

UNIVERSITY OF NAIROBI

FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTING AND INFORMATICS

BLACK BOX TEST CASE PRIORITIZATION FOR REGRESSION

TESTING USING BAYESIAN NETWORKS

W SELPHA ATEMBA

P53/34646/2019

SUPERVISOR:

DR ANDREW M. KAHONGE

A research project submitted in partial fulfillment of the requirement for the award of

Master of Science Degree in Distributed Computing Technologies of the

University of Nairobi

 DECEMBER 2022

Page ii of 44

Declaration

This research project is my original work and to the best of my knowledge this work has not

been submitted for any other award in any other University.

 Date
W Selpha Atemba

This project report was submitted in partial fulfillment of the requirement of the Master of

Science in Distributed Computing Technologies of the University of Nairobi with my approval

as the University mentor.

Dr. Andrew M. Kahonge

Department of Computing and Informatic

Signature Date:

9th March 2023

 SAtemba
9th March 2023

Page iii of 44

Acknowledgement

I give all glory to Almighty God for his graces and Mercies that kept me going even when I

almost gave up. My heartfelt gratitude to my supervisor , Andrew M. Kahonge for his formidable

support and guidance throughout the project, I wouldn’t have come this far was it not for his

encouragement. A special thanks to Dr. Christopher A. Moturi for the support and mentorship

throughout the project work. A big thank you to my panel chair Dr. Lawrence Muchemi and all

the panelists for the opportunity to do the research project, the comments and the feedback that

improved my work every day. And to my amazing family; my lovely husband, Morris Kimathi,

our two adorable sons; Bright Mwenda and George Mbati, my parents and siblings for the love

and support. Last but not least , I am grateful to family ,friend and colleagues for the

encouragement and support during the entire period of project work.

Page iv of 44

Abstract

In testing, regression testing can be defined as the re-execution of all test cases previously

executed to rule out the fact that some functionalities that were working previously have been

broken by the newly introduced fixes or system changes. The impact is adverse if the software

system involves money or life critical systems. Constraints like time and resources cannot allow

re-execution of the whole collection of test cases that were executed previously and due to

security reasons system codebase is never availed to the testing team and if it is availed, the

testing team might not be technically competent to extract value from the code. The study

investigated existing implementations of test case prioritization and had incorporated machine

learning algorithm as part of the implementation. The study implemented a black box test case

prioritization model using Bayesian Networks, after which a prototype was developed to

prioritize test cases using the model. The study also validated that the developed prototype is

effective in prioritizing test cases. Based on the methodology selected for the study, data was

collected from public dataset, Kaggle all the variables under study were available in the data.

Analysis was done on the data to visualize distribution of data. Feature engineering was done to

the features to improve the performance of the model. The model was implemented using the

established correlations between dependent variable; likelihood of detecting bugs against the

independent variables; complexity value of the developed system, the level of experience for the

developer who participated in the development of the system under test, the change history of

the system, the bug history of the system and the tester assessment for likelihood of detecting

bugs based on experience .A prototype was developed and tests done to validate the

effectiveness, simulations were also carried out using the test data. The model was evaluated to

establish its effectiveness in prioritizing test cases. The Bayesian Networks model performed

slightly better in classification accuracy and confusion matrix when compared to Gaussian Naïve

Bayes and Support Vector Machine respectively.

The study achieved the set-out objectives by carrying out systematic literature review on

previous work and identifying the gap in regression testing for black box test case

prioritization(Catal & Mishra, 2012), a model was implemented, and a prototype developed to

deal with the issue of black box test case prioritization for regression testing. The effectiveness

of the developed model was evaluated against other models and BN model was slightly better

Page v of 44

than the other models. The study achieved its objectives, with the proposed solution software

development teams will be able to prioritize test cases without the need to access source code

using minimum training data. This will ensure high quality software is released and reduce the

risk of defect leakage which can cause harm or threaten lives.

Keywords: Regression testing, Black box testing, Test case Prioritization, Bayesian

