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Abstract

Background
Identi�cation of malaria vectors is an important exercise that can result in the deployment of targeted
control measures and monitoring the susceptibility of the vectors to control strategies. Although known to
possess distinct biting behaviours and habitats, the African malaria vectors Anopheles gambiae and
Anopheles arabiensis are morphologically indistinguishable and are known to be discriminated by
molecular techniques. In this paper, Raman spectroscopy is proposed to complement the tedious and
time-consuming Polymerase Chain Reaction (PCR) method for the rapid screening of mosquito identity.

Methods
A dispersive Raman microscope was used to record spectra from the legs (femurs and tibiae) of fresh
anaesthetized laboratory-bred mosquitoes. The scattered Raman intensity signal peaks observed were
predominantly centered at approximately 1400 cm− 1, 1590 cm− 1, and 2067 cm− 1. These peaks, which
are characteristic signatures of melanin pigment found in the insect cuticle, were important in the
discrimination of the two mosquito species. Principal Component Analysis (PCA) was used for dimension
reduction. Four classi�cation models were built using the following techniques: Linear Discriminant
Analysis (LDA), Logistic Regression (LR), Quadratic Discriminant Analysis (QDA), and Quadratic Support
Vector Machine (QSVM).

Results
PCA extracted twenty-one features accounting for 95% of the variation in the data. Using the twenty-one
principal components, LDA, LR, QDA, and QSVM discriminated and classi�ed the two cryptic species with
86%, 85%, 89%, and 93% accuracy, respectively.

Conclusion
Raman spectroscopy in combination with machine learning tools is an effective, rapid and non-
destructive method for discriminating and classifying two cryptic mosquito species, Anopheles gambiae
and Anopheles arabiensis. belonging to the Anopheles gambiae complex.

Introduction
Malaria remains a serious threat to human life worldwide. It is a serious cause of morbidity and mortality,
with the majority of cases and deaths occurring in sub-Saharan Africa. According to statistics from the
World Health Organization (WHO), it is estimated that 247 million cases and 619,000 deaths occurred
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worldwide due to the disease in the year 2021 (1) The highest burden of the disease was bone in sub-
Saharan Africa, which accounted for 95% of cases and 96% of deaths.

Malaria is transmitted from one human to another primarily via the bites of female Anopheles
mosquitoes. To this end, female mosquitoes of the genus Anopheles must contract infection with
Plasmodium parasites by feeding on blood from an infected person, supporting the sexual cycle of
Plasmodium parasites, and subsequently delivering the infective sporozoites to a susceptible human
host during the next blood-feeding session (2). Based on this knowledge, malaria prevention by reducing
human-vector contact is paramount and has been the main preventive strategy hitherto. This is usually
deployed in the form of indoor residual spraying (IRS), insecticide-treated bed nets (ITNs), larval control,
and outdoor residual spraying (3).

The Anopheles gambiae complex contains some of the most e�cient malaria vectors worldwide. It is
known to be composed of at least seven morphologically indistinguishable species, namely, Anopheles
gambiae (i.e. the nominal taxon), Anopheles arabiensis, Anopheles bwambae, Anopheles melas,
Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii, and Anopheles amharicus(4). The �rst
two species are the most widely distributed in Africa (5). Identifying Anopheles gambiae and Anopheles
arabiensis is critical in malaria control programs because these two species have distinct behaviours and
habitats and require different approaches to control. Anopheles gambiae is generally the predominant
species in environments with high humidity and rainfall, whereas Anopheles arabiensis is more common
in regions with low rainfall (5, 6). Both species often occur in sympatry across a wide range of tropical
Africa (5, 7).

