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Abstract

This research project considersModel Order Reduction (MOR) techniques known as Proper
Orthogonal Decomposition (POD) method and Discrete Empirical Interpolation Method
(DEIM) for Partial Differential Equations (PDEs). First, Proper Orthogonal Decomposition
is used to formulate a low dimensional basis that can preserve the dynamics of the system.
Then, POD-Galerkin approach is employed to obtain a reduced-order model. However,
POD method is not efficient when dealing with nonlinear systems and therefore DEIM is
used to minimize the computational complexity of the nonlinear term. Wewill apply POD
and DEIM to estimate solutions of high dimensional dynamical systems that arise from
finite difference discretization of PDEs. Practically, we will apply POD-DEIM approach to
Fisher’s equation and POD method to Diffusion-advection equation.
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Notations

0.1 Variables and symbols

Y ∗ conjugate transpose of matrix Y
u∗ conjugate transpose of vector u
Ykl Element at the kth row and lth column of matrix Y
∥u∥F Frobenious norm of a vector :

√
u∗u, where u ∈ Cn

∥u∥W Weighted norm: ∥u∗Wu∥, where u ∈ Cn,W ∈ Cn×n

⟨u, ū⟩ inner product between two vectors: u∗ū = ū∗u, where u, ū ∈ Cn

⟨u, ū⟩W Weighted inner product between two vectors: u∗Wū = ū∗Wu, where u, ū ∈ Cn,
W ∈ Cn×n

0.2 Acronyms

POD Proper Orthogonal Decomposition
ROM Reduced Order Model
DEIM Discrete Empirical Interpolation Method
PDE Partial Differential Equations
SVD Singular Value Decomposition
ODE Ordinary Differential Equations
MOR Model Order Reduction
FE Finite Element
FD Finite Difference
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1 Introduction

Partial Differential Equations are ubiquitous in everyday phenomena to describe biomedi-
cal, physical, chemical, engineering and technical processes. Partial Differential Equation
(PDE) problems exhibit complex dynamics stemming fromnonlinearities and instabilities.
For this reason, numerical methods for PDEs like Finite Element (FE), Finite Volume (FV)
and Finite Difference (FD) methods are essential in studying numerical solutions of PDEs
in order to reduce computational costs and time. However, these numerical methods re-
quire the domain to be partitioned into meshes resulting to many degrees of unknowns,
that corresponds to the number of nodes of mesh division [14]. This requires a lot of CPU
time on a powerful computer which poses an outstanding challenge on these classical nu-
merical approximation techniques. Actually, these methods demand huge computational
efforts incase accuracy is necessary.

We want to reduce this computational complexity by removing unnecessary degrees of
unknowns. Therefore, model reduction technique that is able to minimize computational
time and memory capacity is suitable in order to boost computing efficiency. We can
achieve this speed up by trading off the model accuracy for reduced computational com-
plexity. Reduced order models describe a dynamical system by a smaller representation
such that main characteristics of the system are conserved with adequate correctness. In
this research project, model reduction technique named Proper Orthogonal Decomposi-
tion(POD) method has been extensively adopted .

Proper Orthogonal Decomposition is a technique used to provide low order models for
Ordinary differential equations. This is attained by projecting the full-order system to
subspaces that consists of optimal basis elements containing important features of the
expected solution. This is in contrary to numerical methods whereby the elements are
uncorrelated to the physical properties of the dynamical system they approximate. The
PODmethod extracts basis functions that are used in construction of galerkin projection
leading to low order models with fewer degrees of unknowns.

In spite of that, POD method may not reduce the simulation time for solving nonlinear
dynamical system because the complexity of nonlinear term still rely on the high di-
mensionality of the original system. Thus, there is need to consider additional nonlinear
model reduction technique. We will focus on Discrete Empirical Interpolation Method
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(DEIM) because it can minimize complexity of general nonlinear terms. DEIM is an im-
provement of the POD algorithm. It estimates nonlinear term by finding basis from POD
method and selecting the interpolation indices by a greedy algorithm. Goal of DEIM is
to choose the interpolation indices by trying to minimize the error empirically.

1.1 Objectives

The main goal of this research project is to reduce computational complexity of PDEs.

Specific objectives are

• To study and understand Proper Orthogonal Decomposition method.

• To study and understand Discrete Empirical Interpolation Method.

• Find POD modes and POD-DEIM modes that preserve the dominant characteristics
of the original system.

• Reduce relative average error in relation to the full order model.

1.2 Literature Review

In 1901, Karl Pearson presented eigenvector analysis method which was used to remove
essential components of big data. During same period, Karl Pearson introduced Proper
Orthogonal Decomposition(POD) method, as its successor. Sample analysis, Pearson’s
data mining and data processing techniques are appropriate upto date [9]. POD method
is identified by different names in other scientific fields, namely; Karhunen-Loève decom-
position, Singular systems analysis, Principal Component Analysis and Singular Value
Decomposition . Over the years, POD method was introduced by numerous people in-
dependently, such as; Kosambi (1943), Loève (1945) , Karhunen (1946) , Pougachev (1953)
and Obukhov (1954). The Proper Orthogonal Decomposition method was introduced in
fluid dynamics, particularly turbulence, by Lumbley in 1967 to identify coherent struc-
tures in turbulent flows [3].

Later on, Sirovich presented the method of snapshot of POD in 1987. The Proper Orthog-
onal Decomposition method has been widely adopted in different fields such as optimal
control, signal analysis and pattern recognition, computational fluid dynamics, statistics
and biomedical engineering. After 1987, the POD method was basically applied in sta-
tistical computations to carry out principal component analysis. In 2001, Kunisch and
Volkweind proposed an excellent work on POD-Galerkin method for PDEs where it was
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used to find certain major behavior of dynamical systems [2]. Since then, this model
reduction technique known as POD has been widely used in computing numerical solu-
tions for PDEs, laying out enhanced efficiency as compared to numerical computational
methods [4].

Initially, Kunisch and Volkweind derived error estimates for a POD reduced systems of
numerical solutions of nonlinear parabolic PDEs, whereby those error estimates con-
tained uncertain matrix norms. Particularly, the numerical solutions of the Galerkin
method defined on time span [0, T] were used to formulate the POD reduced systems
and recompute the numerical solutions of the PDEs using the similar time span [0, T].
Zhendong Luo developed interest on POD for PDEs in the year 2003 but only incomplete
introductions about POD were available. In 2006, Zhendong Luo and his coauthors pub-
lished their POD method first papers in which they discussed oceanic models and data
assimilation [5]. Later, they were able to establish some POD reduced-order FD schemes
and FE formulations. Since 2007, they derived the error approximations for solutions of
POD reduced system for PDEs of numerous kinds [8].

POD method faced a big challenge even though it was promising at first due to the non-
linear nature of some systems. In 2010, Serenson and Chaturantabut developed the Dis-
crete Empirical Interpolation Method (DEIM) which can deal with models with nonlin-
ear terms in order to reduce computational complexity [16]. DEIM has been used in
many applications, such as 2-D shallow water equations, Navier-Stokes equations and
four dimensional variational data assimilation [17]. In 2018, Norapon Sukuntee and Sai-
fon Chaturantatut used POD in conjunction with DEIM to study Sine-Gordon equation.
They investigated the end result of using different snapshots for formulating the POD
basis from discretization of the equation and applied the POD-DEIM method to predict
numerical solution of the sine-Gordon equation [18].

T y p e  t e x t  h e r e
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2 Preliminaries

In this chapter, we will discuss some important notions that will be used throughout
this project. Particularly, we will discuss Singular Value Decomposition, low rank matrix
approximation, dynamical system and reduced order models.

2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a unique matrix decomposition used to obtain
low-rank approximations to matrices.
Let Y = [y1,y2, . . . ,ym] be a n×m complex valued matrix with rank r ≤ min {n,m} and
n ≥ m. The columns of the matrix yl ∈ Cn, 1 ≤ l ≤ m, are known as snapshots while m
represents number of snapshots in Y .
Thus, Singular Value Decomposition (SVD) factorizes matrix Y into a product of other
three matrices. That is,

Y =UΣV ∗ (2.1.1)

wherebyU ∈Cn×n andV ∈Cm×m are unitarymatriceswith orthonormal columns {ul}n
l=1

and {vl}m
l=1 respectively and

Σ =

Σ̃ 0

0 0

 ∈ Rn×m

where Σ̃ = diag(σ1, σ2, . . .σr) ∈ Cr×r with σ1 ≥ σ2 ≥ . . .σr ≥ 0 which are known as sin-
gular values. Here, adjoint * denotes the complex conjugate transpose.

The vectors {vk}r
k=1 and {uk}r

k=1 are called eigenvectors ofY ∗Y andYY ∗ respectively with
corresponding eigenvalues λk = σ2

k > 0, k = 1,2, . . .r and satisfy the relation

Y vk = σkuk and Y ∗uk = σkvk, k = 1,2, . . .r.

Using the fact that Σ has decreasing and non-negative diagonal entries, it is possible to
cut out some rows and columns, truncating the singular vectors corresponding to small
singular values. By doing this, we are able to get the best possible rank-r approximation
to Y .
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It follows that equation (2.1.1) can be written as

Y ≈ Ũ Σ̃Ṽ ∗ (2.1.2)

whereby matrices Ũ ∈ Cn×r and Ṽ ∈ Cm×r denote the truncated matrices formed by
choosing the leading r columns of U and V matrices respectively.

Letting Ỹ = Σ̃Ṽ ∗ ∈Cr×m, equation (2.1.2) can be expressed in the form

Y = ŨỸ (2.1.3)

This infers that the space spanned by columns of matrix Y can be expressed interms of r
columns of matrix Ũ that are linearly independent. Hence, the expansion of the columns
yl, l = 1,2, . . .m, with respect to the basis {uk}r

k=1, results to coefficients which are given
by the lth column of Ỹ . Since matrix U is a unitary, then we can deduce that

yl =
r

∑
k=1

ỸklŨk =
r

∑
k=1

(Σ̃Ṽ ∗)kluk =
r

∑
k=1

(Ũ∗Ũ Σ̃Ṽ ∗)kluk

=
r

∑
k=1

(Ũ∗Y )kl uk =
r

∑
k=1

(
n

∑
l=1

Ũ∗ikYil)uk

=
r

∑
k=1
⟨uk,yl⟩ul

Thus, yl is the Fourier series representation with the form

yl =
r

∑
k=1
⟨uk,yl⟩uk (2.1.4)

2.1.1 Low Rank Matrix Approximation

Given a n×m complex valued matrix of rank r, low rank matrix approximation permits
us to find an approximate matrix Ỹ which has rank less or equal to r. Therefore, we can
say low rank approximation is a minimization problem:

argmin
∥∥Y − Ỹ

∥∥
F subject to rank(Ỹ )≤ r.

