GENETIC POLYMORPHISM IN THE CCR5-DELTA32 ALLELE AND THE ROLE OF MOBILE TECHNOLOGY IN EVALUATING HIV DRUG RESISTANCE

BEATRICE ATIENO ONGADI

(HND IMIS, BSc. IT, and MSc. Molecular Biology \& Bioinformatics)

I80/52029/2017

A thesis submitted in partial fulfillment of the requirements for award of the Degree of Doctor of Philosophy in Bioinformatics of the University of Nairobi.

DECLARATION

I declare that this thesis is my original work and has not been submitted elsewhere for examination, award of a degree or publication. Where other people's work or my own work has been used, this has properly been acknowledged and referenced in accordance with the University of Nairobi's requirements.

Signature:
 Date: $9 \mid 6$

Beatrice Atieno Ongadi

REG. NO. 180/52029/2017
Department of Biochemistry
University of Nairobi

This thesis is submitted for examination with our approval as research supervisors.

Prof. George Obiero,

Date
a/G/2023
Department of Biochemistry, University of Nairobi, P.O Box 30197-00100

Nairobi - Kenya

Dr. Raphael Lihana,

Centre for Virus Research, Kenya Medical Research Institute.
P.O Box 54840-00200

Nairobi - Kenya
Dr. John Ndemi Kiiru,

Kenya Medical Research Institute
P.O Box 54840-00200

Nairobi - Kenya

DEDICATION

This thesis is dedicated to my family, the source of my inspiration. Without their support, patience, understanding and love; the completion of this work would not have been possible. To my beloved husband and children Ian and Joy may God reward you richly for the immense support. To my late father Mr. Eliashib W. Ongadi your passion for academic excellence and last words are still as clear; and a major source of success in my academic life and finally to my loving mum thank you very much for your interminable Prayers.

ACKNOWLEDGEMENTS

Sincere gratitude to my valued academic supervisors; Prof. George O. Obiero; immediate former Director Centre for Biotechnology \& Bioinformatics (CEBIB) - University of Nairobi, Dr. Raphael Lihana; distinguished Virologist from Kenya Medical Research Institute and Dr. John Kiiru; renowned Molecular Biologist from Kenya Medical Research Institute. With the same measure; I am equally grateful to Dr. Musa Ng 'ayo for his help and the many discussions we had together regarding the quality of this work.

Finally, I would like to appreciate my financial sponsors; Gandhi Smarak Nidhi Fund (GSNF) for the 2017/2018 PhD scholarship award and Kenya Medical Research Institute Training Funds for the 2018/2019 allocation.

I thank my family most sincerely for the words of encouragement, moral and financial support as well as understanding beyond measure. Above all, nothing would be possible without the strength and the ability from God.

Abstract

More than 37 million individuals are infected with the human immunodeficiency virus (HIV), and numerous people die from HIV-related illnesses annually. Although HIV prevalence and patterns vary by nation, the occurrences of HIV in high-risk populations vary by category. CCR5 532 is a non-destructive gene caused by deletion of 32 base pairs on Cysteine-Cysteine Chemokine Receptor 5 (CCR5). The allele protects its homozygous carriers from HIV infection while slows disease progression to its heterozygous carriers. This study aimed at determining the genetic polymorphism in the CCR5-Delta32 allele through in silico approach and promotes the use of mobile technology in evaluating HIV drug resistance. A systematic review and meta-analysis of published studies was carried out and results used in this study to show a comparison of the allele spread between different populations. CCR5 532 related sequences were downloaded and grouped according to geographical regions for further analysis. Analysis, visualization and presentation was done using Unipro Ugene bioinformatics software in combination with other free online bioinformatics tools. For mutation detection, SNP discovery, allele identification, and sequence confirmation, the core receptor regions of HIV sequences were subjected to a similarity search through the Basic Local Alignment Search Tool and assembled against HIV-1 reference sequences. The pol protein region was trimmed and compared to a template in the Stanford database (https://hivdb.stanford.edu/), then used to create an Android mobile application (ARVPredictor) capable of interpreting HIV drug resistance and anti-retroviral drug interactions. Three geographical regions; Europe, Africa, and Asia were categorized from the 37 studies reviewed with a total of 17,535 participants. Caucasians made up 44.7% of the population, Africans 17.8% and Asians 19.3%. With a pooled Odds Ratio (OR) of 0.08 (95% CI, $0.06-0.10, \mathrm{P}<0.00001$), test of subgroup differences at $\mathrm{I}^{2}=47.0 \%$, and a P value of 0.13 , the distribution of the CCR5 $\Delta 32$ allele among different populations in comparison to its heterozygosity showed a significant association. Caucasians had a subtotal OR of 0.07 (95% CI, $0.05-0.10, \mathrm{I} 2=82 \%$) and a significant P value of <0.00001, indicating high level of CCR5 532 homozygosity, compared to Asians with an OR of 0.14 (95% CI, $0.05-0.37, \mathrm{I}^{2}=$ 31%) and Africans with an OR of 0.27 ($95 \% \mathrm{CI}, 0.04-1.69$).A strong indication that race can be a factor in determining CCR5 532 homozygosity or heterozygosity, and that Caucasians are more likely to be homozygous of the allele. Similarly, when compared to the Stanford HIV

Database, the developed ARVPredictor identified similar HIV subtypes in 98/100 sequences during test performance (kappa - 0.98 - near perfect agreement). ARVPredictor identified 89/100 major NNRTI and NRTI mutations that were similar to those found in the Stanford HIV Database (kappa - 0.89 - near perfect agreement). This study reports a novel tool that accurately identifies HIV-1 drug resistance mutations that targets the HIV pol gene, and provides appropriate antiretroviral drugs for use at the point of care. It takes advantage of and utilizes today's high-speed data networks as well as smartphone accessibility.

TABLE OF CONTENT

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
TABLE OF CONTENT vii
LIST OF FIGURES xii
LIST OF APPENDICES xiv
LIST OF ABBREVIATIONS AND ACRONYMS xv
CHAPTER ONE 1
INTRODUCTION 1
1.1 Background Information 1
1.2 Statement of the Problem 3
1.3 Justification of the study 4
1.4 Hypothesis 4
1.5 Research Questions. 4
1.6 Objective of the study 5
1.6.1 Main Objective 5
1.6.2 Specific Objectives 5
CHAPTER TWO 6
LITERATURE REVIEW 6
2.1 HIV and AIDS 6
2.1.1 History 6
2.1.2 Biology and Taxonomy of HIV 6
2.1.3 Structure of HIV 8
2.1.4 HIV Replication Cycle 9
2.1.5 Global Distribution of HIV and AIDS 12
2.1.6 Epidemiology of HIV Subtypes 13
2.1.7 Key Population affected by HIV and AIDS 14
2.1.8 Clinical Manifestation and Diagnosis of AIDS 15
2.1.9 Methods of Controlling Spread of HIV 16
2.2 IMMUNOLOGY OF HIV 16
2.2.1 Immune response to HIV infection. 18
2.2.2 Oxidative Stress and HIV Infection 19
2.2.3 Immune Evasion Mechanism in HIV 20
2.3 Antiretroviral Treatment for HIV 21
2.3.1 Current Classes of ARVs 21
2.3.2 Challenges of ARV Treatment 22
2.4 Community Perception of HIV and AIDS 23
2.5 Role of CCR5 in the control of HIV infection 23
CHAPTER THREE 25
MATERIALS AND METHODS 25
3.1 Distribution of CCR5 $\Delta 32$ allele among Caucasians, Africans and Asians 25
3.1.1 Preliminary investigation and Objective validation 26
3.1.2 Inclusion and exclusion criteria 26
3.1.3 Data Abstraction and Statistical Analysis 26
3.2 Genetic variation of HIV-1 envelope glycoprotein (gp160) among Caucasians, Africans and Asians 28
3.3 Development and evaluation of an Android Mobile based application to detect HIV subtype and HIV-1 Drug Resistance mutations targeting the HIV pol gene. 30
3.3.1 Application Design and Setup 30
3.3.2 Participants 31
3.3.3 App Development Process. 32
3.3.4 Gap Identification and Requirements Gathering 32
3.3.5 Use Case Modeling 33
3.3.6 Operational Process of the App 34
3.3.6.1 Android Studio 4.1 and Java 10. 34
3.3.6.2 Nginx Server Version 1.17. 0 34
3.3.6.3 MySQL 35
3.3.6.4 Apollo Android 35
3.3.6.5 Retrofit Android Library 36
3.3.6.6 Mobile Client Environment 36
3.3.7 App System Design 36
3.3.7.1 ARVPredictor Deployment and Testing 37
3.3.7.2 ARVPredictor Maintenance 38
3.3.7.3 Input of Actual Data for Analysis 38
3.3.7.4 Test performance 38
CHAPTER FOUR 39
RESULTS 39
4.1 Distribution of CCR5 $\Delta 32$ allele among Caucasians, Africans and Asians 39
4.2 Genetic variation of HIV-1 envelope glycoprotein (gp160) among Caucasians, Africans and Asians 46
4.3 Android Mobile based application to detect HIV subtypes and HIV-1 Drug Resistance mutations targeting the HIV pol gene 52
4.3.1 Test Performance and Agreement 54
4.3.2 ARVPredictor Availability 55
4.3.3 User Friendly Interfaces 56
4.3.3.1 User Registration and User login 56
4.3.3.2 Antiretroviral Drug Options/Input Window 57
4.3.3.3 HIV Mutation Selection Window. 58
4.3.3.4 ARVPredictor Mutation Analysis Results Window 59
CHAPTER FIVE 62
DISCUSSION 62
CHAPTER SIX 67
CONCLUSIONS AND RECOMMENDATIONS 67
6.1 General Conclusions 67
6.2 General Recommendations 68
REFERENCES 69
APPENDICES 92

LIST OF TABLES

Table 2.1: Taxonomic Classification of Human Immunodeficiency Virus (ASHM, 2003).................. 7
Table 2.2: HIV induced Immunologic abnormalities (Zunich \& Lane,, 1991) 17
Table 4.1: Characteristics of all studies selected and grouped for review and meta-analysis 40
Table 4.2: Test sequence data set: Accession No: KX505361.1: HIV-1 isolates 5873 from Kenya pol protein (pol) gene, partial cds. .. 52

Table 4.3: Test Performance Output: Performance results of ARVPredictor using the Stanford HIV database as the gold standard in identification of HIV subtypes and mutations.55

LIST OF FIGURES

Figure 2.1: Phylogenetic Tree of SIV and HIV Viruses 8
Figure 2.2: Structure of Human Immunodeficiency Virus (HIV) 9
Figure 2.3: Seven stages of HIV Life Cycle 10
Figure 2.4: HIV Global Prevalence of 0.8% in 2019 13
Figure 2.5: Global representation of HIV-1 group M subtypes 14
Figure 2.6: Pathogenic effect of untreated HIV mediated disease 18
Figure 3.1: Summary of studies selected for analysis by PRISMA flow diagram. 28
Figure 3.2: HIV Gene Map 29
Figure 3.3: The V3 loop region of the HIV-1 gp120 envelop 30
Figure 3.4: ARVPredictor: Rapid Application Development (RAD) Model. 32
Figure 3.5: ARVPredictor use case diagram 33
Figure 3.6: App development stack: 35
Figure 3.7: Application system design and preliminary testing procedure: 37
Figure 4.1: Distribution of participants with CCR5 532 genotyped by category 42
Figure 4.2: Distribution of reviewed studies and sample size by category. 42
Figure 4.3: Percentage of CCR5 $\Delta 32$ Homozygotes by category. 43
Figure 4.4 Forest plot showing comparison of CCR5 Homozygosity and Heterozygosity among various populations (Caucasians, Asians, Africans and Others). 44
Figure 4.5: Forest Plot for comparison of CCR5 Homozygosity and Heterozygosity among HIV positive and HIV negative individuals in the reviewed data 45
Figure 4.6: Phylogenetic analysis of env sequences inferred using the Maximum Likelihood method and General Time Reversible Model 47
Figure 4.7: Diagrammatic representation of HIV-1 envelop. 48
Figure 4.8: Distribution of highly conserved V3 loop tip among HIV-1 M group subtypes 49
Figure 4.9: Dendrogrammatic representation of the V3 loop sequences 50
Figure 4.10: Graph showing the ration of dN - dS per site in the analyzed V 3 loop sequences 51

Figure 4.11: Sequence analysis results ... 53
Figure 4.12: Mutation Analysis Results ... 54
Figure 4.13: ARVPredictor Preliminary User Interfaces. ... 56
Figure 4.14: User Registration and Sign in source code: ... 57
Figure 4.15: Antiretroviral Display Options... 57
Figure 4.16: ARV Drug Selection code by category ... 58
Figure 4.17: ARVPredictor... 59
Figure 4.18: ARVPredictor Mutation Analysis Results: (Including the latest version of Stanford db. referenced, Major/Minor Mutations identified and ARVs susceptibility levels)

Figure 4.19: ARVPredictor Mutation Analysis Code: Set of back-end computer related logical instructions for analyzing selected set of HIV mutations.60

Figure 4.20: ARVPredictor Sequence Analysis Results. (Including the latest version of Stanford db. referenced, Position sequenced, Major/Minor Mutations identified, HIV Subtype and ARVs susceptibility levels)

Figure 4.21: ARVPredictor Sequence Analysis code. : Set of back-end computer related logical instructions for analyzing HIV sequences.

LIST OF APPENDICES

Appendix 1.1: Major HIV-1 Drug Resistance Mutations Updated March 9, 2015 92
Appendix 1.2: ARVPredictor; Test Performance Sequences (Accession Numbers: KX505314- KX505372 and MK588680-MK588752) 94
Appendix 1.3: ARVPredictor Test Performance Results Table. 119
Appendix 1.4: ARVPredictor: User Guide 130
Appendix 1.5: Informed consent form. 135
Appendix 1.6: Requirement Gathering and Testing Questionnaire 137

LIST OF ABBREVIATIONS AND ACRONYMS

ADCC	Antibody-Dependent Cellular Cytotoxicity
AIDS	Acquired Immune Deficiency Syndrome
ART	Antiretroviral Treatment
ARVs	Antiretroviral
AZT	Azidothymidine
CCR5	Chemokine Receptor Type 5
CXCR4	CXC Chemokine Receptor 4
CCR5 532	CCR5 Delta 32
D32	Delta 32
GP160	Envelope Glycoprotein 160
HIV	Human Immune Deficiency Virus
HIVDR	HIV Drug Resistance
IMAP	Internet Message Access Protocol
KAIS	Kenya AIDS Indicator Survey
KEMRI	Kenya Medical Research Institute
MySQL	My Structured Query Language
NRTI	Nucleoside Reverse Transcriptase Inhibitor
NNRTI	Non-nucleoside Reverse Transcriptase Inhibitors
POP3	Post Office Protocol version 3
RAD	Rapid Application Development
RES	Resistance
SDLC	Software Development Life Cycle
SIV	Simian Immunodeficiency Virus
SNP	Single Nucleotide Polymorphisms
SUS	Susceptible
UNAIDS	Joint United Nations Programme on HIV/ Acquired Immune Deficiency Syndrome
W.H.O	World Health Organization

CHAPTER ONE

INTRODUCTION

1.1 Background Information

Mammalian cell membranes are made of cysteine-cysteine chemokine receptor 5 (CCR5) also referred to as CD195 and are popularly known for allowing in chemokines that signal the body to respond during inflammation and damages (Ekere et al., 2020; Rottman et al., 1997). CCR5 is coded by a gene located in the human chromosome3(Ellwanger, Kulmann-Leal, Wolf, et al., 2020). Several known mutations of CCR5 results into damage of the expressed receptor either by deletion, insertion and/or omission (Lopalco, 2010). The CCR5-Delta32 is a damage resulting from a deletion of 32 base pairs in CCR5 resulting into a mutant form of a nondestructive gene. This is unlike other genes that cause serious and harmful damages such as sickle cell anemia, cystic fibrosis, diabetes among others when knocked out; nevertheless carriers of CCR5-Delta32 mutation can enjoy its' documented benefits (Ellwanger, KulmannLeal, Kaminski, et al., 2020). CCR5 receptor allows entry of HIV into the body; during initial stages of infection (Caruso \& Swift, 2023; Kawamura et al., 2003). For individuals enjoying the presence of CCR5-Delta32 mutation in their body, acquisition of HIV resulting to Acquired Immune Deficiency Syndrome (AIDS) for its homozygous carriers is prevented and the disease progression for its heterozygous carries delayed (Liu et al., 1996; Zajac, 2018).

In human, Delta 32 mutation of the CCR5 locus (CCR5 $\triangle 32$) is an advantageous allele and highly geographically diverse indicating adaptive traits and the co-evolution between pathogens and their respective hosts (Samson et al., 1996; Zajac, 2018). This mutant gene results into a shortened protein that cannot be expressed on the surface hence giving resistance to HIV-1 infection and hinder progression to AIDS to infected persons (A. Gupta \& Padh, 2015; Kleinman et al., 2022).

In the global AIDS epidemic report 2012; the United Nations Joint Programme on HIV/AIDS indicated that the variances between the rise and drop among HIV infected persons globally is varied, with 34.0 million (31.4 million - 35.9 million) people living with HIV by the end of
2011. This was estimated at 0.8% of adults aged between $19-49$ years worldwide. Despite the diverse variance between regions and countries; the most affected area was sub-Saharan Africa with almost one (1) in every twenty (20) adults living with HIV and AIDS hence taking care of the 69% of people living with HIV globally. In comparing HIV prevalence across regions; sub-Saharan Africa (SSA) now leads with close to 21 Million people affected by the virus (Kloek et al., 2022). Kenya is listed among top countries affected by HIV/AIDS (Waruru et al., 2021). The infection rate targets vulnerable groups including; commercial female sex workers, men who have sex with men (MSM), transgender women and men, individuals who inject illicit drugs and cisgender male sex workers (Kloek et al., 2022). However, Kenya has consistently implemented effective HIV prevention programs, leading to a significant reduction in the number of new infections. (UNAIDS, 2019).

In 2017, it was estimated that between 1.6 million and 2.1 million persons tested positive and learnt of their HIV status globally (Waruru et al., 2021). During the same time, the UNAIDS's call for the probable fast track HIV epidemic control strategy 90-90-90 was revised. This target aimed at 90% of persons living with HIV knowing their HIV status, 90% of those who already knew their status receiving antiretroviral therapy (ART) and 90% of those on treatment being virally suppressed by the year 2020 (UNAIDS, 2021). The importance of genetic understanding of the Human Immunodeficiency Virus type 1 (HIV-1) became a focus of attention soon after it was identified as the primary cause of AIDS (Acquired immune Deficiency Syndrome). In contrast to isolates from Europe and North America, the entire genomes of two isolates recovered from Zairian patients were cloned and sequenced, indicating a common evolutionary origin (Clavel et al., 1986; Laure et al., 1987). Nevertheless, a further check on the homologous proteins obtained from these isolates showed a lot more genetic polymorphism than before, creating great interest in critically studying the conserved regions like the envelope with the aim of diagnostic development (Stephenson \& Barouch, 2013). The envelope heterogeneity has also hampered the development of HIV vaccines by making it harder to introduce neutralizing antibodies against its proteins. For development of an effective vaccine against HIV-1 strain it has become important to fully understand the HIV1specific binding antibodies and the epitope diversity of antibody responses (Araújo \& Almeida, 2013). Several studies have also shown that the gp120 protein changes significantly
in the course of the HIV diseases progression allowing it to strategically escape immune responses (Jacquemard et al., 2021; Myers et al., 1997; Stephenson \& Barouch, 2013).

1.2 Statement of the Problem

Although HIV still has no known cure; the affected population can access effective antiretroviral treatment to control the virus and help prevent further transmission as they enjoy long and more productive lives. UNAIDS, 2020 reported that 28.2 million people were successfully accessing antiretroviral therapy as of $30^{\text {th }}$ June 2021. Despite the development and usage of highly effective combination of antiretroviral throughout the period; the main challenge has been the high rate of mutation of the HIV virus. The virus quickly develops resistance to existing combination of antiretroviral drugs; a threat to life-long use of the multidrug combination.

Studies have shown that treatment failures, costly second and third line treatments as well as transmission of emerging drug resistant virus strains are some of the main causes of resistance. This calls for the availability of an accurate resource to interpret the genetically modified HIV strains for appropriate drug choices to clinicians, health care givers, and research scientists during treatment of their patients. Several studies have so far shown that knowledge of the genotypic resistance before start of new treatment improves the likelihood of positive response to that treatment.

The viral env glycoprotein compound together with CCR5 and sometimes CXCR4 coupled with CD4 antigen facilitate the entry of HIV/AIDS infection into individuals. The chemokine receptors located at the surface of the host cell express at different of infection times with CCR5 during the early stages of HIV infection and CXCR4 in late stages (Michael et al., 1998). These chemokine receptors have been studied to reasonable conclusions and documented that a mutation in the CCR5 gene known as CCR5 532 resists HIV infection to its homozygous carriers. However, by studying and understanding the distribution of the resistance allele it would be possible to advice on the best method to counter the spread of HIV across different populations and also to formulate a much better way of channeling prevention and treatment strategies.

Due to frequent travels across the globe and possible cross infections among travelers; this study on comparison of genetic diversity, genomic distribution and the distribution of CCR5 532 resistance allele among varied populations may also help perceive the possible outcome of a more virulent strain of HIV and or unforeseen resistant allele that can trigger further research in the HIV field despite the frequent uptake of ARV.

1.3 Justification of the study

Human Immunodeficiency Virus (HIV) remains a major public health problem throughout the globe; having claimed well beyond 36.3 million lives by 2020 and leaving over 37 million people living with the disease in the same year (UNAIDS, 2021). Other documented details by the same Global HIV \& AIDS statistics - Fact sheet of 2021 indicate that over 1.5 million people became newly infected with HIV in 2021 alone. Notably, since the beginning of the epidemic, 79.3 million [55.9 million- 110 million] persons have been infected with HIV. With over 25.6 million individuals living with the disease in Africa, UNAIDS identified the continent as the one most afflicted in 2017. This number accounted for roughly two thirds of all new infections worldwide in 2017. The susceptibility to AIDS as a disease is highly contributed to by most affected populations having legal and social issues in relation to their behaviors. This kind of lifestyle reduces their access to now available rapid diagnostic tests (RDTs) which are able to detect the absence and or presence of HIV antibodies within the same day. The HIV prevalence and pattern also tend to vary from country to country however in high risk population (such as commercial sex workers, men having sex with other men, injecting illicit drug users) the occurrence may vary depending on the specific population.

1.4 Hypothesis

There is no significant in genetic variation of HIV-1 envelope glycoprotein (gp160) amongst Caucasians, Africans and Asians.

1.5 Research Questions

a) How is the CCR5 532 allele distributed among Caucasians, Africans, and Asians?
b) What is the genetic variation of HIV-1 envelope glycoprotein (gp160) among the Caucasians, Africans and Asians?
c) Can HIV-1 target gene be used in mobile technology to assess HIV drug resistance?

1.6 Objective of the study

1.6.1 Main Objective

To determine the genetic polymorphism in the CCR5 $\Delta 32$ allele and use of mobile technology to evaluate HIV drug resistance.

1.6.2 Specific Objectives

(i) To determine the distribution of CCR5 532 allele among Caucasians, Africans and Asians.
(ii) To determine the genetic variation of HIV-1 envelope glycoprotein (gp160) among Caucasians, Africans and Asians
(iii) To develop and evaluate an Android Mobile based application to detect HIV subtype and HIV-1 Drug Resistance mutations targeting the HIV pol gene.

CHAPTER TWO

LITERATURE REVIEW

2.1 HIV and AIDS

2.1.1 History

Human Immunodeficiency Virus (HIV) is believed to have originated around 1920 in the Democratic Republic of Congo. This is after a successful cross species from Chimpanzees to human beings (Faria et al., 2014). Not much is known on the number of individuals affected by the disease up until 1980s; although scarce cases of AIDS were recorded before 1970 (Hong et al., 2020; Worobey et al., 2016). Available phylogenetic reports indicate that the now experienced epidemic could have started between mid and late 70s and by 1980 the spread already covered five continents including Africa, Europe, North America, Australia and South America (AVERT, 2015). The disease then progressively spread among different populations. From the beginning of the epidemic up to the time of writing this document over 76 Million individuals have been infected by the virus and about 38 Million people dead of AIDS related illnesses globally (UNAIDS, 2020, 2021; WHO, 2019).

2.1.2 Biology and Taxonomy of HIV

Human Immunodeficiency Virus (HIV) is classified as a genus lentivirus in the family of retroviridae and sub family Orthoretrovirinae (Blut \& Blood, 2016; Mozhi \& Ganapathy, 2021) (Table 2.1). This classification was agreed upon by the International Committee for the Taxonomy and Classification of Viruses (ICTV) and the HIV research community after several informal meetings before the final formal one in September 1999 (Lapointe \& Harrigan, 2020; Robertson et al., 2000)

Table 2.1: Taxonomic Classification of Human Immunodeficiency Virus (ASHM, 2003)

Virus	HIV
Realm	Riboviria
Kingdom	Pararnavirae
Phylum	Artevervicota
Class	Ortervirales
Order	Revtravirocetes
Family	Retroviridae
Subfamily	Orthoretrovirinae
Genus	Lentivirus

Genetically it is grouped into two: HIV-1 and HIV- 2. Both HIV1 and HIV2 are believed to have descended from Simian Immunodeficiency Virus (SIV) (Greenwood et al., 2014); HIV2 from [SIVsmm] in sooty mangabey monkeys (AVERT, 2015; Cho et al., 2022; SanchezPescador et al., 1985) and HIV 1 from chimpanzees (Hirsch et al., 1989; Huet et al., 1990; Myers et al., 1997) (Figure 2.1).

Both HIV-1 and HIV-2 are thought to have crossed over to humans and eventually developed into diseases in a similar manner. It probably involved consumption of raw monkey meat. Mode of transmission and pathogenesis of both HIV-1 and HIV-2 are almost similar; however HIV-2 is most prevalent in Western part of Africa (Clavel et al., 1986; Esbjörnsson et al., 2019; Visseaux et al., 2019) where only two of its transfers resulted into major human spread.

Human Immunodeficiency Virus 1 (HIV 1) strain is documented to have evolved very fast as compared to HIV-2 which was not discovered until 1986. This is associated to its rapid reproductive rate (Araújo \& Almeida, 2013; Bulanda et al., 2020). By 1992 there was already a clear indication of differences in HIV-1 groups. Strains of HIV-1 got classified into four main groups namely $\mathrm{M}, \mathrm{N}, \mathrm{O}$ and P . All these groups are detectable through antibody tests. Groups N, O and P are very rare; while group O is believed to cause up to 5% of HIV infections in Central and West African countries, groups N and P have been scantily identified in Cameroon (Abongwa et al., 2019; Araújo \& Almeida, 2013). Researchers have shown that

HIV-1 groups M and N are closely linked to those of chimpanzees sub-species Pan troglodytes troglodytes from Cameroon (Abongwa et al., 2019; Keele et al., 2006). Groups O and P, on the other hand, are shown to be closely linked to the Western lowland gorillas that can still be found in Cameroon (D'arc et al., 2015; Kouanfack et al., 2020). Group M which is responsible for the highest infection world over displays a distribution of ten (10) HIV-1 subtypes ranging from A to K plus additional Unique Recombinant Forms (URF) and Circulating Recombinant forms (CRF) (Abongwa et al., 2019; Myers et al., 1997).

Figure 2.1: Phylogenetic Tree of SIV and HIV Viruses: Presenting HIV-1 group M with Subtypes A-J: Group N and Group O: Simian SIVcpz from Chimpanzee Pan Troglodytes Troglodytes and SIVcpz from Chimpanzee Pan Troglodyte shweinfuthii (Thomson et al., 2002).

2.1.3 Structure of HIV

Human Immunodeficiency Virus (HIV) is a single stranded virus which is spherical in shape. It is approximated to be 100 nm in diameter. It has a lipid envelop covered in spikes of the glycoproteins gp120 and gp41 (Figure 2.2). The HIV genome has nine (9) genes: gag, pol, env, tat, rev, nef, vif, vpr and vpu/vpx encoding a total of nineteen (19) proteins, both HIV1 and HIV2 contain similar proteins, however some differ in molecular weight (van Heuvel et al., 2022). The two viral proteins (gp120 and gp41) critical in this study are encoded by env
gene and are responsible for attachment of the virus to the host cell by locking onto the CD4 receptor on CD4 T cells and another co-receptor CCR5 or CXCR4 (Engelman \& Cherepanov, 2012).

Figure 2.2: Structure of Human Immunodeficiency Virus (HIV) (van Heuvel et al., 2022).

2.1.4 HIV Replication Cycle

Human Immunodeficiency Virus (HIV) is categorized as a retrovirus and integrates with the host cells deoxy ribonucleic acid (DNA) during infection. It targets the T-helper cells also known as CD4 cells (CD4+ T cell) which is a type of white blood cells found in the body's immune system. The intended purpose of CD4 cells is to keep the human body healthy through fighting out infections. The count of CD4 cells in a cubic millimeter of blood in the body gives a clear indication of its immune classification (AIDSMAP, 2015). The HIV life cycle (Figure 2.3) begins during attachment and fusion onto the CD4 cells, and progresses to maturation and multiplication of HIV in the blood; resulting into weakened immune system. This process largely depends on the general body health and attempted mitigation measures (Cichocki, 2020).

Figure 2.3: Seven stages of HIV Life Cycle: a) Binding b) Fusion c) Reverse transcription d) Integration e) Replication f) Assembly g) Budding

The replication cycle of HIV can be classified into seven main stages: a) Binding b) Fusion c) Reverse transcription d) Integration e) Replication f) Assembly g) Budding (HIV Replication Cycle |NIH, 2018).

During the initial stages of HIV replication, the virus binds to the receptors on the host CD4 cells through its external glycoproteins. It uses two co-receptors CCR5 and CXCR4. CysteineCysteine Chemokine Receptor 5 (CCR5), also referred to as CD195, is a component of the mammalian cell membrane and is receptor for chemokines that are activated during cell damage (B. A. Ongadi et al., 2018). Once binding is complete the HIV RNA, reverse transcriptase, integrase, and other viral proteins fuses with the cell and enters into it. Different HIV medications that are categorized as entry inhibitors have an impact on this early binding
and infusion process. Rukobia, also known as fostemsavir, accomplishes this by connecting to the HIV gp120 env glycoprotein and preventing it from latching to CD4 receptors, whereas ibalizumab, also known as Trogarzo, binds to CD4 itself. Another medicine, Maraviroc, also known as Selzentry, accomplishes this by blocking the CCR5 receptors (Muccini et al., 2022).

The virus then uses the reverse transcriptase enzyme to concert HIV RNA into DNA enabling the virus gain entry into the cell nucleus; hence stage three of reverse transcription. Basically in this stage the virus uses the RNA as the prototype and a second strand of DNA created by adding the appropriate nucleotide ($\mathrm{A}, \mathrm{T}, \mathrm{C}$, and G).

HIV medications called reverse transcriptase inhibitors are designed to halt the conversion of RNA to DNA. Replication is halted during reverse transcription by nucleoside reverse transcriptase inhibitors (NRTI), such as (Deeks, 2018) and retrovir, since the enzyme views them as defective building blocks. Rilpivirin and doravirine are examples of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which bind to the reverse transcriptase enzyme and interfere with its function.

An integrase enzyme inserts the newly generated and fresh HIV DNA into the human DNA during integration. In the absence of medications that target it, this proviral DNA template can begin creating new viruses, or it can instead stay latent in CD4 cells that are at rest when treatment is followed. To stop the integration process, HIV medications known as integrase inhibitors were developed, including bictegravir, cabotegravir, and dolutegravir (Ndashimye et al., 2021).

The HIV DNA inserts itself into the host chromosome during the integration stage and serves as a template for the production of viral proteins. All the structural proteins, envelope proteins, and enzymes required to construct new virus particles, known as virions, are produced as a result of this process. This is made possible by messenger RNA (mRNA), which the proviral DNA acts as a template for and which, through transcription, transforms into new protein particles (Winans \& Goff, 2020).

HIV protease enzyme cuts the viral proteins that were previously translated from mRNA into little pieces during the maturation and assembly stages. They are then put together to create harmless virions that can emerge from the host cell (Kucharska et al., 2020).

Protease inhibitor medications, such as darunavir, are created to stop the enzyme from slicing the newly produced viral protein for use elsewhere. Lenacapavir, an HIV capsid inhibitor, prevents the virus from assembling(Reed et al., 2021).

Combination therapies where different drugs that work in different ways are used together have proven to be more effecting in HIV management. This was originally realized during mid-1990s upon introduction of protease inhibitors such as; NNRTIs and NRTIs(Chesney et al., 2000; LaMont et al., 2022).

2.1.5 Global Distribution of HIV and AIDS

In 2021, several years after first discovery of HIV, it continues to be a major public health problem globally. An estimate of over 76 million people have been infected with HIV; out of which 36.3 million people have died of HIV/AIDS related sicknesses while over 37.0 million are living with the disease. This number includes an estimated 1.8 million children and 32.3 million adults (UNAIDS, 2020). However, continuous and rigorous research has continued in understanding the HIV viral pathogenesis. By the end of 2019, about 25.4 million people were accessing antiretroviral treatment and the global prevalence rate at 0.8% (Figure 2.4). Global distribution of the disease showing that majority of people living with HIV and AIDS are in low and medium income countries with the highest number of infections in sub-Saharan Africa.

Figure 2.4: HIV Global Prevalence of 0.8% in 2019: The estimate based on UNAIDS report and include adults of ages 15-19 sourced from Kaiser Foundation, www.GlobalHeathFacts.org.

2.1.6 Epidemiology of HIV Subtypes

Over the years, both HIV-1 subtypes and HIV-2 groups have displayed a complex worldwide spread pattern in distinct directions. The diversity of HIV-1 M group makes it more complicated and resulting into numerous studies targeting the origin and spread of the disease (Li et al., 2012). The origins of the O and M groups are nearly identical. In comparison to the O group, the M group has a much wider global distribution and multiple changing subtypes. It's highly likely that the limited distribution of group O versus M was due to variables connected with the early stages of the HIV-1 epidemic (Faria et al., 2014).

Human Immunodeficiency Virus (HIV) isolates from patients in Africa and other parts of the world differed significantly in early research. However, over time, different subtypes have been isolated from various parts of the world. Using subtype prevalence data by Hemelaar and colleagues and infection prevalence data from UNAIDS Data 2019 (Hemelaar et al., 2019; UNAIDS, 2020), Figure 2.5 representing the universal representation of HIV-1 group M subtypes was realized as a final graphical summary. Globally, in 2019 HIV-1 subtype C
accounted for approximately 50% of the infections and had shown dominance in Southern Africa, Eastern Africa, India, Nepal, and parts of China (Goudsmit, 1997).

Figure 2.5: Global representation of HIV-1 group M subtypes.
(Each region has its own color scheme. Respective pie charts indicate the percentage of subtypes that circulate within a given region. Size of the chart represents total number of infection within the region.) Adapted from: (Gartner et al., 2020)

Since its initial isolation, HIV has had varying degrees of impact on the lives of numerous people, numerous families, and communities.. It has equally impacted negatively on the economic growth worldwide leaving several orphaned children and empty homes. This pandemic has greatly affected the global workforce together with their families and increased the healthcare expenditures to very high levels (Gayle \& Hill, 2001). In a previous report (Bakilana et al., 2005), the World Bank HIV/AIDS team estimated that the AIDS will account for 40% of infectious deaths by 2020 . This estimate was surpassed practically immediately after this publication.

2.1.7 Key Population affected by HIV and AIDS

Globally, Certain group of individuals have been classified as the key populaion mostly affected by HIV and AIDS. They usually account for higher rates of new infections across the world. They include among others: (a) Commercial sex workers and their clients, (b) Gay men and men who have sex with other men, (c) Individuals who inject drugs and (d) Transgender population

According to a UNAIDS report from 2020, the risk of contracting HIV is 35 times greater among drug injectors, 34 times higher for transgender women, 26 times higher among sex workers, and 25 times higher among gay men and men who have sex with men (UNAIDS, 2020). The same report shows that these set of individuals accounted for 65% new HIV infecions that occured in 2020 both outside and within sub-Saharan Africa.. Generally, known risk factors associated with acquisition of HIV infection include among other things men who have sex with men, unsafe sexual practices, the use of intravenous drugs, vertical transmission, blood transfusions and unsafe contact with blood products (Justiz Vaillant \& Gulick, 2022).

2.1.8 Clinical Manifestation and Diagnosis of AIDS

HIV effects on the immune system of a body may result into life-threating opportunistic infections. This may present a destructive clinical effect, resistance to therapy and increased rate of relapse (AIDS, 1986). Opportunistic infections tend to be more frequent and severe in individuals with compromised immunity. Some of the documented HIV related opportunistic infections include but may not be limited to: Herpes simplex virus 1 infection (HSV), Salmonella Infection, Candidiasis and Toxoplasmosis. Suitable treatment is highly dependent on the opportunistic infection in question and its percentage of manifestation.

Active antiretroviral therapy helps prevent many common opportunistic infections, but also causes a variety of side effects. Global pattern of HIV opportunistic diseases is varied and is highly dependent on local prevalence of latent and acquired infections and on the survival of HIV infected patients (Lucas, 2002).

