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Abstract

In this project, we study the Cartesian and the direct sum decomposition of operators in
Hilbert Spaces with a view of determining the properties of their components.
We first show that an arbitrary operator T decomposes as T = A+ iB where A and B
are self-adjoint operators. We give some of the properties of this decomposition in some
classes of operators and finally study this decomposition in some equivalence classes (sim-
ilar, almost-similar and unitarily equivalent)
We then show that an arbitrary operator T ∈ B(H) decomposes into normal and com-
pletely non-normal parts and that a contraction operator T ∈ B(H) decomposes into uni-
tary and completely non-unitary parts. Further we study this decomposition of operators
in some equivalence classes.



vii

Contents

Declaration and Approval...................................................................................................... ii

Dedication ........................................................................................................................... iv

Acknowledgments ................................................................................................................ v

Abstract ............................................................................................................................... vi

1 Preliminaries .................................................................................................................. 1

1.1 Introduction ....................................................................................................................... 1
1.2 Notations ........................................................................................................................... 1
1.3 Terminologies and Definitions ............................................................................................. 3
1.4 Some Properties of Bounded Linear Operators ..................................................................... 7

2 Litrature Review ........................................................................................................... 12

3 On Cartesian Decomposition of Operators ..................................................................... 14

3.1 Cartesian Decomposition of Some Classes of Operators ..................................................... 14
3.2 Numerical Range .............................................................................................................. 19

3.2.1 Examples of Numerical Ranges .................................................................................... 19
3.2.2 Numerical Range of 3 × 3 matrices............................................................................... 22
3.2.3 Numerical Range of Operators in Higher Dimensions ...................................................... 25

3.3 Equivalence Relations........................................................................................................ 26
3.4 Spectral Picture of Operators with Cartesian Decomposition .............................................. 30

3.4.1 Spectral Picture of Almost Similar Operators .................................................................. 30

4 On Direct Sum Decomposition of Operators .................................................................. 37

Introduction............................................................................................................................... 37
4.1 On Normal and Completely Non-normal Summands of an Operator. .................................. 37

4.1.1 Direct Summands of Normal andQuarsinormal Operators. ............................................... 37
4.1.2 Direct Summands of 2-normal Operators....................................................................... 39
4.1.3 Equivalence Relations in Direct Sum Decomposition ........................................................ 40

4.2 On Unitary and Completely Non Unitary Summands of a Contraction Operator ................. 42
4.2.1 Nagy-Foias Classes of Contraction ............................................................................... 42
4.2.2 Some Classes of Completely Non-Unitary Contraction..................................................... 43

4.3 Spectral Picture in a Direct Sum Decomposition................................................................. 46

5 Conclusion and Recommendations................................................................................ 50

5.1 Conclusion ....................................................................................................................... 50
5.2 Recommendation .............................................................................................................. 50

Bibliography....................................................................................................................... 52



viii



1

1 Preliminaries

In this chapter we present the necessary background, notations and terminologies needed
in this project.

1.1 Introduction

This project studies the Cartesian and direct sum decomposition of some classes of op-
erators in Hilbert Spaces. Decomposition of operators is an important tool for opera-
tor theory in functional analysis. Cartesian decomposition is a specific type of operator
decomposition that is commonly used in mathematics. It involves breaking down an
arbitrary operator T ∈ B(H) into the form T = A+ iB, where A and B are self-adjoint
operators.
We discuss the properties of A and B and connect to some equivalence relation to see how
A and B are related. Unitarily equivalent, similar, almost similar, metrically equivalent
operators and their Cartesian decomposition are studied.
We will study the direct sum decomposition of an operator and investigate the connec-
tion between the direct summands and the arbitrary operator with this decomposition.
We will look at normal and completely non-normal summands of an operator and the
unitary and completely non-unitary summands of a contraction operator.

1.2 Notations

• H,K denote a Hilbert space.

• B(H) denotes the Banach algebra of bounded linear operators from H into H.

• T denotes a bounded linear operator.

• T ∗ denotes the adjoint of T.

• Ker(T ) denotes the kernel of T.

• Ran(T ) denotes the range of T.

• M denotes a subspace of H.

• M denotes the closure of the subspace M of H.

• M⊥ denotes the orthogonal complement of a closed subspace M of H.

• ||T || denotes the operator norm of T.
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• B(H,K) = {T : H → K} where T is a linear and bounded operator.

• ⟨a, b⟩ denotes the inner product of a and b on a Hilbert space H.

• 0 denotes the zero operator on H.

• I denotes the identity operator on H.

• ρ(T ) denotes the resolvent set of T.

• σ(T ) denotes the spectrum of T.

• σp(T ) denotes the point spectrum of T.

• σc(T ) denotes the continuous spectrum of T.

• σr(T ) denotes the residual spectrum of T.

• l2(N) denotes the space of square-summable functions over N.

• W (T ) denotes the numerical range of T.

• w(T ) denotes numerical radius of T.

• r(T ) denotes the spectral radius of T.

• tr(A) denotes the trace of an n×n matrix A.

• λ (A) denotes the eigenvalues of a matrix A.

• ran(A) denotes the rank of a matrix A.

• det(A) denotes the determinant of a matrix A.

• Z denotes the set of integers.

• N denotes the set of natural numbers.

• C denotes the set of complex numbers.

• D denotes the open unit disc in C,D= {z ∈ C : |z|< 1}.

• ∂D denotes the set of unit circle in C,∂D= {z ∈ C : |z|= 1}.

• T =V |T | denotes polar decomposition of an operator T.

• T = A+ iB denotes the Cartesian decomposition of an operator T.
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1.3 Terminologies and Definitions

Definition 1.3.1. An operator T ∈ B(H,K) is a bounded linear transformation from H into
K.

Definition 1.3.2. Let H and K be Hilbert spaces over the complex plane C. A function
T : H → K is called a linear operator if for all x,y ∈ H and for all λ ∈ C;

• T (x+ y) = T (x)+T (y).

• T (λx) = λT (x)

Definition 1.3.3. A subspace M ⊆ H is said to be invariant under T if T M ⊆ M or for any
x ∈ M,T x ∈ M.

Definition 1.3.4. A subspace M ⊆ H is said to reduce T if M is invariant under both T and
T ∗.

Definition 1.3.5. An operator is reducible if it has a nontrivial reducing subspace.

Definition 1.3.6. An operator T is said to have nontrivial invariant subspace if {0} ̸= M ̸=
H invariant for T.

Definition 1.3.7. An operator T ∈B(H) is reductive if each invariant subspace of T reduces
T.

An operator T ∈ B(H) is said to be:
an isometry If T ∗T = I.

a co-isometry If T T ∗ = I.

partial isometry If T = T T ∗T.

unitary If T T ∗ = T ∗T = I.

normal If T T ∗ = T ∗T.

quasinormal If T (T ∗T ) = (T ∗T )T.

binormal If T ∗T and T T ∗ commutes. That is [T ∗T,T T ∗].

hyponormal If T ∗T ≥ T T ∗.

symmetry If T = T ∗ = T−1.

skew-adjoint If T ∗ =−T.

co-hyponormal if its adjoint is hyponormal.

p-hyponormal if (T ∗T )p ≥ (T T ∗)p, where 0 < p ≤ 1.

quasihyponormal If T ∗(T ∗T −T T ∗)T ≥ 0. or T ∗2T 2 ≥ (T ∗T )2.
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paranormal if ||T x|| ≤ ||T ||||x|| f or all x ∈ H.

p-quasihyponormal If T ∗((T ∗T )p − (T T ∗)p)T ≥ 0.

k-quasihyponormal If T ∗k(T ∗T −T T ∗)T k ≥ 0, for some integer k ≥ 0 and x ∈ H.

p,k-quasihyponormal If T ∗k((T ∗T )p−(T T ∗)p)T k ≥ 0,where 0 < p ≤ 1 and k is a pos-
itive number.

dominant if for any λ ∈ C corresponds a number Mλ ≥ 1 such that ||(T − λ I)∗x|| ≤
Mλ ||(T −λ I)x|| f or all x ∈ H.

left shift operator if T x = y, where x = (x1,x2, · · ·) ∈ l2 and y = (x2,x3, · · ·) ∈ l2,

right shift operator if T x = y, where x = (x1,x2, · · ·) and y = (0,x1,x2,x3, · · ·) ∈ l2.

is a unilateral shift if there exists a sequence {H0,H1,H2, · · ·} of pairwise orthogonal
subspaces of H such that :

• H = H0 ⊕H1 ⊕·· · .

• T spans Hn isometrically onto Hn+1.

Hilbert Schmidt if ||T ||2 ≤ ∞ where ||T ||2 = {∑
∞
n=1 ||Ten||2}1/2 is the 2−norm and {en}

is an orthonormal basis for H.

a scalar if it is a scalar multiple of the identity operator, that is T = µI,µ ∈ C.

subnormal operator if it has a normal extension. That is if there exists a normal operator
N on a Hilbert space K with H ⊂ K and the subspace H is invariant under the operator
N and the restriction of N to H coincides with T.

an involution If T 2 = I.

contraction if ||T x|| ≤ ||x|| for every x ∈ H.

2-normal If T ∗T 2 = T 2T ∗.

seminormal if it is either hyponormal or co-hyponormal.

Definition 1.3.8. A lattice, L, is a partially ordered set where each pair of elements a,b ∈ L
has a least upper bound and a greatest lower bound. The lattice of all invariant subspaces of
T will be denoted by Lat(T ) while for all reducing subspaces will be denoted as Red(T ).

Definition 1.3.9. The commutant of an operator T ∈ B(H) is the set of all operators that
commute with T, denoted by {T}′

= {S ∈ B(H) : ST = T S}.

