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Abstract 

In testing,  regression testing can be defined as the re-execution of all test cases previously 

executed to rule out the fact that some functionalities that were working previously have been 

broken by the newly introduced fixes or system changes. The impact is adverse if the software 

system involves money or life critical systems. Constraints like time and resources cannot allow 

re-execution of the whole collection of test cases that were executed previously and due to 

security reasons system codebase is never availed to the testing team and if it is availed, the 

testing team might not be technically competent to extract value from the code. The study 

investigated existing implementations of test case prioritization and had incorporated machine 

learning algorithm as part of the implementation. The study implemented a black box test case 

prioritization model using Bayesian Networks, after which a prototype was developed to 

prioritize test cases using the model. The study also validated that the developed prototype is 

effective in prioritizing test cases. Based on the methodology selected for the study, data was 

collected from public dataset, Kaggle all the variables under study were available in the data. 

Analysis was done on the data to visualize distribution of data. Feature engineering was done to 

the features to improve the performance of the model. The model was implemented using the 

established correlations between dependent variable; likelihood of detecting bugs against the 

independent variables; complexity value of the developed system, the level of experience for the 

developer who participated in the development of the system under test,  the change history of 

the system, the bug history of the system and the tester assessment for likelihood of detecting 

bugs based on experience .A prototype was developed and tests done to validate the 

effectiveness, simulations were also carried out using the test data. The model was evaluated to 

establish its effectiveness in prioritizing test cases. The Bayesian Networks model performed 

slightly better in classification accuracy and confusion matrix when compared to Gaussian Naïve 

Bayes and Support Vector Machine respectively. 

The study achieved the set-out objectives by carrying out systematic literature review on 

previous work and identifying the gap in regression testing for black box test case 

prioritization(Catal & Mishra, 2012), a model was implemented, and a prototype developed to 

deal with the issue of black box test case prioritization for regression testing. The effectiveness 

of the developed model was evaluated against other models and BN model was slightly better 
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than the other models. The study achieved its objectives, with the proposed solution software 

development teams will be able to prioritize test cases without the need to access source code 

using minimum training data. This will ensure high quality software is released and reduce the 

risk of defect leakage which can cause harm or threaten lives. 

 

Keywords: Regression testing, Black box testing, Test case Prioritization, Bayesian 

Networks 
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Abbreviations 

iOS - i-device Operating System 

ST – Software Testing 

SDLC – Software Development Life Cycle 

SUT – System Under Test 

API – Application programming Interface 

BN – Bayesian Networks 

BBN – Bayesian Belief Networks 

AFPD – Average percentage of faults detected 

NN – Neural Networks 

 

 

 

 

 

 

 

Definition of Key terms 

Software development life cycle(SDLC) – The model used in software development where a 

process that is systematic is followed. This approach ensures that required quality standards and 

the correctness expected to be in the system is achieved. 
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Software testing - The process of evaluating a system or the software with the intent of 

establishing if it meets the requirements specifications or not. 

Regression testing - A type of testing in the SDLC that is executed after every change of the 

system i.e., fixing of a defect in the system, updating the existing functionalities and adding new 

functionalities to the system. 

Test case prioritization – The art of arranging test cases in a specific order with the intention of 

having the most important test cases come before the less important. The arrangement could be  

based on different factors like code coverage and functionality criticality. 

Bug - A malfunction in the system or an error that may cause system components or the entire 

system fail to perform its required functions. 

Bayesian Networks – A model type which combines probability and graphs. It computes 

probability using Bayesian Inferences. It’s main aim is to model dependence that depends on 

conditions bringing about cause, it does this by representing edges in a directed graph to show 

dependence that is conditional. 

Machine learning algorithm – The method by which systems that are intelligent artificially(AI) 

predicts some outcomes using given data as input. 

 



 

  

Page 1 of 44 

CHAPTER 1: INTRODUCTION 

1.1 Background 

The history of software development is dated back to 1948 on June 21 at 11:00 a.m. when Tom 

Kilburn ran his first piece of software at the University of Manchester in England(Booch. G, 2018). 

Programming languages like Fortran, Cobol, BASIC, and C arrived in the two decades that 

followed. Today software development has become ubiquitous and recent programming languages 

like Java and Python have been used in different software development projects. Others like Go 

and Swift programming language for iOS by Apple are quite new in the industry(M. S. Mahoney, 

2004). 

Software development methodologies, on the other hand, have evolved immensely. It started back 

in the 1950s with structured programming, waterfall model, iterative and incremental models, 

prototyping, spiral model, V-model, rapid application development, and finally agile in the 1990-

2000s(Misra et al., 2012. The agile methodology has also evolved over the years from a scrum, 

which basically entails practices like lean software development methodology, Kanban, extreme 

programming(XP)methodology, continuous integration(CI) practices, continuous delivery(CD) to 

scrum-of-scrums which is a scrum at scale i.e. more than one team. (Tom DeMarco, 2000). 

