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Abstract

Named Entity Recognition (NER) is important in fields where researchers

have to review large amounts of scientific text, such as plant pathology.

However, NER is especially difficult in low-resource domains, for example,

domains with little annotated textual data. Roots, Tubers and Bananas

(RT&B) crop disease monitoring is one such domain. This paper investi-

gates the promise of transfer learning to enhance the effectiveness of NER

in the identification of RT&B crop disease entities.

There is an increasing number of Pretrained Large Language Models (PLLMs)

that have demonstrated better performance in Natural Language Process-

ing (NLP) tasks. This study uses transfer learning to train new models

for RT&B crop disease NER. It proposes a method for transferring knowl-

edge from large language models in resource-rich domains to smaller, low-

resource domains.

By creating scientific workflows to quickly train the growing number of

PLLMs and evaluate them using key metrics including non-O accuracy

and the F1 score. This research demonstrates the effectiveness of trans-

fer learning in creating effective models for RT&B crop diseases. The

final model, based on SciDeBERTa, outperforms the baseline model on all

metrics, especially on non-O accuracy. The results underscore the huge

potential of this approach in the surveillance of crop diseases.

This research makes a contribution towards more effective Named Entity

Recognition in low-resource domains. It explores current advancements

in NER and the use of transfer learning in these domains. The author

acknowledges the limitations of the study, such as the lack of extensive

hyperparameter tuning and the unknown nature of the generalisability of

the models. Finally, the study proposes continuous benchmarking of new

PLLMs, comprehensive hyperparameter tuning, and exploration of data

augmentation techniques to improve data availability and impact of this

innovative approach as further research opportunities.
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Chapter 1

Introduction

1.1 Background

Roots, Tubers and Bananas (RT&B) are important food crops that are propagated

vegetatively (Thiele et al., 2017) that include cassava (Manihot esculenta), potatoes

(Solanumspp.), sweet potatoes (Ipomea batata), yams(Dioscorea spp.), and bananas

(Musa spp.). In developing countries, these crops play a vital role in ensuring that

people have enough food, promote good nutrition, and create income opportunities.

According to (Thiele et al., 2022, 2017), about 300 million people worldwide depend

on the value chains of RT&B crops. RT&B crops play a crucial role in providing

the necessary nutritional and dietary energy. This is due to their significant yield

and high levels of carbohydrates. They provide more energy per hectare grown than

cereals (RTB, 2016), and in sub-Saharan Africa, they contribute up to 50% of the

total daily calorie intake (Petsakos et al., 2019).

To understand the significance of RT&B crops in maintaining food security in sub-

Saharan Africa, it is essential to take into account the impact of climate change on

agriculture in this region. Where agriculture is more vulnerable due to the effects of

climate change(Girvetz et al., 2019); however, RT&B crops have characteristics that

increase their ability to withstand the consequences of climate change. (Prain and

Naziri, 2020). Although farmers in Africa use primarily RT&B crops for subsistence,

these crops are also of global importance, as they are used as animal feed or for

industrial production, such as ethanol production (Petsakos et al., 2019).

RT&B crops are all vegetatively propagated, which means that the planting mate-

rials, for example, stem cuttings or vines, are genetically identical to the parent plant

(Andrade-Piedra et al., 2016). Therefore, these crops share similar breeding, seed

systems, and post-harvest challenges (RTB, 2016). However, a significant challenge is

the widespread occurrence of pests and diseases. These outbreaks of crop diseases and

pests cost farmers and consumers significant losses yearly due to yield loss and poor

1



1.1 Background

harvest quality. The yield loss is estimated to be between 20% and 40% (Kreuze et al.,

2022; Savary et al., 2019). Vegetatively propagated crops are particularly vulnerable

to pest infestation and pathogen infections because pests and pathogens tend to build

up over time with each planting cycle (Thomas-Sharma et al., 2016). Researchers

predict that this problem will deteriorate as climate change increases the geographic

scope of pests and diseases or increases the severity of some diseases that affect these

crops (Thiele et al., 2017). The global food trade network and the evolution of new

pathogens will also contribute to the spread of plant diseases (Ristaino et al., 2021).

The relevant authorities can generally manage endemic plant diseases to avoid

adverse agricultural effects. However, emerging plant diseases cause large-scale plant

epidemics that devastate food security (Kreuze et al., 2022; Savary et al., 2019). These

plant epidemics are transboundary and can affect yield in multiple countries at the

same time. RT&B crops have several ongoing large-scale outbreaks in Africa and

Asia, for example, Fusarium Wilt in bananas and Cassava Mosaic Disease (CMD) in

cassava (Kreuze et al., 2022).

The surveillance responsibility for monitoring crops to protect them from pan-

demics is in the hands of National Plant Protection Agencies (NPPO)’s in different

countries. For example, Kenya’s NPPO, Kenya Plant Health Inspectorate Services,

is acknowledged as a centre of excellence in eastern and southern Africa(Miller et al.,

2009). In practise, plant disease diagnosis networks carry out disease monitoring and

surveillance. NPPOs, research universities, international research organisations, de-

velopment agencies, the private sector, and farmers make up these networks. (Miller

et al., 2009; Ristaino et al., 2021). For example, such networks are in place to monitor

Cassava viruses in Africa and Asia. Networks traditionally perform diagnostics using

field surveys that use classical techniques such as diagnosis, grafting, and mechanical

inoculation. However, with DNA sequencing becoming cheaper, whole genome se-

quencing has been added to these traditional texting programmes (Legg et al., 2015).

The ability to detect outbreaks accurately and quickly is critical to implementing

effective intervention measures. Early detection can minimise the impact and threat

posed by disease, and a delayed response can have significant economic, social, and

ecological impacts. The year 2020, was designated as the International Year of Plant

Health by the General Assembly of the United Nations. This declaration was to en-

courage the creation of global surveillance networks and to increase public and policy

makers’ awareness (Seed World, 2018).

Monitoring and controlling crop disease outbreaks is still an ongoing challenge

worldwide. Plant disease surveillance is severely underfunded (Carvajal-Yepes et al.,

2019). For example, global-scale surveillance is only conducted for wheat rust and

late blight in potatoes (Ristaino et al., 2021). Despite the lack of funding, many mod-

ern and digital technologies are being applied to disease surveillance. This includes

2



1.2 Problem Statement

geospatial and remote sensing systems, field sensors, data mining, and big data an-

alytics, including NLP (Ristaino et al., 2021). Disease detection has also been used

based on images from smartphones and drones (Kreuze et al., 2022). Disease surveil-

lance networks are using all these methods to continuously monitor the spatial spread

and incidence of pests and pathogens.

1.2 Problem Statement

Transboundary crop disease outbreaks are an ongoing challenge to food security and

farmer income. Detecting outbreaks accurately and on time is critical for farmers and

crop protection stakeholders to deploy efficient intervention measures. A delayed re-

sponse can have significant economic, social, and ecological impacts. Researchers and

crop protection around the world are advocating the use of modern and digital tools

to build new disease surveillance networks (Carvajal-Yepes et al., 2019; Kreuze et al.,

2022; Ristaino et al., 2021). For example, the National Academy of Sciences recently

published an agricultural research agenda that underscored the need for breakthrough

technologies to rapidly detect and prevent plant diseases (National Academies of Sci-

ences, Engineering, and Medicine, 2019).

Through these efforts, digital data on crop and pest diseases will continue to grow

exponentially. Although a lot of textual data is generated on crop diseases from

structured sources, for example, published articles on databases such as PubMed

(National Library of Medicine, 2023) or from free-form data sources such as social

media or news media. According to recent research by (Ristaino et al., 2021), there is

a lack of extensive attempts to utilise Natural Language Processing for tracking and

charting the spread of plant diseases. In a recent survey of big data and digital tools

for RT&B crops, all the tools that used machine learning for crop protection focused

on image recognition, either through mobile phones or drones (Kreuze et al., 2022).

Transboundary diseases require coordinated effort because they cross political bor-

ders; however, disease surveillance methods are usually limited to specific geographi-

cal locations, and data is not always shared between political borders (Scherm et al.,

2014). The availability of digital data sources provides an avenue for data-driven

surveillance over borders. Advancements in Natural Language Processing (NLP) tech-

niques have enabled the analysis of data from web sources, such as social networks,

search queries, blogs, scientific literature, and online news articles for outbreak-related

incidents related to diseases (O’Shea, 2017; Thomas et al., 2011). This form of surveil-

lance involves collecting, analysing, and disseminating key information related to dis-

ease outbreaks to detect outbreaks and provide early warning to plant disease control

experts. Such data-driven surveillance systems can boost the capacity of traditional

surveillance approaches that rely largely on the visual and genomic identification of

3
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crop disease outbreaks by domain experts in a local context. This can adversely affect

the deployment of effective containment measures for global crop disease pandemics.

For scientists and RT&B crop protection experts, the challenge becomes how to ex-

tract disease information from these growing digital text sources in an automated and

efficient manner.

Relevant information that exists in these texts and that can be used for creating

a disease surveillance system includes:

• Crop name

• Plant part name

• Pathogen name

• Disease name

• Symptom

• Geographic location

• Event Date

• Organisation

This information is similar to fine-grained named entities used in Agriculture NER

studies, like (Malarkodi et al., 2016) and (Liu et al., 2020).

1.3 Aim and Objectives

1.3.1 General Objectives

The main objective of this research study was to develop and evaluate a deep learning

model using transfer learning techniques for Named Entity Recognition to properly

categorise and label specific entities associated with crop diseases in the context of

Roots, Tubers and Bananas from diverse scientific literature and news media.

1.3.2 Specific Objectives

1. To design a scientific workflow that can use transfer-learning to train and eval-

uate multiple large-language models for the RT&B diseases NER task.

2. Find the most appropriate Pretrained Large Language Model (PLLM) that

uses transfer learning to correctly recognise the named entities of RT&B crop

diseases.

4



1.4 Research Questions

3. Assess how well the fine-tuned model performs in Named Entity Recognition of

RT&B crop diseases in the scientific literature and online text.

