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ABSTRACT 

 

X-ray fluorescence spectroscopy has the capability to determine the levels, chemical 

speciation, and distribution of trace biometals in a biological sample for disease diagnostics. 

Direct biometals analysis in soft tissues and fluids by X-ray fluorescence for early cancer 

diagnosis has hardly been explored due to dark matrix challenges that results to weak analyte 

signals as well as intricate multivariate relationships. This study was aimed to develop a 

machine learning-aided X-ray fluorescence and scatter method for early diagnosis of urinary 

tract cancer (prostate and urinary bladder) based on the concentration, speciation and 2D 

imaging of trace biometals in cell culturs, human tissue and urine.  The XRF variants enabled 

simultaneous analysis of biometals’ levels, speciation and 2D distribution in; simulate tissue 

and urine, human tissue and urine, and cultured samples. The levels of the biometals (Mn, Cr, 

Cu, Fe, Zn and Se) were determined by multivariate calibration model (ANN) using EDXRF 

selected fluorescence and scatter regions from simulate urine and tissues. The levels of Fe, 

Cu and Zn in human tissue biopsies were in the range of; 150.0±4.5-181.2±9.5 ppm, 

16.4±5.4-25.9±2.6 ppm and 60.5±12.4-90.2±3.8 ppm respectively with alteration in levels of 

Cr, Mn and Se. High (p<0.001) concentrations of Fe, Cu and Zn were noted in cultured 

cancer tissues compared to normal human tissues and urine. The KNN distinguished the 

chemical speciation of Cu and Fe in cancerous and normal urine at 90% classification 

accuracy. The human cancerous urine samples were found to be rich in Fe and Cu occurring 

mostly as 2Fe and Cu possibly due to their oxidative role in Fenton reactions that accelerates 

carcinogenesis. SR-µXRF enabled 2D spatial distribution of trace biometals (Mn, Fe, Cu and 

Se) patterns where significant (p<0.05) differences in the accumulation of the analytes in 

cancerous and healthy cell cultures. The 2-D spatial distribution maps of the trace biometals 

revealed high spatial correlation between Cu and Fe (0.9406) and (0.92252) in DU_D3 and 

DU_D4 respectively in cancerous compared to corresponding stages in normal cell 

cultures for cancer diagnosis. Artificial Neural networks (ANN) distinctively classified cell 

cultures into cancerous and healthy groups by PC1 and PC2 scores of Cu and Fe L-lines 

spatial-spectral profiles. Further utility of selected fluorescence and scatter spectral profiles 

enabled the classification of cancerous cultured cells into early, intermediate and advanced 

stages of cancer development. The study demonstrated the utility of machine learning-aided 

XRFS analysis of hardly discernible fluorescence peaks and Compton scatter in tissues, cell 

cultures and urine samples to realize rapid non-invasive cancer diagnostic model.  
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CHAPTER 1.0 CHAPTER ONE 

INTRODUCTION 

 Background to the study 1.1

Noninvasive XRF spectral diagnosis of disease is preferable because it is, together with 

treatment the two most important factors in medical care. The multivariate machine learning 

based X-ray fluorescence and scatter (XRFS) has potential to determine concentration, 

speciation and spatial distribution profiles of trace biometals for early disease (cancer) 

diagnosis. XRF analysis of biomedical samples is thus limited by the complexity (dark 

matrices due to low Z elements) of the samples which result in weak spectral signatures. In 

this study, XRFS is aimed at exploiting the fluorescence analyte signals masked in the 

pronounced Bremsstrahlung background and Compton Scatter peaks in conjunction with 

multivariate machine learning techniques. 

 X-ray fluorescence spectroscopy 1.2

The XRF analysis is a spectroscopic analytical method based on principle of radiation-

interaction with matter through photoelectric effect (absorption and emission) and scattering 

(Compton and Rayleigh). Spectrometric X-ray fluorescence (XRF) enable rapid, direct and 

non-invasive method that enables simultaneous analysis of elements in variety of samples 

(Beckhoff et al., 2007). In a typical sample XRF spectrum, XRF fluorescence and scatter 

peaks (due to low elements (Z<20)) are predominant and are linked to enhanced background 

and increased Compton and Rayleigh scatter. The characteristic fluorescence lines are 

influenced by total analyte content but also the oxidation states of the analytes (Markowicz et 

al., 1993, Van Espen 2002). However, the classical XRF analysis of biomedical samples is 

faced with challenges due to the dark matrix which gives rise to elevated background and 

prominent scatter region (Kaniu et al., 2012). The classical XRF spectra in this context 

contain vital information but are limited by spectral overlaps, weak analyte signals and 

extreme matrix effects due to low-Z elements with complex interactions (relationship 

between trace elements and cancer) among various trace biometals. XRF is based on 

photoelectric phenomenon that generates energy spectra composed of various characteristic 

energies of the sample elements thus enhances simultaneous analysis of elements from Na to 

U (Carvalho et al., 1998, Morona et al., 2017). The conventional classical XRF spectrometry 

uses one fluorescent peak (normally the most intense with highest signal to noise ratio and 
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interference-free) and assumes a linear correlation between the characteristic intensities and 

concentrations of analytes. In practice, XRF spectra from dark matrix-dominated samples 

such as biological specimens consist of both fluorescence lines and scatter peaks as well as 

pronounced Bremsstrahlung which masks the weak analyte fluorescence signals. This poses a 

challenge in direct rapid XRF analysis of trace elements in body tissues and fluids.  

 

X-ray fluorescence and scatter (XRFS) method is attractive in this regard as it has potential 

for utility of multiple X-ray fluorescence signals (regardless of interference) in conjunction 

with the scatter peaks to furnish accurate trace biometal profiles. Valuable additional 

information on morphology and sample density can be extracted from the Compton and 

Rayleigh scatter spectral region. However, the complexity and organic nature of biomedical 

tissue samples remains a major limitation in the application of XRF spectrometry. These 

constitute a multivariate problem that when tackled with powerful machine learning 

techniques can yield important information (concentrations and speciation) of trace elements 

in low-Z matrices (Angeyo et al., 2012, Kaniu et al., 2012).  

 Cancer survival and mortality  1.3

Cancer is a multi-factorial complex non-communicable disease as  a results of cells growing 

out of control and dividing to form numerous abnormal cells (Kainth et al., 2020). Further, 

cancer impairs the immune system and lead to chemical and structural changes in the body 

that alter the trace biometal spectral characteristic information obtained by X-ray 

spectrometry of body tissues and fluids.  

Worldwide, about 19 million new cases of cancer  were recorded and about 10.0 million 

reported deaths due to cancer occurred in 2020 (Sung et al., 2021). Cancer is the third cause 

of death after infectious and cardiovascular diseases and accounted for 7.9 million deaths in 

2009 and has increasingly had an upward trend in developing countries. In Kenya, cancer 

cases have been on the rise with resultant loss of lives and resources during treatment. Most 

of the cancer patients seen in Kenya are screened at an advanced stage when management 

and treatment are difficult and expensive (Nairobi Cancer Registry). Based on the prognostic 

features of the tumor, the available unreliable method (excision/incision-based 

histopathology) for genital urinary tract cancers involves optical microscopic examination of 

samples obtained through biopsy and fine needle aspiration. The burden of cancer in the 

world is projected to rise to 28.4 million new cases in the year 2040 (47% rise from 2020) as 
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a result of demographic changes which will also be further exacerbated by increasing cancer 

statistics (Sung et al., 2021) as shown in Figure 1.1.  

 

Figure 1.1 Cancer mortality national Ranking at Ages <70 Years in 2019 (Source: World 

Health Organization). 

In Figure 1.1, bladder cancer recorded high cancer incidence which was four times higher in 

men as compared to women in developed countries. Prostate cancer ranks  among the most 

common tumor worldwide where about 20% tends to metastasize (Navdaev and Eble 2011) 

and the second most prevalent malignant (21%) cancer for men while Benign Prostate 

Hyperplasia (BPH) prevails in men above the age of 50 (Leitão et al., 2014). Although at 

average, 60% of world cancer cases were recorded with half of these cases reported in 

developing countries (Wagner and Brath 2012). The effective remedy for reduction of cancer 

mortality is through early diagnosis of cancer at the local stage of development. Urine and 

tissue trace biometal dynamics in onset and development of cancer is still challenging. There 

exists potential in developing a machine learning based XRFS for rapid, less invasive and 

objective method for diagnosis of cancer especially at local stage of development. It is not 

only imperative to correctly diagnose cancer, but also to determine its stage of development. 

 Trace Biometals in human body 1.4

The trace biometals are normally present in trace concentrations and when in abnormal 

concentrations, they reflects the various pathologies in human body (Guidotti et al., 2008). 

The trace biometals are important due to their role in several physiological functions in 
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biochemical processes for the well-being of human beings and can be either beneficial or 

detrimental based on their concentration, speciation and distribution in human body. The 

trace biometals are either essential or non-essential with essential trace biometals vital for 

maintenance of normal physiological functions (Zaichick et al., 1996). Essential biometals 

(Skalnaya and Skalny 2018) occur at low levels in human tissue (Koch et al., 1956) for 

normal regulatory physiological processes (Prasad 2013, Rose 2016, Zaichick and Zaichick 

2016). Further, elevated or deficiency of trace biometals may result to production of free 

radicals that is a precursor of cancer (Kainth et al., 2020). It is thus reasonable to presume 

that elevated or depressed levels of trace biometals results to carcinogenesis (Imtiaz et al., 

2010). Essential trace elements are components to human health thus deficient and excess 

levels of trace elements may result in onset and development of diseases (Ates et al., 2008). 

In normal concentrations, trace biometals stabilize cellular structures while in deficiency they 

stimulate pathways that cause diseases through activation or inhibition of certain biochemical 

reactions thus alter the cell membrane permeability.  

Trace biometals are important in normal physiological function due to their potential role via 

activation, inhibition or promotion of enzymatic reactions (Silva et al., 2009). They play vital 

roles by regulating the immune system, mitochondrial activity and membrane potential 

(Schubert et al., 1998). The biochemical  changes of trace biometals remains to be complex 

and that higher levels may be toxic whereas depletion may result to metabolic instabilities 

(Rao and Sciences 2005). As a result of biological alterations generated by the diseases 

(cancer), trace biometals levels and chemical speciation are altered. (Geraki et al., 2002). 

Trace element changes may result in the development of cancer. There exist correlations 

between the level of trace biometals in human soft tissues and fluids, and the presence of 

cancer (Kwiatek et al., 2002). The root cause of cancer in humans remains unknown but is 

possibly linked to genetic and epigenetic factors such as age, race and eating habits (Geraki et 

al., 2002). These can all be linked to changes ( or alterations) in biochemical profiles of trace 

biometals (Tan and Chen 2011, Aslam and Neubauer 2013). Timely diagnostics of impaired 

trace biometals in human body would aid in personalized treatment of cancer (Skalnaya and 

Skalny 2018). The spectrometric analysis of concentrations of trace biometal levels is of great 

importance due to their known roles (activators or inhibitors of enzymes) in biochemical 

activities in human tissues (Carvalho et al., 1998).  

Each fluid and tissue have unique characteristic biochemical composition that changes in 

response to pathological stimuli (for instance cancer). Therefore, tissue and body fluid 
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chemical compositions, the trace biometal speciation and distributions have the potential to 

determine the status of health. There is a need therefore to rapidly and non-invasively obtain 

information on the concentration, speciation and multivariate alterations of trace biometals 

and their distributions in tissues for early cancer diagnosis. 

The utility of oxygen in human body can be associated many toxic effects associated with 

cancer in human body. Trace biometals (Fe, Cu, Cr and Mn) have the ability to catalyze 

Fenton reactions resulting to production of highly reactive hydroxyl radical (Kwiatek et al., 

2005). High concentrations of essential trace biometals (Cu, Fe, Mn, Cr and V) are greatly 

involved in Fenton reactions (Halliwell and Aruoma 1991) based on their speciation levels. 

Chemical oxidation states of trace biometals in body tissues and fluids occur in two forms 

(INAGAKI et al., 2000); Protein-associated chemical species and protein non-associated 

chemical species that aid in excretion of the elements. The biological effects can be explained 

based on their potential to catalyze the  production of free radicals as a result of 

decomposition of peroxides (Tariq et al., 2016) which are linked to pathogenesis (Fraga and 

Oteiza 2002). A free-radicals with one or more unpaired electrons increases the concentration 

of the hydroxyl radical (∗OH)  which are active oxidizing agents that induce mutation of 

DNA (Aruoma et al., 1989). The ability of increased free radicals to cause DNA mutation 

and damage of other cellular components is well documented (Teebor et al., 1988). Reactive 

oxygen species are then generated (Kong et al., 2022) and causes cellular damage when their 

levels increase and thus anti-oxidant defense mechanisms are overwhelmed. 

In human body, Fe is always attached to ferritin proteins that stores about 4500g of Fe, while 

transferrin is responsible for Fe transport in human blood (Silva et al., 2013). Fenton reaction 

for Fe consist of two stages (Halliwell and Gutteridge 1984); 

  3*

22

2 FeOHOHOHFe         1.1  

The OH* free radical results to oxidative stress where the free radical generation exceeds the 

ability to eliminate and neutralize their effects. 

  2

2

3*

2 FeOFeO          1.2 

Fe loosen weakly bound electron thus catalyzes free radicals which reacts with 

Deoxyribonucleic Acid (DNA) thus breaking of DNA chains for carcinogenesis(Silva et al., 

2013). Determination of the present of Fe (II) and Fe (III) may help to determine the extent of 

damage of genetic materials by free radicals.  
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Copper is a cofactor of Fe metabolism and also aid in free radical production and synthesis of 

melanin (Silva et al., 2013) where Cu
2+

 aids in the formation of free radicals. It’s clear that 

free radicals play critical role in the initiation, invasion and metastasis of diverse human 

pathologies such as cancer pathogenesis (Frenkel 1992) and (Girotti and Thomas 1984). Zinc 

is imperative in metabolic process in cell division and regulation of proteins that are actively 

involved in replication of the DNA (Silva et al., 2013).  

Their changes due to biochemical processes in cancer is directly associated with structural 

and metabolic changes (Silva et al., 2013) thus 2D spatial mapping the trace elements can be 

correlated to carcinogenesis. The concentrations and chemical oxidation alterations of trace 

biometals and their correlations in human body tissues and fluids can thus be potential 

markers for cancer diagnostics.  

 XRF analysis of trace biometals for cancer diagnosis 1.5

The XRF is non-destructive method for analysis of liquids, solids and powder samples and 

relies on detection of the emitted characteristic secondary X-rays of atoms as a result of 

excitation (Pushie et al., 2014). The characteristic fluorescence lines are influenced by total 

analyte content but also the oxidation states of the analytes (Markowicz et al., 1993, Van 

Espen 2002).  

Micro XRF can non-destructively provide both full spectral elemental maps and single-point 

spectra. Thus, micro XRF can explore the sub-cellular topography and speciation of 

biometals thus enhances the study of the roles of trace biometals in their structural context. 

Synchrotron radiation spectroscopic and imaging methods are the prime techniques for early 

cancer diagnosis as they are sensitive to changes in structure and composition of 

pathologically altered fluids and tissue. They provide automated, fast, non-intrusive and 

allow simultaneous sensitive detection and analysis of different biomarkers for 

characterization of tissues and fluids based on trace biometal profiles. Considering the 

sensitivity, spatial resolution and robustness required to rapidly and non-invasively elucidate 

the role of trace metals and biochemical in disease bioprocesses diagnostics at cellular level 

(as most diseases start at the level of single cells), novel analytical approaches are required 

which can provide additional diagnostic information on the chemical states of elements in 

microsystems of interest, as knowledge of bulk concentrations is insufficient. Microanalysis 

methods, combining spatial and spectral resolutions are the most attractive in this regard as 

disease results to structural changes in body tissue and/or fluid spectral images. Trace 
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biometals levels and their patterns/correlations are associated with cancer, and as the cancer 

progresses (severity increases) alterations can be detected in the levels and chemical 

speciation. The focus is to identify, quantify and map the trace elements and their speciation 

to determine their role in biopathological activity in cancer, including modelling their 

evolution with cancer (dynamic analysis and imaging) in body fluids and tissues. These will 

enhance non-invasive simultaneous analysis of trace biometals for cancer diagnostics at 

localised stage of development. 

 Multivariate machine learning for XRF analysis of trace biometals 1.6

XRF analysis of biomedical samples is faced with challenges due to the dark matrix which 

gives rise to elevated background and prominent scatter region (Kaniu et al., 2012). Rapidly 

and directly acquired XRF spectra contain vital information but are limited by spectral 

overlaps, weak analyte signal and enhanced background due to low-Z elements with complex 

interactions (relationship between trace elements and cancer) among various trace biometals 

(Okonda et al., 2022). The patterns are complex and multivariate thus are discernible by use 

of machine learning techniques for information mining. The goal is to develop machine 

learning enabled X-ray fluorescence and scatter methodology for simultaneous analysis of 

trace biometals’ levels, distribution and speciation (as cancer biomarkers) for early cancer 

diagnostics.  

 

Machine learning (in the domain of XRF spectra) involves application of supervised and 

unsupervised univariate and multivariate techniques for simultaneous extraction of important 

information inherent (Eriksson et al., 2014). A novel machine learning enabled X-ray 

fluorescence and scatter (XRFS) methodology has the potential for identification and 

quantification of trace biometals and their speciation (Kaniu et al., 2012). This provides 

greater sensitivity, versatility, multivariate modeling and exploratory analysis capability, 

speed, and possibility to obtain real time information for clinical purposes.  Multivariate 

analytical tools have the ability to reveal hidden relationships (correlation of trace elements to 

cancer in tissues) thus can enhance utilization of characteristic (fluorescence peaks) and non-

characteristic information (Compton and Rayleigh scatter) of the spectrum by maximizing 

extraction of relevant chemical information (concentration and speciation). Multivariate 

image analysis enables extraction of comprehensive information from the spectroscopic 

datasets in complex multivariate space (Brereton 2003) and has the ability to reduce the 
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(spectral) data complexity while maintaining the analytical information contents (underlying 

biomedical phenomena).  

It is apparent that the complexity of the biomedical samples and data interpretation (the 

identity and distribution of the trace biomarkers does not appear in a straightforward way as 

their spectral characteristics overlap (Rosenberg 2002) constitutes is a multivariate problem. 

Machine learning may be used to address this problem as it has potential to reduce the 

dimensions of multispectral images and to extract analytical information. This may be 

realized via a variety of unsupervised algorithms such as cluster analysis, independent 

component analysis or supervised algorithms such as support vector machines, partial least-

squares and artificial neural networks. Machine learning broaden the applicability and 

sensitivity of the proposed analytical methodology by enabling mining thus facilitating 

multivariate modeling of the trace biometal distribution. Further advantages gained include 

ability to reduce spectral noise, and interferences, and outliers. 

The ultimate goal is to exploit the full potential of machine learning-assisted X-ray 

fluorescence and scatter (XRFS) spectrometry towards early cancer diagnosis based on the 

correlative speciation, concentration and multivariate alterations of trace biometals in human 

body tissues and fluid (urine). This is due to the increasing realization that successful 

treatment of cancer depends on accurate diagnosis of cancer at the local stage of development 

based on trace biometals as potential biomarkers. The method is aimed to provide needed 

cancer diagnostic information, its type and stage of development. The envisaged method has 

the potential for the combination of trace biomarkers of cancer that would have the ability to 

accurately diagnose and characterize cancer at cellular level as well as distinguish between 

normal, malignant and benign types.  

 Statement of the Problem 1.7

The current cancer diagnostic methods are inapplicable at an early stage of cancer 

development, due to their invasiveness besides being subjective thus results to challenging 

pathological interpretations and examination of tumor morphology. The limitation in early 

diagnostics of cancer is the lack of integrated approach that combines chemical with spatial 

imaging to perform non-invasive trace quantitative analysis in human body tissue and fluid 

microenvironments. Although the XRF trace spectroanalytical and imaging tools have high 

versatility, they are limited by the sample complexity and extreme matrix effects which result 

in weak spectral signatures as well as intricate interpretations of the analyte multivariate 
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spectral data sets. This generates a multivariate problem that requires adequate interpretation 

using powerful multivariate chemometric techniques. The proposed machine learning based 

XRFS has the potential to mine trace biometal concentrations, speciation and 2D mapping in 

complex human body tissue and fluids for cancer diagnosis.  

 Research Objectives 1.8

1.8.1 General Objective 

To exploit machine learning for integrated X-ray fluorescence and scatter spectrometric 

analytical strategy for simultaneous identification, mappings, quantification of trace 

biometals and their speciation in urinary tract cancer pathogenesis. 

1.8.2 Specific Objectives 

The specific objectives of the study are; 

(i) To develop XRFS machine learning enabled multivariate calibration strategies (ANN 

and SVM) based on simulates for analysis of trace biometals concentrations in human 

tissues (urinary ladder and prostate) and urine. 

(ii) To quantify trace elements levels in selected urinary tract tissues (urinary ladder and 

prostate) and urine samples using the above developed calibration strategies. 

(iii) To determine the speciation levels of Fe, Cu, Cr and Mn in urinary tract tissues and 

urine samples utilizing the multivariate calibration and SR-XANES. 

(iv) To spatially map Fe, Cu, Mn and Se using machine learning enabled micro-XRF 

spectrometry in selected model body tissue microenvironments for cancer diagnosis. 

(v) To develop an integrated machine learning based diagnostic model for prediction of 

the status of urinary tract cancer (identify the presence and severity) in clinical 

samples utilizing the identified trace biomarkers. 
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 Study Hypothesis 1.9

This study is hereby founded on the premises that; 

(a) The development and metastasis of genital urinary tract cancer in human body tissue 

(urinary bladder and prostate) and urine is influenced by;  

(i) Concentration and alterations of trace elements.  

(ii) Chemical oxidation states of trace biometals.  

(iii) Correlative spatial distribution of Fe, Cu, Mn and Se.  

(b) The age of the sampled patients does not affect the biomarkers levels in this study. 

(c) Determination and modeling of the biomarkers’ occurrence and multivariate relationships 

in human urine is associated with genital urinary tract cancers thus possible to track the type 

of cancer in soft body tissues and fluids. 

 

 Justification and significance of the Study 1.10

Histopathology as the “gold standard” method of assessing abnormal changes in tissues for 

cancer diagnostics is less rapid, invasive and also prone to subjective interpretations. Early 

cancer diagnosis thus remains a challenge due to the limitations of the above conventional 

diagnostic methods. Early and precise diagnosis of cancer enhances effective intervention. 

The envisaged method based on trace biomarkers of cancer has the potential to accurately 

prognose, diagnose and characterize cancer at cellular level at early stage of development. 

Successful diagnosis of cancer at local stage can thus be based on the combined analysis of 

the concentration of trace elements (Fe Cu, Mn, Zn, Cr and Se) and their speciation (Cu and 

Fe) together with their correlations and multivariate alterations as cancer markers in soft body 

tissues and fluids (urine).  

 

The XRFS analytical method is based on the determination of the trace analyte levels in the 

sample despite the matrix effects and relies on fluorescence profiles of heavy elements. The 

highly sensitive XRF in micro XRF and XANES modes using the more intense synchrotron 

radiation beam has the potential for utility in this study for determination of 2D maps and 

chemical oxidation states of trace biometals. XRF can simultaneously map out biometals 

without any use of dyes at high resolution with subsequent XANES analysis to provide rapid 

and non-destructive analysis of chemical speciation of biometals (Fe, Cu, Mn and Cr) at high 

resolution. Further, the EDXRFS spectrometry also exploits scatter peaks in addition to the 
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analyte fluorescence peaks for determination of cancer biomarkers. The XRFS method is not 

suited and applicable for direct rapid analysis of trace elements, their distribution and their 

speciation in low-Z matrices. These challenges are complex but they are discernible by use of 

machine learning aided techniques since they are subtle and the relationships multivariate. 

The adoption of machine learning (ML) based techniques for greater sensitivity, versatility, 

multivariate modeling and exploratory analysis enhance real time information for clinical 

cancer diagnostic. This proposed approach has the ability to provide necessary genital urinary 

tract cancer diagnostic information, type and stage of cancer development. The real quest for 

early diagnosis is to enhance early intervention to improve survival rate and successful 

treatment of the cancer at an early stage of development before invasion and metastasis to 

adjacent tissues. 
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CHAPTER 2.0 CHAPTER TWO 

LITERATURE REVIEW 

 Chapter Overview 2.1

This chapter contains five sections in which section 2.2 highlighting on the current 

conventional cancer diagnostics methods. Section 2.3 gives an overview of X-ray 

fluorescence (XRF) Spectroscopy with sub-sections emphasizing on XRF variants of trace 

analytical spectroscopic analysis. Subsequent 2.4 introduces other analytical for trace 

biometal analysis while section 2.5 presents the applications of multivariate machine learning 

techniques in XRF analysis. 

 Conventional cancer diagnostic methods 2.2

The current histopathological methods for urinary tract cancer diagnosis (biopsy and FNAB) 

are faced with challenges. Core biopsy and fine-needle-aspiration biopsy (FNAB) are the 

routine techniques for cytology and histopathology for urinary tract cancer diagnosis. These 

methods do not give definitive diagnosis of cancer besides not being cost effective (Griffiths 

et al., 2007). The methods are painful, time consuming (as they involve special sample 

preparation) and expensive yet they do not give definitive diagnosis of cancer especially at 

early stage of development to enable effective treatment. Cancer is challenging not only in its 

early diagnosis and successful treatment but also in its complexity and increased mortality 

rate. The conventional cancer diagnostic methods are insensitive, laborious due to the 

considerable sample preparation involved thus unreliable for detecting the stage of cancer. It 

is important to not only diagnose cancer correctly, but also to determine its stage using subtle 

trace signatures analyzed at cellular levels.  

 X-Ray Fluorescence (XRF) Spectroscopy 2.3

X-ray fluorescence (XRF) spectroscopy enhances qualitative and quantitative analysis of 

elements in body fluids and tissues potential for disease (cancer) diagnosis. XRF is simple 

and rapid method with high sensitivity and relatively low detection limits of elemental 

concentrations. However, XRF is limited by matrix effects and poor detection limits for low 

Z elements (Z < 19) (Brouwer, 2003). XRF spectroscopy and its applications to samples of 

various kinds have attracted considerable interest due to its ability to directly detect and 

quantify simultaneously and non-destructively the elements in samples. Trace biometal 
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analysis by XRF spectroscopic methods enhance characterization of tissues and fluids for 

disease diagnosis. XRF spectroscopic and spectral imaging of trace biometals are sensitive to 

alteration in the structure and chemical composition of pathologically altered fluids and tissue 

hence can provide rapid and non-intrusive diagnostic characterization of tissues and fluids.  

2.3.1 Energy dispersive X-ray fluorescence spectroscopy 

EDXRF is based on photoelectric phenomenon that generates energy spectra composed of 

various characteristic energies of the elements thus enhances simultaneous analysis of 

analytes (Carvalho et al., 1998, Morona et al., 2017). The conventional EDXRF spectrometry 

uses one fluorescent peak (normally the most intense with highest signal-to-noise ratio and 

which should be interference-free) to perform quantification. However, important 

information cannot only be obtained by evaluation of characteristic emission lines o f  

a n a l y t e s  (Henrich et al., 2000) but can be extracted  from the scatter spectral region. 

Further, EDXRF and X-ray diffraction enabled determination of the concentrations of Zn, 

Cu and Fe in cancer tissues for characterization of cancer (Geraki et al., 2003). The potential 

utility of chemometric based Energy dispersive X-ray fluorescence (EDXRF) analysis for 

direct rapid analysis of Fe, Cu, Mn, Se and Zn in soft tissues as cancer biomarkers has been 

established (Okonda et al., 2022). 