Software testing (ST); the process of running a software program with a specific intention of 

finding defects, which is an integral part of the Software Development has also evolved over the 

years. It started in the 1940s with debugging, then followed the demonstration phase in the 1950s, 

then destruction, then evaluation, and finally the prevention phase from the 1980s to the present. 

There are different types of testing i.e. unit testing, component testing, smoke testing regression 

testing, integration testing, API testing white-box, and black-box testing(H. Freeman, 2002) only 

to mention a few.  

Regression testing is the re-execution of test cases when requirements are changed, functionality 

is enhanced, or a defect is fixed. This makes sure that any changes do not have any unexpected 

consequences, and the system under test (SUT) still works as per the requirements. Regression 
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testing can be done either manually or be automated. Techniques for regression testing are re-test 

all where all the test cases are re-executed (Malishevsky et al.,2002), test case selection where test 

cases associated with the changed modules are selected and executed against the SUT (Kazmi et 

al.,2017), and “test case prioritization where the test cases of the regression test suite are reordered 

based on some particular criteria so that test cases that have high likelihood of detecting defects 

are executed first” (Khanna, 2016) making it possible to catch maximum errors with the available 

resources. 

 

1.2 Problem Statement and Justification 

With the current software development methodologies like the agile methodology, organizations 

are making frequent releases, and this means vibrant and more proactive testing is needed to cover 

all possible defects that could be introduced with the changes to the software that could affect the 

functionality or performance of the system. Regression testing is needed whenever a software 

system is reorganized or modified.70% of the testing cost is consumed by regression testing 

alone(Labuschagne et al., 2017). This is not easily achievable with the growing amount of software 

and test cases, having limited resources like time, money, and human resources involved in testing. 

Current test case prioritization  techniques require interaction with the actual code (White box) to 

track code changes and map them to test cases and use that to determine the scenarios that should 

be executed first for earlier bug detection. System testing for complex systems does not allow 

interaction with or there could be a lack of trained resources to analyze source code hence 

techniques that do not require access to source code (black box) test case prioritization techniques 

become necessary. Most machine learning test case prioritization techniques implemented 

previously require a lot of training data to effectively prioritize test  cases. Training data on the 

other hand might be insufficient during regression testing phase. This research paper proposes a 

black box test case prioritization technique that is built using machine learning algorithm: Bayesian 

Networks. The solution will use change history of the system being tested, bug history of the 

system being tested developer experience, tester assessment and complexity value of the module 

under development for training the model which will later be used to predict and thereafter 
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prioritize test cases based on the ability to identify bugs as early in the early stages during the 

system testing, as a solution to challenges associated with regression testing. This approach will 

automatically prioritize test cases that are important and have the highest probability of detecting 

errors in the updated software. This will improve the effectiveness of testing by detecting defects 

early, hence reducing cost and improving the quality of software released. 

1.3 Research Objectives 

The study intends to achieve the following set objectives 

I. To investigate existing techniques of prioritizing test cases with a focus on the 

algorithms that use machine learning. 

II. To implement a Blackbox test case prioritization prototype for regression testing 

using Bayesian Networks (BN). 

III. To validate the effectiveness of the developed prototype in identifying bugs 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

Page 4 of 44 

 

 

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Existing techniques for prioritizing test cases are explored to establish their how they influence 

this study. Methodologies of prioritizing test cases using machine learning algorithms will be 

analyzed to determine their effectiveness in test case prioritization. Existing algorithms for 

prioritizing test cases using Bayesian Networks will be explored to prove their relevance to the 

topic of study. Limitations and gaps of previous implementations will also be explored. 

The gap identified from literature review will inform the approach and design for implementation 

of the proposed solution 

 

 

2.2 White box test case prioritization  techniques 

2.2.1 Genetic Algorithm 

Genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of natural 

evolution. It reflects the process of natural selection where the fittest individuals are selected for 

reproduction(Sieja et al., 2019) so that they can reproduce offspring for the next generation. 

