

UNIVERSITY OF NAIROBI Institute of Nuclear Science and Technology

DIRECT SCREENING OF MICRONUTRIENTS ON MAIZE PLANT LEAVES USING HANDHELD X-RAY FLUORESCENCE SPECTROMETER (HHXRF)

Caroline Jepchumba Kemboi S56/70898/2014

A thesis submitted in partial fulfillment for the Master of Science in Nuclear Science and Technology in the Department of Electrical and Information Engineering in the University of Nairobi.

© 2023

DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

Signature Date 15/08/2023

Caroline J. Kemboi S56/70898/2014

Supervisors' approval

This thesis has been submitted for examination with our knowledge as University supervisors.

Prof. Lydia W. Njenga Department of Chemistry University of Nairobi

he Sign

Date 19-08-2023

Sign.....

Prof. Michael J. Gatari Institute of Nuclear Science and Technology University of Nairobi.

16 August 2023 Date

Dr. Keith Shepherd World Agroforestry Centre (ICRAF) Nairobi, Kenya.

Sign

15.08.2023 Date

DEDICATION

This work is wholeheartedly dedicated to my beloved Mum who has been my pillar and my daughter for being a source of inspiration. Also, my beloved husband, brothers and sister inlaw for their words of advice, moral and financial support; not forgetting my nieces and nephews who always cheer me up to soar higher. Additionally, I appreciate my special friends, for their kind words and encouragement during this study.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my supervisors, Prof. Lydia Njenga, Prof. Michael J. Gatari and Dr. Keith Shepherd for their advice, encouragement and full support since the conception of my project idea and throughout the entire study to the end. I am grateful to the Institute of Nuclear Science and Technology for playing a second home throughout my master's study.

I am sincerely thankful to World Agroforestry Centre through Capacity Building Unit for allowing me carry out my research in their laboratories. I would like to thank Soil-Plant Spectral Diagnostic Lab staff for their immense assistance while working in the laboratory. Special thanks go to Dr. Erick Towett for his guidance and advice during the entire research. I am indebted to International Science Program (ISP) Sweden (Project No KEN/01/2) and National Research Fund (NRF) for funding my research. Finally, To God Almighty; the Author and finisher of my Faith for His guidance, Wisdom, protection and skills during the entire study. All these, I give Him all the Glory.

ABSTRACT

Foliar nutrient analysis is an indication of soil's elemental compositions. However, its use has been limited by the short window available for plant sampling and analysis since different plant species utilize nutrients differently. With the emergence of quick, non-destructive, inexpensive, and portable-spectral techniques like handheld X-ray Fluorescence spectrometer (HHXRF), the merits of foliar analysis can be explored and utilized. Analysis can be carried out both in the laboratory or in-situ set up. In this study, maize leaves sampled at two growth stages were collected in Muguga Kenya. And were analyzed in three different sample matrices, i.e. green (fresh), oven dry, and milled (powder). Na, K, Ca, Cu Fe, Mg, Mn, Mo, Zn, S and P nutrients were studied using Handheld X-ray Fluorescence (HHXRF) spectrometer to assess its applicability. Milled samples gave higher concentrations for the elements: Na; 43.8mgkg, Mg; 3077.1mg/Kg, P; 1741.4mg/Kg, S; 1878.5mg/Kg, K; 37988.8mg/Kg and Ca; 5294.7mg/Kg; as compared to concentrations in oven-dried samples that gave Na; 10.54 mg/kg, Mg; 956.01 mg/Kg, P; 802.07 mg/Kg, S; 1055.53 mg/Kg, K; 20550.35mg/Kg and Ca; 3224.11mg/Kg; however, there was no significant difference between oven dry and milled samples (P > 0.05). Fresh samples recorded the lowest concentrations and milled samples presented the highest correlation ($r^2 > 0.95$). A relation between nutrient concentrations with seasonal variations showed higher nutrient concentrations for P; 1038mgkg⁻¹±174mgkg⁻¹, K; 22994mgKg⁻¹ and Calcium at early growth stage compared to tussling stage where the concentration were 791mg/kg⁻¹ and 20409.37mgKg⁻¹ for P and K respectively. Nutrient content showed inconsistency depending on specific element and plant part; K, S, P exhibited decreasing nutrient concentration from the leaf base; for example a concentration of 5630.16 mg kg⁻¹ and 2457.79 mg kg⁻¹ for Sulphur at leave base and apex respectively; on the other hand increase in concentration from leaf base to the apex were observed in Na,Fe,Mn and Zn; Iron had a concentration of 298.03 mg kg⁻¹, 315.14 mg kg⁻¹ and 423.59 mg kg⁻¹ at base ,middle part and apex respectively. Copper and Molybdenum was found to be uniformly distributed along leaf. However, it is necessary to carry out additional studies between elemental concentration in the soil and their respective content in plants. There is need to test applicability of the technique on different crops and sample matrix.

TABLE OF CONTENTS

DECLARATION	II
DEDICATION	
ACKNOWLEDGEMENT	IV
ABSTRACT	v
LIST OF FIGURES	IX
LIST OF TABLES	XI
LIST OF ABBREVATIONS AND ACRONYMS	XII
CHAPTER ONE	1
INTRODUCTION	1
1.1 BACKGROUND OF THE STUDY	1
1.2 PROBLEM STATEMENT	3
1.3 Objectives	4
1.3.1 General objective	
1.3.2 Specific Objectives	
1.4 JUSTIFICATION AND SIGNIFICANCE	5
1.5 SCOPE OF THE STUDY	5
CHAPTER TWO	7
LITERATURE REVIEW	7
2.1 Foliar analyses	7
2.2 FACTORS AFFECTING PLANT NUTRIENT UPTAKE	7
2.2.1 Environmental factors	7
2.1.2 Plant development stages	8
2.3 MAIZE IN KENYA	9
2.4 NUTRIENTS TO BE STUDIED.	
2.4.1 Study of light elements	
2.4.2 Study of heavy elements	
2.4 X-RAY FLUORESCENCE SPECTROMETRY	
2.5 INSTRUMENTATION	
CHAPTER THREE	23

MATERIALS AND METHODS	.23
3.1 SAMPLING LOCATION	. 23
3.2 Sampling design	. 24
3.3 SAMPLING	. 24
3.3.1 Sampling at Early Growth stage	. 25
3.3.2 Sampling at Tasseling stage	. 25
3.4 PREPARATION AND CLEANING OF SAMPLE HOLDERS	. 26
3.5 SAMPLE PREPARATION	. 26
3.5.1: Preparation of fresh samples	. 26
3.5.2: Preparation of oven dried samples	. 27
3.5.3: Preparation of milled samples	. 27
3.6: SAMPLE ANALYSIS	. 28
3.6.1: Instrument verification	. 28
3.6.2: Light element Analysis	. 28
3.6.3: Heavy element Analysis	. 29
3.6.7 DATA ANALYSES	. 30
CHAPTER FOUR	.31
RESULTS AND DISCUSSION	.31
4.1 Overview	. 31
4.2 QUALITY CONTROL DATA	. 31
4.3 RESULTS ON DIFFERENT SAMPLE PRESENTATION METHODS.	. 32
4.4 ELEMENTAL CONCENTRATION AT DIFFERENT GROWTH STAGES.	. 35
4.5 ELEMENTAL CONCENTRATIONS AT DIFFERENT PARTS OF MAIZE LEAF	. 38
4.4: CORRELATION OF THE ELEMENTAL CONCENTRATION IN DIFFERENT METHODS AND PARTS OF TH	ΙE
LEAF	. 48
4.4.1 Correlation of the concentration of light elements in different sample presentation Method	ds.
	. 48
4.4.2 Correlation of the concentration of heavy elements in different sample presentation	
Methods.	. 49
4.4.3 Correlation of the concentration of elements in different parts of the maize leaf	. 50
CHAPTER FIVE	.53
CONCLUSION AND RECOMMENDATIONS	.53
5.1 Conclusion	. 53
5.2 Recommendations	. 54
REFERENCES	. 55

A	PPENDICES	.64
	APPENDIX 1: T-TEST FOR THE RECORDED RESULTS OF ELEMENTAL CONCENTRATION IN TWO GROWT	ΓH
	STAGES	. 64
	APPENDIX 2: T-TEST FOR THE RECORDED RESULTS OF ELEMENTAL CONCENTRATION IN DIFFERENT	
	PARTS OF MAIZE LEAF	. 65
	APPENDIX 3: T-TEST FOR THE ELEMENTAL CONCENTRATION AT DIFFERENT SAMPLE PRESENTATION	. 65
	Appendix 3.1: T-test for elemental concentration for Light elements	. 65
	Appendix 3.2: T-test for elemental concentration for heavy elements	. 66
	APPENDIX 4: NUTRIENT CONCENTRATION BY LEAF PART (FRESH SAMPLES)	. 68
	APPENDIX 5: NUTRIENT CONCENTRATION BY SAMPLE PRESENTATION	. 75

LIST OF FIGURES

Figure 2.1: Different growth stages of a maize plant, vegetative (V) and reproductive
(R)
stages13
Figure 2.2 : Diagram of HHXRF operation principles and during analysis19
Figure 3.1: Geographical location of Muguga Kenya and sampling points23
Figure 3.2 : Off-set grid sampling pattern
Figure 3.3: Illustration indicating maize growth stages and the parts to be sampled
Figure 3.4: Preparation of XRF sample cups
Figure 3.5.1: Illustration of Fresh leaves (a), divided leaf into leaf base-b, mid-m, apex- a and midrib-mr(c)
Figure 3.5.2: Illustration of (a) Oven dried leaves and (b) leaf blades clipped together.
Fig 3.5.3: Illustration of (a) Leaves oven dried at 60°C and (b) milled leaf samples
Figure 3.6.2: a) Illustration of Milled sample, b) fresh sample on the instrument table and c) HHXRF connected to a vacuum and IR sensor covered29
Figure 3.6.3: Illustration of Preparation and Analysis of heavy elements
Figure 4.3. Total elemental concentration for different sample presentations34
Figure 4.4: Variation of the elemental concentration in two different growth stages
Figure 4.5: Seasonal variation of heavy elemental contents in maize leaf samples
Figure 4.6: Potassium content in different parts of maize leaf samples
Figure 4.7 : Calcium content in different parts of maize leaf samples40
Figure 4.8: Copper content in different parts of maize leaf samples41

Figure 4.9: Iron content in different parts of maize leaf samples
Figure 4.10: Manganese content in different parts of maize leaf samples
Figure 4.11: Average Zn content in different parts of maize leaf samples44
Figure 4.12: Molybdenum content in different parts of maize leaf samples45
Figure 4.13: Phosphorous content in different parts of maize leaf samples46
Figure 4.14: Sulphur content in different parts of maize leaf samples
Figure 4.15: Sodium content in different parts of maize leaf samples47
Figure 4.16. Correlation of Sodium in different sample presentation Methods49
Figure 4.17. Correlation of Cu in different sample presentation Methods
Figure 4.18. Correlation of the elements in different parts of the maize leaves

LIST OF TABLES

LIST OF ABBREVATIONS AND ACRONYMS

AAS	Atomic Absorption Spectrometry	
AFSIS	African Soils Information Site	
ATP	Adenosine TriPhosphate	
CIFOR	Centre for International Forestry Research	
CRM	Certified Reference Material	
FAAS	Flame Atomic Absorption Spectrometry	
FAO	Food Agricultural Organization	
FWHM	Full Width to Half-Maximum	
HHXRF	Handheld X-ray Fluorescence	
MDG's	Millennium Development Goals	
ICP-MS	Inductively coupled-Mass Spectrometry	
ICP-OES	Inductively coupled-Optical Emission Spectrometry	
IFAD	International Fund for Agricultural Development	
ICRAF	International Centre for Research and Agroforestry.	
IR	Infra -Red	
IRRI	International Rice Research Institute	
МОН	Ministry Of Health	
NCDA&CS North Carolina Department of Agriculture and Consumer Services		
NIST	National Institute of Standards and Technology.	
NPK	Nitrogen, Phosphorous, Potassium	
UNICEF	United Nations Children's Fund	
USDA	United States Development Agency	
QA	Quality Assurance	
QC	Quality Control	

- RNA RiboNucleic Acid
- SDG Sustainable Development Goal
- TXRF Total X-Ray Fluorescence
- SSA Sub Saharan Africa
- WFP World Food Programme.
- WHO World Health Organization
- XRF X-ray fluorescence

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Agriculture is the most important sector of Kenya's economy. Its performance influences the populations' quality of life and economic growth, of which approximately 85% live in remote areas and agriculture is their main source of income(Jerneck et al., 2013).

More than 10 million people (almost a quarter) of Kenya's population of 46.7 million people are generally considered chronically food insecure (Lokuruka, 2020); and (FAO, IFAD, UNICEF, WFP, 2021). The country's nutrition and food insecurity are as a result of the performance of the agricultural sector and in most counties, agriculture is plagued by low productivity and inefficient plant nutrient utilization; based on blanket fertilizer recommendations (NAAIAP, 2014).

Plant nutrients are referred to as essential if they play at least one specific role in plant growth and are required in limited amounts for optimal plant growth. However, this does not imply they are not important in the life cycle of the crop since in their absence, plant growth is impaired. According to Motsara *et al.*, 2008; there are 16 nutrients that are essential for a plant to complete its life cycle. These are N, C, H, O, P, Ca, Mg, K, B, S, Zn, Fe, Mn, Cl, Cu and Mo. These nutrients are provided by soil organic matter, soil minerals, lime, amendments and fertilizers, while hydrogen, oxygen and carbon are either obtained from water or air, therefore generally not considered limiting (McGinnis *et al.*, 2012). The remaining 13 are usually applied as amendments e.g. fertilizer, manure, etc. if they are unavailable or inadequate in the soil (Johnston *et al.*, 2004).

Crop production in Kenya and many other SSA countries over many decades rely mainly on fertilizers, particularly N, P and to some extend K and Ca. There is little focus on secondary nutrients and micronutrients on crop response, and those that exist; are limited and scattered research on response of these nutrients to crop productivity (Chianu *et al.*, 2012). There has been growing evidence of crop response to application of the typically macronutrient-based fertilizers which are emphasized in smallholder farming. For instance studies by Kihara *et al.*, 2017) indicate that there is positive response in crop productivity to applied nutrients and micronutrients for example application of nutrient Sulphur resulted in average yield 0.7 t ha⁻¹ (i.e., 20% more as opposed to before treatment. However, soil testing has been used sparingly as a tool to guide fertilizer decision. One key factor that has contributed to the lack of support of fertilizer recommendations by soil testing is due to the perception that the results obtained from tests for micronutrients are not satisfactory indices for predicting soil's ability to continuously supply nutrients to plants due to various complex distribution patterns of available nutrients among layers or chemical species in soils (Chen *et al.*, 2012);features of the soil governed by geochemical characteristics such as soil structure and texture, plant's capacity to accumulate nutrients and environmental factors (Tezotto et al., 2013).

Analysis of plant tissue is a preferred way for monitoring the soils nutrient status, the reason being, it provides information on the soils ability to transmit the element of interest until the day of sampling. The elemental quantification of the concentration of plant nutrients has been carried out using several methods such as inductively coupled plasma mass spectrometry (ICP-MS), colorimetry, flame atomic absorption spectrometry (FAAS), and inductively coupled plasma atomic emission spectrometry (ICP-OES) (M. B. Guerra et al., 2018). However, in applying these techniques; sample preparation requires destruction of sample matrix either partial or complete either by ashing or digestion with strong acids (Tavares et al., 2020). These sample preparation processes in analytical laboratories are often slow, tedious, costly, time consuming and requires the analyst to take caution as it involves use of hazardous reagents (acids). Furthermore, incomplete dissolution may affect the accuracy of some plant nutrients that are present in low concentrations. This was evident in a study carried out by (Reidinger et al., 2012), where the percentage of silicon in grass samples analyzed by the acid digest calorimetric method and HHXRF exhibited poor correlation between the two methods (Pearson correlation, $\mathbf{r} = 0.644$, $\mathbf{n} = 5$, $\mathbf{P} = 0.240$).

There are more accurate, reliable, economical instruments with high sensitivity, accuracy, and applicability to real-world situations that include XRF systems. Portable X-ray fluorescence and in particular the HHXRF have opened a new window for accurate, fast, cost effective, non-destructive and non-consumptive survey of total elemental concentrations in plants, both insitu and laboratory system.

It has been successfully used in numerous studies to determine element concentration in environmental samples in multiple disciplines, such as archaeology, soil science and mining (Potts and West, 2008 and Lemberget *et al.*, 2000). The HHXRF technique offers a nonconsumptive analytical technique for material characterization, determination of trace and major elemental composition and has several advantages compared to other multi-elemental techniques. These include: limited sample preparation, less hazardous and increased total speed, thus large number of samples can be analysed within a short period of time (Parsons et al., 2013).Furthermore, its portability, high quality measurements and capability of onsite analysis makes it ideal for field assessment (M. B. B. Guerra *et al.*, 2014).

Various studies e.g. Guerra *et a*l., 2014 carried out a comparison analysis of pressed pellets using portable XRF and acid digestion of the same sample analyzed using benchtop EDXRF and achieved coefficient correlations of (r)= 0.9601-0.9918 for benchtop, and (r)=0.9094 - 0.9948 for portable XRF; similarly Towett *et al.*, 2016.carried out a comparison analysis of milled plant samples by direct surface analysis using HHXRF under vacuum conditions and analysis under atmospheric pressure and came to a conclusion that analysis under vacuum conditions improves sensitivity (r²)=0.97) of the analysis.

The studies above have lauded the ethics of utilizing HHXRF spectrometry for an extensive variety of plant applications. However, in most these research studies; samples have been presented to the instrument when milled or in powder form (Towett *et al.*, 2016).Therefore, there is little literature on the presentation of green/fresh and oven dried samples during analysis. There is also need to explore more on the distribution of nutrients along the leaf. As a result of this, a more extensive objective of plant tissue analysis can be expanded from the usual primary goal of diagnosing suspected nutrient toxicities or deficiencies to developing nutritional profile of plants at different growth stages and making recommendations on soil's nutrient status and fertilizer applications. In this study green, oven dried and milled maize leaves from Muguga farms in Central Kenya (Fig 2) were analyzed using HHXRF spectrometer.

1.2 Problem Statement

Soil testing has been down played as a guiding tool for fertilizer decision, due to perception that conventional tests for nutrient contents are not satisfactory indices for predicting soil's capacity to constantly supply nutrient to the plants (Kihara *et al.*, 2016). In addition, quantification of plant nutrients has been carried out using digestion-based techniques which depends on the total destruction of sample matrices during analytical process. This is a major problem in tests where the amount of sample available is small and analysis for

other aspects of plant nutrient composition is required, or situations where the samples need to be reanalysed.

Numerous studies; e.g. Campos, *et al.*, 2014; Lemberge *et al.*, 2000;Munro *et al.*, 2008; McLaren *et al.*, 2011; Queralt *et al.*, 2005; have praised the virtues of utilizing HHXRF spectrometry for a variety of applications and other disciplines e.g. archaeology, soil science and mining; however its applicability in the analysis of nutrients in maize leaves and other plant leaves has not been completely tried and a proper guidelines established for field applications so as to come up with a suitable protocol for such measurements in fresh or dried unhomogenised plant material (Potts and West, 2008).

Reidinger et al., (2012) added that there are factors that vary in plant tissue analysis and that affect its precision and accuracy; these include mass and density of the matrix, which affects the energy of the characteristic X-ray for a particular element and its associated critical penetration depth as there is a difference between scanning one leaf tissue and stacking several leaves together as observed by Weindorf et al. (2014). Another factor is presence of moisture content, which is influenced by the plants' development stage and the sampled plant part (NCDA and CS, 2013). Mäkinen et al., (2005) added that in-situ (wet conditions) analyses of soils via HHXRF showed more variations than measurements made in the laboratory of dried and sieved samples. Furthermore, Kenya has the most fluctuated cereal production especially maize, as a result of among other factors nutrient deficiencies, rapid population growth, This means therefore farmers have to strive to produce enough food to in cater for the population resulting intense cropping, which leads to severe soil degradation and poor soil fertility (USDA, 2019; Bai and Lei, 2020).

1.3 Objectives

1.3.1 General objective.

To assess the applicability of the Handheld X-ray Fluorescence spectrometer for direct tissue analysis for light and heavy elements in maize leaves from Muguga, Kiambu County.

1.3.2 Specific Objectives

The following are the specific objectives:

a. Evaluate the reliability of HHXRF results of maize leaf elemental composition under different sample presentation methods.

- b. Determine the variations in elemental concentration in maize leaves at two growth stages.
- c. Determine variations in major and trace elemental concentrations along various parts of maize leaves.

1.4 Justification and Significance

The Kenya Vision 2030 recognizes agriculture as a critical sector in the achievement of the second Sustainable Development Goal (SDG 2) of achieving food security, zero hunger and improved nutrition in Kenya thus attaining annual financial development rate (Vision 2030, 2007). It is also part of the government's big four agenda of achieving 100% food security and proper nutrition for all Kenyans (parliamentary service commission medium term plan 2018). However, dangers and vulnerabilities connected with agricultural production, such as, desert locusts and Fall armyworm (Evans and Inglesby, 2019); poor mineral nutrition and high production costs pose a major challenge in achieving high yield levels in tropical and sub-tropical regions (Ezeaku *et al.*, 2013). Maize is Kenya's staple food (Ojala *et al.*, 2014; Khan *et al.*, 2014), and one of the country's major income earner (occupies approximately 40% of arable land) to many rural households (FAO 2011-2013; Olwande, 2012;),Therefore there is need to identify the weaknesses in this sector and find solutions that will help the industry grow (Ezeaku *et al.*, 2002).To increase agricultural productivity requires the use of modern advanced equipment like HHXRF that goes in handy with SDG goal nine on innovation (Vision 2030, 2007).