Theorem 2.1.1. (Eckart-Young)
The optimal rank-d approximation to Y , in a least square sense, is given by the rank-d SVD
truncation Ỹ :

argmin
∥∥Y − Ỹ

∥∥
F = Ũ Σ̃Ṽ ∗
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Here, Ũ and Ṽ stand for the leading d columns of matrices U and V respectively, Σ̃ contains
the leading d× d sub-block of Σ. ||.||F is the frobenius norm and Ỹ = Ũ Σ̃Ṽ ∗ denotes the
truncated SVD basis.

2.2 Dynamical systems and Reduced Order Models

2.2.1 Dynamical system (Nonlinear Ordinary Differential Equation)

The general form of a nonlinear ODE is given by

d
dt
y(t) = f(y, t; µ)

where f is the vector field, vector y(t) ∈Cn is known as the state of the dynamical system
and µ are constants. We can say f is Lipschitz continuous function.

2.2.2 Nonlinear Partial Differential Equations

Definition 2.2.1. Nonlinear PDE is defined as partial differential equation with nonlinear
terms.

The general form of the equation is

ut = f(u,ux,uxx, . . . .x, t)

where u is the state of the PDE, f denote the nonlinear operator, x denote the spatial
variables while t is the temporal variable and the subscripts denote partial differentiation.

2.2.3 Galerkin Projection

Galerkin projection is a method applied to high fidelity dynamical systems to obtain
reduced models. This Galerkin projection is given by

u(x, t)≈
d

∑
i=1

ai(t)ψi(x)

where the functions al(t) are known as temporal coefficients and ψi(x) are spatial modes.
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In the case of high fidelity discretized state, the Galerkin projection is

u(x, t)≈
d

∑
i=1

ai(t)Ψi(x)

where spatial modes Ψi ∈ Cn are the columns of Ũ = Ψ.
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3 POD Method

3.1 Eigenvalue problem

Suppose we have a data set Y ∈ Cn of rank r that is a function of both space and time.
The objective of POD method is to compute an orthonormal basis {uk}d

k=1, that is opti-
mal and approximates the data set in some subspace X with dimension d << n. These
orthonormal basis {uk}d

k=1 are called POD basis of rank d and uk are PODmodes or POD
basis vectors.

Let {uk}d
k=1 denote an orthonormal basis of subspace X , then it is possible to write a finite

dimensional representation of the form

yl =
d

∑
k=1

akluk k = 1, . . . ,d, l = 1, . . . ,m (3.1.1)

that describeY better than presentation of the similar size in different basis. Here, akl are
unknown coefficients of the expansion.

The mathematical statement of optimality is that we are supposed to choose u such that
the error in least square sense due to the approximation of yl is minimized.

e =

∥∥∥∥∥yl−
d

∑
k=1

akluk

∥∥∥∥∥
2

where ∥.∥ is the induced l2 norm.
The sum (squared error) is given by

E =
n

∑
l=1

∥∥∥∥∥yl−
d

∑
k=1

akluk

∥∥∥∥∥
2

2

We can rewrite this equation as

E =
n

∑
l=1
∥yl∥2

2−2
n

∑
l=1

d

∑
k=1

akly∗l uk +
n

∑
l=1

d

∑
k=1

a2
kl (3.1.2)
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We can now minimize the error with respect to both akl and uk.
First, let’s minimize E with respect to the unknown coefficient akl . This is done by ob-
taining partial derivatives of E with respect to ars

∂E
∂ars

=−2y∗r us +2ars = 0

From the equation, ars = y∗r us = ⟨yr,us⟩

Therefore, Equation (3.1.1) is called a Generalized Fourier series where akl are called the
Fourier coefficients defined by akl = y∗l uk = ⟨yl,uk⟩.

We substitute the value of akl in Equation (3.1.2) to get

E =
n

∑
l=1
∥yl∥2

2−2
n

∑
l=1

d

∑
l=1

(y∗l uk)y∗l uk +
n

∑
l=1

d

∑
k=1

(y∗l uk)
2

=
n

∑
l=1
∥yl∥2

2−
n

∑
l=1

d

∑
k=1

(y∗l uk)
2

=
n

∑
l=1
∥yl∥2

2−
d

∑
k=1

u∗k

(
n

∑
l=1

y∗l yl

)
uk

Let β = ∑
n
l=1 ∥yl∥2

2 and W = YY ∗

Then, the equation reduces to

E = β −
d

∑
k=1

u∗kWuk

Further, we minimize the error E with respect to uk. This is equivalent to maximizing the
second term

max
d

∑
k=1

u∗kWuk subject to u∗kuk = 1,k = 1, . . . ,d (3.1.3)

This equality constitute a problem in the calculus of variations: to extremize ∑
d
k=1 u∗kWuk

subject to the constraint u∗kuk = 1,k = 1, . . . ,d. In this case, we will use the method of
Lagrange multipliers.
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The Lagrange functional associated to this constrained variational problem is

L (uk,λ ) =
d

∑
k=1

u∗kWuk +λ (1−u∗kuk)

Considering first-order necessary optimality condition ∇L (uk,λ ) = 0, we then find the
gradient of L subject to uk:

∂L

∂uk
=

∂

∂uk

(
d

∑
k=1

u∗kWuk +λ (1−u∗kuk)

)
= 2Wuk−2λuk

= 2YY ∗uk−2λuk

Thus,
∇L (uk,λ ) = 2(YY ∗uk−λuk) = 0 (3.1.4)

Equation (3.1.4) yields the eigenvalue problem

YY ∗uk = λuk in Cn

Hence, the optimal basis is given by the eigenfunctions {uk}d
k=1 of YY ∗ that is defined

from computing SVD of empirical dataY . This optimal basis are consequently called POD
modes and therefore Equation(3.1.1) is called the Proper Orthogonal Decomposition of yl .

This result can be summarized in Theorem 3.1.1

Theorem 3.1.1. (POD basis) Suppose Y = [y1,y2, . . . ,ym] ∈ Cn×m is a matrix of rank r ≤
min{n, m}. Moreover, let Y = UΣV ∗ be the SVD of Y , where U = [u1,u2, . . . ,un] ∈ Cn×n,
V = [v1,v2, . . . ,vm] ∈ Cm×m are unitary matrices and diagonal matrix Σ ∈ Rn×m has real
and non-negative entries . Then, for any 1≤ d ≤ r, the solution to the maximization problem

max
ū1,...ūd∈Cn

d

∑
k=1

m

∑
l=1
| ⟨yl, ūk⟩ |2 s. t ⟨ūk, ūl⟩= δkl, for 1≤ k, l ≤ r (Q1)

where

δkl =

{
0, k ̸= l

1, k = l
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is given by the singular vectors {uk}d
k=1, i.e, by the leading d columns of matrix U . Further,

argmax(Q1) =
d

∑
k=1

σ
2
k =

d

∑
k=1

λk (3.1.5)

Proof. The Equality (Q1) is a constrained optimization problem, therefore we can use
the method of Lagrange multipliers.

The Lagrangian L is given by

L (u1,u2, . . . ,ud,Λ) =
d

∑
k=1

m

∑
l=1
| ⟨yl,uk⟩ |2 +

d

∑
k,l=1

λkl(δkl−⟨uk,ul⟩)

for u1,u2, . . .ud ∈Cn andΛ=(λkl)∈Rd×d . The first-order optimality necessary condition
for this problem is given by

∂L

∂ui
(u1,u2, . . . ,ud,Λ)δui = 0 for all δui ∈ Cn and i ∈ {1, . . . ,d} (3.1.6)

Then from

∂L

∂ui
(u1,u2 . . . ,ud,Λ)δUi = 2

d

∑
k=1

m

∑
l=1
⟨yl,uk⟩⟨yl,δui⟩δki

−
d

∑
k,l=1

λkl ⟨uk,δui⟩δli−
d

∑
k,l=1

λkl ⟨δui,ul⟩δik

= 2
m

∑
l=1
⟨yl,ui⟩⟨yl,δui⟩−

d

∑
k=1

(λki +λik)⟨uk,δui⟩

=

〈
2

m

∑
l=1
⟨yl,ui⟩yl−

d

∑
k=1

(λki +λik)uk,δui

〉

and Equation (3.1.6) we deduce that

m

∑
l=1
⟨yl,ui⟩yl =

1
2

d

∑
k=1

(λki +λik)uk in Rn for all i ∈ {1, . . . ,d} (3.1.7)

Note that
YY ∗u =

m

∑
l=1
⟨yl,ul⟩yl for u ∈ Cn
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Therefore, Equation (3.1.7) can be expressed as

YY ∗ui =
1
2

d

∑
k=1

(λki +λik)uk in Cn for all i ∈ {1, . . . ,d} (3.1.8)

We then continue by induction. When d = 1, i = 1. Then Equation (3.1.8) becomes

YY ∗u1 = λ1u1 in Cn (3.1.9)

with λ1 = λ11.
Now for d ≥ 1, suppose that necessary optimality conditions are identified by

YY ∗ui = λiui in Cn for all i ∈ {1, . . . ,d} (3.1.10)

We want to show that the first order necessary condition for optimality for a POD basis
{uk}d+1

k=1 of rank d +1 is given by

YY ∗ui = λiui in Cn for all i ∈ {1, . . . ,d +1} (3.1.11)

By assumption, Equation (3.1.10) is true. Hence, we have remained to prove that

YY ∗ui+1 = λi+1ui+1 in Cn (3.1.12)

Using Equation (3.1.8), we have

YY ∗ud+1 =
1
2

d+1

∑
k=1

(λk,d+1 +λd+1,k)uk in Cn (3.1.13)

Since {uk}d+1
k=1 is a POD basis, we have ⟨ud+1,uk⟩= 0 for 1≤ k ≤ d. YY ∗ is hermitian, so

using Equation (3.1.10), for any k ∈ 1,2, . . . ,d we have
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0 = λk ⟨ud+1,uk⟩= ⟨ud+1,YY ∗uk⟩= ⟨YY ∗ud+1,uk⟩

=
1
2

d+1

∑
k=1

(λk,d+1 +λd+1,k)⟨uk,uk⟩= (λk,d+1 +λd+1,k)

which gives

λd+1,k =−λk,d+1 for any k ∈ {1, . . . ,d} (3.1.14)

Plugging in Equation (3.1.14) to Equation (3.1.13) we get

YY ∗ud+1 =
1
2

d

∑
k=1

(λk,d+1 +λd+1,k)uk +λd+1,d+1ud+1

=
1
2

d

∑
k=1

(λk,d+1−λk,d+1)uk +λd+1,d+1ud+1

= λd+1,d+1ud+1

Whenwe set λd+1 = λd+1,d+1, we obtain Equation (3.1.12). Thus, the necessary conditions
for (Q1) are given by the eigenvalue problem

YY ∗uk = λkuk for k ∈ {1, . . . ,d}. (3.1.15)

From SVD, we can conclude that {uk}d
k=1 solves Equation (3.1.15). The proof that {uk}d

k=1
is a solution to Equality (Q1) and that argmax(Q1) = ∑

d
k=1 σ2

k holds is analogous to the
proof for (Q1).