1.4 Research Questions

1. What method allows for the efficient creation and execution of a scientific work-

flow to swiftly train and evaluate diverse large language models in deep transfer

learning, especially for novel NER tasks in low-resource data domains?

2. What Pretrained Large Language Model emerges as the most suitable choice

for transfer learning to produce a NER model aimed at RT&B crop diseases

detection? How does the choice of this PLLM influence the effectiveness of the

resultant model?

3. How does the fine-tuned model perform in terms of Named Entity Recognition

for RT&B crop diseases when applied to scientific literature and online texts?

What are the key factors that significantly impact this performance?

1.5 Justification

RT&B crops are crucial contributors to food security and income generation, with

a particularly profound impact in Africa (RTB, 2016). Despite their importance,

managing and controlling crop disease outbreaks pose formidable global challenges

(Carvajal-Yepes et al., 2019). As technological advances in crop disease monitoring

networks lead to a proliferation of relevant textual data for crop protection (Miller

et al., 2009; Ristaino et al., 2021), the insights derived from this study are intended to

significantly boost large-scale crop disease monitoring efforts. The focus is mainly on

combating transboundary crop epidemics. Through the study, our objective was to

facilitate the robust and continuous extraction of information from extensive online

textual data sources. This approach is anticipated to enhance targeted crop pro-

tection initiatives and provide valuable support for resource-constrained crop disease

networks, thus contributing to a more sustainable and secure agricultural future.

1.6 Assumptions

1.6.1 Scope and Limitations

1. The research study limited the evaluation of NER to diseases affecting only five

RT&B crops: Cassava, Banana, Plantain, Potato, and Sweet Potato.

5



1.6 Assumptions

2. The study collected scientific data from abstracts available in the Semantic-

Scholar open access literature database. However, the methodology can be

applied to other databases such as PubMed or Google Scholar. The news items

were collected from free news media indexed on Google News and refined using

the crop name as the keyword search.

3. The project extracted data from online text and documents created digitally

by the authors. This study did not use scanned PDF documents that required

optical character recognition for text extraction.
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Chapter 2

Literature Review

2.1 Introduction

The ability to rapidly detect the spread of crop epidemics is an integral part of crop

disease surveillance networks. The growing availability of digital data in online sources

provides an avenue for data-driven cross-border surveillance. Advancements in Natu-

ral Language Processing (NLP) techniques have enabled it to analyse data from Web

sources, such as social networks, search queries, blogs, scientific literature, and online

news articles for outbreak-related incidents related to diseases (O’Shea, 2017; Thomas

et al., 2011). This review of the literature revolves around how deep transfer learning

can be used to extract entities that are relevant to the monitoring and surveillance of

crop diseases. The study focusses on understanding the developments in the natural

language process, the emergence of Pretrained Large Language Model, and how these

have been used in transfer learning to enhance deep learning models in areas with

little training data. This review also focusses on NER in the agricultural sector.

2.2 Named Entity Recognition and Extraction

Natural Language Processing (NLP) explores the methods by which machines inter-

pret and interact with human language in text or spoken form to achieve practical

objectives (Chowdhary, 2020). A subset of NLP is Information Extraction (IE). Infor-

mation Extraction works to automatically extract data from natural text to populate

a structured database (Gaizauskas and Wilks, 1998). Named Entity Recognition

(NER) is an essential component of Information Extraction (IE). At the Message Un-

derstanding Conference 6 (MUC-6) The term ”named entity”, a word that recognises

elements with similar characteristics within a superset of elements, was introduced

as part of Information Extraction (IE) as(Grishman and Sundheim, 1996). A named

entity is termed a rigid designator. Elements such as person names, dates, and prod-
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2.2 Named Entity Recognition and Extraction

uct names can be considered entities. The goal of Named Entity Recognition is to

recognise the mentions of these identifiers that belong to a predetermined text class

(Nadeau and Sekine, 2007). The performance of NER tasks can be affected by factors

such as language, type of entity and domain, for example biomedical or agriculture.

Nested entities, ambiguity in the text, and the amount of annotated training data are

challenges for NER (Goyal et al., 2018).

The goal of NER is to identify specific terms that are part of a predetermined

category in a given text.

2.2.1 Evaluation metrics for NER

Evaluating the performance of NER models typically involves measuring precision,

recall, and the F1 score, which provides a balanced assessment of the model’s accuracy

in terms of false positives and false negatives. (Sang and De Meulder, 2003). Precision

quantifies the fraction of named entities accurately pinpointed by the model of all

entities predicted. In contrast, recall quantifies the proportion of named entities

accurately detected relative to all the actual named entities present in the dataset. The

F1 score is a measurement that combines recall and precision through the harmonic

average. It helps balance the trade-off between these two factors into a single value.

(Chinchor and Robinson, 1997). These evaluation metrics are often calculated for

each named entity type and then averaged to assess the model’s performance across

all entity types.

2.2.2 Approaches to NER

There are three main groups into which NER techniques can be broadly divided:

hybrid, machine learning-based and rule-based methods.

2.2.2.1 Rule-based methods

Rule-based methods for NER depend on manually created rules, patterns, and dictio-

naries to classify entities in the text(Grishman, 1995). These methods often involve

regular expressions or pattern matching techniques to capture specific syntactic or

morphological structures associated with named entities (Chinchor and Robinson,

1997). Although rule-based methods can achieve high precision, they may require

an improvement in recall due to the difficulty in creating comprehensive rules and

dictionaries that encompass all potential variations of named entities (Nadeau and

Sekine, 2007).
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2.2.2.2 Machine Learning-Based Methods

Machine learning approaches for Named Entity Recognition use supervised learn-

ing strategies to autonomously discern patterns and characteristics from annotated

datasets (Lafferty et al., 2001). Commonly used machine learning algorithms for

NER include Support Vector Machines (SVMs), Conditional Random Fields (CRF)

and Hidden Markov Models (HMMs) (McCallum and Li, 2003). More recently, deep

learning-based methods, such as Recurrent Neural Network (RNNs), Long Short-Term

Memory (LSTM) networks and Transformer-based models, have attained top-tier re-

sults on different NER benchmarks (Devlin et al., 2019; Lample et al., 2016).

2.2.2.3 Hybrid Methods

Hybrid methods utilise a combination of rule and machine learning based approaches

to take advantage of the strengths of both techniques and mitigate their weaknesses

(Finkel et al., 2005). These methods typically involve the use of rules to generate

features or initial annotations, which are refined or combined with machine learning-

based methods to produce the final output NER (Nadeau and Sekine, 2007). Hybrid

methods can achieve improved performance by combining the high precision of rule

and machine learning based approaches possessing the ability to adapt and generalise

effectively.

2.3 Deep Learning in NER

Deep learning falls under the machine learning umbrella and emphasises layered data

interpretations using multi-layered artificial neural networks (LeCun et al., 2015).

These deep architectures allow models to extract intricate and high-level characteris-

tics directly from raw data, making them particularly effective for tasks that involve

large volumes of unstructured data, such as NLP and image and speech recognition

(Goodfellow et al., 2016). Deep learning has significantly advanced NER in recent

years, outperforming traditional rule and machine based techniques in various bench-

marks and application areas (Lample et al., 2016; Ma and Hovy, 2016).

2.3.1 Neural Network Architectures for NER

Several deep learning architectures have been employed for NER tasks, including

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long

Short-TermMemorys (LSTMs), Bidirectional Long Short-TermMemorys (BiLSTMs),

Conditional Random Fieldss (CRFs), Bidirectional Long Short-Term Memory with

Conditional Random Field Layers (BiLSTM-CRFs), and transformer-based models.
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2.3.1.1 Recurrent Neural Networks

RNNs fall under a class of neural networks designed especially for handling sequential

data, preserving hidden states that retain details from prior stages (Elman, 1990).

RNNs have been applied to NER tasks to capture contextual information and long-

range model dependencies in input text (Chiu and Nichols, 2016).

2.3.1.2 Convolutional Neural Network

CNNs are a type of neural network which employs convolutional layers to capture local

features in input data by applying filters (Lecun et al., 1998). Although originally

designed for image recognition, CNNs underwent modifications for NER tasks by

interpreting the text in a series of characters or words, using convolutions to grasp

the local context and characteristics (Collobert et al., 2011).

2.3.1.3 Long Short-Term Memory

LSTMs are a type of RNNs that addresses the problem of vanishing gradients, which

occurs when the network cannot learn long-term dependencies because of the decrease

in gradients during training (Hochreiter and Schmidhuber, 1997). LSTMs utilised in

NER tasks aim to more effectively grasp distant relationships and context within

input sequences (Lample et al., 2016).

2.3.1.4 Bidirectional Long Short-Term Memory Networks

BiLSTMs, which extend LSTMs, process input series from both the preceding and the

succeeding directions. This facilitates the model’s ability to comprehend context from

both earlier and upcoming tokens (Graves et al., 2005). BiLSTMs have been success-

fully applied to NER tasks, demonstrating improved performance over unidirectional

LSTMs (Huang et al., 2015).

2.3.1.5 Conditional Random Fields

CRFs constitute a discriminative probabilistic graphical model, adept at articulating

the interdependencies between input variables and their corresponding outputs in a

structured prediction task, such as NER (Lafferty et al., 2001). CRFs have been com-

bined with deep learning architectures, such as LSTMs and CNNs, to improve NER

performance by capturing the dependencies between adjacent named entity labels(Ma

and Hovy, 2016).
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2.3.1.6 Bidirectional Long Short-Term Memory With a Conditional Ran-

dom Field Layer

The BiLSTM-CRF model combines the strengths of BiLSTMs and CRFs. It employs

BiLSTM to assimilate contextual specifics, while the CRF layer is used to articu-

late the interrelationships among the labels assigned to the named entities (Huang

et al., 2015). This combination has outperformed individual BiLSTM or CRF mod-

els in NER tasks by effectively modelling both the input sequence context and the

relationships between output labels (Ma and Hovy, 2016).