Plant tissue is part of the plant that shows any nutritional disturbance and information on the nutrient status of the plant up until the day of sampling; therefore the most preferred way for monitoring the soils ability to transmit the element of interest (Borges *et al.*, 2020). The HHXRF spectrometer was selected as alternative technique for maize tissue analysis as it is capable of simultaneous multi-elemental quantification of the essential plant nutrients within a short span of time (60seconds). Data can be used to develop HHXRF analytical guideline on suitable analytical parameters and sample presentation methods which will allow sample analysis and data acquisition on site .

1.5 Scope of the Study

Samples were collected from 16 sampling plots with maize plants; this was done in two plant growth stages with the collection of 32 Samples at each growth stage from Muguga

farms in Kenya. The reason for choosing the site is due to its close proximity to the World Agroforestry Centre's (ICRAF-CIFOR) Soil-Plant Spectral Diagnostics Laboratory to enhance easy transportation of fresh samples for analysis.

The total elemental concentrations of the samples were determined using HHXRF spectrometer used in the lab setup as a bench top instrument. The study was focused on the analysis of fresh, oven dried and milled maize leaves for assessment of nutrients, which include light elements namely: Na, Mg, P, S, K, and Ca and heavy elements that is: Mo, Cu, Mn, Fe and Zn.

CHAPTER TWO

LITERATURE REVIEW

2.1 Foliar analyses

To optimize fertilization, it is important to determine the level of nutrients that are available to the plant. Normally, farmers use soil testing to assess nutrient availability. However, the interpretation of results obtained from soil analysis may not be able to reflect plant available micronutrients. The availability as shown by previous studies is regulated by factors such as plant types, as well as the chemical and physical properties of soils (Xue et al., 2017; Chen et al., 1996). Another limitation is that soil sampling is supposed to represent the soil portions explored by the root, which may be different for each crop, thus sometimes becomes a challenge.

Foliar analysis is regarded as one of the direct methods to evaluate the plant nutrient status compared to soil. The leaf is considered for micronutrient analysis since it is part of the plant where physiological activities occur, and if there is any nutritional disturbance, it can easily be identified (Malavolta, 2006; Mourão, 2003).

2.2 Factors affecting plant nutrient uptake

Micronutrients are viewed as elements that are vital, and if the life cycle of a plant cannot be completed without them and cannot be supplemented by whatever other components, and they play out an immediate key role in the plant. Most micronutrients are accessible from the soil or if not, are connected as soil corrections such as fertilizers or lime and taken up from the roots to the leaves and different parts of the plant (Takahashi et al, 1990). The composition of micronutrients and other elements in plants reflect to some extent the chemical components of the growth media. The degree to which this relationship exists is in variable amounts and is controlled by various factors that impact on their availability to plants.

2.2.1 Environmental factors

Several processes are involved in the uptake of micronutrients from the growth media (soil) to the plant. The main pathway through which micronutrients get to the plant is the roots. The absorbed micronutrients are disintegrated in soil solution either as chelates, complexed or in ionic forms, but most importantly in solution forms (Towett et al., 2015). Those that

are above the ground are absorbed by the plant from aerial deposition through the leaf stomata especially gases and aerosol particles. Absorption processes takes place at very low micronutrient concentration gradient in solutions, and the rate is determined by the presence of hydrogen ions (H^{\dagger}) and other ions (Bityutskii et al., 2017).In addition, the rate changes depending on the plant stage of development and species.

Temperature, aeration, moisture, and PH are some factors of the soil environment that influence mineral absorption processes. For instance, McGrath et al. (2007) found higher temperatures to greatly impact on the uptake of micronutrients by plants, while increase in pH levels influenced the availability and uptake of most micronutrients with the exception of Molybdenum. Excess moisture content enhances filtration of nutrients to lower horizons while dry conditions hinder root action at shallow levels and decrease the breakdown and flow nutrients to the plant (Xue et al., 2017;Ghosh et al., 2018).

As for soil texture, course sandy soils have less ability to hold nutrients compared to finely textured ones that tend to bind nutrients in forms not accessible to plants.

Root absorption of micronutrients can be described as either passive or active. Passive also referred to as non-metabolic takes place when the ions move from the outside environment to the root endodermis, while active (metabolic) needs energy since it takes place against the concentration gradient. The presence of ions in the soil solution is one of the key factors believed to influence the uptake of micronutrients by the plant, most importantly when the uptake is active (Morel et al., 1997). When the external cation concentration of soil solution is low, active absorption takes place, while at higher concentration passive process predominates.

Uptake mechanisms vary as per given element. For instance, Nickel and lead are absorbed passively while, Zinc, Molybdenum and copper are absorbed through active process. However, concentration of elements can pass over a physiological barrier when structural and biological properties of root cell are altered (Kabata-Pendias & Pendias, 2011).

2.1.2 Plant development stages

Several factors, which include plant part sampled, species, age (plant growth stage), genotype and various environmental conditions affect the sufficiency ranges of a particular nutrient (Stammer, 2015). For example, monocotyledonous species need less amount of Calcium concentration compared dicotyledons to obtain maximum growth

rates(Nabi et al., 2006; Loneragan and Snowbell, 1996). Kovács et al., 2017 recommended that in sampling corn plants for nutrient assessment, a two-stage sampling is involved; that is Whole plant sampling at early vegetative stage (V6) and sampling of ear leaves at silking/flowering stage, which is the stage with the largest leaves on corn plants (Hotchmuth, 2012). Early-stage tissue sampling generally allows for a particular nutrient to be supplemented incase results obtained from the tests shows a deficiency; while on the other hand sampling at silking stage gives a perspective the nutrient condition of the maize plant before grain filling begins. Therefore, when sampling a plant for analysis, a well-defined plant part and stage of development must be considered (Hallmark and Beverly, 1991).

Plant foliar analysis differ from that soil analysis in that; it provides information on plant available nutrients up until the day of analysis thus soil nutrient availability can be predicted (Parks et al., 2012). Therefore, the plant part or age affects nutrient concentration to a certain degree (Römheld, 2012). As a plant matures the nutrient concentration and the sufficiency ranges on the whole plant decreases for most nutrients except phloem nutrients i.e. Ca, B and Mn (Römheld, 2012). A study done by Beatrix et al. (2014), shows fresh tissue had lower coefficient of variance (r^2) for majority of elements compared to dried and ground samples and the fresh concentration of had the covariance of zinc (r^2 =0.76).

2.3 Maize in Kenya

Maize is the most important cereal crop and an important staple food for more than 1.2 billion People in Sub-Saharan Africa (SSA) and Latin America. It is also a major food crop in most Kenyan communities, and it accounts for between 30-50% of low income household expenditures in Eastern and Southern Africa. It is the major food crop in most Kenyan communities, and one of the most nutrient demanding crops

According to the United States Department of Agriculture, Kenya's maize production fell by 4.2 million bags in the western and parts of rift valley in the year 2016/2017 due to drought and a fall armyworm infestation as reported across 27 counties, this resulted in losses of up to \$120 million (USDA, 2019);Abate et al. (2015) also noted a declining trend in Kenya's average yield production capacity that reduced by a significant 1kilogram per hectare per year (kg/ha/year), a rate which is much higher compared to the continent's average in kg/ha/year. The decline in production is also as a result of increasing population density. Several low income and middle income countries (LMICs), particularly in SubSaharan Africa (SSA), continue to experience rapid and consistent population growth (Bai and Lei, 2020; Espenshade and Serow, 2013). This means therefore farmers have to strive to produce enough food to cater for the population resulting in intense cropping, which leads to severe soil degradation and poor soil fertility with little or no supplement renewal. Therefore, plant tissue analyses can be a good tool to diagnose plant nutrient status throughout the growing season, and used as a complementary to the soil test results.

In addition, the analysis can be useful in determining if the soil fertility status as well as fertilizer applications translate to adequate crop nutrition (Stewart, 2016). In foliar analysis, the nutrient content in the analysed part is compared with the established critical or sufficient values that are based on development of response curves, surveys, and experience. Critical values refer to nutrient levels at which there is a 5 to 10 % reduction in crop yield, and is usually linked to visual signs of deficiency, while within the sufficiency range, there is no yield reduction due to either nutrient surplus or limitation.

Plant nutrient deficiency bear adverse effects on the health of human beings by altering normal metabolism, growth and physical wellbeing (FAO, 2007, Koning et al., 2008). In Kenya, micronutrient deficiencies are highly prevalent especially in vitamins and minerals which results to: impaired mental and physical development in children; high mortality rates in women and unborn children; reduced work productivity in adults and increased morbidity (Black et al., 2008). According to GOK(2011) children under the age period of five years are the most affected by Zinc (51%), Iron (73.4%) and vitamin A (84%) deficiencies. In addition, women especially pregnant women are at a higher risk of Vitamin A (39%) and Iron (60%) deficiency, and approximately, of 16% adult males suffer from Fe deficiency, causing anaemia.

Sufficient nutrient supply plays a vital role in human growth and development. According to the MOH (2012) approximately 1.5 to 2.1 million children are stunted therefore do not reach their full physical potential, which poses a serious national concern. On the other hand, iodine deficiency has been noted as the leading cause of brain damage and mental retardation in the world. It is estimated by the World Health Organization that 1.5 billion of the world's population live in Iodine deficient environments(Organization, 2002).

2.4 Nutrients to be studied.

When elements are deficient, plant metabolic processes and photosynthesis are disrupted and symptoms in terms of visible appearance, decreased growth rate and reduced crop yields become evident. There are other symptoms, which are not noticed visually and are quite specific to in terms of given essential elements, commonly known as hidden hunger signs (Bergmann, 1992). The mobility of an element influences the location where deficiency symptoms are likely to be noticed on the plant. An example is Calcium deficiency, which occurs at growing points or in storage organs like roots and fruits. Crops like other living beings have specific nutrient requirements, therefore there is need to understand their nutrient requirements, their translocation and sufficiency ranges in leaf so as to be assessed and diagnosed adequately (IRRI, 1999). Below, is a brief discussion of some of the nutrients considered in this study:-

2.4.1 Study of light elements

Phosphorous

Phosphorous is available as orthophosphate (HPO²⁻, H₂PO⁴⁻) ions. However, the orthophosphate combines with Calcium (Ca²⁺⁾ ions or Magnesium ions to forms a soluble Mg^{2+} or calcium orthophosphate [Ca (H₂PO4)]₂ which is readily adsorbed into the soil. Soil soluble P reacts with magnesium (Mg), aluminum (Al), calcium (Ca) and iron (Fe), forming complex compounds that are not readily available to the, process called "fixation." Maintaining the soil pH between 6 and 7 increases availability of Phosphorous(Jones Jr, 2012)

Phosphorous plays a significant role in the storage of energy and transfer of ATP and ADP, TBN and DPN nucleotides. It is one of the elements that relay genetic information; since it is part of RNA and DNA. It is required in large quantities by growing parts like root tips, shoots, where cell division and metabolism is high, therefore initiates flowering and promote seed and fruit development. In addition, it helps plants survive harsh conditions such as winter, disease and pest incidence, hence improving the quality of the crops. It has low mobility and also very susceptible to reaction with soil solid and solution phases (Hodges 2010).

Deficiency is shown by purple tints which may spread over the whole leaf blade and stems. The symptoms are visible on older leaves due to its mobility to younger growing sites. There is also a decreased in the number of leaves flowers.

Phosphorous deficiency can also lead to weak, slow and stunted growth, since it is heavily required for cell division during early stages, thus leading to delayed maturity and poor development of seed and fruit in addition there's development of spindly stalks that are either barren or with incomplete grain fill (Bittman et al.,2004).Study done by stammer et al.,2015 showed the Phosphorous tissue concentrations in maize leaves and plants, ranged between 2200 – 6900mg P kg-1 at V5-V6 early growth stage and 1000 - 4600 mg P kg-1 at R1 silking stage respectively.

Potassium

Potassium is available to plants as K⁺ and its uptake is optimum at between vegetative to silking stage and low at grain filling stage (Figure 2.1). It does not form part of any organic compound although it promotes metabolism through enzymatic activation, conversion of amino acids into proteins, conversion of sugars into energy storage compounds such as starch (Bittman et al., 2007). It also regulates water use in the plants as it controls the opening and closing of stomata, thus maintains electrical charges during photosynthesis. Through its role, it improves the size of grain and a seed hence improved quality of vegetable and fruits. Chlorosis/ scorching along leaf margins while the midrib remains green is a common deficiency symptom, which is first observed in older leaves due to high mobility of K⁺ in the plant(Uchida, 2000). Due to its requirement in photosynthesis, inadequate / lack of K, leads to slow/ stunted growth, delay of silk emergence and in some plants, lodging due to breakdown of internal stalk tissue and weak stems, are common. Potassium tissue concentrations in maize leaves and plants ranged from 8900 – 60700mg K kg-1 at V5-V6 early growth stage and 3200 -25600 mg K kg-1, at R1 silking stage respectively (Stammer, A. J., 2015).

Calcium

Calcium is available to plants as Ca^{2+} ions. It aids in the formation of the cell wall membrane as well as contribute to cell division, therefore plays a role in maintaining cell wall membrane permeability and integrity. It also activates growth-regulating enzymes, improves translocation of nutrients, root absorption and acts as a detoxifying agent through neutralization of acids (organic and inorganic) in plants(Bittman et al., 2007). Furthermore, it is essential for protein synthesis in peanuts and improves crop yields by reducing acidity.

Since the element is stable and hardly translocated, Ca deficiency is observed in young leaves in which tips of roots and young leaves turn brown and die(Uchida, 2000). Finally, due to its role in maintaining rigidity, deficiency leads to leaves sticking together at the margins causing tearing as the leaves expand. The stem structure may be weakened, buds blossoms fall prematurely, slowed growth of new leaves and at times younger leaves are rankled and cupped with the deterioration of terminal buds.

Figure 2.1: Different growth stages of a maize plant, vegetative (V) and reproductive (R) stages (Lee, C. (2007).

Magnesium

It is available as the divalent cation Mg²⁺; it is the main component of chlorophyll molecule and therefore plays a role in photosynthesis. It is a cofactor of many enzymatic reactions needed for the movement of phosphorus in the plant, as indicated by Calcino et al., 2000. It is involved in plant respiration, protein synthesis and assists in movement of sugar within the plant. Magnesium is a mobile element and interveinal chlorosis(Leaves appear striped, with yellowing and browning of leaf tips and edges) appearing on older leaves being the common deficiency symptom(Uchida, 2000). For maize, yellow stripes appear on leaf tissue with green veins. In extreme cases of deficiencies, younger leaves drop prematurely. Bittman et al., 2007 added that magnesium nutrient is mobile and easily translocated from older to younger tissues hence present at vegetative V stage (Figure 2.1)

Sulfur

In as much as it is considered a secondary nutrient; it is one of the nutrients that plays one of the major roles in the life circle of the plant. It absorbed through the root system into the plant as SO_4^{2-} ions. It is part of the amino acid cysteine and thiamine, therefore involved in protein synthesis. It is also a component of s-glycosides (mustard oils) particularly in oil - producing crops, glucosides and contribute to the characteristic odour in some plants. In addition, is it is a component of vitamin biotine and thiamine and a major constituent of enzymes involved in the formation of the chlorophyll molecule and aids in nitrogen metabolism (Jones Jr, 2012, (Gunes et al., 2008).Sulphur deficiency causes the leaf chlorosis-for maize plants, interveinal chlorosis is observed while for other plants like wheat, a whole plant becomes pale white and spotted leaves are observed in potatoes. These symptoms generally lead to thin stemmed plants, stunted and consequently yield is reduced. It is immobile in plants therefore cannot be easily translocated to young parts of the leave. Sulfur deficiency symptoms are often similar to those of phosphorus and nitrogen therefore cannot be diagnosed by mere visual observation of symptoms((Gunes et al., 2008).

Sodium

The plant absorbs sodium as monovalent Na⁺ ions, in most cases it's available as sodium chloride. It aids in metabolism and synthesis of chlorophyll. In some cases it performs the same role as potassium in the opening and closing of stomata thus improving water balance within the plant hence resulting cell expansion (Ed Bloodnick. 2018). When in the compound form sodium chloride (NaCl), it aids ionic balance within the cell and movement of water in and out of plant cells (osmosis) and maintains vegetative structures xylem tissues. Sodium deficiency is rare since in most cases it available in growing media that is water and soils (saline environments (Bloodnick, 1999). However the sodium deficiency symptoms exhibit appearance of Chlorotic blotches with necrotic spots on the margins or between the veins of the younger leaves and in some cases wilting of the plant may occur(Shone et al., 1969). At toxic levels necrosis or scorching appears on the leaf margins and tips. Deficiency occurs when Sodium concentration is below 2ppm while at a concentration above 70 ppm and concentration above 150 ppm, reverse osmosis occurs.

2.4.2 Study of heavy elements

Copper

Copper is available to plant as Cu^{2+} , and is essential for the synthesis and stabilization of chlorophyll, therefore involved in photosynthesis. It is a component of most enzymes thus plays key role in plants' physiological activities e.g. nitrate and carbohydrate metabolism, respiration, water permeability, disease resistance and reproduction (Regis, 1998 and Krämer, *et al.*, 2006); and is also part of the chloroplast protein called plastocyanin, hence forms part of the electron transport chain in the plant. It is moderately immobile as it binds with organic matter and rarely leaches (Miotto et al., 2014). Cu deficiency leads to stunted growth, chlorosis in younger leaves, occurrence of multiple sprouts at growing points resulting in bushy like appearance, defoliation and die back of twigs and stems. In cereals like grain heads may not form in severe deficiencies and the plant become disease prone (McCauley et al., 2009).Copper tissue concentration ranges from 50-250mgKg⁻¹ while concentration below $2mgKg^{-1}$ is considered critical (Aref et al., 2012).

Iron

Available to plants as Fe^{2+} or Fe^{3+} ions. However, Fe^{2+} is readily available and stable ion. Fe^{3+} is readily oxidized therefore forming complex compounds with bicarbonates, resulting in limited uptake by plant since it cannot be easily absorbed by the plant .It is essential for the synthesis as well as maintenance of chlorophyll in plants; formation of the enzyme responsible for plant metabolic activities (photosynthesis and respiration) and it is also a requirement in sulphate and nitrate reductions, and takes part in protein metabolism. Deficiency leads to interveinal chlorosis in younger leaves, and due to its role in the production of chlorophyll; the entire leaf base may become bleached and sometimes may extend to the whole plant. Despite its abundance in the earth's crust, it's the most limiting nutrient; due to its low solubility at alkaline PH environments(Aref, 2012).Study by (Hodges, 2010) showed that iron ear leaf concentration at initial silk ranges 21-250mg kg-1 and in comparison within other studies ,it is within the sufficiency ranges.

Manganese

Manganese is available as Mn⁺, Mn²⁺and Mn³⁺ and Mn⁴⁺. However, plants only take up manganese as Mn²⁺since its most stable and despite weak complexes; its dominant in tissues (Kabata-Pendias, 2011). Its concentrations however vary depending on the growth stage,

soil conditions and plant species. Manganese is part of the redox reactions and electron transport systems, as it is a metalloprotein structural component (Regis, 1998; Haluschak et al., 1998). It also participates in photosystem II where in plays a role in photolysis. In addition, Manganese plays the role of amino acid synthesis by enzyme activation as it activates phenylalanine ammonia–Lyase (PAL) of tricarboxylic acid cycle (Aref, 2011). Deficiency symptoms manifested by appearance of pale mottled leaves followed by greenish –grey specks at the lower base of younger leaves in monocots and necrotic spots also known as marsh spots on the cotyledons of legumes. Manganese deficiency has a negative impact on these crops by reducing dry matter production and yield, weakening structural resistance to pathogens, and reducing tolerance to drought and heat stress (Hakala et al., 2006). Aref, 2012 added that manganese sufficiency ranges in maize ear leaf maize at initial silk between 20 -150mg kg¹ Furthermore, he added that concentration below 15 mgKg⁻¹ is considered critically deficient and concentration above 200 mg kg⁻¹ is considered excessive or toxic.

Molybdenum

Available to plants as molybdate ions (MoO⁴⁻) ions. It is necessary for nitrate reductase and nitrogenase enzymes required for assimilation and fixation of nitrogen. It also regulates the microorganisms needed for the uptake of anions.

Mo deficiency makes the plants leaves roll inwards and becomes necrotic. Other effects of Mo deficiency include spots appearing at leaf margins as a result of nitrogen accumulation, flowering may be restricted and conversion of nitrogen to proteins reduced(Uchida, 2000). In maize, molybdenum deficiency leads to decreases leaf areas, shortens internodes.

In maize, reproductive tissues, molybdenum deficiency can alter the phenotypes in developing plant parts which include poorly developed stamens, delayed emergence of tassels, and reduced pollen grain development as a result of small anthers and eventually poor grain filing(Kaiser et al., 2005). A study carried by Campbell, 2000 that Molybdenum concentration of 0.1ppm at tasseling is considered critical, and sufficient at a concentration between 0.1-2.0ppm. Molybdenum is moderately mobile in plants and thus readily absorbed when present in soluble forms (Kabata-Pendias & Pendias, 2011).

Zinc

Zinc is absorbed as divalent cations Zn^{2+} which is common and most soluble cation in the soil and it is in this form utilized by plants (Alina Kabata-Pendias, 2010, Haluschak et al., 1998).

It plays a role as a metal component of enzymes (superoxide dimutase, carbonic anhydrase and RNA polymerase) for production of energy, protein synthesis and acts as growth regulator (Aref, 2012). In addition, it aids in moisture absorption along with potassium. It is effective in energy production in Krebs cycles therefore essential for crop production and optimal size of the fruit. Furthermore it plays a prominent role in internode elongation, nitrogen metabolism, chlorophyll synthesis, and aids in the plant resistance to biotic and abiotic stresses (Aref, 2011).