3.2 Optimality of the POD Basis

Given d ∈ {1, . . . ,r}, the vectors {uk}d
k=1 are known as POD basis with rank d. The results

below shows that for each d ≤ r the approximation of the columns of matrix Y by the
leading d singular vectors {uk}d

k=1 is optimal amid each and every rank d approximations
to the columns of Y in average sense.
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Corollary 3.2.1. Suppose all hypothesis of Theorem 3.1.1 are satisfied and let Û r ∈Cn×r be
a matrix with pairwise orthonormal vectors ûk. Then columns of Y can be expanded in the
basis {ûk}r

k=1 as

Y = Û rDr where Dr
kl = ⟨ûk,yl⟩ for 1≤ k ≤ r,1≤ l ≤ m

Therefore for every d ∈ {1, . . . ,r}, we have

∥∥∥Y −UdBd
∥∥∥

F
≤
∥∥∥Y −ÛdDd

∥∥∥
F

(3.2.1)

whereby ∥.∥F is the Frobenius norm identified by

∥Y∥F =

√
n

∑
k=1

m

∑
l=1
|Ykl|2 =

√
trace(Y ∗Y ) f or Y ∈ Cn×m,

the matrixUd represents the leading d columns ofU , Bd denotes the leading d rows of B and
likewise for both Ûd and Dd .

Notice that

∥∥∥Y −UdBd
∥∥∥2

F
=

n

∑
k=1

m

∑
l=1
|Ykl−

d

∑
i=1

Ud
kiBil|2

=
m

∑
l=1

n

∑
k=1
|Ykl−

d

∑
i=1
⟨ui,yl⟩Ud

ki|
2

=
m

∑
l=1

∥∥∥∥∥yl−
d

∑
i=1
⟨yl,ui⟩ui

∥∥∥∥∥
2

Analogously,

∥∥∥Y −ÛdDd
∥∥∥2

F
=

n

∑
k=1

m

∑
l=1
|Ykl−

d

∑
i=1

Ûd
kiDil|2

=
m

∑
l=1

n

∑
k=1
|Ykl−

d

∑
i=1
⟨ûi,yk⟩Ûd

ki|
2

=
m

∑
l=1

∥∥∥∥∥yl−
d

∑
i=1
⟨yl, ûi⟩ ûi

∥∥∥∥∥
2
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Thus, Equation (3.2.1) implies that

m

∑
l=1

∥∥∥∥∥yl−
d

∑
i=1
⟨yl,ui⟩ui

∥∥∥∥∥
2

≤
m

∑
l=1

∥∥∥∥∥yl−
d

∑
i=1
⟨yl, ûi⟩ ûi

∥∥∥∥∥
2

for a different set {Ûk}i
k=1 of i pairwise orthonormal vectors.

Proof. ∥∥∥Y −ÛdDd
∥∥∥2

F
=
∥∥Û r(Dr−Dr

o)
∥∥2

F = ∥Dr−Dr
O∥

2
F

=
r

∑
k=d+1

m

∑
l=1
|Dd

kl|
2,

where Dr
o ∈ Cr×m results from D ∈ Cr×m after we replace the last r−d rows by 0.

Correspondingly,∥∥∥Y −UdBd
∥∥∥2

F
=
∥∥∥Ud(Br−Bd

o)
∥∥∥2

F
=
∥∥∥Br−Bd

O

∥∥∥2

F

=
r

∑
k=d+1

m

∑
l=1
|Br

kl|2

=
r

∑
k=d+1

m

∑
l=1
| ⟨yl,uk⟩ |2

=
r

∑
k=d+1

m

∑
l=1
⟨⟨yl,uk⟩yl,uk⟩=

r

∑
k=d+1

⟨YY ∗uk,uk⟩

=
r

∑
k=d+1

σ
2
k

By Theorem 3.1.1, the vectors u1, . . . ,ud solves Q1.

From
∥Y∥2

F =
∥∥Û rDr∥∥2

F = ∥Dr∥2
F =

r

∑
k=1

m

∑
l=1
|Dr

kl|2

and
∥Y∥2

F = ∥U rBr∥2
F = ∥Br∥2

F =
r

∑
k=1

m

∑
l=1
|Br

kl|2
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we deduce that

∥∥∥Y −UdBd
∥∥∥2

F
=

r

∑
k=d+1

σ
2
k =

r

∑
k=1

σ
2
k −

d

∑
k=1

σ
2
k = ∥Y∥2

F −
r

∑
k=1

m

∑
l=1
| ⟨yl, ûk⟩ |2

≤ ∥Y∥2
F −

d

∑
k=1

m

∑
l=1
| ⟨yk, ûk⟩ |2 =

r

∑
k=1

m

∑
l=1
|Dr

kl|2−
d

∑
k=1

m

∑
l=1
|Dr

kl|2

=
r

∑
k=d+1

m

∑
l=1
|Dr

kl|2 =
∥∥∥Y −ÛdDd

∥∥∥2

F

which gives Equation (3.2.1).

Proposition 3.2.2. From Corollary 3.2.1, the following results hold:

1. ∑
d
k=1 ∑

m
l=1 | ⟨yl,uk⟩ |2 = ∑

d
k=1 σ2

k = ∑
d
k=1 λk ≥ ∑

d
k=1 ∑

m
l=1 | ⟨yl, ûk⟩ |2

for a different set of orthonormal vectors {ûk}d
k=1

2. ∑
m
l=1 ⟨yl,uk⟩⟨yl,ui⟩= ∑

m
l=1 Bd

klB
d
il = σ2

k δki for 1≤ k, i≤ d. That is, the POD coefficients
are not associated.

This proposition demands that optimal POD basis of rank d is core for rebuilding a sig-
nal yl . This insinuates that it is the most competence amongst each and every linear
decompositions, in the sense of illustrating the columns {yl}m

l=1 of matrix Y as a linear
combination by an orthonormal basis of rank d in an average sense. Furthermore, the
time series of the POD coefficients are not associated.

We can summarize the computation of POD basis using alorithm 1 as shown below.

Algorithm 1: POD basis in Cn

INPUT: Snapshot vectors {yl}m
l=1 ∈ Cn

OUTPUT: POD basis {uk}d
k=1 ∈ Cn×d

1. Create snapshot matrix: Y = [y1, . . . ,ym] ∈ Cn×m and r ≤min{n,m}.
2. Compute SVD: Y =UΣV ∗ and choose dimension d ≤ r.
3. POD basis of rank d : {uk}d

k=1 = {u1, . . . ,ud}.
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3.3 POD with weighted inner product

We can define the weighted inner product described on the unitary space Cn by

⟨u, ū⟩W = u∗Wū = ⟨u,Wū⟩= ⟨Wu, ū⟩ for u, ū ∈ Cn (3.3.1)

where W ∈ Cn×n is a hermitian, positive definite matrix and the corresponding induced
norm is ∥u∥W =

√
⟨u∗,u⟩W for u ∈ Cn. Suppose W is an identity matrix in Cn, then the

weighted inner product (3.3.1) coincides the unitary inner product.

Let us replace (Q1) by

max
u∈Cn

m

∑
l=1
| ⟨yl,u⟩W |

2 s. t ∥u∥W = 1, (Q2)

Similarly to section 3.1, (Q2) constitute a problem in the calculus of variations. The La-
grangian L : Cn×C→ C for (Q2) is described by

L (u,λ ) =
m

∑
l=1
| ⟨yl,u⟩W |

2 +λ (1−∥u∥2
W ) for (u,λ ) ∈ Cn×C.

Let u ∈Cn represent a solution to (Q2), then a first-order necessary optimality condition
is defined by

∇L (u,λ ) = 0 in Cn×C.

We now find the gradient of L with reference to u. Using the condition that W is her-
mitian, we obtain

∂L

∂uk
(u,λ ) =

∂

∂uk

 m

∑
l=1

∣∣∣∣∣ n

∑
p=1

n

∑
q=1

Y ∗lqWqpup

∣∣∣∣∣
2

+λ (1−
n

∑
p=1

n

∑
q=1

uqWqpup)


= 2

m

∑
l=1

(
n

∑
p=1

n

∑
q=1

Y ∗lqWqpup

)(
n

∑
µ=1

Y ∗lµWµk

)
−λ

(
n

∑
q=1

uqWqk +
n

∑
p=1

Wkpup

)

= 2
n

∑
p=1

n

∑
q=1

n

∑
µ

Wkµ

m

∑
l=1

YµlY ∗lqWqpup−2λ

(
n

∑
p=1

Wkpup

)
= 2(WYY ∗Wu−λWu)k
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Thus,
∇uL (u,λ ) = 2(WYY ∗Wu−λWu) = 0 in Cn. (3.3.2)

This Equation (3.3.2) generates the eigenvalue problem

(WY )(WY )∗u = λWu (3.3.3)

Because W is hermitian, positive definite matrix, then W = PDP∗ is the eigenvalue de-
composition whereby D = diag(τ1, . . . ,τn) consist of the eigenvalues τ1 ≥ ·· · ≥ τn > 0 of
W and p ∈ Cn×n is a unitary matrix. We define

W α = Pdiag(τα
1 , . . . ,τ

α
n )P

∗ for α ∈ C

Note that (W α)−1 =W−α and W α+β =W αW β for α,β ∈ C.
Further, we have

⟨u, ū⟩W =
〈

W
1
2 u,W

1
2 ū
〉

for u, ū ∈ Cn

and ∥u∥W =
∥∥∥W 1

2 u
∥∥∥ for u ∈ Cn.

Let ū =W
1
2 u ∈ Cn and Ȳ =W

1
2Y ∈ Cn×m and multiply Equation (3.3.3) by W

1
2 from the

left, we deduce n×n eigenvalue problem.

ȲȲ ∗ū = λ ū in Cn (3.3.4)

From ∂L
∂λ

(u,λ ) = 0, we can express the constraint ∥u∥W = 1 as

∥ū∥= 1

Thus, the first-order optimality conditions Equation (3.3.4) for (Q2) are the same as for
(Q1), but the matrix Y and vector u need to be weighted by W

1
2 .