Identifying the species responsible for malaria transmission in a given area allows the application of
targeted interventions that are more effective and e�cient than the use of broad-based control measures.
Anopheles gambiae is an endophilic mosquito species (8, 9), meaning that it rests indoors after blood
feeding. It is primarily a nighttime feeder and is highly anthropophilic (9),, meaning that it feeds almost
exclusively on humans. Owing to its feeding and resting habits, Anopheles gambiae is primarily
controlled using indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs). In contrast,
Anopheles arabiensis is an exophilic mosquito, meaning that it rests outside after feeding. It is
opportunistic in its feeding habits, feeding on both humans and animals (10). Because it rests outdoors,
IRS may not be as effective against Anopheles arabiensis. Instead, other measures such as larval source
management and outdoor residual spraying may be necessary to control this species.

Distinguishing between the two cryptic species is also important for monitoring insecticide resistance
(11). The widespread use of insecticides for malaria control has led to the development of resistance in
mosquito vector populations. Monitoring insecticide resistance is critical to ensure that control measures
remain effective. Additionally, correct identi�cation can aid in tracking changes in malaria transmission
patterns (12). Monitoring changes in mosquito abundance and species composition can provide valuable
information regarding malaria transmission dynamics. This information can be used to adjust control
strategies and prevent malarial epidemics.
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The need to identify these two species is an age-old problem. Their cryptic nature has prompted scientists
to develop identi�cation techniques that extend beyond visible morphological features. In most cases,
these techniques are molecular techniques. Allozyme electrophoresis (13) and analysis of polytene
chromosomes (14) may be considered the oldest techniques for identifying mosquitoes in the Anopheles
gambiae complex. In the former method, starch gel electrophoresis of allozymes was used to identify the
members of the Anopheles gambiae complex. Gel electrophoresis is a method used to separate
macromolecules, mainly proteins, based on their size and charge. Macromolecules are embedded in a
porous gel, such as starch, and an electric �eld is applied across the gel. The migration of molecules in
the porous gel under the in�uence of an electric �eld separates the molecules by size. The process is
tedious and time-consuming, as it requires manual identi�cation of protein products at particular loci. In
the latter method, the evolution of the Anopheles gambiae complex was interpreted from the polytene
chromosome banding sequences. Polytene chromosomes are giant chromosomes that are commonly
found in dipteran �ies. Although successful, this method is limited to half-gravid female mosquitoes (15).

Cuticular hydrocarbon analysis using gas chromatography has also been explored for the identi�cation
of Anopheles gambiae complex species. Gas chromatography can be used to separate volatile
compounds without causing decomposition. This enabled the determination of the relative abundances
of the present compounds. Carlson & Service (15) observed that relative abundances between the
following compounds could be used to distinguish the species: n-hexacosane and n-heptacosane, 13-
methyl hentriacontane and n-hentriacontane, and dimethyl nanotria-contane and dimethyl hententra-
contane. However, the instrumentation of gas chromatography limits its use in laboratory environments
and not in �eld applications.

Most techniques for identifying the sibling species of Anopheles gambiae complex, as observed from
recent literature, are focused on the analysis of DNA (16–24). DNA is a biological molecule that encodes
the genetic information of an organism. Currently, DNA analysis is performed using Polymerase Chain
reaction (PCR) ampli�cation (Saiki et al., 1988). PCR is used to select speci�c portions of an organism’s
genome (a sequence of bases) to be replicated several times to a reasonable quantity for analysis. PCR
techniques have high accuracy, speci�city, and sensitivity. Currently, they are the gold standard for
identifying species in the Anopheles gambiae complex. However, PCR is a time-consuming, labour-
intensive, and expensive process that requires specialized laboratory conditions and highly skilled
personnel to obtain good results.