Deficiency symptoms include shortened internodes, interveinal chlorosis is observed especially midway between the margin and midrib, and small malformed leaves resulting in rosette symptoms in young growing cotyledons (Grundon, 1987).Zinc availability and uptake is affected by environmental and soil factors, and to some extend application of other nutrients. For example it decreases with increase in temperature and pH, and its uptake is inhibited by some metallic cations such as Fe^{2+} and $Cu2^{+}$, due to the same carriers for elements in plant roots. Aref, 2011 added that in addition to other researches done; analysis of maize ear leaf at silking stage zinc content were categorized as follows: less than 10 mg kg⁻¹ is considered deficient while a range of between 20-70 mg kg⁻¹ intermediate, a range of 71-100 high and concentration above100 mg kg⁻¹ is considered toxic. Zinc has intermediate mobility therefore it's uniformly distributed along the leaf (McCauley et al., 2009).

2.4 X-ray Fluorescence Spectrometry

X-ray fluorescence spectrometry (XRF) has opened a new window for non-consumptive, safer, faster and relatively accurate method. It works on the principle that X-rays are emitted from the element in a sample when irradiated with high energy X-rays, from an external source such as X-ray tube. Incident X-rays eject an electron from the orbital that surrounds the nucleus within an atom in the sample; creating a vacancy. These photoelectrons leave with a kinetic energy ($E-\phi$) which is normally the difference in energy between that of the incident particle (E) and the binding energy (ϕ) of the atomic electron. The vacancy left by

the ejected electron in the atom's electronic structure is then filled with an electron from a higher energy shell. A characteristic X-ray photon is released, with the same energy as the difference in binding energies of the two electron shells. The characteristic x-rays are distinct for each element, thus acting as a fingerprint for that element (Towett et al., 2013). Detection of characteristic x-rays and measuring its energy acts as the principle for determination of the element and specific electronic transition from which it originated (Jenkins, 1988).

The emitted characteristic x-rays reflecting various atoms/elements are transmitted to the SiLi detector, producing an energy spectrum. The intensities of these x-rays serve as the foundation for elemental quantitative analysis. The preamplifier converts the characteristic X-rays into a low-voltage pulse. The pulse amplitude which is proportional to the energy of the received x-rays is amplified by the main amplifier then converted into a digital signal. This information is stored in a multichannel analyzer according to its amplitude and finally formatted to an XRF spectral line (A. Gürol, 2008).

2.5 Instrumentation

HHXRF spectrometer was used during this study. The instrument is equipped with vacuum technology, which provides ultimate light element sensitivity. It has powerful laptop based analytical software such as ArtaxS1PXRF that enable spectra analysis, a life time analytical display, and customized filters designed to optimize analysis of specific element to fit the application. Combination of software parameter control and X-ray operations control programs (X-ray Ops) allows the user to control voltage and current of the X-ray tube (Bruker, 2014 and Nicholas et al.,2014). The spectrometer provides elemental data in a variety of matrices, and the obtained results can be easily downloaded into Microsoft Excel (or other spreadsheets), allowing for quick and easy statistical evaluations of elemental concentrations and standard errors.

The spectrometer has a silicon lithium drift detector -Si (Li), which has lower detection limits (David et al., 2014). When compared to digestion-based spectrometers, the use of monochromatic radiation and total reflection optics results in lower background noise, resulting in much higher sensitivities and a significant reduction of matrix effects (AfSIS, 2010). A technical specifications summary of HHXRF used in this study are as presented in the table 2.1.

X-ray tube	40Kv, 15µA, Rh target
Element range	Mg to Pu
Optics	Multilayer monochromatic, 17.5 keV
Detector, area, resolution	x-flash Silicon drift, 10 mm2, 145 eV (FWHM) at 100,000 cps
Carrier	Sample cups with propylene film
Sample station	Portable XRF window
Control	PC, data transfer via serial interface
Size, weight	30 x 10 x 28 cm, 2.04 kg
Power consumption	Maximum 150 W

Table 2.1: Technical specifications of the Tracer SD III portable XRF spectrometer

Voltage, current	15 to 40KeV \pm 10%; 25 to 55 μ A
Vacuum pump	Operated at pressure < 10 Torr
Power	Si-Li batteries, Battery charger, Ac adaptor
Operating software	Bruker S1PXRF, Artax, X-ray Ops
Operating Temperatures	+14 ⁰ F to 122 ⁰ F
Manufacturer	Bruker AXS Microanalysis GmbH

The advantage using HHXRF spectrometer for analysis is that; fast, cost effective, easy to use and can analyze all forms of sample matrices which includes but not limited to solids, liquids and biological samples. In addition the analysis is non-destructive that is there is no use of chemical reagents, thus minimum sample preparation (Riaño et al., 2016).

Furthermore, a single spectrum gives comprehensive details of the sample elemental composition (Rossel et al., 2006; Nocita et al., 2015). The method is cheaper compared to conventional acid digest methods, and its development has enabled on-site analysis. The instrument is compact, hence it can easily be relocated and does not require a large laboratory space for storage hence allow in situ and laboratory measurement (Argyraki et al., 1997). It has widely been used in the mining, metal alloy testing, medicine (e.g. in the analysis of heavy metals in blood and glands), soil exploration, environmental testing and in the analysis of toy and consumer goods (Ports and West, 2008; Marco et al., 1997). Moreover, it is the latest advancement of convenient, accurate and precise method for assessing micronutrient concentration in plants.

HHXRF can be a cost-effective way for direct analysis of foliar and soil samples, both in situ and in prepared form. Consequently, it can be a useful tool for routine testing or screening for diagnosing soil micronutrient deficiencies for crop, livestock and human health. A study by Nyambura et al. (2013), sort to determine to reliability and accuracy of handheld XRF in determining the total elemental content in soil samples, in comparison to total X-ray fluorescence spectroscopy (TXRF). The study showed that for most elements, the total elemental concentrations obtained using the HHXRF spectrometer were comparable to those recorded using the TXRF technique. However, slight underestimation

in the results was noted, hence the need for recalibration of the technique using a variety of soil materials. In addition, the study showed that the two techniques require minimal sample treatment, with better results being recorded for milled samples (< 50 microns). Therefore, proper calibration and sample preparation are necessary for optimal quantitative results.

In as much HHXRF has increased efficiency in terms of processing time compared to traditional methods, there are precautions to be taken when preparing samples for analysis. An example is the density of the sample in that, elements like Fe, their fluorescent energy have high penetration power therefore the density should be thicker.

Therefore, it is recommended that the thickness be approximately 4mm, and when scanning vegetation leaves are put together by clips to thicken the vegetation leaf surface perhaps 5 to 6 leaf layers (Weindorf et al. (2014).

Towett et al. (2015), carried out a study on elemental quantification of plant samples under different sample presentation modes such as analytical parameters, direct surface contact with the XRF window under vacuum conditions, sample loaded in a in a sample cup with a propylene film at the bottom, and analyzed without vacuum, as well as under sample analyzed with and without a filter. The highest accuracy and sensitivity for light elements i.e. Mg to P was reported under direct analysis on the surface of handheld XRF ($R^2 > 0.90$). It was further noted that S, Ca and K could be reliably determined without vacuum ($R^2 > 0.99$, 0.93 and 0.97 respectively. However, analysis without the aid of a vacuum was found to affect the lower limits of detection. Therefore, it can be concluded that the HHXRF technique is a cost-effective and faster way to provide plant data of sufficient accuracy for many applications.

McGladdery et al. (2018) used HHXRF to carry out an assessment on different vegetation samples (deciduous leaves, thatch, herbaceous plants, grasses and tree bark) collected from smelter-impacted area. Three scanning conditions of the samples were used i.e. field moist, oven dry, and powered. The optimal scanning conditions were developed relative to ICP atomic emission spectroscopy. Validation statistics indicated powdered samples as the optimal scanning condition, followed by field moist and oven dry in that order.

For instance, under field moist conditions, HHXRF could be used to effectively determine Cu and Zn, while under oven dry and pulverized condition, Pb, Fe, Cd, and Cu could be determined. Portable XRF thus proved to be a valuable for quick assessment of the elemental concentration in biological samples.

Handheld (Portable) XRF is clearly an effective light element analysis tool for nutritious crop management. A study by Russell (2015) tested the effectiveness of portable (handheld) XRF in analyzing light elements, Ca, S and K in soya beans.

Calcium measurement could not be determined directly using K α peak due to overlaps with the potassium K β peak. Furthermore, three different presentation modes of the samples were analyzed, that is, direct measurements with vacuum, use of sample cups with vacuum and use of sample cups without vacuum. Sensitivity for light elements was best using vacuum with direct contact. For elements heavier than sulfur, there was no significant difference in sensitivity.

CHAPTER THREE

MATERIALS AND METHODS

3.1 Sampling location

This study was carried out in maize farms located in Muguga Kiambu County, in Kenya's Central region (1.18^oS, 36.65 0E; Fig 3.1). The region lies within an altitude range of between 1800 to 2400m and characterized by high rainfall of 1000 mm per annum. The area is a representative of the cool and wet medium altitude regions in Kenya like Uasin Gishu, Trans-Nzoia and Nandi hills where mixed farming is one of the economic activities and maize as the main crop grown. They also have dark red colored loamy soils which are much sought after because of their productivity.

Figure 3.1: Geographical location of Muguga Kenya and sampling points.
3.2 Sampling design

A 50 m by 50 m grid was constructed over the site (250m by 250m) using off-set grid sampling pattern (Figure 3.3) giving a total of 25 plots. Sixteen sampling plots with maize plants within the sampling site were marked out, and two sampling points were identified within each plot giving a total of 32 sampling points. At each sampling point, maize leaves were collected within a 3M radius.

The offset grid pattern was selected over the conventional grid pattern because it would provide more information by allowing random sampling of healthy maize plants within the radius, thus representing the entire area of interest

Figure 3.2: Off-set grid sampling pattern (Richard and Gary, 2009).

3.3 Sampling

This purpose of this study was to determine the applicability of HHXRF in scanning maize leaves. The Most Recent mature leaves were sampled, the reason being; it's neither dull from age nor shinny green from immaturity hence best part of the leaf that represent the nutritional status of the plant up until the day of sampling. At each point, sampling was done at two-plant growth stages i.e. early growth and tasseling as described below.

3.3.1 Sampling at Early Growth stage

At this stage, Plants were approximately above 12 inches tall. Health plants were identified and the Most Recent Mature leaf (whole leaf) of 12 to16 plants were picked randomly. The reason for sampling at this stage is that it allows for a particular nutrient to be corrected in case results obtained from the tests show either a deficiency/toxicity.

3.3.2 Sampling at Tasseling stage

At this stage, maize leaf samples were collected in the same sampling points identified in the early growth stage. The Maize plants had approached flowering and fruiting and the ear leaf (leaf adjacent to the uppermost developing ear) of between 8 to 10 plants were sampled randomly per each sampling site. Ear leaf at this growth stage is the best indicator of the nutritional status of the plant. Sampling at this stage gives a perspective the nutrient condition of the maize plant before grain filling begins.

Careful sampling was done to ensure the effectiveness of plant analysis as a diagnostic tool. In this case, each leaf was removed by plucking downward (approximately an angle of $< 30^{\circ}$) as this allowed the leaf to cut at the node without damaging the plant. At each sampling point, leaves from health plants were collected randomly at each site, placed in clean zip lock bags, sealed and transported to the laboratory. The labelled 32 samples were kept at

temperatures of 4.4°C to retain the freshness of the leaves. Sample preparation and analysis was done at World Agroforestry Centre's (ICRAF) laboratories.

3.4 Preparation and Cleaning of sample holders

Polyethylene sample cups (open-ended) with 20mm internal diameter and snap on the ring were soaked in warm soapy water for 30 minutes and washed thoroughly to remove any dust/solid particles. This was followed by rinsing with double distilled water and spread on a tray for one hour to dry.

After that the cups were carefully wiped with acetone-soaked tissue paper. The 4μ m-(0.16 mil) thick X-ray polypropylene film (Mylar[®]) is laid on one of the open ends to about half the height and secured in position by a snap on ring.

Figure 3.4: Preparation of XRF sample cups

The cup was closed with a lid after sample was loaded.

3.5 Sample preparation

Samples were prepared in three different moisture conditions: Fresh, oven dried and powder (milled) forms.

3.5.1: Preparation of fresh samples

All the maize fresh leaf samples were cleaned with de-ionized water so as to be free from foreign substances such as dust particles, soil and residues as a result of foliar sprays, which may interfere with the results and air-dried.

The healthy leaf samples from each pack were selected randomly; divided equally into three parts Base (b), mid (m), apex (a) using a ruler and clipped in pairs. The mid rib (mr) was also removed from each of the leaf blades analyzed. The samples were then labelled ready for subsequent analysis.

Figure 3.5.1: Fresh leaves (a), divided leaf into leaf base-b, mid-m, apex-a and midrib-mr(c).

Fresh samples were stored in open ziplock bags and kept in a Refrigerator at 4^oC to maintain the moisture content.

3.5.2: Preparation of oven dried samples

The fresh samples above were transferred to brown khaki bags to hold samples from different sub-plots; and dried in an oven at 60°C(Fig 3.5.2) for 48 hours; they were then divided equally into three parts Base (b), mid (m), apex (a); these parts were clipped together ready for analysis. The mid-rib was also separated as above and prepared for analysis.

(a)

(b)

Figure 3.5.2: (a) Oven dried leaves and (b) leaf blades clipped together

3.5.3: Preparation of milled samples

From the oven dried (60°C) plant samples above; leaf blades were separated from the midrib and milled separately to pass 1mm sieve using Thomas-Wiley Laboratory Mill, a milling machine which consists of an all-steel interior with four rotating cutting blades, the samples were later passed through a McCrone micronizing mill, to give a fine (between 20-53µm), non-fibrous and homogenous powder (ICRAF, 2015).

a) Oven dried leaves b) milled leaves Figure 2Fig 3.5.3: (a) Leaves dried at 60°C and (b) milled leave samples.

3.6: Sample Analysis.

Leaf samples of different leaf parts i.e. apex, mid, base and mid rib, as well as different moisture content fresh, oven dried and milled samples, were analyzed for elemental content using a Bruker III Tracer SD portable(HHXRF). The samples were analyzed under two categories: Light elements analysis(Na,Mg,K,S,P) and heavy element analysis(Fe,Mn,Zn,Mo and Cu).

3.6.1: Instrument verification

Instrument performance was verified by scanning of Certified Reference Materials (CRM's) from National Institute of Standards and Technology (NIST 1515-Apple leaves, 1547-Peach Leaves, and 1575a), also quality control and quality assurance (QC/QA) was carried out using laboratory's internal standards prepared from prunus leaves (*prunus africana*), white cow peas (*vigna unguiculata*) and mango leaves (*magnifera indica*) sourced from local (Kenyan) laboratories.

3.6.2: Light element Analysis.

These are elements that are considered to have low excitation energies and therefore need ambient conditions e.g. use of a vacuum to improve their detection limits. Two spatula full (approximate 250mg) of the sample was deposited directly on the XRF window (the window should be clean and free of any oils, oxidation and any contaminants) and bombarded with X-rays produced from a Rhodium tube operated at an anode current of 25μ A and a voltage of 15 KeV, with the aid of a vacuum operated at <5 torr.

(a) **(b)** (c) Figure 3.6.2: a) Milled sample, b) fresh sample on the instrument window and c) HHXRF connected to a vacuum and IR sensor covered.

This was done with fresh leaf samples, oven dried samples, powdered samples placed directly on the instrument table. The window was covered in order to protect the IR (Infrared) sensor and analysis done. Each scan was done in duplicates for a period of 180 seconds and results reported as a mean of both replicates.

3.6.3: Heavy element Analysis.

These are elements with high atomic numbers and therefore their excitation energies are not affected by factors such as moisture content. For milled samples; the cups prepared above (3.4) was filled with approximately 5g (2/3 sample cup height) and tapped lightly to enable even distribution of the sample at the base.

Before analysis; the instrument was fitted with 1mlTi/12 mil Al filter (for bruker series, its yellow in color). This filter allows all the X-rays with energy range between 12KeV to 40 KeV to reach the sample and exciting the above elements efficiently. There is small or no sensitivity to elements below Calcium within this energy range.

(c)

The instrument was operated at a voltage of 40KeV, anode current of between 10-12µA, however, analysis was done in ambient air conditions (no vacuum) but with the use of a filter. A filter is designed to position x-ray energies above the absorption edges of particular elements of interest. Each scan was done in duplicates for a period of 60 seconds and results reported as a mean.

3.6.7 Data Analyses

Data collection and instrument control was carried out using S1PXRF software. In addition, Bruker spectra software ARTAX (7.4.6.1) Software was used to perform Bayesian deconvolution and qualitative analysis to correct for background counts, escape peaks, and simple elemental overlaps towards determining the net count rates per second and by extension the elemental concentrations.

Statistical analysis of data was conducted using MS Excel, to remove outliers, and present the acquired data in terms of means, standard deviation and concentration range. In addition statistical computing and graphic presentation of the data and Correlation in concentration levels between different leaf parts and growth stages was carried out using R(3.2.0) software with the MCMCpack package.

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Overview

This study was aimed at assessing the applicability of HHXRF spectrometer for direct tissue analysis for light and heavy elements in maize leaves. The findings on the applicability of the method using different sample presentation methods, leaf parts and different growth stages will be presented in this chapter.

4.2 Quality Control Data.

Instrument performance was verified by scanning of Certified Reference Materials (CRM's) from National Institute of Standards and Technology (NIST 1515-Apple leaves, 1547-Peach leaves), the measured values against the certified values were as shown in the table below:-

NIST 1515	-Apple leaves		
Element	Measured values(Mg/Kg)	Certified Value s(Mg/Kg)	% recovery
Ca	15333 ± 47	15260 ± 150	100.48%
Mg	2803.72 ± 70	2710 ± 80	103.43
K	16200.25 ± 101	16100 ± 200	100.62
Cu	56.7±1.5	56.4± 2.4	100.53
Mn	53.9±1.1	54.0± 3	99.81
Zn	12.52 ± 50	12.5±3	100.16

Table 4.1a: Measured elemental values and certified values for SRM NIST 1515 standard (mg/kg)

	NIST 1547Peach leaves		
Element	Experimental values(Mg/Kg)	Certified Value s(Mg/Kg)	% recovery
Ca	15035±500	15600±0.2	96.38
Mg	4075±100	4320±0.008	94.33
К	23935±75	24300±0.008	98.50
Cu	3.4±0.5	3.7±0.4	91.89
Mn	95±0.5	98±3	96.94
Zinc	18.2±1.0	17.9±0.4	101.67

Table 4.1b: Experimental and certified values of the SRM NIST 1547 standards (mg/kg)

From the results above (Table 4.1a and 4.1b), It is observed that the measured values are reproducible with the certified values of the NIST standards with percentage recovery ranging from 99.81% to 103.43% for NIST 1515 (Apple leaves) and a range of 91.89% to 101.67% for NIST 1515(Peach leaves).However, there was no significant difference in concentration between the two values (P > 0.05) in both standards. The reproducibility of the values therefore shows the validity of the method employed in this study.

In addition, quality assurance (QA) was also carried out by scanning laboratory's internal standards prepared from prunus leaves, white cow peas and mango leaves sourced from local (Kenyan) laboratories. This was done to demonstrate the capability and applicability of the HHXRF technique for the multi-elemental analysis of plant sample.

4.3 Results on different sample presentation methods.

In this study, the applicability of HHXRF under different sample presentation methods for plant samples was determined. Eleven elements consisting of light elements (Na, Mg, P, S, K, and Ca) and heavy elements (Zn, Cu, Fe, Mn and Mo) were analyzed in this assessment. Average elemental concentration obtained is shown in Table 2 and the same findings are presented in Figure 4.3.

Sample matrix	Na	Mg	Р	S	К	Ca	Mn	Fe	Cu	Zn	Мо
Fresh	8.77	383.85	100.66	146.7 9	6541.5 5	1008. 19	62.1 7	241. 01	11. 80	33.7 3	5.51
Oven dried	10.5 4	956.01	802.07	1055. 53	20550. 35	3224. 11	187. 06	599. 79	25. 76	40.2 8	7.57
Milled	43.7 4	3077.0 6	1741.4 0	1878. 53	37988. 77	5294. 68	98.7 6	253. 29	6.1 3	26.8 0	4.07

Table 4.2: Elemental concentration in mg/kg at different sample presentation methods

From the results (Table 4.2), milled samples gave higher concentrations for the elements: Na, Mg, P, S, K and Ca; as compared to concentrations in oven-dried samples. Comparatively, lower concentrations were noted in the fresh samples for the elements: Na, Mg, P, S, K, Ca, Mn and Fe. Work carried out by McGladder et al. (2018), on elemental assessment of different vegetative samples using Handheld XRF showed that milled samples gave comparatively higher concentration for most elements. This observation can be attributed to sample homogeneity during the milling process(Angelova & Gjorgjeska, 2022), thereby uniform distribution of the elements contained therein(Towett et al., 2016).However, there was no significant difference between elemental concentrations for both sample presentation methods (P > 0.05) as shown in Appendix 3.1 and 3.2.

From the results [Fig 4.3], it can be noted that milling of the samples leads to improved packing density in the samples holder and gives it a uniform geometry(Orlić et al., 2021). This in turn increases the probability of the X-ray beam interaction with the elements in the sample, hence intensity of the resulting characteristic X-rays increases. During the milling process, the samples are first oven dried; consequently, the moisture content in the samples, which was found to affect the accuracy of the XRF spectroscopy results (McGladdery et al., 2018; Boastos et al., 2012), is reduced hence improved efficiency.