Networks

Page vi of 44

The Table of Contents

Declaration ii

Acknowledgement iii

Abstract iv

Abstract v

Table of Contents vi

Table of Contents vii

Table of Contents viii

List of Tables ix

List of figures x

Abbreviations xi

Definition of Key Terms xii

CHAPTER 1: INTRODUCTION 1	

1.1 Background 1	

1.2 Problem Statement and Justification 2	

1.3 Research Objectives 3	

CHAPTER 2: LITERATURE REVIEW 4	

2.1 Introduction 4	

2.2 White box test case prioritization techniques 4	

2.2.1 Genetic Algorithm 4	

2.2.2 Bayesian Networks 5	

2.2.3 Support Vector Machine map 6	

2.3 Black box test case prioritization techniques 6	

2.3.1 Unsupervised Neural Network 6	

Page vii of 44

2.3.2 Neural Networks 7	

2.3.3 Support Vector Machine Rank 7	

2.3.4 Combined Machine Learning. 8	

2.4 The Gap in test case prioritization 8	

2.5 The proposed solution 8	

2.6 Conceptual framework 9	

CHAPTER 3: METHODOLODY 10	

3.1 Introduction 10	

3.2 Study population 10	

3.3 Data Collection 11	

3.4 Variables 11	

3.4.1 Dependent variables 11	

3.4.1.1 Likelihood of detecting bugs 11	

3.4.2 Independent variables 11	

3.4.2.1 Change history 11	

3.4.2.2 Bug history 12	

3.4.2.3 Complexity value of the module 12	

3.4.2.4 Tester assessment 12	

3.4.2.5 Developer experience 12	

3.5 Data Analysis 13	

3.5.1 Dependent Variable Distribution Analysis 13	

3.5.2 Independent variable analysis, to spot outliers 14	

3.5.3 Establishment of Variable Correlations 15	

3.5.4 Data Cleaning 16	

3.6 Creation of BN model 17	

Page viii of 44

3.7 Implementation and Prototyping 17	

3.8 Model and Prototype Evaluation 18	

CHAPTER 4: RESULTS AND DISCUSSIONS 19	

4.1 Introduction 19	

4.2 Model results evaluation 19	

4.2.1 Classification accuracy 19	

4.2.2 Confusion Matrix 20	

4.2.3 Classification report 22	

4.3 Prototype results evaluation 23	

4.3 Discussion 24	

4.4 Model Verdict 25	

CHAPTER 5: SUMMARY,CONCLUSION AND RECOMMENDATIONS. 26	

5.1 Summary of Findings 26	

5.2 Conclusion 28	

5.3 Recommendation 28	

5.4 Future research 29	

References 31	

Page ix of 44

List of Tables

Table 1: Classification accuracy…………………………………………………………. 14

Table 2: Classification report 1…………………………………………………………… 24

Table 3: Prototype evaluation expected results……………………………………………. 24

Table 4: Prototype evaluation actual results…………………………………………….…. 25

Table 5: Classification report 2……………...……………………………………………… 26

Page x of 44

List of figures

Figure 1: Conceptual framework………………………………………………………. 9

Figure 2: Research process………………………………………………………………10

Figure 3:Dependent variable distribution analysis graph………………………………. 14

Figure 4:Tester assessment distribution before cleaning……..………………………….15

Figure 5: Feature correlation with each other heatmap…………………………………. 16

Figure 6: Script to replace outliers………………………………………………………. 17

Figure 7:Tester assessment distribution after cleaning…………………………………...17

Figure 8: Belief network for dependent and independent variable ………………………18

Figure 9: Belief network test case prioritization prototype ………………………………19

Figure 10: Confusion matrix for Bayesian Network……………………………………....21

Figure 11: Confusion matrix for Gaussian Naïve Bayes...………………………………. 22

Figure 12: Confusion matrix for support vector Machine…………………………………23

Page xi of 44

Abbreviations

iOS - i-device Operating System

ST – Software Testing

SDLC – Software Development Life Cycle

SUT – System Under Test

API – Application programming Interface

BN – Bayesian Networks

BBN – Bayesian Belief Networks

AFPD – Average percentage of faults detected

NN – Neural Networks

Definition of Key terms

Software development life cycle(SDLC) – The model used in software development where a

process that is systematic is followed. This approach ensures that required quality standards and

the correctness expected to be in the system is achieved.

Page xii of 44

Software testing - The process of evaluating a system or the software with the intent of

establishing if it meets the requirements specifications or not.

Regression testing - A type of testing in the SDLC that is executed after every change of the

system i.e., fixing of a defect in the system, updating the existing functionalities and adding new

functionalities to the system.

Test case prioritization – The art of arranging test cases in a specific order with the intention of

having the most important test cases come before the less important. The arrangement could be

based on different factors like code coverage and functionality criticality.

Bug - A malfunction in the system or an error that may cause system components or the entire

system fail to perform its required functions.

Bayesian Networks – A model type which combines probability and graphs. It computes

probability using Bayesian Inferences. It’s main aim is to model dependence that depends on

conditions bringing about cause, it does this by representing edges in a directed graph to show

dependence that is conditional.

Machine learning algorithm – The method by which systems that are intelligent artificially(AI)

predicts some outcomes using given data as input.

Page 1 of 44

CHAPTER 1: INTRODUCTION

1.1 Background

The history of software development is dated back to 1948 on June 21 at 11:00 a.m. when Tom

Kilburn ran his first piece of software at the University of Manchester in England(Booch. G, 2018).

Programming languages like Fortran, Cobol, BASIC, and C arrived in the two decades that

followed. Today software development has become ubiquitous and recent programming languages

like Java and Python have been used in different software development projects. Others like Go

and Swift programming language for iOS by Apple are quite new in the industry(M. S. Mahoney,

2004).

Software development methodologies, on the other hand, have evolved immensely. It started back

in the 1950s with structured programming, waterfall model, iterative and incremental models,

prototyping, spiral model, V-model, rapid application development, and finally agile in the 1990-

2000s(Misra et al., 2012. The agile methodology has also evolved over the years from a scrum,

which basically entails practices like lean software development methodology, Kanban, extreme

programming(XP)methodology, continuous integration(CI) practices, continuous delivery(CD) to

scrum-of-scrums which is a scrum at scale i.e. more than one team. (Tom DeMarco, 2000).

Software testing (ST); the process of running a software program with a specific intention of

finding defects, which is an integral part of the Software Development has also evolved over the

years. It started in the 1940s with debugging, then followed the demonstration phase in the 1950s,

then destruction, then evaluation, and finally the prevention phase from the 1980s to the present.

There are different types of testing i.e. unit testing, component testing, smoke testing regression

testing, integration testing, API testing white-box, and black-box testing(H. Freeman, 2002) only

to mention a few.

Regression testing is the re-execution of test cases when requirements are changed, functionality

is enhanced, or a defect is fixed. This makes sure that any changes do not have any unexpected

consequences, and the system under test (SUT) still works as per the requirements. Regression

Page 2 of 44

testing can be done either manually or be automated. Techniques for regression testing are re-test

all where all the test cases are re-executed (Malishevsky et al.,2002), test case selection where test

cases associated with the changed modules are selected and executed against the SUT (Kazmi et

al.,2017), and “test case prioritization where the test cases of the regression test suite are reordered

based on some particular criteria so that test cases that have high likelihood of detecting defects

are executed first” (Khanna, 2016) making it possible to catch maximum errors with the available

resources.

