leading to formation of four different glycan core types that can be included in the structure of MUC1, MUC2, 
MUC5AC, MUC5B, MUC6–8, MUC 11–13 and MUC 16.39 Activity of FUT2 (active only in secretor individuals) regulates the production of 
H-type 1 antigen while FUT1 enzyme is responsible for production of H-type 2 antigen (cell-associated antigen). The peripheral 
terminal region may be presented by l-fucose (Fuc), d-galactose (Gal), N-acetylgalactosamine (GalNac), N-acetylglucosamine (GlcNac) 
and SA residues, included in the structure of all HBGAs such as A, B, H, Lewis a (Lea), Lewis b (Leb), Lewis x (Lex) and Lewis y (Ley).43.
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of membrane-associated H antigen is regulated by 
FUT1.46,47 Different sialyltransferases are involved 
in the addition of terminal SAs to O-glycan 
chains.48 Fucosyltransferase 3 (FUT3) is involved 
in the biosynthesis of Lewis antigens.49 Three 
alleles of ABO gene encodes

GTs responsible for converting the H antigen 
into A and B antigens (alleles A and B), while 
O allele is an inactive GT that leaves the 
H antigen unmodified.50 Polymorphisms of fuco-
syltransferase-encoding genes have been found to 
determine the fucosyltransferase activity.51 For 
example, 14 genotypes of FUT3 and 10 genotypes 
of FUT2 have been recognized only in Chinese 
population.52 Besides, GTs have been found to 
interact and compete with each other thus affecting 
the glycoconjugate profile.53 In addition, O-glycan 
distribution has been found to vary in different 
regions of GI tract.47 The biodiversity of mucosal 
O-glycans may play an evolutionary important role 
in protection against pathogens known to interact 
with certain glycans such as HBGAs resulting in 
lower susceptibility of mammals.54

O-glycans are important ligands for rotavirus 
attachment and entry

The main targets for RV infection are IECs located 
at the tips of intestinal villi.55 However, for some 
strains/genotypes of species A RV (RVA), infection 
is not limited to IECs, but high-level RVA detec-
tion reportedly occurs in extraintestinal tissues 
including immune cells.56,57 Antigenemia and 
RNAemia have been reported in children with 
RVA diarrhea,58,59 suggesting a mechanism of 
extraintestinal spread of RVAs to highly vascular 
organs such as liver, cerebrospinal fluid, spleen and 
lungs. A study by Azevedo and coauthors demon-
strated similar observation in pigs inoculated with 
human RVA.60 However,*61 whether RVA infec-
tion is associated with efficient viral replication in 
immune and/or other blood cells or just passive 
virus uptake and transport remains to be evaluated. 
Detection of RVA in extraintestinal tissues has 
been associated with pathology in some studies. 
For example, along with the expected changes in 
the intestine following RVA infection of rats, his-
topathological changes associated with RVA anti-
gens were observed in the liver and lungs.56 The 

same study confirmed the ability of G3P5B[3] RVA 
to infect porcine alveolar macrophages. Recently, 
a similar observation has been demonstrated for 
porcine RVA.62 Further, Ciarlet and coauthors 
observed efficient replication of RVA on cell lines 
derived from intestine, stomach, breast, bone and 
lung.63 The wide range of cells permissive for RVA 
replication may be explained by the presence of 
common attachment sites in all of these cell types, 
such as integrins that was reported to enable RVA 
replication in Chinese hamster ovary cells.63 

However, there are no data on the role of 
O-glycans in extraintestinal replication of RVs.

RV infection requires specific interactions 
(including virus attachment and entry) between 
RVs and host cellular attachment sites. RV expo-
sure to the main small intestine proteinase (tryp-
sin) results in the cleavage of the spike protein 
(VP4) into an N-terminal domain, VP8*, and 
a C-terminal domain, VP5×.64 The VP8* domain 
binds to host cellular sialylated glycans.65 However, 
proteolytic priming of viral particles is not required 
for the RV binding but is essential for cell mem-
brane penetration and virus entry into the host 
cell66, suggesting that RV uses different ligands 
for cell attachment and entry.

There are several surface molecules, such as 
terminal3 and internal4 (monosialotetrahexosyl-
ganglioside, GM1 ganglioside) sialylated glycans, 
HBGAs6, heat-shock cognate protein (hsc70)67, 
tight junction proteins68 and integrins69 which 
have been recognized as ligands for RV attachment 
and entry into IECs. However, the principal recep-
tor for RV attachment/entry remains to be identi-
fied. Several approaches have been implemented to 
dissect the roles of the aforementioned attachment 
sites in RV replication. For example, cell treatment 
with sialidase (neuraminidase, NA) cleaving term-
inal α2,3-, α2,6-, or α2,8-linked SA residues has 
been found to significantly decrease attachment of 
some animal RVA strains (simian SA11 G3P[2], 
RRV G3P[3], bovine NCDV G6P[1] and porcine 
OSU G5P[7]) to various cells emphasizing the role 
of SAs as an attachment site for RVA.70 However, 
most human RVAs (Wa G1P[8], DS-1 G1P[8], ST3 
G4P[6] subtype A, K8 G1P[9], S2 G2P[1]) and 
some animal RVAs (bovine 223 G10P[11], porcine 
Gottfried G4P[6], equine H2 G3P[12] and FI23 
G14P[12]) are not dependent on the presence of 
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sialylated glycans to infect cells.70 These initial 
observations led to classification of RVAs as NA- 
sensitive and NA-insensitive (NA-resistant) which 
later was revisited following evidence that NA 
treatment only removes terminal SA residues but 
not the internal ones.71 A study by Haselhorst and 
colleagues demonstrated an enhanced replication 
of “sialidase-insensitive” human RVA Wa G1P[8] 
after SA (α2,3-, α2,6-, or α2,8-linked) removal.72 

We have recently demonstrated significantly 
enhanced replication of porcine RVA RV0084 
(G9P[13]) after terminal SA removal with 
Arthrobacter ureafaciens sialidase (cleaves terminal 
α2,3-, α2,6-, or α2,8-linked SA residues) 
treatment.73 Our lab has also demonstrated that 
human and porcine RVCs utilize sialylated glycans 
for binding/attachment.74 NA treatment resulted 
in enhanced porcine RVC Cowden G1P[1] and 
RVC RV0143 G6P[5] replication, but inhibited 
the growth of porcine RVC RV0104 G3P[18], 
further highlighting the role of terminal SA in RV 
replication.74 Thus, our data suggested that term-
inal SA residues may mask some other attachment 
sites recognized by RVs including internal sialy-
lated glycans. For example, internal sialylated gly-
cans have been shown to serve as attachment sites 
for NA-resistant RVs.4,72,75 Therefore, recently 
other strategies have been applied to dissect the 
roles of sialylated glycans in RV replication. 
Studies have shown that CRISPR/Cas9 knockout 
of the solute carrier family 35 member A1 gene 
(SLC35A1, encoding a key GT essential for SA 
biosynthesis) led to the loss of sialylated glycans 
on the cell surface.76,77 The latter coincided with 
loss of NA treatment effects on replication of siali-
dase sensitive simian RVA.77

The interplay between the RV VP8* domain and 
sialylated glycans is an example of lectin-glycan 
interactions characterized by low affinity65,78; 

while lectins with multiple binding sites have 
a significantly higher affinity to glycans.79 The abil-
ity of lectins to bind sialylated glycans is of impor-
tance since neutralizing Abs developed against the 
SA-binding domain of VP8* inhibit RVA hemag-
glutination. Thus, VP8* interactions with various 
glycans are likely to increase the host cell binding 
capacity of RV.