Definition 1.3.10. A bounded linear operator X : H → K is called a quasi-affinity or quasi-
invertible if it is injective and has a dense range, Ker(X) = {0} and RanX = K.
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Definition 1.3.11. An operator X is said to intertwine two operators S and T if XS = T X .

Definition 1.3.12. If T1 ∈ B(H) and T2 ∈ B(K) and there exist quasi-affinities X : H → K
and Y : K → H satisfying XT1 = T2X and T1Y =Y T2 then T1 and T2 are said to be quasisim-
ilar.

Definition 1.3.13. Two operators T ∈ B(H) and S ∈ B(K) are unitarily equivalent to each
other (denoted by u∼) if there exists a unitary operator U ∈ B(H,K) such that UT = SU.

(Equivalently, T =U∗SU).

Definition 1.3.14. Two operators T ∈ B(H) and S ∈ B(K) are said to be similar denoted by
S ∼ T if there exists an invertible operator N ∈ B(H,K) such that NS = T N
That is S = N−1SN.

Definition 1.3.15. Two operators T ∈ B(H) and S ∈ B(K) are said to be almost similar
(denoted as a.s.∼ ) if there exists an invertible operator N such that S∗S = N−1(T ∗T )N and
S∗+S = N−1(T ∗+T )N.

Definition 1.3.16. Two operators T ∈ B(H) and S ∈ B(K) are said to be metrically equiv-
alent (denoted as m∼) If T ∗T = S∗S or equivalently ⟨T x,T x⟩= ⟨Sx,Sx⟩ for every x ∈ H.

Definition 1.3.17. An operator T ∈ B(H) is said to be normaloid if w(T ) = ||T ||.

Remark 1.3.18. An operator T is a projection if it is self-adjoint and idempotent (i.e. T ∗ =

T and T 2 = T ).

Definition 1.3.19. Let X be a non-empty set. The convex hull of X , denoted by conv(X),

is the smallest convex set containing X . It is precisely, the intersection of all convex sets
containing X .

Remark 1.3.20. If X1 and X2 are convex sets, then X1 +X2 is a convex set.

Example 1.3.21. Let X1 = {v ∈ C : |v| = 1} and X2 = {0,1}. Then conv(X1) = {v ∈ C :
|v| ≤ 1} and conv(X2) = [0,1].

Definition 1.3.22. A direct summand is a restriction of an operator to a reducing subspace
of it.

Remark 1.3.23. If an operator M is an invariant subspace under T ∈ B(H), then relative
to the decomposition H = M⊕M⊥,T can be written as

T =

T |M X

0 Y

, where operators X : M⊥ → M,Y : M⊥ → M⊥ and T |M : M → M.

On the other hand, if T ∈ B(H) can be written as
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T =

Z X

0 Y

 with respect to the decomposition H = M⊕M⊥, then Z =Y |M is a part of T.

The operator X = 0 if and only if M reduces T. In this case, T is reduced into the orthogonal
direct sum of the operators Z = T |M and Y = T |M⊥ such that T = Z ⊕Y.

If {Tj ∈ B(H j)} is a bounded set of operators, then the direct sum of {Tj} is the operator
T ∈ B(H) such that T |H j = Tj for each j.We denote this by

T =
⊕

j Tj

Definition 1.3.24. The set σ(T ) = {λ ∈ C : λ I − T is not invertible} or equivalently
(Ker(λ I −T ) ̸= {0})or Ran(λ I −T ) ̸= H)) is called the spectrum of T.

Definition 1.3.25. The set σp(T ) = {λ ∈C : Ker(λ I−T ) ̸= {0}} is called the point spec-
trum of T.

Definition 1.3.26. The setσc(T )= {λ ∈C : λ I−T is in jective,Ran(λ I−T ) ̸=H and Ran(λ I −T )=
H} is called the continuous spectrum of T.

Definition 1.3.27. The setσr(T )= {λ ∈C : λ I−T is in jective,Ran(λ I−T ) ̸=H and Ran(λ I −T )} ≠
H is called the residual spectrum of T.

Remark 1.3.28. Since the spectrum σ(T ) of a bounded linear operator T ∈ B(H) is the set
of all scalars λ ∈C for which the operator λ I−T fails to be invertible element of the Banach
algebra, we can therefore split the spectrum of an operator T into three disjoint parts.

That is, the set {σp(T ),σc(T ),σr(T )} forms a partition of σ(T ).Meaning they are pairwise
disjoint and thus σ(T ) = σp(T )∪σc(T )∪σr(T ).

Remark 1.3.29. We note that in finite dimensions, the σc(T ) and the σr(T ) are empty
subsets of C and thus for any operator T acting on finite dimensional space σ(T ) = σp(T ).

Remark 1.3.30. This is not the case in infinite dimensional Hilbert space since in an infinite
dimensional space σp(T ) may be empty.

Let us look at the following example that shows that in an infinite dimensional Hilbert
space the σp(T ) = /0.

Example 1.3.31. Consider the unilateral shift T : l2(N)→ l2(N) on the Hilbert space l2(N)
of all infinite sequences of complex numbers given by T (y1,y2,y3, · · ·) = (0,y1,y2,y3, · · ·) for
every (y1,y2,y3, · · ·) ∈ l2. Suppose now that λ ∈ C is an eigenvalue of T. Then there exists
a non-zero eigenvector (v1,v2,v3, · · ·)∈ l2(N) such that (0,y1,y2,y3, · · ·) = λ (v1,v2,v3, · · ·)
so that λyi = vi−1 for every i > 1. If λ = 0, then the second condition implies that v1 = v2 =

v3 = · · ·= 0, a contradiction again. It then follows that the operator T, which is a unilateral
shift, has no eigenvalues and thus σp(T ) = /0.
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Definition 1.3.32. σap = {λ ∈C : λ I−T is not bounded below} is called the approximate
point spectrum of an operator T.

Definition 1.3.33 (Resolvent Set). Let T be a linear operator on a Hilbert Space H. The
resolvent set of T, denoted ρ(T ), is the set of all complex numbers λ for which the operator
T −λ I is invertible, where I is the identity operator on H.

In other words, ρ(T ) is the set of all complex numbers outside the spectrum of T (The com-
plement of the spectrum of T ). Therefore, ρ(T ) = {λ ∈ C : T −λ I is invertible}.

1.4 Some Properties of Bounded Linear Operators

Definition 1.4.1. Let X be a set and let x,y,z ∈ X . A relation R on X is called an equivalence
relation if it satisfies the following properties:

1. reflexive: xRx ∀x ∈ X .

2. Symmetric: xRy =⇒ yRx ∀x,y ∈ X .

3. Transitive: xRy and yRz =⇒ xRz ∀x,y,z ∈ X .

Remark 1.4.2. Note that unitary equivalence, similarity, almost-similarity andmetric equiv-
alence of operators are equivalence relations on B(H).

Definition 1.4.3. If T ∈B(H), then its adjointT ∗ is an operator inB(H) such that ⟨x, Ty⟩=
⟨T ∗x, y⟩,∀x,y ∈ H.

Definition 1.4.3 implies that (A∗)∗ = A and (AB)∗ = B∗A∗.

Definition 1.4.4. Suppose {Tn ∈ B(H) : n ≥ 1} is a sequence of operators on a Hilbert Space
H, then if one of the following conditions holds true, then the sequence {Tn ∈ B(H) : n ≥ 1}
is weakly convergent and we denote it by Tn

w−→ T.

a There exist T ∈ B(H) : ⟨Tnx,y⟩ → ⟨T x,y⟩ as n → ∞ ∀x,y ∈ H.

b There exist T ∈ B(H) : ⟨Tnx,x⟩ → ⟨T x,x⟩ as n → ∞ ∀x ∈ H.

c The scalar sequence {⟨Tnx,x⟩ ∈ C : n ≥ 1} converges to H ∀x ∈ H.

d The scalar sequence {⟨Tnx,y⟩ ∈ C : n ≥ 1} converges to H ∀x,y ∈ H.

Definition 1.4.5. The sequence {Tn}n≥1 is strongly convergent denoted by Tn
s−→ T if one

of the following equivalent conditions holds true.
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a There exist T ∈ B(H) : ||(Tn −T )x|| → 0 as n → ∞ ∀x ∈ H.

b The sequence {Tnx ∈ H,n ≥ 1} converges in H ∀x ∈ H.

Definition 1.4.6. A sequence {Tn}n≥1 is uniformly convergent denoted by Tn
u−→ T if it

converges in B(H).

Definition 1.4.7. An operator T ∈ B(H) is weakly stable if the power sequence {T n}n≥1

converges to the null operator. That is T n w−→ 0.

Definition 1.4.8. An operator T ∈ B(H) is said to be positive if ⟨T x, x⟩ ≥ 0,∀x ∈ H and
also T is self adjoint.

Remark 1.4.9. Many operators between Hilbert spaces in classical analysis and operator
theory are positive linear operators.

Example 1.4.10. Let H = R2 and T : H → H defined by;

T

x

y

=

x

0

.

In this case, T has a matrix representation of T =

1 0

0 0

 with respect to the standard

basis of R2 and it is easy to check that T is positive.

Definition 1.4.11. An operator S ∈ B(H) is called a square root of an operator T ∈ B(H)

if S2 = T.

Example 1.4.12. Let T ∈ B(R3). Then consider the matrix M(T ) =


16 0 0

0 4 0

0 0 25

. Then

the operator S ∈ B(R3) with matrix M(S) =


4 0 0

0 2 0

0 0 5

 is a square root of T.

Theorem 1.4.13. Let T ∈ B(H). Then the following are equivalent:

1. T is positive.

2. T is self-adjoint and all eigenvalues of T are nonnegative.

3. T has a positive square root.
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4. T has a self-adjoint square root.

5. There exist an operator S such that T = S∗S.

Proof. We need to show that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 1.