2.3.1.1 Energy dispersive X-Ray fluorescence and scatter spectroscopy 

Additional exploitation of the scatter (Compton and Rayleigh) in EDXRFS spectrometry 

coupled with chemometrics has the potential for cancer diagnosis. The EDXRFS aided 

multivariate modeling of cancer diagnostics utilizing selected fluorescence and Compton 

scatter profiles in model human tissues and cultures successfully classified cancer staging 

(Okonda et al., 2022) using artificial neural network. In this study, low levels of Fe (101 ± 28 

ppm) and Cu (21 ± 1 ppm) were found in SV10 cancer sample due to the lag phase stage of 

cancer development. Additionally, EDXRFS method  utilized multiple X-ray fluorescence 

signals combined with the scatter peaks for  quantitative analysis (Sichangi et al., 2019) of 

trace elements in model tissue. EDXRFS thus exploits fluorescence analyte signals masked in 

the pronounced Bremsstrahlung background and Compton scatter peaks. An EDXRFS 

spectrum of a diseased tissue biopsy or fluid is mathematically a complex multivariate dataset 

that requires application of multivariate machine learning techniques. However, the scatter 

regions of similar sample matrices can be very informative on the overall sample composition 

when combined with a multivariate analytical tool.  
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2.3.2 Total reflection X-ray fluorescence spectroscopy 

Total reflection X-ray fluorescence involves totally reflective mode where the X-ray beam 

strikes the sample at a grazing angle of 
00.1 or less. TXRF is well-established spectroanalytical 

method  elemental analysis in liquids and powdered microsamples (Beltrán et al., 2020). 

TXRF has increasingly been utilized in trace biometal analysis in biomedical samples due to 

its capability for multi elemental determination (Klockenkämper and von Bohlen 2014). In 

this regard, it enables qualitative and quantitative analysis of elements by measurement of 

their spectral emission energy and intensity respectively (Van Grieken and Markowicz 2001, 

Silva et al., 2012). The calibration by internal standard enhances its ability for simultaneous 

multi-element quantitative analysis in minute sample amounts (Gruber et al., 2020).  

TXRF has been utilized to determine trace biometals in serum specimen from healthy and 

cancerous human tissues utilizing Compton peaks as internal standard (Hernández-Caraballo 

and Marco-Parra 2003). No significant difference was observed in p values of Se levels in 

both healthy and cancer group. The concentration of Cu in cancerous and normal human 

serum by TXRF spectroscopy (Kubala-Kukuś et al., 2014). The Cu levels in chemotherapy 

cancerous human serum was found to be 1.78±0.91 ppm with a corresponding 108±0.55 ppm 

in non-cancerous human serum. This results thus indicate the potential utility of levels of Cu 

in characterization of cancerous and non-cancerous serum applicable to cancer diagnosis. 

TXRF spectrometry has been employed to determine the concentrations of Ca, Ti, Fe, Cu and 

Zn in digested human breast tissues (normal and malignant) where multivariate discriminant 

analysis (MDA) enabled the tissue classifications into cancerous and normal groups (da Silva 

et al., 2009). TXRF is therefore a non-invasive sensitive analytical method for multi-

elemental analysis with lower detection limits for determination of trace element 

concentrations in human body tissues and fluids  (Khuder et al., 2007).  

SR-TXRF  has been used to determineFe, Cu and Zn in biological human sample (Leitão et 

al., 2014) where the results indicated suppressed concentrations  of Fe and Zn in BPH 

compared to normal prostate tissue samples. Additionally, low levels of Fe, Zn and Rb were 

found in prostate cancer tissues suggesting their association with carcinogenesis. TXRF has 

been applied in analysis of chemical composition in human kidney stones (Kubala‐ Kukuś et 

al., 2017) in which Fe, Cu and Se levels were determined and the elemental correlations 

aided in classification of kidney stones. The levels of trace biometals in healthy and 

cancerous human tissues (Benninghoff et al., 1997) have been determined by TXRF 
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spectrometry. The statistical analysis demonstrated the possibility of using trace biometals in 

cancerous and normal human tissues for cancer diagnosis. The ratio of Zn to Cu and the levels 

of Cu were further determined as useful profiles for cancer diagnosis (Jiménez et al., 2001). 

2.3.3 Synchrotron radiation XRF spectroscopy 

Synchrotron radiation is well suited to the quantitative as well as spatial analysis of biological 

samples at micrometer to millimeter scale (Szalóki et al., 2021). Synchrotron’s (Gianoncelli 

et al., 2009) high brilliance, linear polarization and beam collimation (Castillo et al., 2017) 

makes it highly suited for trace elemental analysis at cellular level. For these reasons, 

synchrotron radiation can extensively unravel the distribution and chemical oxidation profiles 

of elements at trace levels in human specimens (Gherase and Fleming 2019). Synchrotron 

beamline light sources generate a micro-focused monochromatic X-ray beam that has 

potential for speciation, quantification and imaging at high spatial and sensitivity (Khan et 

al., 2019). The concentrations of trace elements  in prostate tissues have been analyzed using 

more sensitive method such as synchrotron radiation (SR)-XRF where the concentrations of 

Fe and Zn  were found to be lower in prostate cancerous compared to healthy tissues where 

the observed high levels of Mn and Fe were correlated to free radicals as precursors to 

carcinogenesis (Halliwell and Gutteridge 1984). 

Synchrotron based X-ray fluorescence (A Castillo-Michel et al., 2016) is best suited for 

analysis of trace elements at cellular and subcellular level. The highly sensitive μ-XRF and 

XANES variants of synchrotron radiation (SR) are suitable techniques for investigating the 

2D mapping of trace elements and their speciation. X-ray Absorption spectroscopy and 

micro-spectroscopy SR methods with high resolution for trace biometals are most attractive 

in this context. This allows combination of micro X-ray fluorescence and XANES (A 

Castillo-Michel et al., 2016) as the most powerful tools for mapping local structure and 

oxidation states of trace biometals. The highly sensitive XANES (Ogunlewe and Osegbe 

1989) enhances direct determination of the chemical oxidation states (speciation) of the trace 

biometals. X-ray fluorescence in microscopy domain enabled simultaneous detection of 

multiple elements for 2D mapping of trace biometals in specimens (Kourousias et al., 2015). 
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2.3.3.1 Synchrotron radiation based micro-XRF spectroscopy 

Synchrotron radiation (SR)-XRF microimaging utilizes the flexibility of variable incident X-

ray energy and advanced sample manipulator stages to realize rapid analysis of elements. 

Micro-spectroscopy combined with spatial distributions (for trace elements analysis) are 

attractive in this regard to disease diagnostics as it enables simultaneous analysis of trace 

elements (Kourousias et al., 2015) in biomedical samples. Synchrotron X-ray fluorescence 

microscopy enabled 2D mapping of trace biometals at cellular level and also for 

quantification of their semi-quantitative analysis of their levels with submicron resolution 

(Fahrni 2007, Marmorato et al., 2011). SR-XRF micro-spectroscopy can therefore be used for 

2D and 3D spatial mapping of elements in trace biometals in sample specimen 

(Gherase and Fleming 2020). Synchrotron radiation micro-XRF enabled inhomogeneous 

distributions of Cu and Fe in human prostate spheroid cells using DU145 (cancerous) and 

RWPE-1 (normal) cell lines supplemented with zinc chloride (Rocha et al., 2019).  

Synchrotron radiation (SR)-based XRF has been used to determine the spatial mapping of Zn, 

Fe and Cu in incubated prostate cancer cells (Kawakami et al., 2003) using Monte Carlo 

simulations in conjunction with X-ray diffraction. In this study, the levels of Fe and Cu were 

found to be at elevated in tumor specimens compared to normal specimens. SR-XRF enabled 

determination of trace biometals concentrations for cancer diagnostics in  breast tissues (Silva 

et al., 2006). The levels of Fe and Cu were also higher in cancer tissues than in normal tissue 

thus a possible breast cancer diagnostic tool. The concentration of Zn was low in cancerous 

tissues as compared to non-cancerous prostate tissues. Similarly, the concentrations of Fe and 

Se were found to be in high levels  in cancerous tissues (Banaś et al., 2001). The increased 

levels of Mn and Fe are correlated to free radicals production which is a precursor to 

carcinogenesis (Halliwell and Gutteridge 1984). SR-XRF enabled determination of trace 

biometals in breast cancer patients’ serum (Naidu et al., 2019) where elevated levels of Fe, 

Cu and Pb were observed in cancerous with respect to normal subjects with suppressed levels 

of Mn, Zn and Se. Further, multivariate analyses on trace elements’ data by discriminant 

analysis classified healthy and malignant tissues at 98.8% accuracy where the correlation 

analysis revealed significant different correlations Zn and Se in the two studied groups. 

Scanning X-ray fluorescence microscopic analysis enabled 2D mapping of Fe, Cu and Zn in 

cell cultures (Matsuyama et al., 2009) where Zn and Cu were colocalized and Fe highly 

distributed in the nucleus of the biological samples. SRIXE has been used to analysis trace 

metals in cancerous tissues (Kwiatek et al., 2004) where a negative correlation of Zn and Cu 
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was established in cancerous soft tissues. Similarly levels of Zn and Se were suppressed and 

not correlated with high concentration of prostate specific antigen (PSA) in prostate cancer 

tissues which tend to be anti-carcinogenic to prostate cancer (Platz and Helzlsouer 2001, 

Gray et al., 2005). Micro XRF imaging enabled segmentation of elemental distribution 

images in stromal and neoplastic ovarian tumour and healthy tissue (Wróbel et al., 2019). In 

this study, the non-negative matrix factorization and K-means clustering and were used for 

image segmentation for characterization of stromal, tumour or unclassified areas utilizing 

elemental (P, Mg and Zn) distribution maps as potential biomarkers for cancer diagnosis. 

2.3.3.2 Synchrotron based XANES spectroscopy 

X-ray absorption spectroscopy (XAS) technique enhances determination of chemical 

oxidation states by the highly sensitive synchrotron radiation XANES (Castillo-Michel et al., 

2017) due to utility of more intense synchrotron beams. X-ray absorption near edge structure 

(XANES) enhanced rapid determination of chemical speciation at high resolution and 

provides non-destructive analysis to provide chemical information on the elements present in 

the sample (A Castillo-Michel et al., 2016, Aquilanti et al., 2017). XANES quantitatively 

determined oxidation state (Jones et al., 2020) of Fe where Fe K-edge absorption edge 

slightly shifted towards higher energies for Fe (III). Iron (Fe) as an abundant element occurs 

as either Fe
2+

 (ferrous iron) or Fe 
3+ 

(ferric iron) where Fe K-edge absorption edge slightly 

shifts towards higher energies when the chemical oxidation state increases (Jones et al., 

2020). Synchrotron-based XANES has the ability to determine the chemicall oxidation states 

of biometals for disease diagnostics (Christensen et al., 2004).  

 Other spectroscopic techniques for trace biometal analysis 2.4

Neutron activation analysis (NAA) (Zaichick and Zaichick 2016) has been utilized in an 

exploratory analysis of trace biometal concentration variations in cancerous prostate 

adenocarcinoma and healthy prostate tissues. The levels of Cr, Mn and Fe were high with 

suppressed levels of Zn and Se in cancer tissues compared to normal tissue sections. In this 

study, it is evident that malignancy significantly altered the levels of trace biometals in 

prostate tissue. Atomic absorption spectrophotometry has also been utilized in analysis of Cd, 

Ni, Co, Mn and Zn in urinary bladder cancer samples (Gecit et al., 2011). High 

concentrations of Co, Ni and Cd were evident (p<0.05) with decreased concentrations of Mn 

and Zn (p<0.05). In this study, it was established that there was a correlation between the 

biometals’ concentrations and bladder cancer occurrence. Graphite furnace atomic absorption 
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spectrophotometer (GFAAS) has been used to determine the levels of trace biometals (Zn, 

Cu, Se, Pb and As) in human urine (Lin et al., 2009). The concentrations of Zn and Se were 

significantly higher in urinary bladder cancer patients. This study indicated that elevated Zn 

and Se can be linked to the proliferation of cells in urinary bladder cancer patients as they are 

excreted in urine.  

It’s apparent that the utility of the trace biometals’ levels, their speciation and distribution 

profiles were not simultaneously determined thus the stage and types of cancers could not be 

identified. The above XRF and other spectroscopic methods are limited by weak spatial and 

spectral signals besides difficult analytical interpretation of highly-dimensional trace 

biometals’ data for disease diagnostics. Effective cancer management calls for early detection 

and diagnosis preferably at the cellular level. Cellular microenvironments are complex with 

subtle spatial distribution of the trace bimetals. Cancer diagnostics at the local stage of 

development based on trace biometals as biomarkers may be achieved by SR-XRF 

quantitative imaging at sub-micrometer resolution and low detection limits at cellular levels. 

 Machine Learning Techniques 2.5

The concentrations of cellular trace biometals are subtle thus the quantitative analysis 

requires to be ultra-sensitive analysis followed by robust multivariate analysis to process and 

extract the relevant analytical information that informs comprehensive diagnostic 

interpretation. Further, the identity and distribution of trace biometals in soft body tissues in 

their spectra or image domain is not straightforward despite the ability of combining trace 

analytical spectral sampling and imaging. The complexity of tissue structure makes the 

interpretation of spectral data difficult. The method is further limited by the weak spectral 

signals, spectral characteristics overlaps, analytical and interpretative challenges of the high-

dimensional data. These constitute a multivariate problem which requires application of 

multivariate machine learning techniques for rapid mining and extraction of vital information 

from the complex data for greater sensitivity and versatility (Mitchell 1999). 

Machine learning through self-adaptive learning has the ability to preprocess the data and can 

deal with peak overlaps and matrix effects hence its potential for indirect function 

relationships from robust results of large complex data sets (Luo 2006). Machine learning 

approaches deal with broad problem formulations (Kowalik and Einax 2006);reduction of 

large data sets into fewer dimensions for exploratory analysis, elimination of redundancy 
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information, visualization of multidimensional data and extraction of relevant chemical 

information. 

Multivariate statistical tools have been used for characterization of cancerous and healthy 

lung samples (Ren et al., 1997). Four multivariate chemometric tools namely; discriminant 

analysis (DA), PCA, cluster analysis and PR correctly distinguished the two groups based on 

the levels of Zn, Cu and Se in serum and hair samples. The discriminant multivariate 

analysis and decision tree induction (Cunha et al., 2006) have been applied to the scattering 

profiles on XRF data in which the univariate discriminant variable was used to identify the 

differences between cancerous and normal breast tissues. Exploratory analysis enabled 

characterization and classification of breast cancer tissues (97%) which suggests an effective 

scattering biomarker for cancer diagnostics. XRF coupled with PLSR and PCA has been 

successfully applied to chromium speciation (De Oliveira et al., 2010). Artificial neural 

network enabled characterization of human tissues into normal and cancerous where 3 layers  

were used with hyperbolic tangent and  sigmoid functions hidden and output layers 

respectively which resulted to a prediction of 94% (Hernández-Caraballo and Marco-Parra 

2003). 

The conventional methods of trace biometals analysis are expensive and involve tedious 

sample preparation with a limitation to simple comparisons of concentration levels in 

biomedical samples. Hardly are any attempts directed in the exploitation of trace biometal 

levels, speciation and imaging profiles together with their multivariate alterations in relation 

to the biochemical composition of diseased tissues and fluids. These limit the applicability of 

the conventional methods to direct and rapid analysis of trace elements levels and their 

speciation alterations in human body tissues and fluids (urine) for reliable cancer diagnostics 

in multivariate domain. Additionally, less efforts in incorporation of multivariate or other 

advanced data analysis techniques such as machine learning to elucidate the role of the 

analytes in carcinogenesis. The complexity of the samples and data interpretation (the 

identity and distribution of the trace biomarkers does not appear in a straightforward way as 

their spectral characteristics overlap that constitutes is a multivariate problem.  These patterns 

are complex but they are discernible by use of machine learning techniques since they are 

subtle and the relationships multivariate. In this study, machine learning techniques has the 

potential to address this problem as it has ability to reduce the dimensionality of multispectral 

images and to extract the subtle analytical information. These can be realized via a variety of 

unsupervised exploratory algorithms, artificial neural networks and support vector machines.  
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CHAPTER 3.0 CHAPTER THREE 

THEORETICAL FRAMEWORK 

 Chapter Overview  3.1

In this chapter, the basic principles of X-ray fluorescence spectroscopy and the classical 

quantitative methods used in XRF quantitative analysis of elements are presented. In 

addition, the principles of multivariate machine learning technique principles are discussed as 

well as their utility in multivariate calibration modeling of XRFS spectra.  

 X-ray fluorescence spectroscopic analysis 3.2

In 1895, Wilhelm Conrad Roentgen did observe radiation during his study of cathode rays in 

high-voltage where he discovered X-rays. XRF spectroscopy is thus based on the interactions 

between EM and matter. Later, Henry Moseley in 1913 did discover a mathematical 

relationship between the atom number (Z) and wavelength of emitted X-ray characteristics of 

different atoms.  The X-ray fluorescence is based on the principle of radiation-interaction 

with matter through photoelectric effect (absorption and emission) and scattering (Compton 

or Rayleigh). The energy source (X-ray tubes or X-ray emitting radioisotopes) emits photons 

which excite and eject electrons in the sample (Bueno et al., 2005).  When an X-ray beam 

interacts with an atomic electron as shown in Figure 3.1, it is either absorbed or scattered 

where the absorption gives rise to the characteristic X-rays.  

 

 

Figure 3.1 Schematic representation of X-ray incident beam interaction with atomic electron. 
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XRF is normally based on the absorption of incident X-ray photon by atoms that gives rise to 

photo-electron emissions that leave vacancies in the inner shell as shown in Figure 3.2.  

 

Figure 3.2 Schematic mechanism of characteristic X-ray generation 

Higher shell electrons fill the vacancies through electronic transitions hence the characteristic 

X-rays are emitted. The characteristic energy and intensity indicate the element and its levels 

respectively (Markowicz 2011, Garg et al., 2021). The transition results to an X-ray of fixed 

characteristic energy that is detected by a Si(Li) drifted detector resulting to K and K

transitions. The qualitative and quantitative elemental information on sample specimens can 

be obtained through analysis of characteristic energy and intensity of emitted photons.  

 

3.2.1 Energy dispersive X-ray fluorescence (EDXRF)  

EDXRF instrumentation represented in Figure 3.3 is well-established approach for 

simultaneous and non-destructive analysis of elements in sample specimens (Chen et al., 

2008).  
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Figure 3.3: Energy dispersive X-ray fluorescence instrumentation 

EDXRF enhance rapid, direct and non-invasive simultaneous elemental analysis in a variety 

of samples (Beckhoff et al., 2007) where the fluorescence and scatter peaks (due to light 

elements Z<20) are predominant. The detector measures the characteristic energies and 

intensities of the emitted X-rays which allows the identification of the element present in the 

sample and the elemental quantitative levels. 

3.2.2 Total reflection X-ray fluorescence (TXRF)  

TXRF is a surface sensitive non-destructive analytical technique (Schmeling 2019) that 

involves irradiation of a near optically flat sample with a beam of X-rays for microanalysis. 

In TXRF mode, the sample is placed on a flat substrate and scanned at small angles of 

incidence lower than 0.1o . TXRF quantification of elements is basically by internal 

standardization where addition of internal standard to determine the relationship between net 

count rate and analyte concentration (Greaves et al., 2000). Additionally, the  Compton  

scatter  can be used as an internal standard (Yap et al., 1988) to determine the levels of the 

analytes.  

Excitation in total reflection geometry gives a significant reduction of the background and 

doubles the fluorescence that has the potential for analysis of trace elements (Nagata et al., 

2006). The large spectral background in conventional XRF as a major challenge is greatly 

reduced in TXRF spectroscopy. TXRF is thus a cost-effective spectrometric technique with 

penetration depth due to primary X-rays a few nanometers into the sample hence significantly 
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reduce the scatter background intensity in XRF spectra and enhanced sensitivity of analytes 

detected. 

 Synchrotron radiation based XRF analysis 3.3

A synchrotron is an electron-accelerating machine of a high radio frequency (RF) 

electromagnetic radiations attained by multi-MeV electrons moving in a magnetic 

field  (Gherase and Fleming 2020). The synchrotron light source has a linear accelerator, a 

booster ring, a storage ring and beamlines where the X-ray beam interacts with the sample as 

shown in Figure 3.4. 

 

Figure 3.4 Synchrotron radiation beamline arrangement 

In the linear accelerator, an electron gun fires electron that move relativistic as it enter a 

booster ring for further acceleration where it circulates with an optimized energy to accelerate 

the electrons (Bilderback et al., 2005). The bending magnet together with the insertion 

devices (wigglers and undulators) in the storage ring bend (accelerate) the electron that 

results in production of synchrotron light. Beamline run off tangent to the storage ring to 

transport SR from the source to the sample. Beamlines are designed to utilize chromatic 

optics to focus beam onto the sample (Northrup et al., 2016). The photons then travel at a 

tangent to the storage ring into experimental hutch where it is used for XRF  analysis (Garg et 

al., 2021).  

The SR  source is normally polarized with low emittance, high collimation, reliability in 

energy due to  monochromatic emission (Kainth et al., 2020). The synchrotron radiation 
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(SR)-XRF combines the flexibility of variable incident X-ray energy and advanced sample 

manipulator stages for sample analysis with detection limits below 10 ag and lateral 

resolution better than 100 nm (Silversmit et al., 2009) thus can solve some of the 

shortcomings classical laboratory XRF approaches due to remarkable features (tunability, 

high flux, and linear polarization in the ring plane).  

3.3.1 X-ray absorption spectroscopy (XAS) 

A synchrotron-based XAS approach involves modulation of X-ray absorption coefficient 

over energies near and above the X-ray absorption edge. XAS measures the absorption 

coefficient of X-rays as a function of energy above the absorption edge of a given element 

(Aquilanti et al., 2017, Aquilanti et al., 2017) where an atom absorbing an X-ray of energy E 

which destroys a core electron at energy E0 and creates a photo-electron with energy (E−E0). 

These results to the photo-electric effect of an electron from the absorption of an X-ray 

photon. XAS thus leads to change in linear absorption coefficient (μ) of an element in a 

sample (Liotti et al., 2015, Terzano et al., 2019).  

XAS enables rapid data acquisition at high signal-to-noise ratio and measurements can be 

acquired at room temperature. The analysis is done at a synchrotron radiation facility with 

intense and tunable monochromatic beams of X-ray. Figure 3.5 shows how the XAS 

measurements are typically carried out based on the incoming beam photon intensity that is 

measured before the sample (I0) and the transmitted intensity is measured after the sample (It) 

for different monochromatic photon energies besides the fluorescence emissions. 

 

Figure 3.5 Synchrotron radiation X-ray absorption and fluorescence spectroscopy 

For a sample of length (d), the absorption coefficient µ(E) is the probability of absorbed X-

rays as per the Lambert-Beer’s law; (Terzano et al., 2019). 

( )E d

oI I e             3.1 
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Transmission measurement directly quantifies the attenuated beam through the sample as 

incidence beam energy is normally scanned across an elemental absorption edge. 

Thus, 

( )
( ) [ ]

( )

o

t

I E
E d In

I E
            3.2 

For X-ray fluorescence mode a solid-state multi-detector at is placed perpendicular° with 

respect to the incidence X-ray beam where the absorption coefficient is measured as a 

function of X-ray fluorescence yield fI (Porcaro et al., 2018) normalized by oI is given by 

( )
f

o

I
E

I
             3.3 

In transmission mode, µ(E) is measured as a portion of the signal that is being absorbed while 

in fluorescence mode the intensity of the secondary process of photon re-radiation after 

absorption is implied (A Castillo-Michel et al., 2016). Fluorescence intensity measurement 

quantifies the characteristic X-ray fluorescence emitted as a consequence of absorption 

(Northrup et al., 2016). An edge results from a core electron absorbing energy equal to or 

greater than its binding energy. Synchrotron-radiation based XAS offers a direct method for 

chemical speciation analysis in a local chemical environment and occurs in two regimes: 

XANES) and EXAFS as shown in Figure 3.6 (Porcaro et al., 2018). 
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Figure 3.6 Synchrotron radiation X-ray absorption spectroscopy 

XANES is sensitive to chemical oxidation states and coordination of the absorbing atom. 

Spectral structure closer to the absorption edge is dominated a small shifts in the absorption 

edge position depending on chemical oxidation state (Terzano et al., 2019).  

In EXAFS, the wave function due to excited photoelectron is modulated by interference of 

the outgoing wave and the backscattered wave on surrounding neighboring atoms. EXAFS 

results from backscattering of the photoelectron by neighboring atoms, and provides 

information about neighbor identities, the coordination numbers and interatomic distances 

(Terzano et al., 2019).  

Normalized modulation of absorption coefficient (Mastelaro and Zanotto 2018) is given by; 

( ) ( )
( )

( )

o

o

E E
E

E

 








         3.4 

Where ( )E  is the measured absorption coefficient, ( )o E  is the absorption of a smooth 

function due to the background of isolated atom and ( )o E is the measured absorption 

jump at threshold energy Eo.  
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The corresponding wave vector of the photoelectron ejected due to the absorption of X-ray 

photons is described by(Mastelaro and Zanotto 2018); 

2 ( )om E E
k


           3.5 

where E  is the incident photon energy and oE  is particular absorption edge energy. 

The EXAFS is basically described by dampened harmonic oscillation through the following 

equation (Porcaro et al., 2018); 
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 is the scatter amplitude, λ is the electron free path 
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 accounts for many-electron excitations. 

3.3.2 Synchrotron based micro XRF 

In order to probe the sub-cellular complexity of trace elements in relation to disease, sub-

micrometer resolution at low detection limits is necessary. X-ray fluorescence (XRF) analysis 

with a submicron probe µXRF spectroscopy is the most direct and sensitive method for such 

a task at the cellular level. Micro XRF (µXRF) in this context with a spatial resolution 

significantly smaller than conventional XRF enables micron size sample analysis for 

elemental mapping elements. In this study, X-ray Fluorescence Microscopy (XFM) is aimed 

at quantitatively determining and mapping of trace biometals by specialized microprobes at 

synchrotron facilities for high spatial resolution. The XRF microscopy set-up can resolve 

spectral spatial information at high spatial resolution the biometal present at low energy X-

ray regime.  

3.3.3 X-ray absorption near edge spectroscopy (XANES)  

X-ray fluorescence lines shift can be used to determine chemical oxidation state (Jalilehvand 

2006). XANES is useful for probing the oxidation state and local electronic structure to 

identify and quantify chemical species and gives a direct measurement of chemical state 
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(valence state) of an element. Spectral structure close to the absorption edge is dominated by 

a combination of a small shifts in the absorption edge position depending on electronic 

(oxidation) state (Northrup et al., 2016).   

3.3.4 Extended X-ray absorption fine structure (EXAFS)  

EXAFS measures the energy dependence of the absorption spectrum and enhances excitation 

of deep core electrons into higher unoccupied or continuum states. It enhances measurement 

of the energy dependence of the absorption spectrum coordination and elemental association 

hence the radial distribution of atoms around the photo absorber (Northrup et al., 2016). 

 Quantification methods in XRF 3.4

This involves conversion of characteristic intensities measured from spectral analytes to the 

concentrations of elements based on excitation source intensity, overall composition and 

absorption properties (Markowicz 2011).  