1.2 Problem Statement and Justification

With the current software development methodologies like the agile methodology, organizations

are making frequent releases, and this means vibrant and more proactive testing is needed to cover

all possible defects that could be introduced with the changes to the software that could affect the

functionality or performance of the system. Regression testing is needed whenever a software

system is reorganized or modified.70% of the testing cost is consumed by regression testing

alone(Labuschagne et al., 2017). This is not easily achievable with the growing amount of software

and test cases, having limited resources like time, money, and human resources involved in testing.

Current test case prioritization techniques require interaction with the actual code (White box) to

track code changes and map them to test cases and use that to determine the scenarios that should

be executed first for earlier bug detection. System testing for complex systems does not allow

interaction with or there could be a lack of trained resources to analyze source code hence

techniques that do not require access to source code (black box) test case prioritization techniques

become necessary. Most machine learning test case prioritization techniques implemented

previously require a lot of training data to effectively prioritize test cases. Training data on the

other hand might be insufficient during regression testing phase. This research paper proposes a

black box test case prioritization technique that is built using machine learning algorithm: Bayesian

Networks. The solution will use change history of the system being tested, bug history of the

system being tested developer experience, tester assessment and complexity value of the module

under development for training the model which will later be used to predict and thereafter

Page 3 of 44

prioritize test cases based on the ability to identify bugs as early in the early stages during the

system testing, as a solution to challenges associated with regression testing. This approach will

automatically prioritize test cases that are important and have the highest probability of detecting

errors in the updated software. This will improve the effectiveness of testing by detecting defects

early, hence reducing cost and improving the quality of software released.

1.3 Research Objectives

The study intends to achieve the following set objectives

I. To investigate existing techniques of prioritizing test cases with a focus on the

algorithms that use machine learning.

II. To implement a Blackbox test case prioritization prototype for regression testing

using Bayesian Networks (BN).

III. To validate the effectiveness of the developed prototype in identifying bugs

Page 4 of 44

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Existing techniques for prioritizing test cases are explored to establish their how they influence

this study. Methodologies of prioritizing test cases using machine learning algorithms will be

analyzed to determine their effectiveness in test case prioritization. Existing algorithms for

prioritizing test cases using Bayesian Networks will be explored to prove their relevance to the

topic of study. Limitations and gaps of previous implementations will also be explored.

The gap identified from literature review will inform the approach and design for implementation

of the proposed solution

2.2 White box test case prioritization techniques

2.2.1 Genetic Algorithm

Genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of natural

evolution. It reflects the process of natural selection where the fittest individuals are selected for

reproduction(Sieja et al., 2019) so that they can reproduce offspring for the next generation.

Gohner and Abeleand used genetic algorithms for ordering test cases based on priorities. Their

methodology uses software agents which are described as components of a software application

used to predict the fault revealing probability of each test case and the fault proneness of each

module. Their methodology also incorporates fuzzy logic rules. The fuzzy logic rules state that;

complex modules are likely to have more faults, cases that have identified defects previously are

most likely to identify defects in subsequent executions and that components that have been faulty

Page 5 of 44

in the past are also likely to be faulty in future. The methodology uses genetic algorithm to update

the weight of rules of fuzzy logic in that it uses the difference between the faults predicted and

faults found as input. It uses cases that are likely to identify most defects.(Mahoney, M.S.,2004)

Ramingwong and Konsaard proposed a genetic algorithm methodology that has modifications for

test cases prioritization. Prioritization of test cases Itest cases are prioritized based on code

coverage. (Konsaard & Ramingwong, 2015)

A. Ahmed and M. Shaheen proposed a more advanced genetic algorithm-based test case

prioritization technique(97). It uses a control flow graph for each test case, it measures three

metrics: the coverage degree of each statement, conditions and multiple conditions. All the metrics

are then integrated through genetic algorithm and after each iteration the fitness function of the

algorithm outputs a value(81). The order of execution is determined by calculating the values for

each test case.(A. A. Ahmed, 2012)

2.2.2 Bayesian Networks

Bayesian networks (BN) are models that combine graphs and probability using inferences of

Bayesian computations of probability. Bayesian networks operate by modelling dependance that

is conditional which leads to causation, it usually is represented by a dependence that is determined

by conditions on edges that appear on a graph that is directed.

Tahvildari and Mirab came up with technique to order test cases based on priorities using

probabilities by using BN to integrate software program’s Whitebox details into a model that is

consolidated . This methodology uses the following data as input; fault proneness of the system,

degree of coverage and the changes made in the software system. Using BN a relationship for the

data is established based on initial outcomes a probability is generated for each test scenario with

algorithms that have probability inferences. Scenarios of testing are then ordered using the created

probability values. Performance of the algorithm’s performance is measured using the average

percentage of faults detected (APFD). (Mirarab & Tahvildari, 2007)

Page 6 of 44

Tahvildari and Mirab went ahead and improved their mechanism by prioritizing test cases based

on metrics that determine quality of code, changes that have taken place and the coverage of the

test scenarios. They gather information by comparing different versions of a file and comparing

bytecodes. If a test case covers similar code modules as the previous test case, then the test case

will receive a low priority score (S.MirarabandL, 2016)

Huang et al. proposes a more advanced methodology that implements code coverage based

grouping using BN. The grouping of test case is determined by the similarity in code coverage and

the likelihood of failure using Bayesian Networks(BN).The methodology rules out the possibility

of similar test cases being executed with the same probability.(Huang et al., 2021)

2.2.3 Support Vector Machine map

Support Vector Machine (SVM) is a machine learning technique that can be applied to perform

both classification and regression tasks.