There are several lectins of different origin 
(including invertebrates and plants) that bind 

O-glycans.80 Jolly and colleagues demonstrated abil-
ity of galactose-specific plant lectins to inhibit RVA 
replication in a strain-specific manner.81 The same 
study showed amino acid sequence similarity (27%) 
between RV VP5* and the galactose-binding 
domain of a plant lectin (Ricinus agglutinin) sugges-
tive of similar mechanisms engaged by plant lectins 
and VP5* while binding host O-glycans. Altogether, 
these data confirm the significance of highly specific 
interactions between sugar residues on the IEC sur-
face membranes and within the intestinal mucus 
with carbohydrate-binding proteins of bacteria (dis-
cussed in section 4.1), plants and RVs.

The group of HBGAs play a critical role in RV 
binding/entry into the IECs. HBGAs are a group of 
glycans and represent a large family of carbohy-
drates which consists of more than 300 recognized 
antigens.82 First detected on the red blood cell sur-
face, these molecules have subsequently been 
detected in many tissues including epithelial cells 
lining the respiratory, gastrointestinal, and repro-
ductive tracts, skin and granular secretions.83–87 

Along with epithelial cells found to carry high 
numbers of HBGAs including ABO and Lewis 
molecules, HBGAs have also been detected in 
diverse biological fluids such as intestinal content, 
blood (erythrocytes) and saliva of secretor 
individuals.86 Thus, HBGAs are present in tissues 
that are in direct contact with the external environ-
ment, and the widespread distribution of sialylated 
glycans and HBGAs may facilitate RV replication 
outside of the intestine. The role of HBGAs in RV 
infection has been demonstrated in our recent 
study whereby inhibition of HBGA synthesis in 
porcine ileal enteroids significantly reduced repli-
cation of human G1P[8] RVA Wa.73

The glycan-binding specificity of RVs is usually 
studied in the context of their interactions with 
HBGA and SA-containing glycan terminal struc-
tures. However, specific recognition of mucin cores 
has also been demonstrated for RVs of different 
origin (Table 1).89,92

Clinical and in vitro studies have demonstrated 
that the interactions between RVs and the host 
O-glycans are both RVA/RVC genotype- and 
HBGA type-specific (Table 1). For example, two 
RVA genotypes, P[8] (human Wa and RVP) and P 
[4] (DS1), were shown to recognize both, the Lewis 
and H-type 1 antigens, while P[6] (ST3) interacted 
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with the H-type 1 antigen only.105 The P[9], P[14] 
and P[25] genotypes bind to the type A antigens, 
whereas P[11] interacted with single and repeated 
N-acetyllactosamine – a precursor of human 
HBGAs.99,106 However, some studies have demon-
strated contradictory results. For example, several 
epidemiological studies revealed that children with 
A-type were predominantly infected with a P[8] 
RVA.105,107,108 This was further corroborated by 
our results showing that the human RVA Wa strain 
(G1P[8]) infected and replicated to higher titers in 
porcine small intestinal enteroids expressing 
A-antigen.73 However, previously, 
a crystallography assay failed to confirm that 
human P[8] RVA Wa binds this antigen.90 

Another study by Huang and coauthors in children 
did not demonstrate any direct binding of type 
A antigen, however, it generated strong evidence 
of association.6 The role of HBGA-type A in RV 
replication has recently been demonstrated in our 
study whereby porcine RVC Cowden G1P[1] had 
a higher level of replication in porcine small intest-
inal enteroids expressing A-antigen while two 
other genotypes, RV0104 G3[P18] and RV0143 
G6[P5] had a preference for H-antigen expressing 
organoids.74

RV-HBGA interactions have been assessed by 
X-ray crystallography of a P[14] VP8* in complex 
with the type A oligosaccharide.91 Based on these 
findings, human susceptibility to RV infection is 
determined (at least partially) by their HBGA phe-
notypes (Table 1).

Further, while two α1,2-fucosyltransferases 
responsible for α(1.2) fucosylation have been recog-
nized (FUT1 and FUT2), in 20% of human popula-
tion the FUT2 gene is inactive, and such individuals 
are referred to as non-secretor phenotype 
(Figure 2).109 Thus, while in non-secretor indivi-
duals O-glycans are expressed only on IECs surface 
(provided by the activity of FUT1), in secretors 
individuals (where both FUT1 and FUT2 are active) 
there are two types of O-glycans: membrane- 
associated and secreted. The difference in activity 
of FUT1 and FUT2 enzymes results in different 
linkages between Gal and GlcNAc (1,3 and 1,4 for 
type 1 and type 2 precursors, respectively).110 It is of 
importance to emphasize that expression of HBGA 
in the small intestine is FUT2-dependent,47 suggest-
ing that non-secretor individuals have a limited 

glycosylation profile. Clinical studies have not 
reported RVA infection (P[8] and P[4]) in non- 
secretor individuals; and even suggested that this 
phenotype was restricted to P[8] and P[4] RV geno-
type infections.93,111,112 These data was further sup-
ported by a study demonstrating selective 
recognition of human P[11] to H type 2 antigen (H 
antigen expressed in non-secretor individuals, 
Figure 2) over H type 1 antigen (expressed in secre-
tor individuals).113 However, recent studies demon-
strated P[8] and P[6] but not P[4] infection in non- 
secretors.97,98 Other studies have shown a strain- 
specific recognition of precursors type 1 and type 2 
for RV P[11].100,101,113 Taken together, RV binding 
depends on the presence of certain glycan cores, 
HBGA precursors and terminal sugar residues.

Of interest, FUT2 and Lewis polymorphisms 
were previously thought to be associated with the 
low efficacy of RVA vaccines in certain African 
populations, where the predominant RVA strains 
as well as FUT2 and Lewis genotype prevalence 
differ from those in Western populations.93 In con-
trast to these findings, our recent data dispute this 
hypothesis by providing evidence that attenuated 
RVA strains lose their selective affinity for certain 
HBGAs, but their interactions with SAs remained 
similar to that of the virulent counterparts.104 The 
discrepancies described above are likely due to the 
different models, approaches and assays used in 
these studies. Thus, experimental data on distinct 
RV affinity for individual HBGAs are still scarce 
and/or somewhat inconsistent necessitating addi-
tional research.

Interactions between RVAs and intestinal 
epithelial cells

Mucus layer is the first barrier against RV infection

RV needs to reach the host IEC surface to initiate 
its replication cycle, which involves complex inter-
actions with various components of the mucosal 
layer. The ability of viral particles to diffuse 
through mucus depends on particle size and sur-
face charge.114 While strongly charged particles are 
trapped, neutral particles diffuse through the 
mucus.114 Thus, mucus layer acts as a nonspecific 
defense mechanism of the host against the nega-
tively charged particles, such as outer surface of 
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RVA particles.115 Of importance, MUC2 glycans 
serve as binding sites for the VP8* domain of the 
RVA spike protein VP4116 which may be due to the 
widespread distribution of SA residues and HBGAs 
as a part of the peripheral carbohydrate structures 
of this mucin.