 

Gohner and Abeleand used genetic algorithms for ordering test cases based on priorities. Their 

methodology uses software agents which are described as components of a software application 

used to predict the fault revealing probability of each test case and the fault proneness of each 

module. Their methodology also incorporates fuzzy logic rules. The fuzzy logic rules state that; 

complex modules are likely to have more faults, cases that have identified defects previously are 

most likely to identify defects in subsequent executions and that components that have been faulty 



 

  

Page 5 of 44 

in the past are also likely to be faulty in future. The methodology uses genetic algorithm to update 

the weight of rules of fuzzy logic in that it uses the difference between the faults predicted and 

faults found as input. It uses  cases that are likely to identify most defects.(Mahoney, M.S.,2004)  

 

Ramingwong and Konsaard proposed a genetic algorithm methodology that has modifications for 

test cases prioritization. Prioritization of test cases Itest cases are prioritized based on code 

coverage. (Konsaard & Ramingwong, 2015)  

 

A. Ahmed and M. Shaheen proposed a more advanced genetic algorithm-based test case 

prioritization technique(97). It uses a control flow graph for each test case, it measures three 

metrics: the coverage degree of each statement, conditions and multiple conditions. All the metrics 

are then integrated through genetic algorithm and after each iteration the fitness function of the 

algorithm outputs a value(81). The order of execution is determined by calculating the values for 

each test case.(A. A. Ahmed, 2012) 

 

2.2.2 Bayesian Networks 

Bayesian networks (BN) are models that combine graphs and probability using inferences of 

Bayesian computations of probability. Bayesian networks operate by modelling dependance that 

is conditional which leads to causation, it usually is represented by a dependence that is determined 

by conditions on edges that appear on a graph that is directed. 

 

Tahvildari and Mirab came up with technique to order test cases based on priorities using 

probabilities by using BN to integrate software program’s Whitebox details into a model that is 

consolidated . This  methodology uses the following data as input; fault proneness of the system, 

degree of coverage and the changes made in the software system. Using BN a relationship for the 

data is established based on initial outcomes a probability is generated for each test  scenario with 

algorithms that have probability inferences. Scenarios of testing  are then ordered using the created 

probability values. Performance of the algorithm’s performance is measured using the average 

percentage of faults detected (APFD). (Mirarab & Tahvildari, 2007)  
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Tahvildari and Mirab went ahead and improved their mechanism by prioritizing test cases based 

on metrics that determine quality of code, changes that have taken place and the coverage of the 

test scenarios. They gather information by comparing different versions of a file and comparing 

bytecodes. If a test case covers similar code modules as the previous test case, then the test case 

will receive a low priority score (S.MirarabandL, 2016) 

 

Huang et al. proposes a more advanced methodology that implements code coverage based 

grouping using BN. The grouping of test case is determined by the similarity in code coverage and 

the likelihood of failure using Bayesian Networks(BN).The methodology rules out the possibility 

of similar test cases being executed with the same probability.(Huang et al., 2021)  

 

2.2.3 Support Vector Machine map 

Support Vector Machine (SVM) is a machine learning technique that can be applied to perform 

both classification and regression tasks. 

 

Xie and Busjaeger propose SVM map for test case prioritization .The methodology uses different 

heuristic techniques like code coverage, test age, test-failure, similarity in text between tests and 

changes, fault history and test-failure history.  These information is utilized in training the ranking 

model which is used in test case prioritization . (Busjaeger & Xie, 2016)  

 

2.3 Black box test case prioritization  techniques 

2.3.1 Unsupervised Neural Network 

Neural networks(NN) belongs to a category of machine learning algorithms. They take inspiration 

from human brain and replicate the way biological neurons communicate with each other. 

Unsupervised NN  are the ones that do not use training data. They learn from experience. 
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Gokce et al suggested a technique utilizing neural networks for prioritizing test cases. The test 

cases are arranged according to their degree of preference. The degree of preference is calculated 

based on various factors, including the average frequency of usage, the degree of balance, the 

distance, the number of belongings, the number of sub-nodes and the number of layers of 

occurrence. Furthermore, the work was expanded by incorporating unsupervised Neural Network 

and fuzzy c-means for clustering events. (Gökçe et al., 2006) 

 

2.3.2 Neural Networks 

Neural networks belong to a category of machine learning techniques and are designed to imitate 

the way biological neurons communicate in the human brain. 

 

Spieker et al. suggest a novel approach to prioritize test cases, it utilizes reinforcement learning 

and Neural Networks(NN). Reinforcement learning (RL) learns from experience while NN uses 

variables like duration of execution, last execution and failure history uses agents, the agent 

interacts with the environment to gather data, which is represented as a state, and then chooses an 

appropriate action based on the state. After the state execution, the agent learns from the feedback 

received and adjusts behavior accordingly. Positive feedback is reinforced while negative feedback 

is discouraged. In this approach, priority is given to test cases that have previously identified faults, 

with a focus on executing those with a higher capability of detecting defects first. (Spieker et al., 

2017) 

 

2.3.3 Support Vector Machine Rank 

 The SVM Rank is a version of the Support Vector Machine algorithm that is specifically designed 

for solving ranking problems by training a model to learn how to rank items. 