Three types of HIV diagnosis exist; the tests can be carried out through saliva or blood of the patient. Nucleic Acid test tends to look for the actual virus in the blood of the patient and it's the first test to become positive after exposure to the disease. Antibody tests look for HIV antibodies in the blood and or saliva. It may not be accurate up to until three to twelve weeks
after exposure. Antigen/antibody tests tend to look for both HIV antibodies and antigen. In this case antigens are substances of HIV while antibodies are produced by body's immune system exposed to HIV infection. A combination of both antigen as well as antibody tests may also be detectable between two to six weeks of exposure (Mayoclinic, 2020).

2.1.9 Methods of Controlling Spread of HIV

In the recent years, the UNAIDS 90-90-90 initiative has been seen as a hope for many infected and diagnosed as well as yet to be diagnosed populations. It aims at having 90% of persons living with HIV know their diagnosis results; 90% of those diagnosed put on antiretroviral therapy (ART) and 90% of individuals on ART be virologically suppressed by the year 2026 (UNAIDS, 2014). Towards achieving this 90-90-90 strategy; by the end of 2020, 84 percent of people living with HIV already knew their HIV status, 87 percent of those knowing their status were receiving treatment, and 90 percent of those on treatment were virally suppressed (UNAIDS, 2020).

Although there is a lot of commitment to limiting the pandemic around the world, it has expanded dramatically since the initial detection. However, a few independent HIV treatment and control regimens and success stories have been documented all over the world. (Bertozzi et al., 2006).

HIV can be acquired or spread through known human actions like as sex and injectable drug use, rather than through casual contact such as a handshake or embrace. It can spread from one HIV-positive individual to the next by blood, sperm, pre-seminal fluids, rectal fluids, vaginal fluids, and breast milk (HIVInfo, 2020). Pre-exposure prophylaxis (PrEP) can protect HIVnegative people who are at risk of contracting the disease, while regular condom use can lower the chance of infection. Women and girls accounted for 63 percent of all new HIV infections in Sub-Saharan Africa in 2020, showing extremely high rates of infection (UNAIDS, 2020).

2.2 IMMUNOLOGY OF HIV

Researchers have made great progress since the disease was originally identified in understanding the whole spectrum of infectious agents and its immunopathogenesis.. It is now clear that HIV infection induces deep immunologic abnormalities (Table 2.2) on every aspect of the immune system (Chinen \& Shearer, 2002). Macrophages and dendritic cells, both of
which are important in controlling adaptive immunity, bind the virus and carry it into lymph nodes with significant numbers of CD4 T cells. HIV has evolved a method of bypassing antiviral immunity by using this mode of transport. The entry of the virus triggers the production of anti-HIV antibodies as well as cytotoxic T cells. However after some times the immune system is weakened through destruction of memory T cells (CCR5 ${ }^{+}$and $\mathrm{CD} 4+$) below critical levels and loss of cell mediated immunity (AVERT, 2015; Chinen \& Shearer, 2002).

Table 2.2: HIV induced Immunologic abnormalities (Zunich \& Lane

Cellular/Hormonal	Immunologic abnormality
Lymphocytes	Decreased CD4+ T lymphocyte and dysfunction Increased CD8+ T lymphocyte levels EventualCD4+/CD8+ imbalance
Monocytes	Innate immune activation Decreased phagocytosis, chemotaxis Intracellular killing Cytokine expression
Neutrophils	Neutropenia Pancytopenia
Natural	Down-regulated cytokine production. Killer (NK) Cells Reduced ability of NK cells to perform ADCC due to a reduction in the number of the cytolytic CD56
the intracellular stores of perforin and granzyme A.	

The pathogenic illustration of HIV in (Figure 2.6) shows the complexity of the disease. It is documented that even before identification of HIV an irony existed where immune system was abnormally activated at the same time that individual was experiencing immune deficiency (Fauci, 2003)

Figure 2.6: Pathogenic effect of untreated HIV mediated disease: (Fauci, 2003)

2.2.1 Immune response to HIV infection

The HIV virus infects a host cell by utilizing a receptor (CD4) and one of the co-receptors (CCR5 or CXCR4) to gain entry. The trimeric gp120 envelop complex protruding from the lipoprotein bilayer interacts with CD4 cell-surface receptors and either CCR5 or CXCR4 chemokine co-receptors to gain this entry (Dybowski et al., 2010).

Cysteine-Cysteine Chemokine Receptor 5 (CCR5), also referred to as CD195, is a component of the mammalian cell membrane and is receptor for chemokines that are activated during cell damage and inflammations. This receptor is coded by a gene located in the human chromosome 3. Presence of CCR5 on the surface of the cell enable HIV to latch on it and finally infects the cell, A Mutation on this CCR5 through deletion of 32 base pairs results into a non-destructive gene CCR5032. It enables protection against HIV infection to its homozygous carriers and slows progression of the disease to heterozygous carriers (P. K. Gupta \& Saxena, 2021; Liu et al., 1996).

Few individuals have the CCR5 genetic mutation world over. At the time of CCR5 532 discovery; scientists believed that it was as a result of the survivors of the bubonic plague also referred to as "Black Death" that occurred several centuries ago in Europe (Glatter \& Finkelman, 2021; Stephens et al., 1998). However, other studies disputed the original theory by indicating that the mutation was present way before the bubonic plague (Cohn \& Weaver, 2006; Sebbane \& Lemaître, 2021). The main reason behind the scientific dispute is that the bubonic plague of 1346-52 and the resistance to HIV 1 were not supported heavily by the available historical evidence. Two hypothesis presented show that the "Black Death" did not affect Europe alone but was spread to China, North America, and the Middle East. However, this mutation seem unique to European descendants. It's documented that the level of Black Dearth mortality does not respond to topographical distribution of CCR5 532 among European descendants, but showing the most affected are from the Mediterranean with the lowest HIV resistance allele (Cohn \& Weaver, 2006).

It is now believed that the origin of CCR5 532 is traced over 2500 years ago and is expected to fall gradually by genetic drift over the next 300 years. It's linked to the persistent epidemic of hemorrhagic fever which is believed to have assisted in reinforcing the frequency to about $5 \times 10^{(-5)}$ at the time of the Black Death around 1347 (Duncan et al., 2005). This disputes the theory of sole responsibility of the HIV resistant mutation to bubonic plague.

2.2.2 Oxidative Stress and HIV Infection

Regulated Reactive Oxygen Species (ROS) supports various and important natural cell procedures. However, increased levels beyond defense mechanism neutralization are considered dangerous. It often results into functional alterations and damaged biological
molecules. Likewise HIV induced oxidative stress plays significant roles in development of wide spectrum of virus related pathologies (Ivanov et al., 2016). These include but are not strictly limited to dementia, neurotoxicity (alteration of normal nervous system activity), cardiovascular and lung disorders, exhaustion of $\mathrm{CD}^{+} / \mathrm{CD}^{+}$T-cells as well as antiretroviral side effects (Ivanov et al., 2016) .

Research evidence indicates activation of oxidative stress with the presence of HIV in both laboratory models and HIV infected bodies. Therefore, when a person has HIV, their monocytes produce more reactive oxygen species, and their plasma contains significantly more oxidized nucleic acids and produces more alkaline gas (Allard et al., 1998; Awodele et al., 2012; Elbim et al., 1999; Musey et al., 1999).

2.2.3 Immune Evasion Mechanism in HIV

Human Immunodeficiency Virus (HIV) displays unique ways of evading the body's immune system and causes progressive and deadly deterioration to it. It logically manipulates the natural defense mechanism to its own advantage leaving the host to struggle for survival. If HIV is transmitted through sexual activity; it uses mucous membranes lining the vagina, rectum and mouth to enter the blood stream. This progression makes mucosa the first line in attempting to physically defend the pathogens. HIV evades this first line defense by crossing the mucosal surface through seizing intraepithelial dendritic cells (Malim \& Emerman, 2008). It then targets the CD4 T cells by establishing acute immune cells infection within the mucosa through mucosal breaking steps (Mona Sadat et al., 2018). It is capable of defeating the host defense mechanism through activation of a classical pathway of a complement system through envelop protein gp41 binding. Viral capsid protein (p24) acts as immune invasion through hiding HIV-1 nucleic to impersonate cellular protein (Keele et al., 2008; Zhang et al., 2018) Presence of HIV1 gp120 in a host triggers production of CC chemokine receptor 5 (CCR5) which in turn induces the movement of monocytes as well as other Natural Killer cells and dendritic cells. It's known that cytokines and chemokines play an important role in HIV 1 pathogenesis (Mona Sadat et al., 2018). One of the induced monocytes in this process is monocyte chemoattractant protein-1 (MCP-1 or CCL2) responsible for encouraging monocytes to leave the blood stream to become tissue macrophages while HIV1 makes use of its accessory products to evade laid cytokine networks (Frankel \& Young, 1998). Some of the
accessory products used by HIV for its invasion are HIV-1 tat (Trans-Activator of Transcription), a regulatory protein which imitates β-chemokines and triggers viral transcription and infection. HIV-1 nef (Negative Regulatory Factor) a myristoylated protein leading to increased production of stimulatory function of IL-12 and IL-15 cytokines as well as down-regulating HLA class I gene products (HLA-A and HLA-B) on target cells (Rolland, 2016). A therapeutic approach towards overcoming this disease still calls for a deeper understanding on how it manages to defeat the host's immune system.

2.3 Antiretroviral Treatment for HIV

Management of HIV-1 infection in the early years consisted mainly of treatment against common opportunistic infections and related sicknesses. After 1996, the treatment lines changed with the development and introduction of inhibitors of the reverse transcriptase and protease enzymes (Arts \& Hazuda, 2012). This revolution brought into place a drug regimens now commonly referred to as anti-retroviral (ARVs) and has proven to enhance overall effectiveness in HIV management. Antiretroviral therapies (ART) are drugs that can be used to manage HIV. It therefore means that they are not a cure to the disease but can be used as a control measure hence regulating the effect of HIV and maintains the hosts' health status. Antiretroviral (ARV) medication tends to work by attempting to stop the HIV from replicating in the host system and enables the body's immune system to be repaired after any slight damage. With good adherence to ARV uptake; HIV positive individuals are likely to live a near normal long life just like HIV negative people. By sustaining low levels of HIV in the body to undetectable viral load levels the risk of passing on the disease is equally decreased.

2.3.1 Current Classes of ARVs

Currently available ARVs can be classified into seven main classes; cell fusion inhibitors for preventing the HIV envelop from merging with the host CD4 cell. The two categorized classes of HIV reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) and nucleoside reverse transcriptase inhibitors (NRTIs). The NNRTIs binds to the HIV enzyme (reverse transcriptase) hindering the viral replication process while NRTIs tends to mimic nucleosides also blocking the reverse transcription by preventing reverse
transcriptase from converting RNA into DNA (Naswa et al., 2012). The integrase strand transfer inhibitors (INSTIs) for preventing the virus from inserting its genetic material into host chromosome and protease inhibitors (PIs) which prevents the HIV from maturing to a new virus capable of infecting other CD4 cells (Naswa et al., 2012). CCR5 antagonists, for blocking the CCR5 coreceptor on the cell surface to prevent entry. While Post-attachment inhibitors operates by binding to the CD4 receptors on the host CD4 cell (Types of Antiretroviral Medications, 2021).

A combination of ARV therapy has greatly reduced HIV related deaths since its discovery. The UNAIDS 90-90-90 initiative has been seen as a hope for many infected, yet not diagnosed populations (UNAIDS, 2014).

2.3.2 Challenges of ARV Treatment

Two key interventions towards HIV treatment by ARVs were recommended by the September, 2015 WHO decision. They involved immediate antiretroviral treatment to all people living with HIV irrespective of gender, age and CD4 cell count and introduction of pre-exposure prophylactic (PrEP) treatment to high risk population (Bharat Bhushan Rewari et al., 2017) . At this point, it was anticipated that, if correctly followed, the 2015 guidelines would drastically alter the trajectory of the HIV epidemic and reduce its burden.

Although, a lot has been achieved towards HIV management, some challenges have been experienced over the years especially in the implementation of the WHO 2015 guidelines. The challenges were previously classified into four categories as below (Bigna et al., 2016):
a) Health System Challenges: They are challenges related to financial availability in the implementation of the new guidelines. They spread out to enough health workers for the increased work load, adequate stock of antiretroviral treatment and suitable infrastructure for treatment process.
b) Universal Testing challenges: These are challenges surrounding discrimination and stigmatization of those affected by HIV. They by extension involve fear of no privacy and confidentiality during testing both at home and in the facility. Some individuals may also feel affected by whom to be present during testing.
c) Immediate Initiation to Antiretroviral Therapy: These challenges revolve around how soon a patient can be introduced to perfect treatment regimen after successful testing. They describe a full connection between health care facility for antiretroviral initiation and the testing entity.
d) Retention and adherence to antiretroviral treatment: These challenges surround availability of long term retention plan on ARV treatment by infected individuals. A lot needs to be covered on an early signs or indicators of an HIV drug resistance.

However, some of these barriers have been resolved as a result of excellent research and revised HIV medicine implementation strategies. .

2.4 Community Perception of HIV and AIDS

Emergence of HIV in 1980s brought with it a series of social challenges described by panicking, fear, discrimination and stigmatization. To date enormous effort has been put world over towards reducing the element of HIV associated discrimination and stigmatization. (Bogart et al., 2008; Herek, 1999). A declaration of commitment was issued in June 2001 emphasizing that discrimination on the basis of HIV is a form of human rights violation and impedes efficient prevention and treatment of the disease. It highlighting the necessity of eradicating HIV-related stigma around the world (WHO, 2001).

2.5 Role of CCR5 in the control of HIV infection

It has been more than 40 years since HIV was identified as the main cause of AIDS. Contrary to the expectations of many, no vaccination that is effective against it has yet been discovered. Hutter and colleagues published a research paper on stem cell bone marrow transplant from a CCR5-Delta32 homozygous donor to a HIV positive individual (Hütter et al., 2009). It is further documented that despite having stopped anti-retroviral (ARV) therapy, the HIV positive person turned HIV negative and remained virus-free following the transplant. CCR5Delta32 is a genetic mutation that inhibits the cell from HIV infection (Liu et al., 1996). It is a non-destructive gene which promotes protection against HIV infection to its homozygous carriers and slows the disease progression to its heterozygous carriers. The origin of CCR5Delta32 is estimated to have occurred around 700 years ago. This is by applying coalescence theory to the current haplotype genealogy and utilizing an estimated range of 2751,875 years. (P. K. Gupta \& Saxena, 2021; Stephens et al., 1998). According to some
geneticists, the CCR5-Delta32 mutation was present as long ago as 2,500 years ago. The fact that the CCR5-Delta32 mutation is unique to Europe raises the possibility that the middle ages' plagues significantly increased the mutation's frequency. These plagues had a 100% case death rate, they were only found in Europe, and continued for more than 300 years (Biologists Discover Why 10 Percent Of Europeans Are Safe From HIV Infection, 2005).

CHAPTER THREE

MATERIALS AND METHODS

3.1 Distribution of CCR5 $\triangle 32$ allele among Caucasians, Africans and Asians.

This was a systematic review and meta-analysis assessment, in which organized methods were used to locate, assemble and evaluate titles and literature of published papers on HIV/AIDs and CCR5 532 from 1984 to 2017. The study period believed to cover the three documented decades of HIV pandemic. The search targeted online and freely available resources including but not limited to Hinari specifically PubMed Central, English database of Google scholar, Science Direct, Research4Life, National Center for Biotechnology Information (NCBI), OVID databases, AIDS Journal and Google. The main search strategy used in this study was majorly borrowed from the documented Cochrane guidelines number seven (Higgins, 2011) for appropriate and permissible low bias. All data utilized in this systematic review and metaanalysis met the requirements for ethical research and is publicly available through various databases.

Valid explanatory simulation method was used by selecting topics such "global distribution of CCR5" and (PICO) Population, Intervention, Comparison, Outcome method to formulate research questions and objectives (Tawfik et al., 2019). An example of PICO research question used in this study is: How is the distribution of CCR5Delta32 among Africans? (P: Africans, I: CCR5 532 , C: CCR5, O: distribution). The (SPIDER) Sample, Phenomenon of Interest, Design, Evaluation, and Research type technique for systematic reviews was also recommended for qualitative and mixed method searches. General flow and output summary followed the Preferred Reporting Items for Systematic Review and Meta-analysis statement (PRISMA checklist 2009) (Moher et al., 2009). PRISMA diagram has been used to summarize details on data identification, screening and eligibility.

PICO and SPIDER are tools used in systematic reviews and meta-analysis of mainly clinical studies; PICO focuses on quantitative articles while SPIDER focuses on qualitative and mixed methods searches (Higgins, 2011).

Additional search strategy using key words from a combination of Medical Subject Heading (MeSH) and free text including terms related to CCR5, CCR5 532 and HIV was also performed in Medical Literature Analysis and Retrieval System Online (MEDLINE) through Ovid Open Access.

3.1. Preliminary investigation and Objective validation

A preliminary search was agreed upon by the review team in order to categorize important papers and eliminate duplicate articles. This stage was also critical in ensuring that sufficient papers for evaluation were available.

3.1.2 Inclusion and exclusion criteria

The eligibility criteria of this study were based on published and original articles on HIV infected individuals from various countries globally. It targeted articles from the general population, both HIV positive and HIV negative persons, exposed seronegatives (ESN), exposed seropositives (ESP), and highly exposed seronegatives (HESN). The exclusion criteria included letters of correspondences, conference presentations, papers with missing relevant data such as abstracts and papers without translation link.

To reduce reporting bias only studies with participants successfully genotyped for CCR5 532 and results accurately recorded were included. A predetermined and comprehensive inclusion and exclusion criteria was arrived at to facilitate objective screening of different articles. For the final review, only published and original publications on the distribution of the CCR532 allele in HIV-1 infected people from various countries were included.

3.1.3 Data Abstraction and Statistical Analysis

This search strategy targeted specifically two most important and often used databases in HIV genetic research. The first being the HIV Sequence Database in Los Alamos (http://www.hiv.lanl.gov/) (Rhee, 2003) which conserves HIV sequences and precisely focuses on annotation and data analysis. The second is the reserve transcriptase/protease sequence in Stanford (http://hivdb.stanford.edu/) (Mellors, 1996) storing all sequences related to the development of viral resistance against ARVs (Anti-retroviral drugs). Stanford database equally focuses on the analysis of different sequences and matches them with appropriate antiretroviral therapy for a treatment cycle. It formed the replicated worksheet and the
prototype from which an android application (ARVPredictor) was developed as part of this study. BLAST (basic local alignment search tool) was the main algorithm used for comparing primary biological sequence information retrieved against the wild type sequences. Alignment was done by use of MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh \& Standley, 2013) and further viewed in MegaX (Kumar et al., 2018a) and Unipro Ugene (Okonechnikov et al., 2012) bioinformatics softwares.

The search process was conducted in two main phases; first a group of three reviewers independently cataloguing articles as per the agreed criteria. The result of the initial phase was cross checked by an independent reviewer to ensure agreement accuracy of 90% and above. The second phase involved full text review and confirmation for inclusion suitability. Uncertainties and conflict of opinions were discussed and resolved in consensus by the reviewers. An excel sheet was utilized as the ultimate storage tool for correct data abstraction. It listed all of the authors' names, publication year, journal, URL, DOI, and abstract. All records were stored in a secure Mendeley library, which helped to eliminate duplicate records with the same title, authors, year of publication, and journal of publication. The final 37 articles with 17,353 participants were accepted for inclusion in the meta-analysis as per the Prisma flow diagram in Figure 3.1. This is after the team carried out a manual check of the excel sheet to lessen any unseen human errors and bias.

Figure 3.1: Summary of studies selected for analysis by PRISMA flow diagram.

3.2 Genetic variation of HIV-1 envelope glycoprotein (gp160) among Caucasians, Africans and Asians

Molecular Evolutionary Genetics Analysis (MEGA X) software, was used to evaluate selected HIV env genetic sequence data received from HIV databases from different parts of the globe (Kumar et al., 2018a). With the review period ranging from 1997 to 2016 covering the three decades of HIV infectivity; a total of 57 sets of near full length env sequences were retrieved and rooted against Simian immunodeficiency virus strain (SIVcpz) from a sub-species of chimpanzees; Pan troglodytes troglodyte. Twenty-three (23) sets were downloaded from Asians, twenty (20) from Africans and fourteen (14) from the Europeans. Studies with incomplete sequences (whole of HIV env) were excluded during analysis. Using the Maximum Likelihood approach and the General Time Reversible model, the evolutionary history of the collected env sequences was inferred. (Thomas, 2001). The tree with the highest log likelihood (-82484.14) was then generated. A matrix of pairwise distances calculated using the Maximum

Composite Likelihood (MCL) approach was used to automatically generate the initial tree(s) for the heuristic search. The topology with the best log likelihood value was then chosen. To represent the variations in evolutionary rates between the five categories $(+G$, parameter $=$ 0.6429) of sites, a discrete Gamma distribution was used. Some sites ($[+\Gamma], 19.43 \%$ sites) could be evolutionary invariable according to the rate variation paradigm. Branch lengths were calculated using the number of substitutions per site, and the tree was drawn to scale. The resulting dataset had 2913 locations over 94 nucleotide sequences for the analysis. Based on the analysis outputs of the HIV-1 envelop; the study aimed to understand the importance of the underlying biological consequences of different subtypes. Additionally, sequences extracted from the highly immunogenic V3 loop were also extracted and analyzed.

This study aimed at analyzing the viral superficial protein (gp120) and the trans-membrane protein (gp41) which plays a great role in the HIV virus replication cycle. They both work together as part of the envelop protein to facilitate the viral particle's fusion with the target cells during entrance, and are collectively referred to as gp160 (Figure 3.2)

Figure 3.2: HIV Gene Map: Open reading frames shown as rectangles. The gene start, indicated by the small number in the upper left corner of each rectangle while the number in the lower right records the last position of the stop codon (Korber et al., 1997).

Further analysis covered the V3 loop region of the HIV-1 gp120 envelope protein, which has shown to be very efficient in preventing virus infectivity and cell fusion independent of the initial gp120-CD4 binding (Figure 3.3). This particular region is found to be essential for HIV virus infectivity and it is where the resistance mutations to cysteine-cysteine chemokine receptor 5 (CCR5) antagonists are located.

Figure 3.3: The V3 loop region of the HIV-1 gp120 envelop

3.3 Development and evaluation of an Android Mobile based application to detect HIV subtype and HIV-1 Drug Resistance mutations targeting the HIV pol gene.

Four distinct stages of application development were used to achieve this objective: pre-design associated activities, design, development, and support related steps. The final result being a smartphone application that can evaluate antiretroviral resistance levels by obtaining reverse transcriptase, protease, and integrase sequences or mutations belonging to HIV patients from users.

3.3.1 Application Design and Setup

From various drug-resistance databases, the research team obtained a duplicated spreadsheet for constructing the app (ARVPredictor). The list included mutations existing in the ANRS (the French National Agency for Research on AIDS), HIVdb, IAS-USA (International Antiviral Society-USA), Los Alamos, and Rega algorithm lists (Bennett et al., 2009). The final register was summarized to a total of 19 normalized core tables, 10 lookup tables, and up to 20 derived tables. This was in line with other simulated databases mostly implemented using MySQL on Linux platforms. The end result was a set of ordered relationships connecting the major components, such as the history of antiretroviral medication, the results of an isolated drug trial, and patient plasma HIV-1 RNA levels. The
final database allows users to retrieve and analyze different sets of sequences that meet particular criteria. Common queries envisioned included retrieval of sequences of HIV-1 isolates containing mutations at specific positions, patients receiving a specific drug regimen, and drug-susceptibility data on HIV-1 isolates containing combinations of mutations. Every designed query provided the following category of data: hyperlinks to MEDLINE and GenBank records, a list of mutations in the sequence, a classification of the sequence, drug-susceptibility results, and some technical data. The design availed options for downloading or viewing raw sequence data at the back end; each predesigned table returned eight or more columns of data.

3.3.2 Participants

To test the app's usability, a random population comprising 100 health practitioners actively involved in HIV/AIDS management, app developers, and information and communications technology (ICT) students was recruited. The health practitioners enrolled in the usability survey included 10 HIV experts from the Kenya HIVDR Technical Working Group on drug-resistance approval and regimen guidance, 25 HIV scientists based at the Kenya Medical Research Institute and various universities in Kenya. Others included 20 medical and pharmacy students from the University of Nairobi, Kenya, 20 graduates of the National Advanced HIV Clinical Course (NAHCC) class of 2015, 10 app developers, and 15 ICT students from Jomo Kenyatta University of Agriculture and Technology, Kenya. All the enrolled health practitioners were required to own or have access to Android-based smartphones; those who needed intensive hands-on training on downloading and using their smartphones were automatically excluded in the survey. The health practitioners were invited to participate in this survey using open invites through email to selected human health research institutions, universities (especially ICT and virology departments), and HIV comprehensive care centers. The survey also invited other participants directly via phone calls. Participants willing to be engaged recorded their interest through replying to our email by filling out a short acceptance/consenting online form and were enrolled on a first-come-first-enrolled basis. Those selected received a link on how to download and use our ARVPredictor Android app for test purposes.

3.3.3 App Development Process

ARVPredictor was designed and developed from models of a combination of software development life cycle methodology (Choudhury, 2011) and rapid application development (RAD) (Beynon-Davies et al., 1999). RAD is an agile strategy for developing software that has proven to be fast and helps complete a project within a shorter timeframe. It achieves this by reducing the time spent in planning and maximizing prototyping development. The RAD enables faster communication between a developer and the end user; hence, its high efficiency is achieved by following 4 main phases at a reasonably lower cost The initial working prototype is developed and is improved gradually through discussions until a satisfying output is reached (Figure 3.4).

Figure 3.4: ARVPredictor: Rapid Application Development (RAD) Model.

3.3.4 Gap Identification and Requirements Gathering

A combination of 3 main activities was carried out at the initial stages of the development to meet both functional and nonfunctional requirements of the app. A brief questionnaire was randomly administered to consented selected HIV/AIDS doctors/clinicians and health care providers to determine and understand the current treatment process. This was followed by a face-to-face Key informant chat with a few health care providers who were very keen in using their smartphones to support their daily services to their patients. By performing a quick analysis of the results and with reference to relevant literature, a glaring gap was identified in the turnaround time and availability of point-of-care resources for interpreting the genetically modified HIV strains for appropriate antiretroviral drug choices. It was also understood that with the
current mobile telephony systems, different forms of data can now be shared easily among various devices (Chung \& Ko, 2015). To create the initial prototype of the app, the output identified during this stage was translated into modules for better understanding and ownership of the whole app (Paetsch et al., 2003).

3.3.5 Use Case Modeling

Use case diagrams show the interaction between users and the system (Gomaa \& Mason, 2011). In this app, the main actors and their respective interactions with the app were first identified. Each identified role was assigned relevant access rights and hence classified as patient, health care givers, and administrators of the system (Figure 3.5). Administrators have the capability to manage the critical functions of the app, whereas a normal user has very limited access to the back end functionality. By signing in using an existing email address and an active phone number, a normal user can query the database using mutations/sequences. A willing patient also has the capability to view the analysis output with predefined limitations.

Figure 3.5: ARVPredictor use case diagram illustrating graphical interaction between users and the app

3.3.6 Operational Process of the App

A simple plain text prototype identified several app components, including mobile clients, web application clients, real-time servers, and databases. Following that, the development environment was set up for full development of the mobile app based on the various hardware and software specifications:

3.3.6.1 Android Studio 4.1 and Java 10

The team developed this Android app using Android Studio 4.1 (Smyth, 2020) and Java version 10 (Potts \& Friedel, 1996) as the programming language. Android Studio is the official Integrated Development Environment (IDE) for Android development and usually includes several aspects required for building various Android apps. It is based on IntelliJ IDEA (IntelliJ IDEA Handbook, 2017) with powerful code editors and other developer-preferred tools. Integrated aspects of IntelliJ IDEA are essential in maximizing productivity with intelligent coding support. This aspect of the tool proved very handy in code management and provided coding hints during the development of ARVPredictor. The Java programming language used in this app was developed in early 1990 by Sun Microsystems. It is simple and efficient and can be used for various programming purposes. The combined and ultimate strength of these tools provided a suitable development platform for this app.

3.3.6.2 Nginx Server Version 1.17. 0

The development of this app involved Nginx Server (Dusch, 2012) written in C programming language. This is an open source and a high-performance development platform. It is characterized by reasonable resource consumption, ease of configuration, stability, and a comprehensive feature set. Nginx supports both a high-performance HTTP server and a reverse proxy together with POP3/IMAP proxy servers. The developed app (ARVPredictor) is hosted on the Nginx server with DigitalOcean Droplets (DigitalOcean, 2011) offering the cloud hosting platform.

3.3.6.3 MySQL

Massive growth of data in ARVPredictor was projected and MySQL which is an open source document database written in C++ (MySQL, 1995) used. It is capable of creating and deploying a highly scalable database with high performance capability. It was selected due to its ability to work across platforms, high querying capability, availability, and predictable online professional support. The MySQL database management system has the capability to store data from a single record to a large amount of information. User data in ARVPredictor are stored in the MySQL database hosted on the same Nginx Server version 1.17.0 (Dusch, 2012). The actual arrangement of the development heap comprising mobile phones, servers, and databases is presented in Figure 3.6.

Figure 3.6: App development stack: back end arrangement of numerous connecting devices, main server, and active connection between the app (ARVPredictor) (B. Ongadi et al., 2022) and Stanford HIVdb (Ongadi, 2021; Rhee, 2003).

3.3.6.4 Apollo Android

The ARVPredictor app was developed to connect to the Stanford Database (Rhee, 2003) query language (GraphQL) through the Apollo Android library (GraphQL, 2021). This
platform converts and transfers data between the HIV Stanford Database and the ARVPredictor user interface.

3.3.6.5 Retrofit Android Library

This is a rest client library (Drohan D, 2017); in this app, retrofitting was used to handle all network calls from the app's back end built on PHP's Laravel framework.

3.3.6.6 Mobile Client Environment

To ensure proper functionality and accurate returning of results, the app requires phonefree space of not less than 50 MB , touch h screen display of 3.0 inches or higher, Android OS version 3.2 or later, and adequate data bundles.

3.3.7 App System Design

The design of the system was created and subjected to a simple objective versus output evaluation to ensure that all aspects of the app requirement were captured (Figure 3.6). The health care provider signs up using a valid and authenticated email address and uses a phone number and a password to access the app. A real-time server is set to build and send sequence or mutation files to the Stanford Database and return the expected analysis outcome. Different variables are captured immediately into an Excel sheet (Microsoft) and available for statistical analysis of the app.

Figure 3.7: Application system design and preliminary testing procedure: Model indicating all probable activities by the user of ARVPredictor and predictable respective responses by both real-time server and Stanford HIVdb (B. Ongadi et al., 2022).

3.3.7.1 ARVPredictor Deployment and Testing

ARVPredictor is hosted on the Nginx server with DigitalOcean Linux Droplets offering the cloud hosting platform. For security, public access rights were set to be limited for the MySQL database. The Android app is freely distributed through Google Play (Google P lay Store). To use ARVPredictor, users first need to create an account with very limited personal details (e.g. valid email addresses, passwords, and preferred active phone numbers; see Multimedia Appendix 1). Data gathered during the sign-in process was deemed as very important for future growth of the application and would be kept under secure password protection and can only be accessed by the administrator. The fully
developed mobile app was then subjected to 2 levels of evaluation and testing, first through random entry of data to ensure system component interactivity and proper functionality. The second is to guarantee accurate analysis and result output. Black-box testing was used where the functionality of each simple app was subjected to testing without minding its internal structures or workings. This preliminary testing helped to reduce the cost and time spent in the final testing stages of the app development.

3.3.7.2 ARVPredictor Maintenance

Regular and administrative monitoring steps were set up to assist in the continuous review of the app's system logs. This information was considered useful in understanding and maintaining the app's service health status. The output of this process informs maintenance-related needs such as any faults, downtimes, and any unauthorized activities. It helps in debugging and resolving any issues that arise as well as provides a platform for future upgrades.

3.3.7.3 Input of Actual Data for Analysis

Two types of data, namely, sequences and point mutations, are usable for analysis in ARVPredictor. The said sequences can be keyed in or pasted directly onto the screen of the phone or alternatively uploaded from a separate file. HIV point mutations are preconfigured and are selectable based on the WHO 2009 listing (Bennett et al., 2009); both can be analyzed and confirmed according to the latest available version of the Stanford Database (Rhee, 2003).

3.3.7.4 Test performance

The test performance of ARVPredictor against the Stanford HIV Database to determine HIV subtypes and both major and minor proteases, reverse transcriptase, and integrase mutations was determined using kappa statistics (McHugh, 2012). Accuracy of the ARVPredictor was then determined. A set of 100 sequences (Appendix 1.2) was blasted using both platforms, and the similarity was identified . The subtypes and minor and major mutations were noted for both platforms. To test for method accuracy, each sequence was blasted three times, and in each case, any variation (if any) in the subtype, base pairs, and mutations recorded.

CHAPTER FOUR

RESULTS

4.1 Distribution of CCR5 $\Delta 32$ allele among Caucasians, Africans and Asians

The search generated thirty seven (37) suitable and complete publications for analysis. Nineteen (19) major and comprehensive papers were analyzed from among the Caucasian population over the three HIV decades. Nine (9) studies with complete genotyped individuals were available for analysis from Asia while five (5) studies covered Africa population and four (4) under the ungrouped (others) category. In 1997, Martinson and his colleagues completed an extensive study that served as the foundation for our investigation (Martinson et al., 1997). It included 3324 unrelated people from a worldwide scattered population and is the largest study in this review thus far; subsequent studies are smaller and less internationally constituted. Table 4.1 summarizes the complete list of all studies examined in this systematic review. The large amount of Caucasian-related data that was retrieved and evaluated strongly suggests that the risk of publication bias was not entirely eradicated. An ad hoc evaluation of unpublished studies in this field revealed that the situation was likely to stay the same even if the review period was extended by an additional five years to 2022. This skewed dataset exposes the general weakness of this type of analysis.

Table 4.1: Characteristics of all studies selected and grouped for review and meta-analysis
GP—General Population, SN—Seronegatives, SP—Seropositives, ESN—Exposed Seronegatives, HESN—Highly Exposed Seronegatives

Publication	Year	Population genotyped	Study Category	Sam ple Size	Case Group	$\begin{aligned} & \text { HIV } \\ & +\mathbf{v e} \end{aligned}$	$\begin{aligned} & \text { HIV } \\ & \text {-ve } \end{aligned}$	General Pop(GP)	CCR5 Heterozygous			CCR5 Homozygous		
									$\begin{aligned} & \mathrm{HIV}+ \\ & (\mathrm{Wt} / \Delta 32) \end{aligned}$	HIV - (Wt/432)	$\begin{aligned} & \text { GP } \\ & (\mathbf{W t} / \Delta 32) \end{aligned}$	$\begin{aligned} & \text { HIV+ } \\ & (\Delta 32 / \Delta 32) \end{aligned}$	$\begin{aligned} & \hline \text { HIV- } \\ & (\Delta 32 / \Delta 32) \end{aligned}$	$\begin{aligned} & \text { GP } \\ & (\Delta 32 / \Delta \\ & \text { 32) } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { (Martinson et } \\ & \text { al., 1997) } \end{aligned}$	1997	Europeans	Caucasian s	788	GP			788			134			7
(Martinson et al., 1997)	1997	African	Africans	598	GP			598			1			0
(Martinson et al., 1997)	1997	Asians	Asians	837	GP			837			13			2
$\begin{aligned} & \text { (Yudin et al., } \\ & \text { 1998) } \end{aligned}$	1998	Russian	Caucasians	531	GP			531			59			12
(Kostrikis et al., 1999)	1999	AfricanAmericans	Other	1,442	$\mathrm{HIV}+\mathrm{ve}$ and ve-	1,235	207			5			0	
$\begin{aligned} & \text { (Pereira et al., } \\ & 2000 \text {) } \end{aligned}$	2000	Brazilian	Caucasians	907	GP			907			93			2
$\begin{aligned} & \text { (John et al., } \\ & 2001 \text {) } \end{aligned}$	2001	Kenya	Africans	276	SP	276			1			0		
(Munerato et al., 2003a)	2002	Brazilian	Caucasians	68	Both SP and $S N$	29	39		1	1		0	1	
(Munerato et al., 2003b)	2003	Brazilian	Caucasians	298	HIV Positive	183		115	21		15	0		0
(Ryabovet al., 2004)	2004	Russian	Caucasians	171	GP			171			31			0
$\begin{aligned} & \text { (Sidoti et al., } \\ & \text { 2005) } \end{aligned}$	2005	Sicilian	Caucasian s	1015	HIV + ve and ve-	114	901		5	70		0	5	
(Trecarichi et al., 2006)	2006	Italians	Caucasians	150	ESN and HIV +ve	120	$\begin{array}{r} 30 \\ \text { ESN } \end{array}$	120	9	6	12	0	0	0
(Smoljanović et al., 2006)	2006	Dalmatia, Croatia	Caucasians	200	GP			200			13			1
$\begin{aligned} & \text { (Vargas et al., } \\ & 2006 \text {) } \end{aligned}$	2006	Brazilian	Caucasians	103	$G P$			103			7			1
(Angelis et al., 2007)	2007	Brazilian	Caucasians	51	HIV Positive		51		2			0		
	2007	Cameroon	Africans	1390	GP			1390			0			0
(Oh et al., 2008; Torimiro et al., 2007)	2008	German	Caucasians		HIV +	595	352		115	75		1	1	

$\begin{aligned} & \text { (Oh et al., } \\ & \text { 2008) } \end{aligned}$	2008	Africans	Africans		HIV +	35	25		1	1		0	0	
$\begin{aligned} & \text { (Salem et al., } \\ & \text { 2009) } \end{aligned}$	2009	Bahraini	Asians	304	HIV -ve		304				15			1
$\begin{aligned} & \text { (Zapata et al., } \\ & \text { 2013) } \end{aligned}$	2011	Colombia	Caucasians	65	Both	28	37		1	1		0	1	
$\begin{aligned} & \text { (Zapata et al., } \\ & \text { 2013) } \end{aligned}$	2011	Colombia	Caucasians	80	Both	33	47		3	2		0	1	
(ValadezGonzález et al., 2011)	2011	Mexico	Caucasians	355	$H I V+$ and HIV-	62	51	242	11	7	15	0	2	0
(Al-Mahruqi et al., 2014)	2013	Omani	Asian	115	GP			115			0			0
(Chavhan Ab et al., 2013)	2013	Indians	Asians	108	GP			108			2			0
(Nkenfou et al., 2013)	2013	Cameroon	Africans	179	$\begin{aligned} & \text { HIV +ve } \\ & \text { and -ve } \end{aligned}$	32	147		0	0		0	0	
$\begin{aligned} & \text { (Zapata et al., } \\ & \text { 2013) } \end{aligned}$	2013	Colombia	Caucasians	239	SP and HESN	57	70	112 HC				0	0	
(Al-Jaberi et al., 2013)	2013	Emiratis	Asians	253	GP			253			0			0
(Al-Jaberi et al., 2013)	2013	Tunisians	Africans	150	GP			150			0			0
$\begin{aligned} & \text { (Lopes et al., } \\ & \text { 2014) } \end{aligned}$	2014	AfroBrazilian	Other	1042	SCD GP			1042			809			0
$\begin{aligned} & \text { (Rahimi } \text { et al., } \\ & \text { 2014) } \end{aligned}$	2014	Iranian	Asians	570	$\begin{aligned} & \text { HIV +ve } \\ & \text { and -ve } \end{aligned}$	530	40			6			1	
(Bharti et al., 2015)	2015	India	Asians	200	Seronega tives		200			0			0	
$\begin{aligned} & \text { (Corado et al., } \\ & 2016 \text {) } \end{aligned}$	2016	Brazilian	Caucasians	249	Both SP and SN	110	139		6	0		0	0	
(Roy \& Chakrabarti, 2016)	2016	Indians	Asians	571	$\begin{aligned} & \text { HIV +ve } \\ & \text { and -ve } \end{aligned}$	181	568					0	0	
(Mehlotra et al., 2015)	2016	Papua New Guinea	Other	620	GP			620			0			0
(Corado et al., 2016)	2016	Brazilian	Caucasians	177	HIV1 positive		177		11			0		
(Heydarifard et al., 2017)	2017	Iranian	Asians	400	$\begin{aligned} & \text { HIV +ve } \\ & \text { and -ve } \end{aligned}$	140	300		1	9		0	0	

Cumulatively, Caucasians accounted for 44.7 percent of the 17,353 participants in this study Asians 3363 accounted for 19 percent, and Africans 3094 at 17 percent (Figure 4.1).