Both, extracellular (often extensive) and intra-
cellular domains of transmembrane mucins 
(Figures 1 and 3) play a critical role in protection 
against pathogenic microorganisms by modulating 
inflammatory pathways via phosphorylation.40 

Cleavage and shedding of the extracellular domain 
have been suggested to play a role of decoy recep-
tors for pathogenic bacteria.117 In addition, shed-
ding of the extracellular domain of transmembrane 
mucins is believed to regulate intracellular signal 
transduction pathways affecting IEC metabolism40 

including conformational changes of integrins – 

another ligand for RV attachment/entry. 
Shedding of the extracellular domain of transmem-
brane mucins is regulated by tumor necrosis factor 
alpha (TNF-α).118 In turn, the production of TNF- 
α is induced by RV infection.119 Thus, the host 
response to RV infection increases the cleavage of 
the highly glycosylated part of membrane asso-
ciated mucins which leads to increased numbers 
of decoy epitopes in the mucus layer.

The protective role of purified mucins isolated 
from human milk against infection caused by sev-
eral RVAs including SA11 G3P[2], Wa G1P[8], 
DS-1 G1P[8] and ST3 G4P[6] has been confirmed 
in vitro and in vivo, demonstrating the beneficial 
role of non-immunoglobulin factors of breast 
milk against enteric pathogens.120 The protective 
role of mucins depends on the origin of the 
extracted mucins.121 Colonic mucins had 

Table 1. A summary of glycan cores, SA-containing glycans and HBGA types recognized by different RVA and RVC genotypes in 
different hosts.

RV 
species Host

VP4 
genotype

Preferred glycan recognition

Mucin core SA HBGA

RVA Human P[4] Core 288, does not bind 
core 4 and 689

SA- 
independent3

Leb, H-type 1; A-B- types6,90,91: does not bind A, B, Lea, Leb85

P[6] Does not bind core 292 A, B, H, Le negative, H type 192,93

P[8] Core 2, does not bind 
core 4 and 689,92

Internal SA 
(GM1)72,94

Leb, H-type 16,89, Secretor positive. Lewis95; does not recognize A type and 
H type 190,96 does not bind A, B, Lea, Leb and H type 289; Non-secretor97,98

P[9] N/A SA- 
independent3

A type99

P[11] Type 1 and type 2 precursors100,101

P[14] A type89,99

P[19] Core 2, 4 and 688,92 H-type 188,92

P[25] N/A N/A A type102

Porcine P[5] N/A SA- 
independent3

N/A
P[6] Core 292 Does not recognize H-type 1. 

Recognizes both A and H types 91,104

P[7] N/A Terminal SA3 H type104

P[10] N/A recognizes H-type 1103

Bovine P[1] N/A Terminal SA63 N/A
P[5] SA- 

independent3P[11]
Equine P[7] Terminal SA3

P[12] SA- 
independent3P[18]

Simian P[1] Terminal SA3

P[2]
P[3]

Murine P[16] SA- 
independent3,104P[20]

Canine P[3] Terminal SA3

Lapine P[14] SA- 
independent3

Feline P[3] Terminal SA3

P[9] SA- 
independent3Turkey P[17]

Ovine P[15]
Chicken P[17]

RVC Porcine P[1] SA- 
independent74

A type74

P[5] H type74

P[18] Terminal74

N/A – not available.
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a stronger inhibitory effect on RVA replication 
compared to small intestinal mucins.121 Besides, 
the same study demonstrated a RV genotype- 
specific inhibitory effect of crude mucins which 
was most likely due to the glycan preferences of 
RVs (Table 1). An in vitro study has shown that 
transmembrane mucin, MUC1, also inhibited 
RVA infection, whereby MUC1 decreased RVA 
infection caused by NA-sensitive simian SA11 
G3P[2] but not by human NA-insensitive Wa 
G1P[8].122 The MUC1 is known to be highly 
sialylated123 suggesting that the protective role of 
MUC1 against NA-sensitive RVA is provided by 
SA residues. Thus, while sialylated O-glycans and 
HBGAs present on IECs aid in RVA attachment 
and infection, those secreted in mucus might act 
as decoy epitopes interfering with the infection. 
These data emphasize the role of non-secretor 
status (no HBGA secreted in the mucus layer) in 
protection against RV infection. However, 
research to date has not yet determined the role 
of mucus layer in protection against RV infection 
in non-secretor individuals.

The key role of mucin sugars in RVA attach-
ment was demonstrated in a study where the car-
bohydrate removal has been shown to abolish the 
protective properties of mucins suggesting that 
the inhibition of RVA infection is O-glycan- 
mediated.120,121 These results corroborate the 
findings of in vivo and in vitro studies which 
demonstrated that the protective role of mucins 
was associated with the presence of sialylated gly-
cans. Treatment of mucins with NA to remove 
terminal SA residues led to the loss of its ability 
to neutralize RVA infection caused by animal 
SA11 G3P[2], rhesus RV and human Wa G1P[8] 
RVs in vitro and in vivo.121 However, while the 
majority of studies have demonstrated protective 
effects of transmembrane mucins against RV 
in vitro (as an extract), it is unknown whether 
the direct interactions between transmembrane 
mucins and RV facilitate RV attachment to IECs 
or lead to cleavage of its extracellular domain 
(with RV bound) and removal from the small 
intestine via peristaltic and villi contractions. 
Taken together, secreted and transmembrane 
mucins regulate O-glycan-mediated interactions 
between IECs and RV.

Rotavirus infection affects mucus composition

Boshuizen and coauthors demonstrated that RVA 
infection affects the number of goblet cells along 
the GI tract in a region-specific manner.124 While 
no difference in the number of mucin-producing 
cells has been found in the ileum of RVA infected 
mice compared to non-infected controls, in the 
duodenum and jejunum, the numbers of goblet 
cells were significantly decreased in the RVA 
infected animals.124 Recently, a study by Engevik 
and coauthors revealed that RVA depleted the 
mucin storage in the small but not large intestine 
and this effect was not due to decreased numbers 
of goblet cells, further confirming the possibility 
of direct interactions between RVAs and mucins.8 

The same study indicated that mucin depletion 
was detected within first 48 hours after RVA 
infection suggesting that the preexisting abun-
dance of mucins in the small intestine and the 
stimulatory effects of RVA infection on mucin 
expression do not compensate for high levels of 
mucins needed at the beginning of infection.8 

Thus, these data suggest that mucin-stimulating 
factors, such as probiotics, may provide an appro-
priate tool for disease mitigation in the early 
stages of RVA infection.

More specifically, RV interacts with all types of 
mucin cores present in the intestine including 
core 2, 4 and 6.116 For example, increased 
MUC2 transcription has been shown to be 
induced via interactions between RV VP8* and 
cellular TNF-α Receptor Associated Factors 
(TRAFs) through TRAF2-NF-kB kinase signaling, 
emphasizing also the role of NF-kB in the patho-
genesis of RV infections (Figure 3).125 Increased 
production of MUC2 has also been found to be 
one of defense mechanisms against RVA infec-
tion in germ-free (GF) mice.8

The glycosylation profiles of the intestinal 
mucins vary in the course of RVA infection of 
mice, whereby at the beginning [1 day post- 
infection (dpi)] sulfated mucins were predomi-
nant, while by the 4 dpi sialomucins became 
more abundant.124 The ability of extracted 
mucins to neutralize RVA infection in vitro 
decreased gradually during the course of infec-
tion in mice, further confirming the protective 
role of early mucins against RVA infection.124 
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The same study has shown that at 4 dpi the 
RVA neutralizing activity of mucins extracted 
from infected animals was higher compared 
with their noninfected counterparts, suggesting 
the stimulating role of RVA in mucin glycosyla-
tion. However, it is unknown whether the fuco-
sylation pattern in mice is similar to other 
animals and humans

Overall, these findings suggest that RVA-host 
interactions induce the production of mucin 
O-glycans and enhance mucin glycosylation, 
thereby boosting the protective role of these 
decoy attachment sites. These studies summar-
ized above confirmed the key role of the mucin 

concentration/glycosylation at the beginning of 
the RVA infection. RVA interactions with IECs 
reduce the amount of mucin decoy attachment 
sites emphasizing the potential beneficial effects 
of bacterial mucin-stimulating factors. Besides 
these factors, mucin concentration and glycosy-
lation status have been found to depend on the 
diet. High-fat diets were shown to downregulate 
goblet cell differentiation, glycocalyx formation, 
and abundance of mucin-stimulating bacteria, 
while concentration of mucin-degrading bacteria 
was increased.126,127 However, it is unknown 
whether a high-fat diet is a confounding factor 
for RV infection.