 

Lachman et al. proposes black box test case prioritization  method using SVM Rank. It uses 

requirements coverage, cost of test execution, age and count of failures and requirements priority. 

The method also entails parsing through requirements text. A computation of all words is done, 

and each word will represent a feature. Using SVM Rank algorithm, a ranked classification model 



 

  

Page 8 of 44 

is trained on the data, which is then evaluated for its effectiveness using the APFD metric as chosen 

by the authors. (Lachmann et al., 2016) 

2.3.4 Combined Machine Learning. 

An approach for test case prioritization was developed using several machine learning algorithms, 

including Neural Networks(NN), k-nearest neighbor(KNN) and logistic regression. These 

algorithms’ results were merged to create an ensemble learner. 

Combinatorial ensemble learning was used to create ensemble learner, which was trained using 

historical data. The classification results of the latest versions are combined, and this helps in 

improving the quality of prioritization. Classifiers are trained based on insights gathered from past 

executions. The combinatorial ensemble uses classifiers for the same version of test cases. The 

priority value of a test case is determined by each individual classifier and these priorities are 

aggregated to establish the overall priority. (Lachmann, 2018).  

 

2.4 The Gap in test case prioritization  

From the literature review done, it was observed that most prioritization techniques require access 

to code (white box) which at most times is not possible. This called for a technique that can 

prioritize test cases without the need to access the source code. During the literature review, 

methods were identified that can prioritize test cases effectively without requiring access to source 

code, but these techniques rely heavily on having a significant amount of training data. 

 

2.5 The proposed solution 

To solve the above found challenge, this study proposes a solution that can prioritize test cases 

without need to access the source code using minimal training data; black box test case 

prioritization using Bayesian Networks. 
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2.6 Conceptual framework 

The model construction is a combination of variables used in previous studies; change history, 

bug history, complexity value of the module and developer experience  and additional variables; 

tester assessment which will be the additional variable that will be explored in this study. The 

Bayesian Network model construction will use dependent and independent variable. The value of 

dependent variable; likelihood of detecting bugs will be determined by independent variables; 

change history, bug history, complexity value of the module, tester assessment and the developer 

experience. 

 

Figure 1 displays the conceptual framework of the Bayesian Network(BN) model for test case 

prioritization.  

 

 
 

Figure 1: Conceptual framework 
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CHAPTER 3: METHODOLODY 

3.1 Introduction 

In this section we give a detailed description of how we achieved the set-out objectives for this 

study. We conducted a theoretical analysis of the literature to investigate the implementation and 

limitations of test case prioritization techniques, with a specific emphasis on approaches 

employing machine learning. We examined  both black box and white box prioritization methods. 

We collected test data for fintech systems. The data collected was cleaned in preparation for 

training. A BN algorithm model was designed, and subsequently conducted simulations and 

prototyping on the model. The BN model was then trained and evaluated. 

The methodology utilized in this study is depicted in the figure below. 

 

Figure 2: The process of Research 

3.2 Study population 

This research focused on fintech software system. Finance happens to be a fast-growing industry 

which has quickly picked technology advancements and innovation making it one of the fastest 

growing industries that has embraced technology. Security being of the challenges brought about 

by technology, fintech is not left out to that regard. Fintech systems require comprehensive 
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testing to remove any chances of security breaches or defects that can compromise customers 

money, hence the need for the study for an advanced mechanism to easy identify bugs and 

reduce the risk of defect leakage. 

 

3.3 Data Collection 

The training and testing data for the research was extracted from fintech systems test cases data 

in the Kaggle dataset (Roshan, 2019). The datasets contain fintech systems features test cases 

and columns that were used in this study. The input variables under study includes complexity 

value of module of the SUT, the change history of the SUT, the bug history of the SUT and the 

experience of the developers who developed the SUT. The prediction that a test case will detect a 

bug based on tester assessment and experience data was appended. 

 

3.4 Variables 

3.4.1 Dependent variables 

3.4.1.1 Likelihood of detecting bugs 

The dependent variable likelihood of detecting bugs is Boolean, it has two values: true or false. 

The independent variables will determine whether a test case has the capability of detecting 

defects or not by having a value of true or false. 

 

3.4.2 Independent variables 

3.4.2.1 Change history 

Change history defines the amount of change a system or a module has undergone since its 

development. It has a value of 1 to 5, 1 being little or no change and 5 being maximum changes. 

A system module with less changes has low chances of having bugs while a module that has 

undergone many changes has high chances of having bugs (Nagappan et al., 2010). 
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3.4.2.2 Bug history 

Bug history defines the historical defects track of a module or the SUT. It describes whether a 

system module has had many bugs during the previous executions or not. It has a value of 1 to 5, 

1 being minimal or no bugs and 5 being the greatest number of bugs. A system module with high 

bug history is likely to have more bugs while a system module with a low bug history is likely to 

have less or no bugs (Zimmermann et al., 2008). 