2.3.1.7 Transformer-based Models

Transformer-based models, such as Bidirectional Encoder Representations from Trans-

formers (BERT) and Generative Pre-trained Transformer (GPT), are a family of deep

learning architectures that rely on self-attention mechanisms to harness details of the

context in input sequences (Devlin et al., 2019; Radford et al., 2018; Vaswani et al.,

2017). These models achieved top-tier results in numerous NLP undertakings, such as

NER, by refining pre-established models using data tailored for distinct applications

(Devlin et al., 2019; Matthew et al., 2018).

2.3.2 Benefits and Challenges of Deep Learning for NER

Deep learning offers several benefits for NER tasks, including the ability to learn

complex representations from raw data, capture long-range dependencies, and incor-

porate contextual information in input sequences (Goodfellow et al., 2016). Moreover,

one can pre-train deep learning architectures utilising vast datasets, allowing them to

leverage prior knowledge and achieve better performance on downstream tasks, such

as NER, with limited labelled data (Devlin et al., 2019).

However, deep learning for NER also presents challenges, such as increased compu-

tational complexity, model interpretability, and the need for large amounts of labelled

data for training (Zhang et al., 2015). In spite of these hurdles, progress in deep

learning methodologies, especially transfer learning and unsupervised pre-training,

have contributed to mitigating certain data requirements and computational limita-

tions, making deep learning-based NER models an increasingly popular choice for

researchers and practitioners (Matthew et al., 2018).

2.4 Transfer Learning in NER

Transfer learning involves using knowledge gained from one domain or machine learn-

ing task and applying it to another related function or domain. This process often
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results in improved performance with fewer training data (Pan and Yang, 2010). In

the context of NER, transfer learning allows models to leverage representations or

structures pre-trained on expansive text databases. This decreases the volume of

annotated data necessary for the intended NER activity (Ruder et al., 2019a).

2.4.1 Transfer Learning Types

Transfer learning can be broadly categorised into domain adaptation and task adap-

tation.

2.4.1.1 Domain Adaptation

Domain adaptation entails conveying knowledge acquired from an original domain to

a desired domain that may have different data distributions to enhance the efficacy

of the model within the desired domain (Pan and Yang, 2010). In NER, domain

adaptation can benefit low-resource settings or when the target domain has unique

linguistic features or terminology that differs from the source domain (Ruder et al.,

2019a).

2.4.1.2 Task Adaptation

Task adaptation focusses on conveying knowledge acquired from an original task to

enhance the results of a related target activity (Pan and Yang, 2010). In the con-

text of NER, task adaptation can involve the use of pre-trained language models or

embeddings developed on extensive unsupervised datasets or other NLP tasks and

fine-tuning them on the NER task of interest (Devlin et al., 2019; Matthew et al.,

2018).

2.4.2 Pre-trained Language Models

The introduction PLLM, such as BERT, GPT, and ELMo, has considerably advanced

the field of NER by allowing models to exploit rich contextualised representations

learnt from large-scale unsupervised data (Devlin et al., 2019; Matthew et al., 2018;

Radford et al., 2018). These pre-trained models have achieved gold standard per-

formance on various NER benchmarks by capturing long-range dependencies and

semantic relationships in text, reducing the demand for manually designed features

and extensive labelled data (Akbik et al., 2019).

2.4.3 Fine-tuning Techniques for NER

Fine-tuning involves tailoring a PLLM to a designated NER activity by modifying

the model parameters based on data specific to that task (Howard and Ruder, 2018).
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Techniques for fine-tuning in the context of NER usually require running the model

for several iterations using a reduced learning rate to prevent the erasure of the pre-

learned information (Ruder et al., 2019a). Various strategies, such as layer-wise learn-

ing rate schedules, differential learning rates, and freezing specific layers during train-

ing, have been proposed as methods to enhance the fine-tuning procedure, ensuring

the efficient transition of pre-trained insights to the specific NER objective (Howard

and Ruder, 2018; Ruder et al., 2019a).

2.5 NER in Low-Resource Domains

2.5.1 Challenges in Low-Resource NER

NER in low-resource domains face several challenges that stem from the lack of avail-

able data and the unique characteristics of these domains. These challenges include

data scarcity, limited annotated data, domain-specific language, and the complexity

of handling rare entities (Pan et al., 2017). Some studies have shown that there are

few corpora of agricultural-related documents tagged (Patil et al., 2013). Further-

more, creating annotated data in low-resource domains can be time consuming and

expensive, requiring expert knowledge and manual annotation efforts (Ruder et al.,

2019b). These challenges have motivated researchers to explore alternative techniques

to improve NER performance in low-resource settings.

2.5.2 Techniques for NER in Low-Resource Settings

Numerous strategies have been put forth to tackle the difficulties of NER within low-

resource domains. These techniques include data augmentation, multitask learning,

and cross-lingual learning.

2.5.2.1 Data Augmentation

Techniques for data augmentation create new training instances by making varied

modifications to the original data, including substituting with synonyms, randomly

adding or deleting words, or interchanging their positions (Wei and Zou, 2019). In

the context of NER, model performance can be improved by using data augmentation

to enhance the quantity and diversity of training data. For instance, (Li et al., 2020)

suggested an iterative data augmentation method that merges a rule-driven system

with a neural network architecture to automatically generate labelled data for low-

resource NER tasks.
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2.5.2.2 Multi-Task Learning

Multi-Task Learning (MTL) is an approach where several tasks are trained con-

currently to enhance the capability of generalising effectively (Caruana, 1997). In

low-resource NER, MTL can take advantage of the commonalities between related

tasks, for example, chunking, part-of-speech tagging and NER, to enhance the per-

formance of the model (Plank et al., 2016). For instance, (Bingel and Sgaard, 2017)

demonstrated that MTL could improve NER performance in low-resource languages

by jointly learning-related tasks.

2.5.2.3 Cross-Lingual Learning

Cross-lingual learning involves the transfer of knowledge learnt from one language to

another. In the context of low-resource NER, cross-lingual learning can help lever-

age the knowledge obtained from high-resource languages to enhance NER accuracy

in lowly-resourced languages (Ruder et al., 2019b). As an example, (Conneau et al.,

2018) proposed XNLI, which uses a pre-trained sentence encoder to transfer the knowl-

edge from high to low resource languages for various NLP activities, such as NER.

2.5.2.4 Applications in Low-Resource Domains

Several applications have demonstrated the effectiveness of techniques such as data

augmentation, cross-lingual learning, and multitask learning when addressing NER

in poorly resourced domains. In the biomedical field, a study by (Yang et al., 2016),

a data augmentation method that combines distant supervision and active learning,

was proposed to enhance the efficacy of NER within the biomedical field. By adopting

this approach, the model was able to learn from a limited amount of annotated data,

which ultimately improved its overall generalisation capabilities. Another example is

from low-resource languages, where (Lin et al., 2016) developed a multitask learning

approach for NER that jointly learns NER and dependency parsing. The research

indicated that the model could yield outstanding outcomes across multiple lowly-

resourced languages, demonstrating the benefits multitasking learning brings to low-

resource settings.

2.6 Deep Transfer Learning for NER

Deep transfer learning has shown its effectiveness in enhancing NER performance in

various domains, including biomedical, legal, and environmental domains. Within the

biomedical field, (Zhou et al., 2018) applied a multitask learning framework to enhance

NER efficacy for biomedical items like genes, diseases, and chemicals. By concurrently

training the model on various NER tasks, it attained top-tier results on benchmark
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datasets. This approach highlights the potential of multitask learning to capture

domain-specific language patterns and improve NER performance in specialised areas

such as scientific domains. Regarding the Legal field, (Chalkidis et al., 2020) proposed

Legal-BERT, a model fine-tuned using legal text corpora, which outperformed the

original BERT model and conventional NER techniques in recognising legal concepts

named entities. This work emphasises the importance of transfer learning of PLLMs

for NER tasks in specialised domains.

2.7 NER Applications in Agriculture and Plant

Pathology

2.7.1 Importance of NER in agriculture and plant pathology

Named Entity Recognition (NER) has significant potential in agriculture and plant

pathology, as it allows the extraction of vital information from a significant amount

of unstructured textual data. By identifying and classifying entities such as crop

names, diseases, pests, and treatments, NER can facilitate the development of decision

support systems, early warning systems, and advanced research methodologies in

agriculture.

2.7.2 Existing NER systems for Agricultural Text

Several studies have explored the application of NER in agricultural text, focussing

mainly on recognising diseases and pests in different languages and contexts. For

example, a study by Li et al. (2019) investigated NER methods for Chinese for-

est disease texts, conversely, research by (Guo et al., 2020) explored NER methods

tailored for Chinese agricultural texts for pests and diseases. The authors used multi-

scale local context attributes coupled with a self-attention approach. Similarly, (Guo

et al., 2021) suggested a method rooted in adversarial contextual embeddings for NER

named ACE-ADP for agricultural diseases and pests. In another study, (Zhang et al.,

2021) employed character augmentation to improve Chinese NER performance for ap-

ple diseases and pests. These works demonstrate the potential of NER in processing

agricultural text data to provide insights into sector-specific trends and issues.

2.7.3 Challenges and Opportunities in Plant Pathology

One of the primary challenges in applying NER to agriculture and plant pathology is

the need for domain-specific labelled data for model training. Furthermore, agricul-

tural text often contains specialised terminology and complex relationships between
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entities, making it difficult for general-purpose NER systems to perform well in this

domain.

Despite these challenges, there are promising opportunities for NER in agriculture

and plant pathology. Developing domain-specific NER systems can lead to better

decision-making, early warning, and research methodologies. For instance, in research

carried out by (Jiang et al., 2021)on fine-tuning BERT-based frameworks to compile

plant health reports, revealed the efficacy of employing pre-trained linguistic models in

classifying agricultural texts. Furthermore, integrating NER with other data sources,

such as remote sensing, geospatial data, and expert knowledge, can result in more

comprehensive information systems for agriculture and plant pathology.