The conventional matrix correction methods are either by internal standard addition and the 

dilution method. Additionally, matrix effects are mathematically eliminated by  means of 

linear regression method (fundamental parameters method and the influence coefficient 

method) and machine learning techniques (Qi et al., 2015). The linear regressions-based 

models (fundamental parameter methods) and the influence coefficient method basically use 

the element measured to determine a regression equation without considering the roles of 

other major elements. The methods determines a regression relation from the element to be 

measured with little attention to the roles of other elements, especially major elements that 

have a great influence on analytical determination of trace elements for instance Fe causes 

significant increase in fluorescence yield of Co (Lu et al., 2022). 

3.4.1 Fundamental parameter method (FPM)   

The fundamental parameters method is based on theoretical mathematical expressions for 

quantification of fluorescence emissions. The fundamental parameters include; mass 

absorption coefficients, fluorescence yields and characteristic X-ray energies (Beckhoff et al., 

2007). The method is built based on the Sherman equation 9 with consideration of both 

primary and secondary fluorescence of calibration and analytical steps and describes the 

relationship between the emitted intensities of the sample and its elemental content. 

( , ....... )j j k mI f C C C          3.7 
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Where jI is element’s j net intensity with jC as the concentration of j and .......k mC C as other 

elements’ concentrations. 

In the calibration step, elements in the pure sample are measured for determination of the 

relative intensities of analytes. In the second step, iteration compares the experimental 

spectrum with the theoretical result for determination of the concentrations of the analytes. 

This method is limited by the requirement to accurately know the spectral distribution of the 

incident beam.    

3.4.2 Influence coefficients method 

Influence coefficients quantify matrix effects individually,the matrix effect of element j, the 

matrix effect of element k, … on analyte i. The elemental concentration of an element i can 

then be written as a function of its characteristic line intensity, corrected for the 

concentrations of other elements by influence coefficients. 









  j

j

ijii CRC 1           3.8

  

In which iC  is the concentration of the analyte, jC expresses the concentration of other 

elements in the sample and ij  is the influence coefficient of element j for analyte i. 

Influence coefficients can take into account both absorption and enhancement effects but 

require more standards than the fundamental parameters method.  

 Machine learning multivariate analysis 3.5

Machine learning (in the domain of XRF spectra) involves application of supervised and 

unsupervised univariate and multivariate analytical methods for simultaneous analysis of data 

(Eriksson et al., 2014). This enables extraction of comprehensive chemical information from 

the spectroscopic analysis in complex multivariate spectra (Brereton 2003). ML enables the 

representation of multivariate data into few dimensions to extract important information from 

complex multivariate. These is achieved by reducing the data complexity while increasing the 

information gained even in the presence of large uncorrelated spectral variations or noise. 

Biomedical sample analysis results to a multivariate analytical problem that requires 

application of multivariate techniques. The combination of spectro-analytical techniques with 

machine learning broadens the applicability for mining and extraction of useful information 
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from spectral data for disease diagnostics. The method surpasses current practice in that a set 

of advanced machine learning techniques to extract chemical information from the integrated 

spectroscopic images. In the domain of XRF, the application of supervised and unsupervised 

multivariate analytical methods has the ability to reduce the dimensions of multispectral 

images and extract the subtle analytical information (Mitchell 1997).  

3.5.1 Pattern recognition techniques 

Pattern recognition (PR) assigns objects or samples  to a class based on similarity or 

dissimilarity in matrix composition (Marini 2010). PR is based on the fact that samples of 

similar chemical compositions tend to produce similar spectral shape when excited by X-

rays. Pattern recognition is either pure classification or class-modeling technique (Marini 

2010). In this case, each category is modeled separately where samples that fit the model 

belong to the class while those which don’t fit do not belong to the class.  

The XRF spectral data of materials with similar chemical composition tend to produce 

spectral pulse-heights of identical shape which is characteristic of the sample's chemical 

composition which can be recognized through pattern recognition(Yin et al., 1989).  The 

classification can either be by discrimination between classes or similarities within a class 

(supervised and unsupervised approaches). A significant portion of machine learning 

applications in analytical chemistry falls within the general framework of pattern 

recognition(Kowalski and Bender 1972).  

 

3.5.1.1 Principal Component analysis 

PCA is an exploratory method for extraction of information (variance) from large data sets 

thus creates a “window” in a multidimensional space where the matrix with several variables 

correlated to each other (Freitas et al., 2010). It is the most utilized multivariate chemometric 

tool for exploratory data analysis and predictive modeling (De Leeuw 2011) to extract  and 

visualize vital hidden characteristic information. The multivariate PCA model is developed 

by orthogonal (independent) basis vectors (eigenvectors) called principal components (PCs) 

which reduce the highly dimensional datasets to a lower dimensional space. Each PC 

summarizes the data sets by generating scores for the observations with corresponding 

loadings for the variables (Bortoleto et al., 2005). These removes redundant information 

while retaining the most important information and differentiate samples by groupings 

(Romanenko and Stromberg 2007) for characterization of samples for similar or different 
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spectral characteristics. 

PCA transforms uncorrelated variables that represent the structure of the original data set 

(Deming et al., 1988) where the matrix Xc is decomposed to T and also loadings P by 

orthogonal computation until the variation correlated (Brereton 2003): 

T

cX TP E              3.9 

3.5.1.2 K-Nearest Neighbors (KNN) 

KNN assigns a training set to known class by calculating the distance (Euclidean) of an 

unknown sample to the training set and ranks them in order. It then picks the k smallest 

distance and project the classes in which the unknown is closest to through the ‘majority 

vote’ and use this for classification (Brereton 2003). The Euclidean distance for the closest 

neighbours is given by; 
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                   3.10 

Where ai denotes the training set for the i
th

 sample and bi is the test set and k indicate the 

number of neighboring points to consider when classifying a data point where the Euclidean 

distance between them is used to classify the sample. The test sample is normally assigned to 

a class with majority of the training set. 

Popular other chemometrics techniques that will be used include pattern recognition include 

k-nearest neighbours (KNN) which predict samples based on the nearest training instances as 

shown in Figure 3.7.  

 

Figure 3.7 KNN for pattern classification (Sartoros and Salin 1997) 

In this case, it will search for k nearest training examples in feature space and uses their mean 

matrix for prediction for instance average Euclidean distance between 2 samples (Wilson and 

https://en.wikipedia.org/wiki/Euclidean_distance
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Martinez 2000) as follows. The k nearest neighbours are f i r s t  selected and their 

frequencies determined and the class to which majority of training set belongs is then 

assigned to the test sample (Sartoros and Salin 1997). If a tie occurs, then the class with 

close neighbors is automatically selected. 

3.5.1.3 Hierarchical Cluster Analysis 

Hierarchical Clustering algorithms are data analysis techniques that allows partitioning of the 

data by a rooted (binary) tree (dendrogram) (Bueno et al., 2005). Each cluster (starting with 

the whole dataset) is divided into two, then divided again, and so on. HCA partitioned the 

samples in clusters which in turn can be partitioned in sub-clusters and so on to a certain level 

to detect the hierarchical structure of the system and decomposes the data objects into tree of 

clusters. 

3.5.2 Multivariate calibration strategy for quantitative analysis of trace biometals 

Multivariate calibration involves mathematical modelling that reproduce concentration matrix 

Y from a matrix X for detection and modeling optimization for prediction of unknown sample 

of similar matrices (Nagata et al., 2006). Multivariate calibration models enhance accurate 

linear and nonlinear prediction with good robustness. Neural-network or kernel based 

(Support Vector machines) are more reliable and flexible than linear models (PCR) for fitting 

the response calibration curve for quantitative analysis as they utilize non-linear 

approximations to model non-linear relations in the data (Olivieri et al., 2011).  

3.5.2.1 Support Vector Machines 

Support vector machine (SVM) method that uses a kernel matrix to transform a non-linear 

separation to produce boundaries between classes (Xu et al., 2006). SVM uses kernel matrix 

(radial basis, sigmoidal and polynomial functions) for data transformation to classify and 

quantify the attribute space by a hyperplane that maximizes on the margin between different 

classes (Xu et al., 2006). They are used for both as a characterization and calibration 

technique for both classification and regression technique (Thissen et al., 2004). This 

technique often yields a good predictive model where it shows superior performance 

compared to traditional classical methods applicable to non-linear problems for complex data 

(Thissen et al., 2004). Support vector machine regression (SVMR) has the potential for 

optimization to map the data X to a higher-dimension space through non-linear mapping and 

regression (Xu et al., 2006) given by; 

https://en.wikipedia.org/wiki/Support_vector_machine
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Where 𝛷𝑖(𝑥) is a set that maps input features, 𝑤𝑖 and 𝑏 are coefficients. 

3.5.2.2 Artificial neural networks (ANNs)  

Artificial Neural Network (ANN) involves mathematical modeling aimed at training, 

visualizing, and validating models (Fahlman 1988, Baffes 1989) which does not rely on 

assumption (Chang and Islam 2000). This involves combination of computer technology and 

biology to solve many problems such as process control, structure analysis and matrix 

calibration. The artificial neural networks (ANNs) contain artificial neurons inspired in the 

natural neurons in human brain. ANN algorithms (utilizing backward error propagation 

algorithm) for regression enhances prediction of the relationship (biometal concentrations) 

between its inputs and the desired output in model simulates(Luo et al., 1997). 

Backpropagation algorithm in feed-forward enables the nodes to propagate their signals 

“forward” with errors propagated backwards (Rumelhart et al., 1986). The nodes are 

computational units which receive inputs, and transform them into output by a complex 

process (single node might be in more than one network).  

A natural neuron u s u a l l y  receives a signal via a synapses at the dendrites and when the 

signal is strong beyond a certain threshold, the neuron is then activated and emits a signal 

(Gershenson 2003).  An artificial neural network has layered arrangement as shown in Figure 

3.8 where the input layer supplies the data to hidden layer which intern propagates to the 

output layer.  
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Figure 3.8 Artificial neural network architecture (Hernández-Caraballo and Marco-Parra 2003) 

The input data (matrix) contain one row for each spectral image and one column for each 

measured independent variable upon which the calibration is based. The dataset is split into 

three subsets; say 65% training set, 25% for testing and 10% validation of the calibration 

models. The selection of the samples into subsets is made according to the principal 

component analysis (PCA) approach (Gershenson 2003). This algorithm utilizes supervised 

learning thus it’s provided with examples of the inputs variables together with the outputs 

to be computed and the difference between expected and actual results (error) calculated 

(Heermann and Khazenie 1992). The tan-sigmoid and linear transfer functions are then used 

to determine the output (Pao 1989). 

The spectral intensities of the training data are input into the first layer of the network. The 

input sum of 𝑥𝑖 and the weights  𝑊𝑖𝑗 of threshold 𝜃𝑖𝑗  (Luo et al., 1997).  The input is given 

by  

( )j i ij ijNet x w            3.12 

The sigmoid transfer function used in this study is given by; 
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The output is given by; 

( )j jY f Net           3.14 
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For node k, the output is given by the weighted sum as; 

( )k j jk ikNet Y W           3.15 

The regressions are then built from the transformation by the sigmoid function given by 

( )k kOut f Net          3.16 

where kOut  is the concentration to be predicted from the function f(x) and x the vector 

acquired from the spectrum. The Multivariate calibration can be obtained from f(x) using the 

calibration simulates. 

The artificial Neural Network multilayer perceptron (MLP) and the radial basis function 

(RBF) (Chakraborty et al., 2000) with a single input layer, several hidden layers of neurons, 

and an output layer (Brown and Lo 1998) has the potential for optimal classifications. The 

known sample spectral data are then used for training and validating the ANN, which in 

turn uses it’s learnt knowledge for predictive classification of unknown samples of similar 

matrices (Brown and Lo 1998).  
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CHAPTER 4.0 CHAPTER FOUR 

MATERIALS AND METHODS 

 Chapter Overview  4.1

This chapter contains ten sections that form the materials and method. Section 4.2 presents 

the reagents and materials used in method development while section 4.3 emphasizes on the 

sampling of simulate and real biomedical samples. Subsequent sections 4.4, 4.5 and 4.6 

emphasizes on simulation process, cell culturing and urinary tract sampling. Section 4.7 

highlight on tissues and urine sample preparation while section 4.8 gives quality assurance 

standards. Section 4.9 illustrates the XRF spectroscopic analysis while section 4.10 presents 

the data analytical procedure. Section 4.11 highlights on application of multivariate machine 

learning techniques for the development of cancer diagnostic kit in section 4.12. 

 Reagents and materials 4.2

To closely mimic the human tissue and urine, properties like absorption coefficient and 

scattering coefficients were taken into consideration and all the analar reagents were used in 

sampling, cell culture and sample preparation. Quartz glass as TXRF sample carriers were 

mechanically cleaned and washed in doubly distilled water and rinsed successively with 

doubly de-ionized water and acetone then placed in basic cleaning solution at 60 
o
C for 2 

hours and then in 10% nitric acid for another 2 hours. The carriers were then placed in a 

drying chamber at 60 °C for further 2 hours to cool down to room temperature. After cooling, 

the quartz sample carriers were then siliconated at the centre with 10 μL of silicone solution 

(Gruber et al., 2020) for homogenous distribution of the sample. Nickel due to the fact that 

that it was part of the analytes and no detected in the samples in this study was used as TXRF 

internal standard for quantification prepared by diluting 1000 mg of Ni in 1 litre of doubly 

distilled water.  

 Sampling 4.3

During sampling, the integrity of the specimen was not be compromised before analysis by 

minimizing contamination during sample collection, preparation and storage. Human tissue 

and urine simulation process were intended to provide a simple and economic ways of 

preparing reliable multivariate calibration strategy for quantitative determination and imaging 

of trace biometals in human soft tissue and urine samples.  
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4.3.1 Simulate sample preparation 

Synthetic simulates were prepared from analytical grade base reagents spiked with multi-

elemental stock solution of elements of interest (Cr, Mn, Fe, Cu, Zn and Se). The two sets of 

multi elemental stock solutions with well-known concentrations were made using paraffin 

wax  and urea as the base matrices to simulate soft human tissues and urine respectively as 

they mimic real sample properties of relevance to X-ray interaction such as absorption 

coefficient and scattering (Culjat et al., 2010). The masses of the salt to be dissolved in were 

as shown in Table 4.1; 

Table 4.1 Source of trace biometals 

Source Symbol Molecular 

weight 

% 

Assay 

Trace element 

of Interest 

Copper (I) Bromide CuBr  143.45 98 Cu 

Copper (II) Chloride 
2 2CuCl H O  170.48 98 Cu 

Ammonium Ferrous 

Sulphate 
4 2 4 2 2( ) ( ) 6NH Fe SO H O  392.13 98 Fe 

Iron (III) chloride 
3FeCl  162.2 99 Fe 

Zinc Chloride 
3ZnCl  136.29 98 Zn 

Selenium Dioxide 
2SeO  110.99 99 Se 

Manganese (II) Sulphate 
4 2MnSO H O  169.01 98 Mn 

Chromium Acetyl 

Acetonate 
15 21 6C H CrO  349 98 Cr 

For 1000 ppm of trace analyte, mass m was calculated as; 

1 100
. /

g
mass M W g litre

Z assay

 
   

 
        4.1

  

Where M.W is the molecular weight of the salt and Z is the atomic number.  

For 2000 ppm of trace analyte, mass m was calculated as; 

2 100
. /

g
mass M W g litre

Z assay

 
   

 
       4.2 

Stock solutions of the elements of interest in their respective chemical speciation were made 

as per Table 4.2.  
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Table 4.2 Elemental concentration of the stock solution 

Analyte Mass of the compound salt 

(g/1000 ml) 

1 litre Stock solution 

(ppm) 
2Zn 

 4.27 2000 

4Se 
 2.83 2000 

2Cu 
 2.74 1000 

Cu
 2.31 1000 

2Fe 
 14.30 2000 

3Fe 
 5.91 2000 

2Mn 
 3.13 1000 

3Cr 
 6.71 1000 

6Cr 
 1.49 500 

 

Simulate samples were prepared through spiking appropriate levels (Cu, Zn, Fe, Se, Cr and 

Mn) and speciation (Cu, Fe, Cr and Mn) of the elements of interest in which they occur in the 

human body tissue and urine. The volume of stock solutions corresponding to the selected 

levels of simulate samples was determined by; 

1 1 2 2CV C V            4.3 

Where C1 and C2 are the concentrations of stock solution and simulate sample respectively, 

V1 and V2 are the volumes of the stock solution used and the volume used for simulate sample 

respectively.  

4.3.2 Soft body tissue simulation 

Model soft body tissue samples were prepared from analar grade paraffin wax as the tissue 

equivalent material (Bethesda 1989, Ferreira et al., 2010). The base matrices were doped with 

Zn, Fe, Cu, Cr, Mn and Se from the stock solution using predetermined dilution factors in 

their respective chemical speciation and concentration ranges selected to span the wide 

occurrence of trace elemental compositions in human soft tissues (De Silva et al, 2009) as 

shown in Table 4.3 and Appendix III for higher and lower speciation respectively.  
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Table 4.3 Spiking scheme of trace elements in tissue base matrix 

 

Analyte 

Simulate sample concentration (ppm) 

S1Th S2Th S3Th S4Th S5Th S6Th S7Th S8Th S9Th 
2Cu  2.0 10.0 14.0 20.0 35.0 30.0 27.0 40 50 

2Zn  25 300 200 450 10 80 30 95 70 
3Fe  32 24 65 80 180 200 300 350 420 

4Mn  9.6 1 100 5 1.5 50 3 1.7 13 
6Cr  0.5 15 10 0.6 1.5 0.8 0.3 1 2 

4Se  0.5 1 2 1.6 5 10 3.5 7.5 9 

 

 

Analyte 

Simulate sample concentration (ppm) 

S10Th S11Th S12Th S13Th S14Th S15Th 
2Cu  100 120 150 5 350 200 

2Zn  105 150 55 250 40 130 
3Fe  250 5 400 600 750 800 

4Mn  100 90 2.5 4.5 7 3.5 
6Cr 

 25 20 38 60 41 50 
4Se  0.7 1.2 15 30 20 12 

Sample size; 15 

 Urine Simulate 4.4

To closely mimic the human urine properties like absorption coefficient and scattering 

coefficients, all the analar reagents were added in about 100 ml of doubly distilled water and 

homogenously stirred for all the crystals to dissolve. The human urine majorly composed of 

water (95%) and urea (2%) was simulated (Putnam 1971) as shown in Table 4.4 below.  

Table 4.4 Source of trace elements of interest used in simulation  

Source  Chemical 

Symbol  

Molecular 

weight 

Mass (g)/litre 

Urea 
4 2CH N O  60.06 15.000 

Uric Acid 
5 4 4 3C H N O  168.11 0.250 

Creatinine 
4 7 3C H N O  113.12 0.881 

Potassium Chloride KCl  74.55 2.308 

Sodium Citrate 
3 6 5 7 2.Na C H O H O  294.10 0.720 

Sodium Chloride NaCl  58.44 1.756 

Ammonium chloride 
4NH Cl  53.49 1.266 

Calcium Chloride 
2CaCl  110.99 1.850 

Magnesium Sulphate 
4 2.7MgSO H O  120.37 1.082 

Sodium Sulphate 
2 4Na SO  142.04 1.700 

Sodium dihydrogen 

phosphate dihydrate 
2 4 2.2NaH PO H O  156.01 2.912 

https://www.sigmaaldrich.com/catalog/substance/sodiumdihydrogenphosphatedihydrate156011347235011
https://www.sigmaaldrich.com/catalog/substance/sodiumdihydrogenphosphatedihydrate156011347235011
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Sodium phosphate 

dibasic dihydrate 

 

2 4 2.2Na HPO H O  141.96 0.0831 

Potassium hydrogen 

Oxalate 

COOKCOOH  128.12 0.0035 

 

Appropriate amounts of salts (all analar grade) were added and stirred until the solution was 

clear (Shmaefsky 1990). The urine base standard solutions were doped with Zn, Fe, Cu, Cr 

Mn and Se predetermined from the stock solution in their respective concentration ranges 

(Suzuki et al., 2004, Majewska et al., 2014) and chemical speciation in well selected for trace 

elemental compositions in human urine as shown in Table 4.5 and Appendix IV for higher 

and lower speciation respectively. 

Table 4.5 Spiking scheme of trace elements in urine base matrix (urea solution). 

 

Analyte 

Simulate sample concentration (ppm) 

S1Uh S2Uh S3Uh S4Uh S5Uh S6Uh S7Uh S8Uh S9Uh 
2Cu  0.5 2 1 2.5 0.8 5 0.7 10 7 

2Zn  11 70 100 10 90 200 300 500 32 
3Fe  2 1.5 5 20 1.8 2.3 3.3 2.5 30 

4Mn  2 5 1 0.5 3 2.4 0.8 15 20 
6Cr  2 3 7.5 4.7 2.5 6.0 5 8 10 

4Se  1.8 2.7 3.5 3 5 1 2 6 1.2 

 

 

Analyte 

Simulate sample concentration (ppm) 

S10Uh S11Uh S12Uh S13Uh S14Uh S15Uh 
2Cu  15 20 3 5.5 12 25 

2Zn  600 40 30 15 9 5 
3Fe  12 45 80 35 100 60 

4Mn  1.5 3.5 2.5 1.8 4.5 25 
6Cr  15 12 1.5 3.5 20 30 

4Se  2.5 10 15 35 18 20 

Sample size; 15 

 Cell Culturing  4.5

Prior to culturing process, the incubator was sterilized with 70% ethanol to minimize 

contamination. The cell culture substrate support robust cell growth as it is optically 

transparent for cell growth (Finney and Jin 2015). Silicon nitride membrane windows were 

used as substrate due to their low fluorescence background that supports robust cell 

attachment and proliferation (Carter et al., 2010).  

https://www.sigmaaldrich.com/catalog/substance/sodiumphosphatedibasicdihydrate177991002824711
https://www.sigmaaldrich.com/catalog/substance/sodiumphosphatedibasicdihydrate177991002824711
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Three sets of cancer cell lines; DU 145, Hela 229 and Vero (control) each of aliquots 1 μL 

cell suspension in culture growth media at density 1 × 10
6
 cells/mL were seeded on 100 nm 

thick silicon nitrite windows as shown in Figure 4.1.  

 

Vero x10    Du145 x10 

Figure 4.1 Visible light microscopy images (10x) for normal and cancerous cell cultures 

Cells were cultured as a monolayer in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% of an antibiotic–antimycotic mixture 

(1%; Sigma), and trypsinized before culturing (Podgorczyk et al., 2009).  After 24 hours, the 

culture medium was replaced with fresh DMEM growth medium or complete essential 

(growth) medium supplemented with 10% foetal bovine serum (SIGMA-Aldrich), 100 U/ml 

penicillin–streptomycin solution (SIGMA-Aldrich), 10-mM zwitterionic sulfonic acid buffer 

(HEPES) and 1-mM sodium bicarbonate (SIGMA-Aldrich) (Pascolo et al., 2014). The 

cultures were fed periodically by complete essential (growth) at 37°C and later harvested at 

interval of 48 hours for 10 days at Cell culture lab, Kenya Medical Research Institute 

(KEMRI). The cells were then sub-cultured through trypsinization (using Tripsin). During the 

entire culture period, the non-adherent cells were removed and adherent cells washed twice 

with phosphate buffered saline (PBS), and the medium was replaced. The cultures were 

harvested at intervals of 48 hours for 10 days, fixed in Paraformaldehyde (PFA), centrifuged 

at 1200 rpm for 6 min and the supernatant discarded before being secured on a 4μm Mylar 

foils in a spectral cup. The monolayer cultures were grown be grown directly a borosilicate 

microscopic cover slips suspended by 4μm Mylar foil spread on a spectral cup under same 



42 
 

culturing conditions.  After the culture, the cells were fixed with 4% paraformaldehyde at 

room temperature for about 20 minutes and then washed with PBS for micro XRF imaging.  

 Urinary tract tissues and urine sampling 4.6

4.6.1 Ethnical approval 

This study was approved by Kenyatta National hospital/University of Nairobi Ethics 

Research Committee (P604/10/2017). The study conformed to Helsinki Declaration where 

participation was voluntary and informed consent (Appendix I) was given by participants. 

Patients diagnosed histopathologically with prostate and urinary bladder cancers but with no 

prior chemotherapeutic treatment were included in this study for urine sampling. The ultimate 

aim of the study was explained to the patients or their relatives before they gave an informed 

consent by signing the consent forms. The consented patients also gave additional 

demographic information (age, medical history, weight, and sex). For all the participants in 

the study, their confidentiality was strictly observed by ethically releasing all the results to 

participant individual file. 

4.6.2 Urine sampling 

Urine as a significant biomarker in disease diagnostics was used in this study due to its 

simplicity in collection, storage and preparation. As an attractive non-invasive sampling 

compared to the biopsy specimen, urine biomarkers enabled non-invasive approach for 

cancer diagnostics (Mahugija et al., 2018). The participants were instructed on the standard 

way of voiding and sampling urine into a labelled biochemically clean universal tube. All 

participants or their relatives (in severely ill cases) gave an informed written consent 

(Appendix I). 

4.6.3 Study population 

The participants were recruited from Kenyatta National Hospital Centre at adult medical 

wards level seven and eight where the patients had been admitted for urinary tract cancer and 

those attending the comprehensive care centre (CCC-KNH). The patients who volunteered 

after a health talk about the study were included in the study after giving an informed written 

consent in the language (English or Kiswahili) they best understood. The urine specimens 

were taken from patients from January 2018 to December 2021. A total of 100 participants 

were recruited in the study. The histopathologically classified tissue biopsies were: 
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hyperplasia cases, well differentiated cases, moderately differentiated cases and poorly 

differentiated cases.  

The target group for the study participants were those willing to participate in the study aged 

18 years and above. With 200 cases expected to be reported in a year, the sample size for the 

study population will be calculated using the Fishers formulae method(Cochran 2007); 

2

2

e

pqZ
N             4.4 

Where p is the incidence, q = (l-p), Z is the standard deviation of 1.97 at 95%, N is the 

sample size, p the estimated prevalence of an attribute present in the population at 6%, e the 

desired width of confidence interval and Z
2 

the square of the normal standard deviation 

corresponding to 95% confidence interval. 

2

2

05.0

)06.01(06.096.1 
N  

87N  

4.6.3.1 Inclusion criteria 

1. Patients diagnosed with no other significant diseases (diabetes mellitus, arthritis and 

liver malfunction) or malignancies but cervical, prostate and bladder cancers urinary 

tract cancer and aged 18 years and above. 

2. Those who consented to participate in the study 

4.6.3.2 Exclusion criteria 

1. Patients who objected to be included in the study due to their own reasons. 

2. Those diagnosed with other significant diseases (diabetes mellitus, arthritis and liver 

malfunction) or malignancies and aged below 18 years. 

3. Patients that had already began cancer treatment (for instance chemotherapy). 

Patients were given biochemically clean universal polyethylene bottles for urine sampling. 