Xie and Busjaeger propose SVM map for test case prioritization .The methodology uses different

heuristic techniques like code coverage, test age, test-failure, similarity in text between tests and

changes, fault history and test-failure history. These information is utilized in training the ranking

model which is used in test case prioritization . (Busjaeger & Xie, 2016)

2.3 Black box test case prioritization techniques

2.3.1 Unsupervised Neural Network

Neural networks(NN) belongs to a category of machine learning algorithms. They take inspiration

from human brain and replicate the way biological neurons communicate with each other.

Unsupervised NN are the ones that do not use training data. They learn from experience.

Page 7 of 44

Gokce et al suggested a technique utilizing neural networks for prioritizing test cases. The test

cases are arranged according to their degree of preference. The degree of preference is calculated

based on various factors, including the average frequency of usage, the degree of balance, the

distance, the number of belongings, the number of sub-nodes and the number of layers of

occurrence. Furthermore, the work was expanded by incorporating unsupervised Neural Network

and fuzzy c-means for clustering events. (Gökçe et al., 2006)

2.3.2 Neural Networks

Neural networks belong to a category of machine learning techniques and are designed to imitate

the way biological neurons communicate in the human brain.

Spieker et al. suggest a novel approach to prioritize test cases, it utilizes reinforcement learning

and Neural Networks(NN). Reinforcement learning (RL) learns from experience while NN uses

variables like duration of execution, last execution and failure history uses agents, the agent

interacts with the environment to gather data, which is represented as a state, and then chooses an

appropriate action based on the state. After the state execution, the agent learns from the feedback

received and adjusts behavior accordingly. Positive feedback is reinforced while negative feedback

is discouraged. In this approach, priority is given to test cases that have previously identified faults,

with a focus on executing those with a higher capability of detecting defects first. (Spieker et al.,

2017)

2.3.3 Support Vector Machine Rank

 The SVM Rank is a version of the Support Vector Machine algorithm that is specifically designed

for solving ranking problems by training a model to learn how to rank items.

Lachman et al. proposes black box test case prioritization method using SVM Rank. It uses

requirements coverage, cost of test execution, age and count of failures and requirements priority.

The method also entails parsing through requirements text. A computation of all words is done,

and each word will represent a feature. Using SVM Rank algorithm, a ranked classification model

Page 8 of 44

is trained on the data, which is then evaluated for its effectiveness using the APFD metric as chosen

by the authors. (Lachmann et al., 2016)

2.3.4 Combined Machine Learning.

An approach for test case prioritization was developed using several machine learning algorithms,

including Neural Networks(NN), k-nearest neighbor(KNN) and logistic regression. These

algorithms’ results were merged to create an ensemble learner.

Combinatorial ensemble learning was used to create ensemble learner, which was trained using

historical data. The classification results of the latest versions are combined, and this helps in

improving the quality of prioritization. Classifiers are trained based on insights gathered from past

executions. The combinatorial ensemble uses classifiers for the same version of test cases. The

priority value of a test case is determined by each individual classifier and these priorities are

aggregated to establish the overall priority. (Lachmann, 2018).

2.4 The Gap in test case prioritization

From the literature review done, it was observed that most prioritization techniques require access

to code (white box) which at most times is not possible. This called for a technique that can

prioritize test cases without the need to access the source code. During the literature review,

methods were identified that can prioritize test cases effectively without requiring access to source

code, but these techniques rely heavily on having a significant amount of training data.

2.5 The proposed solution

To solve the above found challenge, this study proposes a solution that can prioritize test cases

without need to access the source code using minimal training data; black box test case

prioritization using Bayesian Networks.

Page 9 of 44

2.6 Conceptual framework

The model construction is a combination of variables used in previous studies; change history,

bug history, complexity value of the module and developer experience and additional variables;

tester assessment which will be the additional variable that will be explored in this study. The

Bayesian Network model construction will use dependent and independent variable. The value of

dependent variable; likelihood of detecting bugs will be determined by independent variables;

change history, bug history, complexity value of the module, tester assessment and the developer

experience.

Figure 1 displays the conceptual framework of the Bayesian Network(BN) model for test case

prioritization.

Figure 1: Conceptual framework

Page 10 of 44

CHAPTER 3: METHODOLODY

3.1 Introduction

In this section we give a detailed description of how we achieved the set-out objectives for this

study. We conducted a theoretical analysis of the literature to investigate the implementation and

limitations of test case prioritization techniques, with a specific emphasis on approaches

employing machine learning. We examined both black box and white box prioritization methods.

We collected test data for fintech systems. The data collected was cleaned in preparation for

training. A BN algorithm model was designed, and subsequently conducted simulations and

prototyping on the model. The BN model was then trained and evaluated.

The methodology utilized in this study is depicted in the figure below.

Figure 2: The process of Research

3.2 Study population

This research focused on fintech software system. Finance happens to be a fast-growing industry

which has quickly picked technology advancements and innovation making it one of the fastest

growing industries that has embraced technology. Security being of the challenges brought about

by technology, fintech is not left out to that regard. Fintech systems require comprehensive

Page 11 of 44

testing to remove any chances of security breaches or defects that can compromise customers

money, hence the need for the study for an advanced mechanism to easy identify bugs and

reduce the risk of defect leakage.

3.3 Data Collection

The training and testing data for the research was extracted from fintech systems test cases data

in the Kaggle dataset (Roshan, 2019). The datasets contain fintech systems features test cases

and columns that were used in this study. The input variables under study includes complexity

value of module of the SUT, the change history of the SUT, the bug history of the SUT and the

experience of the developers who developed the SUT. The prediction that a test case will detect a

bug based on tester assessment and experience data was appended.

3.4 Variables

3.4.1 Dependent variables

3.4.1.1 Likelihood of detecting bugs

The dependent variable likelihood of detecting bugs is Boolean, it has two values: true or false.