Matrix-assisted laser desorption/ionization time-of-�ight mass spectrometry (MALDI-TOF-MS) has been
explored for discriminating sibling species within the Anopheles gambiae complex. MALDI-TOF-MS uses
laser energy and an absorbing matrix to ionize large molecules such as proteins while minimizing
fragmentation. Using MALDI-TOF-MS, mosquito leg protein extracts have been found to be adequate for
identifying mosquitoes at the species level (25–27). Similarly, optical spectroscopy techniques, such as
near-infrared (NIR) spectroscopy, have been investigated in insect taxonomic studies. These include the
identi�cation of species of beetles (28), Drosophila species (29), cryptic Tetramorium ant species (30),
and Anopheles gambiae complex (30, 31). NIR spectroscopy probes the vibrational states of the
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molecules and provides a spectral �ngerprint of the chemical compound under investigation. Cuticular
lipids and hydrocarbons are the main molecules that provide essential classi�cation information in insect
taxonomic studies using NIR spectroscopy. The two techniques, MALDI-TOF-MS and NIR spectroscopy,
have the advantage of being rapid compared to previously discussed methods. However, in MALDI-TOF-
MS, the compound to be investigated must be extracted and embedded in a laser-absorbing matrix for
analysis, which is a time-consuming process.

From the extensively reviewed literature, no studies currently exist that have used Raman spectroscopy as
a tool to distinguish these two species. We recently demonstrated the capability of Raman spectroscopy
to discriminate and classify mosquito genera (32). Cuticular melanin was found to be a potential
biomarker for discrimination. In this work, we demonstrate the utility of Raman spectroscopy for
discriminating and classifying two sibling species based on cuticular melanin signatures.

Materials and Methods

Mosquito Rearing and Preparation of Samples for Raman
Spectroscopy
Anopheles gambiae and Anopheles arabiensis colonies were maintained following standard rearing
protocols in insectaries at the Department of Biology at the University of Nairobi. Adult mosquitoes were
held in 30 × 30 × 30 cm cages in separate temperature-, light-, and humidity-controlled rooms. The rooms
were kept at a temperature of 27oC-28oC, humidity of 70–80% and a photoperiod of 12-hour light and 12-
hour darkness. In each cage, the mosquitoes laid eggs in ovicups containing cones of �lter paper placed
in water. The eggs were transferred to trays �lled with water, where they hatched into larvae. The larvae
were fed TetraMin® baby �sh food. The adults were fed 6% glucose solution soaked in �lter paper wicks.
Con�rmatory PCR was performed to maintain colony integrity.

To prepare for measurements, fresh adult mosquitoes were taken from rearing cages and anaesthetized
using chloroform. This was performed by enclosing separate groups of insects in enclosed chambers
that contained open bottles of chloroform for six hours. This step was not necessary for the
measurement process but was performed to ensure that the mosquito samples were kept intact with all
body parts.

Raman Spectroscopy Measurements
A total of 297 mosquitoes (Anopheles gambiae, n = 151; Anopheles arabiensis, n = 146) were used in this
study. Each mosquito was measured by randomly taking �ve spectra of the insect’s femurs and tibiae.
Each spectrum was taken using 10 seconds integration time with �ve accumulations on a Technos®
dispersive Raman microscopy system. The system had the following parameters: 532 nm excitation
laser, 600 grooves/mm gratings, and ×10 in�nity-corrected dry microscope objective with a Numerical
Aperture of 0.25. The laser power was continuously adjusted via visual inspection of the sample to avoid
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sample burning. Figure 1 shows a schematic of the instrument setup, with the sample (insect) placed on
the X-Y translation stage. Photons from the laser (indicated by green arrows pointing toward the sample)
were delivered through the microscope objective to the mosquito legs (femurs and tibiae), which were
placed on a Raman-grade Calcium Fluoride microscope slide (Crystran Ltd, UK, Batch No. 60373). Femurs
and tibiae were chosen for their relative ease of being focused under the microscope and because they
did not contain signals emanating from other conditions such as food consumed by the mosquitoes and
gonotrophic status. Furthermore, mosquito legs have been successfully used to classify mosquitoes(25,
27, 32). Rayleigh and Raman scattered photons (indicated as green and red arrows respectively pointing
away from the sample) in Fig. 1 were collected by the same microscope objective with an optical low
pass �lter blocking the former. The Raman signal was collected via an optical �bre and spectrograph for
digitization using a charge-coupled device (CCD) (Peltier cooled to -76oC) connected to a computer for
display and storage. Wavenumber calibration was done by interpolating the laser line and the strong
silicon Raman shift positioned at 520.5 ± 4 cm− 1.