 

3.4.2.3 Complexity value of the module 

The complexity value of a module defines the ease of understanding and developing a module. It 

states if it will be easy or hard to develop a module. It has a value of 1 to 5, 1 being very simple 

and easy to develop while 5 is very complex and difficult to develop. Complex system modules 

have high probability of having bugs than less complex system module. (Yu et al., 2010). 

 

3.4.2.4 Tester assessment 

Tester assessment is the prediction of a tester on the likelihood of a system module in having 

bugs based on their experience. It has a value of 1 to 5, 1 being less likely or not likely to detect 

any bug and 5 being very likely to detect bugs. The tester assessment is the additional variable 

that was added to existing and previously studied variables of bug detection. 

 

3.4.2.5 Developer experience 

The developer experience defines the expertise of the person developing the module of the 

system under test. A developer can be experience or inexperienced. It has a value of 1 to 5, 1 

being less experienced and 5 being very experienced. Developer experience is inversely 

proportional to test case likelihood of detecting bugs, the more experienced the developer the 

less defects a developed module is likely to have. (Kini et al., 2018). 
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3.5 Data Analysis 

To get the best results out of the Bayesian Network yet to be constructed, Exploratory data 

analysis was conducted. This consisted of the following activities: 

i. Dependent variable distribution analysis, to make sure the dataset is not skewed towards 

one variable 

ii. Independent variable distribution analysis, to easily spot outliers 

iii. Establishment of variable correlations, to how the variables relate to each other. If two 

variables have a strong correlation, then their nodes can be connected by an edge. Given 

the small number of independent variables, all the variables were used to build the belief 

network. 

 

 

3.5.1 Dependent Variable Distribution Analysis 

To avoid building a network based on a skewed dataset, the dependent variable’s distribution 

was first investigated. This was done by plotting a graph of the count of both outcomes 

(likelihood of detecting bugs and likelihood of not detecting bugs). Figure 3 shows the analysis 

graph of dependent variable distribution. 

 

Figure 3: Dependent variable distribution analysis graph 
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The analysis results showed that the distribution between positive and negative dependent 

variables is almost even. Based on these results, there was no need to employ either 

oversampling or under sampling techniques to balance the dataset. 

 

3.5.2 Independent variable analysis, to spot outliers 

Given that all the independent variables were labels in nature (either 0,1,2,3,4 or 5), bar graphs 

were preferred to boxplots in order to establish the existence of outliers. Figure 4 shows tester 

assessment distribution results 

 

Figure 4: Tester assessment distribution before cleaning 

 

The results show the existence of outliers (records existing with the label ‘6’). A similar graph 

was plotted for the other variables, and the outliers were replaced with the most immediate label 

(if outlier is label 6, then replace with label 5) 
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3.5.3 Establishment of Variable Correlations 

Correlation between the registered features (Change history, Bug history, developer experience, 

complexity value of module and tester assessment) was plotted using a heat map, and the 

resultant plot informed the design of our Bayesian network. Figure 5 shows feature correlation 

with each other heatmap. 

 

Figure 5: Feature correlation with each other heatmap 

The above correlation heatmap offers invaluable insight that further informed this research. 

Correlation values greater than 0 imply a positive correlation; an increase in one variable tends to 

be accompanied by an increase in the other variable as well.  If the correlation value is less than 

0, it indicates a negative correlation, which implies that as one variable increases, the other 

variable tends to decrease. 

 

From the heatmap, we deduce that there is a strong correlation between bug history and change 

history (0.4). As such, in our network, one of these variables will be modeled as the parent node, 

and the other as a child node. 
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The other independent variables have little correlation with each other and will therefore be 

modelled as independent nodes. 

3.5.4 Data Cleaning 

In data cleaning, the dataset was checked for duplicates, and these were removed. Since 

Bayesian belief networks are probabilistic, a row of data (both the independent and dependent 

variables) had to be similar to another row in order to be considered a duplicate. Such duplicates 

were dropped from the dataset. 

 

 

Figure 6: Script to replace outliers 

 

From the previous exploratory phase, it was noticed that the outliers only appeared past the 

maximum label (5), and not the minimum. As such, the outlier values were replaced with the 

dataset’s maximum label. Figure 7 shows tester assessment distribution after cleaning. 

 

 

Figure 7: Tester assessment distribution after cleaning 
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3.6 Creation of BN model 

The creation of a Bayesian network starts with the identification of nodes, and how these connect 

to edges. Since LikelihoodOfDetectingBugs is our target variable, it will be the end node, and the 

other nodes will connect to it either directly or indirectly, through other nodes. 