2.8 Conceptual Model

The pictorial conceptual model (Jrvelin and Wilson, 2003) is a diagrammatic repre-

sentation of the framework that illustrates the various components of the suggested

NER framework will interact. This study collected data for model training from

open-literature databases and online media. The data are preprocessed, annotated

and used to pre-train different LLMs. The target Large Language Model knowledge

is fin-tuned with our dataset and used for the new NER task of RT&B crop diseases.

2.9 Conclusion

2.9.1 Summary

This review of the literature covered the essential aspects of Named Entity Recogni-

tion (NER), focussing on low-resource domains, deep learning, transfer learning, and

applications in agriculture and plant pathology. It discussed the definitions and tasks

related to NER, multiple strategies related to NER, including hybrid, rule and ma-

chine learning based methods, and their evaluation metrics. The review also examined

the impact of deep learning on NER, presenting different neural network architectures

and their benefits and challenges. Furthermore, it addressed the concept of transfer

learning, its types, and its application to NER. The review then delved into the chal-

lenges and techniques in low-resource NER and examined the importance, existing

systems, and challenges of NER in agriculture and plant pathology.

2.9.2 Gaps and research directions for the current study

While the review of the literature provides a comprehensive overview of NER and its

applications in agriculture and plant pathology, it also highlights several gaps and
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Figure 2.1: Conceptual Model
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research directions that were addressed in the current study:

Domain-specific adaptation: Despite advances in deep learning and transfer

learning for NER, there remains a need for domain-specific adaptation to improve the

recognition and classification of entities in low-resource domains, Roots, Tubers and

Bananas crop diseases.

Cross-lingual and low-resource language support: Most existing NER mod-

els and techniques have been developed for high-resource languages and domains. This

fact provides an opportunity for further research and development of NER systems

that can effectively handle low-resource languages and data domains. In this study

we apply transfer learning to a low resource data domain of RT&B crop diseases.

Integration of deep learning and transfer learning: By combining deep

learning architectures with transfer learning methods, the performance of NER mod-

els can be greatly improved in low-resource domains. The author investigated the

employment of PLLMs, such as BERT and its successors, combined with transfer

learning. Specifically, we use fine-tuning techniques and provide valuable insights

into the adaptability and efficiency of these models within the framework of root,

tuber, and banana crop diseases.

Addressing these gaps and research directions contributes to the advancement

of NER models and techniques in the context of Roots, Tubers and Bananas crop

diseases, ultimately benefiting agricultural research and practise in this low-resource

data domain.
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Chapter 3

Methodology

3.1 Introduction

This chapter outlines the concepts, principles, procedures, and techniques employed

in this research. It outlines the process of collecting and analysing data and the model

design. Primary data was obtained from open online databases and news sites and

annotated by a researcher working in crop protection. Furthermore, it provides details

of the experimental structure utilised to both train and evaluate different models. The

study selected several BERT-based models, which have been shown to work well for

NLP (Devlin et al., 2019), and used the transfer learning approach to create a deep

learning architecture that detects named entities of Roots, Tubers and Bananas crop

diseases from scientific and online texts. After the fine-tuning process, the chapter

also details the method used to find the most appropriate Pretrained Large Language

Model for NER and how the model was validated.

3.2 Research Design

The primary emphasis of the research centered on developing and implementing the

RT&B crop diseases NER model. The study used the CRoss Industry Standard Pro-

cess for Data Mining (CRISP-DM) research process for mining data. This process

was developed by a group of leading data mining suppliers and users, such as Daim-

lerChrysler, SPSS, NCR and OHRA (Wirth and Hipp, 2000) (see Figure 3.2). We use

transfer learning to fine-tune selected models from the BERT family of transformer-

based models to achieve this. The study was able to formulate a deep learning archi-

tecture which uses the power of these models for our specific task. (Vaswani et al.,

2017). The model has been successfully deployed online for inference, allowing greater

accessibility and more efficient use for the RT&B crop diseases NER task. The fol-

lowing is the NER project workflow diagram (refer to Figure 3.1).
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Figure 3.1: Project workflow diagram illustrating the system architecture and process
flow for the RT&B crop diseases NER model.
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Figure 3.2: Diagram demonstrating the interconnections among the different stages
of CRISP-DM (Jensen, 2012)

3.3 Business Understanding

RT&B crop disease monitoring networks collect much textual data relevant to crop

protection to combat transboundary crop disease outbreaks (Miller et al., 2009; Ris-

taino et al., 2021). These data collected by NPPOs, CGIAR centres, stakeholder

organisations and farmers are geotagged data on pests and diseases that affect many

food crops, including the RT&B crops. These data are stored online in databases of

scientific literature such as SemanticScholar (The Allen Institute for Artificial Intelli-

gence, 2022) or in unstructured data sources such as social media or news media. From

this information, a rapid and efficient understanding of the spread of crop pandemics

allows crop protection stakeholders to act quickly on new outbreaks and reduce the

chances of spreading or reintroducing pests and pathogens. Given the availability of

these textual data and the lack of textual annotated data in agriculture(Patil et al.,

2013). The study’s objective was to use transfer learning using an annotated dataset

from this source to create a NER model for recognising disease entities in text.

3.4 Data Understanding

Open-access research abstracts related to Roots, Tubers and Bananas crops were re-

trieved from the SemanticScholar database using keyword searches. The data set was
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extensively analysed to identify articles that contained specific entities targeted for

extraction as positive examples and those that did not have disease-related informa-

tion as negative examples. A similar process was used to obtain news articles, utilising

Google News keyword searches.

Both scenarios involved the utilisation of Python to perform the search queries

and download the scientific text. See Appendix A for more details. Only English

texts were considered for this study.

3.5 Data Preparation

3.5.1 Data Collection

As noted in Patil et al. (2013), there is a noticeable lack of tagged corpora that

focus specifically on agriculture-related documents. Therefore, this study collected a

relatively small but significant dataset consisting of scientific and online texts that are

relevant to crop diseases associated with Roots, Tubers and Bananas. The collected

data were used as the basis for the creation of a corpus for experimentation. The

data was first used to train a baseline model and later used for transfer learning,

specifically, for fine-tuning the Pretrained Large Language Model (PLLM)s.

To accomplish this, data were collected from two primary sources: Semantic-

Scholar and Google News. This subsection outlines the data collection process, the

pre-processing techniques used, and the final format for storing the acquired data.

3.5.1.1 Data Sources

SemanticScholar (The Allen Institute for Artificial Intelligence, 2022) served as the

main data source for this study. It is an AI-powered research tool that assists re-

searchers in discovering pertinent publications and extracting information from an

extensive corpus of scientific literature. Data was collected from SemanticScholar us-

ing their API, which grants access to a plethora of metadata and abstracts related to

the research topic.

Google News, an online news aggregation service that compiles and presents news

articles from various sources, was also used as a data source. Google News API was

used to collect links to the data. Python was used to download the information

contained in the news articles, their headlines and snippets relevant to the research

topic from the source news website.
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3.5.1.2 Data Collection Process

Python is used as the primary programming language for data collection. Requests

are made to the SemanticScholar and Google News APIs, which return relevant pub-

lications and news articles as JSON objects. A set of search queries is designed to

retrieve the maximum number of pertinent documents. Keywords such as ”cassava

diseases”, ”potato diseases”, and ”banana crop diseases” were used to ensure com-

prehensive coverage. The data collection scripts are available in Appendix A.

3.5.1.3 Data Preprocessing

After obtaining the raw data, it was necessary to preprocess the text to ensure that

it was in a suitable format for annotation. The study developed a Python script to

clean and preprocess the data. The script performed the following tasks:

• Text Cleaning: The script was designed to eliminate unnecessary whitespaces

and non-standard symbols from the text. This ensured that the text was con-

sistent with UTF-8 encoding, which is crucial for the subsequent processing and

analysis stages. This step also improved the readability and interpretability of

the data, facilitating more accurate annotation.

• Storage Format and Annotation Tool: After preprocessing, the data were

stored in the JSON Lines (JSONL) format, which is convenient for handling

large volumes of text data. Each line in the JSONL file represents a single doc-

ument or article and includes the required fields for annotation. Every JSONL

data entry was split into two segments: the text field, which held the subject

matter and a unique identifier field. Scientific articles had a DOI identifier,

whereas news articles had a URL identifier. The JSONL format is compatible

with Prodigy (ExplosionAI, 2023), a popular annotation tool used in this study

to annotate named entities related to RT&B diseases.

The preprocessing script was designed to keep the data as close to the original

format as possible, ensuring that the context and meaning of the text were preserved.

The data obtained served as the basis for the subsequent stages of the study. The

details of the Python script are described in Appendix A.

3.5.2 Data Annotation

We annotated the data using the Prodigy annotation tool (ExplosionAI, 2023); see

Figure 3.3 for an example of the annotator screen. Annotated data was used to train

a base model and fine-tune PLLMs as a transfer learning technique. Prodigy provides

a free research licence to bonafide research students.
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Figure 3.3: Prodigy Annotation Tool

3.5.2.1 Data Preparation for Training

Initially, gazetteers containing plant names, diseases, and other key information were

used to partially preannotate a small set of 50 abstracts using Prodigy. These ab-

stracts were then manually reviewed, further annotated, and corrected as necessary.

These manually annotated data were exported from Prodigy and used to train a

named entity recognition model using the spaCy library (Honnibal and Montani,

2021). The study used this intermediate model to improve the data annotation pro-

cess through active learning. The goal was to suggest entities to the annotators who

could verify the predictions’ accuracy and make changes or additions. This saved

time compared to annotating all the text without any suggestions. To assess whether

increasing the volume of data would increase the model’s efficacy, the initial spaCy

model was trained incrementally with data amounts of 25%, 50%, 75% and 100%.

This was accomplished using Prodigy’s train-curve recipe, which sends chunked data

to spaCy. The aim was to test the viability of creating a model that could effectively

learn the new entities.

Following this process, a total of 300 abstracts and 256 news items were annotated

for the study. These annotated data served as the basis for the subsequent stages of

the investigation, offering a firm foundation for developing and assessing the NER

model. The study used a fine-grained set of tags adopted from others that have been

used in NER research in agriculture, like (Liu et al., 2020; Malarkodi et al., 2016).