Figure 4.1: Distribution of participants with CCR5 532 genotyped by category.

Total number of studies accessed and reviewed per predetermined category is Caucasians (19, 51%), Asians ($9,24 \%$), Africans (5, 13\%) and others (4, 10\%) summarized in (Figure 4.2).

Figure 4.2: Distribution of reviewed studies and sample size by category.

This accounted for 91 percent of CCR5 532 homozygotes among Caucasians and 7% percent, among the Asian community (Figure 4.3). In this study, there were 52 Caucasian and 7 Asian homozygotes.

Figure 4.3: Percentage of CCR5 $\triangle 32$ Homozygotes by category.

From the forest plot analysis results in Figure 4.4, there is a clear indication that most studies reviewed and meta-analyzed were from Caucasians population. These studies carried a lot of weight and significance as evidenced by the size and visibility of the small squares in the plot. Both pooled effect and 95% confidence Interval did not cross the line of effect hence result herein are significant.

The cumulative odds ratio (OR) of CCR5 532 allele is $0.08(0.06 ; 0.10)$, with a P value of <0.00001 implying that CCR532 and HIV infectivity have a substantial relationship. Again, this P value of way below the predetermined cutoff (0.5 or $\mathrm{P}<0.5$) this association is considered statistically very significant.

With heterogeneity at 62%, it is observable that being a Caucasian is a factor for CCR5 532 homozygosity hence it can be assumed that this is a protected population in terms of the allele. With heterogeneity at 31% being an Asian is not a sure factor for CCR5 532 homozygosity hence no protection from HIV infection; few cases presenting the allele here could be as a result of gene flow or descendants of admixture with Caucasians.

Figure 4.4 Forest plot showing comparison of CCR5 Homozygosity and Heterozygosity among various populations (Caucasians, Asians, Africans and Others).

The forest plot summarized in Figure 4.5 equally indicates a strong association between CCR5 Homozygosity and Heterozygosity among HIV positive and HIV negative individuals with an odds ratio (OR) of $0.10(0.06 ; 0.19)$ and a P value of <0.00001. In this case, also both pooled effect and 95% confidence Interval did not cross the line of effect hence significant. However
with an the I^{2} value which is is $>50 \%$ it might mean the studies are inconsistent due to a reason other than chance.

Figure 4.5: Forest Plot for comparison of CCR5 Homozygosity and Heterozygosity among HIV positive and HIV negative individuals in the reviewed data.

4.2 Genetic variation of HIV-1 envelope glycoprotein (gp160) among Caucasians, Africans and Asians

From this study, a dendrogrammatic representation of different HIV-1 subtypes shows irregular distribution within different geographical locations globally (Figure 4.6). However, some subtypes are seen to be predominant within specific areas. Findings indicating that subtypes A and D are primarily found in East and Central Africa in nations like the Democratic Republic of the Congo, Rwanda, Kenya, Uganda, and Tanzania, while subsubtypes of A are also seen to be concentrated in the eastern region of the former Soviet Union's member states of Europe. HIV-1 Subtype B is predominant in North and Latin America (Jamaica, Dominican Republic, Paraguay, Ecuador, Venezuela, Mexico, and Haiti) and Asia (Japan, Hong Kong, Philippines and South Korea). Although Subtype C is common in Southern part of Africa (South Africa, Botswana, Malawi) its presence is also seen in India, Israel, Nepal and Georgia while Subtype G has been identified in Cuba and Guinea Bissau. In line with previous studies (Buonaguro et al., 2007), sub-Saharan Africa has a comparable distribution of almost all the available HIV-1 subtypes. The recombinants of subtypes A, G, K and J are common in the West African countries (Mali, Niger, Gambia, Senegal, and Burkina Faso). Phylogenetic results showing that SIVcpz (pan troglodytes troglodytes) genetic combination is thought to be the ancestral sequence and can be seen to group separately from any available HIV-1 subtype.

Figure 4.6: Phylogenetic analysis of env sequences inferred using the Maximum Likelihood method and General Time Reversible Model. Summary: The highest log likelihood is -82484.14). Preliminary trees generated automatically by using the Maximum Composite Likelihood (MCL) method and the Neighbor-Join and BioNJ algorithms on a matrix of pairwise distances. Different evolutionary rates among sites were modeled using discrete Gamma distribution (5 categories (+ G, parameter $=0.5010$)). Some sites ($[+I], 19.43 \%$ sites) could be evolutionarily invariable according to the rate variation paradigm. There were 94 nucleotide sequences in this analysis. Codon positions $1 \mathrm{st}+2 \mathrm{nd}+3 \mathrm{rd}+\mathrm{Non-}$ coding were included. The final dataset contained 2913 locations altogether. HIV-1 M group references sequences represented in Blue.

Variant representation of the highly conserved V3 loop sequences (Figure 4.7) indicates a visible difference within same HIV 1 subtype and across different subtypes. The study approximated the percentage value between $12 \%-20 \%$ within a subtype and goes up to 35% across subtypes in this study. The output reflects a high mutability of the loop and shows that the region is under selective pressure for length of about thirty-five (35) residues.

GP120

Figure 4.7: Diagrammatic representation of HIV-1 envelop. Gray partitions showing constant and variable regions observed for resistance to inhibitors for entry. Aligned sequences obtained from HIV Los Alamos database including HIV-1 M group subtype references sequences. The tip of V3 loop designated by the blue arrow is also the location of CCR5 coreceptor antagonists.

The result of the sequence alignment output of the V3 region of gp120 summarized in Figure 4.8 shows an almost near identical set of sequences for the subtypes A and C. They are both characterized by a distinct GPGQ motif. However, there is a discrete difference between subtypes A and B where subtype B has predominance of GPGR/K motif.

Protein Sequences -

Figure 4.8: Distribution of highly conserved V3 loop tip among HIV-1 M group subtypes: GPGQ (Gly-Pro-Gln) seen among varied subtypes and GPGR (Gly-Pro-Arg) common among subtype B. Output showing near identical sequences of subtype A and C. Aligned sequences retrieved from HIV databases.

However, the phylogenetic representation of the V3 region shown in Figure 4.9 in this study shows a non-uniform distribution of subtypes. The Simian immunodeficiency virus of chimpanzees (SIVcpz) sequences remains the out-group hence still the probable ancestor.

Figure 4.9: Dendrogrammatic representation of the V3 loop sequences. Inferred by maximum likelihood method and JTT matrix based model (Jones et al., 1992). Tree with highest likelihood of -991.01 is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=1.0308)$). Rate variation model allowed for some sites to be evolutionarily invariable ([+I$], 1.91 \%$ sites). Final tree drawn to scale with branch lengths measured in the number of substitutions per site. Analysis involved 40 amino acids sequences from Los Alamos HIV database using Mega X (Kumar et al., 2018b).

On further analysis on the significance and difference in the two categories of highly conserved motifs of the V3 loop tip i.e. Gly-Pro-Gly-Arg and Gln (GPGR and Q). The outcome was plotted and ratios compared in terms of synonymous ($d S$) and nonsynonymous ($d N$) in different subtypes (Figure 4.10). With a P-value threshold of 0.1 a total number of 31 sites were analyzed using Data monkey software (Weaver et al., 2018). The output displayed a significant positive selection at five (15) sites and negative selections at eight (18) sites. The HIV-1 subtype B displayed higher ratios of $\mathrm{dN} / \mathrm{dS}$ as well as higher measures of disorder as compared to other subtypes. The same subtype B was also found to be common for GPGR motif at the V3 loop. From our findings there could be a positive assumption that different subtypes experience varied pressures hence contributing to various classifications of HIV- M group subtypes.

Figure 4.10: Graph showing the ration of dN-dS per site in the analyzed V3 loop sequences. Output showing Positive Selection at five sites and Negative Selection at 8 sites

4.3 Android Mobile based application to detect HIV subtypes and HIV-1 Drug Resistance mutations targeting the HIV pol gene

ARVPredictor was designed to take in data on protease, reverse transcriptase, and integrase mutations. It returns inferred levels of resistance to selected proteases, nucleosides, non-nucleosides, and integrase inhibitors for accurate HIV management at the point of care.

By evaluating several sets of reference sequences from the National Center for Biotechnology Information (NCBI) and other related studies, the tool demonstrates its precise significance and usability. This is based on multiple test results using a test sequence dataset (Macharia, 2016) as presented in Table 4.2.(Rhee, 2003).

Table 4.2: Test sequence data set: Accession No: KX505361.1: HIV-1 isolates 5873 from Kenya pol protein (pol) gene, partial cds.

> AATGGCCATTGACRGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAGATGGAAAAAGGAAGGAA AAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCCATAAAAARGAAAGACAGTACT AAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACCCAAGACTTTTGGGAAGTTCAATTAG GRATACCACACCCAGCAGGGTTAAAARAGAAAAAATCAGYGACAGTACTAGATGTGGGGGATGCRTATTT TTCAGTWCCTTTAGATGAAAGCTTCAGGAAATATACTGCATTYACCATACCRAGTRTAAACAATGAGACA CCAGGAATCAGRTATCAGTACAATGTGCTTCCACAAGGATGGAAAGGATCACCRGCAATATTCCAAGCTA GCATGACAAAAATYCTGGAACCTTTTAGGAAACAAAATCCAGAAATGATTATCTATCAATACATGGATGA TTTGTATGTAGGATCTGACTTAGAAATAGGGCAACATAGAGCAAAAATAGAGRAATTAAGGGAACACCT GTTAAAGTGGGGGTTTACTACACCAGACAAAAAGCATCAGAAAGAACCTCCAYTCCTTTGGATTGGTTAT

In Figure 4.11, there is a pictorial comparison of sampled results for the ARVPredictor against the gold-standard Stanford HIV Database.

Figure 4.11: Sequence analysis results: Demonstrating similarity between sequence analysis results output for both (a) ARVPredictor and (b) Stanford HIV Database.

For mutation analysis output, the study tabulates the analysis results of the predefined HIV-1 mutation M184V as per the WHO Major HIV-1 Drug Resistance Mutations list (Bennett et al., 2009). For both the ARVPredictor and Stanford Database, the most prevalent resistance mutations occurred in nucleoside reverse transcriptase inhibitors (NRTIs) in vitro. Likewise, there is a high degree of resistance to emtricitabine (FTC) and lamivudine (3TC), as well as a potentially low level of resistance to didanosine (DDI), with susceptibility to zidovudine (ZDV) and tenofovir (TEN) (TDV). The figures in Figure 4.12 exhibit equivalent results.

Figure 4.12: Mutation Analysis Results. Demonstrating similarity between mutation analysis results for (a) ARVPredictor and (b) Stanford HIV Database.

4.3.1 Test Performance and Agreement

Table 4.3 summarizes sequences with variation in subtype and mutations as determined by both the ARVPredictor app and the Stanford Database during test performance. The ARVPredictor app identified similar HIV subtypes in 98/100 sequences compared with the Stanford HIV Database ($\kappa=0.98$, indicating near perfect agreement). There were $89 / 100$ major NNRTI and NRTI mutations identified by ARVPredictor, similar to the Stanford HIV Database ($\kappa=0.89$, indicating near perfect agreement). Seven mutations classified as major mutations by the Stanford HIV Database were classified as other mutations by ARVPredictor. This further indicates that the Stanford-confirmed GraphQL web service works fairly well, and all the results are in sync with most parts of the web version. Both tools found several minor/other mutations, but depending on small phone display window, some may be hidden from view.

Table 4.3: Test Performance Output: Performance results of ARVPredictor using the Stanford HIV database as the gold standard in identification of HIV subtypes and mutations (B. Ongadi et al., 2022).

SeqID	Stanford HIV Database							©ARVPredictor				
	HIV Subtype	Susceptibility	NNRTI	NRTI		RT Mutation OutputOther Mutations	$\underset{\text { Subtype }}{\text { HIV }}$	Susceptibility	RT Mutation Output NNRTI NRTI			Other Mutations
				TAMs	$\begin{gathered} \text { Non- } \\ \text { TAMs } \\ \hline \end{gathered}$					TAMs	Non-TAMs	
1	A	Susceptible	V179T	None	None	E28EA, V35T, E40D, V601, K122E, D123G, F214L	A	Susceptible	V179T	None	None	F214L
6	A	NNRTI	K103KN	None	None	K32KN, V35T, K43E, V60I, K122E, D123G, I135T, K173I, Q174K, V1791, T200A, Q207A, R211S	A	NNRTI	K103KN	None	None	R211S
9	в	NNRTI, NRTI	$\begin{aligned} & \text { V106VA, F227 } \\ & \text { FL, M230I } \end{aligned}$	None	K65KR	V35I, K49R, K102KE, K122E, D123S, I135IV, S162A, D1 77E, I178M, V179I, T200A, E204EK, Q207E, R211K	C+D	NNRTI, NRTI	$\begin{gathered} \text { V106VA, } \\ \text { F227FL } \end{gathered}$	None	K65KR	M2301
10	C + D	NNRTI, NRTI	V106A	None	M184V	V35I, K49R, K102E, K122E, D123S, S162A, T165K, D177 E, I178M, V179I, T200A, Q207G, R211K	C+D	NNRTI, NRTI	V106A	None	M184V	R211K
14	D	NNRTI, NRTI	$\underset{\text { H221HY }}{\substack{\text { A98G, Y181C, }}}$	None	M184V	V351, E40D, K43K, K49K, V601, D121Y, K122E, D123E, I 135T, D177E, I178M, I195L, T200I, E203EK, E204K, Q20 7F R 211 K	D	NNRTI, NRTI	$\begin{gathered} \text { A98G, Y1 } \\ 81 \mathrm{C} \end{gathered}$	None	M184V	H221HY
18	A	Susceptible	None	None	None	V35T, T39N, V601, K122E, D123S, S162A, K173S, Q174K D177E, T2001, I202V, Q207D, R211K	A	Susceptible	None	None	None	R211K
30	A	NNRTI, NRTI	G190A	None	M184V	V35T, T39E, $1142 \mathrm{~T}, \mathrm{~T} 165 \mathrm{~A}, \mathrm{~K} 173 \mathrm{~S}$, D177G, V1791, I202V ,Q207A, R211S, P226PR	A	NNRTI, NRTI	G190A	None	M184V	P226PR
31	B	NNRTI	V179VD	None	None	V35T, E40ED, V601, K122E, K173A, D177E, T200A, Q20	B	NNRTI	V179VD	None	None	R211RK
32	D	NNRTI, NRTI	Y181YC	None	V75VM	V35T, T39K, K49R, V60I, K64R, K122E, D123G, I135IM R, D177E, I178M, T200I, E203G, Q207E, R211K	C+D	NNRTI, NRTI	Y181YC	None	V75VM	R211K
33	A	Susceptible	None	None	None	V601, K122E, D123N, K173T, Q174K, D177E, V179VI, T2 00A, Q207A, R211S	A	Susceptible	None	None	None	R211S
34	B	Susceptible	None	None	None	V35T, E40D, K49R, V601, Q174K, D177E, Q207E	в	Susceptible	None	Nonc	None	Q207E
37	A	NNRTI	Y181YFiN	None	None	V35T, V601, V90VI, K122E, D123S, I135T, I142V, K173S, Q174K, D177E, V179I, Q207A, R211S	A	NNRTI	$\underset{\mathrm{N}}{\text { Y181YFI }}$	None	None	R211S
40	G	NNRTI	Y181C, H221Y	None	None	V35I, V60I, K122E, D123N, I135V, K173R, Q174E, D177 E, 1178M, T200A, Q207K, R211N	G	NNRTI	Y181C	None	None	H221Y
41	A	Susceptible	None	None	None	V35T, T391, V601, D121H, I135T, K173S, Q174N, D177E, I195L, T200A, Q207A, R211S, F214L	A	Susceptible	None	None	None	F214L
45	A	Susceptible	None	None	None	V35T, T39L, V60I, D121H, K122E, I135T, K173L, Q174K, D177E, V179I, Q207A, R211S	A	Susceptible	None	None	None	R211S
46	A	Susceptible	V179T	None	None	V35T, K49R, V601, K122E, D123G, I135T, K173L, Q174K D177E, I178V, I202V, Q207D, R211S, F214L	A	Susceptible	None	None	None	F214L
47	D	Susceptible	None	None	None	V35T, T39I, E40D, K49R, V60I, D121Y, K122E, I135T, F1 71Y, K173L, Q174K, D177E, V179I, Q207A, R211S	D	Susceptible	None	None	None	R211S
50	CRF02_AG	NNRTI	K103N, F227F	None	None	V601, V901, I135A, I142V, S162A, K173KT, Q174E, T200 A, Q207E, L228Q, V245Q, D250E	CRF02_AG	NNRTI	$\underset{227 \mathrm{FL}, \mathrm{~F}}{\substack{\mathrm{~K} 103,}}$	None	None	D250E
51	A	Susceptible	None	None	None	V35T, T39Q, S105A, K122E, D123N, I135T, K173A, D177 G, V1791, T200A, 1202V, Q207A, R211Q	A	Susceptible	None	None	None	R2119
52	A	NNRTI, NRTI	$\begin{gathered} \text { K101E, E138A, } \\ \text { G190A } \end{gathered}$	$\begin{aligned} & \text { F77FL,T,T } \\ & \text { 215TAS } \end{aligned}$	M184V	Q85P, K122E, D123N, I135T, I142V, K173S, Q174K, V17 91, T200A, Q207A, R211S, F214FL	A	NNRTI, NRTI	$\begin{aligned} & \text { K101E, } \\ & \text { E138A, G } \\ & \text { 190A } \end{aligned}$	F77L	M184V	T215TAS
53	D	Susceptible	None	None	None	V35T, E40D, I47L, K49R, V601, D121C, K122E, D123E, R 125RK, K173E, D177E, T200A, Q207E	D	Susceptible	None	None	None	Q207E
54	C+D	Susceptible	None	None	None	V35I, K49R, K102KE, K122E, D123S, I135IV, S162A, D1 77E, 1178M, V1791, T200A, E204EK, Q207EG, R211K	C+D	Susceptible	None	None	None	R211K
55	A	Susceptible	None	None	None	V35T, T39Q, S105A, K122E, D123N, I135T, K173A, D177 G, V1791, T200A, I202V, Q207A, R211Q	A	Susceptible	None	None	None	R211Q
56	A	NNRTI, NRTI	A98G, Y181C	$\begin{aligned} & \mathbf{L} \mathbf{L 2 1 0 ^ { * } \mathbf { W } ,} \\ & \mathbf{T 2 1 5 H N} \\ & \mathbf{Y} \end{aligned}$	M184V,	K122E, D123S, T128TP, I135T, T139R, K173L, Q174*K, N175NFIY, P176PFLS, D177*E, I178IK, V179I, T200A, I2 02IM, E203A, Q207A, R211S	A	NNRTI, NRTI	$\begin{gathered} \text { A98G, Y1 } \\ \text { 81C } \end{gathered}$	L210w	None	T215HNY
57	A	Susceptible	None	None	None	V35T, K104R, D121H, I135T, S162Y, K173L, Q174K, D17 7E, Q207A, R211S	A	Susceptible	None	None	None	R211S
58	A	NNRTI, NRTI	A98G, K101E, V106VI, V179T Y181C, G190 S	None	M184V	D121H, K122E, K173A, Q174K, D177E, I178M, G196E, T 200A, I202IM, E203EDGV, Q207A, R211N	A	NNRTI, NRTI	A98G, K 101E, V1 06VI, V1 79T, Y18	None	M184V	R211N
61	D	NNRTI, NRTI	V108I, y181Yc	T215TN	None	K32E, V35T, T39L, V601, D121Y, K122E, D177E, R206R K, Q207E, R211K	D	NNRTI	$\begin{aligned} & \text { V108I, Y } \\ & \text { 181YC } \end{aligned}$	None	None	T215TN
62	A	NNRTI	G190A	None	None	V35T, V601, K122E, D123S, I135T, I142V, F171Y, K173S, Q174K, D177E, V1791, T200A, Q207A, R211S	A	NNRTI	G190A	None	None	R211S
85	D	Susceptible	None	None	None	V35T, K49R, V601, D121Y, K122E, K173KQR, D177E, I180IV, E194D, T200TI, Q207E, R211K	D	Susceptible	None	None	None	R211K
88	A	Susceptible	None	None	None	V35T, V601, K122E, D123NS, I135IT, K173S, Q174K, D1 77E, V179I, 1202V, Q207D, R211S	A	Susceptible	None	None	None	R211S
89	в	NNRTI	$\underset{\mathrm{L}}{\mathrm{G} 190 \mathrm{~A}, \mathrm{~F} 27 \mathrm{~F}}$	None	None	S48T, V601, K122E, D123S, I135T, T139A, D177E, Q207E R211K R	B	NNRTI	G190A	None	None	F227FL
90	A	Susceptible	None	None	None	V35T, T39M, V601, K64R, D121H, K122E, I135T, A158S, S162A, K173S, Q174K, D177E, I178L, I180IM, T200A, Q2 07A, R211S	A	Susceptible	None	None	None	R211S
91	D	NNRTI, NRTI	$\mathrm{V}^{\text {V108I, Y181Y }}$	T215TN	None	V35T, T391, E40D, K49R, V60I, W88WG, D123E, D177E, T200A, E204Q, Q207A	D	NNRTI, NRTI	$\begin{aligned} & \text { V1081, Y } \\ & \text { 181YC } \end{aligned}$	None	None	T215TN
92	A	Susceptible	None	None	None	E28A, V35T, T39L, K122E, D123E, T131TP, I135T, K173 S, Q174K, D177E, V179I, T200A, Q207A, R211S	A	Susceptible	None	None	None	R211S
100	c	NNRTI	K103N, V106I	None	None	V35T, T39R, K43E, S48T, K102R, K122E, I142V, K166R, K173A, Q174R, D177E, I195L, G196K, T200A, Q207E, R2	C	NNRTI	$\begin{gathered} \text { K103N, V } \\ \text { 106I } \end{gathered}$	None	None	R211K

4.3.2 ARVPredictor Availability

ARVPredictor is currently distributed freely through the Google Play Store and App Store (Apple Inc.), with basic rules requiring users to create an account and provide very limited personal details such as email addresses, passwords, and preferred
telephone numbers. Different user-friendly interfaces viewable through the usage of the app are shown in Figures 4.13 through to Figure 4.17. The source code for ARVPredictor is also available under the MIT permissive license in a GitHub repository (Bongadi, 2020/2020).

Figure 4.13: ARVPredictor Preliminary User Interfaces. The pictorial icon (a) shows how ARVPredictor appears ready for download from the app/play store. Potential users must register in order to use the application, registered users are required to sign-in (b).

4.3.3 User Friendly Interfaces

4.3.3.1 User Registration and User login

Registration is required for first-time users of the app. This procedure helps protect the app from illegal access and use. An SMS text message alert containing a one-time activation code is then delivered to the provided phone number. The system can be registered in one of two ways: through the app itself as shown in Figure 4.13 or by the administrator remotely on request. Figure 4.14 shows the backend code that was used to create this registration process. Only authenticated and valid email addresses/phone numbers are allowed in this process for registration.

```
call.enqueue(new Callback<Register>() f
    (00verride onesponse(@NotNull Call<Register> call, aNotNull Response<Register> response) {
        Register respo = response,body();
    if (respo != null) {
        UserData userData = respo.getData();
        if (respo.getToken().equals("NONE")) {
        Mssage.nakeToast(activity, activity, respo.getMessage())
        else f
                if (userData != null) {
                    userDataBox.removeAll();
                    Session.sessionStoreData(respo.getToken(), userData.getFirstName(), userData.getSecondName(),
                        UserData.getPhoneNumber(), UserData.getEmail(), userData.getStatus().toString(), activity, activity)
                        StaticVariables.first_name = userData.getFirstName();
                }
                onLoginFormActivityListener.doLogin();
                PreferenceManager preferenceManager = newl PreferenceManager(activity);
                preferenceManager.setLoginStatus(true);
            }
    else {
        Message,makeToast(activity, activity, message: "Response is nutl!");
```

Figure 4.14: User Registration and Sign in source code: (A Set of computer logical instructions aiding registration and sign in process before using the app).

4.3.3.2 Antiretroviral Drug Options/Input Window

The next button opens the known and common antiretroviral drug display window (Figure 4.15). This only occurs after successful registration and verification. Some antiretroviral drugs will be premarked by default, but checkboxes can be used to add or remove any drug. A "save" button at the bottom of the phone screen allows one to save and use his/her final choice

Figure 4.15: Antiretroviral Display Options: Displaying all current ARVs and categorizes them as Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside reverse
transcriptase inhibitors (NNRTIs), Integrase Strand Transfer Inhibitor (INSTIs) and Protease Inhibitor (PI).

Figure 4.16 illustrates the back end code used in the development of this app's preferred drug selection process.

```
try{
    holder.drug.setText(data.get(position).getName());
    holder.drug.setChecked(data.get(position).getSelected());
    holder.drug.setTag(position);
    holder.drug.setOnClickListener(new View.OnClickListener(){
        @0verride
        public void onClick(View view) {
            Integer pos = (Integer) holder.drug.getTag();
            String name = data.get(pos).getName();
            if (preferenceManager.getDrugStatus(name)){
                preferenceManager.setDrugSelected( selected: false,name);
            }
            else {
                preferenceManager.setDrugSelected(selected: true,name);
            }
        }
    });
}catch (Exception e){
    e.printStackTrace();
}
```

Figure 4.16: ARV Drug Selection code by category. (A Set of back-end computer related logical instructions for selection of different ARV drugs available for use by various HIV Patients).

4.3.3.3 HIV Mutation Selection Window

The subsequent screen displays two (2) options of the input type for analysis: point mutations or sets of sequences (Figure 4.17). The first group is a list of all the registered major HIV-1 drug-resistance mutations as per WHO 2009 data (Bennett et al., 2009). Three mutation categories, namely, reverse transcriptase, protease, and integrase, can be selected from a scroll down window and analyzed at the bottom of the screen. The second part of this figure is a sequence input window. It provides an option to either upload a set of sequences from a separate source or manually key them in.

Figure 4.17: ARVPredictor (a) Major HIV-1 drug resistance mutation list. (b) Sequence entry option window.

4.3.3.4 ARVPredictor Mutation Analysis Results Window

The results are analyzed and sent back in comparison to the latest version of the Stanford HIV Database. The output packaged in terms of the region targeted, for example, protease, reverse transcriptase, and integrase, and preferred antiretroviral listed alongside Figure 4.18.

Figure 4.18: ARVPredictor Mutation Analysis Results: (Including the latest version of Stanford db. referenced, Major/Minor Mutations identified and ARVs susceptibility levels)

The development code for displaying the mutation analysis output in this app is shown in Figure 4.19.

```
myApolloclient.query(MutationAnalysisRequestQuery.builder().mutations(myMutations).build())
    enqueve(new ApolloCall.Callback<MutationAnalysisRequestQuery.Data>() f
        @0verride
        public void onResponse(aNotNull Response<MutationAnalysisRequestQuery.Data> response) (
            getActivity().runOnUiThread(
                new Runnable() {
                    Runverride
                            public void run() {
                            List<MutationAnalysisRequestQuery.DrugResistance> load = response.getData().mutationsAnalysis().drugResistance();
                            progDialog.dismiss(),
                            if (load != null){
                            Paper.book().write("MUTRESULT",load);
                            Paper.book().write("DATA",response.getData());
                            }
                        myMutations.clear();
                            Intent intent = new Intent(getActivity(), MutationResultActivity.class);
                            startActivity(intent);
                            startActivity(intent);
                                }
        }
        @Override
        public void onFailure(@NotNull ApolloException e) {
            getActivity().runOnUiThread(
                new Runnable() {
                    public void run() {
                        myMutations.clear();
                            progDialog.dismiss();
                            }
                            );
    });
```

Figure 4.19: ARVPredictor Mutation Analysis Code: Set of back-end computer related logical instructions for analyzing selected set of HIV mutations.

Figures 4.20 and 4.21 display the analyzed sequences and respective back end development codes.

Figure 4.20: ARVPredictor Sequence Analysis Results. (Including the latest version of Stanford db. referenced, Position sequenced, Major/Minor Mutations identified, HIV Subtype and ARVs susceptibility levels)

```
myApolloClient.query(SequenceAnalysisRequestQuery.builder().sequences(actualInputs).build())
    enqueue (new ApolloCall.Callback<SequenceAnalysisRequestQuery.Data>() {
        @Override
        ublic void onResponse(aNotNull Response<SequenceAnalysisRequestQuery.Data> response) {
            getActivity().runOnUiThread(new Runnable() {
                @Override
                public void run() {
                    sequence.setText(response.getData().toString());
                    Paper.book().write("SEQDATA", response.getData().sequenceAnalysis());
                    Paper.book().write("RAWDATA", response.getData());
                    progDialog.dismiss();
                            header.setText("");
                            sequence.setText("");
                            ctualInputs.clear();
                            Intent intent = new Intent(getActivity(), SequenceAnalysisResults.class);
                    startActivity(intent);
                }
            });
        }
        aOverride
        public void onFailure(aNotNull ApolloException e) {
            sequence.setText(e.getMessage());
            getActivity().runOnUiThread(new Runnable() {
                @0verride
                public void run() {
                    header.setText("");
                    sequence.setText("");
                    header.setText("");
                        sequence.setText("");
                        progDialog.dismiss();
                    errorDialog.show();
            }
            });
        }
    });
```

Figure 4.21: ARVPredictor Sequence Analysis code. : Set of back-end computer related logical instructions for analyzing HIV sequences.

CHAPTER FIVE

DISCUSSION

The ultimate aim of this study was to determine the genetic polymorphism in the CCR5 532 allele through in silico approach and also use mobile technology to evaluate HIV drug resistance. It largely intended to figure out how the CCR532 allele is distributed among Caucasians, Asians, and Africans across the globe. The research herein correlated data from studies on the distribution of CCR $5 \Delta 32$ which is a natural selection allele acting in humans against HIV as previously demonstrated (Martinson et al., 1997). The result of this analysis involving 37 articles with 17,535 participants from diverse backgrounds sheds great lights on the distribution of this allele globally as well its association with HIV-1 epidemiology. The study demonstrates that there is a wide knowledge gap on CCR5 532 especially in African where HIV burden is highest but further confirms that CCR5 532 heterozygosity does not protect individuals against HIV-1 infection but rather slows progression of the disease (Mehlotra et al., 2015; Rahimi et al., 2014). High concentration of studies on CCR5 $\triangle 32$ is seen among the Caucasians. Globally, 51% of the publications accessible for review were on Caucasians, 24% were on Asians, and five on Africans, accounting for meager 13%. The overall outcome for all the populations meta-analyzed indicates that race can be a factor that determines CCR5 532 homozygosity or heterozygosity and it highly favors the Caucasians. This was demonstrated by the fact that 52 out of the 57 individuals' found to be positive of the allele were Caucasians. However the few homozygotes seen among the Asians could have been as a result of gene flow and may need further analysis (Martinson et al., 1997). Notably, no one in the African population was positive for the allele, whereas one individual was found in the remaining un-grouped population in Nigeria, according to Martinson and group. (Martinson et al., 1997). Based on the data available online, it's probable that the findings of this study are regionally and or racially biased. Another factor that may have influenced the findings is the language bias, particularly on articles published in languages other than English without a translating link.

The research team equally determined the divergence in geographical distribution of HIV1 group M subtypes globally in this investigation, which is consistent with earlier studies (Buonaguro et al., 2007). Studies have shown that some HIV-1 subtypes poses phenotypic differences from refined changes in the envelop structure especially within the third hypervariable domain (V3 loop) (Lynch et al., 2009). This is possible since single genome amplification sequencing of HIV-1envelop gene mostly within the variable (V) is used as a maker for HIV 1 genome diversity (Rao et al., 2013) (Gall et al., 2013).

HIV-1 group M is characterized by ten (10) known clades ranging from A to K besides additional Unique Recombinant Forms (URF) and Circulating Recombinant forms (CRF). Group M is listed as being responsible for HIV pandemic word over. However, some subtypes are seen to be predominant within specific areas. Subtypes A and D are mostly found in East and Central part of Africa. Subtype A is also common among some Asian community especially in Pakistan, Kazakhstan and Cyprus. Subtype B is leading in North and Latin America (Jamaica, Dominican Republic, Paraguay, Ecuador, Venezuela, Mexico, and Haiti) and Asia (Japan, Hong Kong, Philippines and South Korea). Although Subtype C is most frequent in southern Africa (South Africa, Botswana, and Malawi), it has also been found in India, Israel, Nepal, and Georgia, while Subtype G has been identified in Cuba and Guinea Bissau. Sub-Saharan Africa has a comparable distribution of almost all the available HIV-1 subtypes. The recombinants of subtypes A, G, K and J are common in the West African countries (Mali, Niger, Gambia, Senegal, and Burkina Faso). The result of these studies opens up a non-conclusive debate on the origin of HIV-1. The subsequent dendrogram described herein may not be conclusive due to limitation of data retrieved from the Los Alamos HIV database with complete sequences covering the entire HIV env and by extension the HIV -1 gp160 protein. However, it gives a clear indication that there is no visible connection between a particular subtype and its transmission pattern. Nevertheless, some studies have shown that various risk behaviors support HIV transmission modes within and across regions and generated multi transmission routes also fuel the spread of the HIV epidemic (Buonaguro et al., 2007).