For oven dried samples, higher mean elemental concentrations were recorded for Fe, Zn, Mo, Cu and Mn with a concentration of 599.8mg/Kg,40.3mg/Kg,7.6mg/Kg,25.8mg/Kg and 187.1mg/Kg respectively [Table 2]. Interestingly, these are heavy elements, while lighter elements were determined at higher concentrations in milled samples [Figure 4.3]. Additionally, the heavy elements did not exhibit significant variations for the different sample preparation methods compared to the lighter elements (P > 0.05) as shown in

appendix 3.2. The greatest challenge in analyses of oven-dried samples was where the samples tend to crumble, especially for the young leaves, thereby the geometry of the sample varies for different samples, which could affect the obtained results.

Analysis of fresh samples recorded the lowest elemental concentrations in all the light elements Na, Mg, P, S, K, Ca with a concentration of 8.8 mg/Kg, 383.9 mg/Kg, 00.7 mg//Kg, 146.8 mg/Kg, 6541.6 mg/Kg, 1008.2 mg/Kg respectively; and Fe;241 mg/kg exhibited the same as the only heavy element [Table 2] in the study. Findings Similar to this, were reported by (Bastos et al., 2012), where the moisture content was found affect the accuracy of the obtained result by over 20 %, with greater impact being reported for the light elements (Z < 30). The increased moisture content was found to counteract with absorption of x-ray lines by replacing higher atomic number in the line, hence absorbing more energy thus diminished characteristic x-ray peak areas.

Similar studies have found high moisture content to greatly affect the accuracy of HHXRF since it contributes to attenuation of the photons, thus a key source of errors in field measurements (Parsons *et al.*, 2013: Weindorf *et al.*, 2012; Kalnicky et al., 2001).

Generally, a concentration trend similar to one observed in this study where the concentration increased as follow: wet < oven dry < powder, was reported by Weindorf *et al.*, 2012 and Weindorf *et al.*, 2014. The magnitude of the increases was influenced by both the sample matrix and the element present.

4.4 Elemental concentration at different growth stages.

Variations in mean elemental concentration of essential nutrients at two growth stages was also considered in this study. Two stages were evaluated: early growth stage; when the maize plants were about 12 inches tall and during the tasseling stage i.e. the maize crop approached flowering and fruiting (Figure 3.3). The obtained results are presented in Figure 4.4, with Table 3 giving the overall mean.

From the results[Fig 4.4]; it can be observed that, for light elements; higher concentrations were obtained for P, K and Ca in the early growth stage, For example phosphorous recorded the highest concentration of $1038 \text{mgkg}^{-1} \pm 174 \text{mgkg}^{-1}$ compared to 791mg/kg^{-1} at tussling stage, potassium recorded a concentration of 22994mg/Kg against 20409.37mgKg at tussling. While Na and Mg showed an increasing concentrations from early to tussling growth stages. For example Magnesium recorded the lower concentration 1440.878mgkg⁻¹ $\pm 174 \text{mgkg}^{-1}$ of compared to 1551mg/kg^{-1} at tussling stage. Similar studies was found by Borges et al.,2020, where mean adequate concentration for plant analysis was found to be high in in Calcium 81% and 90% for magnesium (Mg).

The high K and P concentration at early growth stage could be attributed to application of phosphatic fertilizers during planting and its requirements for root development and synthesis of ATP during early growth period (Hodges., 2010).

Regression analyses showed that there was no significant difference in micronutrient concentration between the two seasons (P > 0.05) as shown in Appendix 1. On the other hand sodium and magnesium were found to increase with age [Figure 4.4].

Element	Stage 1(concentration mg//kg)	stage 2(concentration mg//kg)			
Mn	131.30	109.42			
Fe	414.34	364.59			
Cu	14.75	14.41			
Zn	21.20	36.23			
Мо	5.47	5.80			

Table 4.3: Heavy Elemental concentration at two growth stages.

[Table 3] presents the mean heavy elemental content in maize leaf at different growth stages; early growth and during the tasseling stage. Mn and Fe exhibited lower mean concentrations in maize leaves at tasseling stage. For example, a mean Fe concentration of 414 ± 35 mg kg⁻¹ was reported during early growth compared to 364 ± 35 mg kg⁻¹ at the tasseling stage, on the contrary zinc exhibited increasing concentration of 21.20mg/Kg and 36.23 mg/Kg was recorded at early and tussling stages respectively. Bake et al. (2016) noted a similar trend in Zn concentration, where the Zn content in the leaves was found to increase with age. This observation was attributed to increased adsorption capacity by the plant as it grows. The current findings are in agreement to those made by Grzebisz at al. (2008) and the study conducted by Subedi and Ma, (2005), where an intensive adsorption of most mineral nutrients, such as zinc, Copper and Manganese occurred during the tasseling phase.

Copper and Molybdenum were uniformly distributed across the two seasons .The current findings are in agreement(except Mn) to those made by Grzebisz at al. (2008) and the study conducted by Subedi and Ma, (2005), where an intensive adsorption of most mineral nutrients, such as zinc, Copper and Manganese occur during the tasseling phase.

Plant leaves have been used as an indicator of plants nutritional status and in assessment of plants response to nutrient supplementation (Balabanova et al., 2015; Prinzenberg et al., 2010). In this study, different parts of maize leaf sample were analysed to assess nutrient content concentration. This included leaf base (b), middle part of the leaf (m), leaf apex (a), midrib (mr), and a stack of 5 leaves together (th).

In addition, concentrations at either side of the leaf sample i.e. upper (1) and lower (2) were evaluated. Essential nutrients discussed above were considered and their variation between different leaf parts determined.

Figure 4.6 presents K concentrations at different parts of the leaf. The highest mean concentration was observed at the midrib part at $27334 \pm 1060 \text{ mg kg}^{-1}$, with the apex recording the lowest mean at $14686 \pm 422 \text{ mg kg}^{-1}$. A decreasing trend in K concentrations was realized towards the apex. For instance, while $19657 \pm 6059 \text{ mg kg}^{-1}$ was recorded at the base of the leaf, $17327 \pm 4438 \text{ mg kg}^{-1}$ and $14686 \pm 4227 \text{ mg kg}^{-1}$, were recorded for the middle part and the leaf apex respectively. According to Kaiser et al. (2013), the expected K concentration range for corn ear leaves is 17000 to 25000 mg kg^{-1} . The mean values obtained in this study fall within this range an indication that the maize plant in the study area meet its K nutritional requirements. Potassium plays an important role in the photosynthesis process, activation of enzymes in biochemical reactions, water and nutrient transportation, starch and protein synthesis and stomatal activities (Rogiers et al., 2017; Gao et al., 2018; Wang et al., 2013).

Calcium is an essential micronutrient in plants that plays a structural role in cell wall and membranes, in addition to activation of enzymes (Chen et al., 2018; White & Broadley, 2003). According to Kaiser et al. (2013), the expected Ca concentration range for a healthy maize plant is 400 to 10000 mg kg⁻¹. In this study, Ca concentrations were determined in this range for all the leaf parts analyzed, ranging from a high of 3766 ± 198 mg kg⁻¹ at the midrib to a low of 2660 ± 970 mg kg⁻¹ at the leaf base (Figure 4.7). The Ca concentrations were reported by

Kovacevic (1994), at a range of 210 to 590 mg kg⁻¹. The huge difference could be due to difference in soil medium on which the plant was grown and fertilizers applied.

Figure 4.7: Calcium content in different parts of maize leaf samples.

Figure 4.8 presents the Cu concentrations obtained in this study. The lowest Cu concentrations were determined in the midrib (9 \pm 3 mg kg⁻¹), contrary to the trend observed for Ca and K. In addition, Cu appeared to be uniformly distributed in the leaves, where no significant difference was noted between the base, (30 \pm 4 mg kg⁻¹), middle (31 \pm 3 mg kg⁻¹) and the apex (27 \pm 4 mg kg⁻¹) with (P > 0.05) as shown in appendix

Figure 4.8: Copper content in different parts of maize leaf samples.

The Cu content in maize leaves in the study area is higher than the Cu concentration range reported by Kaiser et al. (2013) at 6 to 20 mg kg⁻¹. The leaf Cu concentration values were also above the normative values of 5 to 20 mg \cdot kg⁻¹ in flowering maize as reported by Schulte and Kelling, 2000.

In maize plant, Fe has been found to be part of the chlorophyll molecule, which promote healthy green foliage and improve yield and grain quality. Its deficiency results in striping between the veins, running the entire length of the leaf and leaf chlorosis (Tako et al., 2015; Ancuceanu et al., 2015).

In this study, the highest mean Fe concentration was determined at the apex part of the leaf at $400\pm 23 \text{ mg kg}^{-1}$, while the lowest levels being determined at the midrib ($200 \pm 11 \text{ mg kg}^{-1}$) as shown in Figure 4.9. There was no significant difference (P > 0.05) in Fe concentrations among the apex, middle part and the leaf base (Appendix 2). A similar study by Kaiser et al. (2013), determined the Fe content in maize crop at a range of 50 to 350 mg kg⁻¹, values that are significantly lower than those observed in this study. A study carried by (Galgallo et al., 2014)) on elemental content in soils from the same study area(Muguga) showed a similar trend of high Iron content of 5.6% compared to worldwide study of 3.8% (Kabata-Pendias, 2010). This difference could arise from concentration difference in growth medium, whereby high Fe content has been reported in Kenyan soils (Muli et al., 2017; Akenga et al., 2014).

Figure 4.9: Iron content in different parts of maize leaf samples.

In this case, the characteristic soil type found in Kenyan central highlands is typically Nitisols which is well characterized by high Iron concentration (Akenga et al., 2014).

Figure 4.10 presents trends in Mn content at different parts of maize leaf. Generally, the apex contained higher Mn content at $105 \pm 28 \text{ mg kg}^{-1}$, followed by the middle part at $92 \pm 24 \text{ mg kg}^{-1}$, and $88 \pm 27 \text{ mg kg}^{-1}$ at the base while the midrib recorded the lowest concentration. The Mn values in this study are within the sufficient range reported by Kaiser et al. (2013), at a range of 20 - 250 mg kg⁻¹.

Gaj et al. (2016) obtained comparable Mn concentrations in maize ear leaf, in a study to assess the impact of P and K fertilizers on Mn concentrations in maize. In addition, the Mn

concentration was found to increase significantly in all maize parts after fertilizer application, with the highest concentrations being reported in the leaves.

Figure 4.10: Manganese content in different parts of maize leaf samples.

Zinc is an essential micronutrient in plants. In this study, a mean concentration of between 28 to 44 mg kg⁻¹ was reported. The lowest mean Zn levels were determined at the midrib, while the highest at the apex (Figure 4.11). However, regression analyses showed that there was no significant difference between different parts of the maize leaf.

The Zn content in this study fall within the concentration range reported by Kaiser et al. (2013), for a healthy corn ear leaf at between 20 to 70 mg kg⁻¹. In addition, these levels can be considered sufficient based on a study by Zhang et al. (1991) that reported 20 mg kg⁻¹ in tissues as the threshold Zn concentrations in plants. Some of the main functions of Zn in plants include the activation of enzymes involved in protein synthesis, the formation of chlorophyll and carbohydrates, the conversion of starches to sugars, and the formation of auxins that promote stem elongation and growth regulation. Wronska et al. (2007), showed that good nutrition of maize with zinc could increase nitrogen and phosphorous absorption efficiency and consequently lower fertilization costs.

Figure 4.11: Average Zn content in different parts of maize leaf samples

Mo is a vital essential trace element in human diet. From the study, a concentration range of 5 to 7 mg kg⁻¹ was reported as displayed in Figure 4.12. The apex recorded a relatively higher amount as compared to the other parts of the maize leaf with a mean concentration of 7.2 mg kg⁻¹. The values reported in this study is slightly above the global range known to be 1 to 2 mg kg⁻¹ (Smith et al., 1997). This could to be attributed to the high levels in the soils (Kabata-Pendias and Pendias, 2011). There was no significant difference between the concentrations of Mo in different parts of the maize (P > 0.05) as shown in Fig 4.18 and Appendix 2. Alkaline soils, wet environmental conditions and high organic matter content has also been linked to the high levels of Mo in the plants as per Bodi et al. (2015), Muguga being a relatively wet highland region with a mean temperature of 17.6^oC; therefore climatic conditions could be the major contributor of high molybdenum content (Mwendia., et al.,2017). A similar study conducted by Brennan and Bolland, (2007) on spring wheat (*Triticum aestivum* L.) and reported total available Mo at 0.07 mg kg⁻¹.

P is known to play a very crucial role in maize plants. It assists the plant to withstand low temperature and low levels of water in its system. From the study, a concentration range of 493 to 647 mg kg⁻¹was reported as depicted by Figure 4.13. Apex part of the plant recorded high levels of Phosphorous as compared to the other parts of the plant. This shows that, the apex part of the plant bioaccumulate more P than other parts due to structural differences of the leaf. However, there was no notable difference in the concentration of the Phosphorous in different parts of the leaves as per the T-test (P > 0.05) as shown in Appendix 2. Different crops are known to bioaccumulate Phosphorous that varies from one part of the plant to another under a given climatic, land and soil management conditions (Kabata-Pendias and Pendias, 2011).

Figure 4.13: Phosphorous content in different parts of maize leaf samples.

Sulphur is a major nutrient that is required for plant growth and plays an important role in oil synthesis and chlorophyll formation. The recommended global range of Sulphur in plants is 1000 mg kg⁻¹ to 5000 mg kg⁻¹ (Sutar et al., 2017). From this study, an overall concentration range of 428 mg kg⁻¹ to 5630 mg kg⁻¹ was found. High concentrations of Sulphur were reported at the leaf base and lowest concentration being founded at the midrib. There was a significant difference in the amounts of Sulphur in the leaf base and the midrib (P > 0.05) with no notable difference being observed in other parts of the leaf (P >0.05). The variations could be associated with the structural differences leading to distinct bioaccumulation capabilities of Sulphur. Bioaccumulation of the element by the plants relies on the concentration levels of the element in the soil, variety and parts of the plant (Kabata-Pendias and Pendias, 2011). Sutar et al. (2017), did a comparative study on the maize where a concentration of 60 kg ha⁻¹ of Sulphur was reported.

Na is a necessary element that is absorbed by the maize plant from the soils and water through the process of osmosis. From the study, a concentration range of 5.9 to 20.3 mg kg⁻¹ was observed. Highest concentrations of Na were recorded at the midrib part of the leaf with minimal values being observed in the leaf mid. However, there was no significant difference between the concentrations of Na in different parts of the leaves considered in the study (P > 0.05).

Figure 4.15: Sodium content in different parts of maize leaf samples.

From the analyses carried out the results obtained when a stack of five leaves put together, did not change any concentration values for all the elements.

4.4: Correlation of the elemental concentration in different methods and parts of the leaf.

4.4.1 Correlation of the concentration of light elements in different sample presentation Methods.

Correlation analysis was conducted on the light elements under distinct methods and results presented in fig 4.16. Sodium was picked to represent the light element category. From the results, Na in fresh and oven dried samples was found to be weak with a value of $R^2 = 0.004$ (Fig 4.16a) while the correlation between the Na in fresh against milled samples was found to be $R^2 = 0.03$ (Fig 4.16b). There was no observed correlation between the Na in oven dried and milled samples with $R^2 = 0.00$ (Fig 4.16c). Generally, a poor correlation was recorded for Na in the three methods considered in the study.

b)

c)

4.4.2 Correlation of the concentration of heavy elements in different sample presentation Methods.

Copper was picked to represent heavy elements. From the results; $R^2 = 0.49$ was reported for the correlation between the concentrations of Cu in the fresh against the oven dried samples. There was no correlation between the concentrations of Cu in fresh against the milled samples ($R^2 = 0.00$). For the milled against the oven dried samples a correlation of $R^2 = 0.01$. The poor correlation for the low and high Z elements could be attributed to the differences in the sample structure, which tends to affect the distribution of the elements in the maize plant (Fig 4.17)

a)

Figure 4.17. Correlation of Cu in different sample presentation Methods.

4.4.3 Correlation of the concentration of elements in different parts of the maize leaf.

Correlation analysis in different parts of the plant were conducted and the following results were recorded in Fig 4.18. The correlation in most of the elements between the leaf base and leaf mid; leaf base and midrib were found to be strongly correlated with $R^2 = 0.998$ (Fig

4.18 a) and $R^2 = 0.998$ (Fig 4.18e) while the correlation between elements in the leaf base and the apex; leaf base and midrib was found to be positively correlated with $R^2 = 0.87$ (Fig 4.18c) and $R^2 = 0.7$ (Fig 4.18b) for all the elements under study.

a)

c)

Figure 4.18. Correlation of the elements in different parts of the maize leaves.

A strong correlation was also reported between the elements in leaf mid and the midrib with $R^2 = 0.73$ (Fig 4.18 d). For leaf mid vs the apex $R^2 = 0.89$ (Fig 4.18f) was observed rom the results presented, a strong positive correlation was reported in overall for the elements in different parts of the leaves. That could be attributed the similarities in formation factors of the leaf. The sampling technique used also could be linked to the observed relationship between the overall elements in distinct parts of the plant.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, applicability of portable XRF under different sample presentation methods for maize plant samples was determined. For most elements (Na, Mg,P,S,K and Ca) recorded higher concentrations in milled samples, as compared to concentrations in fresh and ovendried samples, although no significant difference (P > 0.05) was realized between the three methods. On the other hand, significantly lower concentrations were noted in fresh samples, which also recorded a poor correlation(R=0.03) for the elements: Na, Mg, P, S, K, Ca, Mn and Fe considered in the study. The heavy elements (Fe, Zn, Mo, Cu and Mn) did not exhibit significant variations for the different sample preparation methods in comparison with the lighter elements with P > 0.05.

The mean elemental content in maize leaf at different growth stages that is; early growth stage when the maize plant was 12 inches tall and during the tasselling stage i.e. when the maize plant approached flowering and fruiting were determined. Generally, Potassium (K), Manganese (Mn), Iron(Fe), Calcium(Ca), and Phosphorous (P) recorded higher concentrations at the early growth stage; on the other hand, Zinc(Zn),Sodium(Na), and Magnesium(Mg) exhibited high concentrations at tasseling stage while Copper and molybdenum concentrations remained constant on both seasons. However, regression analyses showed that there was no significant difference in nutrient concentration between the two seasons. The high K and P concentration at early growth stage could be attributed to application of phosphate or NPK fertilizers during planting period.

In this study, different parts of maize leaf sample i.e. the leaf base (b), middle part of the leaf (m), leaf apex (a), midrib (mr), and a stack of 5 leaves together (th), were analysed for elemental content. Different concentration trends were obtained for different elements. There was decreasing trend from leaf base to the apex in potassium (K), Phosphorous (P) and Sulphur(S); these are nutrients required by the plant at the early stage of development in addition to nitrogen. A reverse trend was realized in Calcium, Iron, Manganese, Zinc and Sodium, while Copper and Molybdenum exhibited a uniform concentration along the maize leaf. In addition Potassium, Calcium and magnesium recorded the highest concentration at midrib (mr) compared to other parts of the leaf; it can be noted that these are elements that

play structural roles in the plant e.g. K controls the opening and closing of the stomata, therefore found mostly in xylem tissues

Generally the study was able to identify suitable matrices for analysis of particular nutrients, in this case; all elements and in particular light elements can be analysed comfortably in milled form. Additionally, heavy elements can be analysed in oven dried form, while there is a challenge in elemental analysis of fresh samples. Furthermore the study was also able to demonstrate different nutrients and their stages of development that are absorbed, also their movement along the maize leaf. Therefore the main objective of assessing the applicability of HHXRF for maize plant tissue analysis was successful.

5.2 Recommendations

- From the study, the precision between subsequent runs was poor probably due to sample inhomogeneity and differences in sample matrix, density and attenuation.
 More studies need to be carried out to come up with a standard method.
- II. Plant nutrient mainly come from soil reserves. It is therefore necessary to carry out correlation studies between soil nutrient status and respective content in plants grown therein as well as in relation to crop productivity.
- III. There is need to test applicability of the technique on different crops and sample matrices.
- IV. This study was carried out in the laboratory set up, therefore there is need to carry out analysis in the farm and compare the results obtained in the lab from those in the field.
- V. There also need to collect samples from a different farm, since Muguga is more of research farm

REFERENCES

Afsis 2012 decline of agricultural production in Africa. (n.d.). Retrieved June 2019.

Angelova, S., & Gjorgjeska, B. (2022). The Role Of Cannabis Flower Sampling In Quality Control In Medical Cannabis Industry: *International Journal*, *53*(4), 683-686

Akenga, P., Salim, A., Onditi, A., Yusuf, A., & Waudo, W. (2014). Determination of selected micro and macronutrients in sugarcane growing soils at Kakamega North District, Kenya. *IOSR Journal of Applied Chemistry*, 7(7), 34–41.

Ancuceanu, R., Dinu, M., Hovaneţ, M., Anghel, A., Popescu, C., & Negreş, S. (2015). A survey of plant iron content—A semi-systematic review. *Nutrients*, 7(12), 10320–10351.

Aref, F. (2011). Zinc and boron content by maize leaves from soil and foliar application of zinc sulfate and boric acid in zinc and boron deficient soils. *Middle-East J. Sci. Res*, 7(4), 610–618.

Aref, F. (2012). Evaluation of application methods and rates of zinc and boron on nitrogen, phosphorus and potassium contents of maize leaf. *Journal of Plant Nutrition*, *35*(8), 1210–1224.

Argyraki, A., Ramsey, M. H., & Potts, P. J. (1997). Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. *Analyst*, *122*(8), 743–749.

Aylikci, N. K., Oruc, O., Bahceci, E., Kahoul, A., Depci, T., & Aylikci, V. (2022). Preparation of Sample for X-Ray Fluorescence Analysis. *X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications*, 91–11

Balabanova, B., Stafilov, T., & Bačeva, K. (2015). Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas. *Journal of Environmental Health Science and Engineering*, *13*(1), 2.