(Yoshinaga et al., 2000) to minimize contamination and absorption effects. The 5 mL of 

urine samples were filtered using a 5 mm membrane filter to remove debris and stored at -80 

o
C (Lin et al., 2009).  
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4.6.4 Urinary tract tissue sampling 

Tissue blocks from patients confirmed by histopathologist as having; prostate and urinary 

bladder cancer were included in this study. The FFPE blocks for patients diagnosed with no 

other significant disease or malignancies but cervical, prostate and bladder cancers without 

prior chemotherapeutic treatment. Human soft tissue blocks (Su et al., 2004) were obtained 

from the KNH/UON tissue archives. The cancer tissue biopsy samples had been classified as 

hyperplasia and adenocarcinoma. The patients were categorized in two groups; the cancer 

group (70 patients with histopathologically confirmed adenocarcinoma cancer) and the 

control group (30 patients with benign hyperplasia). Paraffin embedded samples (non-

cancerous and cancerous) were extracted from select tissue using circular biopsy punches (2 

mm thick sections) with the help of microtome tissue cassette at KEMRI. The microtomed 

tissue section samples were fished onto 4 μm thick Mylar films stretched over plastic spectral 

cups and dried at room temperature. In order to avoid contamination, the tissue sections were 

not stained. 

 Sample preparation 4.7

4.7.1 Tissue simulates 

Tissue sections 8 µm thick tissue sections were microtomed from the tissue blocks for XRF 

analysis. 

4.7.2 Cell cultures 

Prior to preparation, the cell culture samples were defrosted (Wei et al., 2018) and about 0.5 

mL pipetted into a 1.8ml vial. This solution was later spiked with appropriate amount of Ni 

(internal standard) in a 1.8ml vial obtained from the equation;  

1 1 2 2CV C V            0.5 

About 10 l of the homogenate solution was deposited at the centre of quartz sample carrier 

and dried on a heating plate at a temperature of 60oC analyzed as the dry residue using total 

reflection XRF (TXRF) analysis. In order to minimize contaminations, the plates were 

covered with glass dishes in a class 100 laminar flow box. Precaution was taken to minimize 

contamination during all sample preparation. Each sample was prepared in duplicate for 

TXRF and micro-XRF analysis.  
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4.7.3 Urinary tract tissues 

Routine histopathological cancer tissue sample preparation had been carried to preserve the 

cell morphology of the tissues. Tissue sections ( 2mm thick) were microtomed from the tissue 

blocks for XRF analysis. Samples tissues were sectioned ( 5 m thick) from select tissue that 

was Paraffin embedded. The microtomed sample tissues were fished onto 4 m  thick Mylar 

film stretched over a plastic holder.  

The sectioned samples were fished onto 4 μm thick Ultralene and Mylar film stretched over a 

plastic holder. Freeze-dried samples were kept at −80 °C while sectioned unfixed samples 

were snap frozen in liquid isopentane.  

4.7.4 Urine samples 

Prior to preparation, the urine samples were thawed (Wei et al., 2018) in a water bath for 15 

min at 30oC . 1ml of the sample was pipetted into a 1.8ml vial and topped to 1.5ml . A 

calculated amount (10 μl) of Ni standards (100 mg/L in 2% HNO3) was added as internal 

standard and further mixed for 60 s for TXRF analysis. The mixture was shaken thoroughly 

mixed in the 1.8ml vial by shaking and 10 l of the homogenate solution was pipetted at the 

center of a quartz glass sample carrier and 10 μl of concentrated HNO3 added and then placed 

on a heating plate 60oC at a low pressure (400 mbar) to dry for TXRF analysis. About 10μl 

aliquot of urine sample solution was pipetted at the centre of the quartz-glass carrier and 

evaporated to dryness on a heating plate. The reflectors were then dried on a hot plate at 80 

ºC for about 10 min. 10µl of each sample in Ni internal standard was pipetted on sample 

carriers and dried on heating plate for about 1 minute in order to remove the liquid matrix. 

After evaporation of the solvent, the residue was analyzed by TXRF spectrometer S2 

PICOFOX for trace element determination under fixed glancing angle. The characteristic 

fluorescence radiations were then recorded by a Si (Li) detector as an energy spectrum. The 

high reflectivity of the sample substrate reduced the spectral background for low trace 

biometals detection limits. 

 Quality assurance 4.8

The retrieved FFPE tissue blocks and voided urine samples were assigned unique codes and 

matched for respective block number and patient’s files respectively. The histopathology 

technologist was engaged in tissue sample sectioning and staining. The retrieved blocks were 

processed (Okonda et al., 2022) while adhering to histological standard operating procedures 
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(SOPs) where the slides from best-preserved blocks containing adequate tissue were selected 

for sectioning. All reagents were prepared based on existing SOPs as per the manufacture’s 

instruction. 

 X-ray fluorescence analysis 4.9

The XRF variant techniques that are non-invasive and reliable with minimum sample 

preparation (John et al., 2001) were used for analysis of biomedical samples. Fully optimized 

XRF methodologies were utilized for simultaneous analysis of trace elements in human 

tissue, urine, simulates and tissue cultures. The input data matrix were intensities of the 

fluorescence and scatter where each row represented the spectral intensities and the column 

indicated the measured energy as independent variable upon which the exploratory and 

calibration analysis were developed. The quantification of trace elements were achieved 

through analysis of calibrated samples on the same sample substrate under similar irradiation 

conditions. 

The detected characteristic X-rays fluorescence energy (Table 4.6) relates to characteristic 

fingerprints of the element with the corresponding intensity linked to the concentration of the 

element (Van Grieken and Markowicz 2001, Beckhoff et al., 2007).  

 

Table 4.6 Photon energy of K shell emission lines 

Atomic  

number 

Element Kα1 

(eV) 
Kα2 

(eV) 
Kβ1 

(eV) 

24 Cr 5,414.72 5,405.51 5,946.71 

25 Mn 5,898.75 5,887.65 6,490.45 

26 Fe 6,403.84 6,390.84 7,057.98 

29 Cu 8,047.78 8,027.83 8,905.29 

30 Zn 8,638.86 8,615.78 9,572.00 

34 Se 11,222.40 11,181.40 12,495.90 

 

Additionally, Synchrotron radiation X-ray fluorescence (SR-XRF) spatial data were used to 

analyze of trace elemental (using L lines as shown in Table 4.7) distributions in normal and 

cancerous human tissues and fluids for cancer diagnostics.  

 



47 
 

Table 4.7 Spectral feature selection for 2D spectral data  

Biometal Line series Energy range 

(keV) 

Mn L 0.59-0.62 

Fe L 0.64-0.76 

Cu L 0.79-0.85 

Se L 1.27-1.49 

 

4.9.1 EDXRF analysis of simulate and urine samples 

The EDXRF spectrometer equipped with Cu, Al and Mo as secondary targets, 2 KW Mo tube 

and a Si (Li) semiconductor detector was used in this study. The samples were excited by X-

ray from Rh X-ray tube where electrons were ejected from the core levels of the sample 

under investigation. The indirect excitation by use of Cu and Mo targets enhanced mono-

energetic excitation that resulted to induced excited states for the emission of characteristic 

fluorescent that were detected. Figure 4.2 shows the EDXRF setup used with polarizing 

excitation where the radiations from the source (tube) were deflected by 90° to irradiate the 

sample with radiations polarized reduced spectral background. 

 

Figure 4.2 Energy-dispersive X-ray fluorescence configuration  

Each soft tissue section on a Mylar film was placed directly in X-ray beam for elemental 

determination.  The energy of the detected X-rays was characteristic of the element, while the 

intensity enabled determination of concentration of the characteristic element. The detector 

counted and sorted out intensities for all characteristic photons. A pulse height spectrum 

indicated the number of photons or impulses for a given energy established. The EDXRF 
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mode enabled simultaneous determination of elements, but is limited by insufficient 

sensitivity to low-Z elements and enhanced inter-element spectral effects. 

4.9.2 TXRF analysis of urine samples 

TXRF analysis were done at the institute of nuclear science and technology tilizing a high-

efficiency S2 Picofox module (Bruker Nano GmbH, Berlin, Germany) with Mo X-ray tube. 

The spectrometer was first calibrated with KB multi element standard solutions before 

analysis. The sample residue on a quartz sample carrier was analyzed using TXRF 

spectrometer where the incident beam radiations will be reflected for a reduced spectral 

background for high fluorescence yield due to minimized absorption effects (matrix effects). 

An optically flat quartz containing aliquots of the digested (using nitric acid) and 

preconcentrated substrate of the matrix enabled determination of concentration of trace 

biometals in complex sample matrices.  

The sample substrates were analyzed by TRXRF through primary radiation that impinged the 

surface of the substrate at an angle less than 0.1o for total internal reflection mode on the 

surface at irradiation time of 200s. Spectral evaluation was achieved by spectra PicoFox 

software. The spectrometer and the associated computer were operated at a voltage (100-

240V), frequency (50-60Hz) and power (150W). As a result, lower detection limits and low 

background were achieved and simultaneous multi-elemental information with low amount of 

sample acquired. The quantitative analysis using Nickel internal standard was achieved by 

the following relation; 

.

A

A
A IS

IS

IS

N
S

C C
N

S

            4.6 

Where AC  is the concentration of the analyte, ISC concentration of the internal standard, AN  

net intensity of the analyte, ISN  net intensity of the internal standard, AS  relative sensitivity 

of the analyte and ISS is relative sensitivity of the internal standard. The lowest limits of 

detection were calculated as; 
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C N
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                     4.7 
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Where iC  is the concentration of the i
th

 element, BGN  background area under the fluorescent 

peak and iN  the area under the fluorescent peak intensity (Gruber et al., 2020). In order to 

reduce the inhomogeneity in the sample preparation, each sample were analyzed in triplicate.  

4.9.3 SR-XRF analysis  

The highly linearly polarized Synchrotron beam was utilized in order to reduce the 

background and scatter signal for enhanced fluorescence peaks. Advanced synchrotron-based 

X-ray fluorescence (XRF) in Figure 4.3 enhanced determination of quantitative levels, 2D 

distribution and chemical oxidation states of trace biometals in cellular microenvironments.  

 

Figure 4.3 Synchrotron radiation-based X-ray spectroscopy 

Due to the SR-XRF high sensitivity of trace biometals, the 2D spatial maps and chemical 

oxidation states of trace biometals were determined in body fluid and tissues for disease 

(cancer) diagnosis. The samples were placed on a goniometer translation stage for rotation as 

well as translating it normally to the incident beam was raster scanned across the sample at 

spot sizes in the range of 1 to 10 µm for XANES and micro-XRF analysis.  
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4.9.3.1 XANES analysis of cell cultures 

The XANES analysis was enabled by tuning the X-ray beam energy at the binding energy for 

an absorption edge. The Fe K-edge XANES spectra were analyzed at XRF beamline at 

Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME).  

X-ray absorption near edge structure (XANES) schematic arrangements at SESAME (Jordan) 

in Figure 4.4 at lower energies enabled acquisition of Fe oxidation state for cancer diagnosis. 

 

Figure 4.4 XANES experimental setup (Harfouche et al., 2022) 

For maximum fluorescence, the incident beam was tuned to 500 eV above the absorption 

edge of Fe at a step size of 0.2 eV at the XANES.  The analysis was performed in fluorescent 

mode (due to dilute nature of the samples) with the sample at 45◦ to the incoming beam 

which resulted to improved fluorescence signal (Geraki et al., 2004).  

Urine Samples on microscopic cover slips were fixed onto a sample holder using Kapton tape 

and placed within the synchrotron beam. The analysis was carried out in air and at room 

temperature and the acquisition time for set to 10s for enhanced signal-to-noise ratio for three 

energy scanning regions in the broader energy range covering the Fe K-edge from 7100 to 

7200 eV with the step of 1 eV. The XANES spectral data were preprocessed by the 

ATHENA part of the DEMETER software package (Di Cicco et al., 2009). Fe reference 

calibration foil sample enabled determination of the oxidation state of Fe in the sample 

species. The XANES spectra of Fe reference foil and urine samples were then analyzed in 

fluorescence mode and the spectra normalized using ATHENA part of the DEMETER 

software package. 
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4.9.3.2 Micro XRF analysis of cell cultures 

Micro XRF analysis were performed at the TwinMic beamline at ELETTRA synchrotron 

source in Trieste, Italy (Kaulich et al., 2006) where the microscope scanning module was 

used and X-ray microprobe by Zone Plate focusing optics were utilized. Linearly polarized 

synchrotron beam reduced the scatter effects by the detector. Further, a perpendicular 

geometry between synchrotron beam and detector as shown in Figure 4.5 resulted to 

reduction of the scatter signal which improved the fluorescence signal and reduced irradiation 

time.  

 

Figure 4.5 Schematic of an X-ray fluorescence microscopy (Zhang et al., 2018) 

The low-medium (2200 eV) photon energy range (Gianoncelli et al., 2009) set-up enabled 

elemental analysis at high spatial resolution. Figure 4.6 shows the TwinMic micro-X-ray 

fluorescence setup used for rapid simultaneous acquisition of 2D maps of trace elements 

through refocusing of chromatic zone plate (ZP) lens setups at an energy range of 2200 eV. 

 

https://www.sciencedirect.com/topics/physics-and-astronomy/photons
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Figure 4.6 Schematic photo of TwinMic micro XRF experimental setup(Gianoncelli et al., 2016). 

Prior to sample analysis, the samples were sandwiched in acrylic glass frames and then 

mounted in a kinematic holder for direct analysis to reduce thescattering contributions of 

sample substrate. Ten representative cell cultures; 5 cancerous (DU145) and 5 normal (Vero 

cell line) were analyzed in this study. The cell culture samples were mounted on an x-y stage 

at 45/45 geometry (with the incident beam normal to the sample surface) facing 8 Silicon 

Drift Detectors. The analysis was carried out at photon energy of 1.7 KeV and spot size of 

450 nm for sufficient fluorescence signal at high spatial resolution. The analytical conditions 

were as follows: 10μm step size, 10 s irradiation time per spot (real time) and vacuum 

pressure (<3 mbar). XRF images were acquired in vacuum where the samples were raster 

scanned in step sizes of 100 μm across the incident beam to obtain elemental maps. 

Automatic 2D scans were performed in steps of 5μm in each direction (x, y) on the selected 

area. The XRF images were collected using an exciting beam at 9.4 KeV with an energy 

resolution of 1 eV, with the aid of Si (111) as monochromator crystal. The fluorescence 

spectra of trace elements were obtained at each pixel for 2D imaging and recorded by the 

detector normally to the incident x-ray beam.  

The beam was focused to a few micro meters for the resolution to be in the similar range. 

The sample under an optical microscope with motorized zoom enabled the area to be chosen 

for scanning. The 2D mapping of the elements was achieved by narrowing on the window of 

the biometals of interest in the XRF spectra and the full XRF spectra data saved at each 

pixel.  
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4.9.4 Microscopy imaging of cell cultures 

Pathological cancer advancement resulted in chemical and structural changes in the cultured 

cells that possibly altered the micro XRF spectra. The microscopy images in Figure 4.7 

clearly demonstrated the difference in stages of cancerous (DU 145) cell cultures for day 1 

and day 4. 

 

Day 1       Day 4 

Figure 4.7 Visible light microscopy images (10x) for normal cell cultures 

Figure 4.8 shows the corresponding light microscopy images of the normal cell culture 

(Vero) for day 1 and day 4. 

 

Day 1      Day 4 

Figure 4.8: Visible light microscopy images (10x) for cancerous cell cultures 
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From the above images, the morphological transformations and alterations (Gonçalves et al., 

2006) of DU145 and Vero monolayers could not differentiate cancerous and healthy cells as 

the cells were growing in colonies and not distinct. From these microscopy images, there is 

need to determine the cell morphological information from the Compton scatter region 

besides the selected fluorescence. 

 XRF data analysis 4.10

Prior to XRF data preprocessing, the channel numbers were converted to the corresponding 

energy and the spectra fitted for the identification of the elements. Further, equal steps of 

energy were determined and the counts were taken as input variable for data preprocessing. 

The data was preprocessed by auto scaling for similar contribution to model development and 

elimination of noise prior to multivariate machine leaning analysis to enhance extraction of 

vital information from the spectra.  

Statistical analysis was performed using Origin and Orange quasar software with comparison 

trace biometal concentrations in urine samples between cancerous and non-cancerous 

samples by using unpaired t-test. Orange as a user-friendly and an open-source software with 

machine learning and statistical tools for visual programming (Toplak et al., 2017) was used 

for multivariate machine learning analysis. The Quasar orange-software with embedded 

machine learning tools enabled classification and multivariate regression for quantitative 

analysis achieved through workflows by widgets (basic functional units) which read, pre-

processed and visualized data. 

TXRF spectral data deconvolution was done by QXAS-AXIL (Analysis of X-ray spectra by 

Iterative Least-squares fitting) software package. For the XANES data analysis, XAS data 

were preprocessed by the ATHENA (DEMETER) software package (Di Cicco et al., 2009) 

to mine useful diagnostic information. The micro XRF characteristic spectra were 

deconvoluted by PyMca software where the spectral overlaps and matrix effects were taken 

care of and background subtracted for extraction of important cancer diagnostic information. 

In PyMca software, the fluorescence data were presented as color maps displayed in RGB, 

with the brightest spots attributed to high elemental fluorescence. They were then 

deconvoluted using the PyMca Hypermet algorithm, where the color maps (RGB) were 

placed in grey to minimize differences in human color perception. 
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The concentrations and speciation data of the trace biometals in the tissue and urine samples 

(both cancerous and non-cancerous) were processed for descriptive statistics. Correlation 

coefficients were calculated from the distances to group the data thus the samples was 

considered similar or dissimilar and the results presented as dendrograms for visualization of 

sample relationships(Alexandre and Bueno 2006).  

 Multivariate machine learning analysis 4.11

The XRFS spectrometric data was analyzed by machine learning techniques in Quasar 

orange-software to identify the species of each trace element present. Machine learning 

techniques were utilized for data analysis and interpretation due to their ability to model both 

linear and nonlinear data sets. Machine learning techniques was used to analyze the spectra 

obtained from the samples to identify the species of trace elements present.  

The multivariate data analysis enabled data reduction, elimination of redundant and “noise”, 

extraction of information and hypothesis formation (Kowalik and Einax 2006). These enabled 

extraction of important information (underlying biological phenomena) from complex 

multivariate large data sets. The multivariate data (linear and non-linear) analysis was 

realized via a variety of unsupervised and supervised algorithms (Luo 2006). 

4.11.1 Pattern recognition  

Spectral analysis, imaging and subsequent spectral processing and decomposition to retrieve 

diagnostic biomarker information were realized via pattern recognition-based machine 

learning techniques. PCA reduced the data complexity from high dimensional and complex 

data for rapid cancer diagnostic information mining that enabled exploratory analysis of the 

samples into subsets. These further enhanced mining vital diagnostic information from the 

large data sets in reduced dimensions where the exploration enabled identification of possible 

distinct discriminating features between cancerous and healthy human urine. PCA analysis 

was done using the Orange quasar software for exploratory analysis where transformed the 

original variables into new orthogonal principal components (PCs) in which the new axes 

were uncorrelated with each other for classification of the tissue samples (Massart et al., 

1988, Mark 2001). In this case, PCA aided in resolving overlapping spectral features for a 

rapid and direct cancer diagnostic technique based on simultaneous determination of 

biometals and Compton scatter profiles in complex matrices. Each principal component 

summarised the data set by generating scores for the observations with corresponding 
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loadings for the variables. Scores and loadings were compared to each other to mine cancer 

diagnostic information. Further, the first 5 PCs from PCA were used as input in ANN 

multilayer perceptron (MLP) rmodel algorithm utilizing radial basis function (RBF) function 

(Brown and Lo 1998) to train, validate, and test the model for accurate classification. The 

classification approaches were used to learn from the available training data to develop rules 

to classify similar samples with same matrices. 

Similarly, Hierarchical cluster analysis (HCA) based on similarity and dissimilarity distance 

measure among the samples (Bueno et al., 2005) enabled examination of natural 

unsupervised classifications existing in the samples. These enabled classification of soft 

tissue biopsies and urine samples as either cancerous or non-cancerous and probably 

speciation of trace elements. K-nearest neighbors (KNN) technique enabled pattern 

recognition in the spectral data based on a nearest-neighbor. The classification method 

described the similarity of the new unknown sample using the other known spectral outputs 

(Brereton 2003) thus a potential tool for speciation trace biometals in human tissues and 

urine.  

4.11.2 Multivariate calibration 

The multivariate calibration necessitated  determination of concentration and speciation of 

trace biometals in human body tissue and urine to realize accurate quantification of trace  

biometals’ levels in human tissue and urine samples (Zhang et al., 2017). Due to the complex 

and multivariate relationships of trace biometals in cancer development, a multivariate 

approach for determination of trace biometals was utilized in this study.  

ANN enabled data analysis by mimicking biological neural systems (Looney 1996). The data 

sets were mean-centered before being cross-validated and all concentrations or speciation 

normalized for prediction of the concentration and speciation in new samples of the similar 

matrices with high robustness and accuracy (Marini et al., 2008). ANN algorithms (utilizing 

back propagation techniques) will be constructed based on the simulate biometal levels. The 

dataset will be split into two subsets, one to be used in the calibration procedure and other to 

validate the calibration models. The input data (matrix) contained one row for each spectral 

image and one column for each measured independent variable upon which the calibration 

model was based. The selection of the samples into subsets will be made according to the 

principal component analysis (PCA) approach.  
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The spectral data sets were treated with a two-layer (input and output with a hidden layer) 

neural network in-built with back propagation training function. The inputs fed into the 

network were divided into three sets; 60 % for network training, 20 % for validating how 

well the network generalizes and 20 % for testing how the network will perform on new set 

of data of similar matrices. The prediction ability of multivariate calibration by ANN was 

based on optimization of the neural network architecture where the models were trained, 

tested and validated for smaller training errors. The best model was initialized as that 

corresponding to high R value, with low mean-squared error and with 3 neurons in the input 

layer, 4 neurons in the hidden layer and 5 neurons in the output layer. 

Support vector machines (SVMs) was used for classification algorithms and also to develop 

predictive regression models (Davis 2014). SVM regression was also applied for 

determination of trace biometal concentrations due to its robustness in high dimensional 

space analysis. For each class, a kernel function was used to distinguish the classes based on 

the measured parameters for probabilistic quantification and classification. The SVM kernel-

based classification was robust to in high dimensional space hence took care of over-fitting. 

This enabled X-ray fluorescence analytical quantitative determination of trace biometals’ 

levels using multivariate calibration strategies in human tissues and urine.  

The mean square error (MSE) determined the mean of the squares of deviations (difference 

between predicted and spiked elemental concentrations) for judgment of the model 

performance. Root mean square error (RMSE) was used to determine of imperfection of the 

fit of the concentrations estimate. The Mean Absolute Error (MAE) was also used to 

determine how close the predictions were related to target outcomes. The R
2
 was then used to 

determine the proportion of the variance in the dependent variable that was predicted from 

the independent variable. The ideal and robust calibration models with low RMSEC values 

and high R
2
 values was developed for correlative analysis of the trace biometals to 

carcinogenesis. 

 Cancer diagnostic machine learning aided XRF method development 4.12

The multivariate ANN and SVM calibration strategies were developed for prediction of trace 

biometal concentration while exploratory analysis of cell cultures, human tissue and urine 

spectral data was achieved by PCA, KNN and HCA. Figure 4.9 shows a machine learning 

based X-ray fluorescence and scattering model for renal tract cancer diagnostics based on the 

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Coefficient_of_determination
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exploratory, quantitative and speciation analysis of trace biomarkers in soft human tissues 

and fluids (urine). 

 

Figure 4.9 A conceptual framework for a machine learning based XRFS model development 

The X-ray fluorescence peaks and scatter profiles with spectral overlaps and matrix effects 

with characteristic qualitative and quantitative information were analyzed by for rapid 

accurate prediction in both linear and non-linear biomedical data with good robustness.  
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CHAPTER 5.0 CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

 Chapter Overview  5.1

This chapter contains fifteen sections that form the discussion of the results. Section 5.2 

presents the XRF spectra of biomedical samples while section 5.3 report on the results of 

multivariate machine learning analysis of simulate samples. Sections 5.4, 5.5 and 5.6 

emphasizes on PCA results, multivariate analysis of cell culture samples and speciation 

analysis in simulate samples respectively. Section 5.7 highlights direct speciation analysis of 

Fe by XANES while section 5.8 report on quantitative results of trace biometals for cancer 

diagnosis. Sections 5.9 and 5.10 presents the results on the multivariate calibration of trace 

biometals in urine and tissues. Section 5.11 report on SR-XRF quantitative analysis of trace 

biometals while section 5.12 gives results on correlation matrices of trace biometals for 

cancer diagnosis. Finally, sections 5.13, 5.14 and 5.15 report on the micro XRF imaging of 

trace biometals, prostate cancer stages of development in human and cancer diagnostic model 

respectively. 

 XRF spectra of biomedical samples  5.2

The Energy dispersive X-ray fluorescence (EDXRF), Total reflection X-ray fluorescence and 

Synchrotron radiation-based X-ray fluorescence spectral data for simulate, cell cultures, 

human tissue and urine are presented. 

5.2.1 EDXRF spectra of simulate and human urine  

Typical Rigaku EDXRF spectra of simulate and cancerous urine samples are as shown in 

Figure 5.1. The scatter peaks with a pronounced background continuum masked the weak 

fluorescence analyte signals. The enhanced background was attributed to absorption and 

enhancement effects of dark matrix by low Z elements (Pozebon et al., 2017).  

 



60 
 

3 6 9 12 15 18 21

0.01

0.1

1

10

100

Zn K

In
te

n
s
it
y
 (

c
o
u

n
ts

)

Energy (KeV)

 Cancerous U_10

 Urine simulate S12H_U

Fe K

Cu K

Compton K 

Scatter

K K

Ca K

Cr K

Mn K

Fe K

Zn K

Se K

Br K

Rb K

 Rayleigh K

Scatter

Compton K 

Scatter

 

Figure 5.1: Typical EDXRF spectra of cancerous and simulate urine samples 

The above spectra resulted to poor signal-to-noise ratio of the trace element of interest and 

relatively weak fluorescence profiles due to enhanced background.  The relatively high 

background and the enhanced scatter posed a challenge in determination of low 

concentrations of trace biometals which are submerged in the background’s noise (Grüner et 

al., 2018). The energies of the detected X-rays were characteristic of the elements present 

while the corresponding intensities were representative of elemental concentrations (Van 

Grieken and Markowicz 2001). 

Figure 5.2 shows overlapped EDXRF spectra of normal (NP_12) and cancerous (P_12) 

urine samples. The trace biometal (Cr, Mn, Fe, Cu, Zn and Se) characteristic profiles were 

weak with enhanced background and that the Compton scatter still dominated in both normal 

and cancerous urine spectra.  
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Figure 5.2 EDXRF spectra of cancerous and non-cancerous urine 

In order to mine additional vital cancer diagnostic information, the spectral datasets were 

preprocessed by vector normalization and the high background and noise reduced from the 

characteristic spectral profiles. The determination of trace elements was therefore 

significantly affected hence the utility of multivariate machine learning models to mine vital 

cancer diagnostic information. The multivariate alterations of the weak biometals’ profiles in 

human soft body model tissues and urine were correlated to the state of health thus used as 

parameters for cancer diagnostics.  

5.2.2 TXRF spectra of urine samples 

Figure 5.3 shows a typical TXRF spectra of cancerous urine samples with potential for 

mining qualitative and quantitative information for cancer diagnosis.  
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Figure 5.3 Typical TXRF spectra of cancerous urine samples 

The TXRF reflective property on the sample substrate reduced the high spectral background 

(Carvalho et al., 2007) thus significantly improved the signal to noise ratio of the biometal 

analytes.  The biometals (Cr, Mn, Fe, Cu, Zn and Se) spectral fluorescence profiles together 

with the Compton Scatter as cancer biomarkers has the potential for early cancer diagnosis.  

The TXRF sensitivity curve in Figure 5.4 shows how the detection limits were strongly 

dependent on the atomic number of the analytes.  
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Figure 5.4  TXRF relative sensitivity graph of biometals. 