The alignment of the highly conserved V3 loop sequences equally confirms documented diversity that exists within HIV-1 group M subtypes (Araújo \& Almeida, 2013). The greatly volatile loop under selective pressure of thirty-five (35) residues is believed to be largely responsible for the differences within and across subtypes. An estimated percentage variation of between 12 and 20 percent within specific subtypes and 35 percent across some subtypes was also determined. The differences seen within these subtypes may be a factor contributing to HIV-1 recombinants, the rate of HIV infections and transmission hosts. Studies should be carried out to explore possible relationship between subtypes and host specific transmissions for potential antiviral interventions. This is because the V3 loop participates directly in HIV viral entry and therefore has the possibility of displaying more insight on HIV-1 inter-subtype prevalence among different populations. According to the HIV sequence compendium from 2018, it is relatively conserved, with no significant deletions, insertions, or glycosylation alterations (Foley et al., 2018)

This study shows a close similarity between consensus sequences of HIV-1 subtypes A and C in comparison to others. These near identical subtypes also pose a higher threat of HIV infection and are seen to be highly predominant among the African populace. However, high levels of genetic variation have been displayed by HIV-1 subtypes of group M after identification of sites changing under positive or negative selection in the gp160. The phylogenetic representation of the V3 region does not show a uniform distribution of HIV1 subtypes globally as compared to the whole env sequences. However the Simian immunodeficiency virus of chimpanzees (SIVcpz) sequences still remains the out-group in both cases hence the probable ancestor. This remains in line with previously documented studies on perceived origin of HIV-1 (Sharp \& Hahn, 2011) (Hirsch et al., 1989; Huet et al., 1990).The study equally displays a significant difference in the two categories of highly conserved motifs of the V3 loop tip i.e. Gly-Pro-Gly-Arg and Gln (GPGR and Q). HIV-1 subtype B has higher ratios of $\mathrm{dN} / \mathrm{dS}$ as well as higher measures of disorder as compared to other subtypes. The same subtype B was also found to be common for GPGR motif at the V3 loop. Different subtypes experience varied pressures hence contributing to various classifications of HIV-1 group M subtypes and their global distribution among different population.

Finally, providing timely and accurate help to health care providers in the management of HIV patients has proven difficult, particularly in resource-constrained settings. It is believed that with the release of ARVPredictor, a much-needed solution for health-care practitioners at the point of care will be realized. The desired work environment and data output were taken into consideration when planning and selecting tools for the creation of this mobile application. This choice supported quick analysis of the mutations or sequences to be uploaded by the health care provider. The overall aim is to provide a solution that offers accurate and easily accessible management strategy to HIV health care providers with a short turnaround time. For accuracy and time management, every attempt was taken to reduce the predicted input variables. The mutation screen achieves this by presenting a dropdown and choice-enabled entry that includes a comprehensive list of all currently documented mutations. The sequence analysis window allows keying in, pasting, and uploading from a remote file. The mobile application, which is now freely downloadable from Google Play Store or App Store and enlisted as ARVPredictor, is free for use and technically supported by developers. Its security is enhanced through controlled and authenticated log-in process, while critical and back end data are only accessible to authorized individuals. The application administrator will handle any anticipated mobile applicationrelated errors or challenges after reviewing various levels of the application error logs.

In evaluating the functionality of the ARVPredictor in comparison to the replicated Stanford HIV Database in this study, there is strong evidence that several benefits, including but not limited to concurrence, convenience, and simplicity, are realized. ARVPredictor can therefore be used to determine HIV-1 drug-resistance mutations in the HIV pol gene with ease and convenience in mobile devices. The app equally has the advantages of high-speed data networks and smartphone accessibility.

It therefore adds to other available and upcoming mobile health (mHealth) interventions in the area of HIV and antiretroviral use among different health care providers. Mobile health technology has enabled faster and efficient communication among health care service providers and their patients as well as reducing frequent and high cost of hospitals visits. However, it's additional benefits, such as improved
diagnosis, accuracy, and better coordination, will still contribute highly to the biomedical field.

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 General Conclusions

In this study two forest plots were drawn; the first one comparing the distribution of CCR5 homozygosity and heterozygosity among various populations and the second detailing the comparison of CCR5 homozygosity and heterozygosity among HIV positive and HIV negative individuals. Both plots demonstrate higher concentration of studies on CCR5 532 among the Caucasians followed by Asians and lastly Africans. Further details on the output reveals that there is a higher likelihood of being homozygous of the allele when a Caucasian than other. Most CCR5 532 homozygotes identified in this study were Caucasians.

While comparing the CCR5 homozygosity and heterozygosity among HIV positive and HIV negative individuals, we conclude that; Caucasians as compared to other populations are less susceptible to HIV virus infection due to the expression rates of CCR5 532 while the rest of the populations experience a much higher prevalence of the disease. However, due to a wide knowledge gap there could be a possibility that the results in our study are regionally and or racially biased based on the available data.

In order to achieve its stated goals, this study also agrees with other research on two key points: HIV-1 has a number of subtypes, some of which are shown to be more prevalent than others in different parts of the world. The diversity that has been seen within HIV 1 group M subtypes is supported by the highly conserved V3 loop sequences.

Finally, this study reports a novel innovation of a mobile application known as ARVPredictor which can be installed freely from the PlayStore. This novelty can accurately define HIV-1 drug resistance mutations targeting the HIV pol gene and provides appropriate antiretroviral drugs for use at the point of care. It taps into the benefits of current high-speed data networks and smartphone accessibility. ARVPredictor adds to
other available and upcoming mobile health interventions in the area of HIV and antiretroviral use among different care providers. The application can also be scaled up to include other life threatening diseases and aids in reducing drug resistance.

6.2 General Recommendations

1. Further collaborative studies on population genetics and epidemiology can also be explored to help understand more about the global distribution of CCR5 $\Delta 32$ in Africa.
2. More studies on the near minimal percentage difference between subtypes A and C with the aim of any possible antiretroviral or vaccine development hints should be explored.
3. Additional and continuous modification of the mobile application (ARVPredictor) should be explored to take care of the first evolving mobile technology and diversity of HIV/AIDS and cover other diseases.

REFERENCES

Abongwa, L. E., Nyamache, A. K., Torimiro, J. N., Okemo, P., \& Charles, F. (2019). Human immunodeficiency virus type 1 ((HIV-1) subtypes in the northwest region, Cameroon. Virology Journal, 16(1), 103. https://doi.org/10.1186/s12985-019-1209-6

AIDS, A. (1986). Clinical Manifestations of HIV Infection. In Confronting AIDS: Directions for Public Health, Health Care, and Research. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK219125/; Accessed 2020-09-22

AIDSMAP. (2015). CD4 cell counts. Aidsmap.Com. https://www.aidsmap.com/about-hiv/cd4-cellcounts; Accessed on 2020-09-22

Al-Jaberi, S. A., Ben-Salem, S., Messedi, M., Ayadi, F., Al-Gazali, L., \& Ali, B. R. (2013). Determination of the CCR5 $\Delta 32$ frequency in Emiratis and Tunisians and the screening of the CCR5 gene for novel alleles in Emiratis. Gene, 529(1), 113-118. https://doi.org/10.1016/j.gene.2013.07.062

Allard, J. P., Aghdassi, E., Chau, J., Salit, I., \& Walmsley, S. (1998). Oxidative stress and plasma antioxidant micronutrients in humans with HIV infection. The American Journal of Clinical Nutrition, 67(1), 143-147. https://doi.org/10.1093/ajcn/67.1.143

Al-Mahruqi, S. H., Zadjali, F., Beja-Pereira, A., Koh, C. Y., Balkhair, A., \& Al-Jabri, A. A. (2014). Genetic diversity and prevalence of CCR2-CCR5 gene polymorphisms in the Omani population. Genetics and Molecular Biology, 37(1), 7-14. https://doi.org/10.1590/S141547572014000100004

Angelis, D. S. A. de, Freire, W. S., Pannuti, C. S., Succi, R. C. de M., \& Machado, D. M. (2007). CCR5 genotypes and progression to HIV disease in perinatally infected children. Brazilian Journal of Infectious Diseases, 11(2), 196-198. https://doi.org/10.1590/S141386702007000200004

Araújo, L. A. L., \& Almeida, S. E. M. (2013). HIV-1 Diversity in the Envelope Glycoproteins: Implications for Viral Entry Inhibition. Viruses, 5(2), 595-604. https://doi.org/10.3390/v5020595

Arts, E. J., \& Hazuda, D. J. (2012). HIV-1 Antiretroviral Drug Therapy. Cold Spring Harbor Perspectives in Medicine, 2(4), a007161. https://doi.org/10.1101/cshperspect.a007161

ASHM. (2003). The taxonomy of HIV and primate immunodeficiency viruses. HIV Management Guidelines. https://hivmanagement.ashm.org.au/basic-hiv-virology/the-taxonomy-of-hiv-and-primate-immunodeficiency-viruses/

AVERT. (2015, July 20). History of HIV and AIDS overview. Avert. https://www.avert.org/professionals/history-hiv-aids/overview; Accessed on 2020-09-21

Awodele, O., Olayemi, S. O., Nwite, J. A., \& Adeyemo, T. A. (2012). Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. The Journal of Infection in Developing Countries, 6(01), Article 01. https://doi.org/10.3855/jidc. 1906

Bennett, D., Camacho, RJ., Otelea, D., Kuritzkes, DR., Herve, F., Kiuchi, M., Heneine, W., Kantor, R., Jordan, MR., \& Schapiro, JM. (2009). Drug Resistance Mutations for Surveillance of Transmitted HIV-1 Drug-Resistance: 2009 Update, .

Bertozzi, S., Padian, N. S., Wegbreit, J., DeMaria, L. M., Feldman, B., Gayle, H., Gold, J., Grant, R., \& Isbell, M. T. (2006). HIV/AIDS Prevention and Treatment. In D. T. Jamison, J. G. Breman, A. R. Measham, G. Alleyne, M. Claeson, D. B. Evans, P. Jha, A. Mills, \& P. Musgrove (Eds.), Disease Control Priorities in Developing Countries (2nd ed.). World Bank. http://www.ncbi.nlm.nih.gov/books/NBK11782/

Beynon-Davies, P., Carne, C., Mackay, H., \& Tudhope, D. (1999). Rapid application development (RAD): An empirical review. European Journal of Information Systems, 8. https://doi.org/10.1057/palgrave.ejis. 3000325

Bharat Bhushan Rewari, Reshu Agarwal, Suresh Shastri, Sharath Burugina Nagaraja, \& Abhilakh Singh Rathore. (2017). Adoption of the 2015 World Health Organization guidelines on antiretroviral therapy: Programmatic implications for India. WHO South-East Asia Journal of Public Health, 6(1), 90-93. https://apps.who.int/iris/handle/10665/329608

Bharti, D., Kumar, A., Mahla, R. S., Kumar, S., Ingle, H., Yadav, T., Mishra, A., Raut, A. A., \& Kumar, H. (2015). Low prevalence of CCR5- $\mathbf{3}$ 2, CCR2-64I and SDF1-3'A alleles in the Baiga and Gond tribes of Central India. SpringerPlus, 4. https://doi.org/10.1186/s40064-015-1238-6

Bigna, J. J. R., Plottel, C. S., \& Koulla-Shiro, S. (2016). Challenges in initiating antiretroviral therapy for all HIV-infected people regardless of CD4 cell count. Infectious Diseases of Poverty, 5(1), 85. https://doi.org/10.1186/s40249-016-0179-9

Biologists Discover Why 10 Percent Of Europeans Are Safe From HIV Infection. (2005). ScienceDaily. https://www.sciencedaily.com/releases/2005/03/050325234239.htm

Blut, G. A. C. B. (Arbeitskreis, \& Blood, S. 'Assessment of P. T. by. (2016). Human Immunodeficiency Virus (HIV). Transfusion Medicine and Hemotherapy, 43(3), 203. https://doi.org/10.1159/000445852

Bogart, L. M., Cowgill, B. O., Kennedy, D., Ryan, G., Murphy, D. A., Elijah, J., \& Schuster, M. A. (2008). HIV-Related Stigma among People with HIV and their Families: A Qualitative Analysis. AIDS and Behavior, 12(2), 244-254. https://doi.org/10.1007/s10461-007-9231-x

Bongadi.
(2020). Bongadi/ARV_Predictor_App_OngadiBA
[Java]. https://github.com/bongadi/ARV_Predictor_App_OngadiBA; Accessed on 2021-01-02 (Original work published 2020)

Bulanda, B. I., Bongenya, B. I., Chatte, A., Kateba, E. T., Kabasele, J.-Y. D., Omakoy, M. O., Chuga, D., Tshibumbu, C., Mwanaut, I., \& Kamangu, E. N. (2020). Molecular Diversity of the Human Immunodeficiency Virus Type 1 in Metropolitan Cities in Central Africa: An

Update of Data. World Journal of AIDS, 10(2), Article 2. https://doi.org/10.4236/wja.2020.102007

Buonaguro, L., Tornesello, M. L., \& Buonaguro, F. M. (2007). Human Immunodeficiency Virus Type 1 Subtype Distribution in the Worldwide Epidemic: Pathogenetic and Therapeutic Implications. Journal of Virology, 81(19), 10209-10219. https://doi.org/10.1128/JVI.00872-07

Caruso, J. R., \& Swift, C. J. (2023). Florida HIV Safety for Florida Clinical Laboratory Personnel. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK589667/

Chavhan Ab, Pawar Ss, Jadhao Rg, \& Patil Kg. (2013). Distribution of CC-chemokine receptor-5$\Delta 32$ allele among the tribal and caste population of Vidarbha region of Maharashtra state. Indian Journal of Human Genetics, 19(1), 65-70. https://doi.org/10.4103/09716866.112894

Chesney, M. A., Morin, M., \& Sherr, L. (2000). Adherence to HIV combination therapy. Social Science \& Medicine (1982), 50(11), 1599-1605. https://doi.org/10.1016/s0277-9536(99)00468-2

Chinen, J., \& Shearer, W. T. (2002). Molecular virology and immunology of HIV infection. Journal of Allergy and Clinical Immunology, 110(2), 189-198. https://doi.org/10.1067/mai.2002.126226

Cho, M., Min, X., \& Son, H. S. (2022). Analysis of evolutionary and genetic patterns in structural genes of primate lentiviruses. Genes \& Genomics, 44(7), 773-791. https://doi.org/10.1007/s13258-022-01257-6

Choudhury, A. (2011). Waterfall Model/SDLC [online] SDLC Tutorials.
Chung, M., \& Ko, I. (2015). Data-Sharing Method for Multi-Smart Devices at Close Range. Mobile Information Systems, 2015, e931765. https://doi.org/10.1155/2015/931765

Cichocki, M. (2020). Understanding the HIV Life Cycle. Verywell Health. https://www.verywellhealth.com/the-hiv-life-cycle-47876

Clavel, F., Guyader, M., Guétard, D., Sallé, M., Montagnier, L., \& Alizon, M. (1986). Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature, 324(6098), 691-695. https://doi.org/10.1038/324691a0

Cohn, S. K., \& Weaver, L. T. (2006). The Black Death and AIDS: CCR5- $\Delta 32$ in genetics and history. QJM: An International Journal of Medicine, 99(8), 497-503. https://doi.org/10.1093/qjmed/hcl076

Corado, A. de L. G., da Silva, G. A. V., Leão, R. A. C., Granja, F., \& Naveca, F. G. (2016). Frequency of CCR5 genotypes in HIV-infected patients in Roraima, Brazil. The Brazilian Journal of Infectious Diseases, 20(3), 314-315. https://doi.org/10.1016/j.bjid.2016.01.001

D’arc, M., Ayouba, A., Esteban, A., Learn, G. H., Boué, V., Liegeois, F., Etienne, L., Tagg, N., Leendertz, F. H., Boesch, C., Madinda, N. F., Robbins, M. M., Gray, M., Cournil, A., Ooms, M., Letko, M., Simon, V. A., Sharp, P. M., Hahn, B. H., ... Peeters, M. (2015). Origin of the HIV-1 group O epidemic in western lowland gorillas. Proceedings of the National Academy of Sciences of the United States of America, 112(11), E1343-1352. https://doi.org/10.1073/pnas. 1502022112

Deeks, E. D. (2018). Bictegravir/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs, 78(17), 1817-1828. https://doi.org/10.1007/s40265-018-1010-7

DigitalOcean. (2011). DigitalOcean - The developer cloud. https://www.digitalocean.com/; Accessed on 2020-12-18

Drohan D. (2017). Android.retrofit. 39. http://www.wit.ie; Accessed on 2020-12-20
Duncan, S. R., Scott, S., \& Duncan, C. J. (2005). Reappraisal of the historical selective pressures for the CCR5-Delta32 mutation. Journal of Medical Genetics, 42(3), 205-208. https://doi.org/10.1136/jmg.2004.025346

Dusch, V. (2012). Nginx-The Webserver you might actually like. https://www.researchgate.net/publication/231400849_Nginx; Accessed on 2020-12-18

Dybowski, J. N., Heider, D., \& Hoffmann, D. (2010). Prediction of Co-Receptor Usage of HIV-1 from Genotype. PLOS Computational Biology, 6(4), e1000743. https://doi.org/10.1371/journal.pcbi. 1000743

Ekere, E. F., Useh, M. F., Okoroiwu, H. U., \& Mirabeau, T. Y. (2020). Cysteine-cysteine chemokine receptor 5 (CCR5) profile of HIV-infected subjects attending University of Calabar Teaching Hospital, Calabar, Southern Nigeria. BMC Infectious Diseases, 20(1), 5. https://doi.org/10.1186/s12879-019-4737-1

Elbim, C., Pillet, S., Prevost, M. H., Preira, A., Girard, P. M., Rogine, N., Matusani, H., Hakim, J., Israel, N., \& Gougerot-Pocidalo, M. A. (1999). Redox and Activation Status of Monocytes from Human Immunodeficiency Virus-Infected Patients: Relationship with Viral Load. Journal of Virology, 73(6), 4561-4566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC112496/

Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. de L., Rodrigues, A. G., Bragatte, M. A. de S., \& Chies, J. A. B. (2020). Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5 432 on viral diseases. Virus Research, 286, 198040. https://doi.org/10.1016/j.virusres.2020.198040

Ellwanger, J. H., Kulmann-Leal, B., Wolf, J. M., Michita, R. T., Simon, D., Lunge, V. R., \& Chies, J. A. B. (2020). Role of the genetic variant CCR5 532 in HBV infection and HBV/HIV coinfection. Virus Research, 277, 197838. https://doi.org/10.1016/j.virusres.2019.197838

Engelman, A., \& Cherepanov, P. (2012). The structural biology of HIV-1: Mechanistic and therapeutic insights. Nature Reviews Microbiology, 10(4), 279-290. https://doi.org/10.1038/nrmicro2747

Esbjörnsson, J., Jansson, M., Jespersen, S., Månsson, F., Hønge, B. L., Lindman, J., Medina, C., da Silva, Z. J., Norrgren, H., Medstrand, P., Rowland-Jones, S. L., \& Wejse, C. (2019). HIV-2 as a model to identify a functional HIV cure. AIDS Research and Therapy, 16(1), 24. https://doi.org/10.1186/s12981-019-0239-x

Faria, N. R., Rambaut, A., Suchard, M. A., Baele, G., Bedford, T., Ward, M. J., Tatem, A. J., Sousa, J. D., Arinaminpathy, N., Pépin, J., Posada, D., Peeters, M., Pybus, O. G., \& Lemey, P. (2014). HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science (New York, N.Y.), 346(6205), 56-61. https://doi.org/10.1126/science. 1256739

Fauci, A. S. (2003). HIV and AIDS: 20 years of science. Nature Medicine, 9(7), Article 7. https://doi.org/10.1038/nm0703-839

Frankel, A. D., \& Young, J. A. T. (1998). HIV-1: Fifteen Proteins and an RNA. Annual Review of Biochemistry, 67(1), 1-25. https://doi.org/10.1146/annurev.biochem.67.1.1

Gall, A., Kaye, S., Hué, S., Bonsall, D., Rance, R., Baillie, G. J., Fidler, S. J., Weber, J. N., Mcclure, M. O., Kellam, P., \& Investigators, T. (2013). Restriction of V3 region sequence divergence in the HIV-1 envelope gene during antiretroviral treatment in a cohort of recent seroconverters. 1-15.

Gartner, M., Roche, M., Churchill, M., Gorry, P., \& Flynn, J. (2020). Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine, 53, 102682. https://doi.org/10.1016/j.ebiom.2020.102682

Gayle, H. D., \& Hill, G. L. (2001). Global Impact of Human Immunodeficiency Virus and AIDS. Clinical Microbiology Reviews, 14(2), 327-335. https://doi.org/10.1128/CMR.14.2.327335.2001

Glatter, K. A., \& Finkelman, P. (2021). History of the Plague: An Ancient Pandemic for the Age of COVID-19. The American Journal of Medicine, 134(2), 176-181. https://doi.org/10.1016/j.amjmed.2020.08.019

Gomaa, H., \& Mason, G. (2011). Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures. Cambridge University Press, Cambridge.

Goudsmit, J. (1997). Viral sex: The nature of AIDS. New York: Oxford University Press. http://archive.org/details/viralsexnatureof00goudrich; Accessed on 2022-03-03

GraphQL. (2021). GraphQL (microservices) architecture by Apollo | by Dev by RayRay| ITNEXT. https://itnext.io/graphql-microservices-architecture-by-apollo-8b6eb557c5e2; Accessed on 2021-06-02

Greenwood, E. J. D., Schmidt, F., \& Heeney, J. L. (2014). Chapter 5-Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes). In A. A. Ansari \& G. Silvestri (Eds.), Natural Hosts of SIV (pp. 85-101). Elsevier. https://doi.org/10.1016/B978-0-12-404734-$1.00005-\mathrm{X}$

Gupta, A., \& Padh, H. (2015). Frequency Distribution of Mannose Binding Lectin-2 and Vitamin D Receptor Gene Variants: Putative Markers for Tuberculosis. Genetics Research International, 2015, 1-7. https://doi.org/10.1155/2015/264120

Gupta, P. K., \& Saxena, A. (2021). HIV/AIDS: Current Updates on the Disease, Treatment and Prevention. Proceedings of the National Academy of Sciences, India. Section B, 91(3), 495-510. https://doi.org/10.1007/s40011-021-01237-y

Hemelaar, J., Elangovan, R., Yun, J., Dickson-Tetteh, L., Fleminger, I., Kirtley, S., Williams, B., Gouws-Williams, E., Ghys, P. D., \& WHO-UNAIDS Network for HIV Isolation Characterisation. (2019). Global and regional molecular epidemiology of HIV-1, 19902015: A systematic review, global survey, and trend analysis. The Lancet. Infectious Diseases, 19(2), 143-155. https://doi.org/10.1016/S1473-3099(18)30647-9

Herek. (1999).
and
Stigma. https://journals.sagepub.com/doi/10.1177/0002764299042007004; Accessed on 2020-0930

Heydarifard, Z., Tabarraei, A., \& Moradi, A. (2017, October 25). Polymorphisms in CCR5432 and Risk of HIV-1 Infection in the Southeast of Caspian Sea, Iran [Research Article]. Disease Markers; Hindawi. https://doi.org/10.1155/2017/4190107

Hirsch, V. M., Olmsted, R. A., Murphey-Corb, M., Purcell, R. H., \& Johnson, P. R. (1989). An African primate lentivirus (SIV sm closely related to HIV-2. Nature, 339(6223), Article 6223. https://doi.org/10.1038/339389a0

HIV Replication Cycle | NIH: National Institute of Allergy and Infectious Diseases. (2018, June 19). https://www.niaid.nih.gov/diseases-conditions/hiv-replication-cycle

HIVInfo. (2020). The Basics of HIV Prevention | HIVINFO. https://hivinfo.nih.gov/understanding-hiv/fact-sheets/basics-hiv-prevention; Accessed on 2020-09-23

Hong, S. L., Dellicour, S., Vrancken, B., Suchard, M. A., Pyne, M. T., Hillyard, D. R., Lemey, P., \& Baele, G. (2020). In Search of Covariates of HIV-1 Subtype B Spread in the United States-A Cautionary Tale of Large-Scale Bayesian Phylogeography. Viruses, 12(2), 182. https://doi.org/10.3390/v12020182

Huet, T., Cheynier, R., Meyerhans, A., Roelants, G., \& Wain-Hobson, S. (1990). Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature, 345(6273), Article 6273. https://doi.org/10.1038/345356a0

Hütter, G., Nowak, D., Mossner, M., Ganepola, S., Müssig, A., Allers, K., Schneider, T., Hofmann, J., Kücherer, C., Blau, O., Blau, I. W., Hofmann, W. K., \& Thiel, E. (2009). Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. The New England Journal of Medicine, 360(7), 692-698. https://doi.org/10.1056/NEJMoa0802905

IntelliJ IDEA Handbook. (2017). 73. https://www.javacodegeeks.com/; Accessed on 2020-12-20

Ivanov, A. V., Valuev-Elliston, V. T., Ivanova, O. N., Kochetkov, S. N., Starodubova, E. S., Bartosch, B., \& Isaguliants, M. G. (2016, October 13). Oxidative Stress during HIV Infection: Mechanisms and Consequences [Review Article]. Oxidative Medicine and Cellular Longevity; Hindawi. https://doi.org/10.1155/2016/8910396

Jacquemard, C., Koensgen, F., Colin, P., Lagane, B., \& Kellenberger, E. (2021). Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor. Viruses, 13(7), 1395. https://doi.org/10.3390/v13071395

Java Programming Language-An overview | ScienceDirect Topics. (2003). https://www.sciencedirect.com/topics/computer-science/java-programming-language

John, G. C., Bird, T., Overbaugh, J., Nduati, R., Mbori-Ngacha, D., Rostron, T., Dong, T., Kostrikis, L., Richardson, B., \& Rowland-Jones, S. L. (2001). CCR5 Promoter Polymorphisms in a Kenyan Perinatal Human Immunodeficiency Virus Type 1 Cohort: Association with Increased 2-Year Maternal Mortality. The Journal of Infectious Diseases, 184(1), 89-92. https://doi.org/10.1086/321006

Jones, D. T., Taylor, W. R., \& Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences: CABIOS, 8(3), 275-282. https://doi.org/10.1093/bioinformatics/8.3.275

Justiz Vaillant, A. A., \& Gulick, P. G. (2022). HIV Disease Current Practice. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK534860/

Katoh, K., \& Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Kawamura, T., Gulden, F. O., Sugaya, M., McNamara, D. T., Borris, D. L., Lederman, M. M., Orenstein, J. M., Zimmerman, P. A., \& Blauvelt, A. (2003). R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms.

Proceedings of the National Academy of Science, 100, 8401-8406. https://doi.org/10.1073/pnas. 1432450100

Keele, B. F., Giorgi, E. E., Salazar-Gonzalez, J. F., Decker, J. M., Pham, K. T., Salazar, M. G., Sun, C., Grayson, T., Wang, S., Li, H., Wei, X., Jiang, C., Kirchherr, J. L., Gao, F., Anderson, J. A., Ping, L.-H., Swanstrom, R., Tomaras, G. D., Blattner, W. A., ... Shaw, G. M. (2008). Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 105(21), 7552-7557. https://doi.org/10.1073/pnas. 0802203105

Keele, B. F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M. L., Bibollet-Ruche, F., Chen, Y., Wain, L. V., Liegeois, F., Loul, S., Ngole, E. M., Bienvenue, Y., Delaporte, E., Brookfield, J. F. Y., Sharp, P. M., Shaw, G. M., Peeters, M., \& Hahn, B. H. (2006). Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science (New York, N.Y.), 313(5786), 523-526. https://doi.org/10.1126/science. 1126531

Kleinman, A. J., Pandrea, I., \& Apetrei, C. (2022). So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses, 14(1), 135. https://doi.org/10.3390/v14010135

Kloek, M., Bulstra, C. A., van Noord, L., Al-Hassany, L., Cowan, F. M., \& Hontelez, J. A. C. (2022). HIV prevalence among men who have sex with men, transgender women and cisgender male sex workers in sub-Saharan Africa: A systematic review and meta-analysis. Journal of the International AIDS Society, 25(11), e26022. https://doi.org/10.1002/jia2.26022

Korber, B., Foley, B., \& Leitner, T. (1997). Human retroviruses and AIDS 1997 (LA-UR-981268). Los Alamos National Lab. (LANL), Los Alamos, NM (United States). https://doi.org/10.2172/607510

Kostrikis, L. G., Neumann, A. U., Thomson, B., Korber, B. T., McHardy, P., Karanicolas, R., Deutsch, L., Huang, Y., Lew, J. F., McIntosh, K., Pollack, H., Borkowsky, W., Spiegel, H. M. L., Palumbo, P., Oleske, J., Bardeguez, A., Luzuriaga, K., Sullivan, J., Wolinsky, S. M., ... Moore, J. P. (1999). A Polymorphism in the Regulatory Region of the CC-Chemokine Receptor 5 Gene Influences Perinatal Transmission of Human Immunodeficiency Virus Type 1 to African-American Infants. Journal of Virology, 73(12), 10264-10271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC113080/

Kouanfack, C., Unal, G., Schaeffer, L., Kfutwah, A., Aghokeng, A., Mougnutou, R., TchemguiNoumsi, N., Alessandri-Gradt, E., Delaporte, E., Simon, F., Vray, M., Plantier, J.-C., \& ANRS 12168 DynaMO Study. (2020). Comparative Immunovirological and Clinical Responses to Antiretroviral Therapy Between HIV-1 Group O and HIV-1 Group M Infected Patients. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 70(7), 1471-1477. https://doi.org/10.1093/cid/ciz371

Kucharska, I., Ding, P., Zadrozny, K. K., Dick, R. A., Summers, M. F., Ganser-Pornillos, B. K., \& Pornillos, O. (2020). Biochemical Reconstitution of HIV-1 Assembly and Maturation. Journal of Virology, 94(5), e01844-19. https://doi.org/10.1128/JVI.01844-19

Kumar, S., Stecher, G., Li, M., Knyaz, C., \& Tamura, K. (2018a). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096

Kumar, S., Stecher, G., Li, M., Knyaz, C., \& Tamura, K. (2018b). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35:, 1547-1549.

LaMont, C., Otwinowski, J., Vanshylla, K., Gruell, H., Klein, F., \& Nourmohammad, A. (2022). Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. ELife, 11, e76004. https://doi.org/10.7554/eLife. 76004

Lapointe, H. R., \& Harrigan, P. R. (2020). Human Immunodeficiency Virus Phylogenetics in the United States-and Elsewhere. The Journal of Infectious Diseases, 222(12), 1939-1940. https://doi.org/10.1093/infdis/jiaa108

Laure, F., Leonard, R., Mbayo, K., Lurhuma, Z., Kayembe, N., Brechot, C., Sarin, P. S., Sarngadharan, M., Wong-Staal, F., \& Gallo, R. C. (1987). Genomic diversity of Zairian HIV isolates: Biological characteristics and clinical manifestation of HIV infection. AIDS Research and Human Retroviruses, 3(4), 343-353. https://doi.org/10.1089/aid.1987.3.343

Li, Y., Ndjango, J.-B., Learn, G. H., Ramirez, M. A., Keele, B. F., Bibollet-Ruche, F., Liu, W., Easlick, J. L., Decker, J. M., Rudicell, R. S., Inogwabini, B.-I., Ahuka-Mundeke, S., Leendertz, F. H., Reynolds, V., Muller, M. N., Chancellor, R. L., Rundus, A. S., Simmons, N., Worobey, M., ... Hahn, B. H. (2012). Eastern Chimpanzees, but Not Bonobos, Represent a Simian Immunodeficiency Virus Reservoir. Journal of Virology. https://journals.asm.org/doi/abs/10.1128/JVI.01498-12

Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., \& Landau, N. R. (1996). Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell, 86(3), 367-377. https://doi.org/10.1016/S0092-8674(00)80110-5

Lopalco, L. (2010). CCR5: From Natural Resistance to a New Anti-HIV Strategy. Viruses, 2(2), 574-600. https://doi.org/10.3390/v2020574

Lopes, M. P., Santos, M. N. N., Faber, E. W., Bezerra, M. A. C., Hatzlhofer, B. L. D., Albuquerque, D. M., Zaccariotto, T. R., Ribeiro, D. M., Araújo, A. da S., Costa, F. F., \& Sonati, M. de F. (2014, November 11). The CCR5432 Polymorphism in Brazilian Patients with Sickle Cell Disease [Research Article]. Disease Markers; Hindawi. https://doi.org/10.1155/2014/678246

Lucas, S. (2002). The pathology of HIV infection. Leprosy Review, 73(1), 64-71.

Lynch, R. M., Shen, T., Gnanakaran, S., \& Derdeyn, C. A. (2009). Appreciating HIV Type 1 Diversity: Subtype Differences in Env. 25(3), 237-248.

Malim, M. H., \& Emerman, M. (2008). HIV-1 accessory proteins-Ensuring viral survival in a hostile environment. Cell Host \& Microbe, 3(6), 388-398. https://doi.org/10.1016/j.chom.2008.04.008

Martinson, J. J., Chapman, N. H., Rees, D. C., Liu, Y. T., \& Clegg, J. B. (1997). Global distribution of the CCR5 gene 32-basepair deletion. Nature Genetics, 16(1), 100-103. https://doi.org/10.1038/ng0597-100

Mayoclinic. (2020). HIV/AIDS - Diagnosis and treatment-Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hiv-aids/diagnosis-treatment/drc20373531; Accessed on 2020-09-22

McHugh, M. (2012). Interrater reliability: The kappa statistic. Biochemia Medica: Časopis Hrvatskoga Društva Medicinskih Biokemičara / HDMB, 22, 276-282. https://doi.org/10.11613/BM.2012.031

Mehlotra, R. K., Hall, N. B., Bruse, S. E., John, B., Zikursh, M. J. B., Stein, C. M., Siba, P. M., \& Zimmerman, P. A. (2015). CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 36, 165-173. https://doi.org/10.1016/j.meegid.2015.09.014

Mellors, J. W., \& et al. (1996). Mutations in retroviral genes associated with drug resistance. Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos.

Michael, N. L., Nelson, J. A. E., KewalRamani, V. N., Chang, G., O’Brien, S. J., Mascola, J. R., Volsky, B., Louder, M., White, G. C., Littman, D. R., Swanstrom, R., \& O’Brien, T. R. (1998). Exclusive and Persistent Use of the Entry Coreceptor CXCR4 by Human

Immunodeficiency Virus Type 1 from a Subject Homozygous for CCR5 $\Delta 32$. Journal of Virology, 72(7), 6040-6047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC110409/

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., \& PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed. 1000097

Mona Sadat, L., Seyed Mehdi, S., \& Amitis, R. (2018). HIV-1 Immune evasion: The main obstacle toward a successful vaccine. Archives of Asthma, Allergy and Immunology, 2(1), 013-015. https://doi.org/10.29328/journal.aaai. 1001013

Mozhi, P. K., \& Ganapathy, D. (2021). AWARENESS OF STRUCTURAL BIOLOGY OF HIV AMONG DENTAL STUDENTS. European Journal of Molecular and Clinical Medicine, 8(1), 491-504.
https://go.gale.com/ps/i.do?p=AONE\&sw=w\&issn=25158260\&v=2.1\&it=r\&id=GALE\%7 CA698747685\&sid=googleScholar\&linkaccess=abs

Muccini, C., Canetti, D., Castagna, A., \& Spagnuolo, V. (2022). Efficacy and Safety Profile of Fostemsavir for the Treatment of People with Human Immunodeficiency Virus-1 (HIV-1): Current Evidence and Place in Therapy. Drug Design, Development and Therapy, 16, 297304. https://doi.org/10.2147/DDDT.S273660

Munerato, P., Azevedo, M. L., Sucupira, M. C. A., Pardini, R., Pinto, G. H. N., Catroxo, M., Souza, I. E., \& Diaz, R. S. (2003a). Frequency of polymorphisms of genes coding for HIV1 co-receptors CCR5 and CCR2 in a Brazilian population. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases, 7(4), 236-240. https://doi.org/10.1590/s1413-86702003000400002

Munerato, P., Azevedo, M. L., Sucupira, M. C. A., Pardini, R., Pinto, G. H. N., Catroxo, M., Souza, I. E., \& Diaz, R. S. (2003b). Frequency of polymorphisms of genes coding for HIV-

1 co-receptors CCR5 and CCR2 in a Brazilian population. Brazilian Journal of Infectious Diseases, 7(4), 236-240. https://doi.org/10.1590/S1413-86702003000400002

Musey, L. K., Krieger, J. N., Hughes, J. P., Schacker, T. W., Corey, L., \& McElrath, M. J. (1999). Early and Persistent Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T Helper Dysfunction in Blood and Lymph Nodes following Acute HIV-1 Infection. The Journal of Infectious Diseases, 180(2), 278-284. https://doi.org/10.1086/314868

Myers, G., Foley, B., Korber, B., Mellors, J. W., Jeang, K. T., \& Wain-Hobson, S. (1997). Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences (LA-UR-97-31). Los Alamos National Lab., NM (United States). https://doi.org/10.2172/463607

MySQL. (1995). https://www.mysql.com/; Accessed on 2020-12-18
Naswa, S., Marfatia, Y. S., \& Prasad, T. L. N. (2012). Microbicides and HIV: A Review and an update. Indian Journal of Sexually Transmitted Diseases and AIDS, 33(2), 81-90. https://doi.org/10.4103/2589-0557.102098

Ndashimye, E., Li, Y., Reyes, P. S., Avino, M., Olabode, A. S., Kityo, C. M., Kyeyune, F., Nankya, I., Quiñones-Mateu, M. E., Barr, S. D., \& Arts, E. J. (2021). High-level resistance to bictegravir and cabotegravir in subtype A- and D-infected HIV-1 patients failing raltegravir with multiple resistance mutations. Journal of Antimicrobial Chemotherapy, 76(11), 2965-2974. https://doi.org/10.1093/jac/dkab276

Nkenfou, C. N., Mekue, L. C. M., Nana, C. T., \& Kuiate, J. R. (2013). Distribution of CCR5Delta32, CCR5 promoter 59029 A/G, CCR2-64I and SDF1-3'A genetic polymorphisms in HIV-1 infected and uninfected patients in the west region of Cameroon. BMC Research Notes, 6, 288. https://doi.org/10.1186/1756-0500-6-288

Oh, D.-Y., Jessen, H., Kücherer, C., Neumann, K., Oh, N., Poggensee, G., Bartmeyer, B., Jessen, A., Pruss, A., Schumann, R. R., \& Hamouda, O. (2008). CCR5 432 Genotypes in a German

HIV-1 Seroconverter Cohort and Report of HIV-1 Infection in a CCR5 532 Homozygous Individual. PLOS ONE, 3(7), e2747. https://doi.org/10.1371/journal.pone. 0002747

Okonechnikov, K., Golosova, O., Fursov, M., \& UGENE team. (2012). Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics (Oxford, England), 28(8), 1166-1167. https://doi.org/10.1093/bioinformatics/bts091

Ongadi. (2021, January 2). ARVPredictor-Apps on Google Play. https://play.google.com/store/apps/details?id=co.ke.ikocare\&hl=en\&gl=KE

Ongadi, B. A., Obiero, G., Lihana, R. W., \& Kiiru, J. N. (2018). Distribution of Genetic Polymorphism in the CCR5 among Caucasians, Asians and Africans: A Systematic Review and Meta-Analysis. Open Journal of Genetics, 08(03), 54-66. https://doi.org/10.4236/ojgen.2018.83006

Ongadi, B., Lihana, R., Kiiru, J., Ngayo, M., \& Obiero, G. (2022). An Android-Based Mobile App (ARVPredictor) for the Detection of HIV Drug-Resistance Mutations and Treatment at the Point of Care: Development Study. JMIR Formative Research, 6, e26891. https://doi.org/10.2196/26891

Paetsch, F., Eberlein, A., \& Maurer, F. (2003). Requirements Engineering and Agile Software Development. 12th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises , Linz, , 11 June 2003, 308-313.