To begin, we first prove that 1 ⇒ 2. Assume that 1 holds. That is T is positive. Without
Loss of Generality, T is self-adjoint. Now suppose λ is an eigenvalue of T. Let x be an
eigenvector of T corresponding to the eigenvalue λ . Then,

0 ≤⟨T x,x⟩
=⟨λx,x⟩
=λ ⟨x,x⟩.

Thus λ is a nonnegative number.
Hence condition 2 holds.

(2) ⇒ (3) : Assume 2 holds so that T is self-adjoint and all eigenvalues of T are non-
negative. By the spectral theorem, there exist an orthonormal basis e1,e2, · · · ,en o f H
consisting of eigenvectors of T. Let λ1,λ2, · · · ,λn be the corresponding eigenvalues. Each
λi ≥ 0. Let S be such that Sei =

√
λiei f or i = 1,2,3, · · · ,n. Then S is a positive operator.

Furthermore, S2ei = λiei = Tei f or each i, which implies that S2 = T.
Thus S is a positive square root of T. This proves 3.

(3)⇒ (4) : This follows from the definition (every positive operator is self-adjoint)

(4)⇒ (5) : Suppose that 5 holds true, that is there exists a self-adjoint operator S on H
such that T = S2. Then T = S∗S because R∗ = R. This proves 5.

(5)⇒ (1) : Lastly, assume 5 holds. Let S ∈ B(H) be such that T = S∗S. Now

T ∗ =(S∗S)∗

=S∗(S∗)∗

=S∗S

=T
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Hence T is self-adjoint.

Note that

⟨T x,x⟩=⟨S∗Sx,x⟩
=⟨Sx,Sx⟩
≥0.

For every x.
Thus T is positive.

Definition 1.4.14. Let T : X → Y. Then ||T ||= sup{||T x||Y : x ∈ X , ||x||= 1}. ||T || is the
smallest constant such that ||T x|| ≤ ||T ||||x||,∀x ∈ X , where ||T || is the norm o f T.

||.|| is a norm on B(X ,Y ), the space of all bounded linear operators T : X → Y.

For example, suppose S,N ∈ B(H), then ||(S+N)x|| is a norm on X as shown below.

||(S+N)x||=||Sx+Nx||
≤||Sx||+ ||Nx||
≤||S||||x||+ ||N||||x||
=(||S||+ ||N||)||x||

=⇒ ||S+N|| ≤ ||S||+ ||N||.

Similarly, let S ∈ B(X ,Y ) and N ∈ B(Y,Z), then SN ∈ B(X ,Z) is a norm.

Proof.

||(SN)x||=||S(Nx)||Z
≤||S||B(Y,Z)||Nx||Y
≤||S||B(Y,Z)||N||B(X ,Y )||x||X
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=⇒ ||SN|| ≤ ||S||B(Y,Z)||N||B(X ,Y ).

Definition 1.4.15. A normed space Y is called Banach if every Cauchy sequence (xn)⊂ Y
converges to an element y ∈ Y.

Remark 1.4.16. A Banach space is a complete normed space.



12

2 Litrature Review

In functional analysis, the idea of Cartesian decomposition of operators is crucial, espe-
cially when studying Banach and Hilbert spaces. Researchers have found that in order
to study the structures of any operator in Hilbert spaces, it is necessary to break the
operator down into its simplest forms. Some examples of these simple form decomposi-
tions with respect to separable Hilbert spaces include Direct Sum decomposition, Polar
decomposition, and Cartesian decomposition.
In a recent article, Bhatia and Kittaneh [3] who studied the Cartesian decomposition and
Schatten norms investigated the properties of its components.
In 2015, Kittaneh et al [9] contributed to the study of the Cartesian decomposition.
They studied the Cartesian decomposition and numerical radius inequality where they
showed that If T = A+ iB is the Cartesian decomposition of T ∈ B(H), then for α,β ∈
R,supα2+β 2=1||αA+βB||= w(T ). They then used this result to find the upper and lower
bound of the numerical radius w(Re(A)X −XRe(B)), where A,B,X ∈ B(H) and 0 ≤ mI ≤
X .

We will further investigate the direct sum decomposition of some operators. Direct sum
decomposition is one of many decompositions that has been significantly influenced by
the work of Nagy and Foias [13]. Their work showed that every operator may be broken
down into a direct sum of normal and completely non-normal (c.n.n) parts.
Williams [19] showed an important results on direct sum decomposition of operators. He
proved that every operator T is unitarily equivalent to the direct sum T = T1 ⊕T2 with
respect to H = M⊕M⊥ where T1 is normal and T2 is completely non-normal.
Nzimbi [15] who studied the direct sum decomposition and factorization of some classes
of operators in Hilbert spaces, determined the properties of the direct summands of these
operators, their invariant and hyperinvariant subspace lattices.
Nagy and Foias [13] have also shown that every contraction operator T can he written
as a direct sum of a unitary and a completely non-unitary (c.n.u.) part and that any of
the direct summands could be missing.
Wold [20] discovered the decomposition of an isometry into a unitary and a completely
non-unitary parts while researching stationary stochastic processes, which has since
been referred to as the Von Neumann-Wold decomposition of an isometry.

In this project, our goal is to check the properties of A and B and answer the following
questions:
If T ∈ B(H) belongs to any of the classes of operators and T decomposes as T = A+ iB,
where A and B are self-adjoint operators:
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• How are T,A and B related?

• How are σ(T ),σ(A),σ(B) related?

• How are W (T ),W (A),W (B) related?

• How are w(T ),w(A),w(B) related?

We will also extend the work of Kittaneh et al of 2015 and look at different cases of α and
β such that α2 +β 2 = 1.
Finally, we analyse the spectral picture of these decompositions.
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3 On Cartesian Decomposition of Operators

In this chapter, we study the Cartesian decomposition of an operator T ∈ B(H). Our
interest is to investigate the properties of its components.

Suppose T ∈ B(H), and T = A+ iB. Then T is called the Cartesian decomposition. A
is called the real part of T denoted by Re(T ) while B is the imaginary part of T and
denoted by Im(T ). Thus T can as well be represented as T = Re(T )+ iIm(T ).

Remark 3.0.1. Note that if T = A+ iB, then T ∗ = A− iB. Therefore Re(T ) = T+T ∗

2 and
Im(T ) = T−T ∗

2i .

Remark 3.0.2. If A = 0, then T = iB and we say T is purely imaginary and if B = 0, then
T = A, and we say T is real.

3.1 Cartesian Decomposition of Some Classes of Operators

Our aim is to check the properties of A, B, and those of T if T = A+ iB.

Theorem 3.1.1. If T = A+ iB and T is normal, then [A,B] = 0.

Proof. Let T = A+ iB. Then T ∗ = A∗− iB∗ = A− iB since A and B are self-adjoint.
Therefore,

T ∗T =(A− iB)(A+ iB)

=A2 + iAB− iBA+B2

T T ∗ =(A+ iB)(A− iB)

=A2 − iAB+ iBA+B2

Since T is normal, we have T ∗T = T T ∗.

=⇒ A2 + iAB− iBA+B2 = A2 − iAB+ iBA+B2

=⇒ i[A,B] =−i[A,B]
=⇒ 2i[A,B] = 0
=⇒ [A,B] = 0.
Therefore AB = BA.



15

Theorem 3.1.2. Let T = A+ iB and T be binormal. Then [A,B] = 0, if A and B are
projection operators.

Proof. An operator is binormal if T ∗T commutes with T T ∗.

T ∗T =(A− iB)(A+ iB)

=A2 + iAB− iBA+B2

T T ∗ =(A+ iB)(A− iB)

=A2 − iAB+ iBA+B2

A simple computation shows that

A2B−B2A = 0. (1)

Since A and B are projection, Equation 1 becomes AB−BA = 0. Therefore we conclude
that [A,B] = 0 if A and B are projections.

Theorem 3.1.3. If T = A+ iB and T is hyponormal, then [A,B]≥ 0.

Proof. Let T = A+ iB and T ∗ = A− iB since A and B are self-adjoint.
Therefore,

T ∗T =(A− iB)(A+ iB)

=A2 + iAB− iBA+B2

T T ∗ =(A+ iB)(A− iB)

=A2 − iAB+ iBA+B2

Since T is hyponormal, then T ∗T ≥ T T ∗.

=⇒ A2 + iAB− iBA+B2 ≥ A2 − iAB+ iBA+B2
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i[A,B]≥− i[A,B]

2i[A,B]≥0

[A,B]≥0.

This tells us that AB−BA ≥ 0.

Remark 3.1.4. [1] If [A,B]≥ 0, where A and B are self adjoint operators, we can say that
A and B have a certain degree of "compatibility."

If [A,B] ≥ 0, then A and B have a common set of eigenvectors, and their eigenvalues are
ordered in such a way that the eigenvalues of A are greater than or equal to the eigenvalues
of B.

To see this, let u⃗ be a common eigenvector of A and B with eigenvalue a and b respectively.
Then :

[A,B]⃗u =AB⃗u−BA⃗u

=ab⃗u−ba⃗u

=[a,b]⃗u

Since [A,B]≥ 0, we have [a,b]≥ 0
=⇒ ab−ba ≥ 0.

Therefore, the eigenvalues of A are greater than or equal to the corresponding eigenvalues of
B for any common eigenvalue u⃗ of A and B.

Theorem 3.1.5. If T = A+ iB and T be cohyponormal, then [A,B]≤ 0.

Proof.

T T ∗ =(A+ iB)(A− iB)

=A2 − iAB+ iBA+B2

T ∗T =(A− iB)(A+ iB)

=A2 + iAB− iBA+B2

Since T is cohyponormal, then T T ∗ ≥ T ∗T.
=⇒ A2 − iAB+ iBA+B2 ≥ A2 + iAB− iBA+B2.
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−i[A,B]≥i[A,B]

−2i[A,B]≥0

[A,B]≤0.

This shows that AB−BA ≤ 0.