• Crop name

• Plant part name

• Pathogen name
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• Symptoms

• Disease name

• Geographic location

• Event Date

• Organization

Figure 3.4: Prodigy Train curve diagnostics

3.5.2.2 Data Export for Training

A set of data transformation steps was added to the workflow to prepare the data for

the subsequent stages of this study. An essential transformation involved converting

the data into the Inside, Outside, Beginning (IOB) format. The structured delineation

of each token’s position in a named entity makes this format commonly used in Named
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Entity Recognition tasks. The generation of the IOB format was facilitated by a

Python script, the details of which are described in Appendix A.

This script was designed with flexibility and adaptability in mind and was able to

export the IOB format with different separators to meet the requirements of an array

of machine-learning models and libraries. In addition, the script has the ability to

divide annotated data into training, validation, and testing batches. It is crucial to fol-

low this step when creating machine learning models. This involves fitting the model

to a specific dataset (training set), fine-tuning the model for transfer learning using

another set (development set), and then assessing its performance on a completely

distinct dataset (validation set) that the model has not encountered before. By fol-

lowing the above process, the model’s performance and capability to apply knowledge

to data that have not been previously encountered can be reliably assessed.

3.5.2.3 Annotated Data Summary

After going through the pre-processing and transformation steps, the data used in this

study were represented in terms of the various data labels and their corresponding

counts. These details are summarised in Table 3.1. The data was also classified

according to specific labels, providing a more granular view of the data distribution.

This categorisation is presented in Table 3.4. These tables give a summary of the

data and offer key insights into the characteristics and composition of the dataset

employed in this research.

Data/Label Count
Total number of annotation documents 556
Total number of tokens 289387
CROP 5996
LOC 1498
PLANT PART 1576
GPE 3615
DATE 2496
DISEASE 1801
SYMPTOM 620
PATHOGEN 2409
ORG 2171

Table 3.1: Summary of annotated documents, tokens, and labels

Below is an overview of the data set partitioned into three distinct subsets, train-

ing, validation, and evaluation, with a proportion of 75%, 15%, and 15%, in that

order. By using this partitioning strategy, it was possible to train, fine-tune, and

assess how well the model performs on new and previously untested data. It also pro-

vided insight into the composition and balance of the data usedduring every phase of
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Label Count
B-CROP 5996
I-CROP 1240
B-LOC 1498
I-LOC 1622
B-PLANT PART 1576
B-GPE 3615
I-GPE 909
B-DATE 2496
I-DATE 2511
B-DISEASE 1801
I-DISEASE 2177
B-SYMPTOM 620
I-SYMPTOM 2479
B-PATHOGEN 2409
I-PATHOGEN 2760
B-ORG 2171
I-ORG 3803
I-PLANT PART 29
O 249675

Table 3.2: Counts of each label in the annotated data

the model’s evolution. It is important to highlight the significance of this partitioning

approach in ensuring the generalisability and robustness of the model. More research

can be conducted to understand and improve its efficiency.

Dataset Number of Documents Number of Tokens
Train 389 204579

Validation 84 37123
Test 83 47685

Table 3.3: Summary of the overall count of documents and tokens use in experiments.

Dataset Train Validation Test
DISEASE 1345 235 221
CROP 4257 756 983
DATE 1644 345 507
ORG 1479 260 432
GPE 2498 475 642

PLANT PART 1123 215 238
LOC 1027 185 286

PATHOGEN 1724 375 310
SYMPTOM 454 88 78

Table 3.4: Summary of the label counts for each dataset.
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3.6 Model Design and Rationale for Selection of

Models

To design the NER model, we started by training a Bidirectional Long Short-Term

Memory with Conditional Random Field Layer (BiLSTM-CRF) model, that merges

the best features of BiLSTMs and CRFs, making it a popular choice for NER tasks

(Huang et al., 2015). This model has been shown to exceed the performance of

individual BiLSTM or CRF models in NER tasks by efficiently modelling the context

of the input sequence and the relationships between output labels (Ma and Hovy,

2016). That’s why it was once considered the gold standard in NER. Using this

as the baseline model, we could compare and improve it with our transfer learning

approach. The study trained the baseline model using the corpus previously tagged

with the RT&B diseases fine-grained entities.

Subsequently, we extended the training, using transfer learning, to BERT and

several of its derivatives Pretrained Large Language Models. The BERT family models

are renowned for their exceptional performance in NER tasks and have consistently

been the best-performing models in multiple NLP challenges, such as NER. (Devlin

et al., 2019).

The PLLMs utilise the Transformer framework. (Vaswani et al., 2017). They are

typically pre-trained on extensive text collections, like Wikipedia and BookCorpus.

This pre-training allows them to learn long-term dependencies in the text and perform

exceptionally well on NLP tasks. Transfer learning has been shown to enhance the

efficiency of downstream tasks, particularly when there are inadequate labelled data

to train the model. (Ruder et al., 2019a). To tackle our NER task, we used fine-

tuning as the transfer learning method with the Pretrained Large Language Models.

Furthermore, the encoder-only transformer architecture of BERT lends itself well to

the task of NER, as demonstrated in the original BERT paper where NER was used

as an example task. The research showed that it is more computationally efficient

to fine-tune BERT for a NER task rather than to build a model from the ground

up (Devlin et al., 2019). Taking into account the proven efficacy of BERT and its

derivatives in NER, the study examines the use and performance of the following

models:

1. BERT (Devlin et al., 2019)

2. RoBERTa (Liu et al., 2019)

3. ELECTRA (Clark et al., 2020)

4. DeBERTa (He et al., 2021)
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5. Longformer (Beltagy et al., 2020)

In addition, we explore the following models trained with scientific information to

understand whether domain-specific versions of the PLLMs improve performance in

novel low-resource tasks.

1. SciBERT (Beltagy et al., 2019)

2. BioBERT (Lee et al., 2020)

3. PubMedBERT (Gu et al., 2022)

4. SciDeBERTa (Jeong and Kim, 2022)

The implementation of transfer learning in our study allowed for a rapid and ef-

ficient methodology for handling NER tasks in a low-resource data domain. The

methodology involved rapidly evaluating multiple Pretrained Large Language Model

(PLLM) to determine the most effective option. As Pretrained Large Language

Models continue to evolve, our scientific workflow for training models can be readily

modified to incorporate future PLLM that will surpass current models and achieve

superior performance. Using this approach, the development of more accurate and ef-

ficient NER models will be greatly improved, especially in low-resource data domains.

3.6.1 Model Training Configuration and Automation

This project used the Python HuggingFace API and the HuggingFace Transform-

ers toolkit (Wolf et al., 2020) to train, using transfer learning, several BERT based

models. The process was designed to be easily automated and highly configurable, al-

lowing multiple experiments with different models and parameters. A separate JSON

file defined each model training and evaluation configuration. The configuration file

was then passed as an argument to the training script as listed in Appendix A. For

example, the command listed below would commence the training procedure for the

DeBERTa v3 model with the specified configuration:

python run_ner.py ./ data_30/deberta_v3_large/train_config_deberta_v3_large_128.json

The configuration file contained key parameters for model training, including

model name or path, labels, data directory, output directory, maximum sequence

length, number of training epochs, batch size, save steps, logging steps, and seed. It

also specified whether to report to the Weights & Biases (WandB) Machine Learn-

ing tracking platform (Biewald, 2020). Finally, it also configured whether to perform

training only or include evaluation and prediction. The overwriting of the output

directory and cache was also configurable.

An example configuration for the SciBERTa model is as follows:
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{

"model_name_or_path": "KISTI-AI/Scideberta-full",

"labels": "./data_30/labels.txt",

"data_dir": "./data_30/sciberta_full/128",

"output_dir": "./output/sciberta_full/128",

"max_seq_length": 256,

"num_train_epochs": 14,

"per_device_train_batch_size": 32,

"save_steps": 500,

"logging_steps": 500,

"seed": 3,

"report_to": "wandb",

"do_train": true,

"do_eval": true,

"do_predict": true,

"overwrite_output_dir": true,

"overwrite_cache": true

}

Each model was pre-processed with its own tokeniser using the Hugging Face

library, ensuring that the input data were appropriately formatted for each specific

model architecture. This approach provided a flexible and efficient framework for

conducting various experiments with different BERT models and configurations.

There are limitations on the quantity of tokens that can be handled by BERT

and its related models. The original BERT model can only handle up to 512 tokens

(Devlin et al., 2019). To ensure consistency in our preprocessing, we have limited

the number of tokens to 128 and 256 for all models except the Longformer model.

Longformer is specifically designed to handle larger documents and can process up

to 4096 tokens (Beltagy et al., 2020). Documents larger than the specified token size

were chunked using a preprocessing script as detailed in the appendix A.

3.6.2 Experiment Tracking

In the study, we used Weights & Biases (WandB), a platform to track experiments

in machine learning. WandB allows users to track the hyperparameters, metrics,

and artifacts of their experiments and to visualise the results in various ways. WandB

provided the study with a robust framework for experiment tracking, and other studies

have used a similar approach to experiment tracking (Bir et al., 2023).

The experimental plan was straightforward, yet comprehensive. A baseline BiLSTM-

CRF model was trained and evaluated for comparison purposes, serving as a point of
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reference for the performance of the models developed using transfer learning. Sub-

sequently, we trained the different BERT models, each with different configurations,

and compared their performance metrics, including the F1 score, the accuracy, the

non-O accuracy, and the precision with the baseline.

WandB played a pivotal role in this process. It allowed us to log various informa-

tion about our experiments, including hyperparameters, metrics, and artifacts such

as model weights and predictions. This comprehensive logging facilitated real-time

tracking of our experiments, enabling us to monitor the progress and contrast the

outcomes of various models efficiently.

In addition, the visualisation tools offered by WandB presented the experiments

with different methods to display the results, such as graphs, tables, and interactive

dashboards. By comparing these metrics, the study could determine the most efficient

setup of the model and ultimately gauge the efficacy of the fine-tuned models when

compared to the baseline. The knowledge gained from WandB simplified the process

of training and evaluating the models.