Data Pre-processing
Data processing was performed according to previously published protocols by Ryabchykov et al. (33)
and Morais et al. (34). Five spectra from each mosquito were averaged, and the average was considered
as a single spectrum from the mosquito. Each averaged spectrum was �rst smoothed with a Savitzky
Golay convolution digital �lter of order 5 and a frame length of 21 pixels. The Savitzky Golay mask is a
low-pass �lter that suppresses noise signals that generally have high frequencies. This was followed by a
baseline correction procedure employing the Vancouver algorithm (35) with a 5th-order polynomial to
subtract the �uorescence signal and leave a clean Raman signal. Vector normalization was applied to
each Raman spectrum to account for the intensity variation due to experimental factors such as changes
in the sample focus. All preprocessing procedures were performed using scripts developed in the
Matlab® 2018 software.

Classi�cation Modeling
Four machine-learning models were trained and tested to discriminate and classify the two mosquito
species: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (LDA), Logistic Regression
(LR), and Support Vector Machine (SVM). LDA and QDA are algorithms based on Mahalanobis distance
calculations between samples of each class, which can use Bayesian probability terms to correct classes
of different sizes. Unlike LDA, which assumes a pooled covariance matrix resulting in a linear boundary,
QDA forms a separate covariance model for each class thus separating the classes by a quadratic
boundary. Similarly, LR is a linear model, used to model binary classes based on one or more variables. In
this case, the binary classes were assumed to closely �t an underlying probability distribution. The goal
of the model was to estimate the true parameters of the underlying probability density function for
discrimination and classi�cation. Finally, the data was modelled using an SVM. An SVM is an inherently
binary linear classi�er that may allow the nonlinear transformation of data by the inclusion of kernel
tricks. SVM �ts a linear decision boundary between classes while seeking to maximize the margin



Page 7/20

between them, de�ned by the closest samples on the border, called support vectors. In this study, we used
a quadratic kernel to account for nonlinearity in the classi�cation problem. In all the four models,
Principal Component Analysis (PCA) was used to extract features for classi�cation. PCA is a matrix
factorization algorithm that decomposes the original data matrix into three matrices as follows:

1

where T is a matrix containing scores, PT is the transpose of the matrix containing loadings, and E is a
residual. The score matrix T has its columns ordered from the �rst most important latent variable, with
each subsequent variable’s importance reduced. This implies that the �rst few latent variables can be
used to reduce the dimensions of the original dataset for robust classi�cation. It also aids in the
visualization of data points during classi�cation. The loadings matrix P provides information about the
variables that make the largest contribution to the components.

Model development was achieved through �ve-fold cross-validation. The data were divided into �ve equal
chunks; four chunks were used as the training set, and one was used as the test set. This process was
repeated by alternating each of the data chunks as a test set and the remaining four as the training set. In
each case, preprocessed data were loaded in the Matlab 2018 software workspace, and Matlab’s
classi�cation Learner apps were used to create the models. The PCA function in the software was used to
automatically compress the input variables from 341 to 21 principal components, which accounted for
95% of the variation in the original datasets.

Quality Metrics for Performance of the Models
Three quality metrics were calculated from the confusion matrices of the developed LDA, QDA, LR, and
Quadratic SVM (QSVM) models to evaluate their performance: accuracy, sensitivity, and speci�city.
Accuracy is de�ned as the percentage of correct classi�cations, sensitivity is the percentage of true
positives that were classi�ed correctly, and speci�city is the percentage of true negatives that received the
correct classi�cation. The metrics were calculated using equations 2–4 (34).