This illustrated the greater sensitivity of TXRF analysis for multivariate modeling and 

exploratory analysis for acquisition of real time disease (cancer) diagnostic information for 

clinical purposes. The fluorescence peaks at higher detection limit for low Z elements were 

evident (Szoboszlai et al., 2009). 

5.2.3 SR-XRF spectra of cultured samples 

Synchrotron radiation based XRF spectra in Figure 5.5 shows typical micro XRF fitted 

spectra at each pixel for V_D1 and DU_D1 cell cultures. It was apparent that the fluorescence 

signals were distinct with slightly enhanced scatter profiles with reduced background as a 

result of linear polarization of the X-ray beam. The prominent Kα line of Na was due to 

the sodium bicarbonate in the growth medium while the weak L lines of Mn, Fe, Cu 

and Se were also evident.  
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Figure 5.5 Micro X‐ ray fluorescence spectra of DU_D1 overlapped with V_D1 for day 1 

The above complex spectra (due to the dark matrices) were characterized by low energy 

region dominated by low Z elements which overlapped the L-lines (for heavy-elements) 

fluorescence.  

Figure 5.6 shows the SR-XRF based XRF spectrum of cultured of DU_D1 cells on a Zinc 

borosilicate microscopic cover slip substrate obtained at D08 beamline SESAME (Jordan).  
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Figure 5.6 Synchrotron X‐ray fluorescence spectra of DU_D1 cancerous cell culture 

In the above SR based XRF spectra, the analytes signals are enhanced despite the complexity 

and extreme matrix effects with slightly enhanced scatter region. The enhanced Zn peak was 

due to the its high concentration in Zinc borosilicate microscopic cover slip that was used as a 

substrate. The recovery of analyte signals of trace biometals from the relatively high spectral 

background calls for a multivariate approach.  

 

 Multivariate exploratory analysis of spectra data 5.3

Multivariate exploratory analysis of analyte fluorescence and scatter spectral profiles enabled 

determination of biometal diagnostic information. The biometals of interest in the 

fluorescence region in this context are linked to cancer development other than their vital 

roles in physiological and metabolic processes (Rose 2016). These was envisaged in possible 

classification of urine samples which was mainly as a result of fluorescence and Compton 

scatter profiles.  
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5.3.1 PCA of urine samples using EDXRF spectra 

Figure 5.7 shows the utility of fluorescence region in an attempt to explore and classify 

prostate and urinary bladder urine samples based on PC1 and PC3 scores. For the entire 

spectral information, 68% variance was explained (65% and 3%) for PC1 and PC3 

respectively. 
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Figure 5.7 PC score and loadings plot utilizing fluorescence region of urinary samples 
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The utility of fluorescence peaks of the trace elements could not mine vital cancer diagnostic 

information from the cancerous and non-cancerous human urine for classification. From the 

corresponding loadings plot in Figure 5.7, it was evident that the vital diagnostic information 

for characterization was contained partially in the fluorescence (Fe and Zn) but could not 

differentiate the cancerous and normal healthy human urine. The utility of both fluorescence 

and Compton scatter in Figure 5.8, shows possible characterization of urine samples based on 

their matrix composition where clear clusters of cancerous and normal urine samples using 

PC1 and PC3 scores were evident with potential utility in cancer diagnosis.  
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Figure 5.8 PC score and loadings plot of fluorescence and scatter of human urine 
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PCA enabled possible classification of cultured samples with explained variance of 97 % (96 

% and 1 %) for PC1 and PC3 respectively which differentiated between normal and 

cancerous human urine. From the loadings plot, the fluorescence and scatter profiles in PC1 

and PC3 separated cancerous and normal urine samples. Zn and the Compton scatter regions 

greatly influenced the above possible characterization of urine into cancerous and normal 

healthy clusters. The scatter region in this case had additional information vital for computing 

mean atomic number and the density of the sample (Goraieb et al., 2007). The results clearly 

confirmed the fact that the scatter as a valuable additional biomarker due to morphological 

information for the identification of pathological disorders (cancer) in human. 

5.3.2 PCA of normal and cancerous urine using TXRF data 

Figure 5.9 shows PCA score plot in which urine samples were analyzed based on their matrix 

composition. The results were based on the analyte fluorescence of the biometals of interest 

and the corresponding Compton scatter for possible characterization of cancer and normal 

urine. PC1 and PC4 scores plot accounted for total explained variance of 73% with potential 

to characterize normal (NP) and cancerous (P) urine based on the fluorescence region.  
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Figure 5.9 PC score and loadings plots of urine samples using the TXRF fluorescence region 

The PC loadings plot indicated possible strong influence of trace biometals for urine 

characterization into cancerous and normal groups. Figure 5.10 shows PCA score plot of PC1 

and PC2 at explained variance of 60% and 15% respectively using the fluorescence spectral 

profiles of prostate cancer urine samples with a potential for characterization of urine samples 

possibly due to different stages of prostate cancer development. 
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Figure 5.10 PC score  plot of cancerous urine samples using the TXRF fluorescence region. 

The exploratory analysis by PCA utilizing the fluorescence profiles indicated possible 

characterization of prostate cancer into two clusters probably due to different stage of 

development. The P_12, P_23, P_14 and P_36 samples were probably at intermediate stage 

of cancer development. In this context, PCA enabled extraction of information (variance) 

from large complex multivariate datasets for exploratory data analysis and predictive 

modeling for cancer diagnosis and stages of development.  
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 Multivariate analysis of micro XRF images of the cell cultures 5.4

Machine learning exploratory techniques enabled multivariate exploration of the spectral 

images to unravel latent and complex patterns (due to the dark matrices) and their utility in 

determine biometal concentrations, speciation and their spatial distributions.  

5.4.1 PCA of Micro XRF spatial image data of cell cultures  

PCA reduced the dimensions of spectral spatial images for the extraction of subtle cancer 

diagnostic (distribution and semi-quantitative) information. The fitted spectral image 

profiles PCA score and loadings results in Figure 5.11 with an explained variance of 90 % 

(87 % and 3 % for PC1 and PC2 respectively) could not distinctively differentiate cancerous 

and normal cell cultures.  

 

 

 

 

 

 

 

 

 

Figure 5.11: PCA score plot for cell cultures using the fitted fluorescence  

The selected fluorescence of Cu and Fe spectral intensity data of cultured cancerous samples 

were further analyzed by PCA as shown in Figure 5.12. It’s clear that the PCA at explained 

variance of 97% with PC1 (94%) and PC2 (3%) showed potential characterization of the 

various stages of cancer development.  
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Figure 5.12 PCA Score plot for DU cell cultures of selected Fe and Cu spectral intensities 

The utility of Cu and Fe enabled exploratory analysis of cancer into probable distinctive 

stages of development. The spatial distribution of Cu and Fe plays a vital function in oxygen 

metabolism despite Cu being a co-factor of Fe (Rocha et al., 2019). Further, Fe is known to 

aid in blood supply to the malignant cells thus accelerates angiogenesis (Kwok and 

Richardson 2002). It therefore deduced that the spatial accumulation of Cu and Fe can be 

used to not only identify the presence of cancer but also have the potential to characterize 

cancer into various stages of development.  

5.4.2 Multivariate exploratory analysis of cell cultures 

The sample trace biometal multispectral image spatial distribution intensities (variables) were 

decomposed into scores and loadings. Principal component analysis (PCA) enabled link and 

correlation between trace biometals constituents. The cultured cells were not characterized as 

cancerous and non-cancerous as shown in Figure 5.13 by utility of spectral image data from 

entire spatial image profiles. 
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Figure 5.13: PCA Score plot for cell cultures using fitted spectral data. 

The scatter region was utilized together with the fluorescence peaks for cancer stage 

characterization as shown in Figure 5.14 by utility of fitted fluorescence and  sca t te r  

spectral profiles where the colors show possible stages of cancer development. 
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Figure 5.14: PCA score and loadings plot for DU cell cultures using fluorescence and scatter. 

PC scores were able to successfully identify 3 cancer stages at explained variance of 80% and 

2% for PC1 and PC5 respectively. The simultaneous utility of both selected fluorescence and 

Scatter region enhanced possible detection of the 3 stages of cancer development.  

The inclusion of scatter region improved the characterization of cultured samples but could 

not differentiate between the staging of DU_D4 and DU_D3 stages of cancer development. 
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This is due to the fact that the scatter peak contains further information pertaining to cell 

structure (morphology) that is an important property in cancer characterization.  

From the loadings plot, Fe and Cu together with the Compton scatter biomarker spectral 

profile were partly responsible for the differentiation of the cultured samples into cancerous 

various stages of cancer development. 

5.4.3 Hierarchical cluster analysis of urine samples 

Hierarchical Cluster Analysis (HCA) using TXRF data enabled exploratory analysis urine 

samples using the Euclidean distance measure. HCA further demonstrated urine 

characterization through the agglomerative linkage method. The dendrogram (utilizing auto 

scaled values and Euclidean distance) on prostate datasets in Figure 5.15 clearly shows utility 

of fluorescence where two clusters corresponding to normal and cancerous urine were 

evident.  

 

 

Figure 5.15 HCA classification of urine samples using fluorescence region 
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Exploratory analysis by HCA shows possible characterization urine samples into cancerous 

and healthy clusters. Further, it shows possible potential classification of cancerous urine 

samples into different groups (C6, C7 and C8) which depicts different stages of cancer. It’s 

clear that trace elements (Fe, Cu, Mn, Zn and Se) in the fluorescence region were partially 

responsible for the above clustering for cancer diagnosis. 

In Figure 5.16 where both the fluorescence and scatter regions were used, no clear cluster 

distinction between cancerous and normal urine was observed. 

 

 

Figure 5.16 HCA analysis of urine samples using fluorescence and scatter region 

It can be deduced that further utility of Compton scatter region hardly shows any 

characterization of urine samples as it is related to the cell morphology. The fluorescence 

region was further used to analyze prostate cancer urine samples as shown in Figure 5.17 

where potential characterization of the stages of cancer development are evident.  
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Figure 5.17 HCA characterization of cancerous prostate urine samples using fluorescence 

region 

In this case, potential probable stages of cancer were as follows; early stage (C2 and C3), 

intermediate stage (C5-C7) and advanced stage (C8-C10) of cancer development. 
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 Speciation analysis of cancerous and healthy urine samples 5.5

The trace element speciation analysis and modelling in complex biomedical samples was 

explored by multivariate analysis. The bulk additional chemical information of Fe and Cu 

enabled further investigation of the role of trace biometals in disease (cancer) diagnosis. 

KNN and SVM models enabled discrimination of cancerous and normal samples based on 

the training set of the simulate samples for indirect chemical speciation analysis. 

Simulate sample models were calibrated and validated with satisfactory figures of merit using 

limited selected range of training set. The validated developed KNN and SVM chemical 

speciation of Fe and Cu are as shown in Table 5.1. 

Table 5.1:Validation of speciation prediction model of Fe 

Sampling type: stratified 20-fold cross validation scores 

Model      MSE    RMSE      MAE      R
2
 

KNN 0.1643 1.4311 0.3660 0.9450 

SVM 0.2678 0.5175 0.5156 0.0819 

 

K-Nearest Neighbours data were distributed into k different groups based on the similarity 

between points in terms of Euclidean distance metric. Figure 5.18 shows how K-Nearest 

Neighbours accurately enabled chemical speciation of Fe in simulate samples into higher and 

lower speciation samples.  
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Figure 5.18 Predictive scatter plot of Fe speciation of simulate urine by KNN 
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The Fe speciation characterization of simulate samples were further modelled by support 

vector machines as shown in Figure 5.19 where distinct clusters of higher and lower 

speciation were evident. 
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Figure 5.19 SVM classification of Fe speciation 

SVM equally discriminated the two species of Fe as it is possible for proper discrimination of 

the oxidation states of Fe in urine simulates.  

In addition, it was interesting to see that both higher and lower speciation Cu samples in 

Figure 5.20 were distinctively separated by KNN. 
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Figure 5.20 KNN speciation analysis of Cu in simulate samples 

KNN distinctively characterized the two species of Fe as it is possible for analysis of the 

oxidation states of Fe in urine simulate.  

The 2 oxidation states of Cu were also clearly characterized by SVM as shown in Figure 5.21 

which indicated that Cu (I) was distinctively separated from Cu (II). 
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Figure 5.21  SVM speciation analysis of Cu in urine simulates 

The additional information about chemical species of the elements enhanced clear 

investigation of the role of trace biometals in cancer diagnosis. From these results, the 
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changes in speciation can therefore be used as parameters for cancer diagnostic applicable at 

early stage of development.  

5.5.1 Prediction of Fe speciation in urine test simulates by KNN model 

KNN correctly distinguished urine samples containing 
2Fe 

and 
3Fe 

species as shown in 

Table 5.2 which predicted chemical speciation of Fe in urine simulate samples with a 

classification accuracy of 90%.  

Table 5.2 Predicted Fe speciation in the test set of simulate samples 

Sample Species Target 

Species 

KNN 

S13U_L 2Fe 
 0 0 

S1U_L 2Fe 
 0 0 

S9U_L 2Fe 
 0 1 

S3U_L 2Fe 
 0 0 

S9U_H 3Fe 
 1 1 

S10U_H 3Fe 
 1 1 

S14U_L 2Fe 
 0 0 

S10U_L 2Fe 
 0 0 

S13U_H 3Fe 
 1 1 

The results obtained after show that the direct speciation is possible as the method was able to 

distinguish samples containing Fe and Cu chemical species. Further, KNN correctly 

classified the chemical speciation of Fe in the simulate samples thus potential for speciation 

analysis of Fe in real human urine for cancer and normal patients.  

5.5.2 Prediction of chemical oxidation states of Fe and Cu in human urine  

The validated models were used to determine the chemical oxidation states Fe and Cu in 

cancerous and normal urine. The method was able to distinguish one of these species using 

spectral region of interest of Fe and Cu thus can be used as parameters for cancer diagnosis. 

Table 5.3 shows how KNN predicted chemical speciation of Fe in cancerous and normal 

human urine samples. 
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Table 5.3 Predicted chemical speciation of Fe in cancerous and non-cancerous urine 

Healthy  

Urine 

KNN 

predicted 

 

Cancerous  

Urine 

KNN 

predicted 

N_17 1 

 

U_07 1 

N_05 0 

 

U_20 0 

N_20 1 

 

U_18 1 

N_18 0 

 

U_06 1 

N_08 0 

 

U_16 1 

N_14 0 

 

U_10 0 

N_22 0 

 

U_17 1 

N_12 1 

 

U_11 1 

N_13 0 

 

U_21 1 

N_16 1 

 

U_15 1 

N_19 0 

 

U_05 0 

N_15 1 

 

U_13 1 

From the results, normal urine contained Fe (II) as compared to cancerous urine which was 

rich in Fe (III) which can be attributed to the role of Fe in oxidative reactions that damages 

the DNA strands for carcinogenesis. Table 5.4 shows the indirect determination of oxidation 

states of Cu in cancerous and normal human urine. 

Table 5.4 Predicted chemical speciation of Cu in cancerous and healthy urine 

Healthy 

urine 

KNN 

Predicted 

 

Cancerous 

 urine 

KNN 

Predicted 

N_17 0 

 

U_07 1 

N_05 0 

 

U_20 0 

N_20 0 

 

U_18 1 

N_18 1 

 

U_06 1 

N_23 1 

 

U_16 1 

N_08 1 

 

U_10 1 

N_14 0 

 

U_17 1 

N_11 0 

 

U_11 0 

N_22 0 

 

U_21 1 

N_12 0 

 

U_15 0 

N_13 1 

 

U_05 1 

N_16 0 

 

U_13 1 

N_19 1 

 

  

N_15 0 

 

    

 

The urinary bladder cancer urine was rich in 2Cu  which demonstrated the possible 

production of free radicals for Fenton reactions (Rojas et al., 1999) for DNA damage 

(Armendariz and Vulpe, 2003).  
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The KNN and SVM machine learning model-based speciation cancer diagnostic model for 

trace biometal speciation analysis and characterization of Fe and Cu speciation in urine 

samples was developed as shown in Figure 5.22. 

 

Figure 5.22 Quasar orange model for SVM and KNN speciation of Fe and Cu. 

The above machine learning based method was robust and thus was able to distinguish 

samples containing just one chemical species using spectral region of interest. The method 

had the ability to indirectly determine chemical oxidation states of trace biometals via 

multivariate calibration modelling. 



84 
 

 Direct chemical speciation of trace elements by XANES 5.6

The highly sensitive XANES enabled direct non-destructive determination of the chemical 

oxidation states (speciation) of Fe in simulate and urine samples for cancer diagnosis. The 

deconvoluted absorption spectral data by Athena software enabled direct determination of Fe 

chemical oxidation state. At the absorption edges, the specific chemical state of Fe was 

visible with the oxidation determined by comparison of its absorption K-edge position in the 

Fe calibration foil reference sample. Figure 5.23 shows the XANES typical spectrum for 

reference calibration sample.  
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Figure 5.23 Normalized XANES of Fe calibration sample foil 

The peak position was sensitive to the oxidation state and that the samples containing 
2Fe 

 

were distinctly different from 
3Fe 

in XANES spectrum. The pre-edge background was then 

removed and the edge jump normalized as shown in Figure 5.24 at Fe K edge and the 

background continuum removed for a pre-edge absorption at 7001-7200 eV in K-space, R-

space and q-space which showed the potential for EXAFS analysis to determine the 

neighbouring atoms to Fe. 
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Figure 5.24 Typical EXAFS spectra in energy, k-space, R-space and q-space. 

 

The EXAFS spectra indicated the energy spectrum smooth spline background from the pre-

edge was removed to obtain the k-space, the k-space was Fourier transformed the amplitude 

to the R-space and q-space respectively. Figure 5.25 shows the XANES typical spectrum for 

Fe in the urinary bladder cancer sample with enhanced K-edge absorption.  
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Figure 5.25 Normalized XANES of Fe in human urine 

The Fe K-edge absorption edge slightly shifted towards higher energy when the chemical 

state of Fe changed as shown in the overlapped spectra in Figure 5.26 for the calibration 

standard and human urine (cancerous). 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Overlapped spectra of reference Fe foil and urine sample 
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The significant difference in the shape of pre-edge of the Fe calibration foil and the urine 

sample was attributed to the shift in the pre-edge of Fe to the right in the urinary bladder 

cancer sample. The peak at the edge at 7123 eV was predominant compared to Fe in the 

reference standard foil where the peak was not visible. The XANES qualitative results 

indicate that all Fe was in trivalent state and that the pre-edge characteristic feature in Fe can 

be attributed to 1s transition to 4p.  

The results further confirmed the results for the EDXRF indirect determination of the Fe 

oxidation state in simulate sample as shown in Fig. 5.36 in comparison with the Fe 

calibration foil in Figure 5.27.  
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Figure 5.27 Normalized and overlapped XANES spectra of Fe in simulate and reference 

sample 

For the simulate sample, the pre-edge absorption was intense and observed at less than 7113 

eV where a small shift to the right was evident. The XANES analysis confirmed and 

validated the higher oxidation state of 
3Fe 

as predicted by the indirect speciation model 

using EDXRF spectral data.  

Figure 5.28 shows the XANES typical spectra for Fe in cancerous human urine sample 

overlapped with Fe calibration foil standard.  
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Figure 5.28 Overlapped spectra of reference Fe foil and cancerous human urine samples 

 

The XANES spectra indicated that Fe was prevalent in trivalent state with an energy shift of 

2.8 eV to the right. Cancerous sample (U-02) was confirmed to have 
3Fe 

which agreed with 

(Kwiatek et al., 2005) probably due to its role in creation of new blood cells. Fe in this case 

promote carcinogenesis by redox reactions that results to production of free radicals which 

attack the DNA. Similarly, synchrotron-based XANES (Al‐ Ebraheem et al., 2010) also 

found 
3Fe 

slightly higher than 
2Fe 

in ductal carcinoma breast tissues which was also linked 

to Fenton reactions for reactive oxygen species that induces DNA damage. The qualitative 

XANES results of Fe confirms ferritin as dominant chemical form for carcinogenesis 

(Gherase and Fleming 2019). In this regard, XANES was able to probe and validate the 

oxidation state of iron in the simulate samples thus potential utility of indirect speciation 

model in cancer diagnosis as it provides significant characteristic chemical oxidation state 

information for cancer diagnosis. 
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 Quantitative analysis of trace elements in human urine  5.7

The quantitative analysis of trace biometals (Cu, Fe, Se, Zn and Mn) was determined to 

evaluate the statistical significance of trace elemental accumulation in normal and cancerous 

human tissues and urine. These indicated the potential role of these biometals in cancer 

diagnosis as they are important for biological and enzymatic processes.  

5.7.1 EDXRF analysis of trace biometals in urine samples  

The changes in trace biometal concentration in response to carcinogenesis were detected and 

characterized as a “fingerprint” of prostate cancer. The concentrations level descriptive 

statistics of trace biometals (Fe, Cu and Zn) in non-cancerous urine were obtained by 

fundamental parameter method as shown in Table 5.5.  

Table 5.5 Trace biometals levels (ppm) in healthy urine 

Cancerous N Mean SD Min Max 

Fe 16 12.66 ±3.04 8.56 20.80 

Cu 16 7.24 ±1.24 4.86 9.56 

Zn 16 5.59 ±2.13 2.42 10.20 

 

The concentration of Fe, Cu and Zn in cancerous are slightly higher than in the non-

cancerous urine as shown in Table 5.6. 

Table 5.6 Trace biometals levels (ppm) in cancerous prostate urine  

Normal N Mean SD Min Max 

Fe 15 13.52 ±2.83 9.34 18.90 

Cu 15 8.02 ±1.73 5.44 11.20 

Zn 15 5.93 ±2.26 3.41 12.40 

 

In this study, alterations in concentration of Fe, Cu and Zn were evident in both prostate 

cancer and normal prostatic tissue. It’s evident that the concentrations of Cu and Zn were 

alterations (8.02±1.73ppm and 5.93±2.26ppm) but with slightly higher level 

(13.52±2.83ppm) of Fe in prostate cancer. This result mimics a similar study (Zaichick et al., 

1997) where slightly high levels of Fe and Cu were evident in cancer tissues. In this case, 

trace biometals are actively involved in activation or inhibition of enzymatic reactions 

(Carvalho et al., 2007) hence the damage of the DNA. The trace biometals (Cr, Mn and Se) 
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were not detected (Appendix VI) as they were below the detection limit of EDXRF which is 

less sensitive.  

5.7.2 TXRF analysis of trace biometal levels in urine samples 

Total reflection X-ray fluorescence (TXRF) quantitative analysis was achieved by utility of 

Ni as an internal standard to determine the concentrations of trace elements in cancerous as 

shown in Table 5.7. High levels of Fe and Cu were correlated to the onset and development 

of cancer as they are important in biological and metabolism processes that accelerate 

carcinogenesis (Kainth et al., 2020). 

Table 5.7 Concentration of cancerous urine by TXRF 

Sample Concentration of trace biometals (ppm) 

 Cr Mn Fe Cu Zn Se 

P_05 0.011 0.047 0.091 0.045 0.619 0.027 

 ±0.003 ±0.014 ±0.012 ±0.007 ±0.013 ±0.004 

P_08 0.02 0.013 0.028 0.010 0.017 0.008 

 ±0.001 ±0.001 ±0.003 ±0.002 ±0.002 ±0.001 

P_15 0.10 0.116 0.781 0.066 1.348 0.040 

 ±0.01 ±0.018 ±0.024 ±0.008 ±0.021 ±0.005 

P_21 0.233 0.189 0.419 0.231 2.329 0.143 

 ±0.069 ±0.046 ±0.055 ±0.027 ±0.043 ±0.017 

P_22 0.027 0.015 0.030 0.008 0.058 0.006 

 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 

P_29 0.026 0.03 0.057 0.023 0.479 0.024 

 ±0.007 ±0.003 ±0.007 ±0.004 ±0.008 ±0.004 

P_07 0.028 0.023 0.255 0.108 0.419 0.034 

 ±0.004 ±0.007 ±0.016 ±0.009 ±0.012 ±0.004 

P_11 0.054 0.115 0.705 0.072 0.236 0.007 

 ±0.005 ±0.005 ±0.023 ±0.005 ±0.007 ±0.002 

P_17 0.059 0.043 0.05 0.035 0.775 0.044 

 ±0.005 ±0.002 ±0.013 ±0.009 ±0.008 ±0.004 

P_18 0.047 0.058 0.375 0.224 2.62 0.008 

 ±0.003 ±0.015 ±0.016 ±0.008 ±0.023 ±0.002 

P_20 0.018 0.012 0.070 0.012 0.265 0.113 

 ±0.006 ±0.004 ±0.005 ±0.002 ±0.004 ±0.027 

P_25 0.016 0.022 0.311 0.022 0.400 0.028 

 ±0.002 ±0.001 ±0.005 ±0.002 ±0.004 ±0.003 

This study further indicates elevated levels of Zn in cancerous tissue samples for cell 

proliferation that supports tumor growth (Lee et al., 2003) and cell division. Additionally, 

levels of Cu in cancerous samples were also evident due to increased generation of free 
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radicals in Fenton reaction and/or by interference with DNA repair processes (Yaman et al., 

2005). The results indicate that Fe, Cu and Zn concentrations were significantly (P<0.05) 

higher in cancerous than in healthy tissues. The significant (P<0.05) alteration of 

concentrations of Fe, Cu and Zn are possible trace biomarkers for early cancer diagnosis. The 

elevated levels of Fe, Cu, Zn and Se in cancerous compared can be attributed to increased cell 

division and proliferations. Table 5.8 shows the levels of trace biometals in non-cancerous 

(normal) prostate urinary samples where the low concentrations of trace biometals were 

evident. 

 

Table 5.8 Concentration of trace biometals in 10µl normal urine by TXRF 

 

Elevated levels of Fe were also found in malignant tissues (Geraki et al., 2004) probably due 

to its role as regulatory factor for angiogenesis and its catalytic role in the Fenton reaction 

that generates free radicals (Heath et al., 2013) for tumor angiogenesis. Fe levels were 

elevated in cancerous tissue than normal urine which was in agreement with (Geraki et al., 

Sample Concentration of trace biometals (ppm) 

 Cr Mn Fe Cu Zn Se 

NC_05 0.015 0.012 0.109 0.034 0.067 0.016 

 ±0.003 ±0.001 ±0.003 ±0.003 ±0.002 ±0.001 

NP_06 0.048 0.041 0.092 0.039 0.798 0.029 

 ±0.002 ±0.005 ±0.008 ±0.005 ±0.008 ±0.003 

NP_07 0.205 0.156 0.219 0.092 0.845 0.067 

 ±0.023 ±0.012 ±0.036 ±0.042 ±0.032 ±0.008 

NP_13 0.059 0.039 0.101 0.030 0.412 0.026 

 ±0.007 ±0.014 ±0.011 ±0.005 ±0.009 ±0.003 

NP_04 0.176 0.153 0.801 0.119 1.079 0.064 

 ±0.003 ±0.013 ±0.038 ±0.015 ±0.031 ±0.010 

NP_12 0.032 0.023 0.042 0.016 0.262 0.013 

 ±0.011 ±0.009 ±0.005 ±0.003 ±0.005 ±0.002 

NP_14 0.058 0.037 0.071 0.029 0.309 0.023 

 ±0.005 ±0.003 ±0.008 ±0.004 ±0.006 ±0.003 

NP_18 0.013 0.01 0.049 0.013 0.066 0.006 

 ±0.008 ±0.001 ±0.004 ±0.002 ±0.003 ±0.001 

NP_19 0.014 0.011 0.029 0.009 0.153 0.005 

 ±0.003 ±0.002 ±0.002 ±0.001 ±0.002 ±0.001 

NP_20 0.098 0.085 0.128 0.068 0.794 0.028 

 ±0.027 ±0.023 ±0.021 ±0.011 ±0.020 ±0.007 

NP_23 0.021 0.017 0.018 0.016 0.81 0.008 

 ±0.011 ±0.009 ±0.005 ±0.003 ±0.008 ±0.002 

NP_39 0.045 0.028 0.075 0.022 0.122 0.016 

 ±0.005 ±0.004 ±0.006 ±0.004 ±0.005 ±0.002 
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2004) who also found elevated Fe in malignant tissues probably due to its role in 

angiogenesis and catalytic role in Fenton reaction that results to increased requirement for 

DNA synthesis (Heath et al., 2013) for tumor angiogenesis. Therefore, it is plausible that 

cancer development is associated with elevated levels Fe, Cu and Zn (Zaichick and Zaichick 

2011). 