Figure 3. Interactions between IECs and other components of the intestinal mucosa. Interactions between bacterial ligands and Toll- 
like receptors (TLRs) induce signaling cascades resulting in activation of transcription factor nuclear factor-kappa-chain-enhancer (NF- 
κb) which lead to increased expression of RegIII proteins, secreted and transmembrane mucins leading to thickening of the mucus 
layer. Direct contact between RV VP8* and tumor necrosis factor (TNF) receptor associated factor 2 (TRAF2) increases MUC2 
transcription. Produced by goblet cells, secreted mucins form two layers: first, dense firmly attached inner layer directly covering 
IECs surface, non-penetrable for bacteria. Second, loosely attached layer is a habitat for bacteria. Mucin O-glycans within inner and 
outer layer directly interact with RV and IgA binds RV preventing them to reach IECs. Antibacterial barrier function of mucus layers is 
further supported by antimicrobial RegIII protein. IgA produced by plasma cells in Peyer’s patches cells block receptors on IEC surface 
and/or directly bind pathogenic bacteria, immune exclusion, and RV or may facilitate the formation of biofilm (immune inclusion).
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Interactions between intestinal epithelial cells 
and the gut microbiota in the context of RV 
infection

O-glycan specific host-gut microbiota interactions 
shape the gut microbiota composition

In nonpathogenic conditions, there is no direct 
interactions between members of the gut micro-
biota and IECs. While both mucus layers of the 
gut mucosa are penetrable to macromolecules and 
viral particles, the inner mucus layer remains 
completely impermeable to bacterium-sized 
particles.28 In addition, there are other compo-
nents of the innate immune system contributing 
to the localization and composition of the gut 
microbiota. For example, host lectins (galectins, 
C-type lectins and siglecs128 are known to regulate 
the gut microbiota composition via O-glycan spe-
cific interactions. The inner mucus layer in the 
small intestine is completely penetrable by bac-
teria in RegIIIγ (C-type lectin)-deficient mice 
(Figure 3), whereas in the colon the inner layer 
completely prevents the contact between bacteria 
and IECs.129 Similarly, bacterial attachment to 
components of the intestinal mucus is also 
O-glycan specific. Bacterial lectins (mostly present 
on pili, fimbriae and flagella) have been found to 
directly bind mucin terminal sugar residues.25,130 

Selective carbohydrate specificity of bacterial lec-
tins has been demonstrated for several members 
of the gut microbiota.11,25,131,132 Along with ben-
eficial effect of commensal bacteria lectins on the 
intestinal homeostasis,133 their O-glycan-specific 
interactions have also been found to affect RV 
infection. Selective carbohydrate specificity of 
plant and bacterial lectins has been shown to 
block RVA infection in vitro.16,81 The protective 
effect of bacterial lectins against RV relies on 
direct interaction between bacterial lectins and 
membrane-associated host glycans, thus blocking 
these glycans from directly binding to RV. 
However, in vivo, the nearly sterile conditions of 
the inner mucus layer28 restrict contacts between 
bacterial lectins and membrane-associated 
O-glycans, thus limiting the beneficial effect of 
bacterial lectins against RV infection. In addition, 
bacterial lectins may exacerbate RV infection by 
blocking the decoy attachment sites (secreted 
O-glycans) within the outer mucus layer.

Another mechanism that keeps bacteria away 
from IECs is production of s (secretory) IgA Abs. 
sIgA Abs bind a broad range of phylogenetically 
diverse bacteria by recognizing common epitopes 
such as glycan structure, which further emphasize 
the role of glycans in host-microbiota 
interactions.134 sIgA possesses several protective 
mechanisms, including binding to IECs, Ab inde-
pendent blocking of pathogens and neutralization 
of bacterial virulence factors (Figure 3).135,136 On 
the other hand, sIgA Abs have been found to 
promote growth of commensal bacteria, such as 
B. fragilis, in vitro and in vivo by facilitating the 
biofilm formation, thus, providing immune 
inclusion (Figure 3).137,138 B. fragilis was also 
shown to upregulate the expression of FUT2 
gene.139 Thus, the known association between 
the increased abundance of B. fragilis in RV- 
infected individuals140 is a protective mechanism 
against RV infection. Overall, in the absence of 
pathological process (steady state), there is no 
direct bacteria-IECs contact, therefore, the term 
bacterial colonization should be interpreted as 
a persistent presence of bacteria within the 
outer mucus layer. However, the overall effect 
of the gut microbiota on IECs is mediated by 
multiple mechanisms that do not require direct 
contact between the gut bacteria and IECs. First, 
the metabolism of IECs is regulated by interac-
tions between bacteria and transmembrane 
mucins.40,117 Second, the gut microbiota pro-
motes the IEC homeostasis through production 
of microbial soluble factors (discussed below).141

Microbiota regulates mucus production and 
composition

Studies have shown that mucus composition of GF 
animals differs from that of conventional counter-
parts, whereby the inner mucus layer of GF mouse 
colon was found to be penetrable to bacteria-sized 
beads.142 However, conventionalizing of GF mice 
resulted in the impenetrable status of the inner 
mucus layer.142 Gut microbiota has been found to 
regulate 10% of the host transcriptome including 
genes encoding cell proliferation and 
metabolism.143 The ability of the gut microbiota 
to influence glycosylation patterns within the 
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intestine has been studied extensively. The pre-
sence of microbiota in conventional mice has 
been shown to increase glycosylation of secreted 
mucin MUC2 by upregulation of genes encoding 
GTs compared to GF mice.13 More specifically, 
MUC2 transcription is induced by the interaction 
between the gut microbiota and IECs through NF- 
κB signaling induction (Figure 3).144 Thus, the 
presence of microbiota in the gut may be consid-
ered as a factor increasing protection against RVA 
infection.8,145

Interestingly, the effect of the gut microbiota on 
mucus composition is enzyme and gut region- 
specific. For example, presence of microbiota was 
shown to increase expression of St3gal4 sialyltrans-
ferase in the small intestine while decreasing the 
expression of St3gal6 α2,3-sialyltransferase.13 This 
study also demonstrated that colonization of GF 
mice led to increased expression of FUT2 in large 
but not in small intestine13, suggesting that these 
effects are enzyme- and site-specific.