The independent variables will determine whether a test case has the capability of detecting

defects or not by having a value of true or false.

3.4.2 Independent variables

3.4.2.1 Change history

Change history defines the amount of change a system or a module has undergone since its

development. It has a value of 1 to 5, 1 being little or no change and 5 being maximum changes.

A system module with less changes has low chances of having bugs while a module that has

undergone many changes has high chances of having bugs (Nagappan et al., 2010).

Page 12 of 44

3.4.2.2 Bug history

Bug history defines the historical defects track of a module or the SUT. It describes whether a

system module has had many bugs during the previous executions or not. It has a value of 1 to 5,

1 being minimal or no bugs and 5 being the greatest number of bugs. A system module with high

bug history is likely to have more bugs while a system module with a low bug history is likely to

have less or no bugs (Zimmermann et al., 2008).

3.4.2.3 Complexity value of the module

The complexity value of a module defines the ease of understanding and developing a module. It

states if it will be easy or hard to develop a module. It has a value of 1 to 5, 1 being very simple

and easy to develop while 5 is very complex and difficult to develop. Complex system modules

have high probability of having bugs than less complex system module. (Yu et al., 2010).

3.4.2.4 Tester assessment

Tester assessment is the prediction of a tester on the likelihood of a system module in having

bugs based on their experience. It has a value of 1 to 5, 1 being less likely or not likely to detect

any bug and 5 being very likely to detect bugs. The tester assessment is the additional variable

that was added to existing and previously studied variables of bug detection.

3.4.2.5 Developer experience

The developer experience defines the expertise of the person developing the module of the

system under test. A developer can be experience or inexperienced. It has a value of 1 to 5, 1

being less experienced and 5 being very experienced. Developer experience is inversely

proportional to test case likelihood of detecting bugs, the more experienced the developer the

less defects a developed module is likely to have. (Kini et al., 2018).

Page 13 of 44

3.5 Data Analysis

To get the best results out of the Bayesian Network yet to be constructed, Exploratory data

analysis was conducted. This consisted of the following activities:

i. Dependent variable distribution analysis, to make sure the dataset is not skewed towards

one variable

ii. Independent variable distribution analysis, to easily spot outliers

iii. Establishment of variable correlations, to how the variables relate to each other. If two

variables have a strong correlation, then their nodes can be connected by an edge. Given

the small number of independent variables, all the variables were used to build the belief

network.

3.5.1 Dependent Variable Distribution Analysis

To avoid building a network based on a skewed dataset, the dependent variable’s distribution

was first investigated. This was done by plotting a graph of the count of both outcomes

(likelihood of detecting bugs and likelihood of not detecting bugs). Figure 3 shows the analysis

graph of dependent variable distribution.

Figure 3: Dependent variable distribution analysis graph

Page 14 of 44

The analysis results showed that the distribution between positive and negative dependent

variables is almost even. Based on these results, there was no need to employ either

oversampling or under sampling techniques to balance the dataset.

3.5.2 Independent variable analysis, to spot outliers

Given that all the independent variables were labels in nature (either 0,1,2,3,4 or 5), bar graphs

were preferred to boxplots in order to establish the existence of outliers. Figure 4 shows tester

assessment distribution results

Figure 4: Tester assessment distribution before cleaning

The results show the existence of outliers (records existing with the label ‘6’). A similar graph

was plotted for the other variables, and the outliers were replaced with the most immediate label

(if outlier is label 6, then replace with label 5)

Page 15 of 44

3.5.3 Establishment of Variable Correlations

Correlation between the registered features (Change history, Bug history, developer experience,

complexity value of module and tester assessment) was plotted using a heat map, and the

resultant plot informed the design of our Bayesian network. Figure 5 shows feature correlation

with each other heatmap.

Figure 5: Feature correlation with each other heatmap

The above correlation heatmap offers invaluable insight that further informed this research.

Correlation values greater than 0 imply a positive correlation; an increase in one variable tends to

be accompanied by an increase in the other variable as well. If the correlation value is less than

0, it indicates a negative correlation, which implies that as one variable increases, the other

variable tends to decrease.

From the heatmap, we deduce that there is a strong correlation between bug history and change

history (0.4). As such, in our network, one of these variables will be modeled as the parent node,

and the other as a child node.

Page 16 of 44

The other independent variables have little correlation with each other and will therefore be

modelled as independent nodes.

3.5.4 Data Cleaning

In data cleaning, the dataset was checked for duplicates, and these were removed. Since

Bayesian belief networks are probabilistic, a row of data (both the independent and dependent

variables) had to be similar to another row in order to be considered a duplicate. Such duplicates

were dropped from the dataset.

Figure 6: Script to replace outliers

From the previous exploratory phase, it was noticed that the outliers only appeared past the

maximum label (5), and not the minimum. As such, the outlier values were replaced with the

dataset’s maximum label. Figure 7 shows tester assessment distribution after cleaning.

Figure 7: Tester assessment distribution after cleaning

Page 17 of 44

3.6 Creation of BN model

The creation of a Bayesian network starts with the identification of nodes, and how these connect

to edges. Since LikelihoodOfDetectingBugs is our target variable, it will be the end node, and the

other nodes will connect to it either directly or indirectly, through other nodes.

From our earlier findings from the data analysis phase, we know that there are variables that

have a strong correlation(change history and bug history). These will therefore be connected as

parent and child nodes, and then branch will be connected to the LikelihoodOfDetectingBugs

node. Figure 8 is the designed Bayesian Network; it shows the interaction of the various

independent and target variables.

Figure 8: Bayesian Network for dependent and independent variables

3.7 Implementation and Prototyping

Python programming language was utilized in the research to create model architectures. The

environment was set up on a personal computer that was running windows 10 Operating system.