3.6.3 HuggingFace Platform

The advent of the transformer architecture (Vaswani et al., 2017) revolutionised

the NLP field, outperforming traditional models like Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (CNN). This architecture has facilitated the

development of high-capacity models and, due to its amenability to pretraining, has

allowed the effective use of this capacity across a broad spectrum of downstream

tasks, including text classification and token classification tasks such as Named En-

tity Recognition (Wolf et al., 2020).

The HuggingFace Transformers library is an open source platform that supports

Transformer-based models and promotes the dissemination of pre-trained models.

This library includes cutting-edge Transformer models under a unified API, providing

a streamlined and standardised interface for model interaction (Wolf et al., 2020).

To ensure consistency and reliable results, the study used the Hugging Face Trans-

formers library to experiment with different pre-trained models. The library offered a

unified API to load, train and save the NER models, making it easier to compare and

evaluate them. By using HuggingFace, the training, testing and evaluation of various

models was automated and conducted in a standardised manner. This improved the

reliability and comparability of the results, because all experiments used the same

approach once the configuration files were set.
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3.6.4 Experimental Environment

The study was run in dedicated environments with the same GPU capabilities. The

environment was hosted on RunPod, a GPU cloud platform (RunPod, 2023). This

environment was equipped with a high performance NVIDIA A100 GPU with 80 GB

of VRAM.

In addition to the GPU, the environment was also provisioned with 125 GB of

RAM and 12 virtual CPUs. This configuration provided us with a powerful and

flexible platform to run our experiments. The substantial amount of VRAM allowed

us to train large BERT models, while the generous allocation of RAM and CPUs

ensured smooth model training and evaluation.

The use of such a cloud-based environment offered the flexibility to scale resources

according to the needs of the experiments. It also ensured that our experiments

were not limited by the constraints of local hardware, enabling us to focus on the

experimentation and model-tuning process. It also saved on costs as the servers were

only provisioned for the experiment and thereafter shut down.

3.7 Model Evaluation

In NLP, we approach NER as a token classification task. Therefore, during experi-

mentation, when the study evaluated the performance of the baseline and different

BERT models, there were four possible outcomes.

• True positives (TP): If an entity was predicted to belong to a class and it indeed

matched that class.

• False positives (FP): If an entity was predicted to belong to a class and it did

not match that class.

• True negatives (TN): If an entity was predicted to belong to a class and it truly

did not match that class.

• False negatives (FN): If an entity was predicted not to belong to a class, while

it actually did so.

We used the confusion matrix to gauge the effectiveness and obtain a critical

assessment of the model’s correct and incorrect classifications. The matrix offers

insight into the errors made by the classifier and the types of errors that occur. This

is critical as certain entities, such as crop disease, may require correct prediction for

effective monitoring, while others, such as the plant part, may not be as essential.

Our study specifically employed a normalised multiclass confusion matrix to analyse

how the models performed. The confusion matrix visually displayed the performance
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of a classification model across multiple classes, the Y-axis displayed the actual labels

of the entities, while the X-axis showed the predicted labels.

Assuming that a study has n entity classes, the confusion matrix would be an

n×n table. Every cell within the matrix denotes the proportion of model predictions,

categorised by the actual and predicted classes.

Predicted: Entity 1 Predicted: Entity 2 ...
Actual: Entity 1 TP1 FP12 ...
Actual: Entity 2 FP21 TP2 ...

... ... ... ...

Table 3.5: Example of Normalized Multi-class Confusion Matrix

In the normalised confusion matrix, each cell value is a number between 0 and

1, representing the proportion of predictions for each class. The study used the

normalised confusion matrix instead of a standard confusion matrix. The standard

confusion matrix, which presents absolute counts, could have led to misleading inter-

pretations due to the high prevalence of nonentities (O entities) and the imbalance

among other entities. The normalised confusion matrix, on the other hand, provided a

more accurate and fair evaluation of our model’s performance across all entity classes.

The study also used the following metrics to validate the robustness of the model:

Accuracy: The percentage of correct predictions in the test data set. We calculated

it as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Precision: The percentage of positive instances among all total predicted positive

instances.

Precision =
TP

TP + FP

Recall: The percentage of positive instances among all actually positive instances.

Recall =
TP

TP + FN

F1-Score: Average precision and recall, weighted by their inverses. Therefore, the

higher the F1 score, the better; a perfect model would have an F1 score of 1.
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F1 =
2

1
precision

× 1
recall

=
2× precision× recall

precision+ recall

=
TP

TP + 1
2
(FP + FN)

The study evaluated all models in the experiment, including the baseline model

and the BERT models that used transfer learning, using these metrics.

3.8 Model Deployment

The trained models have been deployed and made publicly accessible via the Hug-

gingFace Model Hub. The Model Hub is a platform that facilitates the sharing and

collaboration of machine learning models. These models are hosted as public reposi-

tories in Hugging Face Spaces, allowing for easy accessibility and usage by the broader

research and development community.

For example, the DeBERTa v2 model, fine-tuned as part of this research, is read-

ily available for download and inference (Mwanzia, Leroy, 2023). This model can be

utilised directly from the Hugging Face Model Hub, enabling researchers and devel-

opers to leverage the model’s capabilities without retraining. The model repository

provides comprehensive details about its configuration, training, and performance,

ensuring transparency and reproducibility of the results.

The deployment of these models on the Hugging Face Model Hub not only pro-

motes the open sharing of resources within the machine learning community, but also

provides a platform for continuous improvement and collaboration. The DeBERTa

v2 model, along with other models trained in this research, provides significant value

as a resource for further research and application in the field of NLP.
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Chapter 4

Results and Discussion

4.1 Summary of Results

In this chapter, the research results and significant findings made in developing an

Named Entity Recognition (NER) model using transfer learning will be discussed.

The NER model developed was for the task Roots, Tubers and Bananas (RT&B)

crop diseases which is a low-resource domain.

The experimentation was set up as described in Chapter 3. Using Python and

HuggingFace to build the scientific workflow, the study created specific configuration

files for each variation of the BERT model trained using transfer learning. The study

assessed 25 variations of the PLLM outlined in Section 3.6, demonstrating the ability

to compare multiple models using the developed workflow efficiently.

The findings of the experiment, summarised in Table 4.1, demonstrate the perfor-

mance of various transformer-based models trained, using transfer learning, on our

NER task on RT&B crop diseases. The ”SciDeberta-full-128” model, a fine-tuned

DeBERTa model by the Korea Institute of Science and Technology Information AI,

outperformed all models, including the baseline model. Based on the evaluation, the

study determined that SciDeBERTa is the most appropriate option to perform NER

in RT&B crop diseases. The model performed better in non-O accuracy, accuracy,

precision, F1 score, and recall metrics. However, due to some problems that are ar-

eas of further research, some models did not return any accuracy score during model

testing and thus did not exceed the baseline metrics. Specifically, the models la-

belled ”electra-large-256”, ”roberta-large-256”, and ”deberta-v2-xlarge-128” in Table

4.1 failed to identify any entities correctly.

The findings show that the use of transfer learning to train Pretrained Large

Language Models in low-resource NER domain tasks produces better results than

machine learning methods used in low domain Named Entity Recognition.
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4.2 Introduction to Results

This research examined the efficacy of various Pretrained Large Language Models

trained using transfer learning to improve Named Entity Recognition in situations

where annotated data resources were limited. The goal was to identify models that

can make use of transfer learning to improve transformer-based PLLMs (such as BERT

and its variants) to achieve better results in NER tasks, even with limited available

annotated data.

Different performance metrics were used to evaluate the baseline model and those

fine-tuned using transfer learning. The chosen metrics were non-O accuracy, accuracy,

precision, F1 score, and recall. When it comes to NER tasks, these metrics are

considered standard and provide a thorough evaluation of the effectiveness of each

model. Accuracy is the percentage of predictions that a model makes correctly, while

non-O accuracy focusses specifically on the prediction correctness of named entities,

excluding non-entities. Precision assesses the model’s ability to minimise the number

of false positives, while Recall assesses the model’s capability to identify all relevant

instances. The F1 score is a measure of the overall performance of a model that takes

into account both precision and recall.

A baseline Bidirectional Long Short-Term Memory with Conditional Random

Field Layer (BiLSTM-CRF) model was used to establish a reference point of com-

parison. This model’s performance was previously considered the benchmark in NER

tasks due to its ability to efficiently model the connections between the input sequence

and the output labels (Ma and Hovy, 2016). The experiments aimed to determine

which transformer-based PLLM trained for RT&B disease entities through transfer

learning could surpass baseline performance. The goal was to push the boundaries of

what is currently possible in a low-resource domainNER task.

In Table 4.1, you can see the findings of our experiments. These results offer

significant information about the abilities and restrictions of the different fine-tuned

PLLMs in low-resource data environments. The results demonstrate that these models

trained using transfer learning improve NER efficiency even in low resource domains.

However, selecting the most suitable model and accurately fine-tuning it is essential.

The following sections provide further discussion of these results.

4.3 Discussion of Results

The results of our experiment are presented in Table 4.1. A comparative analysis was

conducted on various transformer-based models trained by transfer learning, using the

annotated data set of RT&B crop diseases. The aim was to perform a task of Named

Entity Recognition. The study considered multiple performance metrics to evaluate
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the models, including non-O accuracy, accuracy, precision, F1 score, and recall. It

evaluated the models’ overall performance by analysing metrics such as their ability

to accurately identify entities, classify non-entities, and strive to achieve a trade-off

between precision and recall. Note that the model prefix listed by Hugging Face has

been omitted from the table due to space constraints.