Bastos, R. O., Melquiades, F. L., & Biasi, G. E. V. (2012). Correction for the effect of soil moisture on in situ XRF analysis using low-energy background. *X-Ray Spectrometry*, *41*(5), 304–307.

Bittman, S., Swift, M. L., Hunt, D. E., & Kowalenko, C. G. (2007). The effect of formulation and amount of potassium fertilizer on macromineral concentration and cation-anion difference in tall fescue. *Journal of dairy science*, *90*(2), 1063-1072.

Bityutskii, N., Yakkonen, K., & Loskutov, I. (2017). Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. *Genetic Resources and Crop Evolution*, 64(8), 1955–1961.

Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., De Onis, M., Ezzati, M., Mathers, C., Rivera, J., Maternal, & Group, C. U. S. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. *The Lancet*, *371*(9608), 243–260.

Bloodnick, E. (2018). "Copper in crop and plant nutrition." *Handbook of copper compounds and applications* (1997): 203-229.

Calcino, D. V., Kingston, G., & Haysom, M. (2000). Nutrition of the plant. *Manual of canegrowing. Brisbane: Bureau of Sugar Experiment Stations*, 153-93.

Campbell, C. R., & Plank, C. O. (2000). Foundation for practical application of plant analysis. *Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States*, 1.

Dalipi, R., Marguí, E., Borgese, L., & Depero, L. E. (2017). Multi-element analysis of vegetal foodstuff by means of low power total reflection X-ray fluorescence (TXRF) spectrometry. *Food Chemistry*, *218*, 348–355.

Evans, N., & Inglesby, T. (2019). Biosecurity and public health ethics issues raised by biological threats. In *The Oxford Handbook of Public Health Ethics*.

Ezeaku, P. I., Omeje, J. C., & Ezeh, A. (2013). A model application to assess resource use efficiency for maize production in soils of North Central Nigeria: Counseling implications for sustainable land use optimization. *Journal of Natural Sciences Research*, *3*(10), 1-11.

Gaj, R., Bąk, K., & Budka, A. (2016). Copper and manganese acquisition in maize (Zea mays L) under different P and K fertilization. *Biometrical Letters*, *53*(1), 21–36.

Galgallo, A., Gatari, M., Keskinen, R., Esala, M., Shepherd, K., & Karuga, S. (2014). Total and Extractable Trace Elements in Soil, 160–160.

Gao, X., Zhang, S., Zhao, X., & Wu, Q. (2018). Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. *PloS One*, *13*(7), e0200903.

Ghosh, U., Chatterjee, A., & Bremer, E. (2018). Determining the Moisture and Plant Effect on Nutrient Release, and Plant Nutrient Uptake Using Ion Exchange Resin Membrane. *Communications in Soil Science and Plant Analysis*, *49*(7), 782–790.

GoK, Government of Kenya, (2011). National Food and Nutrition Security Policy, (pp.11-40). Nairobi, Kenya Agricultural Sector Coordination Unit. www.ascu.go.ke

Grundon, N. J., Edwards, D. G., Takkar, P. N., Asher, C. J., & Clark, R. B. (1987). Nutritional disorders of grain sorghum, *No.2, IS8N 0 949511 33 1, 1-97*.

Grzebisz, W., Wronska, M., Diatta, J. B., & Dullin, P. (2008). Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. *Journal of Elementology*, *13*(1), 17-28.

Guerra, M. B., Adame, A., Almeida, E. de, Brasil, M. A., Schaefer, C. E., & Krug, F. J. (2018). In situ determination of K, Ca, S and Si in fresh sugar cane leaves by handheld energy dispersive X-Ray fluorescence spectrometry. *Journal of the Brazilian Chemical Society*, *29*(5), 1086–1093.

Guerra, M. B. B., de Almeida, E., Carvalho, G. G., Souza, P. F., Nunes, L. C., Júnior, D. S., & Krug, F. J. (2014). Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials. *Journal of Analytical Atomic Spectrometry*, *29*(9), 1667–1674.

Gunes, A., Inal, A., Bagci, E. G., Kadioglu, Y. K., & Eraslan, F. (2008). Variations in essential and non-essential element composition and yield of silage corn fertilized with sulfur. *Journal of Plant Interactions*, *3*(3), 181–188. https://doi.org/10.1080/17429140701799646

Hallmark, W., & Beverly, R. (1991). An update in the use of the diagnosis and recommendation integrated system–review. *Journal of Fertilizer*, (8), 74-88.

Haluschak, P., Eilers, R. G., Mills, G. F., & Grift, S. (1998). *Status of selected trace elements in agricultural soils of southern Manitoba* (No. A54-8, p. 3). Technical Report 1998-6E Land Resource Unit, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada Technical Bulletin 1998-6E Cat.

Hodges, S. C. (n.d.). NC Certified Crop Advisor Training. 75.

Hodges, S. C. (2010). Soil fertility basics. *Soil Science Extension, North Carolina State University*.

Jenkins, R. (1999). X-Ray Fluorescence Analysis. *X-ray Characterization of Materials*, 171-209.

Jerneck, A., & Olsson, L. (2013). More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. *Journal of Rural Studies*, *32*, 114–125.

Jones Jr, J. B. (2012). Plant nutrition and soil fertility manual. CRC press.

Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC press.

Kabata-Pendias, A., & Pendias, H. (2011). *Trace elements in soils and plants. Boca Raton: CRC*. Taylor & Francis Group.

Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T., & Tyerman, S. D. (2005). The Role of Molybdenum in Agricultural Plant Production. *Annals of Botany*, *96*(5), 745–754. https://doi.org/10.1093/aob/mci226

Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. *Journal of Hazardous Materials*, *83*(1–2), 93–122.

Khan, Z. R., Midega, C. A. O., Pittchar, J. O., Murage, A. W., Birkett, M. A., Bruce, T. J. A., & Pickett, J. A. (2014). Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *369*(1639), 20120284–20120284. https://doi.org/10.1098/rstb.2012.0284

Kihara, J., Huising, J., Nziguheba, G., Waswa, B. S., Njoroge, S., Kabambe, V., Iwuafor, E., Kibunja, C., Esilaba, A. O., & Coulibaly, A. (2016). Maize response to

macronutrients and potential for profitability in sub-Saharan Africa. *Nutrient Cycling in Agroecosystems*, *105*(3), 171–181.

Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., ... & Smies, M. (2008). Long-term global availability of food: continued abundance or new scarcity?. *NJAS: Wageningen Journal of Life Sciences*, *55*(3), 229-292.

Kovačević V. (1994). The ear-leaf percentage of calcium and magnesium in maize inbred lines and their diallel progeny. Theoretical and Applied Genetics, 68(6), 521 - 523.

Krämer, U., & Clemens, S. (2006). Functions and homeostasis of zinc, copper, and nickel in plants. *Molecular biology of metal homeostasis and detoxification: From microbes to man*, 215-271.

Lokuruka, M. N. I. (2020). Food and Nutrition Security in East Africa (Kenya, Uganda and Tanzania): Status, Challenges and Prospects. In *Food Security in Africa*. IntechOpen. https://doi.org/10.5772/intechopen.95036

Loneragan, J. F. (1996). Diagnosis of Nutrient Disorders and their Management. In *ACIAR conference Paper* (pp. 10-18). Australian Centre for International Agricultural Research.

Maina, D., Munene, R. W., & Akundabweni Shadeya, L. M. (2014). X-Ray Fluorescence-Analyzed Mineral Micronutrient Density Variation Among Kenyan Local Vegetables. *Sustainable Agriculture Research*, *3*(2), 56-68

Malavolta, E.,Reis, A. R., Favarin, J. L., Júnior, J. L., & Moraes, M. F. (2006). Photosynthesis, chlorophylls, and SPAD readings in coffee leaves in relation to nitrogen supply. *Communications in soil science and plant analysis*, *40*(9-10), 1512-1528.

McCauley, A., Jones, C., & Jacobsen, J. (2009). Plant nutrient functions and deficiency and toxicity symptoms. *Nutrient Management Module*, *9*, 1–16.

McGinnis, M., Stokes, C. E., & Cleveland, B. (2012). *NCDA & CS Plant Tissue Analysis Guide*. Plant/Waste/Solution/Media Analysis Section, Agronomic Division, NC.
McGladdery, C., Weindorf, D. C., Chakraborty, S., Li, B., Paulette, L., Podar, D., Pearson, D., Kusi, N. Y. O., & Duda, B. (2018). Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. *Journal of Environmental Management*, *210*, 210–225.

Miotto, A., Ceretta, C. A., Brunetto, G., Nicoloso, F. T., Girotto, E., Farias, J. G., Tiecher, T. L., De Conti, L., & Trentin, G. (2014). Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. *Plant and Soil*, *374*(1), 593–610. https://doi.org/10.1007/s11104-013-1886-7

Mna, S. (n.d.). Essential Plant Nutrients, Functions and their Deficiency Symtomps. Retrieved July 2, 2019, from https://www.academia.edu/11335660/Essential_Plant_Nutrients_Functions_and_their_ Deficiency_Symtomps

MOH, K. (2012). *National Nutrition Action Plan 2012–2017*. Nairobi: Kenya Ministry of Health.

Motsara, M. R., & Roy, R. N. (2008). *Guide to laboratory establishment for plant nutrient analysis*. Food and Agriculture Organization of the United Nations.

Mourão Filho, F. D. A. A. (2004). DRIS: Concepts and applications on nutritional diagnosis in fruit crops. *Scientia Agricola*, *61*, 550-560.

Muli, J., Gachohi, J., & Kagai, J. (2017). Soil iron and aluminium concentrations and feet hygiene as possible predictors of Podoconiosis occurrence in Kenya. *PLoS Neglected Tropical Diseases*, *11*(8), e0005864.

Mwendia, S. W., Yunusa, I. A. M., Sindel, B. M., Whalley, R. D. B., & Kariuki, I. W. (2017). Assessment of Napier grass accessions in lowland and highland tropical environments in East Africa: Productivity and forage quality. Experimental Agriculture, 53(1), 27–43.

Nabi, G., Rafique, E., & Salim, M. (2006). Boron nutrition of four sweet pepper cultivars grown in boron-deficient soil. *Journal of Plant Nutrition*, *29*(4), 717–725.

Nicholas, M., & Manti, P. (2014). Testing the applicability of handheld portable XRF to the characterization of archaeological copper alloys, *13*, *1-19*.

Nyambura, M., Towett, E. K., Nyandika, H., Chacha, R., Shepherd, K. D., & Gatari, M. J. (2013). Applicability of hand-held X-ray fluorescence analyser for rapid characterisation of soil elemental compositions. *Joint Proceedings of the 27th Soil Science Society of East Africa and the 6th African Soil Science Society Conference*.

Organization, W. H. (2002). *The World Health Report 2002: Reducing Risks, Promoting Healthy Life*. World Health Organization.

Orlić, J., Gržetić, I., & Ilijević, K. (2021). Effect of sample preparation procedure on standardless wavelength dispersive X-ray fluorescence analysis of plant samples. *Spectrochimica Acta Part B: Atomic Spectroscopy*, *184*, 106258.

Parks, S. E., Irving, D. E., & Milham, P. J. (2012). A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. *Scientia Horticulturae*, *134*, 1-6.

Parliamentary Service Commission Medium Term Plan 2018.

Parsons, C., Grabulosa, E. M., Pili, E., Floor, G. H., Roman-Ross, G., & Charlet, L. (2013). Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. *Journal of Hazardous Materials*, 262, 1213–1222.

Polat, R., Gürol, A., Ekinci, N., Çak, C., Bastug, A., Budak, G., & Karabulut, A. (2008). Determination of ore concentrates by energy dispersive X-ray fluorescence spectrometry. *Journal of trace and microprobe techniques*, 21, 2003(1), 63-71

Potts, P. J., & West, M. (2008). *Portable X-ray fluorescence spectrometry: Capabilities for in situ analysis*. Royal Society of Chemistry, *RSC Publishing*, *4*, 1017-1024.

Prinzenberg, A. E., Barbier, H., Salt, D. E., Stich, B., & Reymond, M. (2010). Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis. *Plant Physiology*, *154*(3), 1361–1371.

Reidinger, S., Ramsey, M. H., & Hartley, S. E. (2012). Rapid and Accurate Analyses of Silicon and Phosphorus in Plants Using a Portable X-Ray Fluorescence Spectrometer. *New Phytologist*, *195*(3), 699–706.

Huber, D., Römheld, V., & Weinmann, M. (2012). Relationship between nutrition, plant diseases and pests. In *Marschner's mineral nutrition of higher plants* (pp. 283-298). Academic Press.

Riaño, S., Regadío, M., Binnemans, K., & Vander Hoogerstraete, T. (2016). Practical guidelines for best practice on Total Reflection X-ray Fluorescence spectroscopy: Analysis of aqueous solutions. *Spectrochimica Acta Part B: Atomic Spectroscopy*, *124*, 109–115.

Shepherd, K. D., & Walsh, M. G. (2007). Infrared spectroscopy Enabling an evidencebased diagnostic surveillance approach to agricultural and environmental management in developing countries. *Journal of Near Infrared Spectroscopy*, *15*(1), 1–19.

Shone, M. G. T., Clarkson, D. T., & Sanderson, J. (1969). The absorption and translocation of sodium by maize seedlings. *Planta*, *86*(4), 301–314. https://doi.org/10.1007/BF00388956Singh, K., & Banerjee, N. K. (1986). Growth and zinc content of maize (Zea mays L.) as related to soil-applied zinc. *Field Crops Research*, *13*, 55–61.

Singh, K., & Banerjee, N. K. (1986). Growth and zinc content of maize (Zea mays L.) as related to soil-applied zinc. Field Crops Research, 13, 55–61.

Stammer, A. J. (2015). Plant tissue analysis to assess phosphorus and potassium nutritional status of corn and soybean in Iowa (Doctoral dissertation, Iowa State University).

Subedi, K. D., & Ma, B. L. (2005). Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. *Crop Science*, *45*(2), 740–747.

Tako, E., Hoekenga, O. A., Kochian, L. V., & Glahn, R. P. (2013). High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). *Nutrition Journal*, *12*(1), 3.

Tavares, T. R., Mouazen, A. M., Alves, E. E. N., dos Santos, F. R., Melquiades, F. L., Pereira de Carvalho, H. W., & Molin, J. P. (2020). Assessing Soil Key Fertility Attributes Using a Portable X-ray Fluorescence: A Simple Method to Overcome Matrix Effect. *Agronomy*, *10*(6), Article 6. https://doi.org/10.3390/agronomy10060787 Towett, E. K., Shepherd, K. D., & Cadisch, G. (2013). Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF). *Science of the Total Environment*, *463*, 374–388.

Towett, E. K., Shepherd, K. D., & Lee Drake, B. (2016). Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: Quantification under different analytical parameters. *X-Ray Spectrometry*, *45*(2), 117–124.

Uchida, R. (2000). Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. *Plant Nutrient Management in Hawaii's Soils*, 31–55.

Vision 2007, (2030: A Globally Competitive and Prosperous Kenya (2007). *Ministry of Planning and National Development and the National Economic and Social Council* (NESC), Government of Kenya, Nairobi (GOK, 2007).

White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511.

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. *Journal of sensors*, 2017.

Yuan, Z. Y., & Chen, H. Y. (1996). Negative effects of fertilization on plant nutrient resorption. *Ecology*, *96*(2), 373-380.

APPENDICES

Appendix 1: T-test for the recorded results of elemental concentration in two growth stages

t Stat	1.071414
P(T<=t) one-tail	0.15458
t Critical one-tail	1.812461
P(T<=t) two-tail	0.30916
t Critical two-tail	2.228139

Appendix 2: T-test for the recorded results of elemental concentration in different parts of maize leaf.

Apex vs midrib		leaf base vs leaf mi	d	leaf base vs apex	leaf base vs apex			
t Stat	-0.90917	t Stat	1.026965	t Stat	0.411789			
P(T<=t) one-tail	0.192325	P(T<=t) one-tail	0.164319	P(T<=t) one-tail	0.344591			
t Critical one-tail	1.812461	t Critical one-tail	1.812461	t Critical one-tail	1.812461			
P(T<=t) two-tail	0.38465	P(T<=t) two-tail	0.328637	P(T<=t) two-tail	0.689182			
t Critical two-tail	2.228139	t Critical two-tail	2.228139	t Critical two-tail	2.228139			
leaf base vs midrib		leaf mid vs midrib						
t Stat	-0.75658	t Stat	-0.79536					
P(T<=t) one-tail	0.233375	P(T<=t) one-tail	0.222437					
t Critical one-tail	1.812461	t Critical one-tail	1.812461					
P(T<=t) two-tail	0.466751	P(T<=t) two-tail	0.444874					
t Critical two-tail	2.228139	t Critical two-tail	2.228139					

Appendix 3: T-test for the elemental concentration at different sample presentation

Appendix 3.1: T-test for elemental concentration for Light elements.

FRESH VS OD	
t Stat	-3.14248
P(T<=t) one-tail	0.000885
t Critical one-tail	1.647795
P(T<=t) two-tail	0.001771
t Critical two-tail	1.964545

FRESH VS MILLED	
t Stat	-34.4714
P(T<=t) one-tail	5.7E-80
t Critical one-tail	1.653658
P(T<=t) two-tail	1.14E-79
t Critical two-tail	1.973691
OD VS MILLED	
t Stat	-32.6823
P(T<=t) one-tail	1.02E-76
t Critical one-tail	1.653607
P(T<=t) two-tail	2.03E-76
t Critical two-tail	1.973612

Appendix 3.2: T-test for elemental concentration for heavy elements

FFRESH VS OVEN DRIED	
t Stat	-10.5191
P(T<=t) one-tail	4.82E-22
t Critical one-tail	1.650828
P(T<=t) two-tail	9.64E-22
t Critical two-tail	1.969274

FRESH VS MILLED	
t Stat	3.318181
P(T<=t) one-tail	0.000519
t Critical one-tail	1.650828
P(T<=t) two-tail	0.001038
t Critical two-tail	1.969274

OVEN DRIED VS MILLED	
t Stat	13.09998
P(T<=t) one-tail	1.18E-30
t Critical one-tail	1.650828
P(T<=t) two-tail	2.36E-30
t Critical two-tail	1.969274

Appendix 4: Nutrient Concentration by leaf part (Fresh samples)

	Potassium (mgkg ⁻¹)						Calcium(mgkg ¹)				
SSN	В	м	А	MR	Thick	SSN	В	М	A	MR	Thick
icr163783	9066	11207	8422	7910	11592	icr163783	1565	2074	1965	869	2335
icr163784	7346	6374	6817	3295	7352	icr163784	922	1067	1309	328	1344
icr163785	3506	4068	2235	701	4215	icr163785	831	937	1935	383	804
icr163786	3924	3808	3913	1093	10370	icr163786	441	665	1048	215	1865
icr163787	2099	5115	2872	2822	4075	icr163787	275	1365	1130	556	873
icr163788	9077	8661	6948	11132	7763	icr163788	1635	2167	2673	1154	3044
icr163789	8841	8893	7706	9258	9740	icr163789	1316	1419	2051	902	1501
icr163790	8426	6779	6555	7114	7450	icr163790	1293	1590	2467	912	2215
icr163791	6430	7172	6660	3690	7835	icr163791	592	762	1285	423	801
icr163792	9609	7875	6716	9337	7424	icr163792	1173	1542	3621	1144	3354
icr163793	13144	10654	9708	7765	15119	icr163793	1234	1348	1760	904	1695
icr163794	8360	6968	6127	6279	8988	icr163794	1026	1122	1364	768	1228
icr163795	8712	7918	7528	5362	9712	icr163795	820	927	1159	549	1025
icr163796	7355	6792	6068	5490	8020	icr163796	714	873	1015	574	913

icr163797	7649	5766	5264	6571	7830	icr163797	1119	1759	2406	684	1636
icr163798	10372	9291	8190	9768	9506	icr163798	942	1211	1488	1100	950
icr163799	7840	7436	8321	5238	8528	icr163799	799	931	1200	600	1041
icr163800	14517	9786	11245	10239	11472	icr163800	2175	2218	3432	1506	3456
icr163801	8956	7810	8506	8799	10436	icr163801	1054	1284	1408	872	1352
icr163802	8374	8757	8917	6781	5040	icr163802	758	1088	1551	685	591
icr163803	7393	6193	5566	5611	7480	icr163803	720	810	1006	608	848
icr163804	6245	5724	5756	3917	6379	icr163804	627	694	732	350	779
icr163805	7633	8473	6833	2589	8605	icr163805	770	1001	1343	267	1366
icr163807	10555	6058	5580	4853	6597	icr163807	1454	1268	2121	522	1872
icr163807	7222	6413	6095	4114	7103	icr163807	701	739	903	375	980
icr163808	6699	4875	6229	3678	6310	icr163808	577	500	788	383	622
icr163809	8161	8377	8318	4974	9537	icr163809	758	864	993	493	999
icr163810	8175	7975	7287	3154	8609	icr163810	812	895	959	289	928
icr163811	5628	5674	4951	3549	6758	icr163811	613	725	738	347	827
icr163812	7102	7190	6893	4102	8093	icr163812	902	1167	1146	440	1310
icr163813	6133	6446	5739	3032	6752	icr163813	680	1028	1528	310	979

icr163814	4016	5087	5173	3341	5300		icr163814	1376	1336	1754	495	1586
-----------	------	------	------	------	------	--	-----------	------	------	------	-----	------

Manganese MgKg⁻¹

Iron (mgkg⁻¹)