3

 % (4)

where TP, TN, FP, and FN represent the True Positives, True Negatives, False Positives, and False
Negatives, respectively. Figure 2 summarizes the data analysis protocol used in the development of the

X = TP
T + E

Accuracy = × 100% (2)
TP + TN

TP + FP + TN + FN

Sensitivity = × 100%
TP

TP + FN

Specificity = × 100T N

T N+F P
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models.

Results
The average Raman spectra obtained from the legs of the Anopheles. gambiae and Anopheles arabiensis
mosquitoes are shown in Fig. 3. Each spectrum is the average of the mean spectra from 20 individual
mosquitoes. The main peaks of interest are labeled. These peaks coincide well with our previously
reported data on mosquito discrimination and classi�cation (32). Previous studies have shown that
performing Raman spectroscopy on cuticles of some insects such as bumble bees (36), wasps (37),
spiders (38) and skins of Lacertids (39) produced spectra dominated by peaks attributable to melanin
pigment. The main peaks, as surveyed from the published work, occur at 1380 cm− 1 and 1580 cm− 1 for
black or brown colour producing eumelanin and 1490 cm− 1 and 2050 cm− 1 for reddish or yellowish
colour producing pheomelanin. The peak at 2067 cm− 1 in Fig. 3 occurs in both Anopheles gambiae and
Anopheles arabiensis spectra, but with clearly visible differences in intensity and is attributed to
pheomelanin pigment. This corresponds to the 2050 cm− 1 peak reported in the cited literature. This peak
has been observed in Raman spectra of synthetic pheomelanin (40) as well as in spectra of pheomelanin
from grasshoppers (41). Previous studies have assigned it to overtones or combination bands. The
overtone could be the �rst harmonic of the C-N band of pheomelanin reported by Galván et al (42) to
occur at 1150 cm− 1 but spanned a range of wavenumbers (1141 cm− 1, 1147 cm− 1, and 1159 cm− 1) (42).
This peak, although not well de�ned, can be observed as a hump at approximately 1100 cm− 1 in Fig. 3.
The peaks at 1402 cm− 1 and 1582 cm− 1 in Anopheles gambiae and 1406 cm− 1 and 1598 cm− 1 in
Anopheles arabiensis spectra can be ascribed to eumelanin. These peaks have been associated with the
stretching vibration of the hexagonal carbon rings in the molecular structure, the vibration of the six C-C
bonds within the rings, and the vibration of C-H of methyl and methylene groups in the eumelanin
polymers (43). Although there was a clear difference in the peak position and intensity in the averaged
spectra of the two species, there were considerable perceived similarities when examining individual
mean spectra from each of the mosquitoes in the study. Therefore, the aforementioned differences
cannot be used to predict mosquito species; hence, the need for machine learning classi�cation models.

Classi�cation Models
All the four machine-learning models performed relatively well in discriminating and classifying the two
sibling species. The linear models, LDA and LR, performed almost identically, with accuracies of 86% and
85%, respectively. The quadratic models QDA and QSVM achieved slightly higher accuracies of 89% and
93%, respectively. Table 1 summarizes the quality metrics of the four classi�cation models. In all four
models, Anopheles gambiae and Anopheles arabiensis were assigned positive and negative class labels,
respectively.
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Table 1
Summary of quality metrics used to assess the performance of the four classi�cation

models.
Model Accuracy

(%)

Sensitivity

(%)

Speci�city

(%)

Linear Discriminant Analysis (LDA) 86 82 90

Quadratic Discriminant Analysis (QDA) 89 84 93

Logistic Regression (LR) 85 84 87

Quadratic Support Vector Machine (QSVM) 93 90 95

Variables Contributions
Each of the four models retained only twenty-one principal components (PCs) after training, accounting
for 95.0% of the variation in the original feature space. The �rst three PCs accounted for 62.8%, 9.3%, and
4.2%, respectively, with each of the remaining 18 PCs contributing less than 3.0% of the variation.
Examination of the loadings on these PCs revealed that the �rst PC correlated positively with the ca.1580
cm− 1 eumelanin peak and negatively with the 2067 cm− 1 pheomelanin peak. The second PC had strong
positive loadings at 1621 cm− 1 and 2063 cm− 1. The third PC also showed a strong negative loading for
pheomelanin characteristic bands at 2060 cm-1 and 1916 cm-1, and positive loading at 1709 cm− 1,
which are generally associated with carbonyl C = O bonds. Figure 4 provides a visualization of the loading
for the �rst three PCs. Therefore, melanin peaks dominated in correlation with the �rst three PCs.