Pereira, R. W., Pires, E. R., Duarte, A. P. M., Moura, R. P. de, Monteiro, E., Torloni, H., Proietti, A. B., Simpson, A. J. G., \& Pena, S. D. J. (2000). Frequency of the CCRdelta32 allele in Brazilians: A study in colorectal cancer and in HTLV-I infection. Genetics and Molecular Biology, 23(3), 523-526. https://doi.org/10.1590/S1415-47572000000300003

Potts, A., \& Friedel, D. H. (1996). Java: Programming language handbook. Coriolis Group Bks. ; Accessed on 2020-12-18

Rahimi, H., Farajollahi, M. M., \& Hosseini, A. (2014). Distribution of the mutated delta 32 allele of CCR5 co-receptor gene in Iranian population. Medical Journal of the Islamic Republic of Iran, 28, 140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322332/

Rao, M., Peachman, K. K., Kim, J., Gao, G., Alving, C. R., Nelson, L., \& Rao, V. B. (2013). HIV1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res., 11(5), 11(5): 427-438.

Reed, J. C., Solas, D., Kitaygorodskyy, A., Freeman, B., Ressler, D. T. B., Phuong, D. J., Swain, J. V., Matlack, K., Hurt, C. R., Lingappa, V. R., \& Lingappa, J. R. (2021). Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. Journal of Virology, 95(3), e00883-20. https://doi.org/10.1128/JVI.00883-20

Rhee, S.-Y. (2003). Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research, 31(1), 298-303. https://doi.org/10.1093/nar/gkg100

Robertson, D., Anderson, J., Bradac, J. A., Carr, J. K., Foley, B., Funkhouser, R. K., Gao, F., Hahn, B. H., Kalish, M. L., Kuiken, C., Learn, G., Leitner, T., McCutchan, F., Osmanov, S., Peeters, M., Pieniazek, D., Salminen, M., Sharp, P., Wolinsky, S., \& Korber, B. (2000). HIV-1 Nomenclature Proposal. Science, 288, 55-56. https://doi.org/10.1126/science.288.5463.55d

Rolland, M. (2016). HIV-1 immune evasion-a threat to effective vaccines? Nature Medicine, 22(6), 580-581. https://doi.org/10.1038/nm. 4119

Rottman, J. B., Ganley, K. P., Williams, K., Wu, L., Mackay, C. R., \& Ringler, D. J. (1997). Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. The American Journal of Pathology, 151(5), 1341-1351.

Roy, P., \& Chakrabarti, S. (2016). Mutation in AIDS restriction gene affecting HIV infection and disease progression in a high risk group from Northeastern India. Medical Journal, Armed Forces India. https://doi.org/10.1016/j.mjafi.2015.07.005

Ryabov, G. S., Kazennova, E. V., Bobkova, M. R., \& Bobkov, A. F. (2004). Prevalence of Alleles Associated with HIV Resistance in Russia. Genetic Testing, 8(1), 73-76. https://doi.org/10.1089/109065704323016067

Salem, A. H., Farid, E., Fadel, R., Abu-Hijleh, M., Almawi, W., Han, K., \& Batzer, M. A. (2009). Distribution of Four HIV Type 1-Resistance Polymorphisms (CCR5-432, CCR5-m303, CCR2-64I, and SDF1-3'A) in the Bahraini Population. AIDS Research and Human Retroviruses, 25(10), 973-977. https://doi.org/10.1089/aid.2009.0066

Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., ... Parmentier, M. (1996). Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382(6593), 722-725. https://doi.org/10.1038/382722a0

Sanchez-Pescador, R., Power, M. D., Barr, P. J., Steimer, K. S., Stempien, M. M., Brown-Shimer, S. L., Gee, W. W., Renard, A., Randolph, A., Levy, J. A., Dina, D., \& Luciw, P. A. (1985). Nucleotide Sequence and Expression of an AIDS-Associated Retrovirus (ARV-2). Science, 227(4686), 484-492. https://doi.org/10.1126/science. 2578227

Sebbane, F., \& Lemaître, N. (2021). Antibiotic Therapy of Plague: A Review. Biomolecules, 11(5), Article 5. https://doi.org/10.3390/biom11050724

Sharp, P. M., \& Hahn, B. H. (2011). Origins of HIV and the AIDS Pandemic. Cold Spring Harbor Perspectives in Medicine:, l(1). https://doi.org/10.1101/cshperspect.a006841

Sidoti, A., D’Angelo, R., Rinaldi, C., De Luca, G., Pino, F., Salpietro, C., Giunta, D. E., Saltalamacchia, F., \& Amato, A. (2005). Distribution of the mutated Delta32 allele of the CCR5 gene in a Sicilian population. International Journal of Immunogenetics, 32(3), 193198. https://doi.org/10.1111/j.1744-313X.2005.00507.x

Smoljanović, M., Ristić, S., \& Hayward, C. (2006). Historic Exposure to Plague and Present-day Frequency of CCR5del32 in Two Isolated Island Communities of Dalmatia, Croatia. Croatian Medical Journal, 47(4), 579-584. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080457/

Smyth, N. (2020). Android Studio 4. 1 Development Essentials-Java Edition Developing Android 11 Apps Using Android Studio 4. 1, Java and Android Jetpack. Payload Media. http://public.eblib.com/choice/PublicFullRecord.aspx?p=6379904

Stephens, J. C., Reich, D. E., Goldstein, D. B., Shin, H. D., Smith, M. W., Carrington, M., Winkler, C., Huttley, G. A., Allikmets, R., Schriml, L., Gerrard, B., Malasky, M., Ramos, M. D., Morlot, S., Tzetis, M., Oddoux, C., di Giovine, F. S., Nasioulas, G., Chandler, D., ... Dean, M. (1998). Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. American Journal of Human Genetics, 62(6), 1507-1515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1377146/

Stephenson, K. E., \& Barouch, D. H. (2013). A global approach to HIV-1 vaccine development. Immunological Reviews, 254(1), 295-304. https://doi.org/10.1111/imr. 12073

Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien, N. D., Ahmed, A. M., \& Huy, N. T. (2019). A step by step guide for conducting a systematic review and metaanalysis with simulation data. Tropical Medicine and Health, 47, 46. https://doi.org/10.1186/s41182-019-0165-6

Thomas, R. H. (2001). Molecular Evolution and Phylogenetics. Masatoshi Nei and Sudhir Kumar. Oxford University Press, Oxford. 2000. Pp. 333. Price £65.00, hardback. ISBN 019 513584 9. Heredity, 86(3), 385-385. https://doi.org/10.1046/j.1365-2540.2001.0923a.x

Thomson, M. M., Pérez-Álvarez, L., \& Nájera, R. (2002). Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. The Lancet Infectious Diseases, 2(8), 461-471. https://doi.org/10.1016/S1473-3099(02)00343-2

Torimiro, J. N., Wolfe, N. D., Thomas, A., Martin, M. P., Mpoudi-Ngole, E., Tamoufe, U., Birx, D. L., Carrington, M., Burke, D. S., \& Carr, J. K. (2007). Frequency of CCR5 variants among rural populations with low HIV-1 prevalence in Cameroon. AIDS, 21(4), 527-528. https://doi.org/10.1097/QAD.0b013e328045c4bd

Trecarichi, E. M., Tumbarello, M., Donati, K. de G., Tamburrini, E., Cauda, R., Brahe, C., \& Tiziano, F. D. (2006). Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals. AIDS Research and Therapy, 3(1), 22. https://doi.org/10.1186/1742-6405-3-22

Types of antiretroviral medications. (2021, May 19). Aidsmap.Com. https://www.aidsmap.com/about-hiv/types-antiretroviral-medications

UNAIDS. (2014). 90-90-90-An ambitious treatment target to help end the aids epidemic. http://www.unaids.org/en/resources/documents/2014/90-90-90

UNAIDS. (2019). https://aidsinfo.unaids.org/
UNAIDS. (2020). Global HIV \& AIDS statistics-2020 fact sheet. https://www.unaids.org/en/resources/fact-sheet; Accessed on 2020-09-22

UNAIDS. (2021). 90-90-90: Treatment for all \mid UNAIDS. https://www.unaids.org/en/resources/909090 Accessed on 2020-09-17 10:12:09

Valadez-González, N., González-Martínez, P., Lara-Perera, D., Vera-Gamboa, L., \& GóngoraBiachi, R. (2011). Implicación del alelo CCR5- $\Delta 32$ en la progresión clínica de pacientes VIH-1+ en Yucatán, México. Salud Pública de México, 53(6), Article 6. https://www.saludpublica.mx/index.php/spm/article/view/7092
van Heuvel, Y., Schatz, S., Rosengarten, J. F., \& Stitz, J. (2022). Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins, 14(2), Article 2. https://doi.org/10.3390/toxins14020138

Vargas, A. E., Marrero, A. R., Salzano, F. M., Bortolini, M. C., \& Chies, J. a. B. (2006). Frequency of CCR5delta32 in Brazilian populations. Brazilian Journal of Medical and Biological Research, 39(3), 321-325. https://doi.org/10.1590/S0100-879X2006000300002

Visseaux, B., Le Hingrat, Q., Damond, F., Charpentier, C., \& Descamps, D. (2019). [Physiopathology of HIV-2 infection]. Virologie (Montrouge, France), 23(5), 277-291. https://doi.org/10.1684/vir.2019.0789

Waruru, A., Wamicwe, J., Mwangi, J., Achia, T. N. O., Zielinski-Gutierrez, E., Ng'ang'a, L., Miruka, F., Yegon, P., Kimanga, D., Tobias, J. L., Young, P. W., Cock, K. M. D., \& Tylleskär, T. (2021). Where Are the Newly Diagnosed HIV Positives in Kenya? Time to Consider Geo-Spatially Guided Targeting at a Finer Scale to Reach the "First 90". Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.503555

Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., \& Kosakovsky Pond, S. L. (2018). Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Molecular Biology and Evolution, 35(3), 773-777. https://doi.org/10.1093/molbev/msx335

WHO. (2001). WHO | 2001 Declaration of Commitment on HIV/AIDS. WHO; World Health Organization. https://www.who.int/hiv/pub/advocacy/ungass_2001/en/; Accessed on 2020-09-30

WHO. (2019). 2019_summary-global-hiv-epi.png (682×486).
https://www.who.int/hiv/data/2019_summary-global-hiv-epi.png?ua=1; Accessed on 2020-09-21

Winans, S., \& Goff, S. P. (2020). Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA. PLoS Pathogens, 16(12), e1009147. https://doi.org/10.1371/journal.ppat. 1009147

Worobey, M., Watts, T. D., McKay, R. A., Suchard, M. A., Granade, T., Teuwen, D. E., Koblin, B. A., Heneine, W., Lemey, P., \& Jaffe, H. W. (2016). 1970s and 'Patient 0' HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 539(7627), 98-101. https://doi.org/10.1038/nature19827

Yudin, N. S., Vinogradov, S. V., Potapova, T. A., Naykova, T. M., Sitnikova, V. V., Kulikov, I. V., Khasnulin, V. I., Konchuk, C., Vloschinskii, P. E., Ivanov, S. V., Kobzev, V. F., Romaschenko, A. G., \& Voevoda, M. I. (1998). Distribution of CCR5-delta 32 gene deletion across the Russian part of Eurasia. Human Genetics, 102(6), 695-698. https://doi.org/10.1007/s004390050764

Zajac, V. (2018). Evolutionary view of the AIDS process. The Journal of International Medical Research, 46(10), 4032-4038. https://doi.org/10.1177/0300060518786919

Zapata, W., Aguilar-Jiménez, W., Pineda-Trujillo, N., Rojas, W., Estrada, H., \& Rugeles, M. T. (2013). Influence of CCR5 and CCR2 genetic variants in the resistance/susceptibility to HIV in serodiscordant couples from Colombia. AIDS Research and Human Retroviruses, 29(12), 1594-1603. https://doi.org/10.1089/aid.2012.0299

Zhang, Y., Li, J., \& Li, Q. (2018). Immune Evasion of Enteroviruses Under Innate Immune Monitoring. Frontiers in Microbiology, 9, 1866. https://doi.org/10.3389/fmicb.2018.01866

Zunich, K. M., \& Lane, H. C. (1990). The immunology of HIV infection. Journal of the American Academy of Dermatology, 22(6, Part 2), 1202-1205. https://doi.org/10.1016/0190-9622(90)70163-C

Zunich, K. M., \& Lane, H. C. (1991). Immunologic Abnormalities in HIV Infection.
Hematology/Oncology Clinics of North America, 5(2), 215-228.
https://doi.org/10.1016/S0889-8588(18)30437-4

APPENDICES

Appendix 1.1: Major HIV-1 Drug Resistance Mutations Updated March 9, 2015

Major HIV-1 Drug Resistance Mutations
Updated March 9, 2015
Updated summary from the HIV Drug Resistance Database. This document can be downloaded from the http://hivdb.stanford.edu home page. Detailed and referenced versions of each drug class summary can be found at http://hivdb.stanford.edw/pages/drugSummaries.html

Major Nucleoside RT Inhibitor (NRTI)-Resistance Mutations													
Non-TAMs						TAMs						MDR	
	184	65	70	74	115	41	67	70	210	215	219	69	151
Cons	M	K	K	L	Y	M	D	K	L	T	K	T	Q
3TC	V1	R	E									Ins	M
FTC	V1	R	E									Ins	M
ABC	VI	R	E	V1	F	L			w	YF		Ins	M
TDF	***	R	E		F	L			w	YF		Ins	M
ZDV	***	***	*	*		L	N	R	w	YF	QE	Ins	M

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other NRTI-resistance mutations. Asterisk: increased susceptibility. Additional NRTIs: Stavudine (d4T) and didanosine (ddl) are no longer recommended. TAMs: Thymidine analog mutations. Selected by AZT and d4T and facilitate primer unblocking. Non-TAMs prevent NRTI incorporation. MDR: Multidrug resistance mutations. T69 insertions occur with TAMs. Q151M occurs with non-TAMs and accessory mutations A62V, V75I, F77L, and F116Y. M184VI: Although they cause high-level in vitro resistance to 3TC/FTC, they are not contraindications to 3TC/FTC because they increase TDF and AZT susceptibility and decrease viral replication fitness. Additional mutations: K65N is similar but weaker than K65R. K70GQ is similar to K70E. T69D and V75MT reduce susceptibility to d4T and ddI. T215SCDEIV (T215 revertants) evolve from T215YF in the absence of NRTIs. E40F, E44DA, D67GE, V118I, and K219NR are accessory TAMs. T69 deletions occur in combination with K65R and/or Q151M. With K65R (but not Q151M) they increase AZT susceptibility. References: http://hivdb.stanford.edu/DR/NRTIResiNote.html.

Major Non-Nucleoside RT Inhibitor (NNRTI)-Resistance Mutations											
	100	101	103	106	138	179	181	188	190	227	230
Cons	L	K	K	v	E	v	Y	Y	G	F	M
NVP	1	PEH	NS	AM		DEF	CIV	LCH	ASEQ	LC	\underline{L}
EFV	1	PEH	NS	AM		DEF	C	LCH	ASEQ	LC	\underline{L}
ETR	1	PEH					CIV		EQ	c	L
RPV	1	PEH			KAGQ	DEF	CIV	1	EQ	c	L

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other NNRTI-resistance mutations. Asterisk: increased susceptibility. Abbreviations: nevirapine (NVP), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV). Synergistic combinations: V179D+K103R reduce NVP and EFV susceptibility >10-fold. Y181C+V179F cause high-level ETR and RPV resistance. ETR genotypic susceptibility score (GSS): Y181IV (3.0); L100I, K101P, Y181C, M230L (2.5); V901, E138A, V179F, G190S (1.5); A98G, K101EH, V106I, V179DT, G190A (1.0); <2.5 susceptible; 2.5 to 3.0 intermediate; >3.0 high-level. V90I, A98G, V106I, E138A, V179DT, G190A/S have little effect on ETR susceptibility unless they occur with a bolded mutations. Additional accessory mutations: V90I (ETR), A98G (NVP, EFV, ETR, RPV), V1081, V179T (ETR), V179L (RPV), P225H (EFV), K238T (NVP, EFV), L318F (NVP). References: http://hivdb.stanford.edu/DR/NNRTIResiNote.html.

Major Protease Inhibitor (PI) Resistance Mutations												
	24	32	46	47	48	50	54	76	82	84	88	90
Cons	L	v	M	1	G	1	1	L	v	1	N	L
ATV/r		1	IL	V	VM	\underline{L}	VTAM		ATSF	$\underline{\text { V }}$	S	M
DRV/r		1		VA		v	LM	v	F	V		
LPV/r	1	1	IL	VA	VM	v	VTALM	v	ATSF	v		M

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other Pl-resistance mutations. Abbreviations: atazanavir (ATV), darunavir (DRV), lopinavir (LPV). Administered with ritonavir for pharmacokinetic boosting (/r). Additional Pls: Fosamprenavir (FPV), indinavir (IDV), saquinavir (SQV), and tipranavir (TPV) are rarely used. Nelfinavir (NFV) is no longer recommended. FPV/r and IDV/r are never more active than DRV/r and rarely if ever more active than LPV/r vs resistant viruses. TPV/r is occasionally useful for salvage therapy as it can be active vs LPV/r and DRV/r-resistant viruses with mutations that increase TPV susceptibility. Expert consultation +/- phenotypic testing should be obtained prior to using FPV, FPV/r, IDV/r, SQV/r, and TPV/r. Additional mutations: D30N and N88D are major NFV-resistance mutations. L10F, V11I, K20TV, L23I, K43T, F53L, Q58E, A71IL, G73STCA, T74P, N83D, and L89V are common nonpolymorphic accessory mutations. L10RY, V11L, L24F, M46V, G48ASTLQ, F53Y, I54S, V82CM, I84AC, N88TG are rare nonpolymorphic variants. Hypersusceptibility: 150L (each PI except ATV); L10F, L24I, I50V, 154L (TPV); L76V (ATV, SQV, TPV); 147A (SQV); N88S (FPV). References: http://hivdb.stanford.edu/ DR/PIResiNote.html.

Major Integrase Inhibitor (INI)-Resistance Mutations								
	66	92	138	140	143	147	148	155
Cons	T	E	E	G	Y	S	Q	N
RAL	A	Q	KA	SAC	CRH		HRK	H
EVG	IAK	Q	KA	SAC		G	HRK	H
DTG		Q	KA	SAC			HRK	

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other INI-resistance mutations. Asterisk: increased susceptibility. Abbreviations: raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG). Additional mutations: H51Y, L74M, T97A, S153YF, G163RK, S230R, and R263K are relatively nonpolymorphic INI-selected accessory resistance mutations. E92GV, E138T, Y143KSGA, Q148N, and N155ST are unusual variants at the positions listed above. P145S and Q146P are rare EVG-resistance mutations. G118R and F121Y are rare nonpolymorphic INIresistance mutations. References: http://hivdb.stanford.edu/DR/INIResiNote.html.

HIV-1 RT and Protease Mutations for Drug-Resistance Surveillance*									
NRTIs				NNRTIS			Pls		
M41	L	Q151	M	L100	T	L23	1	G73	S,T,C,A
K65	R	M184	V, 1	K101	E,P	L24	I	L76	V
D67	N,G,E	L210	W	K103	N, S	D30	N	V82	A,T,S,F,L,C,M
T69	D,Ins	T215	Y,F,S,C,D,E,I,V	V106	A, M	V32	1	N83	D
K70	R,E	K219	Q,E,N,R	V179	F	M46	I, L	184	V,A,C
L74	V,I			Y181	C,I,V	147	V,A	185	V
V75	M,T,A,S			Y188	L, C, H	G48	V,M	N88	D, S
F77	L			G190	A, S,E	150	V, L	L90	M
Y115	F			P225	H	F53	F, Y		
F116	Y			M230	,	154	V,L,M,T,A,S		

'Bennett DE, Camacho R.J, Otelea D, et al. Drug Resistance Mutations for Surveilance of Transmitted HIV-1 Drug-Resistance:
2009 Update, PLoS One 2009:4 : e4724. Criteria for mutations on this list: (i) Causelcontribute to resistance. (ii) Nonpolymorphic (50.5% in ARV-naive persons) in 8 most common group M subtypes. http://hivdb.stanford.edu/cgi-bin/MutPrevBySubtypeRx.cgi.

Appendix 1.2: ARVPredictor; Test Performance Sequences (Accession Numbers: KX505314-KX505372 and MK588680-MK588752)

Abstract

PID SEQUENCES 001 CAATGGCCATTGACAGMAGAAAAAATAAAAGCATTAACAGAAATTTGCACAGATATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAA GACAGTACTAAATGGAGGAAATTAGTAGATTTCAGGGAGCTCAATAAAAGAACACAAGACTTTTGG GAAGTTCAATTAGGGATACCGCATCCAGCGGGCTTAAAAAAGAAGAAATCAGTAACAGTACTAGAT GTGGGGGACGCATATTTTTCAGTTCCTTTAGATGAAGGCTTTAGGAAATATACTGCGTTCACCATA CCTAGTATAAACAATGAGACACCAGGAATCAGATATCAGTATAATGTGCTCCCACAGGGATGGAAA GGATCACCAGCAATATTCCAGAGTAGYATGACAAAAATCTTAGAGCCCTTCAGATCAAAAAATCCA GAAATAACTATTTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAACAT AGAGCAAAAATAGAGGAGCTAAGAGAACATCTATTARGGTGGGGATTAACCACACCAGATAAGAAA CATCAGAAAGAACCCCCGTTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS 002 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATGGAAATGGAGAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACACCAATATTTGCAATAAAGAAA AAGGATAGCACTAAATGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTT TGGGAAGTTCAGCTAGGAATACCGCATCCAGCGGGTCTAAAAAAGAAAAAATCAGTAACAGTACTA GATGTGGGGGACGCATATTTTTCAGTTCCTTTACATGAAGGCTTTARAAAATATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGATCACCATCAATATTCCAGAGTAGCATGATAAAAATTTTAGAACCTTTCAGATCAAAAAAT CCAGAAATAATTATCTATCAATATATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGAGCAA CATCGAGCAAAAATAGAAGAGTTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAA AAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGWTATGAACTA

SUBTYPE A:SUS

003 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATGGAAATGGAGAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACACCAATATTTGCAATAAAGAAA AAGGATAGCACTAAATGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTT TGGGAAGTTCAGCTAGGAATACCGCATCCAGCGGGTCTAAAAAAGAAAAAATCAGTAACAGTACTA GATGTGGGGGACGCATATTTTTCAGTTCCTTTACATGAAGGCTTTAGAAAATATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGATCACCATCGATATTCCAGAGTAGCATGATAAAAATTTTAGAACCTTTCAGATCAAAAAAT CCAGAAATAATTATCTATCAATATATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGAGCAA CATCGAGCAAAAATAGAAGAGTTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAA AAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS

004 GTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAA AAGGAAGGAAAAATTTCAAAAATTGGACCTGAAAATCCATACAATACTCCAATATTTGCTATAAAG AAAAAGGACAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACTCAAGAT TTTTGGGAAGTTCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTA CTGGATGTGGGGGATGCATATTTTTCAGTACCTTTAGATGAAAGCTTTAGAAAATATACTGCATTC ACCATACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGA TGGAAAGGGTCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAA AATCCAGAAATAGTTATCTACCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGG CAGCATAGAGCAAAAATAGAAGAATTAAGAGCTCATCTGTTGAGCTGGGGATTTACTACCCCMGAC AAAAAACATCAGAAAGAACCGCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE A:SUS
005 AGAAATTTGTACAGATATGGAAAAGGAAGGAAAACTATCAAGGATTGGGCCTGAAAATCCATATAA CACTCCAATATTTGCTATAAAGAAAAAAGACAGTACCAAGTGGAGAAAATTAGTAGATTTCAGGGA ACTTAATAAGAGAACTCAAGATTTCTGGGAAGTTCAATTAGGAATACCACACCCGGCAGGGCTAAA AAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCCTATTTTTCAGTTCCCTTATGTGAAGA GTTTARAAAATATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCA GTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAAT CTTAGAACCCTTTAGAGAACAAAATCCAGAAATAGTTATCTATCAATACATGGATGATTTGTATGT AGGATCTGACTTAGAAATAGGGCAGCATAGAGCAAAAATAGAGGAACTAAGAGAACATCTATTGAG GTGGGGATTTACCACACCAGATAAAAAACATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGA ACTAAA

SUBTYPE D:SUS
006 CAATGGCCATTGACAGAAGAAAAAATAAAMGCATTAACAGAAATCTGTACAGAAATGGAGGAAGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCGATAAAGAAAAAA GATAGCACTAAATGGAGGAAATTAGTAGATTTTAGAGAGCTTAATAAAAGAACTCAAGACTTTTGG GAGGTTCAATTAGGAATACCGCATCCAGCAGGTTTAAAAAAGAAMAAATCAGTAACAGTACTAGAT GTGGGGGACGCATATTTTTCAGTTCCTTTAGATGAAGGCTTTAGAAAGTATACAGCGTTCACCATA CCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCGGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAATAAAAAATCCA GACATAATTATCTATCAATACATGGATGACTTATATGTAGGATCTGATTTAGAGATAGGGCAGCAT AGAGCAAAAATAGAAGAGTTGAGAGCTCACCTATTGAGCTGGGGATTCACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE A:NNRTI RES EFV,NFP
007 AAACAATGGCCATTGACAGAAGAAAAGATAAAAGCATTGACAGAAATTTGTACAGACATGGAAAAG GAAGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAGCTTAATAAAAGAACTCAAGACTTC TGGGAAGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAGAAGAAAAAGTCAGTAACAGTACTA GATGTGGGTGATGCATATTTTTCAGTTCCCTTATATGAAGATTTTAGAAAATATACCGCATTCACC ATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGATCGCCGGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAACCTTTTAGAAAACGAAAT CCAGAAGTGGTTATCTATCAATACATGGATGATTTGTATGTAGGGTCTGACTTAGAGATAGGGCAG CATAGAATAAAAATAGAGGAATTAAGGGAACACCTATTGAAGTGGGGATTTACCACACCAGACAAA AAGCATCAGAAAGAACCTCCATTTCTTTGGATGG

SUBTYPE D:SUS
008 CAATGGCCATTGACAGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAGATGGAAAAGGAA GGAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCCATAAAAAAGAAR

GACAGTACWAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGRACCCARGACTTTTGG GAAGTTCAATTAGGRATACCACACCCAGCAGGGTTAAAARAGAAAAAATCAGTGACAGTACTAGAT GTGGGGGATGCRTATTTTTCAGTWCCTTTAGATGAAAGCTTCAGGAAATATACTGCATTCACCATA CCAAGTATAAACAATGAGACACCAGGAATCAGRTATCAGTACAATGTGCTTCCACAAGGATGGAAA GGATCACCAGCAATATTCCAAGCTAGCATGACAAAAATYCTGGAACCTTTTAGGAAACAAAATCCA GAAATGATTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAACAT AGAGCAAAAATAGAGAAATTAAGGGAACACCTGTTRAAGTGGGGGTTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE B:SUS
009 AATGGCCATTGACRGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAGATGGAAAAGGAAG GAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCCATAAAAARGAAAG ACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACCCAAGACTTTTGGG AAGTTCAATTAGGRATACCACACCCAGCAGGGTTAAAARAGAAAAAATCAGYGACAGTACTAGATG TGGGGGATGCRTATTTTTCAGTWCCTTTAGATGAAAGCTTCAGGAAATATACTGCATTYACCATAC CRAGTRTAAACAATGAGACACCAGGAATCAGRTATCAGTACAATGTGCTTCCACAAGGATGGAAAG GATCACCRGCAATATTCCAAGCTAGCATGACAAAAATYCTGGAACCTTTTAGGAAACAAAATCCAG AAATGATTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAACATA GAGCAAAAATAGAGRAATTAAGGGAACACCTGTTAAAGTGGGGGTTTACTACACCAGACAAAAAGC ATCAGAAAGAACCTCCAYTCCTTTGGATTGGTTAT

SUBTYPE B:RES NRTI, NNRTI
010 AACAATGGCCATTGACAGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAGATGGAAAAGG AAGGAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCCATAAAAAAGA AAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACCCAAGACTTTT GgGAAGTTCAATTAGGGATACCACACCCAGCAGGGTTAAAAGAGAAAAAATCAGCGACAGTACTAG ATGTGGGGGATGCGTATTTTTCAGTACCTTTAGATGAAAGCTTCAGGAAATATACTGCATTCACCA TACCAAGTATAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAAGGATGGA AAGGATCACCAGCAATATTCCAAGCTAGCATGAAAAAAATTCTGGAACCTTTTAGGAAACAAAATC CAGAAATGATTATCTATCAATACGTGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAAC ATAGAGCAAAAATAGAGGAATTAAGGGGACACCTGTTGAAGTGGGGGTTTACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAAC

SUBTYPE D:RES NNRTI,NRTI
011 CAGAAGARAAAATAAAAGCATTAACAGCAATTTGTGAAGARATGGAGAAGGAAGGAAAAATTACAA AAATTGGGCCTGAAAATCCATATAACACTCCAGTATTTGCCATAAAAAAGAAGGACAGTACTAAGT GGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACTCAAGACTTTTGGGAAGTTCAATTAG GGATACCACACCCAGCAGGTTTAAAGAAAAACAAATCAGTGACAGTACTAGATGTGGGGGATGCAT ATTTTTCAGTCCCTTTAGATGAAAATTTCAGGAAGTATACAGCATTCACCATACCTAGTAYAAACA ATGAGAMACCAGGGATTAGATATCAATACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAA TATTCCAAAGTAGTATGACAAAAATCTTAGAACCCTTTAGGGCACAAAATCCAGAAATGGTTATCT ATCAATATGTGGATGATTTGTATGTAGGGTCTGACTTAGAAATAGGGCAACATAGAGCAAAAATAG AGGAGTTGAGAAACCATCTATTGAAGTGGGGATTTACCACACCAGACAAAAAACATCAGAAAGAAC CCCCATTTCTTTGGATGGGTTATGAACT

SUBTYPE C:RES NRTI,NNRTI
012 AATGGCCATTGACAGAAGAGAAAATAAAAGCAATAACAGCAATTTGTGAAGAAATGGAGAAGGAAG GAAAAATTACAAAAATTGGGCCTGAAAATCCATATAACACTCCAGTATTTGCCATAAAAAAGAAGG ACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACTCARGASTTTTGGG AAgTTCAATTAGGGATACCACACCCAGCAGGTTTAAAGAAAAACAAATCAGTGACAGTACTAGATG

TGGGGGATGCATATTTTTCAGTCCCTTTAGATGAAAATTTCAGGAAGTATACAGCATTCACCATAC CTAGTATAAACAATGAGAAACCAGGGATTAGATATCAATACAATGTGCTTCCACAGGGATGGAAAG GATCACCAGCAATATTCCAAAGTAGTATGACAAAAATCTTARAACCCTTTAGGGCACAAAATCCAG AAATGGTTATCTATCAATATGTGGATGATTTGTATGTAGGGTCTGACTTAGAAATAGGGCAACATA GAGCAAAAATAGAGGAGTTGAGAAACCATCTATTGAAGTGGGGATTTACCACACCAGACAAAAAAC ATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE C:RES NRTI,NNRTI
013 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATGGAAATGGAGAAAGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAAG GACAGTACAAAATGGAGAAAATTGGTAGATTTCAGAGAACTTAACAAGAGAACGCAAGATTTCTGG GAAGTTCAATTAGGAATACCGCATCCTGCAGGGCTAAAAAARAARAAATCAGTAACAGTACTGGAT GTGGGTGATGCATATTTTTCAGTTCCCTTATATGAARATTTTARGAAGTATACTGCATTCACCATA CCCAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTACTTCCACAGGGATGGAAA GgATCACCGGCAATATTCCAAAGTAGTATGACAAAAATCTTAGAACCCTTTAGGAAGAAAAATCCA GAAATGGTCATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGACAGCAT AGAACAAAAATAGAAGAATTAAGGGAACATTTATTGAGGTGGGGATTTACCACACCAGACAAAAAA CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:SUS
014 GACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGACATGGAAAGGGAAGGAAAAATTTC AAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAARAAAAAAGACAGTACTAA GTGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTTTGGGAAGTTCAGCT AGGAATACCACATCCTGGAGGGCTAAAAAAGAAGAAATCAGTAACAGTATTGGATGTGGGTGATGC ATATTTTTCAGTTCCCTTATATGAAGAATTTAGAAAATATACTGCATTCACCATACCTAGTACAAA CAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACAAGGATGGAAAGGATCACCAGC AATATTCCAAAGTAGCATGACAAAAATCTTAGAACCTTTTAGAAAACAAAATCCAGAAATGGTTAT CTGTCAATACGTGGATGATTTGTATGTAGGATCTGACTTAGAACTAGGGCAGCATAGAATAAAAAT ARAAAAATTAAGAGAACACCTGTTAAAGTGGGGATTTACCACACCAGACAAAAAAYATCAGAAAGA ACCTCCATTTCTTTGGATGGGTTATGAACT

SUBTYPE D:RES NRTI,NNRTI
015 AACAATGGCCATTGACAGAAGAGAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGG AAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAA AAGATAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTT GGGAAGTTCAATTAGGGATACCGCATCCAGCGGGCTTAAAAAAGAAAAAATCAGTAACAGTGCTAG ATGTGGGGGACGCATATTTCTCAGTTCCTTTACATGAAAGTTTCAGGAAGTATACTGCGTTCACCA TACCTAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGA AGGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATC CAGAAATAGTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAGC ATAGAGCAAAAATAGAAGAGTTAAGARCTCATCTATTGAGCTGGGGGTTTACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAA

SUBTYPE A:SUS
016 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTGCAGATATGGAAAAA GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAACACCCCAATATTTGCAATAAAGAAA AAAGATAGCACTAAATGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAGAGAACACAAGACTTC TGGGAAGTTCAATTAGGAATACCACATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTACTA GATGTGGGGGATGCATATTTTTCAGTTCCTTTACATGAGGACTTTAGAAAGTATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCGGGAATCAGATACCAGTACAATGTGCTTCCACAAGGATGG

AAAGGATCACCAGCAATATTCCAGAGCAGCATGACAAAGATCTTAGAGCCCTTTAGATCAAAAAAT CCACAAATAATCATCTACCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGCCAG CATAGAGCAAAAATAGAAGAGCTGAGAGCTCATCTATTGAGCTGGGGGTTTACTACACCAGACAAA AAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGG

SUBTYPE A:SUS
017 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTAATGAGATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAGAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAA GACAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGACTTTTGG GAAGTTCAATTGGGAATACCGCATCCTGCAGGTTTAAAAAAGAAAAAATCAGTAACAGTATTAGAT GTGGGGGACGCCTATTTTTCAGTTCCCTTAGATGAAAGCTTTAGAAAGTATACTGCATTCACCATA CCTAGTATAAACAATGAGACACCAGGGATCAGATATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCGGCAATATTCCAGGCTAGCATGACAAAAATATTAGAACCCTTTAGATCAAAAAATCCA GAAATAGTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAGCAT AGAATAAAAGTAGAGGAGTTGAGAGATCATCTATTGAAGTGGGGATTTACTACACCAGACAAAAAG CATCAAAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS
018 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTAATGAGATGGAAAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAGAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAAGACAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGACTTT TGGGAAGTTCAATTGGGAATACCGCATCCTGCAGGTTTAAAAAAGAAAAAATCAGTAACAGTATTA GATGTGGGGGACGCCTATTTTTCAGTTCCCTTAGATGAAAGCTTTAGAAAGTATACTGCATTCACC ATACCTAGTATAAACAATGAGACACCAGGGATCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGATCACCGGCAATATTCCAGGCTAGCATGACAAAAATATTAGAACCCTTTAGATCAAAAAAT CCAGAAATAGTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAATAAAAGTAGAGGAGTTGAGAGATCATCTATTGAAGTGGGGATTTACTACACCAGACAAA AAGCATCAAAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS
019 GCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTCTAGAAATGGAGAAGGAAGGAAA AATTTCAAAAATTGGGCCTGAAAATCCATACAACACTCCAGTGTTTGCTATAAAGAAAAAAGATAG CACTAAATGGAGAAAATTAGTAGATTTTAGAGAACTCAATAAGAGAACTCAAGACTTCTGGGAAGT TCAGTTAGGAATACCACATCCAGCAGGATTAAAAAAGAAAAAATCAGTAACAGTATTAGATGTGGG GGACGCATATTTTTCCGTTCCCTTAGATAAAGAATTTAGAAAATATACTGCATTCACCATACCTAG TATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTCCCACAGGGATGGAAAGGATC ACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAAAACAAAATCCAGAAAT GGTTATCTATCAATACGTGGATGATTTGCTTGTAGGATCTGACTTAGAAATAGGGCAGCATAGAGC AAAAATAGAGGAGTTAAGAGAACATCTATTGAAATGGGGATTTACCACACCAGATAAAAAACATCA AAAAGAACCTCCATTTCTTTGGATGGGTT