 

From our earlier findings from the data analysis phase, we know that there are variables that 

have a strong correlation(change history and bug history). These will therefore be connected as 

parent and child nodes, and then branch will be connected to the LikelihoodOfDetectingBugs 

node. Figure 8 is the designed Bayesian Network; it shows the interaction of the various 

independent and target variables. 

 

 

 

Figure 8: Bayesian Network for dependent and independent variables 

3.7 Implementation and Prototyping 

Python programming language was utilized in the research to create model architectures. The 

environment was set up on a personal computer that was running windows 10 Operating system. 

The programming language used was Python 3.6 with the libraries used for model creation were 

Pandas and NumPy for data manipulation, networkx, matplotlib and seaborn for data 
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visualization, pybbn for creating Bayesian Belief Networks. Flask framework was used for 

prototyping.  

The BN model was trained using 80% of the data available; 800 records. The prototype requires 

that the user captures system under test information in relation to the test case being run, it will 

then compute the likelihood of a test case detecting bugs and display the results. Figure 9 shows 

Bayesian Network test case prioritization prototype user interface. 

 

 

 

Figure 9: Bayesian Network test case prioritization Prototype 

 

3.8 Model and Prototype Evaluation 

The  BN model was evaluated against Gaussian Naïve Bayes and SVM algorithms. The 

module’s effectiveness was evaluated using metrics such as classification accuracy and a 

confusion matrix. The prototype developed from the module was tested using 20% of the testing 

data acquired from Kaggle dataset.  
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

Bayesian Network’s performance is measured during testing. In this chapter the focus is on 

determining whether the model’s performance is satisfactory and whether it can enhance early 

identification of defects in software systems. The study evaluates the performance of Bayesian 

Networks(BN) for test case prioritization by comparing it to other machine learning algorithms, 

namely Gaussian Naïve Bayes and Support Vector Machine(SVM). Lastly, the paper discusses 

the efficiency of the proposed approach for constructing models to prioritize test cases in the 

software industry. 

4.2 Model results evaluation 

BN’s performance is evaluated against other algorithms to determine the accuracy. The 

performance of other algorithms is measured as well. Various evaluation measures were 

employed to measure the model’s performance, including the following classification metrics: 

classification accuracy, confusion matrix and classification report. 

 

4.2.1 Classification accuracy 

The classification accuracy metric is utilized to determine the proportion of the correctly 

predicted labels out of all the predictions made by the model. BN classifier performed slightly 

better than its counterparts, Support Vector Machine and Gaussian Naïve Bayes algorithm. 

Bayesian Network was the best followed by Support Vector Machine, Gaussian Naïve Bayes 

was the lowest of the three in classification accuracy. Table 1 shows classification accuracy 

scores of models under test. 
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Model Accuracy Score 

Bayesian Network 0.83 

Gaussian Naïve Bayes 0.80 

Support Vector Machine 0.81 

Table 1: Classification Accuracy 

4.2.2 Confusion Matrix 

To present the model’s performance, a confusion matrix was generated, which depicts the 

number of correct predictions made by the classifier and where the classifier became confused. 

The confusion matrices for various algorithm classifiers are illustrated in the diagrams below. 

 

 

Figure 10: Confusion matrix for Bayesian Network 

Figure 10’s confusion matrix illustrates that BN correctly classified 50% of test cases without 

bugs and 33% as with bugs. The BN classifier however got confused and classified 17% of test 

cases with bugs as without bugs and did not classify any test case without bugs incorrectly 

scoring 0%. 
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Figure 11: Confusion matrix for Gaussian Naïve Bayes 

The confusion matrix in figure 11 shows that Gaussian Naïve Bayes gets confused and classifies 

20% of test cases with bugs as without bugs and does not classify any without bugs test cases 

incorrectly scoring a value of 0%.The classifier correctly classifies 50% of without bugs test 

cases and 30% of with bugs correctly. 
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Figure 12: Confusion matrix for Support Vector Machine 

In figure 12 the support vector machine classifier classifies correctly 50% of test cases without 

bugs and 31% of test cases with bugs. The classifiers, however, gets confused and classifies 19% 

of test cases with bugs as without bugs and can’t predict any test cases without bugs as with bugs 

leading to a score of 0%. 

4.2.3 Classification report 

Additional metrics, such as precision, recall and F1 score, were examined to provide further 

evidence of the BN model’s performance. Precision is calculated by dividing the number of 

correct predictions made by the model by the total number of predictions. Recall is determined 

by dividing the number of true positives by the total number of true positives plus false 

negatives. F1 score combines precision and recall metrics into a single metric. Thus, if both 

precision and recall metrics are high, F1 score will also be high, while if both metrics are low, F1 

score will also be low.  