SSN	В	М	А	MR	Thick	SSN	В	м	А	MR	Thick
icr163783	75	111	139	30	124	icr163783	370	455	564	73	572
icr163784	53	81	97	16	38	icr163784	213	373	330	52	167
icr163785	59	68	78	25	59	icr163785	237	256	239	53	185
icr163786	86	115	93	26	96	icr163786	501	647	501	98	436
icr163787	63	72	70	22	46	icr163787	396	296	330	76	193
icr163788	89	105	95	23	84	icr163788	423	585	339	63	327
icr163789	163	107	105	15	106	icr163789	1210	490	532	58	584
icr163790	66	62	74	18	42	icr163790	299	366	325	51	196
icr163791	82	68	92	41	64	icr163791	286	350	338	85	213
icr163792	122	88	143	36	72	icr163792	443	323	308	62	254
icr163793	103	101	108	54	116	icr163793	361	338	383	57	475
icr163794	74	67	94	22	67	icr163794	272	331	694	31	527
icr163795	109	136	104	43	94	icr163795	681	812	443	63	436
icr163796	67	72	68	24	47	icr163796	170	237	166	16	131
icr163797	66	82	150	32	93	icr163797	340	198	359	77	300
icr163798	77	80	85	56	72	icr163798	198	213	233	24	179

icr163799	78	83	95	19	79	icr163799	334	412	470	58	341
icr163800	79	66	69	29	58	icr163800	383	290	342	76	285
icr163801	71	83	109	61	34	icr163801	285	236	279	205	55
icr163802	52	67	95	30	50	icr163802	211	185	310	70	155
icr163803	76	84	95	32	61	icr163803	340	426	244	56	239
icr163804	82	72	65	57	70	icr163804	460	401	210	288	341
icr163805	33	56	70	17	43	icr163805	145	185	245	17	145
icr163807	40	53	94	17	35	icr163807	152	174	190	24	114
icr163807	36	65	82	16	59	icr163807	121	180	289	35	169
icr163808	67	69	79	29	51	icr163808	282	189	247	44	138
icr163809	81	68	81	18	53	icr163809	285	282	313	21	219
icr163810	54	71	72	20	37	icr163810	189	190	183	39	129
icr163811	65	43	62	32	51	icr163811	171	137	178	26	131
icr163812	53	65	65	14	50	icr163812	160	174	299	32	185
icr163813	58	50	54	36	17	icr163813	199	179	205	129	18
icr163814	58	59	83	15	45	icr163814	275	166	331	30	141

Copper(mgkg⁻¹)

Zinc(mgkg⁻¹)

SSN	В	М	A	MR	Thick	SSN	В	М	A	MR	Thick
icr163783	13	11	15	5	10	icr163783	46	41	38	18	30
icr163784	9	10	11	3	4	icr163784	32	37	33	14	27
icr163785	12	9	5	4	6	icr163785	31	32	45	12	22
icr163786	12	13	13	4	8	icr163786	32	37	37	14	23
icr163787	10	11	11	4	6	icr163787	29	33	37	16	21
icr163788	12	13	10	4	9	icr163788	34	38	69	12	23
icr163789	13	14	13	4	9	icr163789	37	38	43	12	27
icr163790	10	12	9	4	5	icr163790	29	28	36	13	20
icr163791	12	13	15	6	9	icr163791	39	46	47	21	31
icr163792	12	13	12	4	6	icr163792	34	38	42	14	33
icr163793	23	20	21	7	12	icr163793	29	18	22	8	28
icr163794	16	15	16	3	8	icr163794	16	18	17	8	13
icr163795	19	16	21	5	10	icr163795	16	18	19	13	12
icr163796	14	14	15	3	8	icr163796	19	15	16	8	13
icr163797	11	7	12	4	7	icr163797	35	26	44	18	27

icr163798	21	21	20	6	12	icr163798	22	19	25	11	17
icr163799	16	14	14	4	9	icr163799	37	36	38	14	27
icr163800	12	11	12	5	7	icr163800	35	37	37	19	23
icr163801	15	16	19	10	3	icr163801	17	21	23	16	10
icr163802	18	17	18	4	10	icr163802	19	26	20	11	16
icr163803	18	17	17	5	9	icr163803	20	19	20	9	17
icr163804	14	16	17	4	7	icr163804	14	13	15	10	13
icr163805	13	16	17	5	10	icr163805	23	20	22	10	16
icr163807	14	14	15	4	9	icr163807	14	17	18	7	14
icr163807	7	15	17	4	9	icr163807	20	14	15	7	12
icr163808	15	16	16	3	8	icr163808	16	14	16	7	12
icr163809	15	16	16	5	8	icr163809	21	17	16	8	15
icr163810	15	14	16	4	8	icr163810	19	19	20	10	15
icr163811	14	15	15	4	9	icr163811	12	17	14	8	11
icr163812	18	17	16	3	9	icr163812	14	15	16	7	15
icr163813	14	16	17	8	4	icr163813	16	14	17	14	7
icr163814	15	15	21	5	10	icr163814	14	16	16	7	13

Appendix 5: Nutrient Concentration by sample

presentation

	Sodium M	gKg-1	1	Magnesium MgKg-1				
SSN	Fresh	Oven Dried	Milled	Fresh	Oven Dried	Milled		
icr163783_a_1	13.1370	5.9461271	37.7795	939.52	1007.75484	2825.49		
icr163783_a_2	0.46287	11.327858	57.4793	412.902	1195.26687	3739.07		
icr163783_b_1	14.14592	5.41766439	37.22462	759.3512	664.1969802	2799.349		
icr163783_b_2	7.326506	9.03770011	40.44619	479.4433	978.3718234	2600.492		
icr163783_m_1	4.352425	2.9269475	56.75915	361.6368	802.2051041	4124.188		
icr163783_m_2	4.028881	12.2770467	57.65169	420.026	1271.794162	4345.543		
icr163783_mr_1	9.439422	18.6881873	40.97009	707.821	1232.608715	2795.378		
icr163783_mr_2	14.71178	21.825464	39.65365	1118.52	1721.921721	2659.689		
icr163783_th_1	8.288629	21.7138156	56.80756	820.8656	1412.557761	3850.556		
icr163783_th_2	18.18574	18.4506918	56.16762	1166.112	1435.443726	3947.218		
icr163784_a_1	0.719637	5.23047429	27.4308	389.4174	1180.401053	2271.75		
icr163784_a_2	15.3203	15.70689	25.99276	622.1726	1513.962923	2426.312		
icr163784_b_1	2.577096	5.31322723	54.44956	191.3223	545.6646432	4364.771		
icr163784_b_2	7.542749	8.81081161	50.38897	294.8909	1034.117453	4027.222		
icr163784_m_1	14.03679	1.69018182	33.08157	363.1757	856.7588107	2224.46		
icr163784_m_2	5.935764	10.3402244	30.85672	598.8943	1131.165217	1980.152		
icr163784_mr_1	8.446976	17.2596494	55.55961	958.467	1126.778579	3952.067		
icr163784_mr_2	5.109091	21.2575008	58.16961	871.0684	1501.540821	3735.886		
icr163784_th_1	2.853618	24.2980536	31.9889	597.0971	1772.025758	2205.451		
icr163784_th_2	7.70785	21.9083893	30.8895	373.1699	1747.032214	2155.49		
icr163785_a_1	8.453074	3.84797793	58.60966	267.2965	829.0377766	4103.296		
icr163785_a_2	1.341765	9.49643039	54.17999	414.0919	1074.562746	4243.792		
icr163785_b_1	5.785166	2.82656363	38.19836	82.4064	698.4156172	2591.346		

1	I	1	I	I	1	l
icr163785_b_2	1.62135	5.1378946	36.35863	224.385	817.2265186	2520.794
icr163785_m_1	6.24691	8.87237396	54.73937	192.3126	886.25003	3994.928
icr163785_m_2	1.976608	6.75177642	53.77467	306.9816	864.8098885	4167.516
icr163785_mr_1	2.005995	8.28831174	39.19718	667.7248	903.842929	2371.716
icr163785_mr_2	2.029148	23.0909525	36.73319	661.362	944.4043103	2455.713
icr163785_th_1	3.05308	7.80984597	59.78009	226.3745	1078.313142	3976.916
icr163785_th_2	1.372551	14.5842095	57.5386	204.8462	1576.684477	3899.863
icr163786_a_1	1.257952	6.46784096	40.42736	132.0863	781.9885197	2409.288
icr163786_a_2	4.756863	11.4758741	36.59842	528.0544	1116.531523	2620.042
icr163786_b_1	9.886009	6.00523812	54.28409	60.78897	740.5809526	3617.171
icr163786_b_2	3.648238	6.22129573	49.5542	145.1685	790.9575648	3696.194
icr163786_m_1	10.15938	2.76723287	32.28834	89.91452	634.6983926	2147
icr163786_m_2	5.632981	6.98711961	32.40035	244.7617	927.175551	2017.876
icr163786_mr_1	3.339338	22.902698	54.89882	516.1636	1562.937675	3900.253
icr163786_mr_2	3.770923	14.9017814	56.40121	248.2764	1275.646562	4314.45
icr163786_th_1	0.543662	16.5675087	54.92121	449.1989	1347.122916	3598.919
icr163786_th_2	7.944717	15.7561279	52.78777	475.5325	1287.946985	3500.909
icr163787_a_1	2.522699	15.2404222	55.58673	136.0687	817.4107672	3832.429
icr163787_a_2	0.734987	18.3512568	54.98643	323.8109	1571.450352	3741.045
icr163787_b_1	7.405452	6.32651326	35.03908	115.4777	706.5301005	2303.685
icr163787_b_2	16.53842	15.605703	37.80921	157.5909	1262.004091	2392.861
icr163787_m_1	2.006057	8.38068746	37.70356	209.4791	950.0255731	2672.787
icr163787_m_2	4.175254	10.3763694	55.56477	381.3514	1112.78676	4293.801
icr163787_mr_1	10.91745	10.7902643	33.1801	668.136	1081.216877	2426.754
icr163787_mr_2	14.814	18.7946803	35.8609	531.8141	1492.103691	2445.958
icr163787_th_1	1.700142	13.3072643	56.50927	473.9193	1379.218729	3989.577

1	I	1		I	1	
icr163787_th_2	4.881195	19.8347057	54.81682	454.1594	1549.003667	4268.83
icr163788_a_1	3.149684	3.02368143	34.9294	299.2544	806.4603657	2361.321
icr163788_a_2	0.169487	16.3539819	35.75797	257.0412	1417.63566	2452.019
icr163788_b_1	0.521505	6.97540366	56.81496	103.9951	927.8300124	4061.268
icr163788_b_2	6.90558	13.6387165	53.92578	239.3614	1371.934956	3827.974
icr163788_m_1	20.84421	17.0902077	34.93753	195.5079	1339.150968	2361.076
icr163788_m_2	4.218412	13.9662216	33.4445	219.8919	1133.79149	2149.315
icr163788_mr_1	0.645975	11.4868357	57.33979	642.3766	1112.716902	3892.802
icr163788_mr_2	4.490465	12.9919638	56.1542	619.2463	923.6828405	3776.592
icr163788_th_1	7.247062	26.1664384	33.36959	621.6171	2049.873068	2385.189
icr163788_th_2	3.585818	19.2231932	34.41489	408.478	1402.239547	2311.725
icr163789_a_1	15.16288	6.15338999	37.62884	418.0103	984.5508466	2824.668
icr163789_a_2	3.195417	9.56195887	35.80807	421.9333	1053.077198	2434.618
icr163789_b_1	3.852923	6.3444544	32.7284	206.9494	861.500888	2242.192
icr163789_b_2	1.318231	7.24946889	31.64797	337.9928	985.1882745	2190.819
icr163789_m_1	16.06653	6.5215142	52.74658	214.8329	931.0590241	3543.852
icr163789_m_2	5.192757	9.96552496	55.15397	296.3768	1040.752154	3633.424
icr163789_mr_1	0.505383	21.7139153	33.46669	868.7065	1638.464823	2211.814
icr163789_mr_2	0.215883	25.9414233	36.00944	1132.06	1679.368337	2343.19
icr163789_th_1	11.45176	13.9901663	51.23284	445.1213	1445.97279	3992.76
icr163789_th_2	11.19648	11.0668192	55.52772	469.0806	1304.006273	4109.709
icr163790_a_1	7.10341	5.42151982	35.04495	345.7534	1029.127307	2271.279
icr163790_a_2	9.534411	10.9892865	32.92017	390.4571	1137.526358	2176.331
icr163790_b_1	1.382606	4.92278158	54.07276	134.4526	692.1845322	3676.771
icr163790_b_2	4.564486	9.45070584	53.3313	80.46649	1098.27041	3815.145
icr163790_m_1	6.946216	2.56772631	43.47771	121.2826	801.6627963	2718.925

1	ĺ	I	l	I		
icr163790_m_2	3.491398	13.5445843	41.79407	253.9369	1349.812545	2745.798
icr163790_mr_1	1.982721	14.1665522	54.96327	947.8039	1103.024016	3748.048
icr163790_mr_2	13.25913	15.8308558	53.46183	689.5331	1153.072692	3817.829
icr163790_th_1	1.800939	19.5524368	36.8349	503.5554	1625.025034	2460.837
icr163790_th_2	13.44644	21.3479304	34.58744	483.3715	1555.632847	2376.324
icr163791_a_1	0.114867	2.42844813	55.8665	239.985	288.1554033	4013.121
icr163791_a_2	7.097739	6.02102009	58.34727	195.1734	937.9751069	4139.835
icr163791_b_1	24.98852	0.68152733	53.20575	52.92182	360.4497785	3484.821
icr163791_b_2	2.36771	9.59122747	40.52917	212.0638	824.1902	2692.591
icr163791_m_1	17.74742	5.46296733	55.42576	218.3528	450.3919402	3832.663
icr163791_m_2	0.229344	23.0352361	54.90398	214.8553	938.3716532	3975.404
icr163791_mr_1	5.971245	4.23143114	29.90458	716.099	818.940364	1959.362
icr163791_mr_2	4.898815	11.0329907	30.68449	1265.208	1527.300325	2121.979
icr163791_th_1	7.319519	3.74447607	37.07654	319.8096	590.9615751	3029.222
icr163791_th_2	18.12092	8.09951954	39.30322	320.73	1319.095241	2966.281
icr163791_th_6.1	0.87601	3.55581489	35.58041	205.4237	724.023596	2221.578
icr163791_th_6.2	4.785392	12.7085281	34.08108	215.4225	915.0185569	2367.238
icr163792_a_1	12.19576	6.18947378	37.38142	64.04402	1018.066765	2812.44
icr163792_a_2	2.71943	8.73964609	60.11905	339.5875	1229.526661	4439.092
icr163792_b_1	8.302603	6.01645718	37.42278	108.7282	709.3056553	2453.166
icr163792_b_2	2.20138	6.08452387	35.01792	256.1899	1059.431674	2286.141
icr163792_m-1	3.56655	17.8496498	54.25794	458.7757	603.1218434	3989.287
icr163792_m_2	0.844505	23.388517	53.58401	412.2901	909.1987395	3859.303
icr163792_mr_1	12.82943	13.3385402	36.67466	510.4851	1495.514179	2314.49
icr163792_mr_2	10.77408	15.9293509	32.22042	1215.441	1063.282944	2377.08
icr163792_th_1	12.92541	6.9664062	55.04082	249.592	1151.306641	4223.216

1	1	1	I	I	1	
icr163792_th_2	5.662276	8.12962835	50.97648	451.928	1276.576072	4081.718
icr163793_a_1	3.539507	1.92579857	31.7117	149.9832	714.6362709	2376.609
icr163793 a 2	5.239352	8.83360105	33.08594	161.6054	786.5860193	2342.766
icr163793 b 1	6.150615	10.6482228	38.12434	43.84343	634.0554841	2816.636
icr163793 h 2	8 3900/18	11 8627717	53 81906	292 462	924 5268145	4104 222
icr162702 m 1	12 42749	18 2045062	27.94657	252.402	712 6702414	2256 266
101103793_111_1	12.42748	18.3945962	37.84057	200.3002	/12.0/02414	2350.300
icr163793_m_2	2.142879	16.2880997	36.9986	315.5809	1136.892296	2396.548
icr163793_mr_1	8.143349	8.62949627	58.32448	798.9356	1423.383589	4358.951
icr163793_mr_2	11.32564	9.6747309	53.75454	482.5628	1214.10171	4156.803
icr163793 th 1	0.742094	8,59065494	32,35897	474 9981	987,7330682	2132 094
ier162702 th 2	1.005688	8 46262204	21 00222	208 202	1228 628252	2062 105
101103793_00_2	1.995088	8.40302304	31.88232	398.393	1238.028252	2003.105
icr163794_a_1	2.135538	3.61321535	74.58843	84.51678	708.9919892	5263.778
icr163794_a_2	15.00223	8.90285735	37.28698	121.8822	902.632499	2605.787
icr163794_b_1	0.24723	17.5960334	36.29068	171.2962	491.024357	2270.965
icr163794 b 2	10.95067	10.8120328	32.00118	262.0122	896.8043072	2229.137
icr163794_m_1	0.132997	14.3149564	39.5838	445.045	1039.697948	2698.134
icr163794_m_2	8.858439	12.44692	36.1223	402.1365	972.8160767	2472.462
icr163794_mr_1	9.757901	4.23203525	31.41706	668.6139	1218.021461	2278.796
icr163794_mr_2	6.431951	10.2927531	33.5631	798.0767	1170.47549	2201.829
icr163794_th_1	10.94463	4.98250782	36.64839	378.9024	883.812919	2978.842

Phosphorous MgKg-1

Potassium MgKg-1

SSN	Fresh	Oven Dried	Milled	Fresh	Oven Dried	Milled
icr163783_a_1	214.5184	1119.406	1988.595	6468.052	12366.81	24917.07
icr163783_a_2	165.2947	1526.463	2240.758	7707.258	19648.28	26560.28
icr163783_b_1	86.63141	824.0637	1134.38	7632.559	15389.58	48765.41
icr163783_b_2	242.9024	837.8643	1126.421	8895.814	25066.23	48555.32
icr163783_m_1	210.0007	935.9499	2677.235	7645.475	16656.98	27737.23
icr163783_m_2	364.1155	1341.656	2621.772	10110.39	22441.15	27728.87
icr163783_mr_1	34.7114	133.9647	1311.408	7624.598	28141.62	49524.77
icr163783_mr_2	11.57874	200.5515	1331.74	5616.354	24187.65	49418.68
icr163783_th_1	278.6827	1035.648	2883.447	8500.706	26028.48	25087.49
icr163783_th_2	414.2299	1591.167	2932.125	10271.15	23073.24	24654.39
icr163784_a_1	162.0711	1063.479	1596.688	3820.248	13825.57	26651.98
icr163784_a_2	64.44195	1614.045	1607.845	7308.705	19241.59	26826.77
icr163784_b_1	19.95872	805.0856	2252.624	4168.58	17799.7	24102.64
icr163784_b_2	91.42714	1280.236	2212.752	7950.217	20455.43	23528.98
icr163784_m_1	27.90387	1087.67	994.9208	3282.849	13623.74	45416.41
icr163784_m_2	108.4338	1469.598	1011.967	7781.042	18206.51	44102.27
icr163784_mr_1	48.77617	192.8399	2519.616	5374.562	31132.89	28623.05
icr163784_mr_2	59.84749	295.9244	2475.354	2989.728	27505.99	28867.36
icr163784_th_1	240.9988	1416.674	981.9164	6722.545	24962.22	48878.57
icr163784_th_2	1.666731	1630.949	952.2698	7801.336	24030.14	49365.89
icr163785_a_1	69.37469	1471.327	2955.602	3647.908	8630.839	27674.29
icr163785_a_2	68.61867	1758.972	2920.421	4040.389	12849.22	27924.34
icr163785_b_1	125.8352	1500.307	1312.013	3870.106	10148	51048.47
icr163785_b_2	30.49691	1495.836	1323.863	4571.25	13510.04	51174.06
icr163785_m_1	8.067187	1637.654	2758.29	4750.338	11474.84	27304.43
icr163785_m_2	106.2763	1505.147	2767.606	5296.694	13750.46	26759.7
icr163785_mr_1	18.01655	301.7193	1223.542	1417.997	16041.79	52076.37
icr163785_mr_2	147.4807	185.8632	1213.714	2382.372	9007.554	51549.76
icr163785_th_1	23.56524	1433.433	2732.56	4644.236	14220.54	29847.6
icr163785_th_2	72.44254	1870.694	2809.373	4051.428	15344.58	29870.46
icr163786_a_1	20.09107	898.7552	1320.182	4054.226	11078.86	51342.49
icr163786_a_2	34.64207	1061.211	1317.83	4960.339	16351.32	51363.19
icr163786_b_1	56.56366	856.1638	2337.436	4213.609	19012.21	27893.48
icr163786_b_2	141.7573	1033.819	2327.243	5367.044	21349.56	27542.86
icr163786_m_1	57.56656	951.8026	1084.923	4176.714	13735.3	41681.38
icr163786 m 2	138.817	1052.73	1103.896	5452.997	18830.63	41383.37