The programming language used was Python 3.6 with the libraries used for model creation were

Pandas and NumPy for data manipulation, networkx, matplotlib and seaborn for data

Page 18 of 44

visualization, pybbn for creating Bayesian Belief Networks. Flask framework was used for

prototyping.

The BN model was trained using 80% of the data available; 800 records. The prototype requires

that the user captures system under test information in relation to the test case being run, it will

then compute the likelihood of a test case detecting bugs and display the results. Figure 9 shows

Bayesian Network test case prioritization prototype user interface.

Figure 9: Bayesian Network test case prioritization Prototype

3.8 Model and Prototype Evaluation

The BN model was evaluated against Gaussian Naïve Bayes and SVM algorithms. The

module’s effectiveness was evaluated using metrics such as classification accuracy and a

confusion matrix. The prototype developed from the module was tested using 20% of the testing

data acquired from Kaggle dataset.

Page 19 of 44

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Introduction

Bayesian Network’s performance is measured during testing. In this chapter the focus is on

determining whether the model’s performance is satisfactory and whether it can enhance early

identification of defects in software systems. The study evaluates the performance of Bayesian

Networks(BN) for test case prioritization by comparing it to other machine learning algorithms,

namely Gaussian Naïve Bayes and Support Vector Machine(SVM). Lastly, the paper discusses

the efficiency of the proposed approach for constructing models to prioritize test cases in the

software industry.

4.2 Model results evaluation

BN’s performance is evaluated against other algorithms to determine the accuracy. The

performance of other algorithms is measured as well. Various evaluation measures were

employed to measure the model’s performance, including the following classification metrics:

classification accuracy, confusion matrix and classification report.

4.2.1 Classification accuracy

The classification accuracy metric is utilized to determine the proportion of the correctly

predicted labels out of all the predictions made by the model. BN classifier performed slightly

better than its counterparts, Support Vector Machine and Gaussian Naïve Bayes algorithm.

Bayesian Network was the best followed by Support Vector Machine, Gaussian Naïve Bayes

was the lowest of the three in classification accuracy. Table 1 shows classification accuracy

scores of models under test.

Page 20 of 44

Model Accuracy Score

Bayesian Network 0.83

Gaussian Naïve Bayes 0.80

Support Vector Machine 0.81

Table 1: Classification Accuracy

4.2.2 Confusion Matrix

To present the model’s performance, a confusion matrix was generated, which depicts the

number of correct predictions made by the classifier and where the classifier became confused.

The confusion matrices for various algorithm classifiers are illustrated in the diagrams below.

Figure 10: Confusion matrix for Bayesian Network

Figure 10’s confusion matrix illustrates that BN correctly classified 50% of test cases without

bugs and 33% as with bugs. The BN classifier however got confused and classified 17% of test

cases with bugs as without bugs and did not classify any test case without bugs incorrectly

scoring 0%.

Page 21 of 44

Figure 11: Confusion matrix for Gaussian Naïve Bayes

The confusion matrix in figure 11 shows that Gaussian Naïve Bayes gets confused and classifies

20% of test cases with bugs as without bugs and does not classify any without bugs test cases

incorrectly scoring a value of 0%.The classifier correctly classifies 50% of without bugs test

cases and 30% of with bugs correctly.

Page 22 of 44

Figure 12: Confusion matrix for Support Vector Machine

In figure 12 the support vector machine classifier classifies correctly 50% of test cases without

bugs and 31% of test cases with bugs. The classifiers, however, gets confused and classifies 19%

of test cases with bugs as without bugs and can’t predict any test cases without bugs as with bugs

leading to a score of 0%.

4.2.3 Classification report

Additional metrics, such as precision, recall and F1 score, were examined to provide further

evidence of the BN model’s performance. Precision is calculated by dividing the number of

correct predictions made by the model by the total number of predictions. Recall is determined

by dividing the number of true positives by the total number of true positives plus false

negatives. F1 score combines precision and recall metrics into a single metric. Thus, if both

precision and recall metrics are high, F1 score will also be high, while if both metrics are low, F1

score will also be low.

In precision, BN performed slightly better than SVM which was better than Gaussian Naïve

Bayes. Similarly in recall, F1-Score and accuracy BN performed slightly better that the other

algorithms.

Table 2 below shows the classification report for BN, Gaussian Naïve Bayes, and Support Vector

Machine algorithms.

Model Name Precision Recall F1-Score Accuracy

Bayesian Network 0.8731 0.83 0.8249 0.83

Gaussian Naïve Bayes 0.8571 0.80 0.79167 0.80

Support Vector Machine 0.8623 0.81 0.8029 0.81

Table 2: Classification report 1

Page 23 of 44

4.3 Prototype results evaluation

The prototype developed using BN model was tested using 300 records of the testing data. Two

tables were generated, one for the expected results and the other for the actual results produced

after the test. Table 3 shows the expected results.

Change
History

Bug
History

Developer
Experience

Module
Complexity

Tester Assessment Likelihood of
detecting bugs

1 2 3 4 5 Y
1 1 3 4 5 Y
1 1 1 1 1 N
1 2 2 2 2 Y
5 5 5 4 4 Y
2 1 1 2 5 N
2 2 1 1 5 N
1 2 1 2 4 N
2 1 2 1 3 N
1 1 1 1 2 N
1 1 1 2 2 N

Table 3: Prototype evaluation expected results

The prototype was subjected to tests using the test data. Table 4 below shows the actual results

from running the tests. From the test data only one record is classified incorrectly. The prototype

simulations confirm that BN is effective in prioritizing test cases.