In precision, BN performed slightly better than SVM which was better than Gaussian Naïve 

Bayes. Similarly in recall, F1-Score and accuracy BN performed slightly better that the other 

algorithms.  

 

Table 2 below shows the classification report for BN, Gaussian Naïve Bayes, and Support Vector 

Machine algorithms. 

 

 

Model Name Precision Recall F1-Score Accuracy 

Bayesian Network 0.8731 0.83 0.8249 0.83 

Gaussian Naïve Bayes 0.8571 0.80 0.79167 0.80 

Support Vector Machine 0.8623 0.81 0.8029 0.81 

Table 2: Classification report 1 
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4.3 Prototype results evaluation 

The prototype developed using BN model was tested using 300 records of the testing data. Two 

tables were generated, one for the expected results and the other for the actual results produced 

after the test. Table 3 shows the expected results. 

 

Change 
History 

Bug 
History 

Developer 
Experience 

Module 
Complexity 

Tester Assessment Likelihood of 
detecting bugs 

1 2 3 4 5 Y 
1 1 3 4 5 Y 
1 1 1 1 1 N 
1 2 2 2 2 Y 
5 5 5 4 4 Y 
2 1 1 2 5 N 
2 2 1 1 5 N 
1 2 1 2 4 N 
2 1 2 1 3 N 
1 1 1 1 2 N 
1 1 1 2 2 N 

Table 3: Prototype evaluation expected results 

The prototype was subjected to tests using the test data. Table 4 below shows the actual results 

from running the tests. From the test data only one record is classified incorrectly. The prototype 

simulations confirm that BN is effective in prioritizing test cases. 
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Change 
History 

Bug 
History 

Developer 
Experience 

Module 
Complexity 

Tester Assessment Likelihood of 
detecting bugs 

1 2 3 4 5 Y 
1 1 3 4 5 Y 
1 1 1 1 1 N 
1 2 2 2 2 Y 
5 5 5 4 4 Y 
2 1 1 2 5 N 
2 2 1 1 5 N 
1 2 1 2 4 N 
2 1 2 1 3 N 
1 1 1 1 2 N 
1 1 1 2 2 Y 

Table 4: Prototype evaluation actual results 

 

4.3 Discussion 

Bayesian Network for Test case prioritization is the proposed solution to regression testing 

challenges when there is no access to source code of the system under test. Bayesian networks 

algorithm allows for test case prioritization with very minimal variables of the system under test 

as input without the need to access source code. It classifies accurately using minimum amount 

of data. The  efficiency of BN in classification against other similar algorithms are discussed. We 

tested the effectiveness of the model on open-source data on Kaggle datasets (Roshan,2019). 

 

From the confusion matrices BN classifier has a lower confusion 17% compared to Gaussian 

Naïve Bayes and support vector machine classifiers which have 20% and19% accordingly. This 

shows how effective the model is when it comes to classification given the fact that less data was 

used for training the model. (Luis et al, 2000) 

 

The classification report and the classification accuracy show similar outputs shows similar 

reports as Bayesian Network algorithm performs better than support vector machine and 

Gaussian Naïve Bayes algorithms.  

 



 

  

Page 25 of 44 

The experiments prove beyond doubt that BN algorithm will be the best solution for test case 

prioritization when we have limited training data and no access to the source code. It performs 

better than alternative models and gives accurate results for efficiency and effectiveness. 

 

 

4.4 Model Verdict 

Tests were conducted to establish a benchmark on the Bayesian Network algorithm and its 

performance in classifying test case’s ability to detect bugs.  

 

As the results indicate, the machine learning models exhibit diverse performance levels when 

tested with the dataset. F1-Score was selected as the main measure of performance since it shows 

the average of all other measurement metrics. F1 – Score shows BN outperforms other 

algorithms. The results further show that BN algorithm performs better even with minimum 

amount of data. The table below shows the comparison of performance between BN and other 

two algorithms using F1- Score; a higher F1 – Score means the model has a better performance 

and vice-versa for lower scores. 

 

 

Model Name F1-Score Rank 

Bayesian Network 0.8249 1 

Gaussian Naïve Bayes 0.79167 3 

Support Vector Machine 0.8029 2 

Table 5: Classification report 2 
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CHAPTER 5: SUMMARY,CONCLUSION AND 

RECOMMENDATIONS. 

5.1 Summary of Findings 

Objective 1: To investigate test case prioritization techniques with a focus on those that 

incorporate machine learning algorithms. 

 

For machine learning-based techniques for prioritizing test cases, access to source code and a 

considerable amount of training data is necessary to predict likelihood of a test case in detecting 

bugs, this poses a challenge since  the requirements for prioritization are not always guaranteed. 