93 
 

 Multivariate regression models for trace biometals in urine samples 5.8

The concentrations of the trace biometals by classical XRF was affected by the extreme 

matrix effects, low signal to noise ratio and weak analyte fluorescence signals. The EDXRFS 

spectral data of simulate samples were therefore used to develop multivariate calibration 

model for prediction of concentrations in unknown samples of similar matrices. The validated 

ANN and SVM calibration models were used to determine the concentration of the trace 

elements of interest in cancerous and normal human urine. 

5.8.1 ANN and SVM regression models for prediction of biometals in urine samples  

The trace elements of interest were directly quantified using the EDXRFS data sets in spite of 

the low resolution, enhanced matrix effects and noisy elemental spectra that is typical from 

complex light element matrices such as the biomedical samples (tissues and urine). ANN and 

SVM analysis were carried out using the principal components with highest variance (PC1 

and PC2) in PCA. The ANN architecture (3:2:5) corresponding to number of neurons in the 

input, hidden and output layers, respectively was chosen based on low MSE attained for both 

training and validation sets. The training and testing of the networks were achieved using the 

calibration and test samples for validating the trained network with the model performance as 

shown in Table 5.9. 

Table 5.9 ANN and SVM urine calibration model performance 

  Model performance indices    

Trace 

Element 

 MSE  RMSE  MAE  R
2
 

Cu ANN 6.48  2.55  2.07  0.77 

 SVM 8.48  2.91  2.74  0.70 

Zn ANN 359.72  18.97  17.44  0.99 

 SVM 25269.93  158.97  78.22  0.48 

Fe ANN 143.11  11.96  9.47  0.81 

 SVM 400.84  20.02  10.58  0.46 

Mn ANN 0.51  0.72  0.60  0.99 

 SVM 8.27  2.88  2.73  0.83 

Cr ANN 4.77  2.18  1.52  0.87 

 SVM 7.04  2.65  2.42  0.80 

Se ANN 12.49  3.53  2.90  0.92 

 SVM 11.67  3.42  3.06  0.93 
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The long training periods resulted to improved estimation ability with lower MSE attained at 

2000 iterations for both ANN and SVM architecture. The predicted concentration verses the 

measured (known) concentration regression plots (Figure 5.29 to Figure 5.34) show a linear 

correlation on how the multivariate calibration models (SVM and ANN) were able to predict 

the concentrations of trace elements of interest (Cr, Fe, Cu, Mn, Zn and Se).  
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Figure 5.29 Simulate SVM and ANN model validation plots of Cu 
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Figure 5.30 Simulate SVM and ANN model validation plots of Zn 
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Figure 5.31 Simulate SVM and ANN model validation plots of Zn 
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Figure 5.32 Simulate SVM and ANN model validation plots of Mn 
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Figure 5.33 Simulate SVM and ANN model validation plots of Cr 
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Figure 5.34 Simulate SVM and ANN model validation plots of Se 
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In general, the overall ANN model predictions of trace biometals levels was better than the 

SVM regression model where the close correlation between measured and predicted. This can 

be attributed to the fact that ANN model can learn both linear and non-linear mappings in 

samples thus considered more reliable (Goodacre, 2003).  

5.8.2 Detection and quantification limits of trace biometals in simulate urine samples 

In order to determine the sensitivity of the multivariate calibration strategy, the detection 

limits (DL) and quantitative limits of trace biometals in the simulate urine samples were 

calculated for the trace analytes (Cr, Mn, Fe, Cu, Zn and Se) as shown in Table 5.10. 

Table 5.10 Detection limits (ppm) of elements in simulate urine  

Element Atomic 

number 

Kα Energy 

(KeV) 

Detection 

limit (ppm) 

Quantitative  

limit (ppm) 

Cr 24 5.41 1.56 2.56 

Mn 25 5.89 2.14 4.67 

Fe 26 6.40 2.23 5.11 

Cu 29 8.05 2.05 3.76 

Zn 30 8.64 2.98 4.81 

Se 34 11.22 1.64 2.84 

 

The concentrations of trace elements below the detection and quantitative limits in Table 5.10 

were hardly achieved by the developed multivariate model towards cancer diagnostics in 

human urine.  

5.8.3 Predicted concentrations in urine samples 

The above validated model calibration curves were further utilized to determine the 

concentration of trace biometals in cancerous and normal human urine. Table 5.11 shows the 

ANN predicted elemental concentration in normal urine by ANN model based on the mean-

centered and smoothened fluorescence and scatter spectral data. 
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Table 5.11 ANN Predicted concentrations of trace biometals in normal urine  

 Trace biometal concentrations (ppm) 

Nor Fe  Mn  Cr  Cu  Se  Zn  

NP_12 18.74±1.43 

9.18±4.33 

11.55±2.81 

10.80±1.49 

31.71±2.96 

16.37±1.93 

22.22±0.65 

10.47±1.59 

24.57±4.53 

13.02±3.08 

1.95±0.57 

1.95±0.67 

1.89±0.39 

1.58±0.19 

2.67±1.16 

2.14±0.72 

1.39±0.04 

2.40±0.98 

1.51±0.18 

2.62±1.19 

8.05±0.06 

8.06±0.07 

8.05±0.09 

8.07±0.07 

8.05±0.08 

8.06±0.07 

8.16±0.09 

8.05±0.07 

8.06±0.07 

8.05±0.07 

2.68±0.01 

3.14±0.04 

4.73±0.01 

2.68±0.03 

5.79±0.02 

5.40±0.03 

3.62±0.10 

2.85±0.03 

2.86±0.03 

6.61±0.06 

7.91±2.08 

7.34±2.22 

5.41±1.99 

4.71±2.25 

7.64±1.51 

6.13±2.10 

6.70±0.24 

7.35±2.32 

5.58±2.11 

9.33±1.46 

12.66±0.34 

12.43±0.06 

12.41±0.01 

12.49±0.12 

12.49±0.11 

12.65±0.36 

11.89±0.66 

12.45±0.05 

12.43±0.04 

13.14±1.02 

NP_20 

NP_16 

NP_11 

NP_14 

NP_22 

NP_17B 

NP_17 

NP_19 21.13±1.45 

8.27±3.59 

8.21±3.75 

7.11±2.53 

8.78±1.89 

8.59±1.75 

2.29±0.92 

2.49±0.86 

2.34±0.99 

1.94±0.66 

1.79±0.49 

1.77±0.45 

8.05±0.08 

8.04±0.07 

8.07±0.06 

8.05±0.08 

8.06±0.07 

8.05±0.07 

5.94±0.06 

5.03±0.02 

6.58±0.07 

5.62±0.01 

4.35±0.02 

3.79±0.04 

10.16±1.08 

8.53±2.33 

6.35±1.11 

6.42±2.25 

5.98±2.09 

4.36±1.89 

12.53±0.18 

12.53±0.14 

12.72±0.44 

12.54±0.19 

12.61±0.26 

12.33±0.17 

NP_06 

NP_08 

NP_18 

NP_15 

 

The levels of most trace elements can be linked to their functional role in metabolic 

processes. The concentrations of Fe, Cu, Zn and Se were all suppressed in normal urine 

specimens. Table 5.12 shows the ANN predicted elemental concentration in prostate cancer 

urine by ANN model. The elevated levels of Fe and Cu with suppressed level of Zn and Se 

could be a consequence of malignant transformation.  
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Table 5.12 ANN predicted concentrations of trace elements in cancerous urine  

Trace biometal concentrations ±standard deviation (ppm) 

 Fe  Mn  Cr  Cu  Se  Zn  

P_24 49.83 ±2.52 1.58 ±0.28 8.05 ±0.07 10.51 ±0.11 5.88 ±0.49 12.13 ±0.97 

P_23 54.97 ±1.84 4.11 ±0.14 7.04 ±0.08 18.09 ±0.23 3.14 ±1.06 13.23 ±1.14 

P_15 24.13 ±2.94 1.61 ±0.36 8.05 ±0.07 10.49 ±0.04 4.81 ±1.59 11.37 ±0.07 

P_36 12.02 ±2.98 1.49 ±0.19 7.05 ±0.09 7.84 ±0.25 3.29 ±1.85 10.11 ±0.47 

P_11 6.26 ±1.62 1.63 ±0.29 8.06 ±0.06 9.05 ±0.09 6.75 ±2.08 12.19 ±0.64 

P_37 11.50 ±1.07 1.37 ±0.08 9.04 ±0.08 9.06 ±0.05 6.12 ±2.02 11.71 ±0.40 

P_10 13.18 ±1.50 1.87 ±0.58 8.04 ±0.09 10.46 ±0.17 7.93 ±2.47 12.54 ±0.18 

P_07 32.25 ±2.55 3.72 ±0.22 8.05 ±0.07 11.66 ±0.12 3.35 ±2.59 12.40 ±0.02 

P_41 33.71 ±3.64 2.94 ±0.88 6.05 ±0.07 16.91 ±0.01 6.62 ±2.20 11.88 ±0.67 

P_12 36.93 ±2.09 2.69 ±1.15 8.05 ±0.07 11.91 ±0.01 8.93 ±2.06 12.57 ±0.23 

P_45 25.19 ±3.64 2.26 ±0.46 7.05 ±0.07 9.63 ±0.01 4.59 ±1.51 13.65 ±0.31 

P_14 56.53 ±5.28 1.51 ±0.26 8.05 ±0.08 9.45 ±0.07 7.89 ±2.49 10.33 ±0.14 

P_20 32.70 ±1.92 1.54 ±0.24 6.04 ±0.07 10.01 ±0.01 9.63 ±2.27 12.74 ±0.45 

P_06 18.76 ±2.91 2.20 ±0.43 8.05 ±0.09 8.44 ±0.05 6.84 ±1.98 10.38 ±0.04 

P_32 6.16 ±1.51 3.67 ±0.34 8.04 ±0.07 6.69 ±0.19 4.43 ±2.12 12.56 ±0.18 

Table 5.13 shows the ANN predicted elemental concentration in urinary bladder cancer urine 

by ANN model. 

Table 5.13 ANN cancerous urine of trace elemental concentration in the urinary bladder 

Trace biometal concentrations ±standard deviation (ppm) 

 Fe  Mn  Cr  Cu  Se  Zn  

U_17 20.14 ±4.39 3.20 ±0.60 8.05 ±0.05 7.82 ±0.03 9.81 ±2.66 11.34 ±0.10 

U_18 18.86 ±3.61 2.46 ±1.02 8.04 ±0.07 8.11 ±0.04 8.95 ±2.61 11.49 ±0.09 

U_21 25.31 ±2.44 1.81 ±0.54 8.03 ±0.06 7.62 ±0.04 9.19 ±2.42 12.83 ±0.58 

U_10 16.94 ±1.14 2.21 ±0.78 8.05 ±0.07 7.20 ±0.01 9.54 ±2.43 10.44 ±0.06 

U_06 15.97 ±3.69 2.12 ±0.79 8.04 ±0.07 8.75 ±0.11 10.61 ±2.63 12.39 ±0.04 

U_05 16.69 ±2.02 2.89 ±1.07 8.04 ±0.08 6.28 ±0.03 8.97 ±2.12 11.09 ±0.93 

U_20 42.85 ±2.49 2.13 ±0.61 8.06 ±0.08 7.74 ±0.04 9.59 ±2.05 11.37 ±0.06 

U_13 14.29 ±1.66 2.07 ±0.71 8.05 ±0.07 7.22 ±0.01 7.06 ±2.09 12.58 ±0.22 

U_16 22.83 ±3.89 1.82 ±0.62 8.07 ±0.07 6.33 ±0.06 7.39 ±2.14 11.67 ±0.37 

U_15 16.44 ±1.72 2.19 ±0.76 8.05 ±0.06 7.61 ±0.01 6.06 ±2.19 10.55 ±0.18 

U_07 19.54 ±2.60 2.13 ±0.81 8.06 ±0.05 8.38 ±0.02 7.07 ±2.22 10.73 ±0.49 

U_11 21.12 ±3.09 1.89 ±0.56 8.04 ±0.07 7.74 ±0.01 7.76 ±2.36 12.66 ±0.35 

 

It can be no ted  that there is elevated levels of trace biometals in cancerous urine 

compared to normal urine which may possibly be associated with metabolic processes 

(Baker et al., 2002) as well as tumor development (Nguyen et al., 2001). The identified 

mean imbalance of trace biometals in cancerous and healthy patients as shown in Table 5.14 

serve as biomarkers for early diagnosis of cancer as the elements are involved in protein 
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synthesis, antioxidant defence immune function, and inhibition proliferation of cells (Silvera 

and Rohan 2007). 

Table 5.14 Trace elements descriptive statistics in healthy urine 

 

 

 

 

 

Table 5.15 Trace elements descriptive statistics in prostate cancer urine 

Biometal N Mean SD Min Max 

Fe 15 27.61 ±16.85 6.17 56.54 

Mn 15 2.28 ±0.93 1.37 4.11 

Cr 15 7.65 ±0.83 6.05 9.05 

Cu 15 10.68 ±3.09 6.69 18.09 

Se 15 5.73 ±2.53 0.19 9.64 

Zn 15 11.29 ±2.74 2.11 13.65 

Table 5.16 Trace elements descriptive statistics in urinary bladder cancer urine 

 N Mean SD Min Max 

Fe 12 20.92 ±7.58 14.29 42.85 

Mn 12 2.24 ±0.42 1.81 3.21 

Cr 12 8.05 ±0.01 8.05 8.06 

Cu 12 7.57 ±0.74 6.28 8.75 

Se 12 8.50 ±1.39 6.06 10.61 

Zn 12 11.59 ±0.84 10.44 12.83 

 

The mean levels of trace elements in cancer patients were found to be significantly higher 

compared to their corresponding controls. Elevated levels of trace biomarkers (Fe and Cu) in 

prostate and urinary bladder cancer can be correlated to the onset and development of cancer. 

High levels of Fe has the abil i ty to promote  transformation of normal healthy cells to 

Trace biometal concentrations (ppm) 

 

 

N Mean SD Min Max 

Fe 16 14.42 ±7.29 7.11 31.71 

Mn 16 2.05 ±0.39 1.39 2.67 

Cr 16 8.06 ±0.02 8.05 8.16 

Cu 16 4.48 ±1.42 2.68 6.61 

Se 16 6.87 ±1.60 4.36 10.16 

Zn 16 12.52 ±0.25 11.89 13.14 
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neoplastic cells through oxidative stress (Shpyleva et al., 2011). The high concentration of 

Fe in this study is in agreement with (Geraki et al., 2004) who also found elevated Fe in 

malignant tissues probably due to its role in angiogenesis and due to its catalytic role in 

Fenton reaction that resulted to increased requirement for DNA synthesis (Heath et al., 2013) 

for tumor angiogenesis. The elevated levels of Zn in cancerous tissue samples compared to 

the corresponding urine for cell proliferation that supports tumor growth (Lee et al., 2003) 

and cell division. Additionally, levels of Cu in cancerous samples were also evident due to 

increased generation of free radicals in Fenton reaction and/or by interference with DNA 

repair processes (Yaman et al., 2005). In contrast to Fe and Cu, Zn concentrations, the other 

trace biometals (Mn, Cr and Se) showed alteration levels in cancerous and normal urine.  

A novel ANN and SVM multivariate models have been developed method as shown in 

Figure 5.35 for determination of the concentration of trace biometals in cancerous and normal 

urine at different stages of cancer development.  

 

Figure 5.35 SVM and ANN multivariate calibration model 

The developed model enabled determination of trace elements levels and their multivariate 

alterations in human body fluids (urine) that were correlated to the state of health. 

Concentrations of trace biometals further enabled determination of the various stages of 
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cancer development (Imam et al., 2012); well differentiated (low grade), moderately 

differentiated (intermediate grade) and poorly differentiated (high grade). 

5.8.4 Correlations of trace biometal levels  

The correlations of trace biometal levels were evaluated by Pearson correlation as shown in 

Table 5.17 and Table 5.18 where latent vital relationships between the trace biometals and 

their role during normal and carcinogenic growth were determined. 

Table 5.17 Correlation coefficients of trace biometals in normal urine 

Element Fe Mn Cr Cu Se Zn 

Fe 1      

Mn 0.0321 1     

Cr 0.2901 -0.5440 1    

Cu -0.0024 0.6436 -0.2350 1   

Se 0.2532 0.6596 -0.1565 0.4107 1  

Zn -0.2169 0.6148 -0.7153 0.5086 0.3832 1 

The strong positive correlations between Mn and other trace elements in normal urine were 

evident, but a strong negative correlation was found between Cr and Zn (-0.7154). The 

observed strong positive Pearson correlation of Se and Mn can be attributed to the anti-

carcinogenic role of Se in angiogenesis process in which new blood vessels are formed where 

Se tends to be protective against cancer. 

Table 5.18 Correlation coefficients of trace biometals in prostate cancer urine 

Element Fe Mn Cr Cu Se Zn 

Fe 1      

Mn 0.1956 1     

Cr -0.2459 -0.1658 1    

Cu 0.5915 0.5176 -0.4542 1   

Se 0.2219 -0.5505 -0.1029 0.0709 1  

Zn 0.3799 -0.2303 -0.2128 0.4880 0.5614 1 

The positive correlations between Fe and Cu (0.5915), Cu and Mn (0.5176) were evident, but 

positive correlations between Fe and Zn (0.3799) and also Fe and Se (0.1029). This strong 

positive correlation of Fe with Zn and Se can be attributed to the exponential phase of cell 

division and proliferations resulting to metastasis. This is due to increased cellular activity 

(Raju et al., 2006) and angiogenesis (Nasulewicz et al., 2004).  
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 Multivariate regression models for trace biometals in tissue simulates 5.9

The ANN architecture (3:3:5) corresponding to number of neurons in the input, hidden and 

output layers, respectively was chosen based on low MSE attained for both training and 

validation sets. The training and testing of the networks were achieved using the calibration 

and test samples for validating the trained network with the model performance as shown in 

Table 5.19. 

Table 5.19 ANN and SVM tissue simulate model performance 

The training resulted to improved estimation ability as shown in Table 5.20 above with lower 

MSE attained after 2200 and 2000 iterations for the architecture used in ANN and SVM 

respectively. The predicted against the measured regression plots in Figure 5.36 to Figure 

5.41, show how the ANN model more accurately predicted the concentrations of Cu, Zn, Mn, 

Cr and Se in simulate tissues. The predicted concentrations show how the ANN model has a 

potential to be applied to real human tissue samples of similar matrix composition and its 

future utility in prediction of trace biometals in biomedical samples for cancer diagnosis. 

 

  Tissue calibration model performance    

Trace 

Element 

 MSE  RMSE  MAE  R
2
 

Cu ANN 3.77  1.77  1.38  0.98 

 SVM 1963.35  44.31  34.06  0.82 

Zn ANN 150.24  12.26  8.69  0.96 

 SVM 3471.70  58.92  42.96  0.49 

Fe ANN 2155.19  46.42  28.88  0.96 

 SVM 26218.21  161.92  100.95  0.52 

Mn ANN 2.68  1.64  1.34  0.97 

 SVM 1076.17  32.81  13.75  0.42 

Se ANN 37.65  6.14  5.25  0.72 

 SVM 52.27  7.23  4.88  0.61 

Cr ANN 2.37  1.54  1.18  0.99 

 SVM 396.96  19.92  12.19  0.22 
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Figure 5.36 SVM and ANN regression plots of Cu 



107 
 

0 50 100 150 200 250

60

80

100

120

140

160

180

200

220

S
V

M
 Z

n
 p

re
d

ic
te

d
 (

p
p
m

)

Spicked Zn (ppm)

0.77941

0 50 100 150 200 250

0

50

100

150

200

250

Z
n
 A

N
N

 p
re

d
ic

te
d

 (
p

p
m

)

Zn spiked (ppm)

0.9888

 

Figure 5.37 SVM and ANN regression plots of Zn 
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Figure 5.38 SVM and ANN regression plots of Fe 
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Figure 5.39 SVM and ANN regression plots of Mn 
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Figure 5.40 SVM and ANN regression plots of Se 
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Figure 5.41 SVM and ANN regression plots of Cr. 
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The low R2 values can be attributed to high background and the low spiked levels in simulate 

samples. These results indicate that the ANN models predicted accurate concentrations and 

can therefore be applied to analyze the concentrations of trace biometals in biomedical tissue 

samples. 

5.9.1 Detection and quantification limits of trace biometals in simulate tissue samples   

The ANN multivariate calibration model was used to determine the detection limits (DL) and 

quantification limits of trace biometals in simulate tissue samples as shown in Table 5.20. 

 

Table 5.20 Detection limits (ppm) of trace elements in simulate tissue  

Element Atomic 

number 

Kα Energy 

(KeV) 

Detection 

limit (ppm) 

Quantitative 

limit (ppm) 

Cr 24 5.41 2.82 4.16 

Mn 25 5.89 3.15 4.67 

Fe 26 6.40 3.33 6.21 

Cu 29 8.05 2.05 6.72 

Zn 30 8.64 3.18 5.71 

Se 34 11.22 1.94 2.99 

 

The levels of trace biometals below the detection and quantitative limits in Table 5.20 were 

hardly achieved by the developed multivariate model towards cancer diagnostics in human 

tissue.   

5.9.2 Predicted concentration in tissue biopsy samples 

The SVM and ANNs validated models enabled determination of the trace biometals levels in 

human tissues. Table 5.21 and Table 5.22 show the predicted elemental concentration 

mapping between the inputs and target output in normal tissue biopsies based on the mean-

centered and smoothened data for fluorescence and scatter regions. 
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Table 5.21 SVM prediction of trace biometal concentrations in normal tissues 

 SVM Trace biometal concentrations (ppm) 

 Cr Mn Fe Cu Zn Se 

NP_07T 14.58±2.11 4.74±0.88 101.13±9.09 39.44±4.65 84.08±10.22 17.28±2.44 

NP_20T 13.31±1.34 14.65±1.34 220.01±23.98 14.68±1.77 80.92±11.34 23.07±3.23 

NP_06T 33.95±3.56 1.44±0.23 70.22±6.98 27.16±3.54 92.58±6.45 17.55±1.34 

NP_23T 17.64±2.12 1.35±0.02 83.37±3.97 27.19±5.95 226.08±50.56 17.43±2.34 

NP_12T 17.92±3.23 11.02±1.02 121.05±13.87 31.91±3.21 100.07±10.34 17.60±2.22 

NP_19T 15.98±2.11 3.24±1.87 104.19±12.99 39.61±4.34 87.37±7.36 17.70±5.23 

NP_14T 1.40±0.33 3.51±0.89 162.22±20.54 15.32±2.33 82.20±4.65 8.07±2.34 

NP_22T 2.38±1.02 3.45±0.99 301.72±56.76 14.61±2.17 80.22±8.22 5.34±1.23 

Table 5.22 ANN predicted Prediction of trace biometal concentrations in normal tissues 

  ANN Trace biometal concentrations (ppm) 

 Cr Mn Fe Cu Zn Se 

NP_07T 3.20±0.33 4.54±0.45 428.09±57.02 18.34±3.21 60.46±5.55 3.53±1.34 

NP_20T 16.11±2.54 31.99±5.43 169.69±8.96 41.46±8.22 60.59±3.56 5.40±1.11 

NP_06T 13.75±1.34 4.64±2.11 327.59±89.09 18.3±4.98 60.88±8.44 22.69±6.43 

NP_23T 10.31±2.67 4.54±1.43 184.67±10.45 18.34±3.56 243.38±17.32 21.82±2.87 

NP_12T 10.92±3.54 4.35±2.88 494.34±79.23 22.67±1.33 83.88±8.34 4.22±1.45 

NP_19T 15.29±1.22 4.54±1.87 781.78±97.93 22.15±2.87 65.41±9.43 22.06±3.23 

NP_14T 12.28±3.18 4.58±1.32 516.81±67.27 34.33±7.89 60.66±5.23 3.59±0.27 

NP_22T 10.16±1.37 4.84±1.76 772.56±102.65 38.99±6.75 60.35±7.21 3.72±0.99 

Tables 5.23 shows and ANN predicted elemental concentration in cancerous tissue biopsies 

based on the mean-centered and smoothened data for fluorescence and scatter regions. 
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Table 5.23 ANN predicted Prediction of trace biometal concentrations in cancerous tissues 

  ANN Trace biometal concentrations (ppm) 

 Cr Mn Fe Cu Zn Se 

P_30T 6.27±1.23 7.12±0.87 784.99±87.62 23.22±1.33 60.01±1.87 7.66±1.23 

S1 12.28±1.66 7.07±0.91 1393.71±105.44 29.37±2.45 228.48±29.53 7.99±2.34 

S5 12.27±3.56 7.26±1.25 1558.92±108.26 23.12±1.59 76.12±2.883 4.73±0.87 

S14 12.27±2.87 23.97±3.65 834.74±67.21 19.72±2.33 110.51±7.71 22.66±3.59 

S13 12.27±0.33 7.17±1.57 525.71±20.65 20.38±1.03 89.93±9.28 15.37±2.18 

S11 10.89±1.22 7.71±1.02 491.86±36.63 31.73±2.19 72.47±2.52 4.92±0.24 

S8 9.41±1.98 43.54±7.91 1183.00±96.57 18.34±0.93 199.81±20.69 4.78±1.73 

S9 9.71±1.11 7.03±1.27 4661.32±229.54 23.056±2.65 209.89±43.82 22.94±2.61 

S2 25.06±4.56 35.77±5.10 921.91±59.32 45.71±7.32 59.67±3.64 4.91±0.67 

S15 18.53±3.59 6.92±1.93 667.36±33.28 18.34±2.11 128.03±18.32 12.35±4.29 

S4 7.12±1.23 7.23±0.98 494.18±15.34 25.14±5.30 61.93±3.27 4.73±2.35 

S7 11.66±1.45 7.24±1.05 1061.97±78.32 25.96±3.23 228.48±26.40 18.68±1.56 

S10 12.28±2.69 7.23±0.84 497.88±56.12 32.75±1.65 102.41±14.28 5.26±0.27 

S12 12.27±1.89 7.14±1.63 623.57±13.91 18.36±2.87 228.48±28.23 5.33±0.99 

S3 10.79±2.14 8.87±1.11 351.95±15.22 18.54±4.26 59.67±2.45 4.86±1.49 

S6 12.28±2.54 6.89±1.82 927.08±82.32 18.34±2.67 99.04±26.34 4.82±0.35 

 

The ANN non-linear computational model was therefore reliable for the determination of 

trace biometals’ levels in extremely complex matrices of biomedical samples. The mean 

concentrations of trace biometals in normal and cancerous tissues are as shown in Table 5.24 

and Table 5.25; 

Table 5.24 ANN descriptive values of trace biometal concentrations in normal tissues 

 Trace biometal concentrations (ppm) 

 N Mean  Min Max 

Cr 8 11.50±4.03 

7.97±9.71 

459.44±234.29 

26.83±9.81 

86.95±63.72 

10.8±9.39 

3.20 16.11 

Mn 8 4.54 31.99 

Fe 8 169.69 781.78 

Cu 8 18.34 41.46 

Zn 8 60.35 243.38 

Se 8 3.53 22.69 
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Table 5.25 ANN descriptive values of trace biometal concentrations in cancerous tissues 

Trace biometal concentrations (ppm) 

 N Mean 

12.21±4.36 

12.38±11.52 

1061.26±19.75 

24.50±7.44 

125.93±68.04 

9.50±6.71 

Min Max 

Cr 16 6.27 25.06 

Mn 16 6.89 43.54 

Fe 16 351.95 4661.32 

Cu 16 18.34 45.71 

Zn 16 59.67 228.48 

Se 16 4.73 22.94 

 

The results above show varying levels of trace biometals in the cancerous tissues in prostate 

tissue with cancer as compared to normal prostatic tissue. The significant alteration in 

concentration of trace biometals (Cr, Mn, Fe, Cu and Zn) indicate the presence of neoplasies 

in cancer cells thus a possible helpful diagnostic tool (Silva et al., 2006). In this study, the 

levels of Fe support the hypothesis that there is a connection with both increased cellular 

activity and blood supply in the formation (Poletti et al., 2004). The increase of trace 

elements levels in cancer samples compared to healthy samples can be justified by the 

increase of the cellular metabolism in cancer cells (Poletti et al., 2004).  