SUBTYPE D:RES NRTI,NNRTI
020 AACAATGGCCATTGACAGAGGAAAAAATAAAAGCATTAACAGAAATCTGTACAGAAATGGAAAAGG AAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAA AAGATAGCACTAAGTGGAGAAAATTAGTAGACTTCAGAGAGCTCAATAAAAGAACACAAGACTTTT GGGAAGTTCAGTTAGGAATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTGCTAG ATGTGGGGGATGCATATTTTTCAGTTCCTTTAGATAAAGAGTTCAGAAAATATACTGCATTCACCA TACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGA AAGGATCACCGGCAATATTCCAGAATAGCATGCTAAAAATTTTAGAGCCCTTTAGATCAAAGAATC CAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGAGCAGC

ATAGATCAAAAGTAGAAGAGTTGAGAGCTCATCTATTGAGATGGGGACTAACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGWTATGARCTA

SUBTYPE A:SUS
021 ACAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTATGGAAATGGAAAAGGA AgGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAA AGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTG GGAGGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAAAARAAAAAATCAGTAACAGTACTGGA TGTGGGTGATGCATATTTTTCAGTTCCATTGTATGAAGACTTTAGAAAATATACCGCATTCACCAT ACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTCCACAAGGATGGAA AGGATCACCAGCAATATTCCAAAGTAGTATGACAAAAATCCTAGAACCTTTTAGAAGAAAAAATCC AGAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCA TAGAATAAAAATAGAGGAATTAAGGGAACACCTATTGAAGTGGGGATTTACCACACCAGACAAAAA GCATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:SUS
022 ACAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTATGGAAATGGAAAAGGA AGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAA AGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTG GGAGGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAAAAGAAAAAATCAGTAACAGTACTGGA TGTGGGTGATGCATATTTTTCAGTTCCCTTGTATGAAGACTTTAGAAAATATACCGCATTCACCAT ACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTCCACAAGGATGGAA AgGATCACCAGCAATATTCCAAAGTAGTATGACAAAAATCCTAGAACCTTTTAGAAGAAAAAATCC AGAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCA TAGAATAAAAATAGAGGAATTAAGGGAACACCTATTGAAGTGGGGATTTACCACACCAGACAAAAA GCATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE D:SUS
023 TTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGACATTTGTAATGAAATGGAAA AGGAAGGGAAAATTTCAAAGATTGGGCCTGAAAATCCATACAATACCCCAATATTTGCCATAAAGA AAAAGGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAGCTTAATAAGAGAACTCAAGACT TCTGGGAAGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAGAAGAAAAAATCAGTAACAGTAC TGGATGTGGGTGATGCATATTTTTCAGTTCCCTTGGATGAAGACTTTAGAAAATATACTGCATTCA CCATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTGCCACAAGGAT GGAAAGGATCACCGGCAATATTTCAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAACAAA ATCCAGAAATGGTTATCTATCAATATATGGATGATTTGTATGTAGSATCTGACTTAGAAATAGGGC AGCATAGAATAAAAATAGAGGAATTAAGGGAACACCTATTGAAGTGGGGATTTACCACACCAGACA AAAAGCATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAACT

SUBTYPE D:RES NRTI
024 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGG AGGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCGATCAAGAAAA AAGATAGCACTAAATGGAGGAAATTAGTAGACTTCAGAGAGCTCAATAAAAGAACACAAGATTTTT GGGAAGTKCAATTAGGGATACCACATCCAGCRGGCCTAAAAAAGAAAAAATCAGTAACAGTACTAG ATGTGGGGGACGCATATTTTTCAGTCCCCTTAGATAAAGACTTTAGAAAATATACTGCATTCACCA TACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAATACAATGTGCTTCCACAGGGATGGA AAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCTTTTAGATTAAAGAATC CAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAGC ATAGAACAAAAATAGAGGAGTTAAGAGCCCATCTATTGAGCTGGGGGTTTACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGWTATGA

SUBTYPE A:SUS
025 AAACAATGGCCATTGACAGAAGAAAAAATAAGAGCATTAMCAGAAATTTGTACAGAAATGGAAAAG GAAGGAAAAATTTCRAAAATTGGGCCAGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAAGACAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTTAATAAAAGAACTCAAGATTTT TGGGAAGTTCAATTAGGAATACCGCACCCAGCGGGCCTAAAAAAGAAYAAATCAGTAACAGTACTA GATGTGGGGGACGCATATTTTTCRGTTCCCTTAGATGAAAGYTTTAGAAAGTATACTGCGTTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGYTCACCATCAATATTCCAGAGTAGCATGACAAAAATCTTAGARCCCTTTAGAGCAAAAAAT CCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAACAAAARTAGAAGARTTGAGAGCTCATCTATTGAGCTGGGGATTTACTACCCCAGACAAA AARCATCAGAAAGAACCGCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:RES NRTI
026 AAACAATGGCCATTGACAGAAGAAAAAATAAGAGCATTAACAGAAATTTGTACAGAAATGGAAAAG GAAGGAAAAATTTCGAAAATTGGGCCAGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAAGACAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTTAATAAAAGAACTCAAGATTTT TGGGAAGTTCAATTAGGAATACCGCACCCAGCGGGCCTAAAAAAGAATAAATCAGTAACAGTACTA GATGTGGGGGACGCATATTTTTCGGTTCCCTTAGATGAAAGTTTTAGAAAGTATACTGCGTTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGCTCACCATCAATATTCCAGAGTAGCATGACAAAAATCTTAGAACCCTTTAGAGCAAAAAAT CCAGAAATAATTATCTATCAATACGTGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAACAAAAATAGAAGAATTGAGAGCTCATCTATTGAGCTGGGGATTTACTACCCCAGACAAA AAGCATCAGAAAGAACCGCCATTTCTTTGGATGGGTTATGAACTAA

SUBTYPE A:RES NRTI,NNRTI
027 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAGATGGAAAAG GAAGGGAAAATTTCAAAAATTGGACCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAAGATAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAGAGAACTCAGGACTTC TGGGAAGTTCAATTAGGAATACCACACCCAGCAGGTTTAAAAAAGAAGAAATCGGTAACAGTACTA GATGTGGGGGATGCATATTTTTCAGTTCCTTTAGATGAAAGCTTTAGAAAGTATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAGTCAGGTATCAATATAATGTGCTTCCACAGGGATGG AAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTATAGATCAAAAAAT CCAGAAATAATTATTTATCAATACATGGATGATTTGTATGTAGCATCTGATTTAGAAATAGGACAA CATAGAGCAAAAATAGAGGAGCTGAGAGCTCATCTATTAAGTTGGGGGTTTACTACACCAGACAAA AAGCATCAGAAAGAACCCCCATTTCTTTGGATGG

CRFO1_AE:RES NNRTI
028 TGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAGATGGAAAAGGAAGGG AAAATTTCAAAAATTGGACCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAAGAT AGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAGAGAACTCAGGACTTCTGGGAA GTTCAATTAGGAATACCACACCCAGCAGGTTTAAAAAAGAAGAAATCGGTAACAGTACTAGATGTG GGGGATGCATATTTTTCAGTTCCTTTAGATGAAAGCTTTAGAAAGTATACTGCATTCACCATACCT AGTACAAACAATCAGACACCAGGAGTCAGGTATCAATATAATGTGCTTCCACAGGGATGGAAAGGA TCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTATAGATCAAAAAATCCAGAA ATAATTATTTATCAATACGTGGATGATTTGTATGTAGCATCTGATTTAGAAATAGGACAACATAGA GCAAAAATAGAGGAGCTGAGAGCTCATCTATTAAGTTGGGGGTTTACTACACCAGACAAAAAGCAT CARAAAGAACCCCCATTTCTTTGGATGGGTTATGAACT

CRFO1_AE : RES NRTI,NNRTI

029 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTAAWGARATGGAAAAGG AAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATATAATACTCCAATATTTGCMATAAAGAAAA AAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAACTWAATAARAGAACTCAAGACTTYT GGGAARTTCAATTAGGAATACCRCATCCTGCAGGGCTAAAAAAYAAAAARTCAGTAACAGTACTRG ATGTGGGAGATGCATATTTTTCAGTTCCCTTAYRTGAAGATTTTAGAAAGTATACTGCATTTACCA TACCTAGTRYAAAYAATGAGACACCAGGGRTTAGATATCAGTACAATGTGCTTCCACAGGGATGGA AAGGRTCACCAGCAATATTYCAAAGTAGCATGACAAAAATCTTAGAACCTTTTAGAAAACAAAATC CAGARGTGGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGKMARC ATAGAACAAAAATAGAGGAATTAAGGGAACAYCTATTAARGTGGGGRTTTACCACACCAGACAAAA AACATCAGAAAGAGCCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:RES NRTI
030 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTGAAGAGATGGAAAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTGTTTGCTATAAAGAAA AAGGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACACAGGACTTC TGGGAAGTTCAATTAGGAATACCCCATCCTGCAGGTTTAAAAAAGAAAAAATCAGTAACAGTACTA GATGTGGGGGATGCCTATTTTTCAGTTCCTTTAGATAAAGATTTTAGAAAGTATACTGCATTCACC ATACCTAGTATAAACAATGAGACACCAGGAACCAGGTATCAGTACAATGTGCTTCCACAAGGATGG AAAGGATCACCAGCAATATTCCAGAGTAGCATGGCAAAAATCTTAGAGCCCTTTAGATCACAAAAT CCAGGAATAATTATTTATCAATACGTGGATGACTTGTATGTAGCATCTGATTTAGAAATAGGGCAG CATAGAACAAAAGTAGAAGAATTGAGAGCTCATCTATTGAGTTGGGGATTTACTACACCAGACAAA AAACATCAGAAAGAACCTCSATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:RES NRTI,NNRTI
031 GTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAMATGGAA AAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAG AARAAAGACAGTACTAAGTGGAGAAAGTTAGTAGATTTCAGAGAACTCAATAAAAGAACTCAAGAC TTTTGGGAAGTCCAATTAGGGATACCACACCCAGCAGGGTTGAAAAAGAAAAAATCAGTGACAGTA TTGGATGTGGGGGATGCATATTTTTCAGTTCCTTTAGATGAAGACTTCAGAAAATATACTGCATTT ACAATACCTAGTATAAACAATGAAACACCAGGAATTAGATATCAGTATAATGTGCTTCCACAGGGA TGGAAAGGATCACCAGCAATATTCCAAAGCAGCATGACAAAAATTTTAGAGCCCTTTAGGGCGCAA AACCCAGAAATAGWTATCTATCAATACATGGATGACTTGTATGTAGGATCTGACTTAGAAATAGGG CAACATAGAGCAAAAATAGAGGAGTTAAGGGAACATCTGTTGARGTGGGGGTTTACCACACCAGAT AAGAAACATCAGAAAGAACCTCCATTTCTWTGGATGGGTTATGAACTA

SUBTYPE B:RES NRTI
032 CAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTAAAGAAATGGAAAAGGAA GGAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAATATTTGCCATAAGAAAGAAA GACAGTACTAAGTGGAGAAAATTARTGGATTTCAGGGAACTCAATAAAAGAACCCAAGACTTTTGG GAAGTTCAATTAGGGATACCACACCCAGCAGGGTTAAAAAAGAAAAAATCAGTGACAGTACTAGAT GTGGGAGATGCATATTTTTCAGTTCCTTTAGATGAAGGCTTCAGAAAATATACTGCATTCACCATA CCTAGTAKRAAYAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTCCGCAAGGATGGAAA GGATCACCGGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAACCCTTTAGGAAACAAAATCCA GAAATGGTTATCTRTCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAACAT AGAATAAAAATAGGAGAGTTAAGGGAACACCTATTGAAGTGGGGATTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTCCTTTGGATGG

SUBTYPE D:RES NRTI,NNRTI
033 AAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAAAAGA TAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTGGGA

AGTTCAATTAGGGATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTACTAGATGT GGGGGACGCCTATTTTTCAGTTCCTTTAGATGAAAACTTTAGAAAATATACTGCATTCACCATACC TAGTATAAATAATGAAACACCAGGAATAAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAAGG ATCACCAGCAATATTCCAGAGTAGTATGACAAAAATCTTAGAGCCCTTTAGAACAAAAAATCCAGA AATARTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAGATAGGGCAGCATAG AGCAAAAATAGAAGAACTAAGAGCTCATCTGTTGAGCTGGGGATTTACYACACCAGACAAAAAGCA TCAGAAAGAACCCCCATTCCTTTGGATGG

SUBTYPE A: SUS
034 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGATATGGAAAAGG AGGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAA AGGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAAAGGACTCAAGACTTTT GGGAAGTTCAATTAGGAATACCACACCCAGCAGGGTTAAAAAAGAAAAAATCAGTGACAGTACTGG ATGTGGGTGATGCATATTTTTCAGTTCCTTTAGATAAAGACTTTAGAAAGTATACCGCATTCACCA TACCTAGTATAAACAATGAAACACCAGGAATTAGATATCAGTACAATGTGCTCCCACAGGGATGGA AAGGATCACCGGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAAAGAAAAATC CAGAAATAGTTATTTATCAGTACATGGATGATTTATATGTAGGATCTGACTTAGAAATAGGGCAGC ATAGAACAAAAATAGAAGAATTAAGAGAGCATCTTTTAAGGTGGGGATTTACCACACCAGACAAAA AACATCAGAAGGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:SUS

035 GATGGAAAAGGAAGGAAAGATTTCAAAAATAGGGCCTGAAAATCCATACAATACTCCAGTATTTGC TATAAAGAAAAAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAACTCAATAAAAGAAC TCAAGACTTTTGGGAAGTCCAACTAGGGATACCACACCCAGCAGGTTTAAAGAAGAAAAAATCAGT GACAGTACTGGATGTGGGGGATGCATATTTTTCAGTCCCTTTAGATGAAAACTTCAGGAAATACAC TGCATTCACAATACCTAGTATAAACAATGAAACACCAGGGATTAGATATCAATACAATGTGCTTCC ACAGGGGTGGAAAGGGTCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAG ATCAAAAAATCCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGA AATAGGGCAGCATAGAACAAAAGTAGAGGAGTTGAGGGCTCATCTATTGAGGTGGGGATTTACTAC ACCAGACAAAAAACATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE B:SUS
036 AAAGGAAGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAACACTCCATTATTTGCTATAAA RAAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAGGA CTTCTGGGAAGTTCAATTAGGAATACCGCATCCAGCAGGTTTAAAAAAGAAAAAATCAGTAACAGT ACTAGATGTGGGGGACGCATATTTTTCAGTTCCTTTACATGAAGACTTTARAAAGTATACTGCCTT CACCATACCTAGTACAAACAATGAGACACCAGGAGTCAGGTATCAGTACAATGTGCTCCCACAAGG ATGGAAAGGATCACCAGCGATATTCCAGAGTAGCATGACAAAAATCTTAGAACCCTTTAGAACAAA AAACCCAGAAATAGTTATCTACCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGG GCAGCATAGAACAAAAATAGAGGAGCTGAGAGCTCATCTATTGAGATGGGGGCTCACTACACCAGA CAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACT

SUBTYPE A:SUS
037 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGG AAGGGAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAA AAGATAGTACCAAATGGAGGAAATTAGTAGATTTCAGAGAACTTAATAAAAGAACACAAGACTTTT GGGAARTTCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTACTAG ATGTGGGAGATGCATATTTTTCAGTTCCTTTAGATGAAAGTTTTAGAAAATACACTGCATTCACCA TACCTAGTACAAACAATGAGACACCAGGAGTCAGATATCAGTACAATGTGCTTCCACAGGGATGGA AAGGATCTCCGGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCATTTAGATCAAAAAATC

CAGAAATAATTATCWWTCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAAC ATAGAACAAAAATAGAAGAGTTAAGAGCTCATCTACTGAGCTGGGGATTTACTACACCAGACAAAA AACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAAC

CRFO1_AE : RES NNRTI
038 AACAATGGCCATTGACAGAAGAGAAAATAAAAGCATTAACAGAAATTTGTGGAGAAATGGAAAAGG AAGGAAAAATTTCAAAGATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAA AGGATAGCACTAAATGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTT GgGAGGTTCAATTAGGAATACCACATCCAGCAGGCCTAAAAAAGAAGAAATCAGTAACAGTACTGG ATGTGGGGGATGCATATTTTTCAGTGCCTTTAGATAAGGACTTCAGAAAATATACTGCATTCACCA TACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGGA AAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATC CAGACATAGTGATCTATCAATACATGGATGACTTGTATGTAGGATCTGATCTAGAAATAGGGCAGC ATAGAACAAAAATAGAAGAGTTGAGAGCTCATCTATTGAACTGGGGATTTACTACACCAGACAAAA AGCATCAGAAAGAACCCCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS
039 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGATATGGAAAAG GAAGGAAAGATTTCAAAAATTGGGCCTGAAAATCCATATAATACTCCAATATTTGCAATAAAGAAA AAAGATAGTACCAAATGGAGAAAATTGGTAGATTTCAGAGAGCTCAACAAAAGAACACAAGACTTT TGGGAAGTTCAATTAGGAATACCGCATCCAGCGGGCTTAAAAAAGAAAAAATCAGTAACAGTACTA GATGTGGGGGATGCATATTTTTCAGTTCCTTTAGATGAAAACTTTAGAAAATACACCGCGTTCACC ATACCGAGTATAAACAATGAGACACCAGGAGTCAGATATCAGTACAATGTGCTTCCACAGGGATGG AAAGGATCACCAGCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAAT CCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAACAAAAATAGAAGAGTTGAGGGCTCATCTATTGAGCTGGGGGTTCACTACACCAGACAAA AAGCATCAGAAAGAACCTCCATTTCTTTGGATGG

SUBTYPE A:SUS
040 CAATGGCCATTGACAGAAGAGAAAATAAAAGCTTTAATAGAAATTTGTACAGAAATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAAG GACAGTACTAAGTGGAGAAAACTAGTAGATTTCAGAGAGCTCAATAAAAGAACTCAAGATTTCTGG GAAGTCCAATTAGGGATACCTCACCCCGCGGGTCTAAAGAAGAAAAAATCAGTAACAGTACTAGAT GTGGGGGATGCATATTTCTCAGTTCCCTTAGATGAAAACTTTAGAAAGTATACAGCATTCACTATA CCTAGTGTAAATAATGAGACACCAGGGATTAGATACCAGTACAATGTGCTGCCTCAGGGATGGAAA GGATCACCAGCAATTTTTCAGAGTAGTATGACAAAAATCCTAGAGCCCTTTAGAAGAGAAAATCCA GAAATGGTAATTTGCCAATATATGGATGATTTATATGTAGGATCTGATTTAGAAATAGGGCAGCAT AGAGCAAAAATAGAAGAATTAAGAAAACATCTATTGAATTGGGGATTTACCACACCAGATAAAAAA TATCAGAAAGAACCCCCATTCCTTTGGATGG

SUBTYPE G:RES NRTI
041 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATAGAGATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAGAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAA GACAGCACTAAATGGAGGAAACTAGTAGATTTTAGAGAGCTCAATAAAAGAACACAAGACTTCTGG GAAGTTCAATTAGGGATACCGCATCCAGCGGGACTAAAAAAGAAAAAATCAGTAACAGTACTGGAT GTGGGGGACGCATATTTTTCAGTTCCTTTACATAAAGACTTTAGAAAATATACTGCATTCACCATA CCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCGGCAATTTTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAATAATCCA GAAATAGTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAACTAGGGCAGCAT AgAGCAAAAATAGAAGAGTTGAGGGCGCATTTATTGAGCTGGGGATTAACTACCCCAGACAAAAAG

CATCAGAAAGAGCCGCCATTTCTTTGGATGG

SUBTYPE A:SUS
042 ACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTGACAGAAATTTGTACAGAGATGGAAAAGGA AGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAAA AgATAGTACTAAATGGAGGAAATTAGTAGACTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTG GGAAGTTCAATTAGGGATACCGCATCCAGCGGGCCTAAAAAAGAAGAAATCAGTAACAGTACTAGA TGTGGGGGACGCATATTTTTCAGTTCCTTTAGATGTAGACTTTAGAAAGTATACTGCGTTCACCAT ACCTAGTACAAACAATGAGACACCAGGAATAAGGTATCAGTACAATGTGCTTCCACAGGGATGGAA AGGATCACCGGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATCC AgAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGTCAGCA TAGAGCAAAAGTAGAGGAGTTGAGAGCTCATCTATTGAGTTGGGGGTTTACTACACCAGATAAAAA ACATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTAC

SUBTYPE A:SUS
043 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGG AAGGAAAAATTTCAAAAATTGGGCCTGAGAATCCATACAATACCCCAATATTTGCTATAAAGAAAA AAGACAGTACTAAGTGGAGAAAATTAGTGGATTTTAGAGAACTTAATAAGAGAACTCAAGATTTCT GGGAAGTTCAATTAGGAATACCACATCCTGCAGGATTAAAAAAGAAAAATTCAGTAACAGTACTGG ATGTGGGTGATGCATATTTTTCAGTTCCCTTAGATGAAGACTTTAGAAAATATACCGCATTCACTA TACCTAGTATAAATAACGAGACACCAGGAGTTAGATATCAGTACAACGTGCTTCCACAAGGATGGA AAGGGTCACCATCAATATTTCAAAGTAGCATGACAAAGATCTTAGAACCTTTTAGAAAACAAAATC CAGAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGC ATAGAACAAAAATAGAGGAATTAAGGGGACACCTATTGAAGTGGGGATTCACCACACCAGACAAAA AGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:SUS
044 AGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACGGAAATGGA AAAGGAGGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCGATAAA GAAAAAGGATAGCACTAAATGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGA CTTTTGGGAAGTTCAATTAGGGATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGT ACTGGATGTGGGGGACGCATACTTTTCAGTTCCTTTACATAAGGACTTTAGAAAGTATACTGCGTT CACCATACCTAGTACCAACAATGAGACACCAGGAATCAGATATCAGTACAATGTACTTCCACAGGG ATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAA AAATCCAGAAATAATCATCTATCAATACATGGATGATTTGTATGTAGGATCTGATTTAGAAATAGG GCAACATAGAGCAAAAATAGAAGAGTTGAGAGCTCATCTCTTGAGCTGGGGATTTACTACCCCAGA CAAAAAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS
045 CAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTTTAGAGATGGAAAAGGAGGGAAAGATTTCAA AAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAAGAAAAAGGATAGTACTAAAT GGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTGGGAAGTTCAATTAG GGATACCGCATCCAGCGGGCCTAAAAAAGAAGAAATCAGTAACAGTACTAGATGTGGGGGATGCAT ATTTTTCAGTTCCTTTACATGAAGACTTTAGAAAGTATACTGCATTCACCATACCTAGCACAAACA ATGAGACACCAGGAATCAGATATCAGTAYAATGTGCTTCCACAAGGATGGAAAGGATCACCAGCAA TATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGGTTAAAAAATCCAGAAATAATTATCT ATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAGATAGGGCAGCATAGRACAAAAATAG AAGAGTTGAGGGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAAAAGCATCAGAAAGAAC CTCCATTCCTTTGGATGGGTTATGAACTA

CRFO1_AE: SUS
046 CAATGGCCATTGACAGAGGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGGAA GGAAAAATTTCAAGAATTGGGCCTGAAAATCCATATAATACTCCAATATTTGCCATAAAGAAAAAA GACAGTACTAAATGGAGGAAATTAGTGGATTTCAGAGAGCTCAATAAAAGAACTCAAGATTTTTGG GAAGTTCAATTAGGAATACCGCATCCAGCGGGCTTAAAAAAGAAAAAATCAGTAACAGTACTGGAT GTGGGGGACGCATATTTTTCAGTTCCCTTAGATGAAGGCTTTAGGAAGTATACGGCGTTCACCATA CCTAGTACAAACAATGAGACACCAGGGATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAA GgGTCTCCAGCAATATTCCAGAGTAGTATGACAAAAATCTTAGAGCCCTTTAGGCTAAAAAATCCA GAAGTAACTATCTATCAATACATGGATGACTTATATGTAGGGTCTGATTTAGAAATAGGGCAGCAT AGAACAAAAGTAGAGGAGTTGAGAGATCATCTATTGAGCTGGGGATTAACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGG

SUBTYPE A:RES NNRTI
047 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATAGATATGGAAAAGGAA GGAAARATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAAA GACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTGG GAAGTTCAATTAGGAATACCACACCCTGCAGGGCTAAAAAAGAAAAAATCAGTAACAGTACTGGAT GTGGGTGATGCATATTTTTCAGTTCCCCTATATGAAGATTTTAGAAAATATACTGCATTCACCATA CCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTATAGATTAAAAAATCCA GAAATAATTATCTATCAATACATGGATGACTTGTATGTGGGATCTGATTTAGAAATAGGGCAGCAT AGAACAAAAATAGAAGAGTTGAGAGCTCATCTATTGAGCTGGGGATTTACCACACCAGACAAAAAG CATCAAAAAGAACCTCCATTTCTTTGGATGG

SUBTYPE D:SUS
048 TCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGA AATGGAAAAGGAAGGGAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGC AATAAAGAAGAAAGATAGCACTAAATGGAGGAAACTAGTAGATTTCAGAGAGCTCAATAAAAGAAC ACAAGACTTTTGGGAAGTTCAATTAGGAATACCACATCCAGCAGGCCTGAAGAAGAAAAAATCAGT AACAGTACTAGATGTGGGGGATGCATATTTTTCAGTTCCTCTAGATGAAAGCTTTAGAAAGTATAC TGCATTCACCATACCTAGTAGAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCC ACAAGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGATCCCTTTAG ATCAAAAAATCCAGAAATAGTTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGA AATAGAGCAGCACAGAACAAAAATAGAAGAATTAAGAGCTCATCTATTGAGCTGGGGATTCACTAC ACCAGACAAAAAGCATCAGAAAGAACCTCCATTCCTTTGGATGGG

CRF01_AE:SUS
049 TATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGC AATAAAGAAAAAAGATAGCACTAAGTGGAGGAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAAC ACAAGACTTTTGGGAAGTCCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAARAAAAAATCAGT AACAGTACTTGATGTGGGGGATGCATATTTTTCAGTTCCTTTATATGAAGACTTTAGAAAATACAC AGCATTCACCATACCTAGTAYAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCC ACAGGGATGGAAAGGGTCACCAGCAATATTCCAGCATAGCATGACAAAAATTTTAGAGCCCTTTAG ATTAAAAAATCCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGA AATAGGACAGCATAGAACAAAAATAGAAGAGTTAAGAGCTCATTTATTGAGCTGGGGATTTACTAC ACCAGACAAGAAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

CRF01_AE : SUS
050 AAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAAAGA CAGTACTAAGTGGAGAAAACTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGATTTCTGGGA

GATCCAATTAGGAATACCCCATCCCGCAGGTTTAAAAAAGAAYAAATCAGTCACAGTACTAGATGT GGGGGATGCATATTTTTCAGTCCCCTTAGATAAAGATTTTAGAAAATATACAGCATTCACTATACC TAGTGCAAATAATGAGACACCAGGAGTTAGATAYCAGTACAATGTGCTGCCACAGGGATGGAAAGG ATCACCAGCAATCTTTCAGGCTAGCATGACAAAAATTTTAGAGCCYTTTAGAAMAGARAATCCAGA CATAGTGATCTACCAATATATGGATGATTTATATGTAGGATCWGACYTAGAAATAGGGCARCATAG AGCAAAAATAGAGGAATTAAGAGAACATCTATTGAGATGGGGATTTACCACACCAGATAAAAAACA TCAGAAAGAACCTCCATTMCAATGGATGGGATATGAGCTCCATCCTGACAAATGGACGGTACAGCC TATACAGCTGCCAGAAAAAGAAAGCTGGACTGTCAATGATATACAAAAGTTAGTGGGAAAACTAAA TTGGGCAAGTCAGATTTATGCA

SUBTYPE G:RES NNRTI

051 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTCAAGAGATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCTATAAAGAAAAAA GATAGCACAAAATGGAGAAAATTAGTAGATTTTAGAGAACTTAATAAAAGAACTCAGGATTTTTGG GAAGTTCAATTAGGAATACCGCATCCTGCAGGTTTAAAGAAGAAAAAAGCAGTAACAGTACTGGAT GTGGGGGATGCATATTTTTCAGTGCCTTTAGATGAAAACTTTAGAAAGTATACTGCATTCACCATA CCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAG GGATCACCAGCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAGCACAAAATCCA GGAATAATTATCTATCAATACATGGATGACTTATATGTAGGATCTGATTTAGAAATAGGGCAACAT AGAGCAAAAGTGGAGGAGTTGAGAGCTCATCTATTACAATGGGGATTTACTACACCAGATAAAAAA CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE A: SUS
052 ATCCATACAATRBBSSAVKRKYDGCTWTAWWGAAWAAAGACAGCACTAAAYGGAGAADATTAGTAS AYYTCAGAGAACTTAATAAAAGAACACCAGACTTTTGGGAAGTTCAATTAGGGATACCGCATCCAG CGGGCCTAGAAAAGAAAAAATCAGTAACAGTATTGGATGTGGGGGACGCATATTTTTCAGTGCCTT TAGATGAAAACTTTAGAAAATATACTGCATTCACCATACCTAGTACAAACAATGCGACACCAGGAG TCAGGTATCAGTACAATGTACTTCCACAGGGATGGAAAGGATCCCCAGCAATATTCCAGAGTAGCA TGACAAAAATCTTAGAGCCCTTCAGATCTAAAAATCCAGACATAATTATCTATCAATACGTGGATG ACTTGTATGTAGCATCTGATTTGGAAATAGGGCAGCATAGAGCAAAAATAGAAGAGTTAAGAGCTC ATTTATTGAGTTGGGGATTDDCTACACCAGACAAAAAGCATCAGAAAGAAC

SUBTYPE A:RES NNRTI/NRTI
053 GTCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAG ATATGGAAAAGGAAGGAAAACTATCAAGGATTGGGCCTGAAAATCCATATAACACTCCAATATTTG CTATAAAGAAAAAAGACAGTACCAAGTGGAGAAAATTAGTAGATTTCAGGGAACTTAATAAGAGAA CTCAAGATTTCTGGGAAGTTCAATTAGGAATACCACACCCGGCAGGGCTAAAAAARAAAAAATCAG TAACAGTACTGGATGTGGGTGATGCCTATTTTTCAGTTCCCTTATGTGAAGAGTTTARAAAATATA CTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTC CACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAACCCTTTA GAGAACAAAATCCAGAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAG AAATAGGGCAGCATAGAGCAAAAATAGAGGAACTAAGAGAACATCTATTGAGGTGGGGATTTACCA CACCAGATAAAAAACATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAAM

SUBTYPE D:SUS
054 AAAAAGTTAAAACAATGGCCATTGACAGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAG ATGGAAAAGGAAGGAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCC ATAAAAAAGAAAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGRACC CARGACTTTTGGGAAGTTCAATTAGGRATACCACACCCAGCAGGGTTAAAARAGAAAAAATCAGTG ACAGTACTAGATGTGGGGGATGCRTATTTTTCAGTWCCTTTAGATGAAAGCTTCAGGAAATATACT

GCATTCACCATACCRAGTRTAAACAATGAGACACCAGGAATCAGRTATCAGTACAATGTGCTTCCA CAAGGATGGAAAGGATCACCRGCAATATTCCAAGCTAGYATGACAAAAATYCTGGAACCTTTTAGG AAACAAAATCCAGAAATGATTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAA ATAGGGCAACATAGAGCAAAAATAGAGRAATTAAGGGRACACCTGTTRAAGTGGGGGTTTACTACA CCAGACAAAAAGCATCAGAAAGAACCTCCATTYCTTTGGATGGGGTTATGAAM

SUBTYPE D:SUS

055 TTTTCCAAAAGTTAAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTC AAGAGATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTAT TTGCTATAAAGAAAAAAGATAGCACAAAATGGAGAAAATTAGTAGATTTTAGAGAACTTAATAAAA GAACTCAGGATTTTTGGGAAGTTCAATTAGGAATACCGCATCCTGCAGGTTTAAAGAAGAAAAAAG CAGTAACAGTACTGGATGTGGGGGATGCATATTTTTCAGTGCCTTTAGATGAAAACTTTAGAAAGT ATACTGCATTCACCATACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGC TTCCACAGGGATGGAAGGGATCACCAGCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCT TTAGAGCACAAAATCCAGGAATAATTATCTATCAATACATGGATGACTTATATGTAGGATCTGATT TAGAAATAGGGCAACATAGAGCAAAAGTGGAGGAGTTGAGAGCTCATCTATTACAATGGGGATTTA CTACACCAGATAAAAAACATCAGAAAGAACCTCCATTTCTTTGGATGGGGTTATGAAC

SUBTYPE A:SUS
056 ATATTATGMHATWTRMAKAARMAAAGAWAGCACTAAAKGGARRAAATTAGTAGATTTCAGAGAGCT CAACAAAAGAACACAAGACTTTTGGGAAGTTCAGTTAGGGATACCGCATCCAGGGGGCCTAAAAAA GAAGAAATCAGTAACAGTACTGGATGTGGGVGATGCATATTTTTCAGTTCCCTTAGATGAAAGCTT TAGAAAATATMCTGCATTCACCATACCTAGTACAAACAATGAGAGACCAGGAATAAGGTATCAGTA CAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATCTTCCAGAGTAGTATGACAAAAATCTT AGAGCCCTTTAGACTAWAAWWTYYWKAAAWAATTATCTGTCAATACGTGGATGACTTGTATGTAGG ATCTGATTTAGAAATAGGGCAGCATAGAGCAAAAATDGCAGAATTAAGAGCTCATCTATGRAGCTG GGGATTHHAYACACCAGACAAAAAGCATCAARDDWRAACCCC

SUBTYPE A:RES NNRTI/NRTI
057 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAGATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCTATAAAGAAAAAA GATAGCACAAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTGG GAAGTTCAATTAGGAATACCGCATCCAGCAGGCCTAAAAAAGAAAAGATCAGTAACAGTGCTAGAT GTGGGAGATGCATATTTTTCAGTTCCTTTACATAAAGATTTTAGAAAGTATACTGCATTCACCATA CCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCAGCAATATTCCAGTATAGCATGACAAAAATCTTAGAGCCCTTTAGATTAAAAAATCCA GAAATAGTTATCTATCAATACATGGATGACTTGTATGTGGGATCTGATTTAGAAATAGGGCAGCAT AGAACAAAAATAGAAGAATTAAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE A:SUS
WWTAWADAGAMAAGATGGCACTACATGKAGGAAATTAGTAGATTTCAGAGAACTCAATAAAAGAAC ACAAGACTTTTGGGAAGTTCAGTTGGGAATACCACATCCAGGAGGCCTAGAAAAGAAAAAATCART AACAGTACTAGATGTGGGGGATGCATATTTTTCAGTTCCTTTGCATGAAGACTTTAGAAAATATAC TGCATTCACCATACCTAGTATAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCC ACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAG AGCAAAGAATCCAGAGATGACTATTTGTCAATACGTGGATGACTTGTATGTATCATCTGATTTAGA AATAGAGCAGCATAGAGCAAAAATDGDDGAGTTGAGAGCTCATCTATTGAACTGGGGATTTACYAC CCCAGACAAAAAGCATCAGADAGAA

SUBTYPE A:RES NNRTI/NRTI
059 AAAAAATAAAAGCATTAACAGAAATTTGTATGGAAATGGAGAAAGAAGGAAAAATTTCAAAAATTG GGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAAAGGACAGTACAAAATGGAGAA AATTGGTAGATTTCAGAGAACTTAACAAGAGAACGCAAGATTTCTGGGAAGTTCAATTAGGAATAC CGCATCCTGCAGGGCTAAAAAARAARAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTT CAGTTCCCTTATATGAAGATTTTAGGAAGTATACTGCATTCMCCATACCCAGTATAAACAATGAGA CMCCAGGAATTAGATATCAGTACAATGTACTTCCACAGGGATGGAAAGGATCACCGGCAATATTCC AAAGTAGTATGACAAAAATCTTARAACCCTTTAGGAAGAAAAATCCAGAAATGGTCATCTATCAAT ACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGACAGCATAGAACAAAAATAGAAGAAT TAAGGGAACATTTATTGAGGTGGGGATTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCAT TTCTTTGGATGGGTTA