icr163786_mr_1	158.8958	306.741	2122.352	3934.876	32815.92	31120.92
icr163786_mr_2	33.64656	287.136	2198.356	2935.232	22809.32	31763.27
icr163786_th_1	133.1207	1356.267	1232.182	6950.049	22441.57	52233.93
icr163786_th_2	25.68496	1162.754	1210.891	7392.426	22718.36	52329.35
icr163787_a_1	22.99893	1133.183	2416.596	3394.968	13496.49	29447.07
icr163787_a_2	3.9046	1384.915	2426.415	5290.688	19185.99	29430.56
icr163787_b_1	100.6247	674.1199	1262.015	5620.884	18003.37	49741.68
icr163787_b_2	21.22451	1100.656	1267.991	4540.32	27882.63	50194.05
icr163787_m_1	105.129	1214.126	2037.391	6016.648	15526.11	24706.9
icr163787_m_2	107.7916	1191.069	2421.565	6300.32	19861.5	26119.66
icr163787_mr_1	91.56176	133.951	1157.044	4014.546	19120.41	41443.96
icr163787_mr_2	27.48365	183.8798	1108.102	3344.857	18958.29	41645.06
icr163787_th_1	39.6062	1179.484	1926.094	4759.298	24803.96	30988.62
icr163787_th_2	59.78433	1456.504	2026.441	5144.976	22538.3	31782.84
icr163788_a_1	4.957891	1089.973	932.1635	5805.187	10706.01	51561.14
icr163788_a_2	2.85486	1799.067	956.9261	7962.449	20903.24	50996.63
icr163788_b_1	181.6667	1156.065	1958.552	8032.949	20427.31	29388.63
icr163788_b_2	42.8626	1368.519	1930.746	8662.025	25528.35	28991.95
icr163788_m_1	81.4988	1162.993	921.2078	7950.917	18193.16	48916.03
icr163788_m_2	137.6439	1460.334	874.5432	8258.809	20856.33	48482.02
icr163788_mr_1	113.4293	343.8525	2368.039	7091.938	31718.93	29304.54
icr163788_mr_2	24.85075	364.8925	2316.875	8249.587	22318.22	29132.34
icr163788_th_1	74.11724	1634.8	1080.723	7176.054	24078.67	49393.11
icr163788_th_2	41.39353	1752.33	1060.578	9690.695	27451.16	48673.68
icr163789_a_1	25.96476	1397.85	1786.214	6534.147	10438.27	27135.89
icr163789_a_2	119.757	1421.694	1771.89	7933.141	14024.14	26887.96
icr163789_b_1	179.3978	1518.583	916.1151	6630.237	13995.56	46339.18
icr163789_b_2	12.53931	1520.329	885.8806	7771.311	17604.17	46257.19
icr163789_m_1	146.6648	1223.59	1988.62	7766.98	13647.8	26594.56
icr163789_m_2	36.28422	1706.496	1982.989	7365.552	14584.92	27131.71
icr163789_mr_1	48.62783	390.1473	999.9065	5546.555	30457.4	45264.11
icr163789_mr_2	47.47247	445.3749	1022.68	7063.899	29235.57	45967.79
icr163789_th_1	111.2825	1411.922	2036.19	8610.078	17838.4	27220.6
icr163789_th_2	214.4522	1689.835	2146.308	8731.121	17863.37	26950.76
icr163790_a_1	198.1978	1162.76	903.2627	5401.83	13773.81	45888.14
icr163790_a_2	283.4779	1228.311	952.0898	6403.734	17071.76	45930.39
icr163790_b_1	82.13187	773.5987	2841.596	6442.784	19920	30529.12
icr163790_b_2	47.09417	1268.84	2920.629	6795.021	25013.06	30044.15
icr163790_m_1	254.3822	1209.036	1838.075	5798.48	13133.16	51566.73
icr163790_m_2	177.3592	1500.984	1897.509	6478.789	24132.2	51405.62

icr163790_mr_1	86.40111	305.1518	2175.063	5238.91	28898.15	29924.54
icr163790_mr_2	235.1918	417.9924	2155.273	6258.982	26782.81	29457.78
icr163790_th_1	276.5815	946.5797	1050.582	6281.391	25384.83	49579.16
icr163790_th_2	105.6639	1533.176	1044.889	6652.235	28361.9	49562.87
icr163791_a_1	83.17941	638.0229	2444.308	5291.817	11306.87	27423.53
icr163791_a_2	65.38159	1151.702	2508.511	6902.638	17110.1	27650.25
icr163791_b_1	63.41649	873.3101	1628.518	6435.988	16080.96	50666.22
icr163791_b_2	315.3778	1049.058	1324.885	6992.41	25327.65	47755.16
icr163791_m_1	11.50843	883.6021	2197.519	6766.972	14164.82	26817.61
icr163791_m_2	453.8354	1056.409	2221.713	8638.35	21956.02	26775
icr163791_mr_1	4.705196	242.6187	1113.092	4418.811	18002.87	39138.48
icr163791_mr_2	12.84101	283.0187	1158.154	3951.896	24168.38	39288.2
icr163791_th_1	46.69036	673.9222	2492.093	7480.455	16111.26	27446.09
icr163791_th_2	55.98772	1493.344	2524.318	7546.88	26965.66	27252.32
icr163791_th_6.1	119.8694	832.2432	1435.561	5772.017	15313.56	43490.23
icr163791_th_6.2	197.6853	914.2191	1443.73	6404.677	17367.04	44324.5
icr163792_a_1	39.3312	1168.728	2159.38	6872.541	13076.12	25353
icr163792_a_2	27.27541	1019.102	2464.816	6238.207	21373.79	25464.1
icr163792_b_1	79.73445	849.6991	1303.183	7312.317	17881.19	45607.26
icr163792_b_2	108.6095	1001.827	1294.553	8296.814	24549.44	45600.76
icr163792_m-1	102.4505	421.3422	2731.557	5653.085	17101.51	34886.28
icr163792_m_2	64.88867	640.3789	2701.094	6152.245	13965.87	34718.95
icr163792_mr_1	171.0102	509.0411	1214.52	8551.908	39415.14	46870.3
icr163792_mr_2	216.7317	509.1529	1205.742	9296.56	23432.09	47052.9
icr163792_th_1	0.245881	1296.948	2078.251	7213.847	19217.59	34200.03
icr163792_th_2	62.38792	1532.775	2036.444	5915.54	24478.45	34061.88
icr163793_a_1	3.791684	757.978	874.018	7578.901	13251.2	41098.07
icr163793_a_2	124.2397	1077.553	867.9882	8157.529	20050.26	41148.15
icr163793_b_1	18.44111	891.3898	2186.227	9135.162	16016.5	32885.72
icr163793_b_2	3.742626	1479.528	2475.871	10172.77	21837.05	34421.34
icr163793_m_1	23.41665	433.2906	827.7846	6611.677	18171.94	48636.6
icr163793_m_2		695.3842	846.1065	7456.999	26266.54	49651

	Calcium M	gKg ⁻¹		Manganese (MgKg ⁻¹)				
SSN	Fresh	Oven Dried	Milled		Fresh	Oven Dried	Milled	
icr163783_a_1	1721.61913	3414.128	6133.24634		99.866901	224.9187	123.9156863	
icr163783_a_2	1803.334577	5010.166	6271.88373		126.80824	240.6204	123.1895613	
icr163783_b_1	1291.464637	2264.043	6213.36055		59.629215	87.88821	68.95591125	
icr163783_b_2	1243.408405	3206.14	6212.44154		67.47342	139.8681	108.6240951	
icr163783_m_1	1545.357505	2936.45	5664.49713		71.660077	183.2195	93.91418371	
icr163783_m_2	1548.718094	4576.237	5687.77372		74.91583	276.9714	89.99373664	
icr163783_mr_1	868.9949338	3041.987	5593.79767		24.269896	148.3339	73.80242323	
icr163783_mr_2	644.7380128	2758.315	5573.77261		28.369922	190.1819	72.17747504	
icr163783_th_1	1792.720634	4674.934	5848.6724		85.554797	235.4516	144.4588995	
icr163783_th_2	1619.414038	5303.453	5728.6618		98.98294	119.5279	143.5345921	
icr163784_a_1	1631.776219	3637.665	5219.41199		111.15808	209.009	129.0753755	
icr163784_a_2	1567.339902	5424.721	5273.24323		61.402439	145.4193	102.4125505	
icr163784_b_1	867.9853963	2346.666	6536.96318		90.739215	124.4113	113.92282	
icr163784_b_2	997.1920386	3230.251	6319.99721		63.134031	136.2884	115.9119162	
icr163784_m_1	718.0949759	2661.707	4966.73987		73.646727	179.7395	66.46735933	
icr163784_m_2	1254.01769	4372.757	4838.13643		79.757716	209.8494	66.05953217	
icr163784_mr_1	557.027466	3074.708	5865.26779		15.551958	123.9309	101.314106	
icr163784_mr_2	308.106364	2864.777	5925.43281		14.977854	116.7147	103.8827991	
icr163784_th_1	1238.558067	5186.504	5277.37163		57.912759	219.3773	57.8129723	
icr163784_th_2	1147.623861	6032.417	5355.21047		54.452454	232.1562	59.97857033	
icr163785_a_1	1476.635655	2525.604	5917.58178		116.3164	303.3752	108.253466	
icr163785_a_2	2021.009256	4564.836	5976.33636		127.9081	393.8486	116.0098289	
icr163785_b_1	907.2460708	2168.693	5564.7399		57.81041	216.1708	67.1463499	
icr163785_b_2	1144.86296	3097.593	5608.92056		49.801824	256.5706	65.19626115	

icr163785_m_1	1106.951531	3043.88	5764.38848	76.981589	225.4695	118.0067239
icr163785_m_2	1218.187439	3337.159	5647.38838	101.99564	272.0347	123.724274
icr163785_mr_1	296.7033135	2568.012	5478.66878	26.102757	196.2821	63.33634623
icr163785_mr_2	555.9942709	2018.449	5427.69757	43.71442	202.2001	64.00685665
icr163785_th_1	1123.836202	3572.483	5437.26583	53.293213	300.4436	114.3688648
icr163785_th_2	829.2575235	5251.93	5453.12224	62.437176	308.3794	123.6923017
icr163786_a_1	985.4402273	2359.478	5405.47604	123.95615	208.2893	72.92021181
icr163786_a_2	1574.629487	4143.781	5386.05427	88.591476	308.2432	71.0858562
icr163786_b_1	517.3423573	2428.445	4930.69996	84.93205	162.6671	81.33179399
icr163786_b_2	642.0237816	2762.877	4841.64619	47.301397	173.5055	84.53428867
icr163786_m_1	767.0175724	2413.544	4453.43505	105.39068	196.5874	58.12733192
icr163786_m_2	1014.947905	3212.214	4438.00847	95.079572	255.1786	58.38108839
icr163786_mr_1	374.7195751	3487.502	5645.89131	29.863634	168.331	95.21978104
icr163786_mr_2	514.514741	2838.756	5800.8709	27.67305	140.4176	94.63548089
icr163786_th_1	1437.904022	4622.472	4912.33802	73.817571	265.5124	59.98206506
icr163786_th_2	1406.576592	4049.911	4957.11918	70.686925	290.9201	72.76033775
icr163787_a_1	848.5074768	3383.776	5174.92516	77.024636	196.6056	116.1566508
icr163787_a_2	1545.719815	5487.182	5159.02846	76.423205	226.6341	120.0526387
icr163787_b_1	651.6735152	2480.345	5006.83214	58.03813	113.3216	70.03044034
icr163787_b_2	491.7217545	4899.684	5040.61485	53.248624	167.0832	71.21243513
icr163787_m_1	1056.764684	3520.372	5335.49944	70.238358	203.4026	121.8219499
icr163787_m_2	1297.077511	5354.704	5415.34919	66.210967	240.1106	127.5068843
icr163787_mr_1	414.3841806	2433.855	4994.47524	47.913722	145.2012	71.82990706
icr163787_mr_2	673.840016	2479.491	5028.97766	21.399117	188.2389	75.11299893
icr163787_th_1	1051.110578	5273.64	5009.06855	37.348748	250.922	110.042919
icr163787_th_2	770.100835	5915.651	5083.29157	39.837839	251.0555	109.2545562

				1			
icr163788_a_1	1950.110754	3836.752	5164.38956		158.15703	324.2683	71.27881519
icr163788_a_2	1698.901028	6251.025	5150.93304		46.074701	399.3161	72.10150082
icr163788_b_1	974.4815013	3047.852	4827.78466		93.833367	201.9492	89.49443775
icr163788_b_2	1391.535093	4470.179	4747.07232		87.047545	254.2392	91.00600259
icr163788_m_1	1348.492765	3089.405	4954.47382		114.29677	296.8302	56.25884762
icr163788_m_2	1654.260443	5134.051	4905.25045		56.552972	296.2546	59.03436523
icr163788_mr_1	710.939297	3541.107	5218.42669		25.055125	123.3605	105.6409547
icr163788_mr_2	841.0807568	2605.095	5251.31826		38.914752	128.6823	104.4072666
icr163788_th_1	2249.738191	7269.103	5187.07414		63.624635	351.5332	69.61293711
icr163788_th_2	1712.688741	6746.325	5163.31491		87.494033	384.1632	71.37398167
icr163789_a_1	1681.245392	2965.712	5651.73547		100.87727	224.6746	92.29345389
icr163789_a_2	1849.358054	4235.515	5543.04848		115.97255	266.491	90.56176703
icr163789_b_1	941.6423468	2369.697	4917.99182		153.32302	163.5209	60.99982454
icr163789_b_2	1235.759491	3546.981	4918.90455		92.464037	201.567	57.9666718
icr163789_m_1	1256.482457	3028.909	5484.30157		162.36371	202.843	82.49987862
icr163789_m_2	1237.083912	3650.136	5632.70104		112.11266	248.3264	87.5905911
icr163789_mr_1	538.2743573	3564.793	5168.4858		26.306066	161.31	64.51533836
icr163789_mr_2	788.3529007	3264.937	5248.93773		15.400353	139.3653	60.17788429
icr163789_th_1	1154.86029	4415.426	6420.88607		98.1573	266.9606	93.20419302
icr163789 th 2	1575.270188	3971.141	6320.35333		101.13004	239.3939	97.61114779
 icr163790_a_1	1673.863592	3834.174	5206.88823		117.57285	239.953	51.43527854
icr163790_a_2	1941.838474	4944.384	5161.831		79.554425	348.2664	56.34397196
icr163790_b_1	878.3506665	2547.094	6133.0301		70.541227	137.102	102.6942456
icr163790_b_2	953.9751363	3549.906	6010.1739		60.782213	215.2683	110.6945315
 icr163790_m_1	1085.606315	3090.014	5829.23908		67.56449	196.0182	71.53900323
 icr163790_m_2	1302.918535	5230.726	5778.64963		68.109213	248.5858	72.0984884

				1			
icr163790_mr_1	622.4500363	2756.942	5402.58714		21.912366	129.2178	106.2747602
icr163790_mr_2	766.9869281	2768.644	5296.42307		18.368143	115.8878	102.6439666
icr163790_th_1	1326.294058	6095.302	5141.73966		56.74179	284.9583	67.84413357
icr163790_th_2	1916.549477	5123.353	5152.83952		45.74759	268.2593	69.80493053
icr163791_a_1	1024.168031	1490.229	5865.59132		108.99283	233.6371	134.4678408
icr163791_a_2	1475.077473	2765.664	5877.9586		93.166955	146.0577	136.2694156
icr163791_b_1	656.329043	1628.457	5175.20145		75.092913	137.4675	73.08981548
icr163791_b_2	769.1923951	2557.263	5304.04625		58.25227	165.4977	72.24765129
icr163791_m_1	814.5053531	1709.941	4457.14164		62.105022	145.3377	129.3931057
icr163791_m_2	1102.065239	2778.343	4449.55478		61.074248	153.2484	129.0541841
icr163791_mr_1	453.490006	1767.828	4144.1741		29.357596	208.0044	56.58490493
icr163791_mr_2	443.7385648	2377.705	4163.12567		30.702913	163.7601	53.85920114
icr163791_th_1	795.6194732	1914.18	5384.12463		51.072156	189.6643	276.5481862
icr163791_th_2	754.6343947	3597.547	5340.11722		44.615307	227.5028	266.7094483
icr163791_th_6.1	703.9353575	2683.548	4773.70882		73.513319	150.8551	123.0588637
icr163791_th_6.2	888.1361548	3226.331	4866.14833		55.288675	155.4651	134.5113411
icr163792_a_1	1037.29748	6511.598	5181.95676		67.021615	126.1713	143.0407872
icr163792_a_2	3159.293059	5667.28	5248.49947		123.85183	181.8632	144.0511062
icr163792_b_1	921.0513867	2778.087	4860.61248		97.23583	179.4103	70.51730176
icr163792_b_2	1007.103131	4116.42	4839.59785		86.163453	191.1388	70.46831499
icr163792_m-1	700.6815467	2172.178	5142.78007		52.332181	135.5381	175.6274753
icr163792_m_2	1234.222095	3928.327	5131.15793		63.631555	191.8356	171.2817362
icr163792_mr_1	950.1609678	4950.282	4817.79528		51.418093	215.2479	148.501244
icr163792_mr_2	1286.029775	3144.646	4844.55882		34.94613	205.4181	147.202009
icr163792_th_1	1191.444906	5019.211	5492.38394		92.213667	266.5818	136.9225067
icr163792_th_2	3164.24451	5729.061	5503.25287		72.598943	238.3871	140.3438623

icr163793_a_1	1062.144102	2363.506	4198.05375	90.887776	146.9537	66.90230282
icr163793 a 2	1227.363714	3250.431	4182.21167	80.446853	167.8456	65.17128037
 icr163793 h 1	884 3265548	2174 41	5215 38559	90 56474	139 7295	225 6087758
ior103733_b_1	1047 200442	2042.042	5215.50555	00 000000	141 2220	225.0007750
ICF163793_D_2	1047.208442	2942.943	5180.71451	80.606292	141.2239	226.1865325
icr163793_m_1	776.2915125	1965.682	4734.22914	82.226205	120.8879	80.08109242
icr163793_m_2	880.0777646	3166.908	4819.8225	58.926746	158.7378	78.3269383
icr163793_mr_1	741.6250977	3913.814	5589.54002	56.291822	254.7597	133.5072568
icr163793 mr 2	1022.30703	3067.329	5668.58149	47.619034	238.8027	130.0121259
icr163793 th 1	1455 038465	2799 6/13	4510 10346	131 16403	182 9612	65 297/19816
	1455.050405	2755.045	4510.10540	151.10405	102.5012	05.257 45010
icr163793_th_2	1587.232072	3843.043	4543.22549	144.46207	230.8873	67.07683314
icr163794_a_1	1038.760482	2024.148	5278.97748	71.793919	292.6268	101.0156621
icr163794_a_2	1100.319161	3112.315	5322.37287	108.34574	293.0571	102.7496482
icr163794_b_1	967.5980584	1801.363	4589.49858	115.06438	135.285	91.23333464
icr163794 b 2	1076.415155	2786.073	4610,21201	94,315841	210 9883	89.55709184
ier162704 m 1	007 5002510	2/00.073	5211 00515	49 (29001	152.0107	102 251110
101103794_111_1	807.5093510	2421.801	5311.09515	 48.038081	153.0197	182.251118
icr163794_m_2	852.0040505	3042.653	5235.77735	54.84105	199.6352	192.7982818
icr163794_mr_1	719.9319362	2648.047	4884.47508	37.658037	192.2176	86.53766536
icr163794_mr_2	734.402666	2104.318	4966.29173	45.528802	223.2875	83.57755949
icr163794_th_1	1039.286691	2870.652	6742.13932	67.599172	229.8329	94.59832431

Iro	n MgKg ⁻¹				Copper MgKg ⁻¹ Fresh Oven Dried Milled 18.79151 35.10623 9.52341 15.1992 27.14748 12.1333 15.72335 20.10623 7.81157 13.36122 20.73318 13.8377 13.8116 29.10261 29.9588 7.013654 28.90507 32.488 5.733956 21.15729 7.68183 4.850348 17.76773 8.31922 10.37809 19.14892 6.17302 13.44392 14.08284 6.12288 16.96415 33.95075 9.60322 7.700815 21.65253 6.72184 15.7055 37.25591 5.88682 12.08301 22.11101 6.13375 15.46176 35.74285 4.98027			
SSN	Fresh	Oven Dried	Milled	Fresh	Oven Dried	Milled		
icr163783_a_1	476.8691	922.7485	347.6901	18.79151	35.10623	9.523415		
icr163783_a_2	433.664	1248.776	411.3636	15.1992	27.14748	12.13331		
icr163783_b_1	406.7366	409.9846	273.7329	15.72335	20.10623	7.811576		
icr163783_b_2	325.1942	630.7845	431.8945	13.36122	20.73318	13.83778		
icr163783_m_1	328.4152	836.6048	282.0622	13.8116	29.10261	29.95884		
icr163783_m_2	305.5171	1052.64	271.9709	7.013654	28.90507	32.4889		
icr163783_mr_1	63.9694	310.8554	246.5091	5.733956	21.15729	7.681835		
icr163783_mr_2	76.71173	632.0781	259.5007	4.850348	17.76773	8.319221		
icr163783_th_1	426.1916	729.5904	177.3569	10.37809	19.14892	6.173026		
icr163783_th_2	479.1595	515.3095	177.0001	13.44392	14.08284	6.122884		
icr163784_a_1	507.5276	779.45	241.5552	 16.96415	33.95075	9.603228		
icr163784_a_2	229.8452	502.6161	213.102	 7.700815	21.65253	6.721848		
icr163784_b_1	538.4251	697.406	312.3015	15.7055	37.25591	5.886829		
icr163784_b_2	322.6448	509.7672	303.7351	 12.08301	22.11101	6.133757		
icr163784_m_1	413.3173	761.124	175.4216	15.46176	35.74285	4.980275		
icr163784_m_2	379.9268	917.1879	166.9072	12.91461	26.32252	5.194684		
icr163784_mr_1	59.25372	396.4873	176.7551	4.537975	18.92117	5.190658		
icr163784_mr_2	45.3654	325.2023	178.0831	4.193986	17.2412	4.98525		
icr163784_th_1	405.5505	983.6041	138.4181	7.514234	22.03291	4.859973		
icr163784_th_2	314.114	1001.772	132.0941	 8.630559	22.6124	4.420512		
icr163785_a_1	229.1739	653.5914	267.9017	12.80631	32.33814	5.493662		
icr163785_a_2	291.9629	675.4837	272.9609	11.10883	31.80532	5.764468		
icr163785_b_1	272.084	558.3458	206.4896	15.56278	35.46842	5.002833		

icr163785_b_2	174.5633	548.091	181.7459	10.27043	29.77854	5.152942
icr163785_m_1	245.4644	515.9909	252.987	15.39472	34.10698	6.696154
icr163785_m_2	278.9386	605.8918	259.8774	12.8407	28.52489	6.218549
icr163785_mr_1	63.48689	483.2241	146.0475	6.030917	19.44538	4.263723
icr163785_mr_2	156.5164	270.629	146.4056	4.929762	17.59153	4.091254
icr163785_th_1	143.8934	646.5795	291.5822	7.155027	25.55958	5.474932
icr163785_th_2	178.9703	599.5682	290.0403	7.899342	24.03119	5.660627
icr163786_a_1	516.6516	569.3988	178.9085	20.45384	33.63609	4.640755
icr163786_a_2	355.4315	717.114	181.3832	13.03482	26.7548	4.756911
icr163786_b_1	482.1953	410.198	162.6738	17.77091	33.82646	5.761508
icr163786_b_2	234.9037	520.4935	165.0811	8.728476	28.30671	5.901462
icr163786_m_1	490.9494	645.8409	145.4427	17.898	32.6009	4.854243
icr163786_m_2	498.0474	742.8677	142.2766	11.38267	27.68158	5.307693
icr163786_mr_1	96.3589	437.0218	359.239	5.482531	18.33933	6.202907
icr163786_mr_2	138.4763	287.4551	354.3588	4.556112	14.19292	6.535906
icr163786_th_1	322.7051	692.1161	393.1514	8.435695	22.59742	5.465384
icr163786_th_2	299.5259	551.3526	556.5482	12.38991	20.7534	5.498063
icr163787_a_1	311.7975	583.4	254.465	17.67957	30.43553	6.358285
icr163787_a_2	217.0786	516.0406	248.6602	11.01978	25.02498	6.569679
icr163787_b_1	391.1152	418.8162	163.0965	15.73892	22.76285	5.00213
icr163787_b_2	233.1257	572.7689	181.4308	9.96997	22.26594	5.980401
icr163787_m_1	280.8993	693.8127	292.9343	14.06141	31.20656	5.704348
icr163787_m_2	203.8715	724.2852	300.6226	9.888848	28.55305	5.74685
icr163787_mr_1	307.9324	237.1796	175.6203	25.17064	18.27538	4.058029
icr163787_mr_2	60.8917	449.2101	180.5408	4.212205	13.51146	4.170898
icr163787_th_1	164.0599	744.4925	323.0227	6.921536	21.28215	6.144443