Also, we can show that
u1 =W−

1
2 ū1,

solves Q2, where ū1 is the eigenvector of ȲY ∗ that corresponds to the largest eigenvalue
λ1 with ∥ū1∥ = 1. Using SVD, we can determine vector u1 by first working out n× n
eigenvalue problem

Ȳ ∗Ȳ v̄1 = λ1v̄1

where Ȳ ∗Ȳ = Y ∗WY
Setting

u1 =W−
1
2 ū1 =

1√
λ1

W−
1
2 Ȳ v̄1 =

1√
λ1

Y v̄1

we can look at a second vector u ∈ Cn with ⟨u,u1⟩W = 0 that optimizes ∑
m
j=1 |

〈
y j,u

〉
W |

2

Let us derive Theorem 3.1.1 as follows:
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Theorem 3.3.1. Assume thatY = [y1,y2, . . . ,ym]∈Cn×m is a matrix of rank r≤min{n,m},
W is a Hermitian, positive definite matrix, Ȳ = W

1
2Y and d ∈ {1, . . . ,r}. Moreover, let

Ȳ = ŪΣV̄ ∗ be the Singular Value Decomposition of Ȳ , whereby both Ū = [ū1, . . . , ūm]∈Cn×n,
V̄ = [v̄1, . . . , v̄m] ∈ Cm×m are unitary matrices and

Σ =

Σ̃ 0

0 0

 ∈ Rn×m

Then, the solution to

max
ū1,...,ūr∈Cn

=
d

∑
k=1

m

∑
l=1
| ⟨yl, ūk⟩W |

2 s. t ⟨ūk, ūl⟩W = δkl for 1≤ k, l ≤ d, , (Q3)

is described by the vectors uk =W−
1
2 ūk,k = 1, . . . ,d

Further,

argmax(Q3) =
d

∑
k=1

σ
2
k =

r

∑
k=1

λk

Proof. The proof follows same arguments as shown in the proof of Theorem 3.1.1.

Because of SVD and Ȳ ∗Y = Y ∗WY , the method of snapshot can be used to obtain the
POD basis {uk}d

k=1 of rank d by solving the eigenvalue problem

Y ∗WY v̄k = λkv̄k for k = 1, . . . ,d

and setting

uk =W−
1
2 ūk =

1√
λk

W−
1
2 (Ȳ v̄k) =

1√
λk

W−
1
2W

1
2Y v̄k =

1√
λk

Y v̄k, for k = 1, . . . ,d.

Notice that

⟨uk,ul⟩W = u∗kWul =
δklλl√

λkλl
for 1≤ k, l ≤ d.

For n >> m, the method of snapshot is faster than computing POD basis using Equation
(3.3.4). The matrix W

1
2 is not a requirement for the method of snapshots.
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We can summarize the computation of POD basis with weighted inner product as follows.

Algorithm 1: POD basis in Cn with weighted inner product

INPUT: Snapshot vectors {yl}m
l=1 ∈C

n and hermitian, positive definite matrixW ∈Cn×n

OUTPUT: POD basis {uk}d
k=1 ∈ Cn×d

1. Create snapshot matrix: Y = [y1, . . . ,ym] ∈ Cn×m and r ≤min{n,m}.
2. Determine Ȳ =W

1
2Y ∈ Cn×m

3. Compute SVD: Y =UΣV ∗ and choose dimension d ≤ r.
4. POD basis with weighted inner product of rank d: uk =W−

1
2 ūk,k = 1, . . . ,d.

3.4 Continuous formulation of the POD

In this sectionwe talk about some extra points of importance concerning the PODmethod.
To solve Equality (Q3), the techniques used in Section 3.1 and Section 3.3 are applied. That
is, we use the method of Lagrangian.

L (u1, . . . ,ud,Λ) =
m

∑
l=1

αl

∥∥∥∥∥yl−
d

∑
k=1
⟨yl,uk⟩W uk

∥∥∥∥∥
2

W

+
d

∑
k=1

d

∑
l=1

Λkl(1−⟨uk,ul⟩W )

for u1, . . . ,ud ∈ Cn and Λ ∈ Rd×d with elements Λkl , 1 ≤ k, l ≤ d. Thus, the solution to
Q3 is given by the first-order optimality conditions

∇ukL (u1, . . . ,ud,Λ) = 0 in Cn,1≤ k ≤ d, (3.4.1)

and
⟨ui,ul⟩W = δkl, 1≤ k, l ≤ d. (3.4.2)

From Equation (3.4.1), we derive

Y ΣY ∗Wuk = λkuk for k = 1, . . . ,d (3.4.3)

where Σ = diag(α1, . . . ,αm) ∈ Rm×m. Inserting uk =W−
1
2 ūk in Equation (3.4.3) and mul-

tiplying it by W
1
2 from the left yields

W
1
2Y ΣY ∗W

1
2 ūk = λkūk (3.4.4)
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From equation (3.4.2) we find

⟨ūk, ūl⟩= ū∗k ūl = u∗kWul = ⟨uk,ul⟩W = δkl, 1≤ k, l ≤ d. (3.4.5)

Suppose Ȳ =W
1
2Y Σ

1
2 ∈Cn×m andW ∗ =W same as Σ∗ = Σ, we infer from equation (3.4.4)

and (3.4.5) that the solution {uk}d
k=1 to equality (Q3) is given by the n× n eigenvalue

problem

ȲȲ ∗ūk = λkūk,1≤ k ≤ d and ⟨ūk, ūl⟩= δkl,1≤ k, l ≤ d.

Notice that
Ȳ ∗Ȳ = Σ

1
2Y ∗WY Σ

1
2 ∈ Cm×m.

Hence, we can find the POD basis of rank d using the method of snapshots as follows.
We first work out the m×m eigenvalue problem

Ȳ ∗Ȳ v̄k = λkv̄k,1≤ k ≤ d and ⟨v̄k, v̄l⟩= δkl,1≤ k, l ≤ d.

Using SVD, we then set

uk =W−
1
2 ūk =

1√
λk

W−
1
2 Ȳ v̄k =

1√
λk

Y Σ
1
2 v̄k,1≤ k ≤ d;

Notice that u1, . . . ,ud are POD basis vectors which are orthonormal in Cn with reference
to the inner product ⟨., .⟩W , i.e.,

⟨uk,ul⟩W = u∗kWul =
1√
λiλl

v̄∗k Σ
1
2Y ∗WY Σ

1
2︸ ︷︷ ︸

Ȳ ∗Ȳ

v̄l =
λk√
λkλl

v̄∗k v̄l =
λkδkl√

λkλl

The snapshot ensemble {yl}m
l=1 for Q3 and the snapshot set span {y1, . . . ,ym} are deter-

mined by the selected time instances {tl}m
l=1. Accordingly, the POD basis vectors {uk}d

k=1
and their corresponding eigenvalues {λk}d

k=1 are defined on the same time instances, that
is,

uk = um
k and λk = λ

m
k , 1≤ k ≤ d.

Further, how to select best time instances for the snapshots and how to determine ap-
propriate positive weights {αl}m

l=1 are the two questions that are yet to be discussed. In
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order to compute the POD basis of rank d that describe the whole trajectory {y(t)|t ∈
[0,T ]} ∈ Cn very well, then we have to consider the minimization problem given by

min
ū1,...,ūd∈Cn

∫ T

0

∥∥∥∥∥y(t)−
d

∑
k=1
⟨y(t), ũk⟩W ũk

∥∥∥∥∥
2

W

dt s.t. ⟨ũk, ũl⟩W = δkl, 1≤ k, l ≤ d. (Q4)

In order to solve Equality Q4, similar arguments used in section 3.1 and 3.3 are applied.
When d = 1, Q4 is obtained instead of the minimization problem

min
ū∈Cn

∫ T

0
∥y(t)−⟨y(t), ũ⟩W ũ∥2

W dt s.t. ∥ũ∥2
W = 1, (3.4.6)

If {ũ}n
k=2 is selected in an approach that {ũ1, . . . , ũn} is an orthonormal basis in Cn with

reference to inner product ⟨., .⟩W , then we have

y(t) = ⟨y(t), ũ⟩W ũ+
n

∑
k=2
⟨y(t), ũk⟩W ũk for all t ∈ [0,T ].

Therefore,

∫ T

0
∥y(t)−⟨y(t), ũ⟩W ũ∥2

W dt =
∫ T

0

∥∥∥∥∥ n

∑
k=2
⟨y(t), ũk⟩W ũk

∥∥∥∥∥
2

W

dt

=
n

∑
k=2

∫ T

0
| ⟨y(t), ũk⟩W |

2dt

We can conclude that Equation (3.4.6) is same as the following maximization problem

max
ũ∈Cn

∫ T

0
| ⟨y(t), ũ⟩W |

2dt s.t. ∥ũ∥2
W = 1. (3.4.7)

The Lagrange functional L : Cn×C→ C associated with Equation (3.4.7) is given by

L (u,λ ) =
∫ T

0
| ⟨y(t),u⟩W |

2dt +λ (1−∥u∥2
W ) for (u,λ ) ∈ Cn×C



23

The necessary optimality conditions are described by

∇L (u,λ ) = 0 in Cn×C

Thus, the partial derivative of L with reference to the kth component uk of the vector u
is given by

∂L

∂uk
(u,λ ) =

∂

∂uk

(∫ T

0
|

n

∑
p=1

n

∑
q=1

yp(t)Wpquq|2dt +λ

(
1−

n

∑
p=1

n

∑
q=1

upWpquq

))

=2
∫ T

0

(
n

∑
p=1

n

∑
q=1

yp(t)Wpquq

)
n

∑
µ=1

yµ(t)Wµkdt−2λ

n

∑
p=1

Wkpuq

=2
(∫ T

0
⟨y(t),u⟩W Wy(t)dt−λWu

)
k

for k ∈ {1, . . . ,n}. Therefore,

∇uL (u,λ ) = 2
(∫ T

0
⟨y(t),u⟩W Wy(t)dt−λWu

)
= 0 in Cn

which gives ∫ T

0
⟨y(t),u⟩W Wy(t)dt = λWu in Cn (3.4.8)

We now multiply Equation (3.4.8) by W−1 from the left to yield

∫ T

0
⟨y(t),u⟩W y(t)dt = λu in Cn (3.4.9)

We can define the operator E : Cn→ Cn as

Eu =
∫ T

0
⟨y(t),u⟩W y(t)dt for u ∈ Cn (3.4.10)
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Lemma 3.4.1. The operator E is linear and bounded. Further,

1. E is positive:
⟨Eu,u⟩W ≥ 0 for all u ∈ Cn

2. E is self-adjoint(or symmetric):

⟨Eu,u⟩W = ⟨u,Eũ⟩W for all u, ũ ∈ Cn

Proof. Let u, ũ ∈ Cn be arbitrary and β , β̃ ∈ C we have

E(βu+ β̃ ũ) =
∫ T

0

〈
y(t),βu+ β̃ ũ

〉
W

y(t)dt

=
∫ T

0
(β ⟨y(t),u⟩W + β̃ ⟨y(t), ũ⟩W )y(t)dt

=β

∫ T

0
⟨y(t),u⟩W y(t)dt + β̃

∫ T

0
⟨y(t), ũ⟩W y(t)dt = βEu+ β̃Eũ,

so that E is linear. Using cauchy-Schwarz inequality we obtain

∥Eu∥W ≤
∫ T

0
∥⟨y(t),u⟩W y(t)∥W dt =

∫ T

0
| ⟨y(t),u⟩W |∥y(t)∥W dt

≤
∫ T

0
∥y(t)∥2

W∥u∥W dt =
(∫ T

0
∥y(t)∥2

W dt
)
∥u∥W = ∥y∥2

L2(0,T ;Cn)∥u∥W

for an arbitrary u∈Cn. Since y∈C([0,T ];Cn)⊂ L2(0,T ;Cn) holds, the norm ∥y∥L2(0,T ;Cn)

is bounded. Thus, E is bounded. Since

⟨Eu,u⟩W =

(∫ T

0
⟨y(t),u⟩W y(t)d(t)

)∗
Wu =

∫ T

0
⟨y(t),u⟩W y(t)∗Wudt

=
∫ T

0
| ⟨y(t),u⟩W |

2dt ≥ 0

for all u ∈ Cn holds, E is positive. Finally, we deduce from

⟨Ru, ũ⟩W =
∫ T

0
⟨y(t),u⟩W ⟨y(t), ũ⟩W d(t) =

〈∫ T

0
⟨y(t), ũ⟩W y(t)dt,u

〉
W

=⟨Eũ,u⟩W = ⟨u,Eũ⟩W
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for all u, ũ ∈ Cn that E is self-adjoint
. Utilizing the operator E, Equation (3.4.9) can be written as an eigenvalue problem.