Gut colonization by microbiota has been found 
to affect relative ratios between different types of 
O-glycans. For example, a significant change in 
sialylated/fucosylated glycan ratio occurs within 
the gut in the process of colonization. At birth, 
the expression of sialylated glycans in ‘aseptic’ gut 
is relatively high compared to the concentration of 
fucosylated glycans.146 However, the intestinal 
mucosa of adults is highly fucosylated and charac-
terized by lower expression of SA-containing 
glycans.146 Similarly, Meng and coauthors have 
shown that the expression of fucosylated epitopes 
has been gradually increasing after colonization or 
during recovery from antibiotic treatment.147 

Taken together, these data may provide an addi-
tional explanation for the increased susceptibility 
of younger individuals to RVA infection compared 
to adults.

The effect of bacterial colonization is also sup-
ported by the activity of members of mitogen- 
activated protein kinases (MAPK) (extracellular 
signal-regulated kinases and the c-Jun N-terminal 
kinase).147 MAPK activation was found to be 
dependent on the transmembrane mucin cleavage 
facilitated by bacterial proteases.148 Therefore, 
while bacterial glycosidases are involved in 
O-glycans consumption (as discussed below), bac-
terial proteases are involved in IEC metabolism 

regulated by interaction with transmembrane 
mucins (Figure 4).

Probiotic bacteria have been found to stimulate 
mucin production in vitro and in vivo, where sup-
plementation of rats with a probiotic mixture 
(Lactobacilli, Bifidobacteria, and Streptococci) for 
7 days led to a 60% increase of basal luminal 
mucin content.149 This increase coincided with 
the increased production of gel-forming mucin 
MUC2, while the expression of genes encoding 
the membrane-associated MUC1 was only slightly 
affected. These findings suggest that the probiotics 
supplementation enhances the production of decoy 
epitopes which may be helpful in RV binding and 
elimination. This study also revealed that not only 
bacterial cells, but also the conditioned media of 
the probiotic mixture stimulate mucin secretion 
in vitro. Later, this finding was confirmed in vitro 
using Bacteroides thetaiotaomicron 
(B. thetaiotaomicron)-derived conditioned 
media.150 Of note, incubation of HT-29 and 
Caco-2 cells with short chain fatty acids (SCFAs) 
produced by gut microbiota resulted in increased 
fucosylation (leading to increased amount of 
HBGAs).151 This emphasized the critical role of 
the gut microbiota in shaping the intestinal 
mucus composition. These data suggest that even 
bacterial metabolites provide beneficial effects on 
mucin expression further justifying postbiotic use.

A study io mice revealed that while mucin 
fucosylation protected the host against the inva-
sion by pathogenic bacteria via inhibiting the 
expression of bacterial virulence genes, increased 
SA catabolism led to microbial dysbiosis and gut 
inflammation.152 Thus, sialidase producing bac-
teria may exacerbate RVA infection in two ways: 
by degradation of SA residues from mucins lead-
ing to reduced numbers of decoy epitopes for 
RVA binding, and by induction of a pro- 
inflammatory environment. However, since RVA 
and RVC have been shown to differently interact 
with terminal SA-residues (discussed earlier), sia-
lidase-active bacteria are likely to have different 
effects on replication of different RVs.

A study in mice demonstrated that colonization 
of the intestine not only led to increased mucin 
production, but also to increased production of 
longer O-glycans (i.e. more sialylated, fucosylated), 
thus protecting core mucins from bacterial 
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proteases.13 Surprisingly, same study reported that 
some commensal bacteria have an antagonistic 
effect on mucin secretion.13 While colonization of 
rats with B. thetaiotaomicron resulted in increased 
goblet cell proliferation and higher proportion of 
O-glycans carrying NeuAc or NeuGc residues com-
pared to GF rats, inoculation with another com-
mensal, Faecalibacterium prausnitzii attenuated 
this effect.153 Caballero-Franco and colleagues 
demonstrated that bacterial effect on mucus secre-
tion is genus-specific: while conditioned medium 
of various Lactobacillus species (L. plantarum, 

L. acidophilus, L. casei, L. debrueckii) increased 
mucus secretion, less appreciable effect was 
observed for those obtained from single 
Bifidobacterium longum culture and combined 
B. longum + S. salivarius cultures.149

Thus, while the overall effect of bacterial coloni-
zation has been found to upregulate mucin glyco-
sylation, the individual features of bacteria should 
be taken into account when developing optimal 
strategies to stimulate mucin glycosylation in 
order to protect IECs from GI tract infection such 
as RVA infection.

Figure 4. Different effects of bacteria on mucin expression/glycosylation. Presence of glycosyl hydrolases allows bacteria to degrade 
O-glycans decreasing its protective role against RV infection. In addition, bacterial proteases cleave transmembrane mucins. In 
contrast, bacteria-stimulating bacteria by interaction with transmembrane proteins increases mucin concentration and glycosylation.
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Mucus composition shapes the gut microbiome 
structure

Similar to glycan-binding specificity of RVs (dis-
cussed in section 2), the composition of the gut 
microbiota has also been found to depend on the 
presence of secreted O-glycans.9,154,155 Differences 
in the composition of microbial communities 
between non-secretors and secretors suggest that 
more diverse glycosylation profile of secretor indivi-
duals might determine gut microbial 
composition.154 Additionally, lower species richness 
was demonstrated in non-secretor individuals com-
pared to secretors.155 Another study demonstrated 
a higher diversity of the two dominant groups of the 
human intestinal microbiota: Eubacterium rectale- 
Clostridium coccoides and Clostridium leptum in 
individuals expressing group B/AB compared to 
individuals expressing group A and H antigens.9 

Whether this difference is due to the ability of bac-
teria to preferentially utilize certain HBGAs remains 
to be evaluated. However, Davenport and colleagues 
did not find an association between the HBGA/ 
secretor status and gut microbiota composition 
among 1,500 twins suggesting that further studies 
are required to dissect the role of the host O-glycans 
in determining gut microbiota composition.156

At the family level, the relative abundance of 
Prevotellaceae and Paraprevotellaceae was shown 
to be higher in non-secretor individuals.157 

Bacteria belonging to Prevotellaceae family was 
found to be associated with increased RV shedding 
and RV-IgA response in individuals vaccinated 
against RV infection,158 suggesting that this taxa 
may enhance RV replication. Wacklin and coau-
thors demonstrated that secretor individuals had 
a higher richness and diversity of Bifidobacteria 
(including B. adolescentis) compared to non- 
secretor counterparts.159 These bacteria has been 
demonstrated to block RV infection in vitro in 
a genotype-specific manner,16,160 suggesting that 
evaluation of anti-RV effect of bacteria requires 
the use of different RV genotypes/strains/species.9

Mucin sulfation is hypothesized to affect the gut 
microbiota composition. Of importance, O-linked 
sulfate may be attached to the 6-hydroxyl of 
N-acetyl-D-glucosamine (6S-GlcNAc) and term-
inal D-galactose (Gal) carbohydrates at hydroxyl 

positions 3-, 4- or 6- (3S-, 4S- and 6S-Gal, 
respectively).161 Thus, sulfation is likely to affect 
antigenicity of carbohydrates for bacteria by mask-
ing mucin molecules from bacterial glycosidases 
preventing their degradation162 (discussed in sec-
tion 4.4). Moreover, RV infection is associated with 
reduced number of sulfated mucin-containing 
cells,124 suggesting that sulfation of terminal carbo-
hydrates may increase RV binding.