Theorem 3.1.6. If T = A+ iB and T is quasinormal, then [A,B] = 0.

Proof. Let T = A+ iB . Then T ∗ = A− iB.
Therefore,

T ∗T =(A− iB)(A+ iB)

=A2 + iAB− iBA+B2

T T ∗ =(A+ iB)(A− iB)

=A2 − iAB+ iBA+B2

Since T is quasinormal, then T (T ∗T ) = (T ∗T )T.
=⇒ T T ∗T −T ∗T T = 0

(T T ∗−T ∗T )T =0

(A2 − iAB+ iBA+B2 −A2 − iAB+ iBA−B2)T =0

(−2iAB+2iBA)T =0

−2i[A,B]T =0

[A,B]T =0

Let T ̸= 0, then [A,B] = 0 and hence A,B commutes.

Corollary 3.1.7. Suppose T is quasinormal and T = A+ iB. Then [A,B] is skew-adjoint.

Theorem 3.1.8. Suppose T = A+ iB. If T is skew-adjoint, then A = 0, hence T is purely
imaginary.
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Proof.

A− iB =− (A+ iB)

A− iB =−A− iB

2A =0

A = 0

This shows that A = 0 and therefore T = iB.

Corollary 3.1.9. If T is a projection and T = A+ iB, then B = 0.

Corollary 3.1.10. If T = A+ iB, then A and B have a real spectra. That is σ(A),σ(B)⊆R.

To understand Corollary 3.1.10, let us give this example:

Example 3.1.11. Let T =

 1 2+ i

2+ i 4

. This implies that T decomposes as:

T =

1 2

2 4

+ i

0 1

1 0


Thus,

A =

1 2

2 4

 and B =

0 1

1 0


The eigenvalues of A can be found by solving the characteristic equation:

∣∣∣∣∣∣1−λ 2

2 4−λ

∣∣∣∣∣∣= λ 2 −5λ = λ (λ −5) = 0

Thus, the eigenvalues of A are λ1 = 0 and λ2 = 5, which are both real. Therefore, σ(A) =
{0,5} ⊆ R.

The eigenvalues of B can be found in a similar way. The characteristic equation is:

∣∣∣∣∣∣ λ −i

−i λ

∣∣∣∣∣∣ = λ 2 −1 =⇒ λ 2 = 1
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Thus, the eigenvalues of B are λ1 = 1 and λ2 =−1, which are both real. Therefore, σ(B) =
{1,−1} ⊆ R.

We then look at their relationship with the operator T =

 1 2+ i

2+ i 4

.

A simple computation shows that the eigenvalues of T are λ1 = 5+
√

21+16i
2 , and λ2 =

−−5+
√

21+16i
2 , and hence σ(T ) = {5+

√
21+16i
2 , −5+

√
21+16i
2 }.

Remark 3.1.12. Cartesian decomposition does not transfer the spectral properties from the
component parts to the arbitrary operator T.

We now introduce the notion of numerical range of operators.

3.2 Numerical Range

The numerical range is an important aspect in operator theory since it can be used to
study the behavior of linear operators. For example, the numerical range can be used to
determine if an operator is self-adjoint, normal, or unitary. In particular:

T is self-adjoint if and only if W (T ) is real.
In this section we will describe the numerical range of different matrices and link it to
our decomposition later in this chapter.

Let us begin by defining the numerical range of an operator.

Definition 3.2.1 (numerical range). The numerical range of a bounded linear operator T
on a Hilbert Space H is defined as:
W (T ) = {⟨T x,x⟩ : x ∈ H, ||x||= 1}

Remark 3.2.2. The numerical range of T ∈ B(H) is a subset of the complex plane and
provides information about the behavior of T.

Wewant to investigate how the numerical range behaves under Cartesian and direct sum
decomposition.

3.2.1 Examples of Numerical Ranges

Theorem 3.2.3. [16] One of the following forms applies to the numerical range of a 2× 2
matrix.
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• If the operator is a scalar multiple of the identity operator, then the numerical range is
a single point.

• A section of a line connecting the eigenvalues if the operator has two unique eigenvalues
and is normal.

• A unique elliptical disc with foci at the eigenvalues, if the operator is non-normal but
has the eigenvalue.

Example 3.2.4. Let T =

ω1 α

0 ω2

.

Then the numerical range of T is:

1. An ellipse with foci ω1 and ω2 having a minor axis of length |α|, if ω1 ̸= ω2.

2. A closed disc centred at ωi, i = 1,2 if ω1 = ω2.

3. A line segment joining ω1 and ω2 if ω1,ω2 ∈ R, are distinct and α = 0.

Example 3.2.5. [5] Let T =

0 a

b 0

,

where a,b ∈ C. Then W (T ) is an ellipse with Foci at F =±
√

ab.

We see that

L =

1 0

0 ei α−β

2

, then L is unitary and so LT L−1 = ei α+β

2

 0 |a|

|b| 0

, and see that W (T )

is an ellipse with foci at ±
√

|a||b|ei α+β

2 =±
√

ab, which are the eigenvalues of T.

Theorem 3.2.6 (The elliptic theorem). If T is a linear operator in C2, then W (T ) is an
(possibly degenerate) elliptic disc.

Example 3.2.7. Let M1 =

−1 1

0 1


Then W (M1) is the ellipse with foci F1 = −1 and F2 = 1 and minor axis 1 and major axis
2.23 and w(M1) = 1.118 as seen in the figure below.

Example 3.2.8. Let M2 =

−2 4

0 2


Then M2 is the ellipse with foci F1 = −2 and F2 = 2 and minor axis 4 and major axis 5.64
and w(M2) = 2.828 as seen in the figure below.
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Figure 1. Numerical range of M1.

Figure 2. Numerical range of M2.

Example 3.2.9. Let M3 =

0 1

0 0

. Then W (M3) is a circular disc centred at the origin

with radius 1/2.We can see clearly from the figure that w(M3) = 1/2.

Figure 3. Numerical range of M3.
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3.2.2 Numerical Range of 3 × 3 matrices

In this subsection, we will look at a number of tests that can be used to determine aW (T )
of 3× 3 matrices. By now, it should be evident that an operator’s numerical range is a
complex subset of the complex plane C, which has all of the operator’s eigenvalues and
as a result, its convex hull, indicated by conv(σ(T )). Also, we should be able to remember
that for a normal operator T ;W (T ) = conv(σ(T )).

With a self-adjoint operator, the ellipse transforms into a line segment that connects the
two eigenvalues λ1 and λ2 when L = 0.

Example 3.2.10. Consider the following normal matrix M4 =

2 1

1 2

.

Figure 4. Numerical range of M4.

W (M4) is a line segment with minor axis 0.We can see clearly from the figure that w(M4) =

3.

Theorem 3.2.11. [16] Let T =


0 0 α

1 0 0

0 1 0

.

1. If |α| = 1 then T is unitary and hence normal and W (T ) is the equilateral triangle
(interior and boundary) whose vertices are the three cube roots of α.

2. If |α| > 1 then W (T ) is a distorted equilateral triangle (interior and boundary) whose
vertices are the three cube roots of α.

3. If |α| → ∞ then W (T ) is the circular disc centered at the origin with radius 1.

We demonstrate these results using the following examples.
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Example 3.2.12. For λ = 1, That is M5 =


0 0 1

1 0 0

0 1 0

 we have the following figure

Figure 5. Numerical range of M5.

We can see that the w(M5) = 1 and W (M5) is region enclosed by the equilateral triangle
whose vertices are the cube roots of α.

Similarly, if we let α =−1,we get an equilateral triangle with the numerical radius equal
to 1 as demonstrated below:

Example 3.2.13. M6 =


0 0 −1

1 0 0

0 1 0



Figure 6. Numerical range of M6.

Example 3.2.14. For α = 3, that is M7 =


0 0 3

1 0 0

0 1 0

 we have the following figure

We can see that it is a distorted equilateral triangle with w(M7) = 1.78077640673685344.

Example 3.2.15. When α → ω, where ω → ∞, then we get a circular disc centered at the
origin with radius ω/2 as demonstrated in the following figure where we take ω = 2000.
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Figure 7. Numerical range of M7.

M8 =


0 0 2000

1 0 0

0 1 0



Figure 8. Numerical range of M8.

Keeler et al (1997) [7] also classified the numerical ranges of a 3 × 3 matrices. They ar-
gued that the numerical range of 3×3 matrices take either of the following forms:

• An ovular shape

• A shape with a flat portion on the body

• The convex hull of its eigenvalues

• The convex hull of an ellipse and a point
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3.2.3 Numerical Range of Operators in Higher Dimensions

We point out in this section that the higher the dimension, the stranger the numerical
range.

To give full understanding of this statement, we are going to give out an example for
clarity.

Example 3.2.16. Consider M9 =



0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0


A simple computation shows M9 is a normal operator and thereforeW (M9) is the convex
hull of its eigenvalues as shown in the figure below.

Figure 9. Numerical range of M9.

From the figure, we can see that the corners are the eigenvalues of this operator M which
are 1, −1

4 +
1
4

√
5+ 1

4i

√
2
√

5+
√

5, −1
4 −

1
4

√
5+ 1

4i

√
2
√

5−
√

5, −1
4 −

1
4

√
5− 1

4i

√
2
√

5−
√

5, and−
1
4 +

1
4

√
5− 1

4i

√
2
√

5+
√

5.

Using Maple, we find that w(M9) = 0.9999998 ||M||= 1.
From here we conclude therefore that w(M9) = ||M9||.
Thus the operator M9 is referred to as normaloid since all those operators exhibiting this
behavior are referred to as normaloid.

After this discussion on numerical range of an operator, we now look at equivalence re-
lations which is useful in the study of Cartesian decomposition.
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3.3 Equivalence Relations

In this section, we introduce equivalence relations and connect to the Cartesian decom-
position of operators.