While the classi�ers used twenty-one PCs, it was not possible to visualize all PC combinations. Figure 5
shows a visualization of the mosquito data points in the principal component space in three dimensions.
In Fig. 5 (a) and (b), there is a good separation between the positive (Anopheles gambiae) and negative
(Anopheles arabiensis) classes using PC1, PC2, PC3 and PC4, PC5, PC6, respectively. In Fig. 5 (c), the
positive class appears to be spread out more than the negative class, forming a smaller cluster in PC7,
PC8, and PC9 space. This may be interpreted as small but important contributions by smaller PCs, which
are useful for de�ning discrimination hyperplanes in the models.

Discussion
We have demonstrated the ability of Raman spectroscopy to discriminate and classify two mosquito
member species of the Anopheles gambiae complex: Anopheles gambiae and Anopheles arabiensis.
Both mosquito species were reared under controlled environmental conditions (humidity, temperature,
and dark/light photoperiod). Raman spectra were obtained by scanning the cuticle of tibiae and femurs
of unfed individual mosquitoes. After pre-processing, the spectra clearly showed the dominance of both
eumelanin and pheomelanin peaks. Melanin molecules are known to offer photoprotective properties to
organisms because of their ability to absorb ultraviolet (UV) and visible light and dissipate up to 90% of
the absorbed energy. The thermal melanism hypothesis states that individuals tend to be darker in colder
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environments and lighter in warmer ones (44). Since the measurements in this experiment were
performed on individuals reared under similar environmental conditions, we ruled out environment-
induced changes in melanin. Four machine-learning models, LDA, QDA, LR, and QSVM, were developed
and successfully discriminated and classi�ed the two cryptic species. They achieved accuracies of 86,
89, 85, and 93%, respectively. LDA and LR are linear models, whereas QDA and QSVM employ quadratic
boundaries or kernels, respectively, in the discrimination algorithms. This suggests non-linearity in the
datasets, and hence, better classi�cation performance is exhibited by non-linear models. However, such
models should be deployed with caution, such as cross-validation with su�cient data to avoid over�tting.
The performance of the developed models can be considered su�cient for effective screening of large
numbers of mosquito samples usually collected in mosquito surveillance programs and �eld studies.

The binary classi�cation models LDA, QDA, LR, and QSVM developed in this work classify any sample
presented to them into any of the two classes: Anopheles gambiae and Anopheles arabiensis. This
means that before one can effectively use the models, one needs to sort the mosquitoes to the species
level and then let the model assist in classifying the members of the Anopheles gambiae complex. This is
not different from the PCR assay, in which careful selection of primers and use of positive and negative
controls are required to guarantee good results. However, unlike in the PCR assay where a failed
ampli�cation means the non-existence of the target species, a machine learning model classi�es any
sample presented to the model (even if it does not belong to the complex) to one of the classes, based on
the learned decision boundary. This is a major weakness of the classi�cation models, but it can be
overcome by proper sorting of the insects and expanding the scope of the models to multiclass
classi�ers by training using all seven members of the complex. This may also include other members
outside the complex, such as Anopheles funestus, which are occasionally confused with Anopheles
gambiae (45).