Mucus as an energy source for microbiota

Taking into account the role of mucin O-glycans 
serving as decoy receptors for RV binding, the 
ability of the gut microbiota members to degrade 
these molecules becomes especially important fac-
tor for RV infection. Indeed, O-glycans, as carbo-
hydrates, may serve as a carbon and energy source 
for the gut microbial community. An earlier study 
showed that the absence of the gut microbiota in 
cecum leads to enlarged cecum full of undegraded 
mucus.163 The ability to degrade mucin molecules 
has been demonstrated for individual members of 
all major bacterial phyla of the gut microbiota: 
Actinobacteria, Bacteroidetes, Firmicutes and 
Verrucomicrobia 164 as well as for several anaerobic 
and aerotolerant pathogenic bacteria.165,166 Mucin- 
degrading activity is provided by a group of bacter-
ial enzymes called mucinases which consists of 
proteases (their role described above), sialidases, 
glycosidases (glycoside hydrolases: galactosidase, 
α1–2-fucosidase, α1–3/4-fucosidase) and hexami-
nidase responsible for the N-acetyl-D-glucosamine, 
galactose and fucose degradation.167 Wide distri-
bution of Gram-negative Bacteroidetes is associated 
with its sophisticated enzymatic machinery and the 
ability to degrade a wide spectrum of complex 
glycans; while Gram-positive Firmicutes possess 
a highly selective glycan-degrading activity.168

Several members of the gut microbiota have 
demonstrated the ability to utilize sialylated gly-
cans within the mucus layer (Figure 4).169,170 

Sialidases have been shown to initiate the sequen-
tial degradation of mucins in vitro. These enzymes 
are encoded by clustered genes called Nan clusters 
which have been found in E. coli and in members of 
Clostridia, Bacteroides, and Bifidobacterium. Lack 
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of degradation of SA-containing glycans by 
Lactobacillus members was consistent with the 
absence or reduced number of copies of the genes 
encoding for glycosyl hydrolase enzymes.171 The 
ability of mucin-degrading bacteria to decrease 
protective effects of mucus has been demonstrated 
in vitro, where addition of intestinal murine mucin 
to MA104 cell line was shown to decrease RVA 
replication, while pre-treatment of mucin with 
B. thetaiotaomicron or A. muciniphila led to 
increased RVA infection.8 In contrast, pre- 
treatment of mucin with L. acidophilus did not 
affect the release of mucin oligosaccharides.8 

Thus, degradation of sialylated glycans by some 
bacteria decreases the role of mucus as a decoy 
epitope for RV. In addition, terminal SAs mask 
O-glycans from their further degradation by other 
bacterial enzymes,172 suggesting the different role 
of sialidase-possessing bacteria for SA-sensitive 
and insensitive RVs.

Bacterial sialidases are divided into three classes: 
hydrolytic (cleave α2–3-, α2–6- and α2–8-linked 
terminal SA residues); trans-sialidases (α2–6- and 
α2–8- specificity) and recently discovered intramo-
lecular trans-(IT)-sialidases (specificity restricted 
to α2–3- linkage).173,174 The hydrolitic sialidases 
with broad spectrum of terminal SA activity were 
used in a majority of studies describing the role of 
sialidase treatment in RV infection3,74, but some 
bacteria possess sialidase restriction specificity to 
α2–8-linked terminal SA residues.175 Moreover, 
other studies also demonstrated sialidase activity 
against GM-1 ganglioside, suggesting that bacterial 
sialidases are able to cleave internal SA 
residues.175,176 Several studies have revealed the 
significant role of gangliosides in RVA 
infection,4,94 indicating that sialidase activity 
against gangliosides may contribute to replication 
of certain RVs.

However, the ability of bacteria to release free 
SAs is not always associated with SA consumption 
by the same bacterial species.177 Some bacteria 
lacking sialidase activity have been reported to 
consume Sas. For example, Clostridium difficile 
has been found to consume free Sas due to the 
presence of the nan operon (gene encoding cata-
bolic pathways for SA), but this ability is not 
mediated by sialidase activity.177 These data indi-
cate that presence of sialidases in certain bacteria 

does not necessarily lead to decreased number of 
SAs for RV attachment.

Similar to the role of sialylation, mucin sulfation 
has also been found to protect terminal carbohy-
drates of O-glycans from bacterial degradation. For 
example, presence of the wide spectrum of sulfa-
tases has been demonstrated to provide 
a competitive colonization for B. thetaiotaomicron 
and A. muciniphila . 178,179 These data indicated the 
role of bacteria with broad spectrum of glycosyl 
hydrolases (sialidases, sulfatases) necessary for 
initial degradation of O-glycans in decreased pro-
tective effects of intestinal mucins against RVA 
infection in vitro.8

Mucin degradation has also been reported to be 
HBGA-specific. While two members of 
Ruminococcus genus were found to produce 
HBGA-A and HBGA-H degrading alpha- 
glycosidase sialidases, two Bifidobacterium strains 
were also shown to consume some components 
from the porcine gastric mucin but do not utilize 
HBGA-A.180 Other human commensal bacteria 
including E. coli, Enterococcus faecalis, and 
Bifidobacterium strains have not been found to 
degrade HBGA-related constituents from porcine 
gastric mucin.180 Taken together, presence of cer-
tain bacteria in mucin glycans might be considered 
as a factor reducing the number of decoy receptors 
for RVA infection. However, bacterial fermenta-
tion of mucin type O-glycans results in production 
of SCFAs which are beneficial for IECs integrity181 

and immune function.182 Thus, more studies are 
needed to evaluate the role of mucin-degrading 
bacteria in replication of different RVs.

RVA/Bacteria interactions with Integrins/Hsc70

Several integrins including α2β1, α4β1, α4β7, αVβ3 
and αXβ2 have been shown to be involved in RVA 
attachment and entry. Graham and coauthors 
demonstrated that while RVAs of bovine, mice 
and monkey origin interact with three integrins, 
α2β1, αXβ2, and αVβ3, none of porcine RVAs 
(both SA sensitive and insensitive) was integrin- 
dependent.183 Pathogenic and nonpathogenic bac-
teria have also been shown to interact with cell host 
integrins. For example, integrin α4β1 was demon-
strated to interact with H. pylori adhesin, an outer 
membrane protein (OMP).184 Coburn and Cugini 
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demonstrated that αvβ3-integrin-binding protein 
OMP P66 secreted by B. burgdorferi serves as an 
adhesin molecule allowing B. burgdorferi to colo-
nize host cells.185 Probiotic extracts bind 
β3-integrin and Hsc70 (RVA ligands) on MA104 
cell surface membranes, limiting RVA attachment 
and leading to decreased RVA infection.69 

Additionally, Hsc70 has been identified as 
a component of the host cells that is utilized by 
several pathogens such as E. coli, S. typhimurium 
and L. monocytogenes for their attachment.186

Studies have shown a direct connection between 
the expression of integrins and intestinal mucins, 
where expression level of integrins on cell surface 
membranes regulated production of mucins. For 
example, β1-integrin subunit overexpression was 
found to reduce MUC5AC but not MUC5B levels 
(secreted mucins).187 Interestingly, α2β1 and β2 
integrin expression was shown to be increased 
after infection caused by human and animal 
RVAs.188 In turn, mucins were shown to regulate 
integrin conformation.189 Changes in integrin con-
formation led to an increase in their affinity for 
extracellular ligands including pathogens.190 For 
example, transmembrane mucin MUC1 (its cyto-
plasmic tail) was demonstrated to affect the integ-
rin-mediated adhesion of Yersinia 
pseudotuberculosis.191 Therefore, mucins may 
affect RVA binding to integrins via conformational 
changes in integrins. Presence of integrin-binding 
proteins on beneficial bacteria and/or their capabil-
ity to interact with Hsc70 have not yet been identi-
fied, hence warrant further research.