5.9.3 Correlation of trace biometals in tissue biopsy samples 

The correlations between trace elements as shown in Table 5.26 and Table 5.27 indicates 

interactions between trace biometals in both normal and cancerous tissues.  

Table 5.26 Trace biometal correlation coefficients in healthy tissues 

Element Cr Mn Fe Cu Zn Se 

Cr 1      

Mn 0.4619 1     

Fe -0.0329 -0.4997 1    

Cu 0.3722 0.6026 0.1282 1   

Zn -0.1176 -0.1672 -0.4590 -0.3827 1  

Se 0.3755 -0.2357 -0.1322 -0.5853 0.4548 1 
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Table 5.27 Trace biometal correlation coefficients in cancerous tissues 

Element Cr Mn Fe Cu Zn Se 

Cr 1      

Mn 0.3485 1     

Fe -0.1112 -0.0299 1    

Cu 0.5280 0.2332 -0.0289 1   

Zn -0.0960 0.0318 0.4379 -0.2191 1  

Se -0.0424 -0.0805 0.5095 -0.2223 0.3617 1 

The positive correlation between Fe and Zn was established in cancerous samples as 

compared to non-cancerous tissue biopsy samples. The trace biometals (Fe, Cu, Zn, Mn and 

Se) aid in  maintenance of physiological homeostasis in organism proteins that are involved 

in cellular processes (Gruber et al., 2020). The elevated correlation of Fe and Cu in cancerous 

tissues are consistent with previous studies (Carvalho et al., 2007) as a result of increased 

cellular activity in cancerous tissues. 
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 Synchrotron XRF quantitative analysis of trace biometals in cell cultures 5.10

Synchrotron radiation based quantitative analysis of the trace elements levels was determined 

using calibrated known simulate sample standards. The XRF fluorescence profiles were used 

to determine the concentration of Cr, Mn, Fe, Cu and Zn in normal cell cultures as shown in 

Table 5.28.  

Table 5.28 Concentration of trace biometals in healthy normal cell cultures 

Element V_D1 V_D2 V_D3 V_D4 V_D5 V_D6 

Cr ND 12.2 8 ND 9.3 2.8 

Mn 8.4 22.3 16.8 8.5 21.2 9.4 

Fe 19.3 33.4 28.3 31.3 28.9 17.6 

Cu 101.2 147.1 141.1 126.7 139.1 124.9 

Zn 629.9 999.9 669.9 559.9 699.9 489.9 

 

From these results, the concentration of Cu and Zn were elevated in normal cell cultures due 

to their normal physiological functions. The concentrations of trace biometals in cancerous 

cell cultures are as shown in Table 5.29 which serve as a vital biomarker for early cancer 

diagnosis.  

Table 5.29 Concentration of trace biometals in cancerous cell cultures 

Element DU_D1 DU_D2 DU_D3 DU_D4 DU_D5 DU_D6 

Cr ND 10.2 66.5 9.1 25 22.7 

Mn 2.9 20.5 78.3 16.3 29.6 28.1 

Fe 26.1 43.4 77.2 43.3 41.2 38.6 

Cu 121.4 143.8 346.9 139 170.1 166.9 

Zn 729.9 869.9 659.9 929.9 1369.9 1139.9 

 

Higher concentrations of trace biometals (Fe and Cu) were evident in cancerous cell cultures 

as compared to healthy cell cultures. The trace biometals play a significant role in protein 

synthesis, immune function, antioxidant defence and inhibition of cell proliferation (Silvera 

and Rohan 2007).  
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Concentration of trace biometals and their alterations at each stage of development of both 

normal and cancer cell cultures are as shown in Figure 5.42 to Figure 5.45.  

 

 

Figure 5.42 Bar graphs of Fe concentration in cancerous and normal cell cultures 

 

Figure 5.43 Bar graphs of Cu concentration in cancerous and normal cell cultures 
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Figure 5.44 Bar graphs of Zn concentration in cancerous and normal cell cultures 

 

Figure 5.45 Bar graphs of Mn concentration in cancerous and normal cell cultures 

The increasing levels of Fe with the stage of development was evident in cancerous cell 

cultures as compared to the normal cell cultures. In this study, high levels of Fe was 

implicated in its regulatory role for angiogenesis (Geraki et al., 2004) and thus essential in 
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biochemical processes related proteins (ferroprotein) and hepcidin for carcinogenesis in 

cancer cells (Naidu et al., 2019). The elevated levels of Zn is essential in biological samples 

enables amalgamation of RNA and DNA that increased apoptosis in malignant cells and 

inhibited cell growth (Naidu et al., 2019). The implication of this apparent change between 

the concentration of trace biometals in cancerous and normal healthy cell cultures is due to 

increased cellular and enzymatic activities which alters the trace elemental composition 

(Geraki et al., 2004). 



119 
 

 Correlation of trace biometals  5.11

The impact cancer is not necessarily given by total element content alone, alteration in spatial 

distribution together with chemical speciation plays key role in carcinogenesis. 

Determination of spatial correlation between trace biometals revealed significant degree of 

correlation. Non-parametric Spearman’s rank correlation test (Bárány et al., 2002) was used 

to investigate the relationship between concentrations of trace biometals.  

5.11.1 Correlations of trace biometals distributions 

Correlations of morphologic and biochemical differences in conjunction with assessments 

based on chemically-specific spectroscopic techniques can aid in cancer diagnostics at early 

stages of development. Cancer alters biochemical levels in human cells where the 

correlations of trace biometals were linked to the state of health. Besides the concentrations 

of trace biometals, a correlation existed between trace biometals and carcinogenesis. 

Spearman correlation were determined for the spatial correlation between these pairs of trace 

elements (p < 0.001) to ascertain the importance of these elements in metabolic processes 

associated with tumor development. The distribution of trace biometals at cellular level in 

both cancerous and normal cell cultures were correlated where positive correlations was 

probably due to increase of a trace biometal as a consequence of increased concentration 

of another element due to exposure from the same metabolic  interactions such as binding 

to  the  same  proteins (Bárány et al., 2002). Figure 5.46 compares the intensities of trace 

biometals in cell lines under study where strong correlation with Fe and Cu (r=0.84) indicated 

dominant presence in cancerous cell cultures, while Se had no correlation with other 

elements, although it is among the essential elements typical for the cells.  

 

Figure 5.46 The correlation of Cu and Fe intensities in DU_D1 culture sample 
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A direct correlation between Fe-Cu and Mn–Se were determined as shown in Figure 5.47 

where the colocalization of Fe and Cu was evident. The weak spectral signals from the XRF 

concentrations of trace element and their distribution in cell cultures were evident. 

 

Figure 5.47 The correlation of Cu and Fe intensities in V_D1 culture sample 

The correlation between trace biometal levels revealed significant diagnostic information for 

resolving weak spectral profiles in biomedical samples. The positive Pearson correlation 

coefficients could have been due to exposure from the same metabolic interactions (Bárány et 

al., 2002). As shown in Table 5.30, Cu is strongly positively correlated to Fe (0.9225) in 

cancerous cell culture at advanced stage of development than at early stage (0.6045) and the 

trend is opposite to the corresponding normal cell culture. 
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Table 5.30 Correlations of trace biometals in cancerous cell cultures 

   

Correlation coefficients 

 

  

Correlation coefficients 

DU_D1 Mn Fe Cu Se 

 

DU_D2 Mn Fe Cu Se 

Mn 1.0000    

 

Mn 1.0000    

Fe 0.9993 1.0000   

 

Fe 0.6703 1.0000   

Cu 0.6068 0.6045 1.0000  

 

Cu 0.8314 0.8389 1.0000  

Se 0.8445 0.8423 0.4723 1.0000 

 

Se 0.0733 0.0997 0.0789 1.0000 

 

 

Correlation coefficients 

 

 

Correlation coefficients 

DU_D3 Mn Fe Cu Se 

 

DU_D4 Mn Fe Cu Se 

Mn 1    

 

Mn 1    

Fe 0.7521 1   

 

Fe 0.6295 1   

Cu 0.8236 0.9406 1  

 

Cu 0.7509 0.9225 1  

Se 0.4388 0.5282 0.5858 1 

 

Se 0.2931 0.4145 0.4527 1 

 

The trace biometals summary statistics in Tables 5.31 and Table 5.32 show the correlations 

between trace elements expression in normal cell cultures.  

Table 5.31 Correlations of trace biometals in healthy cell cultures 

 

Correlation coefficients 

 

Correlation coefficients 

V_D1 Mn Fe Cu Se 

 

V_D2 Mn Fe Cu Se 

Mn 1    

 

Mn 1    

Fe 0.9997 1   

 

Fe 0.9978 1   

Cu 0.7939 0.7931 1  

 

Cu 0.5267 0.5215 1  

Se 0.9739 0.9734 0.7602 1 

 

Se 0.8994 0.8948 0.4383 1 

 

Table 5.32 Correlation coefficients of biomarkers in cancerous cultured cells  

 

Correlation coefficients 

 

 

Correlation coefficients 

V_D3 Mn Fe Cu Se 

 

V_D4 Mn Fe Cu Se 

Mn 1    

 

Mn 1    

Fe 0.8317 1   

 

Fe 0.9125 1   

Cu 0.8897 0.7606 1  

 

Cu 0.2242 0.2030 1  

Se 0.6624 0.7165 0.7390 1 

 

Se 0.7254 0.6793 0.1432 1 

Based on these results, the correlation of trace biomarker concentration and distributions 

were established with stage of cancer development. Correlative localised 2D distribution of 

Fe and Cu increased with cancer staging Cu was relatively highly distributed in cancerous 
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cultures than Fe. The correlations of trace elemental distributions indicate elevated 

concentrations in tumor cells of all samples, with the exception of Fe. Strong and weak 

positive correlations were evident in cancerous and normal cell cultures which indicate 

possible connection between these trace elements and carcinogenesis. Further, Mn as a trace 

biometal was strongly linearly correlated (Zabłocka-Słowińska et al., 2018) to all other trace 

biometals in normal cell cultures thus contains important for morphological information of 

the cell structure.  

The relatively strong correlation between Cu and Fe (0.9406) and (0.92252) in DU_D3 and 

DU_D4 respectively in cancerous compared to corresponding stages in normal cell 

cultures suggest their significance in carcinogenesis. In a similar study by micro XRF (Silva 

et al., 2012), spearman correlation indicated a positive correlation of Cu with other elements 

over all area sample with statistical significance (p < 0.001) which suggest the association Cu 

to the tumor development. Cu aids in the onset and development of tumors while Fe plays a 

vital function in oxygen metabolism (Rocha et al., 2019). A strong correlation between Fe 

and Cu indicated their vital role in cancer cells. Fe is known to aid in blood supply to the 

malignant cells thus accelerates angiogenesis (Kwok and Richardson 2002). Further, a lower 

correlation between Se and Mn was apparent probably due to their anti-carcinogenesis (Guo 

et al., 2015). The strong correlation with Cu and Fe indicated their predominant presence in 

the cells, while Se had a weak correlation with Mn in cancerous cell than in normal cell culture 

probably due to the anti-carcinogenic nature of Se.  

A weak correlation between Se and other trace biometals in cancerous cell probably indicated 

the anti-carcinogenic nature of Se due to its presence in the glutathione peroxidases that 

protect DNA from damage by oxygen radicals (Guo et al., 2015, Xue et al., 2021). Mn and Se 

had weak correlation with other trace biometals although they are essential elements typical 

for the normal cells. The strong correlation of Cu and Fe in cancerous cells indicated vital 

roles of these biometals in cancer development. The correlation between Mn and Se in 

cancerous and normal cell cultures are similar, whereas the correlation between Fe and Cu in 

normal cell cultures were different thus Fe and Cu had significant role in carcinogenesis. 

 



123 
 

 Imaging absorption of trace biometals in cell cultures 5.12

The typical illuminated pixel areas in Figure 5.48 and Figure 5.49 show where the strong 

self-absorption and differential phase contrasting imaging attributed to the dark matrix of 

light elements (H, C, O and N). Pixels of the multispectral images were used to generate 

spectral signatures utilizing multivariate machine learning techniques to identify cancerous 

and non-cancerous cell cultures.   

 

36x36um 

Figure 5.48 Scan region for V_D3 healthy cell culture 

 

40x40um 

Figure 5.49 Scan region for DU_D1 cancer cell culture 

The obtained value at each pixel on image was proportional to the counts corresponding to 

the elemental x-ray lines at that point and normalized to the ring current. The cells were 

visible with strong self-absorption and differential phase contrast (Gianoncelli et al., 2021).  
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5.12.1 Micro XRF 2D mapping of trace biometals in cell cultures 

Direct rapid and non-destructive analysis enabled 2D mapping of biometals (Mn, Fe, Cu and 

Se) at high resolution for accurate diagnosis and characterization of cancer at an early stage 

of development. Micro-XRF (μ-XRF) determined microscopic localization of trace biometals 

in organic matrix within cell culture microenvironments. The X-ray photon background was 

subtracted and the trace elements fitted by PyMca for acquisition of RGB distribution maps.  

Figure 5.50 shows high resolution trace biometal 2D distribution images of Mn, Fe, Cu and 

Se obtained in the control cell culture with 40 x 40 pixels at 10 µm resolution. 

 

Figure 5.50 Micro XRF maps of Mn, Fe, Cu and Se in the growth media 

The color bars indicated trace biometal contents for semi-quantitative determination in the 

irradiated area. The sparse distribution of the trace biometals were evident probably due to 

the fact that the media had not been seeded with cells. 

The differences in 2D density distribution of trace biometals (Mn, Fe, Cu and Se) in 

cancerous cell cultures at different stages of development are as shown in Figure 5.51. The 

trace biometals (Mn, Fe, Cu and Se) distributions were detected in cancerous cell cultures 

where increased and co-localized distribution of Fe and Cu were observed at similar regions 

of the cell at various stages of development. 
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Figure 5.51 Micro XRF 2D maps of Mn, Fe, Cu and Se in DU145 cancer cell cultures 

The 2D maps further indicated the spatial trace biometal (Mn, Fe, Cu and Se) distributions 

that showed elemental accumulation in cancerous cell cultures. The low inhomogeneous 

distribution of Se was attributed to the anti-carcinogenetic nature of Se in reactive oxygen 

species for antioxidant enzymes (glutathione peroxidase) that inhibits the synthesis of tumour 

protein cells (Xue et al., 2021). Further, high distribution of Cu was detected and localized in 

the cell as shown in DU_D2 which increased at different stages of cancer. The trace 

biometals (Fe and Cu) accumulated preferentially in cell nucleus of the cancer cell cultures 

probably due to their vital role in oxidative processes for DNA damage. Further, distinct 

distribution of Fe and Cu were observed in cancer cells with homogeneous distribution of Se 

compared to a non-homogeneous distribution of Mn. 
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The trace biometals (Fe, Cu, Mn and Se) distribution maps were also obtained in Vero 

monolayer non-cancerous cell cultures as shown in Figure 5.50.  

 

Figure 5.52 Micro XRF 2D maps of Mn, Fe, Cu and Se in Vero healthy cell cultures 

The sparse spatial distributions of analyte biometals in the above 2D maps was correlated to 

normal cell growth. A decline in distribution of Fe in the non-cancerous cells with an increase 

in Cu distribution were evident. Further, reduced distributions of Fe and Cu as compared to 

the cancerous cell cultures was also evident in normal culture cells with inhomogeneous 

distributions of Fe and Cu were found throughout the various stages of development. 

Figure 5.53 shows the 2D map of both Fe and Cu show increased accumulation in cancerous 

cell cultures due to cell proliferation which may be related to angiogenesis and oxidation 

processes for free radical generation that accelerates carcinogenesis (Tapia et al., 2003).  
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(a) Cu 

 

(b) Fe 

Figure 5.53 Spatial distibution of Cu and Fe at different stages of development in cancer cells. 

The spatial distribution Fe and Cu in Figure 5.51 were co-localized in same regions of the 

tumor cells with a significant correlation map between them (p <0.001). The homogenous 

and elevated distribution of Fe and Cu were as a result of their probable co-localization in 

cancerous cell cultures especially in the perinuclear/cytoplasmic region of the cells. This was 

attributed to their role in angiogenic and oxidative processes in tumor tissues (Tapia et al., 

2003).  

The significant difference in distribution of trace biometals were observed in cancerous and 

normal cell cultures. The localization of trace biometals in both healthy and cancerous cells 

together with (their correlations suggest potential carcinogenic mechanism for cancer 

diagnostics. Fe and Cu intensities in DU145 cells were higher in cancerous than in normal 

Vero cell cultures at similar stage of development suggesting their vital role in metabolic 

processes associated with carcinogenesis. The distributions of Mn did not show much 

significant distribution alterations in both cancerous and normal cell cultures. The alterations 

in levels of trace biometals due to biochemical changes in tumors were linked to changes in 

cellular structures (Silva et al., 2012), thus spatial distribution of trace elements enabled their 

correlation with various stages of cancer. 
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In a similar study (Matsuyama et al., 2009), Cu and Zn were co-localized with high 

concentration of Fe in the nucleus. Synchrotron based µ-XRF show similar results for 2D 

distribution of trace element (Ca, Fe, Cu and Zn) in normal and malignant breast tissues 

(Silva et al., 2012). The qualitative results indicated that Ca-Zn and Fe-Cu correlations can to 

be linked to malignant transformation in tissues. The changes in distribution of Fe and Cu at 

different stages of development presumably indicate their vital role in carcinogenesis and 

therefore can be used as potential early cancer biomakers. 

5.12.2 The quantitative distribution of trace biometals in cell cultures 

The semi-quantitative analysis by mass fraction distribution of trace biometals from 2D micro 

XRF date were determined based on elemental density distributions. The semi-quantitative 

analytical results of trace biometals in normal cell cultures are as shown in Table 5.33.  

Table 5.33 Semi-quantitative distributions of trace elements in healthy Vero cell cultures 

Biometal  Mass Fraction distribution 

 V_D1 V_D2 V_D3 V_D4 

Mn 0.0071 0.0005 0.0599 0.1402 

Fe 0.0015 0.0086 0.0764 0.1265 

Cu 0.0601 0.0683 0.6431 1.0450 

Se 0.0109 0.0099 0.0276 0.0385 

 

The corresponding semi-quantitative results of trace biometals in cancerous cell cultures are 

as shown in Table 5.34.  

 

Table 5.34 Semi-quantitative distributions of trace elements in cancerous cell cultures 

Biometal  Mass Fraction distribution 

 DU_D1 DU_D2 DU_D3 D_D4 

Mn 0.0011 0.2647 0.0068 0.1061 

Fe 0.0043 0.2445 0.0169 0.0959 

Cu 0.0499 1.5420 0.3788 0.9444 

Se 0.0111 0.0597 0.0229 0.0204 

 

The semi-quantitative accumulation of Cu in concentration as in 2D images of cancerous cell 

cultures were higher than Fe as compared to corresponding normal cell cultures. Further, the 

Mn quantitative distributions were almost undetected (very low) in both cancerous and non-
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cancerous cell cultures. The distribution of trace biometals in cell microenvironments is an 

important tool for early diagnosis of disease (Ortega et al., 2009).  

5.12.3 PC-ANN classification of cell cultures  

The principal components with the greatest information (variance) of selected fluorescence of 

trace biometals (Mn, Fe, Cu and Se) and Compton scatter used as input data in ANN 

classification model enabled predictive classification modelling of cancer stage of 

development. Figure 5.54 shows the PC-ANN results using the principal components of 

selected fluorescence of Fe and Cu (PC1 and PC2) at a total explained variance of 92% as 

input data in ANN classification model.  

 

 

Figure 5.54 PC-ANN analysis of cancerous cells using the entire fluorescence region 

 

The entire fluorescence region could not differentiate the various stages of cancer 

development and thus the need to utilize selected fluorescence regions of interest. 

Furthermore, the 2 dominant principal components score of selected fluorescence of Fe and 
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Cu with a total explained variance of 97% as input data matrix in ANN enabled accurate 

classification of cultured cells into cancerous and normal groups. The selected biomarker 

fluorescence spectral profiles were partially responsible for the differentiation of the cultured 

samples into cancerous and normal groups. These enabled the visualization of cancerous and 

normal cultures as shown in Figure 5.55 into two distinct clusters (cancerous and normal 

groups).  

 

 

 

Figure 5.55 ANN fluorescence (Fe and Cu) scatter plot of cultured cells  

 

The utility of Fe and Cu enabled characterization of cultured cancer cells where Cu it induced 

cell growth proliferation while Fe was greatly involved in oxygen metabolism (Rocha et al., 

2019) for cancer cells. Further, Fe aided in blood supply to the malignant cells thus 
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accelerated angiogenesis (Kwok and Richardson 2002). It was therefore deduced that Cu and 

Fe are potential biomarkers to not only identify the presence of cancer but also characterize 

cancer stages of development. The fluorescence and Compton scatter principal components 

characterized the 3 stages (early, intermediate and advanced) of cancer development with no 

clear distinction between DU_D3 and DU_D4 stages of cancer development as shown in Fig. 

5.56. This was achieved at with area under the curve (AUC) of 0.958, classification accuracy 

(CA) of 0.875 and precision of 0.917 as the scatter peak contained additional information of 

cell structure (morphology) for cancer characterization. 

 

Figure 5.56 ANN scatter plot of cancerous cultured cells by fluorescence and Compton 

scatter 

The inclusion of Compton scatter to the selected fluorescence further improved the 

exploratory analysis. In this regard, the results clearly indicated that the 2D distribution 
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profiles of trace biometals (Mn, Fe, Cu and Se) as potentially valuable cancer biomarkers for 

characterization of cell cultures and cancer severity for a reliable alternative cancer diagnostic 

method. The distribution of Fe and Cu change in response to cancer development staging thus 

they were responsible for the differentiation of the cultured cancerous samples into 3 stages 

of development. The probable stages of cancer development were early (well differentiated), 

intermediate (moderately differentiated) and advanced (poorly differentiated) stages of cancer 

development. In this case, Fe and Cu are unique cancer biomarkers for culture cells 

characterization as they were able to clearly distinguish the various stages of cancer 

development based on cell morphology.  

 

5.12.4 PC-ANN classification of tissue biopsies  

The tissue biopsy samples were characterized into clusters based on the fluorescence and 

scatter spectral profiles with area under the curve (AUC) of 0.904, classification accuracy 

(CA) of 0.781 and precision of 0.848 but with no clear distinction between cancerous and 

normal tissue biopsies as shown in Figure 5.57.  

 

Figure 5.57 ANN scatter plot of tissue biopsies by fluorescence and scatter 

The misclassification was probably due to false-negative or false-positive histopathological 

results where the patients were diagnosed at different stages of development of prostate 
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cancer that could not be resolved by ANN. Nonetheless, PCA reduced the ANN data 

dimensions to characterize the stages of cancer development of prostate cancer based on the 

selected fluorescence profiles of Mn, Fe, Cu, Zn and Se and Compton scatter region as shown 

in Fig. 5.58.  

 

 

Figure 5.58 ANN classification of cancerous prostate urine by selected fluorescence and scatter 

Prostate cancer urine samples were further classified into 3 stages of cancer development 

with AUC of 0.971, classification accuracy (CA) of 0.988 and precision of 0.948 which 

agreed with histopathologic biopsy results. Sample P_23 was misclassified into intermediate 

stage probably due to contamination during sampling. Machine learning based analytical 

approach thus distinguished between early and advanced stages of cancer development with 

additional intermediate stage utilizing the selected fluorescence and Compton scatter.  
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 Trace biometal concentrations in prostate cancer stages 5.13

The trace biometals’ levels of prostate cancer urine based on the above clusters in Figure 5.56 obtained using the validated ANN model are as 

shown in Table 5.35.  

Table 5.35 Concentrations of trace elements in cancerous prostate urine  

  Mean elemental concentrations (ppm) 

Stage Sample Fe  Mn  Cr  Cu  Se  Zn  

Intermediate 

prostate 

cancer 

P_24 49.83 ±2.52 1.58 ±0.28 8.05 ±0.08 10.51 ±0.11 5.88 ±0.50 12.13 ±0.97 

P_23 54.97 ±1.84 4.11 ±0.14 7.05 ±0.07 18.10 ±0.22 3.14 ±1.06 13.23 ±1.14 

P_15 24.13 ±2.94 1.61 ±0.37 8.05 ±0.05 10.50 ±0.04 4.81 ±1.57 11.37 ±0.07 

P_14 56.54 ±5.29 1.51 ±0.26 8.05 ±0.07 9.45 ±0.07 7.89 ±2.50 10.33 ±0.14 

P_20 32.70 ±1.92 1.54 ±0.24 6.05 ±0.02 10.01 ±0.02 9.64 ±2.27 12.74 ±0.45 

P_06 18.76 ±2.91 2.20 ±0.43 8.05 ±0.03 8.44 ±0.05 6.84 ±1.98 10.38 ±0.04 

              

Advanced 

Prostate 

cancer 

P_41 33.71 ±3.64 2.94 ±0.88 6.05 ±0.05 16.91 ±0.02 6.62 ±2.20 11.88 ±0.67 

P_37 11.51 ±1.08 1.37 ±0.09 9.05 ±0.06 9.06 ±0.05 6.13 ±2.02 11.71 ±0.40 

P_45 25.19 ±3.64 2.26 ±0.46 7.05 ±0.08 9.63 ±0.01 4.59 ±1.51 13.65 ±0.31 

P_15 24.13 ±2.94 1.61 ±0.37 8.05 ±0.06 10.50 ±0.02 4.81 ±1.57 11.37 ±0.07 

P_32 6.17 ±1.51 3.67 ±0.34 8.04 ±0.07 6.70 ±0.19 4.44 ±2.11 12.56 ±0.19 

P_36 12.02 ±2.98 1.50 ±0.19 7.06 ±0.11 7.84 ±0.25 3.29 ±1.85 10.11 ±0.47 

             

 

Early 

prostate 

cancer 

             

P_12 36.93 ±2.10 2.70 ±1.15 8.05 ±0.27 11.91 ±0.01 8.93 ±2.06 12.57 ±0.23 

P_11 6.26 ±1.63 1.63 ±0.29 8.06 ±0.06 9.05 ±0.09 6.75 ±2.08 12.19 ±0.64 

P_10 13.18 ±1.50 1.87 ±0.58 8.04 ±0.02 10.46 ±0.17 7.93 ±2.47 12.54 ±0.18 

P_07 32.25 ±2.55 3.72 ±0.22 8.05 ±0.22 11.66 ±0.12 3.35 ±2.60 12.40 ±0.02 
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The above results show varying levels of trace biometals in the cancerous prostate urine with 

the concentration of Fe and Cu decreasing with staging of cancer in cancerous urine which is 

consistent with previous studies (Carvalho et al., 2007). This study further indicated high 

levels of Fe and Cu at early stage of development due to rapid cell division and proliferation 

that supports tumor growth (Lee et al., 2003). Additionally, significant decrease in levels of 

Cu were also evident due to lag phase with probably decreased generation of free radicals in 

Fenton reaction (Yaman et al., 2005).  