The literature review conducted on test case prioritization in a systematic manner for techniques 

that incorporate machine learning algorithms was carried out. The review sorted the literature 

into two categories; techniques that necessitate access to the system under test(SUT) source 

code(white box), and techniques that do not require access to the SUT’s source code( black box) 

Under white box test case prioritization Genetic algorithm, Bayesian Networks(BN) and Support 

Vector Machine(SVM) algorithms are explored. Genetic algorithm uses software agents, code 

coverage of the SUT and conditional coverage variables to predict test case probability of a test 

case in identifying bugs. Bayesian networks uses system’s fault proneness, code coverage, 

system changes, metrics related to quality, code changes, and coverage levels variables in 

prioritizing test cases. Support vector machine uses code coverage, test age, test failure, Test-

case prioritization involves utilizing variables such as similarity between teste and changes, fault 

history, and test-failure history to prioritize test cases. 

Regarding black-box test case prioritization, unsupervised neural networks utilize variables such 

as frequency of usage, balancing degree, distance, number of belongings, number of sub-nodes, 

and number of occurrence layers to prioritize test cases. Neural networks use variables such as 

execution duration, last execution, and failure history. Through interaction with the environment, 

agents learn from positive feedback and avoid negative feedback. Support Vector Machine Rank 

uses requirements, cost of test execution, requirements priority age and count of failures as 

variables to predict bug detection and prioritize test cases. 
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Objective 2: To implement a Blackbox test case prioritization prototype for regression testing 

using Bayesian Networks (BN). 

 

A prototype was developed for black box regression test case prioritization using Bayesian 

Networks model. Python programming language was used with windows 10 operating system as 

the main implementation platform. For data manipulation, the Pandas and NumPy libraries were 

utilized, whereas the network, matplotlib, and seaborn libraries were used for data visualization, 

pybbn library was used for creating Bayesian Belief Networks. Flask framework was used for 

prototyping. The model presented a user interface where the user is supposed to key in system 

details and a prediction of whether a bug will be detected or not is given. Using this information, 

a tester can prioritize test cases. 

 

 

 

Objective 3: To validate the effectiveness of the developed prototype in identifying bugs 

 

BN test case prioritization technique prioritizes test cases effectively, BN model is also accurate 

in classification. Data from Kaggle was split, 20% of the data was used for testing the 

prototype’s effectiveness in test case prioritization. The test confirmed that the developed 

prototype is effective in prioritizing test cases without the need to access source code using 

minimal training data. BN’s classification accuracy is measured against other two algorithms and 

BN performs slightly better in classification and confusion matrix when compared to the other 

two algorithms.  
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5.2 Conclusion 

This study proposed Bayesian Networks algorithm as a solution to backbox regression testing. 

The solution can accurately prioritize test cases without the need to access SUT’s source code 

and using minimum training data. This solves the problem of the need to access SUT’s source 

code to be able to prioritize test cases. (S. Mirarab, 2020).BN also identifies conditional 

dependencies between nodes of the variables of study and uses the information to map 

relationships between nodes which in turn build a relationship model that can predict 

probabilities for variables under study. Consequently, BN succeeded in prioritizing test cases 

with greater precision. In comparison to other algorithms put forth by researchers, BN achieved a 

lower false-positive rate as well as a high F-1score(T.Xie, 2016). 

 

The BN model proposed in this study was tested and determined to be effective for prioritizing 

test cases in black-box regression testing.. The model allows all levels of testers performing 

regression testing be able to prioritize test cases effectively since there is no need to access the 

SUT’s source code nor have technical knowledge of the software source code. The software 

testers need to have some basic knowledge of the required variables and they can prioritize test 

cases. 

 

This solution is efficient and effective for the current software development methodologies 

where releases are more frequent especially when the system under test handles sensitive 

information or performs critical operations that can save life or involves money. With 

constrained resources any testing team can achieve maximum quality for the product with 

minimum effort. 

 

5.3 Recommendation 

The research found out that most complex and critical systems do not allow for source code to be 

shared to the testing team during regression testing. Thus, test case prioritization techniques that 

do not necessitate access to source code are recommended for easier identification of defects and 

delivery of quality products to users. 
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5.4 Future research 

Technology is evolving quickly, and all industries are now integrating with technology, this 

study was limited by training data. For future studies, a variety of different industry datasets can 

be used to train and validate the effectiveness of the model. This also allows for a wider coverage 

in scope for all the available industries. Training and validation can further be broken down into 

dataset from the same industry with different programming languages for the systems and 

different localities, or different language implementations of application under study. That way 

the model can be applicable globally for different application implementations. 

 

An experiment to test the validity of tester assessment in predicting the likelihood of a software 

module having bugs is recommended for future research since the variable was introduced 

during this study and further tests will validate its effectiveness in the required task. 
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