Other host factors affecting microbiota-RV 
interactions

Besides the intestinal mucus composition, several 
other factors play significant role in RV-microbiota 
-host interactions. There is strong evidence of the 
antimicrobial properties of host bile and to a lesser 
extent digestive enzymes playing a role in RV- 
microbiota-host IEC interaction.192 However, 
some of the gut microbiota members possess bile 
tolerance, thus this ability is strain specific. For 
example, within isolated group of 
Lacticaseibacillus rhamnosus 11 strains were sensi-
tive, 3 – resistant and 8 – tolerant in terms of 
growth in presence of bile salts.193 This agrees 

with a study for Bifidobacterium demonstrated 
the contrasting results for B. infantis and 
B. longum. 194 Bile salt hydrolase activity was 
shown to play a key role in successful adaptation 
to growing in the presence of bile salts for members 
of pathogenic, commensal and probiotic 
bacteria.195 Of note, the effect of bile salts on the 
gut microbiota has been shown to be concentration 
dependent. While low levels of bile salts resulted in 
increased abundance of Gram-negative bacteria, 
high levels coincided with increased proliferation 
of Gram-positive bacteria and reduction of the 
Gram-negative Bacteroides. 196

Members of Lactobacillus, Enteroccocus, 
Bifidobacterium, Bacteroidetes and Clostridium 
have been found to possess a variety of enzymes 
allowing them to transform bile salts.197 

Furthermore, GF mice had increased secretion of 
cholesterol and bile acids compared to their con-
ventional counterparts,198 suggesting that the gut 
microbiota plays a key role in cholesterol metabo-
lism. Overall, studies have shown that the pre-
sence of bile (which is secreted into the 
duodenum and mainly absorbed in ileum) limits 
bacterial abundance in the small intestine (with 
104,5 CFU/mL in duodenum compared to distal 
part of ileum where populations reach up to 
107,8CFU/mL).199

Kim and Chang observed that simian RVA SA11 
G3P[2] and human RVA Wa G1P[8] replication 
was reduced by the bile acid treatment of MA104 
cells.200 However, an in vivo study demonstrated 
the ability of RVA to infect bile duct cells, suggest-
ing that the other components of bile, such as 
cholesterol, may have an opposite effect on RVA 
replication in vivo.201 Since RVA replication is 
cholesterol-dependent,202 the presence of choles-
terol in bile but not in bile acid extracts may 
explain these conflicting results. While little is 
known about RVC replication, our recent study 
demonstrated that depletion of cellular cholesterol 
inhibited replication of porcine RVC Cowden G1P 
[1], suggesting a similar role of cellular cholesterol 
in RVC replication.74 These data suggest that along 
with unique features of the mucus layer in the small 
intestine reducing bacterial density, the presence of 
bile further limits the ability of some bacteria to 
provide their beneficial (mucin-, sIgA- stimulating) 
effects.
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Interactions between microbiota and rotavirus

Direct rotavirus-microbiota interactions

Several studies have demonstrated expression of 
glycans by bacteria.15,16,203,204 While in mammals, 
mucins act as a barrier protecting epithelial cells 
from pathogen attachment, bacterial glycans serve 
as a defense factor against the host immune system 
allowing for molecular mimicry and immune eva-
sion, and as virulence factors facilitating host cell 
invasion.205 Similar to mammals, protein glycosy-
lation in bacteria is catalyzed by GTs.206 Despite 
the fact that bacterial GTs have a low nucleotide 
similarity to mammalian GTs207, the enzymatic 
properties of bacterial GTs are similar to those of 
human, bovine, mouse and other species.208 More 
specifically, these similarities have been detected 
for enzymes responsible for HBGA and SA 
methabolism.208 Eventually, expression of bacterial 
glycans and their recognition by RVs and human 
glycan Abs suggests a critical role of bacteria 
expressing glycans in RV infection.16

Segmented filamentous bacteria interact directly 
with RVA affecting its infectivity and disease sever-
ity in mice.209 Our lab demonstrated the direct 
binding of E. coli Nissle 1917 but not 
L. rhamnosus GG to Wa (G1P[8]) RVA particles 
or Wa RVA virus-like particles (VP2/4/6) but not 
to VP2/6 virus-like particles.210 The protective role 
of E. coli Nissle 1917 against RVA infection has 
been evaluated and compared with that of L. rham-
nosus GG, whereby inoculation of GF piglets with 
E. coli Nissle 1917 decreased diarrhea severity and 
virus shedding after RVA challenge to a greater 
extent than L. rhamnosus GG inoculation.210 

Recently, we have shown that E. coli Nissle 1917 
but not L. rhamnosus GG bound RVA and RVC 
and decreased replication of multiple RVA strains 
in vitro. 16 Moreover, members of two genera, 
Ruminococcus and Oxalobacter that express gly-
cans (A, B, H and Lewis A) on their surface were 
shown to bind Wa G1P[8] RVA strain.211 Thus, 
bacterial glycans could provide protection against 
RVA infection in vivo.

Recent studies have demonstrated that pro-
teins in probiotic extracts binding to Hsc70 
and β3 integrin inhibited RVA infection of 
MA104 cells by blocking viral adhesion rather 
than entry.69 Studies have also shown that 

Enterococcus cloacae produces glycans that are 
capable of binding RVA via interaction with the 
VP8* domain thereby inhibiting its 
replication.157 The ability of HBGA-expressing 
bacteria to directly bind noroviruses (NoVs) 
has been shown to protect NoVs from acute 
heat stress and facilitate NoV infection in vitro.-
212 These studies of RVA and NoV infections 
emphasize that significant differences occur 
between in vivo and in vitro infections. In the 
course of in vivo infection, RVA interacts with 
O-glycans on the IEC surface as well as secreted 
O-glycans within the intestinal mucosa and/or 
glycans present on the bacterial surface and 
therefore may be removed from the gut by vil-
lous movement.213 (Figure 3). However, conven-
tional continuous cell cultures do not 
recapitulate in vivo mucus turnover. While gut 
colonization with commensal microbiota does 
not result in direct contact between bacteria 
and the IEC surface214, addition of bacteria to 
continuous cell lines leads to the direct bacterial 
adhesion and can even cause cell death.215 Thus, 
in vitro assays have significant limitations for 
studying the tripartite RVA-bacteria-host 
interactions.