Eu = λu in Cn.

From Lemma 3.4.1, it follows that E possesses eigenvetors {uk}n
k=1 and associated real

eigenvalues {λk}n
k=1 such that

Euk = λkuk for 1≤ k ≤ n and λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. (3.4.11)

Note that∫ T

0
| ⟨y(t),uk⟩W |

2dt =
∫ T

0
⟨⟨y(t),uk⟩W y(t),ui⟩W dt = ⟨Eui,uk⟩W = λk∥uk∥2

W = λk

for k = {1, . . . ,n} so that uk solves Equation (3.4.6).

Proceeding as in Section 3.1 and 3.3 we obtain the following result.

Theorem 3.4.2. Suppose y ∈ C([0,T ];Cn) is the unique solution to a dynamical system.
Then the minimization problem Q4 is solved by the POD basis of rank d described by the
eigenvectors {uk}d

k=1 of E corresponding to the leading d eigenvalues λ1 ≥ ·· · ≥ λd .

Remark 3.4.3. Let R : L2(0,T )→ Cn be linear and bounded operator defined by

Rv =
∫ T

0
v(t)y(t)dt for v ∈ L2(0,T ).

The adjoint R∗ : Cn→ L2(0,T ) satisfying

⟨R∗u,v⟩L2(0,T ) = ⟨u,Ru⟩W for all (u,v) ∈ Cn×L2(0,T )

is given as

(Ru)(t) = ⟨u,y(t)⟩W for u ∈ Cn and almost all t ∈ [0,T ].

we then have

RR∗u =
∫ T

0
⟨u,y(t)⟩W dt =

∫ T

0
⟨y(t),u⟩W y(t)dt = Eu

for all u ∈ Cn, i.e.,E= RR∗ holds. Furthermore,
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(R∗Rv)(t) =
〈∫ T

0
v(s)y(s)ds,y(t)

〉
W
=
∫ T

0
⟨y(s),y(t)⟩W v(s)ds = (H V )(t)

for all v ∈ L2(0,T ) and almost all t ∈ [0,T ]. Hence, H = R∗R. It can be shown that the
operator H is linear,bounded, positive and self-adjoint. Further, H is compact. Hence,
we can compute for POD basis as follows:

H vk = λkvk for 1≤ k ≤ d, λ1 ≥ ·· · ≥ λd > 0,
∫ T

0
vk(t)vl(t)dt = δkl (3.4.12)

and set

uk =
1√
λk

Rvk =
1√
λk

∫ T

0
vk(t)y(t)dt for k = 1, . . . ,d.

Note that Equation (3.4.12) is an eigenvalue problem in the infinite-dimensional function
space L2(0,T ).
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4 Discrete Empirical Interpolation Method (DEIM)

In chapter 3, we have discussed POD method which is core in finding reduced-order sys-
tems. However, this POD-Galerkin technique can only approximate solutions to problems
with linear terms because it cannot reduce the complexity of nonlinear terms.
Thus, it is efficient to use POD approximation with DEIM when dealing with nonlinear
problems.

The Discrete Empirical Interpolation Method (DEIM) is an improvement of the POD
method thatminimizes the computational complexity for generating reduced-ordermod-
els for PDEs.

Consider nonlinear ODE in the form

d
dt

ȳ = Aȳ(t)+N(ȳ(t)), y(0) = y0 (4.0.1)

Let Ud ∈ Cn×d be matrix consisting of orthonormal basis of dimension d, d < n.
Then on applying POD combined with Galerkin projection to Equation (4.0.1), it reduces
into a new equation with fewer unknowns.

dā
dt

=U∗d AUd ā(t)+U∗d N(Ud ā(t)) (4.0.2)

Notice that the computational complexity of evaluating the nonlinear termU∗d N(Ud ā(t))
still depends on the full dimension n. Thus, it is necessary to eliminate this dependence
by combining POD-Galerkin approach with DEIM.

Assume that {℘1,℘2, . . . ,℘m}∈Cn is the set of nonlinear snapshots and N̄ = [℘1,℘2, . . . ,℘m]∈
Cn×m denote the nonlinear snapshot matrix. Then, we use SVD on N̄ to compute POD ba-
sis of rank s≤min{n,m} of the nonlinear term. Suppose SVD of N̄ is N̄ = ZΣW ∗ where
Z = [z1,z2, . . . ,zn] ∈ Cn×n, W = [w1,w2, . . . ,wm] ∈ Cm×m and Σ̃ = diag(σ1,σ2, . . .σm) ∈
Rm×m.
Therefore, the first s columns of matrix Z is the POD basis of rank s of the nonlinear term
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denoted by Zs. Then we can approximate the nonlinear function N(Ud ā(t)) by a subspace
spanned by the basis {z1,z2, . . .zs} which is written in the form

N(Ud ā(t))≈ Zsc(t) (4.0.3)

where c(t) denote the corresponding coefficient vector. We apply DEIM technique here to
specify c(t) by selecting the s rows of Equation (4.0.3). c(t) is found by using the following
interpolation method. Let’s consider the matrix

P = [eη1, . . . ,eηs] ∈ Cn×s (4.0.4)

where eη i = [0, . . . ,0,1,0, . . . ,0]T ∈ Cn. Assuming that PT Z is nonsingular, we can solve
for c(t) from

PT N(Ud ā(t)) = (PT Zs)︸ ︷︷ ︸
s×s

c(t)

and so,
c(t) = (PT Zs)

−1PT N(Ud ā(t))

Hence, the approximation of Equation (4.0.3) is given by

N(Ud ā(t))≈ Zsc(t) = Zs(PT Zs)
−1 PT N(Ud ā(t))︸ ︷︷ ︸

s×1

but when the nonlinear function F is componentwise, f (t) becomes

N(Ud ā(t))≈ Zsc(t) = Zs(PT Zs)
−1 N(PTUd ā(t))︸ ︷︷ ︸

s×1

Discrete Empirical Interpolation Method (DEIM) approximates the nonlinear terms by
computing the projection basis from POD method and selecting the interpolation in-
dices by a greedy algorithm. We can obtain the interpolation indices η1, . . . ,ηs using the
following DEIM algorithm.



29

Algorithm 3 DEIM

INPUT:{zℓ}n
ℓ=1 ∈ Cn linearly independent

OUTPUT: η⃗s = [η1, . . . ,ηs]
T ∈ Rs

1. [|ρ|,η1] =max{|z1|}
2. Z̄ = [z̄1], P̄ = [eη1], η⃗ = [η1]

3. for ℓ= 2 : n do
4. solve (PT Z)C = PT zℓ ;
5. r = zℓ−Zc

6. [|ρ|,ηℓ] =max{|r|}

7. Z← [Z zℓ],P← [P eηℓ
], η⃗ ←

 η⃗

ηℓ


8. end for
9. P = P̄(:,1 : s), η⃗s = η⃗(1 : s)

From Algorithm 3, the procedure is used to construct a set of indices on the input ba-
sis. We begin the process by choosing the first interpolation index η1 that corresponds
to the first input basis z1 entry with the biggest magnitude. The remaining indices ηl

for l = 2,3, . . . ,s are chosen from the entry of the residual r = zℓ−Zc with the largest
magnitude. The input basis {zl}s

l=1, which is linearly independent, guarantees that in
each iteration, both r and ρ are nonzero vectors. This implies that PT Zs is always non-
singular and therefore the DEIM procedure is clearly stated. Also, this insinuates that
the interpolation indices {ηℓ}n

ℓ=1 are not repeated. Then the output matrix P is used to
build a low-dimensional estimation of the nonlinear term. After that, POD technique is
used together with the DEIM technique to formulate a low order model.

dā
dt

=U∗d AUd ā(t)+U∗d Zs(PT Zs)
−1PT N(Ud ā(t))
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5 Application of Model Reduction on PDEs

Let’s consider a system of 1 dimensional nonlinear PDE of the form

ut = N(u,ux,uxx,x, t) (5.0.1)

where N(.) describe nonlinear evolution and the subscripts denote partial differentiation.
We also have both initial and boundary conditions defined on a domain x ∈ [−T,T ].