Page 24 of 44

Change
History

Bug
History

Developer
Experience

Module
Complexity

Tester Assessment Likelihood of
detecting bugs

1 2 3 4 5 Y
1 1 3 4 5 Y
1 1 1 1 1 N
1 2 2 2 2 Y
5 5 5 4 4 Y
2 1 1 2 5 N
2 2 1 1 5 N
1 2 1 2 4 N
2 1 2 1 3 N
1 1 1 1 2 N
1 1 1 2 2 Y

Table 4: Prototype evaluation actual results

4.3 Discussion

Bayesian Network for Test case prioritization is the proposed solution to regression testing

challenges when there is no access to source code of the system under test. Bayesian networks

algorithm allows for test case prioritization with very minimal variables of the system under test

as input without the need to access source code. It classifies accurately using minimum amount

of data. The efficiency of BN in classification against other similar algorithms are discussed. We

tested the effectiveness of the model on open-source data on Kaggle datasets (Roshan,2019).

From the confusion matrices BN classifier has a lower confusion 17% compared to Gaussian

Naïve Bayes and support vector machine classifiers which have 20% and19% accordingly. This

shows how effective the model is when it comes to classification given the fact that less data was

used for training the model. (Luis et al, 2000)

The classification report and the classification accuracy show similar outputs shows similar

reports as Bayesian Network algorithm performs better than support vector machine and

Gaussian Naïve Bayes algorithms.

Page 25 of 44

The experiments prove beyond doubt that BN algorithm will be the best solution for test case

prioritization when we have limited training data and no access to the source code. It performs

better than alternative models and gives accurate results for efficiency and effectiveness.

4.4 Model Verdict

Tests were conducted to establish a benchmark on the Bayesian Network algorithm and its

performance in classifying test case’s ability to detect bugs.

As the results indicate, the machine learning models exhibit diverse performance levels when

tested with the dataset. F1-Score was selected as the main measure of performance since it shows

the average of all other measurement metrics. F1 – Score shows BN outperforms other

algorithms. The results further show that BN algorithm performs better even with minimum

amount of data. The table below shows the comparison of performance between BN and other

two algorithms using F1- Score; a higher F1 – Score means the model has a better performance

and vice-versa for lower scores.

Model Name F1-Score Rank

Bayesian Network 0.8249 1

Gaussian Naïve Bayes 0.79167 3

Support Vector Machine 0.8029 2

Table 5: Classification report 2

Page 26 of 44

CHAPTER 5: SUMMARY,CONCLUSION AND

RECOMMENDATIONS.

5.1 Summary of Findings

Objective 1: To investigate test case prioritization techniques with a focus on those that

incorporate machine learning algorithms.

For machine learning-based techniques for prioritizing test cases, access to source code and a

considerable amount of training data is necessary to predict likelihood of a test case in detecting

bugs, this poses a challenge since the requirements for prioritization are not always guaranteed.

The literature review conducted on test case prioritization in a systematic manner for techniques

that incorporate machine learning algorithms was carried out. The review sorted the literature

into two categories; techniques that necessitate access to the system under test(SUT) source

code(white box), and techniques that do not require access to the SUT’s source code(black box)

Under white box test case prioritization Genetic algorithm, Bayesian Networks(BN) and Support

Vector Machine(SVM) algorithms are explored. Genetic algorithm uses software agents, code

coverage of the SUT and conditional coverage variables to predict test case probability of a test

case in identifying bugs. Bayesian networks uses system’s fault proneness, code coverage,

system changes, metrics related to quality, code changes, and coverage levels variables in

prioritizing test cases. Support vector machine uses code coverage, test age, test failure, Test-

case prioritization involves utilizing variables such as similarity between teste and changes, fault

history, and test-failure history to prioritize test cases.

Regarding black-box test case prioritization, unsupervised neural networks utilize variables such

as frequency of usage, balancing degree, distance, number of belongings, number of sub-nodes,

and number of occurrence layers to prioritize test cases. Neural networks use variables such as

execution duration, last execution, and failure history. Through interaction with the environment,

agents learn from positive feedback and avoid negative feedback. Support Vector Machine Rank

uses requirements, cost of test execution, requirements priority age and count of failures as

variables to predict bug detection and prioritize test cases.

Page 27 of 44

Objective 2: To implement a Blackbox test case prioritization prototype for regression testing

using Bayesian Networks (BN).

A prototype was developed for black box regression test case prioritization using Bayesian

Networks model. Python programming language was used with windows 10 operating system as

the main implementation platform. For data manipulation, the Pandas and NumPy libraries were

utilized, whereas the network, matplotlib, and seaborn libraries were used for data visualization,

pybbn library was used for creating Bayesian Belief Networks. Flask framework was used for

prototyping. The model presented a user interface where the user is supposed to key in system

details and a prediction of whether a bug will be detected or not is given. Using this information,

a tester can prioritize test cases.

Objective 3: To validate the effectiveness of the developed prototype in identifying bugs

BN test case prioritization technique prioritizes test cases effectively, BN model is also accurate

in classification. Data from Kaggle was split, 20% of the data was used for testing the

prototype’s effectiveness in test case prioritization. The test confirmed that the developed

prototype is effective in prioritizing test cases without the need to access source code using

minimal training data. BN’s classification accuracy is measured against other two algorithms and

BN performs slightly better in classification and confusion matrix when compared to the other

two algorithms.

Page 28 of 44

5.2 Conclusion

This study proposed Bayesian Networks algorithm as a solution to backbox regression testing.

The solution can accurately prioritize test cases without the need to access SUT’s source code

and using minimum training data. This solves the problem of the need to access SUT’s source

code to be able to prioritize test cases. (S. Mirarab, 2020).BN also identifies conditional

dependencies between nodes of the variables of study and uses the information to map

relationships between nodes which in turn build a relationship model that can predict

probabilities for variables under study. Consequently, BN succeeded in prioritizing test cases

with greater precision. In comparison to other algorithms put forth by researchers, BN achieved a

lower false-positive rate as well as a high F-1score(T.Xie, 2016).