In addition to using sialylated glycans as an 
energy source, some bacteria, such as strains of 
E. coli, P. multocida and B. pseudocatenulatum are 
known to possess N-acylneuraminate cytidylyl-
transferases (CMP-Neu5Ac synthetases), enzymes 
responsible for SA methabolism.216–218 However, 
production of sialylated glycans in bacteria is not 
limited to de novo biosynthesis and does not 
require the presence of all enzymes for SA 
methabolism.219 Bacterial sialyltransferases allow 
bacteria to use an external 5´-monophosphate 
(CMP)-activated SA (e.g., CMP-N-acetyl- 
neuraminic acid; CMP-Neu5Ac) to synthetize 
their own SAs.220 Therefore, the sialylated glycans 
on the bacterial cell surface play a role as anti- 
recognition molecules, allowing bacteria to remain 
undetected by the host immune system.221 Thus, 
bacterial consumption of O-glycans does not 
necessarily lead to decreased numbers of RVA 
attachment sites within the intestinal mucosa. 
However, the role of sialylated glycan-producing 
bacteria in the context of RVA infection remains 
poorly understood.
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Microbiota upregulate immune responses to RVA 
infection

Key roles of microbiota include postnatal immune 
system development, regulation and promotion of 
protective immunity against pathogens.222,223 sIgA 
secretion as a part of extrafollicular and T-cell inde-
pendent Ab responses has been found to be con-
trolled by commensal bacteria.224 The increased 
transcytosis of IgA through IECs is mediated by 
the polymeric immunoglobulin receptor (pIgR). 
Some bacteria upregulate plgR expression by the 
same MyD88-dependent TLR signaling225 as has 
been demonstrated for antimicrobial C-type 
lectins.129 Cash and coauthors observed that the 
intestine of GF mice had significantly lower concen-
trations of secreted sIgA, smaller Peyerˈs patches, 
and reduced RegIIIγ expression.226

Several investigators have evaluated the role of 
gut microbiota in immune responses to RVA 
infection.210,227–229 The beneficial effect of probio-
tics against virus infection has been studied exten-
sively for lactic acid bacteria.227,228 For example, 
Laino and colleagues showed that L. delbrueckii 
produces immunomodulatory extracellular poly-
saccharides (EPSs) that allow for interactions 
between bacteria and host IECs by interacting 
with PRRs expressed by nonimmune and immune 
cells.227 Most recently, Kanmani and colleagues 
showed that an innate immune response triggered 
by TLR3 activation in porcine IECs was differen-
tially modulated by EPS from L. delbrueckii. 228 

Certain probiotic bacteria were demonstrated to 
upregulate immune responses to RVA vaccine.229 

Our lab further demonstrated that colonization of 
gnotobiotic (Gn) piglets with E. coli Nissle 1917 
resulted in increased RVA-specific IgA Ab titers in 
serum and intestinal contents after vaccination and 
challenge with human RVA compared with 
L. rhamnosus GG colonized counterparts.230 

Supporting our previous observations,210 this 
study suggested that the beneficial effect of bacteria 
on the immune system is strain-specific. Thus, 
bacteria provide sIgA-stimulating and strain- 
specific effects in the intestine.

Antibiotic treatment before RVA inoculation 
increased the concentration of IgA-Ab producing 
cells in the intestine which correlated with delayed 
and diminished RVA infection in a mouse 

model.231 However, in contrast, enhanced RVA 
infection has been demonstrated in Gn piglets 
colonized with commensal microbiota and treated 
with ciprofloxacin compared to the untreated 
group.145 Others demonstrated that the commensal 
microbiota supports persistent murine NoV infec-
tion, whereas antibiotic treatment resulted in 
diminished viral shedding and viral loads in intest-
inal tissues.232 These inconsistencies may reflect 
the differential effects of the antibiotics used and 
presence of antimicrobial resistance genes in cer-
tain bacteria.

RVA infection affects microbiota composition

RVA infection dramatically alters microbiota com-
position often decreasing the intestinal microbiota 
diversity, especially of Proteobacteria and increased 
number of opportunistic pathogens.233 Our recent 
study has shown that RVA infection resulted in 
increased Firmicutes abundance which coincided 
with reduction in Proteobacteria.234 While the 
intestinal microbiota in healthy individuals were 
mainly represented by Bacteroidetes, the dominant 
phylum of the patients with diarrhea was 
Firmicutes.235 These changes were not only evident 
at the phylum level, but variations in microbial 
composition at the species level associated with 
RVA infection of children were also noted.140

RVA infection increased the abundance of the 
mucin-degrading Bacteroides in mice8, humans233 

and piglets.236 The abundance of a member of the 
genus Lactobacillus, lacking mucin-degrading 
activity, was decreased during the first 3 days of 
RV infection in mice.8 Remarkably, both, mucin 
stores and gut microbiota composition were fully 
restored to the pre-infection levels at day 3 post- 
infection in a strain-specific manner: RVA infec-
tion led to increased abundance of B. fragilis, 
whereas the abundance of B. vulgatus and 
B. stercoris was decreased. Thus, RVA infection 
is complicated by the bacteria-mediated decrease 
in concentration of protective mucins, further 
facilitating RV replication. Collectively, these fac-
tors may contribute to the increased diarrhea 
severity and virus shedding during first 2–4 days 
after infection. However, whether the increased 
abundance of mucin-degrading bacteria is 
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a mechanism that reduces or increases RVA 
infection in vivo is unknown. These bacteria 
may have a prominent effect on sIgA production 
as shown for B. ovatus 237 or carry glycans as 
decoy epitopes that bind RVA as was demon-
strated by our recent study.16 Finally, as was 
shown for B. thetaiotamicron, bacteria may sti-
mulate O-glycan expression supplying additional 
decoy epitopes for diverse RVs.150

Conclusions and future perspectives

Despite significant knowledge accumulated in the 
last 10–15 years regarding RVA pathogenesis, the 
mechanisms regulating interactions between RVA 
and host cellular attachment sites remain poorly 
understood. The discovery of O-glycans such as 
HBGAs as ligands for RVA attachment/entry has 
expanded our knowledge about the role of host- 
related factors that influence RVA infection out-
comes. Usually the virus-host interactions at or 
near the cellular surface membranes are the focus 
of extensive research. However, the important initial 
interactions occurring within the intestinal lumen 
and the mucus layer remain understudied. While 
many body organ systems, including cardiovascular 
and nervous, are protected from the external envir-
onment by a physical barrier, other body systems 
such as digestive, respiratory, integumentary, and 
reproductive, combine both physical barrier and 
absorptive, transport, and exchange functions to 
protect themselves from the external environment. 
These functions are supported by the two mucus 
layers which are the part of the universal innate 
immune system of aquatic and terrestrial metazoans. 
In turn, these functions of mucus are promoted by 
mucus glycoproteins (mucins, including O-glycans) 
that are present not only within the intestinal 
mucosa in secreted and membrane bound forms, 
but also on the IEC surface where they serve as 
sites for RVA attachment/entry (Figure 3).

The gut microbiota regulates mucin production 
in a strain-specific manner, whereby certain 
enzymes produce glycans that aid in evasion of 
host immunity and production of biofilms. On the 
other hand, mucin-degrading bacteria decrease con-
centration of O-glycans, reducing their protective 

effects as decoy attachment sites for various patho-
gens including RV species. Moreover, these gut 
microbiota members directly bind host O-glycans 
sequestering them to restrict viral pathogen binding. 
All these features of the gut microbiota, including 
the stimulation of the immune response to RVA are 
strain-specific, meaning that the effects of the 
microbiota on the RVA-host interactions is reliant 
on the microbiota composition. Thus, targeted 
modulation of gut microbiota composition includ-
ing pro-, pre- and postbiotics is an appropriate and 
innovative approach for RV infection control. Since 
RV – O-glycan interactions are genotype-specific, 
a similar strategy may be implemented to modulate 
RV infection outcome. Collectively, RVA infection 
outcome is a function of multidirectional and com-
plex RV-microbiota-host O-glycans interactions 
with RV genotype-/bacterial species-dependent 
characteristics. The findings summarized here sug-
gest that RVA adaptation to the host and genetic 
diversity are influenced by the host and bacterial 
glycan variability and the ensuing interactions. This 
knowledge needs to be further evaluated, expanded 
and considered for development of effective control 
measures of RVA and other intestinal pathogens.
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