First, consider a standard spatial discretization of Equation (5.0.1) evaluated at n discrete
points for n large enough.

u(x, t)→ u(xi, t) = ui for i = 1, . . . ,n

using standard finite difference formulas, we can evaluate the spatial derivatives using
neighboring spatial points.

ux =
u(xi+1, t)−u(xi−1, t)

2∆x

uxx =
u(xi+1, t)−2u(xi, t)+u(xi−1, t)

∆x2

Therefore, the governing PDE (5.0.1) transforms to a set of n ODEs.

dui

dt
= N(u(xi+1, t),u(xi, t),u(xi−1, t),xi, t), for i = 1,2, . . . ,n. (5.0.2)

We then apply Galerkin projection

u(xi, t) =
d

∑
i=1

ai(t)Ψi(x) (5.0.3)

where Ψi(x) form a set of n >> 1 basis modes and a(t) denote the unknown time dy-
namics
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Substituting Equation (5.0.3) into the Equation (5.0.2) gives

∑Ψi
dai

dt
= N(∑aiΨi,∑ai(Ψi)x,∑ai(Ψi)xx,x, t), i = 1, . . . ,n (5.0.4)

The set of the basis functions should be orthonormal to each other, that is,

〈
Ψi,Ψ j

〉
= δi j =

{
0, i ̸= j

1, i = j

where δi j is the kronecker delta function.〈
Ψi,Ψ j

〉
is the inner product defined as

〈
Ψi,Ψ j

〉
=
∫ T

−T
ΨiΨ

∗
jdx

where * denote complex conjugate.
Multiplying both sides of Equation (5.0.4) by Ψ j(x) and integrating over the domain x ∈
[−T,T ], we get

dai

dt
=
〈
N(∑a jΨ j,∑a j(Ψ j)x,∑a j(Ψ j)xx,x, t),Ψi

〉
, i = 1, . . . ,n (5.0.5)

Hence, we can now solve the reduced system Equation (5.0.5) and use its reduced-order
solution to approximate the solution of the high dimensional system Equation (5.0.2).
Let’s demonstrate this reduction method further by solving the fisher’s equation and
diffusion-advection equation

5.1 Fisher’s Equation

Fisher’s equation is a nonlinear parabolic PDE. It is writen in the form:

ut = αu(1−u)+Duxx

where α is the reactive factor (positive), D is the diffusion coefficient (positive), t and x
are time and spatial location respectively and u = u(x, t) is the state variable. The term
αu(1−u) is also called logistic growth. This equation was first proposed by Fisher as a
model for propagation of a gene within a population.
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Here, consider the equation

ut = u(1−u)+uxx

with x ∈ [−20,20], t ∈ [0,5]

subject to

B.C : u(−20, t) = u(20, t) = 0

1.C : u(x,0) = 2sech(x)

By using finite difference (FD) discretization evaluated at n discrete points, we have

dui

dt
= ui−u2

i +
d2ui

dx2 , i = 1, . . . ,n (5.1.1)

We then apply Galerkin projection

u(xi, t) =
d

∑
i=1

ai(t)Ψi(x)

to this n set of ODEs and we get

∑Ψi
dai

dt
= ∑aiΨi− (∑aiΨi)

2 +(∑aiΨi)xx, i = 1, . . . ,n

multiplying both sides by Ψ j ,we get the following reduced system

dai

dt
=
〈
Ψ j,Ψi

〉
ai−

〈
(Ψ j)

2,Ψi
〉

a2
i +
〈
(Ψ j)xx,Ψi

〉
ai, i = 1, . . .n. (5.1.2)
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5.1.1 Numerical results

Let n = 4000, then the Equation (5.1.1) contains 4000 ordinary differential equations. The
following figure represents the solution for the full order model using 4000 dimension.

Figure 1. Numerical solution of the Full Order Model (FOM) of Fisher’s equation

Now, let’s use the 4000 solutions to construct reduced basis by using SVD. We have to
take snapshots of the system at m time instances. Suppose m = 100, then we have a
4000×100 snapshot matrix.
We compute the SVD for the snapshot matrix 4000×100 to determine the POD basis of
snapshots . The SVD decomposes the matrix into product of three matrices as shown in
chapter 2. In this case, the blockwise diagonal matrix Σ consists of 100 non zero singular
values arranged in descending order. Figure 2 shows how the singular values are dis-
tributed which are obtained from full-order finite difference discretization of the fisher’s
equation.
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Figure 2. Distribution of singular values from the full order FD discretization of the Fisher’s
equation

In Figure 2, the rapid decay occurs around the first 5 singular values of the 100 snapshots
taken. This implies that the first 5 left singular vectors can be used to represent the
dominant features of the whole set of snapshots. Also, threshold is used to determine
the percentage of the information we want to retain. In this case, the first 5 singular
values retains 95% of the information.

So, the first d = 1,2,3,4,5 columns of matrix U from SVD are considered as the modes
of different POD basis sets. The values of d are considered as the POD reduced system.
Here, we apply the POD-Galerkin approach as discussed previously for each reduced
system.
For instance, if we take d = 1, then 1 POD mode is used to approximate the numerical
solution. The Galerkin projection becomes

u(x, t) = a1(t)Ψ1(x)

Then Equation (5.1.2) becomes

da1

dt
= ⟨Ψ1,Ψ1⟩a1−

〈
(Ψ1)

2,Ψ1
〉

a2
1 +
〈
(Ψ1)xx,Ψ1

〉
a1

= αa1−βa2
1 +ηa1

where α = ⟨Ψ1,Ψ1⟩, β =
〈
(Ψ1)

2,Ψ1
〉
and η =

〈
(Ψ1)xx,Ψ1

〉
.
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Hence, we only have 1 first order ordinary differential equation to solve. This is easier
and takes less CPU time to solve compared to the system with 4000 ordinary differential
equations.

Figure 3 shows the numerical solution of the POD reduced system of the Fisher’s equation
with different POD modes. The results are obtained from Matlab ODE 45.

Figure 3. Solution of POD reduced model of Fisher’s equation with different POD modes

From Figure 3, we observe that the dominant features of the solution of Fisher’s equation
are preserved after reducing the system using POD.
Now let’s observe numerical solution of Fisher’s equation using POD combined with
DEIM.
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Figure 4. Solution of POD-DEIM reduced model of Fisher’s equation with different modes

Again, the dominant features are still preserved even after using POD combined with
DEIM. Now, lets compare POD and POD-DEIM simulation time and their relative error
using the Table 1.

Model Relative average error CPU time (sec)
% information

retained

FOM 0 7.481475 100%

POD POD-DEIM POD POD-DEIM

ROM (5 modes) 0.6503668 2.209273 0.258731 0.128493 99%

ROM (20 modes) 7.2967e-04 0.0367634 0.357261 0.138304 99.78%

ROM (40 modes) 3.6928e-04 0.0013877 0.622867 0.186537 99.943%

ROM (50 modes) 3.3074e-04 0.0010444 0.788952 0.204632 99.971%
Table 1. Comparison between Relative average error, CPU time and percentage information

retained for POD and POD-DEIM approach using different modes.
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From Table 1 we observe that the relative error due to the POD reduced-order model
with 20 modes which is approximately O(10−4) is less than than the error of the POD-
DEIM reduced-order system with 20 modes which is approximately O(10−2). Also, as
we increase the number of modes, the relative error decreases. Therefore, the POD and
POD-DEIM methods becomes more accurate as the number of modes increases.
The CPU time of the POD reduced-order model decreases by a factor of approximately 29
while the simulation time of the POD-DEIM reduced-order model decreases by a factor
of approximately 58. Hence, the POD-DEIM reduced-order model spends less time than
the POD reduced-order model making it computationally efficient.

This trend is illustrated by the plots in Figure 5. We can see why the Model reduction
technique is a trade off between accuracy and computational complexity.

Figure 5. CPU time and Relative average error of POD and POD-DEIM approach

5.2 Advection-Diffusion Equation

The Advection-Diffusion equation is a PDE combining advection (plug-flow motion) and
a diffusion term. It is applied in fluid dynamics to model diffusive waves.

One dimensional advection-Diffusion equation is given by

ut =−aux +αuxx

where α denote the coefficient of diffusivity and a is the advection velocity.
Let’s solve this equation with a = 1 and α = 0.01.
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The Initial Boundary Value Problem is

ut =−ux +0.01uxx

subject to B.C: u(−40, t) = u(40, t) = 0 and I.C: u(x,0) = 2sech(x)

This equation is linear therefore we will use POD-Galerkin method only. Using the same
technicalities used to reduce the Fisher’s equation, we end up with the following reduced
system.

dak

dt
= 0.01

〈
d2Ψk

dx2 ,Ψk

〉
ak−

〈
dΨk

dx
,Ψk

〉
ak, k = 1, . . . ,n.

5.2.1 Numerical results

Now, we use Matlab ODE 45 to compute the solution for this reduced system. The results
are as follows.
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Figure 6. Solutions for the Full Order Model and POD reduced order model of
Advection-Diffusion equation with different modes

From Figure 6, we observe that using 1 mode will not produce best results. Even as we
increase the number of modes to 100 modes, the solution is not yet sufficient to describe
the solution of Advection-Diffusion equation. In fact by using 300 modes, we can approx-
imate our solution since the graph appear similar to the graph of full order model. At this
point, the error is smaller than using 1 mode as shown in Table 2.

Model Relative average error CPU time(sec) % information retained

FOM 0 3.740166 100%

ROM (1 mode) 0.8998 0.517654 90%

ROM (100 modes) 0.0723 0.722157 95.5%

ROM (200 modes) 0.0692 0.856862 99.51%

ROM (300 modes) 0.0010 0.935541 99.95%

Table 2. Relative average error and CPU time of solutions of Full Order Model (FOM) and POD
reduced order models with different modes
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As we have previously seen in fisher’s equation, as the number of modes increases, the
relative error decreases and CPU time increases. For instance, the error of the ROMwith
300 modes, which is approximately O(10−3) is less than the error of ROM with 1 mode,
which is approximately O(10−1).
The CPU time of the ROM decreases by a factor of approximately 7. Hence, PODmethod
is computationally efficient.

Figure 7 summarizes Table 2 in graphical form.

Figure 7. CPU time and Relative average error of the POD method.
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6 Conclusion and Future Research

6.1 Conclusion

This research paper focused on applying Model Reduction techniques to reduce the com-
putational complexity of PDEs. We used Finite Difference (FD) method to discretize the
PDE problem, which resulted to high fidelity dynamical system. We then used SVD to
construct a set of POD basis and then proceeded with Galerkin projection to deduce a
POD reduced system equation. This POD-Galerkin approach was only limited to linear
PDEs. Therefore, when dealing with nonlinear PDEs, POD-Galerkin approach was not
efficient since the computational complexity of the nonlinear terms depends on the orig-
inal system. We then combined POD with DEIM.

In particular, we applied POD-DEIM approach to Fisher’s equation. Dominant features of
the full-order system of Fisher’s equation were preserved using different POD and POD-
DEIMmodes. We have shown that POD-DEIM approach is the most effective in minimiz-
ing computational complexity of the Fisher’s equation as compared to POD-Galerkin ap-
proach. However, the relative average error due to the POD-DEIM approach was higher
than the POD-Galerkin approach. Hence, there was a trade off between accuracy and
computational complexity.