The BN model proposed in this study was tested and determined to be effective for prioritizing

test cases in black-box regression testing.. The model allows all levels of testers performing

regression testing be able to prioritize test cases effectively since there is no need to access the

SUT’s source code nor have technical knowledge of the software source code. The software

testers need to have some basic knowledge of the required variables and they can prioritize test

cases.

This solution is efficient and effective for the current software development methodologies

where releases are more frequent especially when the system under test handles sensitive

information or performs critical operations that can save life or involves money. With

constrained resources any testing team can achieve maximum quality for the product with

minimum effort.

5.3 Recommendation

The research found out that most complex and critical systems do not allow for source code to be

shared to the testing team during regression testing. Thus, test case prioritization techniques that

do not necessitate access to source code are recommended for easier identification of defects and

delivery of quality products to users.

Page 29 of 44

5.4 Future research

Technology is evolving quickly, and all industries are now integrating with technology, this

study was limited by training data. For future studies, a variety of different industry datasets can

be used to train and validate the effectiveness of the model. This also allows for a wider coverage

in scope for all the available industries. Training and validation can further be broken down into

dataset from the same industry with different programming languages for the systems and

different localities, or different language implementations of application under study. That way

the model can be applicable globally for different application implementations.

An experiment to test the validity of tester assessment in predicting the likelihood of a software

module having bugs is recommended for future research since the variable was introduced

during this study and further tests will validate its effectiveness in the required task.

Page 30 of 44

Page 31 of 44

References
1. DeMarco, T., Lister, T., Rosenberg, L., Gallo, A., Hammer, T., Parolek, F., ... & Barbour, R.

Software Technology Engineering. crosstalk, 801, 775-5555.

2. Mahoney, M. S. (2004). Finding a history for software engineering. IEEE Annals of the History of

Computing, 26(1), 8-19.

3. Mece, E. K., Paci, H., & Binjaku, K. (2020). The application of machine learning in test case
prioritization-a review. European Journal of Electrical Engineering and Computer Science, 4(1).

4. Konsaard, P., & Ramingwong, L. (2015, June). Total coverage-based regression test case

prioritization using genetic algorithm. In 2015 12th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-

CON) (pp. 1-6). IEEE.

5. Noghabi, H. B., Ismail, A. S., Ahmed, A. A., & Khodaei, M. (2012). Optimized query forwarding for
resource discovery in unstructured peer-to-peer grids. Cybernetics and Systems, 43(8), 687-703.

6. Mirarab, S., & Tahvildari, L. (2007, March). A prioritization approach for software test cases based

on bayesian networks. In International Conference on Fundamental Approaches to Software

Engineering (pp. 276-290). Springer, Berlin, Heidelberg.

7. Felding, E. (2022). Mathematical Optimization for the Test Case Prioritization Problem.

8. Busjaeger, B., & Xie, T. (2016, November). Learning for test prioritization: an industrial case study.
In Proceedings of the 2016 24th ACM SIGSOFT International symposium on foundations of

software engineering (pp. 975-980).

9. Li, Z., Huang, M., Liu, G., & Jiang, C. (2021). A hybrid method with dynamic weighted entropy for
handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems

with Applications, 175, 114750.

Page 32 of 44

10. Gökçe, N., Eminov, M., & Belli, F. (2006, November). Coverage-based, prioritized testing using
neural network clustering. In International Symposium on Computer and Information Sciences (pp.

1060-1071). Springer, Berlin, Heidelberg.

11. Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017, July). Reinforcement learning for

automatic test case prioritization and selection in continuous integration. In Proceedings of the 26th

ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 12-22).

12. Lachmann, R., Schulze, S., Nieke, M., Seidl, C., & Schaefer, I. (2016, December). System-level
test case prioritization using machine learning. In 2016 15th IEEE International Conference on

Machine Learning and Applications (ICMLA) (pp. 361-368). IEEE.

13. Lachmann, R. (2018, June). Machine learning-driven test case prioritization approaches for black-

box software testing. In The European test and telemetry conference, Nuremberg, Germany.

14. Shirzadi, A., Solaimani, K., Roshan, M. H., Kavian, A., Chapi, K., Shahabi, H., ... & Bui, D. T. (2019).
Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster

resolution. Catena, 178, 172-188.

15. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., & Murphy, B. (2010, November). Change

bursts as defect predictors. In 2010 IEEE 21st international symposium on software reliability

engineering (pp. 309-318). IEEE.

16. Zimmermann, T., Nagappan, N., & Zeller, A. (2008). Predicting bugs from history. In Software

evolution (pp. 69-88). Springer, Berlin, Heidelberg.

17. Yu, S., & Zhou, S. (2010, April). A survey on metric of software complexity. In 2010 2nd IEEE

International conference on information management and engineering (pp. 352-356). IEEE.

18. Kini, S. O., & Tosun, A. (2018, September). Periodic developer metrics in software defect
prediction. In 2018 IEEE 18th International Working Conference on Source Code Analysis and

Manipulation (SCAM) (pp. 72-81). IEEE.

Page 33 of 44

19. Malishevsky, A. G., Rothermel, G., & Elbaum, S. (2002, October). Modeling the cost-benefits
tradeoffs for regression testing techniques. In International Conference on Software Maintenance,

2002. Proceedings. (pp. 204-213). IEEE.

20. Kazmi, R., Jawawi, D. N., Mohamad, R., & Ghani, I. (2017). Effective regression test case selection:

A systematic literature review. ACM Computing Surveys (CSUR), 50(2), 1-32.