Proposition 3.3.1. If T,S ∈ B(H) are normal operators in a Hilbert space H, then S is
unitarily equivalent to T if and only if S is similar to T.

The following corollary is an immediate result to Proposition 3.3.1.

Corollary 3.3.2. Two similar normal operators S and T are unitarily equivalent.

Proof. The proof of Corollary 3.3.2 follows immediately from Proposition 3.3.1.

Remark 3.3.3. Unitarily equivalent operators share many properties including same spec-
trum, same spectral radius, same numerical range and same numerical radius.

To make sense of this remark, let us give the following examples:

Example 3.3.4. A =

1 2

2 1

 and B =

3 0

0 −1

 are unitarily equivalent operators.

∣∣∣∣∣∣λ −1 −2

−2 λ −1

∣∣∣∣∣∣= λ 2 −2λ −3 = (λ −3)(λ +1) = 0

=⇒ λ1 = 3 and λ2 =−1
A simple calculation shows that σ(A) = σ(B) = {−1,3}, The numerical range W (A) =
W (B) = [−1,3], and finally, the numerical radius r(A) = r(B) = 3.

The following diagrams shows the numerical ranges of A and B, respectively.

Figure 10. Numerical range of A

Clearly, their numerical range is the same. This clarifies Remark 3.3.3.
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Figure 11. Numerical range of B

Theorem 3.3.5. Let S and T be almost-similar self-adjoint operators, then S and T are
similar.

Proof. Since T and S are almost similar operators, then there exists an invertible op-
erator N ∈ B(H) such that:

T ∗T = N−1(S∗S)N. (2)

T ∗+T = N−1(S∗+S)N. (3)

Because T and S are self-adjoint operators (i.e.T ∗ = T,S∗ = S). Having this, equation 2
become

T 2 = N−1S2N (4)

and equation 3 becomes
2T = N−1(2S)N. (5)

Dividing equation 5 both sides by 2, we obtain T = N−1SN.

This shows that T is similar to S.

Remark 3.3.6. The notion of almost similarity and similarity of operators coincide for self-
adjoint operators.

Proposition 3.3.7. If T is an isometry and P ∈ B(H) is metrically equivalent to T, then P
is an isometry.

Proof.

P∗P =T ∗T

=I

This implies that P is an isometry.
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We connect the Cartesian decomposition with these equivalence relations.

Theorem 3.3.8. Suppose S,T ∈ B(H) and S = S1+ iS2 and T = T1+ iT2 with Ti,Si, i = 1,2
self-adjoint. If T is unitarily equivalent to S, then Ti is unitarily equivalent to Si, i = 1,2.

Proof. By Definition 1.3.13, two operators T ∈ B(H) and S ∈ B(K) are unitarily equiv-
alent to each other and we denote by T u∼ S if there exists a unitary operatorU ∈ B(H,K)

such that T =U∗SU.

T =U∗SU

=U∗(S1 + iS2)U

=U∗S1U + iU∗S2U

T1 + iT2 =U∗S1U + iU∗S2U

=⇒ T1 =U∗S1U and iT2 = iU∗S2U
=⇒ T1 =U∗S1U and T2 =U∗S2U
=⇒ T1

u∼ S1 and T2
u∼ S2.

This shows that Ti is unitarily equivalent to Si, i = 1,2.

Remark 3.3.9. The converse of Theorem 3.3.8 is not true in general. That is, having Si
u∼

Ti, i = 1,2, where T = T1 + iT2 and S = S1 + iS2 does not necessarily mean that S u∼ T.

The following example follows immediately from Remark 3.3.9.

Example 3.3.10. Let T1 =

1 0

0 0

,T2 =

0 0

0 1

,S1 =

1 1

0 0

 and S2 =

0 0

1 1

.

This imply that T =

1 0

0 i

 and S =

1 1

i i

.

It is easy to check that a unitary operator U such that T = U∗SU does not exist. Therefore
the converse of Theorem 3.3.8 is not true in general.

Theorem3.3.11. Suppose S,T ∈B(H) and S= S1+ iS2 and T = T1+ iT2 with Ti,Si, i= 1,2
self-adjoint. If T is similar to S, then Ti is similar to Si, i = 1,2.
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Proof. ByDefinition 1.3.14, two operators T ∈B(H) and S∈B(K) are said to be similar
denoted by S ∼ T if there exists an invertible operator N ∈ B(H,K) such that S = N−1SN.

Now S = N−1SN.

S =N−1SN

S =N−1(T1 + iT2)N

=N−1T1N + iN−1T2N

S1 + iS2 =N−1T1N + iN−1T2N.

=⇒ S1 = N−1T1N and iS2 = iN−1T2N
=⇒ S1 = N−1T1N and S2 = N−1T2N
=⇒ S1 ∼ T1 and S2 ∼ T2.

Remark 3.3.12. The converse of Theorem 3.3.11 is not true in general. That is, having
Si

s∼ Ti, i = 1,2, where T = T1+ iT2 and S = S1+ iS2 does not necessarily mean that S s∼ T.

Let us consider the following example to illustrate Remark 3.3.12

Example 3.3.13. Let T1 =

2 0

0 1

,T2 =

 0 −1

−1 0

,S1 =

2 0

0 1

 and S2 =

0 1

1 0

.

This imply that T =

 2 −i

−i 1

 and S =

2 i

i 1

.

It is easy to check that an invertible operatorN such that T =N−1SN does not exist. Therefore
the converse of Theorem 3.3.11 is not true in general.

Theorem 3.3.14. [14] If T is a normal operator and S ∈ B(H) is unitarily equivalent to T,
then S is normal.

Proof. Suppose S =U∗TU, where U is unitary and T is normal.
Then

S∗S =(U∗T ∗U)(U∗TU)

=U∗T ∗TU

=U∗T T ∗U (Putnam−Fuglede T heorem)

=SU∗T ∗U

=SU∗US∗

=SS∗.
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Theorem 3.3.15. If T,S ∈ B(H,K) are metrically equivalent and T = T1 + iT2 and S =

S1 + iS2 with Ti,Si, i = 1,2 self-adjoint operators, then Ti is metrically equivalent to Si.

Proof. This follows immediately from the definition of metrically equivalent opera-
tors. We know that two operators T ∈ B(H) and S ∈ B(K) are metrically equivalent If
T ∗T = S∗S. Therefore,

(T1 + iT2)
∗(T1 + iT2) =(S1 + iS2)

∗(S1 + iS2).

(T1 − iT2)(T1 + iT2) =(S1 − iS2)(S1 + iS2).

T 2
1 +T 2

2 =S2
1 +S2

2.

that is |T |= |S|.

Since T,S are self-adjoint operators we know that T ∗T = T 2 and S∗S = S2.

We then conclude that T ∗
1 T1 = S∗1S1 and T ∗

2 T2 = S∗2S2

=⇒ T1 is metrically equivalent to S1 and T2 is metrically equivalent to S2.

3.4 Spectral Picture of Operators with Cartesian Decomposition

3.4.1 Spectral Picture of Almost Similar Operators

To determine the spectral picture of almost similar operators we require the following
result by Halmos which is crucial in proving the results that follow.

Lemma 3.4.1. [6] Suppose that A and B are similar operators on a Hilbert space H, then A
and B have the same:

i Spectrum

ii Point spectrum

iii Approximate point spectrum

Theorem 3.4.2. If T and S are almost similar projections, then σ(T ) = σ(S).

Proof. To prove this theorem we begin by showing that T and S are similar.
Suppose that N is an invertible operator such that:

T ∗T = N−1(S∗S)N (6)
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and
T ∗+T = N−1(S∗+S)N (7)

According to Theorem 3.3.5 equations 6 and 7 collapses to the equality T = N−1SN.

This shows that T is similar to S and by Lemma 3.4.1 we conclude that σ(T ) = σ(S).

Remark 3.4.3. Since projection operators are self-adjoint then Theorem 3.4.2 simplifies to
the following result.

Corollary 3.4.4. If T and S are almost similar and self-adjoint operators, then σ(T ) =
σ(S).

Remark 3.4.5. We note that almost similarity does not preserve the spectrum of operators
because almost similarity does not in general imply similarity.

Definition 3.4.6. Let λ1, · · · ,λn be the eigenvalues of a matrix T ∈Cn×n. Then its spectral
radius denoted by r(T ) is defined as r(T ) = max{|λ1|, · · · |λn|}.

Corollary 3.4.7. If T and S are self-adjoint operators and almost similar, then r(T ) = r(S).

Proof. Since T and S are almost similar self-adjoint operators, then by Corollary 3.4.4
σ(T ) = σ(S) and by Definition 3.4.6 implies that r(T ) = r(S).

We nowwant to investigate whether two almost similar self-adjoint operators have equal
norms. To know about this, let us begin with the following propositions:

Proposition 3.4.8. [6] Let T ∈ B(H) be a self-adjoint operator. Then w(T ) = r(T ).

Proposition 3.4.9. [18] Let T ∈ B(H) be a self-adjoint operator. Then w(T ) = ||T ||.

Proposition 3.4.10. Let S,T ∈ B(H) be almost similar self-adjoint operator. Then ||T ||=
||S||.

Proof. Because T and S are almost similar self-adjoint operators, then by Corollary
3.4.4 σ(T ) = σ(S) and by Definition 3.4.6 implies that r(T ) = r(S). Using Proposition
3.4.8, then w(T ) = w(S) and by Proposition 3.4.9

||T ||=w(T )

=w(S)

=||S||.

That is ||T ||= ||S||.
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Remark 3.4.11. Almost similar self-adjoint operators have equal norms.

Theorem 3.4.12. Let S,T ∈ B(H) be self adjoint. Then w(T ) = w(S).