6.2 Future Research

The goal of this research project was to study Model Reduction techniques called POD
and DEIM and apply these methods appropriately to PDE problems. In particular, we
concentrated on one dimensional PDEs. This can be extended to 2 and 3 dimensional
partial differential equations and study their stability. Additionally, POD method can be
extended to real data in order to study certain aspects.
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Appendix: Matlab codes

Fisher’s Equation

Fishers.m

1 c l e a r a l l ; c l c ; c l o s e a l l ;
2 t i c
3 m = 0 ;
4 x = l i n s p a c e ( − 2 0 , 2 0 , 4 0 0 0 ) ;
5 L=max ( x ) −min ( x ) ; n= l eng th ( x ) ;
6 t = l i n s p a c e ( 0 , 2 5 , 1 0 0 ) ;
7 p= l eng th ( t ) ;
8 s o l = pdepe (m, @Fisherspde , @Fisherspde i c , @Fisherspdebc , x , t ) ;
9 u so l = s o l ( : , : , 1 ) ;
10

11 f i g u r e ;
12 s u r f l ( x , t , uso l , ’ l i g h t ’ ) ;
13 t i t l e ( ’ s o l u t i o n f o r the F u l l Order Model (FOM) ’ ) ;
14 x l a b e l ( ’ x− a x i s ’ ) ;
15 y l a b e l ( ’ t ime ( t ) ’ ) ;
16 z l a b e l ( ’ u ( x , t ) ’ ) ;
17 shad ing i n t e r p
18 s e t ( gca , ’ F on t S i z e ’ , 1 0 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
19 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
20 t o c
21

22 Y = u so l . ’ ;
23 [U , S , V]= svd ( Y ) ;
24

25 f i g u r e ;
26 p l o t ( ( d i ag ( S ) / sum ( d iag ( S ) ) ∗ 1 0 0 ) , ’ ko ’ , ’ L inewid th ’ , 2 ) ;
27 x l a b e l ( ’Number o f s i n g u l a r v a l u e s ’ ) ;
28 y l a b e l ( ’% r a t i o o f s i n g u l a r v a l u e s ’ ) ;
29 s e t ( gca , ’ F on t S i z e ’ , 1 2 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
30 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
31

32 x1 =[0 20 40 60 80 1 0 0 ] ;
33 y1 = [ 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 ] ;
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34

35 x2 =[0 20 40 60 80 1 0 0 ] ;
36 y2 =[99 99 99 99 99 9 9 ] ;
37

38 f i g u r e ;
39 p l o t ( x1 , y1 , ’ r ’ , ’ L inewid th ’ , 2 ) ;
40 hold on
41 p l o t ( x2 , y2 , ’ b ’ , ’ L inewid th ’ , 2 ) ;
42 l egend ( ’ 99 .5% Thresho ld ’ , ’ 99% Thresho ld ’ ) ;
43 hold on
44 p l o t ( cumsum ( d iag ( S ) / sum ( d iag ( S ) ) ∗ 1 0 0 ) , ’ ko ’ , ’ L inewid th ’ , 2 ) ;
45 x l a b e l ( ’Number o f s i n g u l a r v a l u e s ’ ) ;
46 y l a b e l ( ’ cumu la t i v e % r a t i o o f s i n g u l a r v a l u e s ’ ) ;
47 s e t ( gca , ’ F on t S i z e ’ , 1 3 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
48 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
49

50 k = ( 2 ∗ p i / L ) ∗ [ 0 : ( n / 2 −1 ) −n / 2 : − 1 ] . ’ ;
51

52 t i c
53 %POD Method
54 Y = u so l . ’ ;
55 [U , S , V] = svd ( Y ) ;
56 modes = 2 0 ;
57 phi = U ( : , 1 : modes ) ;
58

59 f o r j = 1 : modes
60 ph ixx ( : , j ) = − i f f t ( ( k . ^ 2 ) . ∗ f f t ( ph i ( : , j ) ) ) ;
61 a0 ( j ) = ( 2 ∗ sech ( x ) ) ∗ con j ( ph i ( : , j ) ) ;
62 end
63 L=phi ’ ∗ ph ixx ;
64

65 [ t , a s o l ]= ode45 ( ’ Fishers_POD ’ , t , a0 , [ ] , phi , L ) ;
66

67 %Recon s t r u c t s the s o l u t i o n
68 us1= z e r o s ( n , l e ng th ( t ) ) ;
69 f o r j = 1 : l e ng th ( t )
70 f o r j j = 1 : modes
71 us1 ( : , j ) =us1 ( : , j ) + a s o l ( j , j j ) ∗ phi ( : , j j ) ;
72 end
73 end
74

75 f i g u r e ;
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76 s u r f l ( x , t , abs ( us1 . ’ ) , ’ l i g h t ’ ) ;
77 t i t l e ( ’ S o l u t i o n f o r the POD reduced − o rde r model u s ing 20

modes ’ ) ;
78 x l a b e l ( ’ x− a x i s ’ ) ;
79 y l a b e l ( ’ t ime ( t ) ’ ) ;
80 z l a b e l ( ’ u ( x , t ) ’ ) ;
81 shad ing i n t e r p
82 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
83 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
84 t o c
85

86 %POD combined with DEIM
87 Y = ( ( abs ( u s o l . ’ ) . ^ 2 ) . ∗ ( u s o l . ’ ) ) ;
88 Y1=Y ( : , 1 : p ) ;
89 t i c
90 [W, T , Z]= svd ( Y1 ) ;
91 Wk=W( : , 1 : modes ) ;
92

93 %DEIM a lgo r i t hm
94 [ n ,m]= s i z e (Wk) ;
95 gamma= z e r o s (m, 1 ) ;
96 [ ~ , gamma ( 1 ) ]=max ( abs (Wk( : , 1 ) ) ) ;
97 e=eye ( n ) ;
98 P=e ( : , gamma ( 1 ) ) ;
99 B ( : , 1 ) =Wk( : , 1 ) ;
100 f o r l = 2 :m
101 uL=Wk( : , l ) ;
102 c = (P ’ ∗ B ) \ ( P ’ ∗ uL ) ;
103 r =uL−B ∗ c ;
104 [ ~ , gamma ( l ) ]=max ( abs ( r ) ) ;
105 B ( : , l ) =uL ;
106 P ( : , l ) =e ( : , gamma ( l ) ) ;
107 Q( : , l ) = ph i ( gamma ( l ) , : ) ;
108 R ( : , l ) =Wk(gamma ( l ) , : ) ;
109 end
110

111 gamma= s o r t ( gamma ) ;
112 P=e ( : , gamma ) ;
113 Q=phi ( gamma , : ) ;
114 R=Wk(gamma , : ) ;
115 M= ( ( phi ’ ∗Wk) / ( R ) ) ;
116
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117 [ t , a s o l ]= ode45 ( ’ F ishers_DEIM ’ , t , a0 , [ ] , phi , L ,Wk, P ,M,Q) ;
118

119 us2= z e r o s ( n , l e ng th ( t ) ) ;
120 f o r j = 1 : l e ng th ( t )
121 f o r j j = 1 : modes
122 us2 ( : , j ) =us2 ( : , j ) + a s o l ( j , j j ) ∗ phi ( : , j j ) ;
123 end
124 end
125

126 f i g u r e ;
127 s u r f l ( x , t , abs ( us2 . ’ ) , ’ l i g h t ’ ) ;
128 t i t l e ( ’ s o l u t i o n o f POD−DEIM reduced − o rde r model u s ing 20

modes ’ ) ;
129 x l a b e l ( ’ x− a x i s ’ ) ;
130 y l a b e l ( ’ t ime ( t ) ’ ) ;
131 z l a b e l ( ’ u ( x , t ) ’ ) ;
132 shad ing i n t e r p ;
133 s e t ( gca , ’ F on t S i z e ’ , 1 0 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
134 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
135 t o c
136

137 T1= u so l . ’ ;
138 T2=us1 ;
139 T3=us2 ;
140 q =2 0 ;
141 output = z e r o s ( 1 , q ) ;
142 output1 = z e r o s ( 1 , q ) ;
143 f i r s t e r r o r =norm ( abs ( T1 ( : , 1 ) −T2 ( : , 1 ) ) ) ;
144 f i r s t e r r o r 1 =norm ( abs ( T1 ( : , 1 ) −T3 ( : , 1 ) ) ) ;
145 output ( 1 ) = f i r s t e r r o r ;
146 output1 ( 1 ) = f i r s t e r r o r 1 ;
147 sum = 0 ;
148 sum1 = 0 ;
149 f o r q = 1 : l e ng th ( t )
150 output ( q ) =norm ( abs ( T1 ( : , q ) −T2 ( : , q ) ) ) / ( norm ( abs ( T1 ( : , q ) ) )

) ;
151 output1 ( q ) =norm ( abs ( T1 ( : , q ) −T3 ( : , q ) ) ) / ( norm ( abs ( T1 ( : , q )

) ) ) ;
152 T=output ;
153 O=output1 ;
154 sum=sum+T ( q ) ;
155 sum1=sum1+O( q ) ;
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156 end
157 r e l a t i v e r r o r = ( 1 / 2 0 ) ∗ sum ;
158 r e l a t v e r r o r 1 = ( 1 / 2 0 ) ∗ sum1 ;
159

160 %p l o t t i n g R e l a t i v e e r r o r aand computat ion t ime
161

162 x2 =[5 20 40 5 0 ] ;
163

164 y2 = [ 0 . 2 5 8 7 3 1 0 . 3 5 7 2 6 1 0 . 6 2 2 8 6 7 0 . 7 8 8 9 5 2 ] ;
165 z2 = [ 0 . 6 5 0 3 6 6 8 0 . 0 0 0 7 2 9 6 7 0 . 0 0 0 3 6 9 2 8 0 . 0 0 0 3 3 0 7 4 ] ;
166

167 y3 = [ 0 . 1 2 8 4 9 3 0 . 1 3 8 3 0 4 0 . 1 8 6 5 3 7 0 . 2 0 4 6 3 2 ] ;
168 z3 = [ 2 . 2 0 9 2 7 3 0 . 0 3 6 7 6 3 4 0 . 0 0 1 3 8 7 7 0 . 0 0 1 0 4 4 4 ] ;
169

170 f i g u r e ;
171 p l o t ( x2 , y2 , ’ −b ∗ ’ , ’ L inewid th ’ , 2 ) ;
172 hold on
173 p l o t ( x2 , y3 , ’ − r ∗ ’ , ’ L inewid th ’ , 2 ) ;
174 t i t l e ( ’CPU time ’ ) ;
175 x l a b e l ( ’Number o f modes ’ ) ;
176 y l a b e l ( ’CPU time ( s e c ) ’ ) ;
177 l egend ( ’POD ’ , ’POD−DEIM ’ ) ;
178 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
179 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
180

181 f i g u r e ;
182 p l o t ( x2 , z2 , ’ −b ∗ ’ , ’ L inewid th ’ , 2 ) ;
183 hold on
184 p l o t ( x2 , z3 , ’ − r ∗ ’ , ’ L inewid th ’ , 2 ) ;
185 t i t l e ( ’ R e l a t i v e ave rage e r r o r ’ ) ;
186 x l a b e l ( ’Number o f modes ’ ) ;
187 y l a b e l ( ’ R e l a t i v e ave rage e r r o r ’ ) ;
188 l egend ( ’POD ’ , ’POD−DEIM ’ ) ;
189 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
190 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;