SUBTYPE B:SUS
060 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGCAATTTGTGACGAAATGGAAAAA GAAGGAAAGATTACAAAAATTGGGCCTGAAAATCCATATAACACTCCAGTATTTGCTATAAAAAAG AAGGACAGTACAAAATGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACTCAAGACTTT TGGGAAGTTCAATTAGGAATACCGCACCCGGCAGGGTTAAAAAAGAAAAAATCAGTGACAGTACTG GATGKGGGGGATGCATATTTTTCAGTACCTTTAGATAAAGACTTCAGGAAATATACTGCATTCACC ATACCTAGTATAAACAATGAAACACCGGGAATTAGATATCAATATAATGTGCTTCCACAAGGATGG AAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAGAATCTTAGAGCCTTTTAGAGCAAAAAAC CCAGAAATGGTTATCTATCAATATATGGATGACTTATATGTAGGATCTAATTTAGAAATGATGCAA CATAGAGCAAAAATAGAGGAGTTAAGAGAACACCTATTGAGATGGGGATTTACCACACCAGACAAG AAACATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAA

SUBTYPE C:SUS
061 CAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTATAGACATGGAAAAGGAA GGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAA GACAGTACCAAGTGGCGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGATTTCKGG GAAGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAAAAGAAAAAATCAGTTACAATACTGGAT GTGGGTGATGCATATTTTTCAGTTCCCTTGGATAAAGAATTTAGAAAATACACTGCATTCACCATA CCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTATAATGTGCTTCCACAAGGGTGGAAA GGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGGAAACAAAATCCA GAAATAGTTATCTRTCAATACATGGATGACTTGTATGTAGGGTCTGACTTAGAAATAGGGCAGCAT CGAGCAAAAATAGAACAGTTGAGAGCTCATCTATTGAGATGGGGATTTAMTACACCAGACAAGAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTMAA

SUBTYPE D:RES NNRTI
062 TGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAGATGGAAAAGGAAGGG AAAATTTCAAAAATTGGACCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAAGAT AGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAGAGAACTCAGGACTTCTGGGAA GTTCAATTAGGAATACCACACCCAGCAGGTTTAAAAAAGAAGAAATCGGTAACAGTACTAGATGTG GGGGATGCATATTTTTCAGTTCCTTTAGATGAAAGCTTTAGAAAGTATACTGCATTCACCATACCT AGTACAAACAATGAGACACCAGGAGTCAGGTATCAATATAATGTGCTTCCACAGGGATGGAAAGGA TCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTATAGATCAAAAAATCCAGAA ATAATTATTTATCAATACATGGATGATTTGTATGTAGCATCTGATTTAGAAATAGGACAACATAGA GCAAAAATAGAGGAGCTGAGAGCTCATCTATTAAGTTGGGGGTTTACTACACCAGACAAAAAGCAT CAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE A:RES NNRTI

063 AACAATGGCCATTGACAGAAGAAAAAATAAAGGCATTGATAGAAATTTGTACAGAGATGGAAAAGG AAGGAAAAATTTCAAGAATTGGGCCTGAGAATCCATACAATACTCCAGTATTTGCCATAAAAAAGA AAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGAACCCAAGACTTTT GgGAAGTTCAATTAGGGATACCACACCCAGCAGGGTTAAAAGAGAAAAAATCAGCGACAGTACTAG ATGTGGGGGATGCGTATTTTTCAGTACCTTTAGATGAAAGCTTCAGGAAATATACTGCATTCACCA TACCAAGTATAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCACAAGGATGGA AAGGATCACCAGCAATATTCCAAGCTAGCATGAAAAAAATTCTGGAACCTTTTAGGAAACAAAATC CAGAAATGATTATCTATCAATACGTGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAAC ATAGAGCAAAAATAGAGGAATTAAGGGGACACCTGTTGAAGTGGGGGTTTACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAAC

SUBTYPE D:RES NNRTI/NRTI
064 TCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGA CATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAACCCATACAATACTCCAGTATTTGC TATAAAGAAAAAAGATAGCACTAAATGGAGAAAACTAGTAGATTTTAGAGAGCTCAATAAAAGAAC TCAAGACTTCTGGGAGGTTCAATTAGGAATACCGCATCCCGCAGGTTTAAAAAAGAAGAAATCAGT AACAGTACTAGATGTGGGGGACGCATATTTCTCAGTTCCTTTAGATGAAAATTTTAGAAAGTACAC TGCATTCACCATACCTAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCC ACAAGGATGGAAGGGATCACCAGCAATATTTCACAGTAGCATGACAAAAATCTTAGAGCCCTTTAG ATCAAAAAATACAGAAATAATTATCTATCAATACATGGATGACCTGTATGTAGCATCTGATTTAGA AATAGGGCAGCATAGAGCAAAAGTAGAGGAATTAAGAGCTCATCTATTGAGCTGGGGGCTTACTAC ACCAGACAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTTA

SUBTYPE A:RES NNRTI
065 GTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTCTAGAAATGGAG AAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAACACTCCAGTGTTTGCTATAAAG AAAAAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAACTCAATAAGAGAACTCAAGAC TTCTGGGAAGTTCAGTTAGGAATACCACATCCAGCAGGATTAAAAAAGAAAAAATCAGTAACAGTA TTAGATGTGGGGGACGCATATTTTTCCGTTCCCTTAGATGAAGAATTTAGAAAATATACTGCATTC ACCATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTCCCACAGGGA TGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAAAACAA AATCCAGAAATGGTTATCTATCAATACGTGGATGATTTGCTTGTAGGATCTGACTTAGAAATAGGG CAGCATAGAGCAAAAATAGAGGAGTTAAGAGAACATCTATTGAAATGGGGATTTACCACACCAGAT AAAAAACATCAAAAAGAACCTCCATTTCTTTGGATGGGWTATGAACTA

SUBTYPE A:RES NNRTI/NRTI
066 ATGGCCATTGACAGAAGAAAAAATAARAGCATTAACAGAAATTTGTGCAGACATGGAAAAGGAAGG AAAAATTTCAAAAATTGGGCCTGAAAACCCATACAATACTCCAGTATTTGCTATAAAGAAAAAAGA TAGCACYAAATGGAGAAAACTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGACTTCTGGGA AGTTCAATTAGGAATACCGCATCCCGCAGGKTTAAAAAAGAAGAAATCAGTAACAGTACTAGATGT GGGGGACGCATATTTCTCAGTTCCTTTAGATGAAAATTTTAGAAAGTACACTGCATTCACCATACC TAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAGGG ATCACCAGCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATACAGA AATAATTATCTATCAATACATGGATGACCTGTATGTAGCATCTGATTTAGAAATAGGGCAGCATAG AGAAAAAGTAGAGGAATTAAGAGCTCATCTATTGAGTTGGGGGCTTACTACACCAGACAAAAAGCA TCAGAAAGAACCTCYATTTCTTTGGATGGGTTA

SUBTYPE A:RES NNRTI
067 AAACAATGGCCATTGACAGAAGAAAAAAWAAAAGCATTAACMGAGATTTGTACAGATATGGAAAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCCATATTTGCAATAAAGAAA

AAAGATAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAAMGAACACAAGACTTT TGGGAAGTTCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAGAAAAAGATCAGTAACAGTACTA GATGTGGGGGATGCATATTTTTCAGTACCCTTATATGAAGATTTTAGAAAGTATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGTTGCCGCAGGGATGG AAGGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAAT CCAGAAATAATTATCTATCAATACATGGATGACTTATATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAGCAAAGATAGAAGAGCTAAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAA AAGCATCAAAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTAA

SUBTYPE A:SUS
068 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTCTAGAAATGGAGAAG GAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAACACTCCAGTGTTTGCTATAAAGAAA AAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAACTCAATAAGAGAACTCAAGACTTC TGGGAAGTTCAGTTAGGAATACCACATCCAGCAGGATTAAAAAARAAAAAATCAGTAACAGTATTA GATGTGGGGGACGCATATTTTTCCGTTCCCTTAGATGAAGAATTTAGAAAATATACTGCATTCACC ATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTCCCACAGGGATGG AAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAAAACAAAAT CCAGAAATGGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAG CATAGAGCAAAAATAGAGGAGTTAAGAGAACATCTATTGAAATGGGGATTTACCACACCAGATAAA AAACATCARAAAGAACCTCCATTTCTTTGGATGGGTTATGAAC

SUBTYPE A:SUS
069 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTGCAGACATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAACCCATACAATACTCCAGTATTTGCTATAAAGAAAAAA GATAGCACTAAATGGAGAAAACTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGACTTCTGG GAGGTTCAATTAGGAATACCGCATCCCGCAGGTTTAAAAAARAARAAATCAGTAACAGTACTAGAT GTGGGGGACGCATATTTCTCAGTTCCTTTAGATGAAAATTTTARAAAGTACACTGCATTCACCATA CCTAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAG GGATCACCAGCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATACA GAAATAATTATCTATCAATACATGGATGACCTGTATGTAGCATCTGATTTAGAAATAGGGCAGCAT AGAGCAAAAGTAGAGGAATTAAGAGCTCATCTATTGAGTTGGGGGCTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTACATCCTGATAAA

SUBTYPE A:RES NNRTI
070 CAATGGCCATTGACAGAAGAAAAAATAAAGGCATTGAYAGAAATTTGTACAGAGATGGAAAAGGAA GGAAAAATTTCAAGRRTTGGRCCTGAGAATYCATACAATACTCCARTATTTGCCATAAAAAAGAAR GACAGTACWAAGTGGAGAAAATTAGTAGATTTCAGGGAACTCAATAAAAGRACCCARGACTTTTGG GAAGTTCAATTAGGRATACCACACCCAGCAGGGTTAAAARAGAAAAAATCAGTGACAGTACTAGAT GTGGGGGATGCRTATTTTTCAGTWCCTTTAGATGAAAGCTTCAGGAAATATACTGCATTCACCATA CCRAGTRTAAACAATGAGACACCAGGAATCAGRTATCAGTACAATGTGCTTCCACAAGGATGGAAA GGATCACCRGCAATATTCCAAGCTAGYATGACAAAAATYCTGGAACCTTTTAGGAAACAAAATCCA GAAATGATTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAACAT AGAGCAAAAATAGAGRAATTAAGGGRACACCTGTTRAAGTGGGGGTTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTYCTTTGGATGGGTTATGAACTA

CRF10_CD:SUS
071 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTCAAGAGATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCTATAAAGAAAAAA GATAGCACAAAATGGAGAAAATTAGTAGATTTTAGAGAACTTAATAAAAGAACTCAGGATTTTTGG GAAGTTCAATTAGGAATACCGCATCCTGCAGGTTTAAAGAARAAAAAAGCAGTAACAGTACTGGAT

GKGGGGGATGCATATTTTTCAGTGCCTTTAGATGAAAACTTTARAAAGTATACTGCATTCMCCATA CCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGKGCTTCCACAGGGATGGAAG GGATCMCCAGCAATWTTTCARAGTAGCATGACAAAAATYTTAGAGCCCTTTAGAGCACAAAATCCA GGAATAATTATCTATCAATACATGGATGACTTATATGTAGGATCTGATTTARAAATAGGGCAACAT ARAGCAAAAGTGGAGGAGTTGAGAGCTCATCTATTACAATGGGGATTTACTACACCARATAAAAAA CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACT

SUBTYPE A:SUS
072 CATTAHCAGATATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAGAATTGGGCCTGAAAATC CATATAATACACCAATATTTGCCATAAAGAAAAAAGATAGTACTAAGTGGAGAAAATTAGTAGATT TCAGAGAACTTAATAAGAGAACTCAAGACTTCTGGGAAGTTCAACTAGGRATACCACATCCTGCAG GGCTAAAAAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTTCAGTGCCCTTAY RTGAAGACTTTAGAAAATATACTGCATTCACCATACCTAGTAKAAACAATGAAACACCAGGAATTA GATATCAGTACAATGTGCTTCCACAAGGCTGGAAAGGATCACCGGCAATATTCCAAAGTAGCATGA CAAAGATCTTAGAACCTTTTAGAAAACAAAACCCGGAAATGGTTATTTATCAATACATGGATGATT TGTATGTAGGATCTGATTTAGAAATAGGGCAGCATAGAACRAAAATAGAAGAATTAAGGGAGCACC TATTGAAGTGGGGCTTTACCACACCAGACAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGG GTTATG

SUBTYPE D:SUS
073 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCCATATTTGCAATAAAGAAAAAA GATAGCACTAAGTGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTGG GAGGTTCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAARAAAAAATCAGTGACAGTACTAGAT GTGGGGGATGCATACTTTTCAGTTCCCTTAGATGAAAATTTTARAAAGTATACTGCATTCACCATA CCTAGCACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGGAAA GGATCACCGGCAATATTCCAGAGTAGCATGACAAAAATTTTAGAGCCCTTTAGATTAAAAAATCCA GAAATAATCATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAACTAGGGCAGCAT AGAGCAAAAATAGAGGAGTTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATRAAC

SUBTYPE A:SUS
074 AAAGCATTAHCAGAAATTTGTACAGAGATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAA AATCCATACAATACTCCAATATTTGCAATAAAGAAAAAAGATAGCACTAAATGGAGAAAATTAGTA GATTTCAGAGAGCTCAATAAAAGAACACAAGACTTTTGGGAAGTTCAATTAGGAATACCGCATCCA GCGGGTTTAAAAAAGAAAAAATCAGTAACAGTATTAGATGTGGGGGATGCATATTTCTCAGTTCCT TTAGATGAAAGCTTTAGAAAGTATACTGCATTCACCATACCTAGTACAAACAATGAGACACCAGGG ATCAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGC ATGACAAAAATCTTAGAGCCCTTTAGAGCAAAAAATCCAGAAATAATTATTTATCAATACATGGAT GACTTATATGTAGGATCTGATTTAGAAATAGGGCAGCATAGAGCAAAAATAGAGGAGTTAAGAGCT CATCTATTGAGRTGGGGATTTACTACACCAGACAAAAAGCATCAGAAAGAACCCCCATTCCTTTGG ATGGGTTATGAA

SUBTYPE A:SUS
075 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGCAAAGAGATGGAAAAG GAAGGAAAAATTTCAAAAATTGGGCCTGACAATCCATACAATACTCCAGTATTTGCTATAAAGAAA AAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAGGACTTC TGGGAAGTTCAATTGGGGATACCACATCCCGCAGGCTTAAAAAAGAAAAAATCAGTAACAGTATTA GATGTAGGGGACGCATATTTTTCAGTCCCTTTAGATGAAAACTTTAGAAAGTATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGG

AAAGGATCACCAGCAATATTCCAGAGTAGCATGATAAAAATCTTAGAGCCCTTTAGATCAAAAAAT CCAGAAATAATTATATATCAATACATGGATGACTTATATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAACAAAAGTAGAGGAGTTGAGAGCTCATCTATTGAATTGGGGATTTACTACACCAGACAAA AAGCATCAGAAAGAACCCCCATTTCTTTGGATGGGATATGA

SUBTYPE A:SUS
076 TAACAGAAATTTGTACAGATATGGAAAAGGAAGGAAAAATTTCAAGAATTGGGCCTGAAAATCCAT ACAATACTCCARTATTTGCCATAAAGAAAAAAGACAGTACTAAGTGGAGAAAATTASTAGATTTTA GAGAACTTAATAAAAGAACTCAAGACTTCTGGGAAGTTCAACTAGGAATACCACATCCTGCAGGGC TAAAAAARAAAAAATCAGTAACAGTACTGGACGTGGGTGATGCATWTTTTTCAGTTCCCTTARATG AAAACTTTARAAAATATACCGCATTCACCATACCCAGTATAAATAATGAGACACCAGGAATTAGAT ACCAGTACAATGTGCTTCCACAAGGATGGAAAGGATCACCAGCAATATTCCAAAGCAGCATGACAA AAATCCTAGAACCTTTTAGGAAACAAAATCCAGAAATRGTTATCTATCAATACATGGATGATTTGT ATGTAGGATCTGACTTARAAATAGGGCAGCATAGAACAAAGATAGAGGAACTAAGGGAACACTTAT TGAAGTGGGGGTTTACCACACCARACAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTT ATGAACTA

SUBTYPE D:RES NRTI
077 AAACAATGGCCATTGACAGAAGAAAAAATAAAGGCATTAACAGAAATTTGTACAGAAATGGAAAAG GAAGGAAAAATCTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCTATAAAGAAA AAAGACAGCACCAAATGGAGGAAATTAGTAGATTTCAGAGAACTCAATAAAAGAACTCAGGATTTC TGGGAAGTTCAATTAGGAATACCGCATCCAGCAGGTTTAAAAAARAAAAAATCAGTAACAGTACTA GATGTGGGGGACGCATATTTTTCAGTGCCTTTAGATGAAAACTTTAGAAAGTATACTGCATTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTATAATGTGCTTCCACAGGGATGG AAAGGATCACCAGCAATATTCCAAAGCAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAAT CCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAGAGAAAATAGAGGAGTTAAGGGCTCATCTATTGAGCTGGGGGTTTACTACACCAGACAAA AAGCATCAGAAGGAACCTCCATTTCTTTGGATGGGTTATGAACTA

CRF01_AE:SUS
078 CATTAACAGAAATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATC CATACAATACTCCAATATTCGCGATAAAGAAAAAAGACAGCACTAAATGGAGAAAATTAGTAGATT TCAGAGAGCTCAATAAAAGAACTCAAGACTTTTGGGAAGTTCAATTAGGAATACCGCATCCAGCGG GCTTAAAAAAGAAAAAATCAGTAACAGTACTAGATGTGGGGGACGCATATTTTTCAGTTCCCTTAG ATGAAAGCTTTAGAAAATATACTGCATTCACCATACCTAGTACAAACAATGAGACACCAGGGATTA GATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGA CAAAAATCTTAGAGCCCTTCAGAGCAAAAAATCCAGAAATAATTATCTATCAATACATGGATGACT TGTATGTAGGATCTGATTTAGAAATAGGACCGCATAGGGCAAAAATAGAAGAATTGAGAGCTCATC TATTGAGCTGGGGATTAACTACACCAGACAAGAAGCATCAGAAAGAACCTCCATTCCTTTGGATGG GTTATGAAC

SUBTYPE A:SUS
079 AATTTGTAAAGAGATGGAGAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATAC TCCAGTATTTGCTATAAAGAAAAAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCT CAATAAAAGAACTCAGGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGCAGGTTTAAAAAA GAAAAAATCAGTAACAGTACTAGATGTGGGAGACGCATATTTTTCAGTTCCTTTAGATGAAAACTT TAGAAAGTATACAGCATTCACCATACCTAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTA CAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTT AGAGCCCTTCAGATCACAAAATCCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGG ATCTGATTTAGAAATAGGGCAGCATAGAGCAAAAGTAGAGGAGTTGAGAAGTCATCTATTGAAGTG

GGGATTTACCACACCAGACAAAAAGCATCAGAAAGAACCCCCATTTCTTTGGATGGGTT

SUBTYPE A:SUS
080 CATTAACAGAAATTTGTGCAGATATGGAAAAGGAAGGAAAGATTTCAAAAATTGGGCCTGAGAATC CATACAATACTCCAATATTTGCTATAAAGAAAAAAGACAGCACTAAATGGAGAAAATTAGTAGATT TCAGAGAACTTAATAAAAGAACTCAAGACTTTTGGGAAGTTCAATTAGGAATACCGCATCCAGCGG GGTTAAAAAAGAAAAAATCAGTAACAGTACTAGATGTAGGGGACGCATATTTTTCAGTTCCCCTAG ATGAAAGCTTTAGAAAGTATACAGCATTCACAATACCTAGTACAAATAATGAGACACCAGGAATCA GATATCAGTACAATGTGCTCCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGCAGCATGA CAAAAATCTTAGAGCCCTTTAGATCAAAAAATCCAGAAATAATTATCTATCAATACATGGATGACT TATATGTGGGATCTGATTTAGAAATAGGGCAGCATAGAGCAAAAATAGAAGAGTTAAGAGCTCATC TATTGAGATGGGGACTTACTACACCAGATAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGG GTT

SUBTYPE A:SUS
081 AATTTGTAAAGAGATGGAGAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATAC TCCAGTATTTGCTATAAAGAAAAAAGATAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCT CAATAAAAGAACTCAGGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGCAGGTTTAAAAAA GAAAAAATCAGTAACAGTACTAGATGTGGGAGACGCATATTTTTCAGTTCCTTTAGATGAAAACTT TAGAAAGTATACAGCATTCACCATACCTAGTATAAACAATGAGACACCAGGAATCAGGTATCAGTA CAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGAGTAGCATGACAAAAATCTT AGAGCCCTTCAGATCACAAAATCCAGAAATAATTATCTATCAATACATGGATGACTTGTATGTAGG ATCTGATTTAGAAATAGGGCAGCATAGAGCAAAAGTAGAGGAGTTGAGAAGTCATCTATTGAAGTG GGGATTTACCACACCAGACAAAAAGCATCAGAAAGAACCCCCATTTCTTTGGATGGGTT

SUBTYPE A:SUS
082 GTTAAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGA AAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAGAATCCATACAATACCCCAATATTTGCTATAAA GAAAAAAGACAGTACT : AAGTGGAGAAAATTAGTGGATTTTAGAGAACTTAATAAGAGAACTCAAG ATTTCTGGGAAGTTCAATTAGGAATACCACATCCTGCAGGATTAAAAAAGAAAAATTCAGTAACAG TACTGGATGTGGGTGATGCATATTTTTCAGTTCCCTTAGATGAAGACTTTAGAAAATATACCGCAT TCACTATACCTAGTATAAATAACGAGACACCAGGAGTTAGATATCAGTACAACGTGCTTCCACAAG GATGGAAAGGGTCACCATCAATATTTCAAAGTAGCATGACAAAGATCTTAGAACCTTTTAGAAAAC AAAATCCAGAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAG GGCAGCATAGAACAAAAATAGAGGAATTAAGGGGACACCTATTGAAGTGGGGATTCACCACACCAG ACAAAAAGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTACACCCTGA

SUBTYPE D:SUS

083 TGGCCATTGACAGAAGAAAAAATAAAAGCATTAACCAGCAATTTGTGAAGATATGGAGARGGAAGG AAAAATTACAAGAGTTGGGCCTGAGAATCCATATAACACTCCAATATTTGCCATAAAAAAGAAAGA TAGTACTAAGTGGAGAAAATTAGTAGACTTTAGGGAACTCAATAAAAGAACTCAAGACTTTTGGGA AGTCCAATTAGGGATACCACACCCAGCAGGGTTAAAAAAGAAAAAATCAGTGACAGTACTGGATGT GGGGGATGCATATTTYTCAGTTCCTTTAGATGAGAGYTTTAGRAAATATACTGCATTCACCATACC TAGTACAAATAATGAAACACCAGGAATTAGATATCAATACAATGTRCTTCCACAGGGATGGAAAGG ATCACCAGCGATATTTCAGAGTAGTATGACAAAAATCTTAGAGCCCTTTAGGGCACAAAACCCAGA AATAGTTATCTATCAATATATGGATGACTTGTATGTAGGATCTGACTTAGAAATAGGGCAACATAG GGCAAAAATAGAGGAGTTAAGAGAACATCTATTAAGGTGGGGATTTACCACACCAGACAAAAAGCA TCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTABATCCTGA

SUBTYPE C:SUS

084 CCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAGATAAAAGCATTAACAGAAATTTGTAAAGAA ATGGAAGCTGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCT ATAAAGAAAAAAGATAGCACTAAGTGGAGAAAATTGGTAGACTTTAGAGAGCTCAATAAAAGAACT CAGGACTTCTGGGAAGTTCAATTAGGAATACCGCATCCCGCGGGGTTAAAAAAGAAAAAATCAGTA ACAGTACTAGATGTGGGGGATGCATATTTTTCAGTTCCTTTACATGAGAGCTTTAGAAAATATACT GCATTCACCATACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTGCCA CAAGGATGGAAAGGGTCACCGGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCATTTAGA GCAAAAAATCCAGAAATGRTTATCTATCAATACRTGGATGACCTGTATGTAGGATCTGATTTAGAA ATAGGGCAGCATAGAGAAAAAATAGAACAATTAAGAGCTCACTTATTGAAATGGGGATTTACTACA CCAGACAAAAAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGWTATGARCTA

SUBTYPE A:RES NRTI
085 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTACAGAAATGGAAAAGG AAGGAAAAATCTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAA AAGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGRGAACTTAATAARAGGACTCAAGACTTCT GGGAAGTTCAACTAGGAATACCACATCCWGCAGGGTTAAAAAAGAAAAAATCAGTAACAGTACTGG ATGTGGGKGATGCATATTTTTCAGTTCCCTTATATGAAGACTTTAGAAAGTATACTGCATTCACCA TACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAATACAATGTGCTTCCACAAGGATGGA AAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAACCTTTTAGAMRACAAAATC CAGAAATAGTTRTCTATCAATACATGGATGATTTGTAYGTAGGATCTGATTTAGACATAGGGCAGC ACAGAAYAAAAATAGAGGAATTAAGAGAACACCTCTTGAAGTGGGGATTTACCACGCCAGATAAAA AGCATCAGAAAGAACCCCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:SUS
086 ARAAAAWAAAAAGCATTAACAGAAATTTGTGCAGATATGGAAAAGGARGGAAAAATTTCAAGAATT GGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAAGACAGTACYAAATGGAGR AAATTAGTRGATTTCAGRGAACTYAATAARAGAACTCAAGATTTYTGGGARGTYCAATTAGGAATA CCACATCCTGCRGGGYTRAAAAAGAAAAAATCAGTAACAGTAYTGGATGTRGGKGATGCATATTTT TCAGTTCCCTTATATGAARAYTTYAGAAAATATACTGCATTCACCATACCTAGTATAAACAATGAG ACACCAGGARTYAGRTATCAATACAATGTGCTWCCACAGGGATGGAAAGGATCACCAGCAATATTC CAGAGTAGCATGACAAAAATCTTGGAGCCCTTTAGAAAACAAAAYCCAGAMATARTTATCTATCAA TACATGGATGATTTGTATGTAGGATCTGAYTTRGAAATAGGGCAGCATAGAACAAAAATAGATGAA CTAAGAGAACATCTATTGAAGTGGGGATTTACCACACCAGATAAAAAACATCAGAAAGAACCTCCA TTTCTTTGGATGGGTTATGAACTACATCCTGA

SUBTYPE D:SUS

ACAATGGCCATTGACAGAAGAGAAAATAAAAGCATTAACAGCAATTTGTGAAGATATGGAAAAGGA AGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATATAACACTCCAGTATTTGCCATAAAAAAGAA GGACAGTACTAAGTGGAGAAAATTAGTAGATTTCAGGGAGCTCAATAAAAGAACTCAAGACTTTTG GGAAGTTCAATTAGGGATACCACACCCAGCAGGGTTAAAGAAGAAAAAATCAGTGACAGTATTGGA TGTGGGGGATGCATATTTCTCAGTACCTTTAGATGAAAACTTCAGGAAGTAYACAGCATTCACCAT ACCTAGTATAAACAATGAAACACCAGGAATTAGATATCAATATAATGTGCTTCCACAGGGATGGAA AGGATCACCATCAATATTTCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGGATAAAAAACCC AGACATAGTTATCTATCAATATATGGATGATTTGTATGTAGGATCTGATTTAGAAATAGGGCAACA TAGAGCAAAAATAGAGGAGTTAAGGGATCATCTATTGAAGTGGGGATTTACTACACCAGACAAGAA ACATCAGAAAGAACCTCCATTTCTTTGGATGGGTTTA

SUBTYPE C:SUS
088 CAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAAAAGGAA GGAAAAATTTCAAAAATTGGSCCTGAAAAYCCATACAATACTCCAATATTTGCTATAAAGAAAAAA

GAYAGYACTAAATGGAGGAAATTAGTGGACTTCAGAGAACTCAATAAAAGAACTCAAGAYTTTTGG GAAGTTCARTTAGGAATACCACAYCCAGCGGGCTTAAAAAAGAAAAAATCAGTAACAGTACTAGAT GTGGGGGAYGCATATTTTTCAGTTCCCTTAGATGAAARCTTTAGAAAGTATACTGCATTCACCATA CCTAGTAYAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTTCCGCAGGGATGGAAR GGATCACCRGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAGAACCCA GAAATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTGGAAATAGGGCAACAT AGAACAAAAGTAGAAGAGTTGAGAGATCATCTATTGAGCTGGGGATTTACTACACCAGACAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS
089 ACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAAATGGAAAAAGA AGGAAAAATTACAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAA GGACAGCACTAAATGGAGGAAACTAGTAGATTTCAGAGAGCTCAATAAAAGGACACAAGACTTTTG GGAAGTTCAATTAGGGATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTACTGGA TGTGGGGGATGCATATTTTTCAGTCCCTTTAGATGAAAGCTTTAGGAAATATACTGCGTTCACCAT ACCTAGTACAAACAATGAGGCACCAGGAATTAGATATCAATACAATGTGCTTCCACAAGGATGGAA AGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAACCTTTTAGAAAGCAAAATCC AGAAATAGTTATCTATCAATACATGGATGACTTGTATGTCGCATCTGACTTAGAAATAGGGCAACA TAGAACAAAGATAGAAGAATTAAGGGAACACCTATTGAAATGGGGATTTACCACACCAGACAAAAA GCATCAGAAAGAACCTCCATTKCTKTGGATGGGTTATGAACTA

SUBTYPE D:RES NNRTI
090 TAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTATGGAAATGGAAAA GGAGGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAGGAA AAAAGACAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGACTT TTGGGAGGTTCAATTAGGAATACCACATCCAGCTGGCCTAAAAAARAAAAAATCAGTAACAGTACT AGATGTGGGGGACGCATATTTTTCAGTTCCTTTACATGAAGATTTTAGGAAGTATACTGCGTTCAC CATACCTAGTACAAACAATGAGACACCAGGAATCAGATATCAGTACAATGTGCTCCCACAGGGATG GAAAGGATCACCGTCAATATTCCAGGCTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAA TCCAGAGCTAGTTATKTATCAGTACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCA GCACAGAGCAAAAATAGAAGAGCTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAA AAAGCATCAGAAAGAACCTCCATTCCTCTGGATGGGATATGAGCTA

SUBTYPE A:SUS
091 AACAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTATAGACATGGAAAAGG AAGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAA AAGACAGTACCAAGTGGCGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGATTTCK GGGAAGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAAAAGAAAAAATCAGTTACAATACTGG ATGTGGGTGATGCATATTTTTCAGTTCCCTTGGATAAAGAATTTAGAAAATACACTGCATTCACCA TACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTATAATGTGCTTCCACAAGGGTGGA AAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGGAAACAAAATC CAGAAATAGTTATCTRTCAATACATGGATGACTTGTATGTAGGGTCTGACTTAGAAATAGGGCAGC ATCGAGCAAAAATAGAACAGTTGAGAGCTCATCTATTGAGATGGGGATTTAMTACACCAGACAAGA AGCATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE D:RES NNRTI/NRTI

092 GTTAAACAATGGCCATTGACAGCAGAAAAAATAAAAGCATTAACAGAAATTTGTTTAGAAATGGAA AAGGAAGGAAAAATTTCTAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCAATAAAG AAAAAAGATAGCACTAAATGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACACAAGAC TTTTGGGAAGTTCAATTAGGAATACCGCATCCAGCGGGMCTAAAAAAGAAAAAATCAGTAACAGTA CTAGATGTGGGGGATGCATATTTTTCTGTCCCCTTAGATGAAGAATTTAGAAAGTATACTGCATTC MCCATACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAATACAATGTGCTTCCACAGGGA TGGAAAGGATCACCGGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAG AATCCAGAGATAATTATCTATCAATACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGG CAACATAGAGCAAAAATAGAAGAGTTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGAC AAAAAGCATCAGAAAGAACCTCCATTCCTTTGGATGGGGTATGAACTA

SUBTYPE A:SUS

093 CAATGGCCATTGACAGAAGAAAAAATAAAAGCACTAACAGAAATTTGTATGGAAATGGAAAAGGAA GGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAACACTCCAGTATTTGCTATAAAGAAAAAA GACAGCACTAAGTGGAGAAAATTAGTAGATTTCAGAGAGCTCAATAAAAGAACTCAAGACTTTTGG GAAGTTCAGTTAGGAATACCACACCCAGCAGGGTTAAAAAAGAAAAAGTCAGTGACAGTATTGGAT GTGGGGGATGCATATTTTTCAGTTCCTTTAGATGAAGGATTCAGGAAATATACTGCATTCACCATA CCTAGTACAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTTCCACAAGGATGGAAA GGATCACCGGCAATATTCCAAAGTAGCATGACAAGAATCTTAGAACCTTTTAGAAAACAAAATCCA GAAATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGAGCAACAT AGAGCAAAAATAGAGGAATTAAGGGAACACCTATTGAAGTGGGGGTTTACCACACCAGATAAAAAG CATCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE B:SUS
094 AAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTACAGAAATGGAGAAG GAAGGAAAAATTTCAAAAATCGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAA AAGGACAGCACTAAGTGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAAGATTTT TGGGAAGTCCAATTAGGAATACCGCATCCAGCGGGCCTAAAAAAGAAAAAATCAGTAACAGTACTG GATGTGGGGGATGCATATTTCTCAGTTCCTTTAGATGAAAGCTTTAGAAAGTATACTGCGTTCACC ATACCTAGTACAAACAATGAGACACCAGGAATCAGGTATCAGTACAATGTGCTTCCACAGGGATGG AAGGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGATCAAAAAAT CCAGAAATAATTATCTATCAGTACATGGATGACTTATATGTAGGATCTGATTTAGAAATAGGGCAG CATAGAGAAAAAATAGAGGAGTTGAGAGCTCATCTATTGAGCTGGGGACTTACTACCCCGGACAAA AAGCATCAGAAAGAACCGCCATTTCTTTGGATGGGTTATRAACTA

SUBTYPE A:SUS
095 ATGGCCATTGACAGAAGAAAAAATAAAAGCATTAACAGAAATTTGTAAAGAGATGGAAAAGGAAGG AAAAATTTCAAAAATCGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAAAAGA TAGCACTAAATGGAGAAAATTAGTAGATTTTAGAGAGCTCAATAAAAGAACTCAGGACTTCTGGGA AGTTCAATTAGGAATACCACATCCAGCAGGTTTAAAAAAGAAAAAATCAGTAACAGTACTAGATGT GGGGGACGCATATTTTTCAGTTCCTTTAGATGAAAACTTTAGAAAGTATACTGCGTTCACCATACC TAGTATAAACAATGAGACACCAGGAATCAGGTATCAATACAATGTGCTCCCGCAGGGATGGAAAGG ATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCCTTTAGAGCAAAAAATCCAGA AATAATTATCTATCAATATATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGACAGCATAG ARCAAAAGTAGAGGAATTGAGAGCTCATCTATTGAGCTGGGGATTTACTACACCAGACAAAAAGCA TCAGAAAGAACCTCCATTTCTTTGGATGGGTTATGAACTA

SUBTYPE A:SUS

096 AACAATGGCCATTGACAGAAGAAAAGATAAAAGCATTAACAGAAATTTGTAAAGAAATGGAAGCTG AAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCTATAAAGAAAA AAGATAGCACTAAGTGGAGAAAATTGGTAGACTTTAGAGAGCTCAATAAAAGAACTCAGGACTTCT GGGAAGTTCAATTAGGAATACCGCATCCCGCGGGGTTAAAAAAGAAAAAATCAGTAACAGTACTAG ATGTGGGGGATGCATATTTTTCAGTTCCTTTACATGAGAGCTTTAGAAAATATACTGCATTCACCA TACCTAGTATAAACAATGAGACACCAGGAATTAGATATCAGTACAATGTGCTGCCACAAGGATGGA AAGGGTCACCGGCAATATTCCAGAGTAGCATGACAAAAATCTTAGAGCCATTYAGAGCAAAAAATY CAGAAATGRTTATCTATCAATACRTGGATGACCTGTATGTAGGATCTGATTTAGAAATAGGGCAGC ATAGAGAAAAAATAGAACAATTAAGAGCTCACTTATTGAAATGGGGATTTACTACACCAGACAAAA AGCATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTA

SUBTYPE A:RES NRTI
097 AAAAAATAAAAGCATTAACTGAAATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAAAATTG GGCCTGAAAATCCATACAATACTCCAATATTTGCAATAAGGAAAAAAGATAGTACTAAATGGAGGA AATTAGTGGATTTCAGAGAGCTCAATAAAAGAACACAAGATTTTTGGGAAGTTCAATTAGGGATAC CACATCCAGCGGGCCTAAAGAAGAAYAAATCAGTAACAGTACTAGATGTGGGGGATGCATATTTTT CAGTTCCTTTACATGAAGACTTTAGAAAATATACTGCGTTCACCATACCTAGTACAAACAATGAGA CACCAGGAATCAGATATCAGTACAATGTGCTACCACAGGGATGGAAAGGATCACCAGCAATATTCC AGAGTAGCATGACAAAAATCTTAGAGCCCTTTAGATCAAAAAATCCAGAAATAAGCATCTATCAAT ACATGGATGACTTGTATGTAGGATCTGATTTAGAAATAGGGCAACATAGAGCAAAAATAGAGGAGT TAAGAGCTCATCTATTGAGCTGGGGGTTTACTACACCAGACAAAAAGCATCAGAAAGAACCTCCAT TCCTTTGGATGGGTTATGAACTACATCCTGACAAGTGGACAGTCCAGCCTATAAAGCTGCCA