Proof. Since the operators are self-adjoint, hence normaloid. Then we have:

w(T ) =||T ||
=||S||
=w(S)

We then conclude that two self-adjoint almost similar normaloid operators have equal
numerical radius.

Let us look at the following example.

Example 3.4.13. Let T =

1 0

0 −1

 and S =

0 1

1 0

.

Both operators are self-adjoint and a simple computation shows that T and S are almost-

similar with N =

1 0

0 1

. A simple computation shows that σ(T ) = σ(S) = {−1,1}. =⇒

r(T ) = r(S) = 1.

But from Proposition 3.4.8:

w(T ) =r(T )

=r(S)

=w(S)

=1

and from Proposition 3.4.9

||T ||=w(T )

=w(S)

=||S||
=1

To make sense of Example 3.4.13 we give their respective numerical range.
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Figure 12. Numerical range of T.

Figure 13. Numerical range of S.

Lemma 3.4.14. If T is normal operator, then σr(T ) = /0

Proof. By contradiction, suppose σr(T ) ̸= /0 and let λ ∈ σr(T ). By definition, λ ∈
σr(T ) if (λ I−T )−1 exists. This actually means that there exists a non-zero vector x such
that:

(λ I −T ∗)x = 0 f or all x ̸= 0. (8)

Since T is normal, then so is λ I −T.

||(λ I −T )x||= ||(λ I −T ∗)x|| f or all x ̸= 0. (9)

From Equations 8 and 9 ||(λ I −T )x||= 0 f or all x ̸= 0 or (λ I −T )x = 0 f or all x ̸= 0.
This is a contradiction since σr(T )∩σp(T ) = /0. Therefore σr = /0.

Corollary 3.4.15. If T is normal operator, then σap(T ) = σ(T ).

Proof. By the definition of approximate point spectrum, we have thatσap(T )⊇σp(T )∪
σc(T ) and since σ(T ) = σp(T )∪σc(T )∪σr(T ). Then the result follows easily.

Theorem 3.4.16. [9] let T = A+ iB be the Cartesian decomposition of T ∈ B(H). Then
for all α,β ∈ R,

supα2+β 2=1||αA+βB||= w(T ) (10)

More specifically,
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1
2
||T +T ∗|| ≤ w(T ) and

1
2
||T −T ∗|| ≤ w(T ) (11)

Remark 3.4.17. By using 11, we get some known inequalities,

i ||T ||= ||A+ iB|| ≤ ||A||+ ||B|| ≤ 2w(T ). Hence 1
2 ||T || ≤ w(T ).

ii If T = T ∗, then T = A. Hence ||T ||= ||A|| ≤ w(T )≤ ||T || and w(T ) = ||T || and w(T ) =
w(A).

iii Through a simple computation, we have T ∗T+T T ∗

2 = A2 +B2. Hence 1
4 ||T

∗T +T T ∗|| =
1
2 ||A||

2 + ||B||2|| ≤ 1
2(||A||

2 + ||B||2||)≤ w2(T ) (see also [10]).

iv Let α,β ∈ R satisfy α2 +β 2 = 1. Then for any unit vector x ∈ H, we have

||(αA+βB)x||= ||

A B

0 0

αx

βx

|| ≤ ||

A B

0 0

||= ||

A B

0 0

A 0

B 0

||1/2

= ||A2 +B2||1/2 = 1√
2
||T ∗T +T T ∗||1/2.

Thus we have, w2(T ) = supα2+β 2=1||αA+βB||2 ≤ 1
2 |T

∗T +T T ∗|| (see also [10]).

We now want to extend this Theorem 3.4.16 by investigating some cases for α,β such
that α2 +β 2 = 1.

case 1 α = 0,β = 1.

Proposition 3.4.18. Let T = A+ iB be the Cartesian decomposition of T ∈ B(H). Then
for all α,β ∈ R, with α = 0,β = 1,

supα2+β 2=1||B||= w(B) (12)

Proof. We first note that the numerical radius w(T ) = supθ∈R{||Re(eiθ T )}||. But
Re(eiθ T ) = eiθ T+e−iθ T ∗

2 .

Re(eiθ T ) =
eiθ T + e−iθ T ∗

2
=1/2{(cosθ + isinθ)T +(cosθ − isinθ)T ∗}

=(cosθ)
T +T ∗

2
− (sinθ)

T −T ∗

2i
.
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= (cosθ)A+(sinθ)B. (13)

Therefore by putting α = cosθ = 0 and β =−sinθ = 1, we get 12

case 2 α = 1,β = 0.

Proposition 3.4.19. let T = A+ iB be the Cartesian decomposition of T ∈ B(H). Then
for all α,β ∈ R, with α = 1,β = 0,

supα2+β 2=1||A||= w(A). (14)

Proof. The proof of this proposition is found bymimicking the proof of Proposition
3.4.18.

case 3 α2 = 1,β = 0.

Proposition 3.4.20. let T = A+ iB be the Cartesian decomposition of T ∈ B(H). Then
for all α,β ∈ R, with α2 = 1,β = 0,

supα2+β 2=1||A||= w(A) (15)

case 4 α = 0,β 2 = 1.

Proposition 3.4.21. let T = A+ iB be the Cartesian decomposition of T ∈ B(H). Then
for all α,β ∈ R, with α = 0,β 2 = 1,

supα2+β 2=1||B||= w(B) (16)

We now want to find the relationship between the spectrum, numerical range, and nu-
merical radius of T,A, and B with T = A+ iB.

Example 3.4.22. Let us consider an arbitrary operator T =

1 i

i 1

. This operator decom-

poses as T =

1 0

0 1

+ i

0 1

1 0

.

We begin by investigating the spectrum of T,A,and B. A simple computation shows that
their spectrum σ(T ) = {1+ i,1− i},σ(A) = {1},σ(B) = {1,−1}.
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Figure 14. Numerical range of T.

Figure 15. Numerical range of A.

Figure 16. Numerical range of B.

We now look at their numerical ranges and numerical radii respectively.

From these figures we can see that the numerical radius of T,A and B are as follows: w(T ) =
1.40883205280000001,w(A) = 1, and w(B) = 1.
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4 On Direct Sum Decomposition of Operators

Introduction

In this chapter, we study direct sum decomposition of some classes of operators in Hilbert
spaces. The direct sum decomposition was greatly influenced by the work of Nagy and
Foias [13] whose major result was that an operator can be decomposed into a direct sum
of normal and completely non normal (c.n.n) parts.
A part of an operator is a restriction of it to an invariant subspace, and a direct summand
is a restriction of it to a reducing subspace.
We study direct sum decomposition of an operator into normal and completely non-
normal parts and direct sum decomposition of a contraction operators into unitary and
completely non-unitary (c.n.u) parts. An operator T = T1 ⊕T2 is classified by using the
properties of the direct summands T1 and T2. Direct sum decomposition is an interest-
ing form of decomposition as it transfers invariant subspaces from the direct summands
to the original operator. This property lacks in the Cartesian and the Polar decomposition.
Every bounded linear operator T on a Hilbert Space H has an orthogonal decomposition
T = T1 ⊕T2, which is implemented through a restriction of T to a reducing subspace M
of H , with T1 normal and T2 completely non-normal (c.n.n) or sometimes referred to as
pure. This means that no restriction or part of T2 to a reducing subspace is normal.

4.1 On Normal and Completely Non-normal Summands of an
Operator.

In this section we want to investigate the direct sum decomposition of operators into
normal and completely non-normal parts.

4.1.1 Direct Summands of Normal andQuarsinormal Operators.

We begin with the following result.

Theorem 4.1.1. Let T ∈ B(H) such that T = T1 ⊕ T2 with respect to the decomposition
H = H1 ⊕H2 and T1 normal and T2 c.n.n. Then T is normal if and only if H2 = {0} or
T2|M⊥ = 0.

Proof. Suppose T ∈B(H) is normal. Then T ∗T = T T ∗= [T ∗
2 ,T2] = 0. This implies that

T2|H2 = 0.Conversely, suppose [T ∗
2 ,T2] = T ∗

2 T2 = T2T ∗
2 = 0. Since T2 is pure this holds only

if T2 = 0. A simple calculation shows that T ∗T = T T ∗. Hence T is normal.
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Quasinormal operators were first studied by Brown [4] and from 1.3, it is clear that quasi-
normal ⊃ normal.

Remark 4.1.2. An operator T can be quasinormal and not normal.

Let us give an example to illustrate Remark 4.1.2

Example 4.1.3. Let H = l2(N) and let T be the unilateral shift given by the following
matrix.



0 0

1 0

0 1

0 0 . .



Then T ∗T = I. This implies that T (T ∗T ) = (T ∗T )T. Thus T is quasinormal.
A simple computation shows that T ∗T −T T ∗ = diag(1,0,0, · · ·). This shows that T is not
normal.

Theorem 4.1.4. Every direct summand of a quasinormal operator is quasinormal.

Proof. Let N be a reducing subspace for T ∈ B(H). Suppose now that T = T1 ⊕ T2

on H = N ⊕N⊥ where T1 = T |N and T2 = T |N⊥ and T is quasinormal, then T ∗T T =

T ∗
1 T1T1 ⊕T ∗

2 T2T2 = T1T ∗
1 T1 ⊕T2T ∗

2 T2 = T T ∗T.

This shows that T ∗
1 T1T1 =T1T ∗

1 T1 and T ∗
2 T2T2 =T2T ∗

2 T (T hat is [T ∗
1 ,T1]T1 = 0 and [T ∗

2 ,T2]T2 =

0) and hence T1 and T2 are both quasinormal.

Definition 4.1.5. [2] An operator T ∈ B(H) is said to be quasi-paranormal if for each vector
x ∈ H, ||T ∗T x||2 ≤ ||T 2x||||x||.