Name NonOAcc F1 Accuracy Precision Recall
SciDeberta-full-128 91.39 85.62 97.80 82.13 89.42
PubMedBert-buncft-256 91.11 86.09 97.92 83.09 89.31
PubMedBert-buncft-128 90.39 86.34 97.91 84.17 88.62
DeBerta-v3-large-256 90.33 86.29 97.63 83.47 89.31
SciDeberta-full-256 89.83 84.66 97.73 82.08 87.41
bert-large-cased-128 89.56 84.11 97.51 79.73 87.35
electra-large-128 89.50 84.70 97.66 81.58 88.07
scibert-uncased-128 89.39 83.80 97.63 80.31 87.61
deberta-v3-large-128 89.33 86.18 97.58 83.26 89.32
scibert-uncased-256 89.28 83.33 97.59 79.62 87.41
bert-large-uncased-256 89.17 83.04 97.54 79.62 87.81
longformer-base-4096 88.87 84.94 97.38 82.88 87.10
bert-large-cased-256 88.61 83.04 97.57 79.58 86.81
bert-large-uncased-128 88.56 83.52 97.53 80.66 87.87
electra-base-128 88.28 83.46 97.41 80.82 86.28
electra-base-256 88.00 83.39 97.34 80.06 87.01
scibert-cased-256 88.00 81.94 97.38 78.91 85.21
scibert-cased-128 87.94 83.20 97.41 80.02 86.64
biobert-base-cased-256 87.22 82.52 97.39 79.65 85.61
biobert-base-cased-128 86.94 82.49 97.37 79.47 85.76
roberta-large-128 82.22 73.16 96.26 69.15 77.66
electra-large-256 0.00 0.00 87.46 0.00 0.00
roberta-large-256 0.00 0.00 87.46 0.00 0.00
deberta-v2-xlarge-128 0.00 0.00 87.46 0.00 0.00
Baseline-128 75.52 80.66 96.02 84.16 77.44

Table 4.1: Experimental Results

Metric Performance Legend

Top Performance in Metric
2nd Performance in Metric
3rd Performance in Metric
4th Performance in Metric
5th Performance in Metric
Lowest Performance in Metric
Invalid Results

The ”Baseline-128” BiLSTM-CRF model is used as a benchmark to evaluate the
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performance of PLLMs that have been trained using transfer learning. The baseline

model achieved a non-O accuracy of 75.52%, an F1 score of 80.6%, an accuracy of

96.02%, a precision of 84.16%, and a recall of 77.44%. Although these results are

respectable, the objective of the experiments was to explore whether the transformer-

based models could outperform this baseline.

As demonstrated in the results shown in Table 4.1, two families of models trained

with transfer learning showed very promising results for Named Entity Recognition

of RT&B crop diseases. First, are DeBERTa based models, especially SciDeBERTa

(Jeong and Kim, 2022) and version 3 of DeBERTa (He et al., 2023). The second

was PubMedBERT (Gu et al., 2022). These models performed well on all observed

metrics, especially on the F1 score and the non-O accuracy.

The SciDeBERTa model ’Scideberta-full-128’ trained on data with a maximum

length of 128 tokens displayed superior performance across all metrics. It achieved

the highest non-O accuracy of 91.39% and accuracy of 97.80%, indicating a significant

improvement in correctly identifying both entities and non-entities. Furthermore, the

F1 score of this model was one of the best, which means an effective balance between

identifying true positives and minimising both false negatives and false positives.

Figure 4.1: F1 Score for the 10 best models compared to the baseline

It is important to mention that certain models used in the study did not show
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a significant advantage over the baseline. Specifically, the models ’electra-large-256’,

’roberta-large-256’ and ’deberta-v2-xlarge-128’ had a non-O accuracy and precision

of 0.00%, meaning they could not correctly identify any entities. There may be a

few reasons for this underperformance, such as the models’ inability to adapt to low-

resource data characteristics, inadequate hyperparameters, or potential issues with

the training process. More research is necessary to understand why certain models

did not perform well.

These findings emphasise the importance of selecting appropriate models and using

transfer learning techniques when dealing with low-resource domains in NER tasks.

Additionally, it highlights the potential of transformer-based Pretrained Large Lan-

guage Models, such as SciDeBERTa, to greatly enhance performance in such tasks.

However, the findings also caution against taking a universal approach since some

models were unable to surpass the baseline. Further research could investigate the

factors that affect these performance disparities, which may result in more effective

approaches for NER tasks in poorly resourced domains. To do this, the study created

a workflow that can quickly assess large language models for NER, as long as they

are accessible in the HuggingFace API.

4.3.1 Low Resource Domains can Make NER Task Difficult

Named Entity Recognition is often considered a solved problem because it has achieved

high performance on established data. However, the WNUT2017 Shared Task on

Recognition of Novel and Emerging Entities (Derczynski et al., 2017) shows that

these scores can be misleading. Systems achieving these high scores often struggle

with infrequent or novel entities, and their success is largely attributed to familiar

and predictable entities(Augenstein et al., 2017; Derczynski et al., 2017). This is

the same challenge with low-resource NER domains. New entities can be difficult

to recognise with existing NER models. This was evident in our experiments, where

many models struggled with novel entities such as symptoms.

4.3.2 Importance of Non-O Accuracy in Disease Recognition

When it comes to predicting crop disease entities in NER, the non-O accuracy met-

ric plays a significant role. The metric measures the accuracy of identifying named

entities, excluding the ”O” class. The ”O” is used to label tokens that are not part

of any named entities and is commonly used in annotation schemes such as the IOB

scheme, used in this study. In the NER task in this study for RT&B crop diseases,

correct recognition of entities such as the name of the disease or pathogen is crucial.

For example, during a transboundary crop epidemic, the cost of failing to detect a
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disease (a false negative) can be much higher than the cost of incorrectly identifying

a non-entity as a disease (a false positive).

Figure 4.2: Non-O accuracy compared to baseline

It is essential to optimise for the recognition of entities in critical tasks such as

crop disease detection, even if it increases the likelihood of false positives. This is

why non-O accuracy, which gives more weight to the correct identification of entities,

is a particularly relevant metric in this study. To continue the example, if the crop

disease is not detected due to a false negative, it could spread unchecked, leading to

widespread crop damage and significant economic loss. However, a false positive, al-

though still undesirable, could lead to further testing and verification, thus mitigating

potential damage.

However, it is important to note that while non-O accuracy is crucial for evalu-

ating model performance, it should not be the only metric used. F1 score, precision,

and recall are additional metrics that provide valuable information on a model’s per-

formance. Taking a balanced approach that takes into account all of these metrics

results can lead to a more robust and reliable model for disease identification.
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Figure 4.3: Confustion Matrix for the Baseline Model
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Figure 4.4: Confustion Matrix for SciDeBerta MOdel
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Chapter 5

Conclusions

5.1 Introduction

This chapter presents an assessment of the research conducted in this study, focussing

on the application of Named Entity Recognition (NER) in fields with low machine

learning resources. The study specifically looked at the recognition of crop disease

entities for Roots, Tubers and Bananas crops. The study’s conclusions, drawn from

empirical evidence gathered through experimentation, offer valuable insights into the

effectiveness of transfer learning in creating new models from Pretrained Large Lan-

guage Model for NER tasks. The chapter recognises the study’s limitations but also

emphasises the potential for further research. It also recognises that our knowledge of

NER in low-resource domains is constantly developing. The chapter concludes with

future work recommendations, with the aim of guiding subsequent research towards

enhancing our capabilities in NER tasks, particularly in high-stakes, low-resource

domains such as crop disease recognition.

5.2 Conclusion and Limitations

This research project was carried out with the aim of tackling the task of Named Entity

Recognition (NER) in lowly-resourced domains, focussing specifically on Roots, Tu-

bers and Bananas (RT&B) crop diseases. Due to the insufficiency of annotated data in

this field, transfer learning techniques were utilised to transfer useful knowledge from

models in better-resourced domains to the target domain. The study approach was

shown to be successful in improving the correctness and effectiveness of the Named

Entity Recognition (NER) task in this challenging context. The findings of this study

have led to new insights and understandings for the field of machine learning, partic-

ularly in the area of transfer learning, and can potentially inform future research in

this area.

This study’s unique contribution lies in its creative use of transfer learning on pre-

existing Pretrained Large Language Model (PLLM)s, generating new models specif-
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ically for a NER task in the specialised and underexplored domain of RT&B crop

diseases. The generated models were evaluated using several NER metrics, including

non-O accuracy and F1 score, providing a quantitative assessment of their perfor-

mance. These results demonstrate the effectiveness and great potential of leveraging

transfer learning techniques to create novel models, significantly improving NER per-

formance in low-resource domains.

It is worth mentioning that there are certain limitations to consider when inter-

preting the results of the study. A primary concern in the use of the models is their

ability to generalise accurately to related or different data and domains. Given this

challenge, it is important to exercise caution when applying models to broader ap-

plications. Furthermore, the study was unable to perform extensive hyperparameter

tuning, a missed chance to improve the models’ performance, which is unfortunate.

Finally, the ever-evolving landscape of PLLM development and innovation presents

an inherent challenge in maintaining the relevance of the study.

Future work could explore alternative transfer learning techniques or other PLLM

architectures that may be more effective in low-resource settings. Research could

also investigate methods for generating or augmenting data in specialised domains to

alleviate data scarcity. This research has applications beyond RT&B crop diseases

and can be extended to other crops and other low-resource domains, presenting more

possibilities for future research. This study serves as a stepping stone toward more

advanced and effective NER solutions for low-resource domains.

5.3 Final Recommendations

The results obtained from the research demonstrate the potential of transfer learning

to improve NER tasks in low-resource domains, such as RT&B crop diseases. By

using transfer learning techniques, it is possible to effectively overcome the challenges

associated with the insufficient availability of extensively annotated data for model

development. The models trained with our approach provide practical and innovative

solutions to these domains.

Constant benchmarking against newly released PLLM must become an integral

part of ongoing research in this area. This will not only ensure alignment with cutting-

edge methods but will also sustain the relevance and impact of the findings in the

ever-changing landscape of model development. This study presents a workflow to

efficiently evaluate new models. The emphasis on benchmarking can uncover novel

findings and reinforce the study’s promising results.