	100 0011	500 4057	227 2526	7 000	24 25254	6 206642
icr163787_th_2	169.6044	590.4857	327.3536	 7.392	21.35354	6.306613
icr163788_a_1	433.2318	1210.549	186.5412	 18.21153	31.81654	4.926779
icr163788_a_2	182.1217	1686.259	187.7853	6.236982	28.60165	4.974223
icr163788_b_1	429.1417	1105.066	500.2657	15.85715	34.70982	6.139881
icr163788_b_2	539.8527	1361.976	499.675	9.933463	27.70294	5.983404
icr163788_m_1	579.9697	1320.312	175.2091	20.78809	33.79082	5.363113
icr163788_m_2	289.7999	1438.391	168.5604	8.455842	29.05682	5.317547
icr163788_mr_1	93.25377	360.0397	201.8671	6.903228	19.82767	5.294508
icr163788_mr_2	170.3468	352.7262	190.2579	5.954905	15.82199	5.729164
icr163788_th_1	299.9443	1642.752	148.2493	10.42265	20.91218	4.112167
icr163788_th_2	490.1223	1692.647	155.0244	9.562297	24.0728	4.349614
icr163789_a_1	464.8953	695.389	210.1318	18.05983	34.01385	4.86623
icr163789_a_2	536.0704	859.8742	199.1243	13.34291	28.51961	4.712067
icr163789_b_1	1083.204	707.6317	162.2504	15.72167	32.12721	7.925879
icr163789_b_2	595.9957	971.0002	161.7892	11.65251	25.80052	8.230142
icr163789_m_1	957.4312	853.8696	245.8283	19.28082	34.40698	5.277286
icr163789_m_2	519.7941	886.3268	240.6847	14.4984	25.35998	5.054693
icr163789_mr_1	98.27006	316.7288	189.9859	6.156737	17.3939	4.514349
icr163789_mr_2	52.25831	363.2525	188.5344	3.904262	18.49742	4.509053
icr163789_th_1	504.9175	888.6948	259.2091	8.860253	19.4298	5.705599
icr163789_th_2	700.2788	860.323	241.6708	11.28957	20.86639	5.88137
icr163790_a_1	287.4492	493.4662	150.819	16.13032	35.30293	5.111189
icr163790_a_2	297.2289	549.7089	158.0315	9.606454	28.44281	5.974943
icr163790_b_1	302.3982	549.7718	210.3076	15.22666	40.628	6.333297
icr163790_b_2	259.0295	795.7516	224.052	9.397013	29.60041	5.166366
icr163790_m_1	390.1997	651.5993	252.8001	20.68705	34.74301	5.054985

	226.0624	7544600	252 6244	40 50 400	20.24266	4
icr163790_m_2	336.9634	/54.1689	252.6314	 10.58496	30.34366	4.///51
icr163790_mr_1	95.45744	500.9827	268.3377	7.662765	19.0882	5.557624
icr163790_mr_2	48.99363	348.3386	268.7969	3.512671	14.99434	5.923919
icr163790_th_1	184.4009	967.8812	215.603	7.590265	21.06062	7.161632
icr163790_th_2	171.8612	877.2993	214.3187	7.534044	21.77282	6.744508
icr163791_a_1	335.1223	495.182	325.9859	21.954	33.37628	5.022287
icr163791_a_2	282.1228	355.084	326.9211	15.46484	20.98435	5.03782
icr163791_b_1	258.062	422.4811	224.0227	15.76422	34.75841	5.294811
icr163791_b_2	221.9099	587.927	240.4611	13.69464	29.90557	5.324966
icr163791_m_1	313.0159	463.9099	668.5987	18.22352	32.68418	6.673136
icr163791_m_2	262.6839	539.3239	697.0124	13.28802	27.48524	6.431368
icr163791_mr_1	81.84994	260.363	137.7313	6.393424	16.7339	4.88471
icr163791_mr_2	62.90882	209.046	139.1133	6.100331	12.63619	5.627691
icr163791_th_1	182.8621	518.8276	325.5089	9.994121	20.30206	5.219555
icr163791_th_2	188.015	478.8008	335.4261	9.93858	21.18924	5.371056
icr163791_th_6.1	214.5393	459.8125	198.4264	 14.68406	25.62391	9.777018
icr163791_th_6.2	174.2244	450.4655	225.5444	11.3384	26.81767	5.896862
icr163792_a_1	281.2144	442.0964	332.4141	15.83764	36.3051	6.529122
icr163792_a_2	244.2874	435.8557	338.3897	11.9174	34.99754	6.596154
icr163792_b_1	399.8526	572.7935	199.8532	17.13019	35.65774	4.722194
icr163792_b_2	259.3802	539.4078	193.5083	12.26237	27.86212	4.476363
icr163792_m-1	225.477	337.8426	580.2771	11.27017	27.43932	5.451203
icr163792_m_2	167.2301	370.9547	624.5276	8.522962	24.6006	5.30495
icr163792_mr_1	126.8537	358.6315	413.1997	7.705226	22.14658	6.1688
icr163792_mr_2	135.6741	360.7144	404.2868	5.603687	21.35219	6.108069
icr163792_th_1	236.0008	549.1766	307.4811	15.25867	30.38834	4.950826

icr163792_th_2	275.6996	524.2975	281.0448	11.48177	27.14517	4.721255
icr163793_a_1	318.7093	594.0567	176.6433	21.55944	36.40356	6.000715
icr163793_a_2	276.4114	567.1283	180.7332	16.57645	29.6527	5.40498
icr163793_b_1	285.9009	508.5553	347.1221	24.10846	36.07206	7.243818
icr163793_b_2	290.4553	463.6819	345.5095	17.49426	29.05478	7.335824
icr163793_m_1	258.4343	461.7711	248.0777	19.4682	29.23748	5.418117
icr163793_m_2	220.177	488.5038	243.7081	12.5324	22.62333	5.302651
icr163793_mr_1	126.5207	455.4353	269.9175	9.593133	20.09413	5.1085
icr163793_mr_2	134.9461	403.5103	267.5825	6.734108	18.25118	4.951115
icr163793_th_1	455.3538	805.4613	192.1276	17.65669	27.34217	4.275274
icr163793_th_2	602.1814	831.9283	198.3051	14.01911	23.36617	4.388638
icr163794_a_1	353.7751	2395.848	273.1114	20.38093	30.93075	6.156878
icr163794_a_2	931.3754	2276.279	273.9504	12.08776	25.75741	6.226632
icr163794_b_1	526.5876	679.0117	161.1378	21.30486	31.93456	4.17145
icr163794_b_2	452.1405	970.5848	166.5853	12.91733	25.30568	4.148657
icr163794_m_1	216.8459	881.9811	195.8835	12.09625	27.77658	4.746833
icr163794_m_2	231.3671	792.6794	199.8407	9.900594	24.21254	5.026254
icr163794_mr_1	124.2858	574.8788	180.3073	7.578703	17.69254	4.121247
icr163794_mr_2	157.458	650.9229	180.1422	6.463952	15.38067	3.6951
icr163794_th_1	347.8712	758.1044	246.6031	16.33071	25.24133	6.055815

SSN		Zinc Mg	gKg ⁻¹		Molybdenum	n MgKg ⁻¹
icr163783_a_1	Fresh	Oven Dried	Milled	Fresh	Oven Dried	Milled
icr163783_a_2	47.50465911	52.3804102	48.17045	19.16724	7.73077636	7.206903
icr163783_b_1	36.49906733	51.7617531	52.71587	9.75601	0.91354574	5.071699
icr163783_b_2	45.00055107	39.9949298	34.50362	13.19726	0.40776749	16.71497
icr163783_m_1	38.61898575	49.2721513	34.87322	4.333424	8.00507213	26.24123
icr163783_m_2	43.03629142	41.8183036	17.63591	5.873679	8.78901343	2.209291
icr163783_mr_1	31.91255694	55.8810294	16.68617	11.19182	11.3212262	2.151061
icr163783_mr_2	17.36791876	54.0329455	36.22029	4.190459	6.05279589	4.711067
icr163783_th_1	14.53436905	54.1692199	34.22451	10.46772	9.37829783	3.891842
icr163783_th_2	30.15596067	53.0198075	41.30944	7.243507	5.47086062	6.887791
icr163784_a_1	30.88998417	33.9100104	39.38171	7.122595	11.8419233	6.775774
icr163784_a_2	45.15965866	54.1970536	27.27281	2.950011	8.75213789	12.00344
icr163784_b_1	26.61123564	41.697972	24.43014	2.621616	6.73726399	8.156067
icr163784_b_2	41.29479591	46.9374434	30.92578	9.912922	3.68497066	2.089416
icr163784_m_1	31.8386167	41.4971335	31.71737	6.51131	11.0195159	4.003675
icr163784_m_2	42.93712389	58.6762378	22.27605	10.09245	14.231687	1.223301
icr163784_mr_1	33.11488605	55.8618586	21.01287	8.619254	5.96934171	3.283334
icr163784_mr_2	15.80391858	41.4530611	24.09746	6.703503	8.84776848	3.327825
icr163784_th_1	14.46993978	40.2040388	24.24453	3.250687	10.8521167	1.713184
icr163784_th_2	30.88336471	48.4101158	20.66634	6.635833	7.89268892	6.309525
icr163785_a_1	26.58985809	47.0440357	20.70611	5.94914	11.8059236	3.402671
icr163785_a_2	53.20325245	58.1776326	21.6449	7.855004	4.94879335	0.641161
icr163785_b_1	37.29255272	44.3388511	21.83283	7.881408	10.9731065	1.014671
icr163785_b_2	36.24749928	55.3349769	17.48567	7.243457	6.34392956	2.229323
icr163785_m_1	31.48796302	53.4756863	18.10305	16.10962	5.32455101	6.562657
icr163785_m_2	40.72503642	57.5146871	22.57407	2.91064	4.22429948	1.687752
icr163785_mr_1	38.44608732	55.7074968	23.06335	3.792385	1.16079195	1.444973
icr163785_mr_2	14.97632261	41.1297647	18.53388	8.485551	7.78154779	2.347157
icr163785_th_1	14.60660794	41.5745442	17.59663	7.994435	9.86587515	3.907954
icr163785_th_2	23.81186757	51.6850169	28.06457	6.329814	12.3979624	4.650291
icr163786_a_1	24.67506223	51.3543469	27.39497	6.269912	8.8888826	1.806029
icr163786_a_2	46.59880362	59.9491922	33.50408	4.320147	1.43412168	3.051448
icr163786_b_1	31.35736859	63.0164799	33.87473	15.09481	2.22559447	1.357221
icr163786_b_2	41.60119712	54.9110828	26.68821	8.743898	11.4891634	1.479023
icr163786_m_1	29.59552018	55.5661759	27.66997	12.08366	0.15660082	0.068694
icr163786_m_2	44.589998	61.1563269	27.46218	7.166371	10.6539676	4.47563
icr163786_mr_1	34.33611453	57.8579153	26.66012	3.75738	3.4174776	1.882847
icr163786_mr_2	16.76499055	51.5757045	32.07201	4.886222	3.45344483	1.819018
icr163786_th_1	14.39874016	49.5085873	33.33638	6.360274	5.66933626	2.596424
icr163786_th_2	22.22594183	52.5979701	25.14599	5.53812	5.08588812	1.222491
icr163787_a_1	33.81930987	52.1302637	24.29446	11.12602	12.291317	1.912429
icr163787_a_2	43.95549334	60.4887871	25.3937	6.024538	14.8926557	2.356619
icr163787_b_1	31.76402678	46.6761673	25.85172	5.821516	3.00657034	2.256411
icr163787_b_2	38.61089211	39.9736184	17.90061	7.130515	7.09116499	3.4455

icr163787_m_1	27.67428991	51.6549956	20.86675	6.209244	12.3685925	5.776847
icr163787_m_2	36.64360807	57.0979128	22.28804	2.077714	6.98653993	2.506867
icr163787_mr_1	29.42141453	55.298413	21.35818	9.784693	12.4075065	2.718967
icr163787_mr_2	48.59634114	39.9389802	17.80239	6.34552	4.00428049	1.742096
icr163787_th_1	16.03506471	40.9014889	19.21637	4.651883	10.5233141	2.992323
icr163787_th_2	22.28350403	50.1940931	31.59422	2.361947	8.55654474	0.527505
icr163788_a_1	21.92740392	50.2584438	31.94553	8.062232	5.94812963	4.849071
icr163788_a_2	51.15283489	63.4702638	27.92353	12.31715	2.99717761	2.612142
icr163788_b_1	57.47854618	57.1529487	27.08136	9.368497	10.3936122	3.491263
icr163788_b_2	40.8127821	55.5097978	44.25206	9.444294	12.9465778	1.470946
icr163788_m_1	31.00740636	55.5902264	41.61053	10.12527	12.7018246	2.399344
icr163788_m_2	54.00716251	54.7780646	26.0104	7.706753	9.55229617	1.970131
icr163788_mr_1	28.0568106	55.6626713	26.33121	9.338796	11.7824062	3.275222
icr163788_mr_2	16.6393371	36.1538099	22.65394	8.905248	9.10633105	3.564228
icr163788_th_1	16.15797614	35.1132555	24.39701	3.46965	9.98631915	1.213993
icr163788_th_2	26.05330277	52.1905804	21.90481	6.378151	0.93898454	5.022989
icr163789_a_1	25.31058849	57.7543178	21.34075	4.664664	11.0487082	4.558947
icr163789_a_2	45.49398549	49.19787	21.65071	8.137315	7.49082959	0.684824
icr163789_b_1	35.87753375	45.2087497	21.41809	6.725845	6.83908133	1.219782
icr163789_b_2	46.24393825	48.5075393	23.13571	6.33902	9.17078159	26.43751
icr163789_m_1	29.37258392	49.6329306	22.19435	10.07447	7.93332529	29.56147
icr163789_m_2	48.49162869	51.7475361	22.63294	8.576206	5.02139548	2.368063
icr163789_mr_1	35.5703364	47.4235607	21.63742	3.700395	7.4420743	1.607988
icr163789_mr_2	16.32948715	39.5376158	17.53586	3.542727	5.90115094	5.537145
icr163789_th_1	11.52050911	35.8715206	18.79774	1.850429	6.28920277	2.773302
icr163789_th_2	26.96207403	48.4638371	27.99519	12.34051	2.81349744	1.217673
icr163790_a_1	25.8831405	48.6844009	30.93791	0.11803	4.9856473	1.946865
icr163790_a_2	51.88714539	51.4801306	18.47577	3.180902	8.42813047	1.550301
icr163790_b_1	30.77708926	50.7900606	18.39063	8.53021	7.89697197	0.534436
icr163790_b_2	36.76262402	58.5385174	28.00587	3.546567	1.61105425	4.295004
icr163790_m_1	30.67579338	53.9459671	28.21302	7.543117	9.19655402	1.217121
icr163790_m_2	44.68096363	52.1967041	26.292	1.966335	4.37003243	3.398858
icr163790_mr_1	27.28736123	56.8814939	27.3582	4.061133	2.17498321	4.303638
icr163790_mr_2	22.66760208	44.9020286	65.07928	3.919023	2.91696774	0.88431
icr163790_th_1	13.29847405	44.4581397	73.49334	9.196849	4.96205124	3.003675
icr163790_th_2	24.17342792	47.936287	31.06821	3.132816	14.6085789	5.278932
icr163791_a_1	24.77378663	47.901036	30.32987	7.484386	10.8127672	2.821594
icr163791_a_2	51.78285182	60.7646509	22.70479	4.840526	13.0938635	1.16793
icr163791_b_1	42.31475618	48.6403197	21.67753	3.12507	6.99488409	1.815946
icr163791_b_2	40.5044649	52.7880412	20.5192	7.159731	4.46513219	3.543441
icr163791_m_1	35.768558	62.6992305	20.97453	2.089029	7.87651579	2.808073
icr163791 m 2	45.85740055	61.0163158	46.17652	11.49431	4.46001853	3.144329

				 -		
icr163791_mr_1	42.16511333	61.1766196	46.88019	1.799191	9.72519451	4.188784
icr163791_mr_2	20.73452885	60.7645696	17.78688	7.740337	7.77263864	4.534421
icr163791_th_1	17.81190183	60.6136379	18.23093	9.58582	10.7098523	5.67023
icr163791_th_2	32.01989058	64.8969052	25.12278	7.513261	5.13026357	0.507675
icr163791_th_6. 1	28.65792814	67.398389	26.6212	7.71045	0.84954942	6.015388
icr163791_th_6. 2	32.3121201	66.0537276	23.63573	3.798297	14.3354745	2.723955
icr163792_a_1	24.15664	63.2076223	22.82982	3.723591	9.0910159	3.67481
icr163792_a_2	41.50680395	57.7321801	23.11657	1.951447	2.91864892	4.062836
icr163792_b_1	38.51041668	55.2377943	22.4551	6.199954	8.58545882	2.911147
icr163792_b_2	38.44782513	60.8645818	23.28424	5.693653	5.58986873	0.800499
icr163792_m-1	35.66406129	58.326961	23.21785	3.31962	8.9684366	3.019326
icr163792_m_2	33.48295874	46.4194962	31.41959	10.17943	6.82983108	5.744528
icr163792_mr_1	28.22544102	57.4154452	32.47322	3.22754	6.16822646	4.510979
icr163792_mr_2	21.51437761	45.6862095	22.10311	3.940518	8.24253142	5.691859
icr163792_th_1	19.48928736	51.24119	22.22233	8.025129	2.70935769	2.377242
icr163792_th_2	46.6227031	64.02209	21.33353	0.727058	20.0208157	1.21649
icr163793_a_1	34.24162138	60.8182037	21.06941	8.746659	15.0548351	2.375187
icr163793_a_2	35.61021026	54.0280926	18.47547	3.923478	8.41806435	3.07756
icr163793_b_1	28.99573744	53.7889331	18.23723	1.969748	0.23662617	3.643936
icr163793_b_2	37.115652	54.4333373	30.06333	5.187183	9.58801551	5.082927
icr163793_m_1	30.31577238	51.2258025	30.98697	5.573016	6.04559775	3.736326
icr163793_m_2	27.77653555	47.3715055	21.739	7.535773	5.09516974	4.570616
icr163793_mr_1	18.52993745	40.6511669	22.04696	1.509986	13.1102283	2.634443
icr163793_mr_2	16.69732514	46.842631	22.77212	2.014363	13.1028565	1.272563
icr163793_th_1	17.18530916	44.2529378	23.55625	6.787769	5.73434816	3.208947
icr163793_th_2	42.47078814	51.7156107	18.09977	3.094011	5.53759818	24.34902
icr163794_a_1	32.72852684	49.8919737	17.87693	2.846617	9.19949505	16.05573
icr163794_a_2	38.98899505	50.8896438	21.44157	2.673111	9.93098937	4.726985
icr163794_b_1	24.7557289	50.2903119	22.71219	4.852659	5.09452319	0.476771
icr163794_b_2	35.54304966	53.3544947	19.27986	6.558221	13.4272622	2.468182
icr163794_m_1	28.06345487	47.1453804	20.03555	5.209564	5.10017232	3.459557
icr163794_m_2	21.02126931	38.7505354	32.40689	3.26005	4.23014516	1.655331