Theorem 4.1.6. [12] let T ∈ B(H) be a quasi-paranormal operator, then T can be expressed
uniquely as a direct sum T = T1 ⊕T2 defined on H = H1 ⊕H2 such that the following prop-
erties are satisfied;

• T1 is normal.

• T2 is a quasi-paranormal.
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Proof. Refer to Theorem 4.1 in [12].
Remark 4.1.7. Theorem 4.1.6 shows that the operator T ∈ B(H) decomposes into normal
and completely non-normal part.

4.1.2 Direct Summands of 2-normal Operators

In this subsection, we investigate the direct sum decomposition of 2-normal operators.
As we stated earlier, a 2−normal operator T is an operator such that T ∗T 2 = T 2T ∗.

We begin this subsection with the following result.

Proposition 4.1.8. Suppose T ∈ B(H) decomposes as T = T1⊕T2, with respect to a decom-
position H = H1 ⊕H2. If T ∈ B(H) is a 2-normal operator, then each direct summand is
2-normal.

Proof. Since T is 2-normal, then we have T ∗T 2 = T 2T ∗. Now T ∗T 2 = T ∗
1 T 2

1 ⊕T ∗
2 T 2

2
and T 2T ∗ = T 2

1 T ∗
1 ⊕T 2

2 T ∗
2 . Since T is a 2-normal operator, we have that T ∗

1 T 2
1 ⊕T ∗

2 T 2
2 =

T 2
1 T ∗

1 ⊕T 2
2 T ∗

2 .

This shows that T ∗
1 T 2

1 = T 2
1 T ∗

1 and T ∗
2 T 2

2 = T 2
2 T ∗

2 .

Hence Ti, i = 1,2 is 2-normal as required.
Proposition 4.1.9. Suppose T is a normal operator, then T is 2-normal.

Proof. Since T is normal, then T ∗T = T T ∗. This tells us that If T is normal, then T ∗ is
also normal. Multiplying to the right by T, we have that (T ∗T )T = (T T ∗)T = T (T ∗T ) =
T (T T ∗) = T 2T ∗. Hence T is 2-normal.
Remark 4.1.10. The converse of Proposition 4.1.9 is not true in general.

To make sense of Remark 4.1.10, let us consider the following example.

Example 4.1.11. Let T =

0 0

1 0

. A simple calculation shows that T ∗T 2 = T 2T ∗ =0 0

0 0

. This shows that T is 2-normal. Another simple computation shows that T ∗T ̸=

T T ∗. This shows that T is not normal. This example shows that If T is 2-normal then it is
not generally true that T is normal.

We proceed to give a condition for which a 2-normal operator T ∈ B(H) or quasinormal
operator T ∈ B(H) is normal.

Proposition 4.1.12. If T ∈B(H) is 2-normal and quasinormal and injective onRan([T ∗,T ]),
then T is normal.
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4.1.3 Equivalence Relations in Direct Sum Decomposition

In this subsection we want to look at direct sum decomposition of equivalence relations
and properties the direct summands transfers to the arbitrary operator.
We start with the following results.

Theorem 4.1.13. Let S,T ∈ B(H). Suppose T = T1 ⊕ T2 and S = S1 ⊕ S2, where T1,S1

are normal and T2,S2 are c.n.n. and suppose that T and S are unitarily equivalent, then
Si, i = 1,2 are unitarily equivalent to Ti, i = 1,2. (Direct summands are unitary equivalent).

Proof. Since T and S are unitarily equivalent, then there exists a unitary operator U
such that US = TU (equivalently S =U∗TU ). Therefore:

S1 ⊕S2 =U∗(T1 ⊕T2)U
=U∗T1U ⊕U∗T2U
S1 ⊕S2 =U∗T1U ⊕U∗T2U

=⇒ S1 =U∗T1U and S2 =U∗T2U This shows that S1 is unitarily equivalent to T1 and S2

is unitarily equivalent to T2

Corollary 4.1.14. [17] If an operator T ∈ B(H) is similar (unitarily equivalent) to a direct
summand of an operator L ∈ B(K), then H is a direct summand of an operator similar
(unitarily equivalent) to L

Corollary 4.1.15. [17] If an operator T ∈ B(H) is unitarily equivalent to a direct sum
L ∈ B(K), then it is a direct sum itself with direct summand unitarily equivalent to each
direct summand of L.

Corollary 4.1.16. [17] Every operator unitarily equivalent to a reducible operator is re-
ducible.

Remark 4.1.17. Corollary 4.1.16 does not hold under similarity.

Let us make sense of Corollary 4.1.16 by giving an example.

Example 4.1.18. Let us consider the 3×3 matrices representing the operators M,N, and O
on C3.

M =


1 −1 1

0 0 0

0 1 0

,N =


1 0 0

0 0 0

0 1 0

,O =


1 0 1

0 1 0

0 0 1

.
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A simple calculation shows that OM = NO,O is invertible (Thus M and N are similar) and

N is a direct sum, that is N = 1⊕

0 0

1 0

 but M is irreducible since the only 1-dimensional

invariant subspace W = span


1

0

0

 f or W is not invariant for M∗.

Theorem 4.1.19. Let S,T ∈ B(H). Suppose T = T1 ⊕T2 and S = S1 ⊕S2 where T1,S1 are
normal and T2,S2 are c.n.n. and suppose that T and S are similar, then Si, is similar to
Ti, i = 1,2.

Proof. Since T and S are similar, then there exists an invertible operator N such that
NS = T N (equivalently S = N−1T N). Therefore:

S1 ⊕S2 =N−1(T1 ⊕T2)N

=N−1T1N ⊕N−1T2N

S1 ⊕S2 =N−1T1N ⊕N−1T2N

=⇒ S1 = N−1T1N and S2 = N−1T2N
This shows that S1 is similar to T1 and S2 is similar to T2

Theorem 4.1.20. Let S,T ∈ B(H). Suppose T = T1 ⊕T2 and S = S1 ⊕ S2 with T1,S1 are
normal and T2,S2 c.n.n. and suppose that T and S are almost similar, then Si,Ti, i = 1,2 are
almost similar.

Proof. Since T and S are almost similar, then there exists an invertible operator N such
that S∗S = N−1(T ∗T )N,S∗+S = N−1(T ∗+T )N. Therefore:

(S1 ⊕S2)
∗(S1 ⊕S2) = N−1((T1 ⊕T2)

∗(T1 ⊕T2))N = N−1T ∗
1 T1N ⊕N−1T ∗

2 T2N
S∗1S1 ⊕S∗2S2 = N−1T ∗

1 T1N ⊕N−1T ∗
2 T2N

This implies that S∗1S1 = N−1T ∗
1 T1N and S∗2S2 = N−1T ∗

2 T2N This shows that S1 is almost
similar to T1 and S2 is almost similar to T2.

Similarly,
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S∗+S = N−1(T ∗+T )N
(S1 ⊕S2)

∗+(S1 ⊕S2) = N−1((T1 ⊕T2)
∗+(T1 ⊕T2))N

S∗1 +S1 ⊕S∗2 +S2 = N−1(T ∗
1 +T1)N ⊕N−1(T ∗

2 +T2)N
This shows that S∗1 +S1 = N−1(T ∗

1 +T1)N and S∗2 +S2 = N−1(T ∗
2 +T2)N

4.2 On Unitary and Completely Non Unitary Summands of a
Contraction Operator

In this section, we study the decomposition of a contraction into a direct sum of uni-
tary and completely non-unitary parts. A contraction operator T ∈ B(H) decomposes as
T = T1 ⊕T2 where T1 is unitary and T2 is completely non-unitary part. If T1 = 0, then
T is a completely non-unitary contraction. We will further investigate the properties of
completely non-unitary (c.n.u) summands of this operator.
An operator T ∈ B(H) is strongly stable if the sequence {T n} converges to the null oper-
ator.
We will take B to be the strong limit of {T ∗nT n}n≥0.

4.2.1 Nagy-Foias Classes of Contraction

1 A contraction T is said to belong to class C0. if T is a strongly stable contraction.

2 A contraction T is said to belong to class C.0 if T ∗ is a strongly stable contraction.

3 A contraction T is said to belong to classC1. if T nx ̸→ 0 for every nonzero vector x ∈ H.

4 A contraction T is said to belong to class C.1 if T ∗nx ̸→ 0 for every nonzero vector
x ∈ H.

Remark 4.2.1. A contraction T is of classC00 if T and T ∗ are both strongly stable contrac-
tion. That is B = B∗ = 0.

From these classes of contractions, we have a generalization as follows.

• T ∈C00 if and only if B = B∗ = 0.

• T ∈C01 if and only if B = 0 and N(B∗) = {0}.

• T ∈C10 if and only if N(B) = {0} and B∗ = 0.

• T ∈C11 if and only if N(B) = {0} and N(B∗) = {0}.
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Example 4.2.2. 1 Let T =

1 0

0 1

. This operator is a unitary operator and therefore it

decomposes as T = T1⊕T2, where T1 is unitary and T2 is completely non unitary. That is

T1 =

1 0

0 1

 and T2 = 0. This means that completely non-unitary part is missing. This

operator belongs to class C11.

2 Let T =


1 0 0

0 −1 0

0 0 1

. This operator decomposes as T = 1 ⊕

−1 0

0 1

, where 1 ⊕

−1 0

0 1

 is unitary and the c.n.u part is missing.

Remark 4.2.3. 1 Every unitary operator is a contraction. (i.e. ||T x||= ||T ∗x||= ||x||, f or all x∈
H).

2 Every isometry is a contraction operator since ||T x||= ||x||∀x ∈ H.

3 Every co-isometry is a contraction operator since ||T ∗x||= ||x||∀x ∈ H.

4.2.2 Some Classes of Completely Non-Unitary Contraction

Note that a contraction T is of class C00 if B = B∗ = 0. In this subsection, we want to
have a look at some results on the nature of direct summands of some classes of c.n.u.
operators.

We begin with the following result.