SUBTYPE A:RES NNRTI
098 AAGAAAAAATAAAAGCATTAACAGATATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAGAA TTGGGCCTGAAAATCCATATAATACACCAATATTTGCCATAAAGAAAAAAGATAGTACTAAGTGGA GAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTGGGAAGTTCAACTAGGAA TACCACATCCTGCAGGGCTAAAAAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATT TTTCAGTGCCCTTATGTGAAGACTTTAGAAAATATACTGCATTCACCATACCTAGTATAAACAATG AAACACCAGGAATTAGATATCAGTACAATGTGCTTCCACAAGGCTGGAAAGGATCACCGGCAATAT TCCAAAGTAGCATGACAAAGATCTTAGAACCTTTTAGAAAACAAAACCCGGAAATGGTTATTTATC AATACATGGATGATTTGTATGTAGGATCTGATTTAGAAATAGGGCAGCATAGAACGAAAATAGAAG AATTAAGGGAGCACCTATTGAAGTGGGGCTTTACCACACCAGACAAAAAGCATCAGAAAGAACCTC CATTTCTTTGGATGGGTTATGAACTAYAAYCCTG

SUBTYPE D:SUS
099 CAATGGCCATTGACAGAAGAAAAAAWWAAAAGCACTAAACAGAAATTTGTACAGATATGGAAAAGG AAGGAAAAATTTCAAGAATTGGGCCTGAAAATCCATACAATACTCCAATATTTGCCATAAAGAAAA AAGACAGTACTAAGTGGAGAAAATTAGTAGATTTTAGAGAACTTAATAAAAGAACTCAAGACTTCT GGGAAGTTCAACTAGGAATACCACATCCTGCAGGGCTAAAAAAGAAAAAATCAGTAACAGTACTGG ACGTGGGTGATGCATATTTTTCAGTTCCCTTAGATGAAAACTTTAGAAAATATACCGCATTCACCA TACCCAGTATAAATAATGAGACACCAGGAATTAGATACCAGTACAATGTGCTTCCACAAGGATGGA AAGGATCACCAGCAATATTCCAAAGCAGCATGACAAAAATCCTAGAACCTTTTAGGAAAMMAAAAT CCAGAAATGGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAAGGGCA GCATAGAAACAAAGATAGAGGAACTAARGGAAMCMCTTATTGAAGTGGGGGGTTTACCACACCAGA CAAAAAGCATCARAAAGAACCTCCATTTCTTTGRAKGGRKTAWKAAAMTAA

SUBTYPE D:SUS
100 AAAWAAAAAGCATTAACAGAAATATGTAGGGAGATGGAAGAAGAAGGAAAAATTACAAAAATTGGG CCTGAAAATCCATATAACACTCCAGTATTTGCYATAAAAAAGAAGGACAGTACTAAGTGGAGAAAA

TTAGTAGACTTCAGGGAACTCAATAAAAGAACTCAAGACTTTTGGGAAGTTCAATTAGGAATACCA CACCCAGCAGGATTAAAAAGGAACAAATCAATAACGGTACTGGATGTGGGAGATGCATATTTTTCA GTTCCTTTAGATGAAGATTTCAGRAAATACACTGCATTCACCATACCTAGTATAAACAATGAAACA CCAGGAGTTAGATACCAATATAATGTGCTTCCACAAGGATGGAAAGGATCACCAGCAATATTCCAG AGTAGTATGACAAGAATCTTAGAGCCCTTTAGAGCAAGAAACCCAGAGATAGTTATCTATCAATAT ATGGATGACTTGTATGTAGGATCTGATTTAGAACTAAAGCAACATAGAGCAAAAATAGAAGAGTTA AGAGAACACCTATTGAAATGGGGATTTACCACACCAGACAAGAAACATCAGAAAGAACCCCCATTT CTTTGGATGGGTTATGAACTACATCCTGA

SUBTYPE A:RES NNRTI

Appendix 1.3: ARVPredictor Test Performance Results Table

SeqID	Stanford HIV Database						ARVPredictor					
	HIV Subtype	Susceptibility	NNRTI	RT Mutation Output			HIV Subtype	Susceptibility	RT Mutation Output			Other Mutations
				NRTI		Other Mutations			NNRTI		TI	
				TAMs	Non-TAMs					TAMs	Non-TAMs	
1	A	Susceptible	V179T	None	None	E28EA, V35T, E40D, V60I, K122E, D123G, F214L	A	Susceptible	V179T	None	None	SAME
2	A	Susceptible	V179T	None	None	$\begin{aligned} & \text { V35T, T39M, V60I, D121H, } \\ & \text { K122E, D123G, R125RK, R } \\ & 211 \mathrm{~S} \end{aligned}$	A	Susceptible	V179T	None	None	SAME
3	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39M, V60I, D121H, } \\ & \text { K122E, D123G, I135T, A15 } \\ & \text { 8S, T211S } \end{aligned}$	A	Susceptible	None	None	None	SAME
4	A	Susceptible	None	None	None	V35T, V60I, K122E, D123S, I135T, K173S, Q174K, D17 7E, T200A, Q207A, R211S	A	Susceptible	None	None	None	SAME
5	B	Susceptible	None	None	None	E40D, I47L, K49R, V60I, D 121C, K122E, D123E, R125 RK, K173E, D177E, T200A, Q207E	B	Susceptible	None	None	None	SAME
6	A	NNRTI	K103KN	None	None	K32KN, V35T, K43E, V60I, K122E, D123G, I135T, K17 3I, Q174K, V179I, T200A, Q207A, R211S	A	NNRTI	K103KN	None	None	SAME
7	D	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, E40D, K49R, V60I, } \\ & \text { D121Y, K122E, Q174R, D1 } \\ & 77 \mathrm{E}, \text { I178V, T200I, Q207E, } \\ & \text { R211K } \end{aligned}$	D	Susceptible	None	None	None	SAME
8	B	Susceptible	None	None	None	V35I, K49R, K102KE, K122 E, D123S, S162A, D177E, I 178M, V179I, T200A, E204 K, Q207E, R211K	B	Susceptible	None	None	None	SAME

9	B	NNRTI, NRTI	$\begin{gathered} \text { V106VA, } \\ \text { F227FL, } \\ \text { M230I } \end{gathered}$	None	K65KR	V35I, K49R, K102KE, K122 E, D123S, I135IV, S162A, D 177E, I178M, V179I, T200A , E204EK, Q207E, R211K	C+D	NNRTI, NRTI	$\begin{aligned} & \text { V106VA } \\ & , \text { F227F } \\ & \mathbf{L} \end{aligned}$	None	K65KR	M2301
10	C + D	NNRTI, NRTI	V106A	None	M184V	$\begin{gathered} \text { V35I, K49R, K102E, K122E } \\ \text {, D123S, S162A, T165K, D1 } \\ 77 \mathrm{E}, \text { I178M, V179I, T200A, } \\ \text { Q207G, R211K } \end{gathered}$	C+D	NNRTI, NRTI	V106A	None	M184V	SAME
11	C	NNRTI, NRTI	K103N	None	M184V	V35T, E36A, T39E, S48T, K 122E, D123N, I135IT, T139 TK, K173A, D177E, I178M, T200A, Q207N, R211K	C	NNRTI, NRTI	K103N	None	M184V	SAME
12	C	NNRTI, NRTI	K103N	None	M184V	L34I, V35T, E36A, T39E, S 48T, D86DE, K122E, D123 N, T139K, E169EK, K173A, D177E, I178M, T200A, Q2 07N, R211K	C	NNRTI, NRTI	K103N	None	M184V	SAME
13	B	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39M, V60I, D121Y, } \\ & \text { K122E, D123DN, R125RK, } \\ & \text { Q174K, D177E, I178M, Q2 } \\ & 07 \mathrm{E} \end{aligned}$	B	Susceptible	None	None	None	SAME
14	D	NNRTI, NRTI	$\begin{gathered} \text { A98G, Y1 } \\ \text { 81C, H22 } \\ \text { 1HY } \end{gathered}$	None	M184V	V35T, E40D, K43R, K49R, V60I, D121Y, K122E, D123 E, I135T, D177E, I178M, I1 95L, T200I, E203EK, E204 K, Q207E, R211K	D	NNRTI, NRTI	$\begin{gathered} \text { A98G, Y } \\ \text { 181C } \end{gathered}$	None	M184V	H221HY
15	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, V60I, D121H, K122E } \\ & \text {, D123S, K173S, Q174K, D1 } \\ & \text { 77E, T200A, Q207AT, R211 } \\ & \text { S } \end{aligned}$	A	Susceptible	None	None	None	SAME
16	A	Susceptible	None	None	None	V35T, T39A, E40D, V60I, D 121H, K122E, I135T, K173S , Q174K, D177Q, V179I, T2 00A, Q207A, R211S	A	Susceptible	None	None	None	SAME
17	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, T39N, V60I, K122E, } \\ \text { D123S, S162A, K173S, Q17 } \\ \text { 4K, D177E, T200I, I202V, Q } \\ \text { 207D, R211K } \end{gathered}$	A	Susceptible	None	None	None	SAME
18	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39N, V60I, K122E, } \\ & \text { D123S, S162A, K173S, Q17 } \\ & \text { 4K, D177E, T200I, I202V, Q } \end{aligned}$	A	Susceptible	None	None	None	SAME
						120						

207D, R211K

19	A2	NNRTI, NRTI	Y188L	None	M184V	V35T, T39L, D123E, D177E , I178M, T200A, Q207E, R2 11K	A2	NNRTI, NRTI	Y188L	None	M184V	SAME
20	A	Susceptible	None	None	None	V35T, V60I, D123E, I135T, S162N, T165L, K173S, Q17 4K, D177E, V179I, G196E, T200S, I202V, Q207A, F214 L	A	Susceptible	None	None	None	SAME
21	D	Susceptible	None	None	None	V35T, T39M, K49R, V60I, D121Y, K122E, K173R, Q1 74K, D177E, T200I, Q207E, R211K	D	Susceptible	None	None	None	SAME
22	D	Susceptible	None	None	None	V35T, T39M, K49R, V60I, D121Y, K122E, K173R, Q1 74K, D177E, T200I, Q207E, R211K	D	Susceptible	None	None	None	SAME
23	D	NNRTI	G190GA	None	None	$\begin{aligned} & \text { V35T, E36D, T39N, V60I, } \\ & \text { K122E, D177E, I178M, } \\ & \text { T200I, Q207E, R211K } \end{aligned}$	D	NNRTI	G190GA	None	None	SAME
24	A	Susceptible	None	None	None	```V35T, V60I, I135T, K173L, Q174K, D177E, V179I, Q20 7A, R211S```	A	Susceptible	None	None	None	SAME
25	A	NNRTI	K103N	None	None	K32R, V35PT, V60I, K122E , D123S, I135T, A158S, K17 3A, Q174K, D177E, V179I, I202IV, Q207A, R211S	A	NNRTI	K103N	None	None	SAME
26	A	NNRTI, NRTI	K103N	None	M184V	K32R, V35T, V60I, K122E, D123S, I135T, A158S, K173 A, Q174K, D177E, V179I, Q 207A, R211S	A	NNRTI, NRTI	K103N	None	M184V	SAME
27	A	NNRTI	G190A	None	None	V35T, V60I, K122E, D123S, I135T, I142V, F171Y, K173 S, Q174K, D177E, V179I, T 200A, Q207A, R211S	A	NNRTI	G190A	None	None	SAME

28	A	NNRTI, NRTI	$\begin{gathered} \text { E138Q, G } \\ \text { 190A } \end{gathered}$	None	M184V	V35T, V60I, K122E, D123S, I135T, I142V, F171Y, K173 S, Q174K, D177E, V179I, T 200A, Q207A, R211S	A	NNRTI, NRTI	$\begin{gathered} \text { E138Q, } \\ \text { G190A } \end{gathered}$	None	M184V	SAME
29	D	Susceptible	None	None	None	V35T, T39KN, V60I, V90VI , K102N, D121CHRY, K122 E, I135IATV, I142IV, D177 E, I178V, Q197QK, Q207E, R211RK	D	Susceptible	None	None	None	SAME
30	A	NNRTI, NRTI	G190A	None	M184V	$\begin{gathered} \text { V35T, T39E, I142T, T165A, } \\ \text { K173S, D177G, V179I, I20 } \\ \text { 2V, Q207A, R211S, P226PR } \end{gathered}$	A	NNRTI, NRTI	G190A	None	M184V	SAME
31	B	NNRTI	V179VD	None	None	$\begin{aligned} & \text { V35T, E40ED, V60I, K122E } \\ & \text {, K173A, D177E, T200A, Q } \\ & \text { 207E, R211RK } \end{aligned}$	B	NNRTI	V179VD	None	None	SAME
32	D	NNRTI, NRTI	Y181YC	None	V75VM	V35T, T39K, K49R, V60I, K64R, K122E, D123G, I135 IMR, D177E, I178M, T200I, E203G, Q207E, R211K	C+D	NNRTI, NRTI	Y181YC	None	V75VM	SAME
33	A	Susceptible	None	None	None	$\begin{aligned} & \text { V60I, K122E, D123N, K173 } \\ & \text { T, Q174K, D177E, V179VI, } \\ & \text { T200A, Q207A, R211S } \end{aligned}$	A	Susceptible	None	None	None	SAME
34	B	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, E40D, K49R, V60I, } \\ & \text { Q174K, D177E, Q207E } \end{aligned}$	B	Susceptible	None	None	None	SAME
35	A	Susceptible	None	None	None	K122E, D123N, K173S, Q17 4K, D177E, V179I, I202V, Q207A	A	Susceptible	None	None	None	SAME
36	A	Susceptible	None	None	None	$\begin{aligned} & \text { K49R, V60L, D121H, K122 } \\ & \text { E, R125RK, I135T, I142V, } \\ & \text { K173T, Q174K, D177E, Q2 } \\ & 07 \mathrm{~A}, \text { F214L } \end{aligned}$	A	Susceptible	None	None	None	SAME
37	A	NNRTI	$\underset{\mathbf{N}}{\text { Y181YFI }}$	None	None	V35T, V60I, V90VI, K122E, D123S, I135T, I142V, K173 S, Q174K, D177E, V179I, Q 207A, R211S	A	NNRTI	$\begin{aligned} & \text { Y181YF } \\ & \text { IN } \end{aligned}$	None	None	SAME
38	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39G, V60I, I135T, } \\ & \text { K173S, Q174K, Q207A, R2 } \\ & 11 \mathrm{~N} \end{aligned}$	A	Susceptible	None	None	None	SAME
39	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, E40D, V60I, K122E, } \\ & \text { D123N, I142V, K173S, Q17 } \\ & \text { 4K, D177E, V179I, Q207A, } \end{aligned}$	A	Susceptible	None	None	None	SAME
						122						

40	G	NNRTI	$\begin{aligned} & \text { Y181C, H } \\ & \text { 221Y } \end{aligned}$	None	None	V35I, V60I, K122E, D123N, I135V, K173R, Q174E, D17 7E, I178M, T200A, Q207K, R211N	G	NNRTI	Y181C	None	None	H221Y
41	A	Susceptible	None	None	None	V35T, T39I, V60I, D121H, I 135T, K173S, Q174N, D177 E, I195L, T200A, Q207A, R 211S, F214L	A	Susceptible	None	None	None	SAME
42	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, K49R, V60I, K122V, } \\ \text { I135T, K173S, Q174K, D17 } \\ \text { 7E, V179I, T200A, I202V, Q } \\ \text { 207A, R211S } \end{gathered}$	A	Susceptible	None	None	None	SAME
43	D	Susceptible	None	None	None	$\begin{gathered} \text { V35T, V60I, K104N, K122E } \\ , \text { I142V, A158S, D177E, Q2 } \\ 07 \mathrm{G}, \text { R211K } \end{gathered}$	D	Susceptible	None	None	None	SAME
44	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, V60I, D121H, I135T, } \\ \text { K173S, Q174K, D177E, } \\ \text { V179I, T200A, Q207A, } \\ \text { R211S } \end{gathered}$	A	Susceptible	None	None	None	SAME
45	A	Susceptible	None	None	None	V35T, T39L, V60I, D121H, K122E, I135T, K173L, Q17 4K, D177E, V179I, Q207A, R211S	A	Susceptible	None	None	None	SAME
46	A	Susceptible	V179T	None	None	V35T, K49R, V60I, K122E, D123G, I135T, K173L, Q17 4K, D177E, I178V, I202V, Q207D, R211S, F214L	A	Susceptible	None	None	None	SAME
47	D	Susceptible	None	None	None	V35T, T39I, E40D, K49R, V 60I, D121Y, K122E, I135T, F171Y, K173L, Q174K, D17 7E, V179I, Q207A, R211S	D	Susceptible	None	None	None	SAME
48	A	Susceptible	None	None	None	V35T, V60I, K122E, D123S, I135R, E169D, K173S, Q17 4K, D177E, G196E, Q207A, R211S	A	Susceptible	None	None	None	SAME
49	A	Susceptible	None	None	None	$\begin{aligned} & \text { V60I, D121Y, K122E, I135I } \\ & \text { T, S162H, K173L, Q174K, } \\ & \text { D177E, V179I, Q207A, R21 } \end{aligned}$	A	Susceptible	None	None	None	SAME

50	$\begin{gathered} \text { CRF02 } \\ \text { _AG } \end{gathered}$	NNRTI	$\begin{aligned} & \text { K103N, F } \\ & \text { 227FL } \end{aligned}$	None	None	V60I, V90I, I135A, I142V, S 162A, K173KT, Q174E, T20 0A, Q207E, L228Q, V245Q, D250E	$\begin{gathered} \text { CRF02 } \\ \text { _AG } \end{gathered}$	NNRTI	$\begin{aligned} & \text { K103N, } \\ & \text { F227FL } \end{aligned}$	None	None	SAME
51	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, T39Q, S105A, K122E } \\ \text {, D123N, I135T, K173A, D1 } \\ \text { 77G, V179I, T200A, I202V, } \\ \text { Q207A, R211Q } \end{gathered}$	A	Susceptible	None	None	None	SAME
52	A	NNRTI, NRTI	$\begin{gathered} \text { K101E, E } \\ \text { 138A, G1 } \\ \text { 90A } \end{gathered}$	$\begin{gathered} \text { F77F } \\ \text { L, T2 } \\ \text { 15TA } \\ \text { S } \end{gathered}$	M184V	$\begin{gathered} \text { Q85P, K122E, D123N, I135 } \\ \text { T, I142V, K173S, Q174K, V } \\ \text { 179I, T200A, Q207A, R211 } \\ \text { S, F214FL } \end{gathered}$	A	NNRTI, NRTI	$\begin{aligned} & \text { K101E, } \\ & \text { E138A, } \\ & \text { G190A } \end{aligned}$	F77L	M184V	T215TAS
53	D	Susceptible	None	None	None	V35T, E40D, I47L, K49R, V 60I, D121C, K122E, D123E, R125RK, K173E, D177E, T 200A, Q207E	D	Susceptible	None	None	None	SAME
54	C+D	Susceptible	None	None	None	V35I, K49R, K102KE, K122 E, D123S, I135IV, S162A, D 177E, I178M, V179I, T200A E204EK, Q207EG, R211K	C+D	Susceptible	None	None	None	SAME
55	A	Susceptible	None	None	None	$\begin{gathered} \text {, E204EK, Q207EG, R211K } \\ \text { V35T, T39Q, S105A, K122E } \\ , \text { D123N, I135T, K173A, D1 } \\ 77 \mathrm{G}, \mathrm{~V} 179 \mathrm{I}, \mathrm{~T} 200 \mathrm{~A}, \mathrm{I} 202 \mathrm{~V}, \\ \text { Q207A, R211Q } \end{gathered}$	A	Susceptible	None	None	None	SAME
56	A	NNRTI, NRTI	$\begin{aligned} & \text { A98G, Y1 } \\ & 81 \mathrm{C} \end{aligned}$	$\begin{gathered} \text { L210 } \\ \text { *W, T } \\ \text { 215H } \\ \text { NY } \end{gathered}$	M184V,	K122E, D123S, T128TP, I13 5T, T139R, K173L, Q174*K , N175NFIY, P176PFLS, D1 77*E, I178IK, V179I, T200 A, I202IM, E203A, Q207A, R211S	A	NNRTI, NRTI	$\begin{gathered} \text { A98G, Y } \\ \text { 181C } \end{gathered}$	L210W	None	T215HNY
57	A	Susceptible	None	None	None	```V35T, K104R, D121H, I135 T, S162Y, K173L, Q174K, D177E, Q207A, R211S```	A	Susceptible	None	None	None	SAME
58	A	NNRTI, NRTI	A98G, K1 01E, V10 6VI, V17 9T, Y181 C, G190S	None	M184V	$\begin{gathered} \text { D121H, K122E, K173A, Q1 } \\ \text { 74K, D177E, I178M, G196E } \\ \text {, T200A, I202IM, E203EDG } \\ \text { V, Q207A, R211N } \end{gathered}$	A	NNRTI, NRTI	$\begin{aligned} & \text { A98G, K } \\ & \text { 101E, V } \\ & \text { 106VI, } \\ & \text { V179T, } \\ & \text { Y181C } \end{aligned}$	None	M184V	SAME

59	B	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39M, V60I, D121Y, } \\ & \text { K122E, T131TP, E169EK, } \\ & \text { Q174K, D177E, I178M, Q20 } \\ & 7 \mathrm{E} \end{aligned}$	B	Susceptible	None	None	None	SAME
60	C	Susceptible	None	None	None	V35T, E36A, T39D, S48T, V111VG, K166R, K173A, Q 174K, D177E, I178M, D192 N, I195M, G196M, T200A, Q207E	C	Susceptible	None	None	None	SAME
61	D	NNRTI, NRTI	$\begin{aligned} & \text { V108I, Y1 } \\ & \text { 81YC } \end{aligned}$	$\begin{gathered} \text { T215 } \\ \text { TN } \end{gathered}$	None	$\begin{aligned} & \text { K32E, V35T, T39L, V60I, D } \\ & \text { 121Y, K122E, D177E, R206 } \\ & \text { RK, Q207E, R211K } \end{aligned}$	D	NNRTI	$\begin{aligned} & \text { V108I, } \\ & \text { Y181YC } \end{aligned}$	None	None	T215TN
62	A	NNRTI	G190A	None	None	V35T, V60I, K122E, D123S, I135T, I142V, F171Y, K173 S, Q174K, D177E, V179I, T 200A, Q207A, R211S	A	NNRTI	G190A	None	None	SAME
63	$\mathrm{C}+\mathrm{D}$	NNRTI, NRTI	V106A	None	M184V	$\begin{gathered} \text { V35I, K49R, K102E, K122E } \\ \text {, D123S, S162A, T165K, D1 } \\ 77 \mathrm{E}, \text { I178M, V179I, T200A, } \\ \text { Q207G, R211K } \end{gathered}$	$\mathrm{C}+\mathrm{D}$	NNRTI, NRTI	V106A	None	M184V	SAME
64	A	NNRTI	G190A	None	None	V35T, E40D, K122E, D123 N, Q161H, K173S, Q174K, P176T, D177E, V179I, T200 A, I202V, Q207A, R211S, F 214L	A	NNRTI	G190A	None	None	SAME
65	A2	NNRTI, NRTI	Y188L	None	M184V	$\begin{gathered} \text { V35T, T39L, K122E, D123E } \\ \text {, D177E, I178M, T200A, Q2 } \\ 07 \mathrm{E}, \mathrm{R} 211 \mathrm{~K} \end{gathered}$	A2	NNRTI, NRTI	Y188L	None	M184V	SAME
66	A	NNRTI	G190A	None	None	K32KR, V35T, T39A, E40D , K122E, D123N, K173S, Q1 74K, P176T, D177E, V179I, T200E, I202V, Q207A, R21 1S, F214L, P226PL	A	NNRTI	G190A	None	None	SAME
67	A	Susceptible	None	None	None	I31IK, V35T, E40D, V60I, K102R, K104R, D121Y, K1 22E, I135T, K173S, Q174K, D177E, V179I, T200A, Q20 7A, R211S	A	Susceptible	None	None	None	SAME
68	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, T39L, K122E, D123E } \\ \text {, D177E, I178M, T200A, Q2 } \\ 07 \mathrm{E}, \mathrm{R} 211 \mathrm{~K} \end{gathered}$	A	Susceptible	None	None	None	SAME
						125						

69	A	NNRTI	G190A	None	None	V35T, T39A, E40D, K122E, D123N, R125RK, K173S, Q 174K, P176T, D177E, V179I , T200A, I202V, Q207A, R2 11S, F214L	A	NNRTI	G190A	None	None	SAME
70	$\mathrm{C}+\mathrm{D}$	Susceptible	None	None	None	V35IT, K49R, I50IV, P55PS , V60VI, K102KE, K122E, D123S, I135IV, S162A, D17 7E, I178M, V179I, T200A, E204EK, Q207EG, R211K	$\mathrm{C}+\mathrm{D}$	Susceptible	None	None	None	SAME
71	A	Susceptible	None	None	None	V35T, T39Q, S105A, V111 VG, K122E, D123N, R125R K, T131TP, I135T, V148VG , K173A, D177G, V179I, E1 94EK, R199RK, T200A, I20 2V, Q207A, R211Q, D218D N	A	Susceptible	None	None	None	SAME
72	D	Susceptible	None	None	None	$\begin{aligned} & \text { V35PST, E36D, K49R, V60I } \\ & \text {, D121CHRY, K122E, I135I } \\ & \text { R, D177E, I178M, Q207E, R } \\ & 211 \mathrm{~K} \end{aligned}$	D	Susceptible	None	None	None	SAME
73	A	Susceptible	None	None	None	V35T, V60I, K122E, D123N , R125RK, I135T, K173L, Q 174K, D177E, V179I, I195L T200A, Q207A, R211S	A	Susceptible	None	None	None	SAME
74	A	Susceptible	None	None	None	$\begin{aligned} & \text { 3S, I135T, K173A, Q174K, } \\ & \text { D177E, V179I, T200A, Q20 } \\ & 7 \mathrm{~A} \end{aligned}$	A	Susceptible	None	None	None	SAME
75	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, T39K, E53D, K122E, } \\ \text { D123N, I135T, T165I, K17 } \\ \text { 3S, Q174K, D177E, V179I, I } \\ 202 \mathrm{~V}, \text { Q207A, R211N } \end{gathered}$	A	Susceptible	None	None	None	SAME
76	D	NRTI	None	None	Y115YF	V35T, E40D, K49R, V60VI, V75VL, D121DN, K122E, D123N, R125RK, D177E, I1 78IM, E194EK, Q207E, R21 1K, D218DN	D	NRTI	None	None	Y115YF	SAME
77	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, K49R, K122E, D123 } \\ & \text { N, I135T, K173S, Q174K, D } \\ & \text { 177E, V179I, T200E, Q207 } \end{aligned}$	A	Susceptible	None	None	None	SAME
						126						

A, R211S

Q207D, R211K

88	A	Susceptible	None	None	None	$\begin{gathered} \text { V35T, V60I, K122E, D123N } \\ \text { S, I135IT, K173S, Q174K, D } \\ \text { 177E, V179I, I202V, Q207D } \\ \text {, R211S } \end{gathered}$	A	Susceptible	None	None	None	SAME
89	B	NNRTI	$\begin{aligned} & \text { G190A, F } \\ & \text { 227FL } \end{aligned}$	None	None	S48T, V60I, K122E, D123S, I135T, T139A, D177E, Q20 7E, R211K	B	NNRTI	G190A	None	None	F227FL
90	A	Susceptible	None	None	None	V35T, T39M, V60I, K64R, D121H, K122E, I135T, A15 8S, S162A, K173S, Q174K, D177E, I178L, I180IM, T20 0A, Q207A, R211S	A	Susceptible	None	None	None	SAME
91	D	NNRTI, NRTI	$\begin{aligned} & \text { V108I, Y } \\ & \text { 181YC } \end{aligned}$	$\begin{gathered} \text { T215 } \\ \text { TN } \end{gathered}$	None	V35T, T39I, E40D, K49R, V 60I, W88WG, D123E, D177 E, T200A, E204Q, Q207A	D	NNRTI, NRTI	$\begin{aligned} & \text { V108I, } \\ & \text { Y181YC } \end{aligned}$	None	None	T215TN
92	A	Susceptible	None	None	None	E28A, V35T, T39L, K122E, D123E, T131TP, I135T, K17 3S, Q174K, D177E, V179I, T200A, Q207A, R211S	A	Susceptible	None	None	None	SAME
93	D	Susceptible	None	None	None	V35T, T39M, K122E, D123 G, I135T, K166R, D177E, G 196E, T200A, Q207E, R211 K	D	Susceptible	None	None	None	SAME
94	A	Susceptible	None	None	None	```V35T, V60I, K122E, D123S, I135T, K173S, Q174K, D17 7E, V179I, T200E, Q207A, R211S, F214L```	A	Susceptible	None	None	None	SAME
95	A	Susceptible	None	None	None	$\begin{aligned} & \text { V35T, T39K, V60I, K122E, } \\ & \text { D123N, K173A, Q174K, D1 } \\ & \text { 77E, V179I, T200TA, I202V } \\ & \text {, Q207A, R211S } \end{aligned}$	A	Susceptible	None	None	None	SAME
96	A	NRTI	None	None	M184MV	V35T, T39K, K43A, V60I, D121H, K122E, D123S, K17 3A, Q174K, P176PS, D177E , I178M, V179VI, T200E, E 204Q, Q207A, R211K	A	NRTI	None	None	M184MV	SAME
97	A	NNRTI	K103N	None	None	V35T, V60I, K64R, D121H, K122E, I135T, K173S, Q174	A	NNRTI	K103N	None	None	SAME
						128						

						$\begin{aligned} & \text { K, D177E, V179S, T200A, } \\ & \text { Q207A, R211S, V245K } \end{aligned}$						
98	D	Susceptible	None	None	None	V35T, E36D, K49R, V60I, D121C, K122E, D177E, I17 8M, Q207E	D	Susceptible	None	None	None	SAME
99	D	Susceptible	None	None	None	I31IKN, A33S, L34T, V35T, E40D, K49R, V60I, K122E, D123N, Q174QK, D177E, I 178M, R206RK, Q207E, H2 08HP, R211K	D	Susceptible	None	None	None	SAME
100	C	NNRTI	$\begin{gathered} \text { K103N, } \mathrm{V} \\ 106 \mathrm{I} \end{gathered}$	None	None	V35T, T39R, K43E, S48T, K102R, K122E, I142V, K16 6R, K173A, Q174R, D177E, I195L, G196K, T200A, Q20 7E, R211K	C	NNRTI	$\begin{gathered} \text { K103N, } \\ \text { V106I } \end{gathered}$	None	None	SAME

Login Page

On this page, you the user is to provide the phone number they registered with and their password before clicking the Login button. However if the user is not registered, they should click the register button for registration page.

© Ongadi B.a

Registration Page

On this page., the user provides they first and second names, theri email,phone number and password. They then click register to initiate the registration process.

Phone Number Verification

In order to be sure about the phone number provided, we send a verification code through SMS. this code should be provided on this page for verification purposes.

Mutation Analysis Result Page	12\%ตッ*	*	-s*Amit	1287w -	*	* \$ Am\%
	Mutation Mashesis Recuits			Mutation Analysir Ressals		
	Drayretidiase Eleprelation ${ }^{-2}$		Mesmmerey	ar	Surusta	เ\%
	 sili Aconscg Aleratusp Wation Kone Otvelidatontios			008	9mment	\%
	ramaint			mis	Sucentor	Im
On this screen, the user	ver	sempas		\%	Smement	\%11
is set to view the results	Ner	sempat		93	Sment	wem
from analysis of	ant	Suenpots	net		Sment	mon
particular mutation sets.	03	Senopth	Wen	81	Hundiby	neon
These are very	9	Sexpte	man	**	Swame	mon
comprehensive results	m	Smpm	nen	*	Sumplib	
and are produced	Tor	Sexpate	Men	Eaer in a ven selymoplac octerin conbinuson met MaiL LzIme and TEISr. in Elicoerenk amociat sub of de veris.		
depending on the	039	Sexplo	Nem			
number of mutations provided.	TH	Sompta	1 *em			
		Smonn				
	III	0	<	III	-	<

Title of the Research Study: An Android-Based Mobile App (ARVPredictor) for the detection of HIV Drug -Resistance Mutations and Treatment at the Point of Care: Development Study.

Investigator(s) -
Beatrice A. Ongadi - Corresponding Investigator
Prof. George Obiero
Dr. Raphael Lihana
Dr. John Kiiru
Dr. Musa Ng'ayo

You are being requested to take part in this research study which aims at evaluating a mobile android application (ARVPredictor). The application is currently under development and will be used for the detection of HIV Drug-Resistance Mutations and Treatment at the Point of Care.

The final tool forms part of the requirements for award of the Degree of Doctor of Philosophy in Bioinformatics for Beatrice Ongadi enlisted here in as the Corresponding Investigator.

The Summarized information below tells you important things you should think about before deciding to participate. Please ask questions about any of the information before you decide whether to contribute though the following contacts: betongadi@gmail.com or bongadi@students.uonbi.ac.ke. Tel: +254 728324324

KEY INFORMATION FOR YOU TO CONSIDER

- Voluntary Consent. You are being asked to volunteer for this research study. It is up to you whether you choose to participate or not. There are no penalties and you will not lose anything if you decide not to joint or if after you join, you decide to quit.
- Purpose. We are doing this research to evaluate a mobile android application (ARVPredictor). The application is currently under development and will be used for the detection of HIV Drug-Resistance Mutations and Treatment at the Point of Care.
- Duration. Your part of the study will last 6 months.
- Procedures and Activities. You will be requested to test the usability of the app based on your professional qualification and or experience. If you have any questions you will be free to call or send email for clarity.
- Benefits. There will be no immediate and direct benefits to participants in this study. Participants and others may benefit from the future interventions that will be informed by information learned from this study.
- Alternatives. Participation is voluntary and the only alternative is to voluntarily choose to not participate in the study.
- Confidentiality: No information containing the identity of any study participants will be released or published without their consent. All personal information collected will be accessed only by the principal investigator; and they will be stored in a password secured laptop. During analysis the identifying information will be ripped off and unique identifiers assigned.

(REQUIRED FOR DATA ANALYSIS)

I agree to take part in the study voluntarily and for my information to be used for research or shared with other researchers without identifiers.

SIGNATURE OF PARTICIPANT

Printed Name of Participant: \qquad
Signature of Participant: \qquad
Date: \qquad

(REQUIRED FOR FUTURE USE)

I authorize the storage of data collected as a part of this study for use in future research studies without identifiers.

SIGNATURE OF PARTICIPANT

Printed Name of Participant:
Signature of Participant:
Date: \qquad
SIGNATURE OF THE CORRESPONDING INVESTIGATOR
Signature: \qquad
Date: \qquad

Appendix 1.6: Requirement Gathering and Testing Questionnaire

Participant's Name (Optional): \qquad Date: \qquad

Profession (Tick as appropriate): Virologist__ ICT Expert__Application Developer__OOther (Specify): \qquad
Title of the Research Study: An Android-Based Mobile App (ARVPredictor) for the detection of HIV Drug -Resistance Mutations and Treatment at the Point of Care: Development Study.

Section A: ICT Experts/Web Developers/ Software Developers		
1.	Are you familiar with Android applications and how they work?	\square Yes \square No \square Further Comments:
2.	Did you manage to download and install ARVPredictor?	\square Yes \square No
3.	Acceptance testing: (Do you think the application works as intended?)	Yes No Not Sure Further Comments:
4.	Integration testing: (Are the software components operating together)	Yes No Not Sure Further Comments:
5.	Unit testing: (Are all the application units functioning independently as expected)	Yes No Not Sure Further Comments:
6.	Functional testing: (Kindly verify each function through Black box testing --- Are all function working as expected).	Yes No Not Sure Further Comments:
7.	Performance testing: (How can you gauge performance in relation to different workloads)	\square Satisfactory \square Not Satisfactory \square Needs Improvement \square Further Comments:
8.	Regression testing: (Are all new features affecting the functionality of the application)	\square Yes \square No \square Not Sure

		\square Further Comments:
9.	Stress testing: (Kindly stress test the application in your own way and give a feedback)	$\square \quad$ Kind of test done \square Comments \qquad
10.	Please give general comments on how to improve the application	
Section B: Virologist/HIV Care givers/Pharmacist		
1.	Do you directly deal with HIV patients?	\square Yes \square No \square Not Sure \square Rarely \square Further Comments:
2.	Do you directly handle ARVs?	\square Yes \square No \square Not Sure \square Rarely \square Further Comments:
3.	Can you explain how different ARVs work?	$\square \quad$ Yes No Not Sure Further Comments:
4.	Do you directly sequence HIV data?	\square Yes \square Never \square Not Sure \square Rarely \square Further Comments:
5.	Did you have a problem accessing and downloading ARVPredictor?	\square Yes \square No \square Not Sure \square Didn't get it \square Further Comments:
6.	Did you have a problem using ARVPredictor?	\square Yes \square No \square Not Sure \square Didn't get it \square Further Comments:
7.	Kindly use the application in our own way	\square Relevance