Compared with standard PCR assays, our method is rapid because it requires minimal sample
preparation. A fresh insect is placed under a microscope objective lens, as in normal microscopy, and
scanned using a laser to acquire the Raman spectrum. For a case in which the model has been trained,
the process of acquiring, preprocessing, and classifying the acquired spectrum can take less than ten
minutes per insect. This time can be further reduced if a dedicated ‘point and shoot’ miniaturized system
is developed and used. This can be considered faster than PCR, in which a sample can take between one
and six hours depending on the speed of the system. It is also nondestructive, as the samples can be
reused. After the extraction procedure for the PCR assay, an insect sample cannot be used for assays
other than PCR. In terms of costs, after the initial costs of setting up the Raman microscope are
considered, this method is relatively cost-saving because no chemical reagents are required. The Raman
microscope used in this study costs approximately USD 100,000. However, it is also a general-purpose
system that is used in other research projects in materials science, forensics, and bio-photonics. A point
to note with Raman spectroscopy is that after the development of the method presented in this paper, a
custom-made, application-speci�c, handheld system (46, 47) can be designed with preloaded libraries
and search algorithms that may incorporate machine learning for mosquito identi�cation. This will
drastically decrease the initial cost of setting up a Raman system dedicated to mosquito identi�cation to
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less than USD 30,000, and present a simpli�ed user interface. The current cost of setting up a PCR
system is approximately USD 40,000, with an expected constant requirement for reagents that may not
be sustainable for laboratories in resource-limited settings. Finally, our method also compares well with
NIR spectroscopy(31, 48–51), an optical technique with similar bene�ts to Raman spectroscopy.
However, from a technical perspective, Raman measurements are performed using laser light in (or close
to) the visible range of the electromagnetic spectrum. Therefore, Raman spectroscopy is more appealing
for the miniaturization of spectroscopic devices because visible light detectors and optics are relatively
cheaper than NIR spectroscopy. Miniaturized Raman systems such as hand-held, can be used to do
measurements in situ while in �eld campaigns.

Conclusions
We have demonstrated the e�cacy of a rapid and non-destructive method for discriminating and
classifying two cryptic mosquito species belonging to the Anopheles gambiae complex. This method
uses Raman spectroscopy combined with machine learning algorithms to discriminate between
Anopheles gambiae and Anopheles arabiensis.

These results suggest that the cuticular pigment, melanin, is a biomarker for discriminating between the
two sibling species. Linear binary models, namely Linear Discriminant Analysis (LDA) and Logistic
Regression (LR), performed well with accuracies of 86% and 85%, respectively. Quadratic models -
Quadratic Disciminant Analysis (QDA) and Quadratic Support Vector Machine (QSVM)- performed better
than linear models, achieving accuracies of 89% and 93% respectively. This is the �rst time Raman
spectroscopy has been used to discriminate and classify cryptic mosquito species.

Although the classi�cation models presented in this work are binary, they can be upgraded by training
using multi-class data to enable screening of all seven Anopheles gambiae siblings and other species
commonly confused with Anopheles gambiae.
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Figure 1

Schematic representation of the dispersive Raman microscope. The sample is placed on the X-Y stage.
Red and green arrows indicate photon delivery routes.
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Figure 2

Data analysis pipeline. Raw data are fed from the left side of the �gure. Pre-processing is performed
before the clean data are fed into the classi�cation models. Finally, the performances of the models are
evaluated.
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Figure 3

Average Raman spectra of Anopheles arabiensis (top) and Anopheles gambiae (bottom). The spectra are
dominated by the eumelanin and pheomelanin peaks.
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Figure 4

Loading visualization of the �rst three principal components. The loadings correlate with the Raman
peaks of melanin. PC1, PC2, and PC3 accounted for 62.8%, 9.3%, and 4.2% of the variance, respectively.
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Figure 5

Visualization of principal component contribution in mosquito discrimination. Blue circles represent the
positive group, whereas red triangles represent the negative group. The 3-D plots are (a) PC1,PC2, PC3, (b)
PC4, PC5, PC6, and (c) PC7,PC8, PC9.