Theorem 4.2.4. Paranormal contractions are a direct sum of unitary and C.0 completely
non-unitary contraction.

The following result follows immediately from Theorem 4.2.4

Theorem 4.2.5. Let T = T1⊕T2 be a paranormal contraction where T1 is unitary and T2 is
c.n.u. Then the completely non unitary part is of class C.0.

Proposition 4.2.6. Let T ∈ B(H) be a normal contraction and that T = T1 ⊕T2. Then T2

is of class C00.

Proof. Since T is normal, then T ∗T = T T ∗. Also since T decomposes as T = T1 ⊕
T2, with T1 unitary and T2 completely non-unitary. From Theorem 4.2.5 we have that
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T2 is of class C.0. We now need to check that T2 is of class C0.. Since T is normal, B =

Limn→∞T ∗nT n = Limn→∞T nT ∗n = B∗ = 0. Thus clearly T2 is of class C00.

Let us consider the following example where T belongs to C00.

Example 4.2.7. let T =

0 1

0 0

.

This operator is completely non-unitary and therefore belong to class C00.

Using this contraction operator, we answer the following question:
Can we find a nonzero reducing subspace M such that T |M is unitary?

Answer: NO.

The operator T =

0 1

0 0

 is completely non-unitary.

T 2 =

0 1

0 0

0 1

0 0

=

0 0

0 0

= 0.

This shows that T n → 0,T ∈C0..

Similarly, T ∗ =

0 0

1 0

. This shows that T ∗2 = 0.

This implies that T ∗n → 0,T ∈C.0.

Therefore in this example we see that T ∈C00 and thus the unitary part of the direct summand
is missing.

Remark 4.2.8. We note that if a contraction operator is pure, then it is completely non-
unitary but the converse is not true in general.

Example 4.2.9. T =

0 1
2

1
2 0

. This operator T belongs to the class C00 and T is normal.

This means that not allC00 contractions are pure. Similarly, there is noC00 contraction with
a unitary part as in Example 4.2.7

Theorem 4.2.10. Let T ∈ B(H) be a normal contraction and S ∈ B(H) be similar to T,
then S has a completely non-unitary part of class C00.

Proof. The proof to this theorem follows from Proposition 4.2.6
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Corollary 4.2.11. [15] A nonunitaryC11 contraction is similar to a unitary operator if it is
invertible.

Proposition 4.2.12. (Wold decomposition)[11] Every isometry is a direct sum of a unitary
operator and a unilateral shift.

The following result follows from Proposition 4.2.12

Lemma 4.2.13. If T ∈ B(H) is an isometry, then T decomposes as T = T1⊕T2, where T1 is
unitary and T2 is completely non-unitary (unilateral shift) with respect to the decomposition
H = M⊕M⊥.

Proof. Since T is an isometry, we have that B = Limn→∞T ∗nT n = I and N(I−B) = H
and M is a reducing subspace such that M = Ker(I−B)∩Ker(I−B∗) = Ker(I−B∗). This
shows that T |M is unitary and T |M⊥ is a unilateral shift or c.n.u.

Proposition 4.2.14. An isometry is completely non-normal if and only if it is a unilateral
shift.

Proof. This follows immediately from the inclusion unitary ⊂ normal.

Theorem 4.2.15. Suppose M ∈ B(H) is metrically equivalent to an isometry T ∈ B(H),

then the unitary and completely non-unitary summands of M are isometric.

Proof. First note that T is isometry. Then T = T1 ⊕T2 where T1 is unitary and T2 is a
unilateral shift by von Neumann-Wold decomposition. Since M is metrically equivalent
to T, then we write:

M∗M =T ∗T

=(T1 ⊕T2)
∗(T1 ⊕T2)

=T ∗
1 T1 ⊕T ∗

2 T2

=I ⊕ I

Now suppose M = M1 ⊕M2, then

M∗M =(M1 ⊕M2)
∗(M1 ⊕M2)

=M∗
1M1 ⊕M∗

2M2.
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Therefore, M∗
1M1 = I, M∗

2M2 = I. This proves that the direct summands of M are isomet-
rics.

4.3 Spectral Picture in a Direct Sum Decomposition

In this section, we study the spectral picture and to bemore specific, with use of examples
we want to investigate the relationship between the arbitrary operator T and the direct
summands in relation to the spectrum, numerical range, numerical radius and spectral
radius.

We first look at the following example.

Example 4.3.1. Let T =


−1 0 0

0 1 0

0 0 2

. It is clear that T decomposes as T = T1 ⊕T2.

This is equivalent to T =

−1 0

0 1

⊕2. We start by examining the spectrum of T,T1 and

T2.

As we can see, σ(T ) = {−1,1,2}, σ(T1) = {−1,1} and σ(T2) = {2}.

We can see that σ(T ) = σ(T1)∪σ(T2).

We now investigate their numerical ranges.

Figure 17. Numerical range of T.

Figure 18. Numerical range of T1.

Remark 4.3.2. The numerical range of T is union of the numerical range of T1 and T2.
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Figure 19. Numerical range of T2.

Example 4.3.3. Let us now consider the following square matrix T =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

.

T decomposes as T = T1 ⊕T2.

This is equivalent to T =

1 0

0 0

⊕

0 0

0 1

.

Using the same concept, we begin by investigating their spectra.

As we can see that σ(T ) = {1,1,0,0,}, σ(T1 = {1,0}) and σ(T2) = {0,1}.

We can see that σ(T )⊆ σ(T1)∪σ(T2).

From these two examples we have the following result.

Theorem 4.3.4. Suppose T decomposes as T = T1 ⊕T2, then the spectrum of T is a subset
of σ(T1)∪σ(T2). (Equivalently, σ(T )⊆ σ(T1)∪σ(T2)).

We now investigate the conditions under which the spectrum of T will be equal to the
union of the spectra of T1 and T2.

Theorem 4.3.5. The spectrum of the direct sum of an arbitrary operator T is equal to the
spectra of its complementary parts if and only if the complementary parts commute.

To make sense of this theorem, let us look at the following example:
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Example 4.3.6. Let T =


1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

. This matrix decomposes as T =

1 0

0 2

⊕

3 0

0 4

.

This implies that [T1,T2] = 0.

We then calculate their respective spectra.

We find that the spectrum of T = {1,2,3,4} and the spectra of T1 and T2 are {1,2}, {3,4}
respectively.

We can clearly see that σ(T ) = σ(T1)∪σ(T2).

Remark 4.3.7. Note that the only condition when the spectrum of the arbitrary operator T
is equal to the union of the spectra of direct summands parts is when the direct summands
commute and σ(t) = σ(T1)∪σ(T2).

Example 4.3.8. let T =


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

. This matrix decomposes as


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 =

1 0

0 1

⊕

1 1

0 1

. Here T1 is normal and T2 is completely non-normal.

We determine their spectrum, numerical radius and numerical range. To begin lets calculate
their numerical ranges. Using Maple, we get the figures below.

Figure 20. Numerical range of T.
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Figure 21. Numerical range of T1.

Figure 22. Numerical range of T2.

From these figures we note that the numerical radius of T = 1.5,T1 = 1 and T2 = 1.5.
Their numerical range and radius are not related in any way.

Remark 4.3.9. We note that W (T ) = conv{W (T1)∪W (T2)}.
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5 Conclusion and Recommendations

5.1 Conclusion

In this project, we have shown that every operator has a Cartesian decomposition and
a direct sum decomposition into normal and completely non-normal (c.n.n) parts (and
that either direct summand may be missing). Likewise, every contraction operator has a
direct sum decomposition into a unitary part and a completely non-unitary (c.n.u) part.

In chapter 3, we have shown some properties of an operator T ∈ B(H) with a Cartesian
decomposition T = A+ iB, and its component parts A and B. For instance, in Theorem
3.1.1, we have shown that if T is normal and T = A + iB, then A commutes with B.
We have also introduced the equivalence relations and connected it to the Cartesian
decomposition. For example, in Theorem 3.3.8, we have proved that for any two arbitrary
operators S and T , where S = A+ iB and T = A+ iB are unitarily equivalent. This result
demonstrates that there exists a unitary operator U such that T = U∗SU, highlighting
the significant relationship between these operators and their unitary equivalence under
appropriate conditions.
In chapter 4, we have shown in Theorem 4.3.5 that if T = T1 ⊕T2, then σ(T ) = σ(T1)∪
σ(T2) if [T1,T2] = 0. This result provides a valuable insight into the spectral behavior of
the direct sum of operators, illustrating that the spectrum of an operator T is the union
of the spectra of its components T1 and T2 under the condition of commuting. These
results contribute to a greater comprehension of operator theory and its uses in a wider
mathematical setting.

In conclusion, our research has addressed a question proposed by one of the researchers in
Theorem 4.1.19, which focused on investigating the similarities between two operators,
S and T, where S = S1 ⊕ S2 and T = T1 ⊕ T2. Specifically, we aimed to determine the
implications for the direct summands of both T and S in such cases.

5.2 Recommendation

The decomposition of operators has proven to be a valuable tool in the field of mathemat-
ical systems theory, as it allows for a more manageable analysis of complex systems. By
decomposing T and S into their respective direct summands, T1,T2,S1,andS2, we were
able to focus on studying the individual components of these operators.
We proved that if T s∼ S and T = T1 ⊕T2 and S = S1 ⊕ S2, then Ti

s∼ Si, i = 1,2. But the
converse has not been proved.
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Question 1: If S = S1 ⊕S2 and T = T1 ⊕T2 and Si
s∼ Ti, i = 1,2, is it true that S s∼ T ?

Question 2: If T = A+ iB, what is the relationship between σ(T ),σ(A) and σ(B)?

Question 3: If A and B are self adjoint operators and T = A+ iB, can the information
on σ(A) and σ(B) be enough to describe σ(T )?
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