Finally, to address the challenge of data scarcity in low-resource domains, more

research should explore innovative methods for data augmentation or synthetic data

generation. Unsupervised data annotation techniques should be investigated to gen-
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erate additional annotated data for use with transfer learning and to expand the avail-

able training data. The study also suggests that further research should go deeper into

hyperparameter tuning compared to the current study. This process could uncover

more potential for transfer learning models to make use of the limited data resources

that are present in these domains.

Following these recommendations, the research community can push the bound-

aries of Named Entity Recognition in low-resource domains, providing valuable tools

and insights for various stakeholders in agriculture and beyond.
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Appendix A

Code Snippets

In this paper, we used the Python programming language for data collection and

pre-processing, as well as training and evaluating the model. In this section, we

provide snippets that highlight key aspects of these processes. These code snippets

were instrumental in implementing the proposed methodology and conducting the

experiments. In Appendix A, the reader will find links to a comprehensive collection

of Python code used in the project as open source on Github. These snippets offer

valuable insight into the technical implementation and serve as a valuable resource

for readers interested in replicating or further exploring the methodology presented in

this thesis. All the Python files with main functionality can be called and used from

the console; this allows the files to be used in an unattended manner or in a notebook.
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A.1 Data Acquisition

A.1 Data Acquisition

All Python code used for data acquisition is available in the following public reposi-

tory: https://github.com/Kaboi/PDPDataUtils/.

A.1.1 Download News Text Using GoogleNews

These is the main code components for donwloading news using the NewsPaper3k

package after searching using GoogleNews. The full code to download the news can be

accessed online at: https://github.com/Kaboi/PDPDataUtils/blob/master/data

acquisition/download news.py.

The following is the usage of the download.py Python script available in the github

repository.
usage: download_news.py [-h] -c CROP -s SEARCH [-sd STARTDATE] [-ed ENDDATE] [-p PAGESIZE]

Download news articles from Google News

optional arguments:
-h, --help show this help message and exit
-c CROP , --crop CROP Crop name
-s SEARCH , --search SEARCH

Search string
-sd STARTDATE , --startdate STARTDATE

Start date
-ed ENDDATE , --enddate ENDDATE

End date
-p PAGESIZE , --pagesize PAGESIZE

Page size

A.1.2 Download Scientific Text Using SemanticScholar

This section highlights code blocks for downloading abstracts of scientific papers from

the Semantic Scholar academic database. The full Python script for the download

of articles is available online at: https://github.com/Kaboi/PDPDataUtils/blob/

master/data acquisition/download papers.py.
# %% add search parameters
searchCrop = "potatosp_1"
searchString = ’first report potato ’
searchFields = [’url’, ’externalIds ’, ’year’, ’title’, ’abstract ’]
# searchLimit ideally should be multiple of pagesize and > than pagesize
# max pagesize is 100
pageSize = 10
searchLimit = 50

# %% search for the papers
print("searching for the papers ...")
articles = search_semantic_scholar(searchString , searchFields , pageSize)

# %% load papers into Data Frame
print("populating data to a limit of ", searchLimit)
articles_dataframe = populate_article_df(articles , searchLimit , pageSize , searchCrop)
# print(articles_dataframe)

# %% save data frame as CSV
filename = "data/" + searchCrop + "_Output.xlsx"
print("saving the file to ", filename)
articles_dataframe.to_excel(filename , index=False , engine=’xlsxwriter ’)
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A.2 Data Preprocessing

A.2 Data Preprocessing

A.2.1 Pre-annotation Text Processing

This section provides utility functions that clean up acquired text before being pro-

cessed by the Annotation software.

# define a normalization function
def normalize_text(text):

# original_text_remove = text
# join words split by a hyphen or line break
text = preprocessing.normalize.hyphenated_words(text)
# remove any unnecessary white spaces
text = preprocessing.normalize.whitespace(text)
# substitute fancy quotation marks with an ASCII equivalent
text = preprocessing.normalize.quotation_marks(text)
# normalize unicode characters in text into canonical forms
text = preprocessing.normalize.unicode(text)
# remove any accents character in text by replacing them with ASCII equivalents or

↪→ removing them entirely
text = preprocessing.remove.accents(text)

return text

def normalize_scitext(scitext):
# Replace three or more consecutive line breaks (accounting for spaces) with two
scitext = re.sub(r’((\r\n|\r|\n)\s*){3,}’, ’\n\n’, scitext)

normalize_text(scitext)

A.2.2 Pre-annotation Creation of Gazzetters

The data downloaded from online news and scientific databases are stored in CSV files

by scripts. This code processes the CSV files into JSONL annotation files required

by the Prodigy annotation software. The full Python script is available on Github:

https://github.com/Kaboi/PDPDataUtils/blob/master/data acquisition/create

pattern files.py

The code snippet below shows the actual processing of the csv data to create the

gazetters:

# %% process data

musa_disease_code = musa_df[’Disease ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’disease ’))

potato_disease_code = potato_df[’Disease ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’disease ’))

sweetpotato_disease_code = sweetpotato_df[’Disease ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’disease ’))

musa_pathogen_code = musa_df[’Pathogen ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’pathogen ’))

potato_pathogen_code = potato_df[’Pathogen ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’pathogen ’))

sweetpotato_pathogen_code = sweetpotato_df[’Pathogen ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’pathogen ’))

casssava_disease_code = cassava_df[’Disease ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’disease ’))

casssava_pathogen_code = cassava_df[’Pathogen ’]. dropna ().apply(
lambda cropdf: create_code_text_line(cropdf , ’pathogen ’))
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A.3 Model Training and Evaluation

A.2.3 Annotated Data Splitting and Conversion

This Python code provides the functionality to convert a JSONL file created by our

annotation tool and gives the option to create training, validation, and evaluation

sets. The full Python script is located on Github: https://github.com/Kaboi/

PDPDataUtils/blob/master/data acquisition/convert offset iob.py

The following is how to use the data splitting and conversion script:

usage: convert_offset_iob.py [-h] -f FILE_PATHS [FILE_PATHS ...] [-min MIN_LENGTH] [-max
↪→ MAX_LENGTH] [-s] [-sm SPACY_MODEL] [-sep SEPARATOR]

Convert jsonl annotations to IOB format.

optional arguments:
-h, --help show this help message and exit
-f FILE_PATHS [FILE_PATHS ...], --file_paths FILE_PATHS [FILE_PATHS ...]

Input file names , can be multiple space separated files.
-min MIN_LENGTH , --min_length MIN_LENGTH

Minimum sentence length , default is the document length
-max MAX_LENGTH , --max_length MAX_LENGTH

Maximum ballpark sentence length , default is the document length
-s, --split Split the data into train , test and validation sets.
-sm SPACY_MODEL , --spacy_model SPACY_MODEL

Spacy language model.
-sep SEPARATOR , --separator SEPARATOR

Separator for the output file. Allowed values are "," (comma), \t
↪→ (tab) and \s (space) Default is comma.

A.3 Model Training and Evaluation

A.3.1 Training a baseline BiLSTM-CRF model

The following is a BiLSTM-CRF model for Named Entity Recognition (NER) tasks.

This code, written in Python, is designed to train a model to recognise and classify

entities in text.

The model will default to using a GPU if available. Moreover, this code integrates

with the Weights and Biases (wandb) platform for experiment logging and tracking,

helping in performance evaluation, comparison between different runs, and keeping

track of the experiments’ hyperparameters and outputs.

The parameters of the model can be configured via command-line options, includ-

ing:

• Data locations (training, development, test set, and score file).

• Tagging scheme (IOB or IOBES).

• Text processing parameters, such as lowercase words and replacing digits with

zeros.

• Dimensions of character and token embedding.
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A.3 Model Training and Evaluation

• LSTM parameters for characters and tokens, including hidden layer size and

whether to use a bidirectional LSTM.

• Pre-trained embeddings and whether to load all embeddings or not.

• Use of capitalisation feature.

• Use of CRF.

• Dropout rate for input.

• Option to reload the last saved model.

• Whether to use a GPU.

• Loss file location.

• Model name.

• Character mode: either ’CNN’ or ’LSTM’

The source code was forked from (Mutuvi, 2023) and improved to work for this

task.

The complete repository is available on Github: https://github.com/Kaboi/

RTB-Diseases-NER-Baseline

A.3.1.1 Example Usage

Following is how we use the baseline training Python script:

python train.py --train dataset/ner_diseases -output -iob -tags -train.txt --dev dataset/
↪→ ciat_ner_diseases -output -iob -tags -validate.txt --test dataset/ciat_ner_diseases -
↪→ output -iob -tags -30-test.txt --char_mode ’LSTM’ --name ’Baseline

python eval.py --test dataset/ner_diseases -output -iob -tags -test.txt --char_mode ’LSTM’ --
↪→ model_path models/Baseline

A.3.2 Fine Tuning, Evaluating and Testing LLMs using Hug-
ging Face

The code below trains any large language model available on Hugging Face. The

code is forked from the Transformers example Github repository (Hugging Face Con-

tributers, 2023) and modified and enhanced for our task. The complete repository

can be found in the following Github link Github: https://github.com/Kaboi/

RTB Disease NER Transfer
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A.3 Model Training and Evaluation

A.3.2.1 Configuration Files

Below is an example of a configuration file needed to fine-tune an LLM using this

code.

{
"model_name_or_path": "KISTI -AI/Scideberta -full",
"labels": "./ data_30/labels.txt",
"data_dir": "./ data_30/sciberta_full /128",
"output_dir": "./ output/sciberta_full /128",
"max_seq_length": 256,
"num_train_epochs": 14,
"per_device_train_batch_size": 32,
"save_steps": 500,
"logging_steps": 500,
"seed": 3,
"report_to": "wandb",
"do_train": true ,
"do_eval": true ,
"do_predict": true ,
"overwrite_output_dir": true ,
"overwrite_cache": true

}

A.3.2.2 Example Usage

Following is how we use the Python script to do the actual transfer learning using

the configured JSON file: As is evident all the code in this project can be automated

using Bash scripts.

python run_ner.py ./ data_30/sciberta_full/train_config_sciberta_full_128.json
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