Fisherspde.m

1 f u n c t i o n [ c , f , s ] = F i s h e r s pd e ( x , t , u , DuDx )
2 c = 1 ;
3 f = DuDx ;
4 s = u−u . ^ 2 ;
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Fisherspdeic.m

1 f u n c t i o n u0 = F i s h e r s p d e i c ( x )
2 u0 =2 ∗ sech ( x ) ;

Fisherspdebc.m

1 f u n c t i o n [ pl , q l , pr , qr ] = F i s h e r s pd eb c ( x l , u l , xr , ur , t )
2 p l = u l ;
3 q l = 0 ;
4 pr = ur ;
5 qr = 0 ;

Fishers_POD.m

1 f u n c t i o n rhs =Fishers_POD ( t , a , dummy , phi , L )
2

3 rhs = L ∗ a+phi ’ ∗ ( ph i ∗ a ) −phi ’ ∗ ( ph i ∗ a ) . ^ 2 ;

Fishers_DEIM.m

1 f u n c t i o n rhs =Fishers_DEIM ( t , a , dummy , phi , L ,Wk, P ,M,Q)
2

3 rhs =L ∗ a+M∗ (Q∗ a ) −M∗ (Q∗ a ) . ^ 2 ;

Advection-Diffusion Equation

ADE.m

1 c l e a r a l l ; c l o s e a l l ; c l c
2 t i c
3 x= l i n s p a c e ( − 4 0 , 4 0 , 4 0 0 ) ;
4 L=max ( x ) −min ( x ) ; n= l eng th ( x ) ;
5 t = l i n s p a c e ( 0 , 1 0 , 1 0 0 ) ;
6 p= l eng th ( t ) ;
7 m=0 ;
8 s o l =pdepe (m,@ADEpde , @ADEpdeic , @ADEpdebc , x , t ) ;
9 u so l = s o l ( : , : , 1 ) ;
10

11 f i g u r e ;
12 s u r f l ( x , t , uso l , ’ l i g h t ’ ) ;
13 t i t l e ( ’ s o l u t i o n f o r the F u l l Order Model ’ ) ;
14 x l a b e l ( ’ x− a x i s ’ ) ;
15 y l a b e l ( ’ t ime ( t ) ’ ) ;
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16 z l a b e l ( ’ u ( x , t ) ’ ) ;
17 shad ing i n t e r p
18 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
19 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
20 t o c
21

22 Y = u so l . ’ ;
23 [U , S , V]= svd ( Y ) ;
24 f i g u r e ;
25 p l o t ( ( d i ag ( S ) / sum ( d iag ( S ) ) ∗ 1 0 0 ) , ’ ko ’ , ’ L inewid th ’ , 2 ) ;
26 x l a b e l ( ’Number o f s i n g u l a r v a l u e s ’ ) ;
27 y l a b e l ( ’% r a t i o o f s i n g u l a r v a l u e s ’ ) ;
28 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
29 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
30

31 x1 =[0 20 40 60 80 1 0 0 ] ;
32 y1 = [ 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 ] ;
33

34 x2 =[0 20 40 60 80 1 0 0 ] ;
35 y2 =[99 99 99 99 99 9 9 ] ;
36

37 f i g u r e ;
38 p l o t ( x1 , y1 , ’ r ’ , ’ L inewid th ’ , 2 ) ;
39 hold on
40 p l o t ( x2 , y2 , ’ b ’ , ’ L inewid th ’ , 2 ) ;
41 l egend ( ’ 99 .5% Thresho ld ’ , ’ 99% Thresho ld ’ ) ;
42 hold on
43 p l o t ( cumsum ( d iag ( S ) / sum ( d iag ( S ) ) ∗ 1 0 0 ) , ’ ko ’ , ’ L inewid th ’ , 2 ) ;
44 x l a b e l ( ’Number o f s i n g u l a r v a l u e s ’ ) ;
45 y l a b e l ( ’ cumu la t i v e % r a t i o o f s i n g u l a r v a l u e s ’ ) ;
46 s e t ( gca , ’ F on t S i z e ’ , 1 3 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
47 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
48

49

50 k = ( 1 0 / L ) ∗ [ 0 : n /2 −1 −n / 2 : − 1 ] . ’ ;
51

52 %POD method
53 t i c
54 Y= u so l . ’ ;
55 [U , S , V]= svd ( Y ) ;
56 modes = 3 0 0 ;
57 phi =U ( : , 1 : modes ) ;
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58

59 f o r j = 1 : modes
60 ph ix ( : , j ) = i f f t ( ( 1 i ∗ k ) . ∗ f f t ( ph i ( : , j ) ) ) ;
61 ph ixx ( : , j ) =− i f f t ( ( k . ^ 2 ) . ∗ f f t ( ph i ( : , j ) ) ) ;
62 a0 ( j ) = ( 2 ∗ sech ( x ) ) ∗ con j ( ph i ( : , j ) ) ;
63 end
64 L = 0 . 0 1 ∗ phi ’ ∗ ph ixx ;
65 [ t , a s o l ]= ode45 ( ’ADE_POD ’ , t , a0 , [ ] , phi , phix , L ) ;
66

67 us1= z e r o s ( n , l e ng th ( t ) ) ;
68 f o r j = 1 : l e ng th ( t )
69 f o r j j = 1 : modes
70 us1 ( : , j ) =us1 ( : , j ) + a s o l ( j , j j ) ∗ phi ( : , j j ) ;
71 end
72 end
73

74 f i g u r e ;
75 s u r f l ( x , t , abs ( us1 . ’ ) , ’ l i g h t ’ ) ;
76 t i t l e ( ’ s o l u t i o n f o r the Reduced Order Model u s ing 300 modes

’ ) ;
77 x l a b e l ( ’ x− a x i s ’ ) ;
78 y l a b e l ( ’ t ime ( t ) ’ ) ;
79 z l a b e l ( ’ u ( x , t ) ’ ) ;
80 shad ing i n t e r p
81 s e t ( gca , ’ F on t S i z e ’ , 1 5 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
82 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
83 t o c
84

85 t i c
86 phi =U ( : , 1 : 4 0 0 ) ;
87

88 f o r j = 1 : 4 0 0
89 ph ix ( : , j ) = i f f t ( ( 1 i ∗ k ) . ∗ f f t ( ph i ( : , j ) ) ) ;
90 ph ixx ( : , j ) =− i f f t ( ( k . ^ 2 ) . ∗ f f t ( ph i ( : , j ) ) ) ;
91 a0 ( j ) = ( 2 ∗ sech ( x ) ) ∗ con j ( ph i ( : , j ) ) ;
92 end
93 L = 0 . 0 1 ∗ phi ’ ∗ ph ixx ;
94 [ t , a s o l ]= ode45 ( ’ADE_POD ’ , t , a0 , [ ] , phi , phix , L ) ;
95

96 us= z e r o s ( n , l e ng th ( t ) ) ;
97 f o r j = 1 : l e ng th ( t )
98 f o r j j = 1 : 4 0 0
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99 us ( : , j ) =us ( : , j ) + a s o l ( j , j j ) ∗ phi ( : , j j ) ;
100 end
101 end
102

103 f i g u r e ;
104 s u r f l ( x , t , abs ( us . ’ ) , ’ l i g h t ’ ) ;
105 t i t l e ( ’ s o l u t i o n f o r the FOM’ ) ;
106 x l a b e l ( ’ x− a x i s ’ ) ;
107 y l a b e l ( ’ t ime ( t ) ’ ) ;
108 z l a b e l ( ’ u ( x , t ) ’ ) ;
109 shad ing i n t e r p
110 t o c
111

112 T1=us ;
113 T2=us1 ;
114 q =40 0 ;
115 output = z e r o s ( 1 , q ) ;
116 f i r s t e r r o r =norm ( abs ( T1 ( : , 1 ) −T2 ( : , 1 ) ) ) ;
117 f i r s t e r r o r 1 =norm ( abs ( T1 ( : , 1 0 ) −T2 ( : , 1 0 ) ) ) ;
118 output ( 1 ) = f i r s t e r r o r ;
119 sum=0 ;
120 f o r q = 1 : l e ng th ( t )
121 output ( q ) =norm ( abs ( T1 ( : , q ) −T2 ( : , q ) ) ) / ( norm ( abs ( T1 ( : , q ) ) )

) ;
122 T=output ;
123 sum=sum+T ( q ) ;
124 end
125 r e l a t i v e r r o r = ( 1 / 4 0 0 ) ∗ sum ;
126 %p l o t t i n g R e l a t i v e e r r o r and CPU time
127

128 x2 =[1 100 200 3 0 0 ] ;
129 y2 =[ 0 . 5 1 7 6 5 4 0 . 7 2 2 1 5 7 0 . 8 5 6 8 6 2 0 . 9 3 5 5 4 1 ] ;
130 z2 = [ 0 . 8 9 9 8 0 . 0 7 2 3 0 . 0 6 9 2 0 . 0 0 1 0 ] ;
131

132 f i g u r e ;
133 p l o t ( x2 , y2 , ’ −∗ ’ , ’ L inewid th ’ , 2 ) ;
134 t i t l e ( ’CPU time ’ , ’ F on t S i z e ’ ) ;
135 x l a b e l ( ’Number o f POD modes ’ ) ;
136 y l a b e l ( ’CPU time ( s e c ) ’ ) ;
137 s e t ( gca , ’ F on t S i z e ’ , 1 2 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
138 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;
139 f i g u r e ;
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140 p l o t ( x2 , z2 , ’ −∗ ’ , ’ L inewid th ’ , 2 ) ;
141 t i t l e ( ’ R e l a t i v e ave rage e r r o r ’ ) ;
142 x l a b e l ( ’Number o f POD modes ’ ) ;
143 y l a b e l ( ’ R e l a t i v e ave rage e r r o r ’ ) ;
144 s e t ( gca , ’ F on t S i z e ’ , 1 2 , ’ f on twe i gh t ’ , ’ b ’ , ’ fontname ’ , ’ a r i a l ’ )
145 s e t ( gc f , ’ Co lo r ’ , ’w ’ ) ;

ADEpde.m

1 f u n c t i o n [ c f s ]=ADEpde ( x , t , u , DuDx )
2 c = 1 ;
3 f = 0 . 0 1 ∗DuDx ;
4 s = −1∗DuDx ;

ADEpdeic.m

1 f u n c t i o n u0=ADEpdeic ( x )
2 u0 =2 ∗ sech ( x ) ;

ADEpdebc.m

1 f u n c t i o n [ pl , q l , pr , qr ]=ADEpdebc ( x l , u l , xr , ur , t )
2 p l = u l ;
3 q l = 0 ;
4 pr=ur ;
5 qr = 0 ;

ADE_POD.m

1 f u n c t i o n rhs =ADE_POD( t , a , dummy , phi , phix , L )
2

3 rhs =L ∗ a−phi ’ ∗ ( ph ix ∗ a ) ;
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