5.13.1 Relative values of trace biometal concentrations in cancerous human urine 

The relative values in the levels of trace elements in malignant urine indicate the potential of 

using these ratios as discriminant factor for cancer characterization. Table 5.36 shows the 

relative values (ratios) of trace biometals in characterized prostate cancer samples. 

Table 5.36 Ratios of trace biometal levels in cancerous samples 

Relative values of trace biometal concentrations 

Stage Sample Fe/Cu Fe/Se Fe/Zn Cu/Se Cu/Zn Se/Zn 

Intermediate P_24 4.74 8.47 4.11 1.79 0.87 0.48 

Prostate P_23 3.04 17.51 4.15 5.76 1.37 0.24 

Cancer P_15 2.30 5.02 2.12 2.18 0.92 0.42 

 P_14 5.98 7.17 5.47 1.20 0.91 0.76 

 P_20 3.27 3.39 2.57 1.04 0.79 0.76 

 P_06 2.22 2.74 1.81 1.23 0.81 0.66 

 Mean 3.59 7.38 3.37 2.20 0.95 0.55 

        
Advanced P_41 1.99 5.09 2.84 2.55 1.42 0.56 

Prostate P_37 1.27 1.88 0.98 1.48 0.77 0.52 

Cancer P_45 2.62 5.49 1.85 2.10 0.71 0.34 

 P_15 2.30 5.02 2.12 2.18 0.92 0.42 

 P_32 0.92 1.39 0.49 1.51 0.53 0.35 

 P_36 1.53 3.65 1.19 2.38 0.78 0.33 

 Mean 1.77 3.75 1.58 2.03 0.86 0.42 

        
Early P_12 3.10 4.14 2.94 1.33 0.95 0.71 

Prostate P_11 0.69 0.93 0.51 1.34 0.74 0.55 

Cancer P_10 1.26 1.66 1.05 1.32 0.83 0.63 

 P_07 2.77 9.63 2.60 3.48 0.94 0.27 

 Mean 1.92 4.02 1.74 1.90 0.86 0.52 

 

The increased mean ratio of Fe/Se in prostate cancer tissues was due to increased level of Fe 

and a corresponding decreased level of Se in cancer tissues which can be used to differentiate 

prostate cancer stages of development cancer. It can further be deduced that increased ratios 

of Fe/Cu (> 7.0) and Cu/Se (> 6.0) and alteration in ratios of Fe/Zn, Fe/Se and Cu/Zn are 
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potential biomarkers for advancement of cancer from early to advanced stage of 

development. The ratios could be considered as useful parameters to characterize cancer 

stage of development which unravels the significance of the trace elemental ratios in 

metabolic processes associated with the development of the tumor. The relative values of 

trace biometals are valuable diagnostic markers and thus should be considered as tracers for 

the identification of pathological disorders in human fluid (urine).  

 Cancer diagnostic model  5.14

The above qualitative and quantitative results were used to develop diagnostic model (Figure 

5.59) for prediction of the presence of cancer, its type and its stage that can subsequently be 

used in early diagnosis of cancer. The application of EDXRF, TXRF, µ-XRF and XANES 

enabled determination of a potential cancer diagnostic model based on alterations, levels, 

speciation and distribution of trace elements (Mn, Fe, Cu, Zn and Se) in tissues and urine for 

cancer diagnostics. 
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Figure 5.59: Machine learning aided XRFS cancer diagnostic model. 

 

The above developed model was not only able to characterize cancer but also determine 

staging of cancer. These was associated with subtle alterations in the levels, distribution and 

speciation of trace biometals due to their active role in various enzymes and metabolic 

processes catalyzing chemical interactions in the cells. PC-ANN enabled differentiation 

between normal and cancerous cells as well as differentiation of the various stages of cancer 
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development. The results indicate that 2D mapping of trace biometals can be used for early 

diagnosis of cancer in individual cells with potential for clinical application. The above 

nested machine learning strategies not only indicated a potential method for the utilization of 

both fluorescence but also the Compton scatter. 
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CHAPTER 6.0 CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

  Conclusions 6.1

The study was aimed at developing the utility of machine learning aided XRFS analysis by 

simultaneously qualitative and quantitative analysis of trace biometals in human tissue, urine 

and cell cultures for early cancer diagnosis. EDXRF, TXRF, µ-XRF and XANES were used 

to mine quantitative, speciation and distribution information of trace elements in tissues and 

urine for cancer diagnostics at early stages of development. The utility of hardly discernible 

fluorescence peaks and Compton Scatter peaks in tissues cell cultures and urine samples 

realized a rapid non-invasive method for characterization of cancer at an early stage of 

development.  

Machine learning enabled data reduction for recovery of weak signals from high background 

and overlapped peaks. In this regard, PCA enabled reduction of data dimensions for possible 

classification. KNN and SVM determined the oxidation state of Fe and Cu in both human 

tissues and fluids while ANN and SVM were utilized for multivariate calibration to 

determine the concentration of trace biometals in human tissue biopsy and urine for cancer 

diagnosis. The cancerous tissue biopsy samples were characterized as cancerous and non-

cancerous by PCA and HCA based on the fluorescence and Compton scatter peaks. In this 

study, a decline in distribution of Fe in the cancer cell cultures was noted with an increase in 

Cu localization in the cultured cancer cells. Further, multivariate modeling and exploratory 

capability were achieved by PCA enabled ANN that characterized cancer into well 

differentiated, moderately differentiated and poorly differentiated stages of cancer 

development.  

The strong distribution correlation of Cu and Fe in cancerous cell cultures indicated vital 

roles Cu in cancer development. Further, weak correlation of Se with other trace biometals was 

evident despite Se being essential element typical for the normal cells. The results indicated 

predictable associations of trace biometals fluorescence together with the Compton scatter as 

cancer biomarkers with potential to be used for cancer detection, differentiation and 

characterization especially at the local stage of development. The levels, speciation and 

distribution patterns in human tissues and urine can be used as biomakers for cancer severity 

characterization besides distinguishing normal and cancerous human body tissues and fluids. 

The levels and distribution of trace biometals and their speciation in human body tissue and 
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urine are therefore potential cancer biomarkers based on the correlations and patterns of trace 

elements in body fluids and tissues. Further, the concentrations, alterations, correlations and 

ratios of trace biometals in human tissues and urine can be used as biomarkers for cancer 

diagnostics at the local stage of development. An alternative and complementary approach 

for early-stage cancer screening has been developed and its subsequent application in a 

clinical set-up has a potential to reduce cancer morbidity and mortality rates. 

 Recommendations  6.2

This work highlights that trace biometals can be potential early biomarkers for early cancer 

diagnosis but in order to better understand the role of the elements and its changes, further 

analysis with large sample size is hereby highly recommended to reiterate and consolidate the 

current findings. Additional information on diet, drugs and biographical information of the 

patient that may affect the biometal profiles (levels, speciation and 2D mapping) need to 

incorporated in the model before clinical trials for potential application of the method for 

cancer diagnosis.  
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APPENDICES 

Appendix I: Informed consent explanation  

 

Introduction (Researcher statement)  

My name is Okonda Justus, a PhD (Physics) post graduate student in Department of Physics at 

the University of Nairobi. I would like to introduce to you a research study that I am conducting; 

with the aim of giving you relevant information that may help you make an informed decision on 

whether or not you are willing to voluntarily participate in the study.  

Research title: Diagnostic Analysis and Modeling of Trace Biometals and Speciation by 

Machine Learning Based X-Ray Fluorescence and Scatter in selected Adult Genital-Urinary 

Tract Cancers 

Brief information on cancer  

Cancer as a major non-communicable disease is among the leading cause of death in Kenya 

after infectious and cardiovascular diseases. Genital urinary cancer cases have been on the 

rise in Kenya with resultant loss of lives and resources during treatment. 

Purpose of the study 

The study is aimed to help in the detection of genital urinary tract cancers at the local stage stage 

of development to enhance effective mode of treatment. 

Shipment of the samples outside Kenya  

Analytical techniques outside Kenya will need shipment of the samples to external laboratory for 

analysis 

Benefits  

The study will contribute in giving a complementary method of cancer diagnosis, hence provide 

guidance in developing interventions for the prevention and control of the known non-

communicable infections associated with cancer. The results obtained from his study will help 

policy makers in making informed decisions best suited in the management of cancer.  

Risks  

The sample collection will not require any invasive procedure, it is painless. Therefore there is no 

risk of any nature whatsoever.  

Voluntarism  

Participants in this study shall volunteer without any coercion. You may wish to decline 

participate or to respond to any question in the questionnaire that you are not comfortable 



158 
 

with or even terminate the interview at will without any condition whatsoever. You may also 

withdraw from the study at any time you wish should you change your mind about 

participating without any loss of health care benefits to which you are entitled in the hospital. 

Do you have any question concerning the above explained information? 

  

                 Yes                No  

Are you willing to participate in this study?     

Yes                                          No  

If yes sign in below 

 

 

 

 

Consent by the patient  

I (Mr/Mrs/Miss/Dr/Prof)……………….…………………………………consent number 

………                             has read or beeb explained the information provided above. All my 

questions have been addressed. I do hereby give my informed consent to be part of the study 

fully aware of the benefits. I am aware that l can withdraw from this study without loss of any 

benefits of quality of clinical services and care to which l am entitled in this hospital. I 

understand that the results of these tests shall be used for research work only and be kept 

confidential. 

Participants Signature /Thumb 

print……………………………Date…………………………  

Doctor /Nurse  

(Witness)……………………………… Signature …….……………...Date ………………. 

 

Principals’ investigator  

(Witness)……………………………… Signature …….……………...Date ………………. 

Contact information  

For any question please contact the Principal Investigator on;  

Researcher contact  

Okonda J. Justus 
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Cell Phone 0724 569 590 

OR 

UON contacts  

Department of Human Pathology  

Tel. +254-2-7263000 ext 43769,  

+254-2-2725102  

Supervisor:  

Prof. Emily Rogena - Cell Phone 0721674647  

Chairman of  

(KNH/UON/ERC) – Telephone No. 2726306-9. Ext. 44102 
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Appendix II: Urine collection and infection control procedure  

1. Once the participant has accepted to participate and is eligible for the study, he/she will be 

given two urine specimen containers (one to be used in the evening and the other in the early 

morning)  

2. He or she will wash and dry his hands before getting into the toilet.  

4. He or she will then collect the first void urine specimen in clearly labeled polypropylene 

bottles and cock and clearly labeled without any contamination.  

5. After 24 hours (next day), he will again collect the second void of urine in polypropylene 

bottles by using the instructions provided and cock the bottles to avoid contamination. 

 

Study questionnaire  

All consenting participants will be required to fill the questionnaire before sample collection  

Study number ……………................... Date…………………………………… 

Social demographic Characteristics;  

Age…………….years 

Kindly tick one of the appropriate choices given  

Marital status…………………………..  

 

Single                        Married                                Divorced                            Widowed 

Level of education  

None        Primary           Secondary        College 

Employment  

Employed    Unemployed                                 Self employed 

 You are healthy. 

 You have prostate cancer. 

 You have cervical cancer. 

 You have urinary bladder cancer. 

Medical history 

Are you on medication?                   Yes                                                          No 

Kwa Kiswahili; 
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Kiambatisho 1 

Utangulizi: Maelezo ya Mtafiti 

Jina langu ni Okonda J. Justus. Mimi ni mwanafunzi wa Shahada ya Uzamifu katika Chuo 

Kikuu cha Nairobi. Ningependa kukupa maelezo ya kimsingi kuhusu kiini cha utafiti wangu 

ninaoufanya. Maelezo haya ndio yatakayoweza kukufanya uamue iwapo utaweza kukubali 

kujitolea kwa hiari kushiriki katika utafiti huu au utakataa kushiriki. 

Research Title: Diagnostic Analysis and Modeling of Trace Biometal Speciation by 

Machine Based X-Ray Fluorescence and Scattering in Selected 

Adult Genital Urinary Tract Cancer 

Maelezo Kwa Ufupi Kuhusu Kansa 

Kansa kama ugonjwa usioambukizwa na ni nambari tatu katika kusababisha vifo miongoni 

mwa mataifa 

ambayo uchumi wake ni wa chini au wastani. Maradhi yanaoongoza ni yale 

yanayoambukizwa na ya moyo. Nchini Kenya kuna ongezeko la visa vya wale wanaougua 

Kansa ya viungo vya uzazi. Swala hili linasababisha kutumika kwa rasilimali nyingi 

kugharamia matibabu ya waathiriwa na hata kusababisha vifo. 

Lengo La Utafiti   (Purpose of Research) 

Utafiti huu unalenga kuwaidia katika kugundua maambukizi ya kansa katika hatua zake za 

mwanzo ili kushauri namna ya kupata matibabu mwafaka. 

Manufaa (Benefits) 

Utafiti huu utachangia katika kupata mbinu kamilishani za kubainisha ugonjwa wa kansa. 

Haya yatatuongoza katika kuzindua mbinu za kutumia kukabili na kuthibiti magonjwa 

ambayo hayaambukizani na yanayohusishwa na ugonjwa wa kansa. Matokeo ya utafiti huu 

yataweza kusaidia waunda sera kufanya maamuzi yafaayo ambayo yatathibiti ugonjwa wa 

kansa. 

Mashaka (Risks) 

Utaratibu wa kukusanya sampuli ya kufanyia utafiti hautahitaji mtafiti kuhisi uchungu 

wowote unaoweza kusababisha kuugua maradhi yoyote. Kwa hivyo utafiti huu hautaweza 

kusabibisha mashaka/hatari ya aina yoyote ile.                     

Kujitolea kwa hiari  (Voluntarism) 

Washiriki katika utafiti huu watakuwa wa kujitolea bila ya kushurutishwa. Unaweza kukosa 

kushiriki katika utafiti huu, kukosa kujibu swali lolote lile iwapo huridhishwi nalo au hata 

ukasitisha mahojiano haya wakati wowote ule bila ya masharti yoyote. Unaweza kujitoa 

(Mada ya utafiti) 
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katika utafiti huu wakati wowote ule ukibadili msimamo wako kuhusu ushiriki wako bila ya 

kupoteza manufaa ya kiafya ambayo umekuwa ukipata katika hospitali hii 

 

Una swali lolote kuhusu maelezo haya ambayo umepewa? 

 

 

 

  

               Ndio                                                             La 

 

Je, umejitolea kushiriki katika utafiti  huu? 

 

Kama ndio tia sahihi ukifwata maelezo yafuatayo: 
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Kiambatisho II: 

 Hojaji ya kujitolea (Consent Form)  

Kujitolea kwa mgonjwa (Consent by the patient) 

Mimi  

Bw/Bi/Dr./Prof………………………………………………………Nambari………………

….. 

Nimesoma/nimesomewa/nimeelezwa na mwezangu ujumbe ulio katika kiambitisho, nimepata 

fursa ya kuuliza maswali kwa namna ambayo imeweza kuniridhisha. Ninajitolea kushiriki 

katika utafiti huu  nikijua kuwa ninaweza kujiondoa bila ya kupoteza manufaa ambayo 

nimekuwa nikipokea kwa kuwa mgonjwa katika hospitali hii. Ninafahamu na kuelewa kuwa 

matokeo ya utafiti huu yatakuwa siri na yatatumiwa tu kwa minajili ya lengo la utafiti. 

 

Sahihi ya Mshiriki/Kidole gumba  

Tarehe………………………………………….. 

 

Sahihi ya Daktari/Muuguzi……………………………Tarehe …………… 

(anayeshuhudia) 

 

Sahihi ya Mtafiti……………………………………… Tarehe……………………………… 

 Mawasiliano kwa Mtafiti 

Iwapo una swali lolote kuhusiana na utafiti huu tafadhali wasiliana na mtafiti kupitia;  

Okonda  J. Justus 

Nambari ya simu   0724569590 

 

Au 

Chuo Kikuu cha Nairobi 

Kitengo cha Magonjwa ya Binadamu 

Nambari +254-2-7263-000-43769   

   +254 -2- 272-5102 

 

Ama 

Msimamizi  

Prof. Emily Rogena 

0721 674 647 
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Mwenyekiti wa Idara ya KNH/UON/ERC 

2726306-44102 

                        Maswali ya Utafiti (Study Questionnaires) 

Washiriki wote ambao wamejitolea kwa hiari kushiriki katika utafiti huu wanahitajika 

kukusanya data kutoka kwako 

 

Nambari ya utafiti…………………………………  Tarehe 

……………………………… 

 

Sifa za kidemokrafiki za kijamii  

 

Umri (miaka) ………………..  

Tafadhali weka alama mwafaka panapohitajika/panapofaa 

Hadhi ya ndoa…………………………..  

 

  

Kiwango cha masomo 

 

 

Ajira 

 

 

Historia ya Matibabu 

Uko na kansa  

 

 

                                  

Mseja (single) Nimeoa (oleka) Nimetaliki Nimefiwa 

Sina Kisomo Shule ya Msingi Shule ya upili Vyuo 

Nimeajiriwa Sina Kazi Nimejiajiri 

Sina Kansa Naugua kansa ya tezi kibofu 

Naugua kansa ya kizazi 

Naugua kansa ya kibofu cha mkojo 
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Kiambatisho III 

Utaratibu wa kukusanya mkojo na kuzuia maambukizi ya maradhi 

1. Mshiriki atakayekubali kushiriki  katika utafiti huu na ametimiza masharti atapewa 

chupa mbili za kukusanyia kielelezo cha mkojo. Chupa ya kwanza aitumie jioni na ya 

pili aitumie asubuhi na mapema. 

2. Mshiriki aweze kunawa mikono kabla ya kwenda choo kukusanya kielelezo cha 

mkojo. 

3. Mkojo uweze kukusanywa katika chupa safi angavu. 

4. Baada ya saa ishirini na nne, mshiriki aweze kutoa kielelezo cha mkojo wa pili ambao 

utatiwa katika chupa ya pili huku maagizo yaliyowekwa yakizingatiwa. Chupa hii 

ifunikwe ili kuzuia sampuli kuchafuka. 

Standard operating procedure (SOP) for retrieved tissue blocks handling and 

processing 

1. The retrieved blocks shall be sectioned into 5, 10 and 15 microns using microtome and 

the sections floated in warm water. 

2. The sections will then be picked on a slide and placed in a warm oven for 15 minutes so 

to adhere to the slide. 

3. The sections on the slide will then be stained using standard Haematoxylin.  

4. Upon drying of the stained tissue sections, X-ray fluorescence of the tissues will be done. 
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Appendix III: Calibration set design for simulate tissue samples  

 

 

Analyte 

Simulate sample concentration (ppm) 

S1Tl S2Tl S3Tl S4Tl S5Tl S6Tl S7Tl S8Tl S9Tl 
2Cu  2.0 10.0 14.0 20.0 35.0 30.0 27.0 40 50 

2Zn  25 300 200 450 10 80 30 95 70 
3Fe  32 24 65 80 180 200 300 350 420 

4Mn  9.6 1 100 5 1.5 50 3 1.7 13 
3Cr 

 0.5 15 10 0.6 1.5 0.8 0.3 1 2 
4Se  0.5 1 2 1.6 5 10 3.5 7.5 9 

 

 

Analyte 

Simulate sample concentration (ppm) 

S10Tl S11Tl S12Tl S13Tl S14Tl S15Tl 
Cu  100 120 150 5 350 200 
2Zn  105 150 55 250 40 130 
2Fe  250 5 400 600 750 800 

2Mn  100 90 2.5 4.5 7 3.5 
3Cr  25 20 38 60 41 50 
4Se  0.7 1.2 15 30 20 12 

Sample size; 15 
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Appendix IV: Calibration set design for simulate urine samples  

 

Analyte 

Simulate sample concentration (ppm) 

S1Ul S2Ul S3Ul S4Ul S5Ul S6Ul S7Ul S8Ul S9Ul 
Cu  0.5 2 1 2.5 0.8 5 0.7 10 7 
2Zn  11 70 100 10 90 200 300 500 32 
2Fe  2 1.5 5 20 1.8 2.3 3.3 2.5 30 

2Mn  2 5 1 0.5 3 2.4 0.8 15 20 
3Cr  2 3 7.5 4.7 2.5 6.0 5 8 10 
4Se  1.8 2.7 3.5 3 5 1 2 6 1.2 

 

 

Analyte 

Simulate sample concentration (ppm) 

S10Ul S11Ul S12Ul S13Ul S14Ul S15Ul 
Cu  15 20 3 5.5 12 25 
2Zn  600 40 30 15 9 5 
2Fe  12 45 80 35 100 60 

2Mn  1.5 3.5 2.5 1.8 4.5 25 
3Cr  15 12 1.5 3.5 20 30 
4Se  2.5 10 15 35 18 20 

Sample size; 15 
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Appendix V: TXRF analysis of concentration data of 20µl urine of prostate 

sample  

 Cr Mn Fe Cu Zn Se 

P_07 0.050 0.040 0.144 0.054 0.442 0.020 

 0.009 0.004 0.013 0.007 0.010 0.004 

P_11 0.035 0.031 0.089 0.057 0.228 0.027 

 0.003 0.004 0.008 0.005 0.006 0.003 

P_17 0.032 0.030 0.201 0.045 0.322 0.021 

 0.009 0.003 0.008 0.004 0.006 0.002 

P_18 0.074 0.098 0.299 0.136 2.470 0.054 

 0.014 0.012 0.012 0.007 0.018 0.004 

P_20 0.065 0.184 0.179 0.072 0.486 0.046 

 0.003 0.008 0.014 0.007 0.013 0.003 

P_25 0.022 0.023 0.091 0.027 0.085 0.009 

 0.002 0.002 0.005 0.002 0.002 0.001 

P_30 0.000 <0.024 0.137 0.060 0.551 0.021 

 0.000 0.003 0.006 0.005 0.006 0.003 
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Appendix VI: EDXRF concentrations of trace biometals in normal and 

cancerous urine samples 

Healthy Mn Fe Cu Zn Se 

 

 Cancerous Mn Fe Cu Zn Se 

NP.05 ND 12.6 8.31 6.06 ND 

 

P_O6 ND 17.2 11.2 6.74 ND 

NP.06 ND 11.4 6.35 4.05 ND 

 

P_O8 ND 9.68 6.83 5.84 ND 

NP.08 ND 12 6.02 5.28 ND 

 

P_10 ND 9.87 6.26 3.42 ND 

NP.11 ND 8.68 6.59 10.2 ND 

 

P_11 ND 13.2 9.46 6.53 ND 

NP.12 ND 14.7 8.32 5.64 ND 

 

P_12 ND 14.4 8.16 6.26 ND 

NP.13 ND 14.7 7.64 7.71 ND 

 

P_14 ND 9.34 5.63 3.74 ND 

NP.14 ND 11.8 7.31 6.13 ND 

 

P_15 ND 16.6 7.44 4.92 ND 

NP.15 ND 12.3 7.09 4.95 ND 

 

P_20 ND 14.4 8.26 6.47 ND 

NP.16 ND 13.43 4.86 2.42 ND 

 

P_23 ND 14.2 9.42 8.34 ND 

NP.17 ND 9.12 7.03 4.78 ND 

 

P_24 ND 11.6 6.36 5.09 ND 

NP.18 ND 8.56 5.75 3.44 ND 

 

P_32 ND 13.3 7.81 4.3 ND 

NP.19 ND 15 9.56 9.77 ND 

 

P_36 ND 11.1 5.44 3.41 ND 

NP.20 ND 10 6.76 4.54 ND 

 

P_37 ND 13.7 8.44 6.23 ND 

NP.22 ND 13.6 8.56 4.46 ND 

 

P_41 ND 15.3 8.86 5.05 ND 

NP.23 ND 13.9 8.82 6.02 ND 

 

P_45 ND 18.9 10.7 12.4 ND 

       

P_15 ND 20.8 6.82 3.91 ND 
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Appendix VII: TXRF concentration of trace biometals in 10µl prostate cancer  

 Cr Mn Fe Cu Zn 

P_07 0.255 0.023 0.255 0.108 0.419 

 0.047 0.007 0.016 0.009 0.012 

P_11 0.054 0.115 0.705 0.072 0.236 

 0.005 0.011 0.023 0.005 0.007 

P_17 <0.053 <0.043 0.048 0.029 0.672 

 0 0 0.009 0.006 0.013 

P_18 <0.047 0.058 0.382 0.233 2.67 

 0 0.015 0.017 0.008 0.021 

P_20 <0.014 <0.012 0.071 0.012 0.261 

 0 0 0.005 0.002 0.005 

P_25 <0.025 0.022 0.177 0.011 0.204 

 0 0.006 0.007 0.003 0.005 

P_30 <0.054 0.045 0.111 0.022 0.613 

 0 0.01 0.011 0.002 0.012 

 









Spectrochimica Acta Part B: Atomic Spectroscopy 204 (2023) 106671

Available online 7 April 2023
0584-8547/© 2023 Elsevier B.V. All rights reserved.

Feasibility for early cancer diagnostics by machine learning enabled 
synchrotron radiation based micro X-ray fluorescence imaging of trace 
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A B S T R A C T   

Trace quantitative spectroscopic imaging has the potential to provide the location and distribution of trace 
biometals in a biological sample for disease (cancer) diagnostics. However, spatial qualitative analysis of the 
trace biometals for cancer diagnostics remains a challenge due to the complex biological matrices that result in 
weak analyte signals and intricate multivariate relationships between the analyte spatial distribution and disease 
(cancer) state. In this study, principal component analysis (PCA)-enabled artificial neural networks (ANN) for 
micro X-ray fluorescence for simultaneous determination of biometal (Mn, Fe, Cu and Se) spatial profiles as 
biomarkers for cancer diagnosis in model human cell cultures (DU145 and Vero). The cell lines were cultured on 
silicon nitride membranes and micro XRF analysis carried out at TwinMic beamline, Elletra synchrotron source at 
beam excitation energy of 1.7 keV. These enabled 2D mapping of Mn, Fe, Cu and Se using cylindrical beam 
dimensions of Æ690 nm in stepper motor-controlled step sizes of 0.6μm with dwell times of 10s per pixel. 
Python multichannel analyzer (PyMca) software was used for spectral deconvolution and determination of 2D 
maps of the trace biometals. Principal component analysis (PCA) reduced the data dimensions for optimal 
artificial neural networks (ANN) exploratory modelling of cancer pathogenesis stages utilizing the pixel spectral 
profile of the trace biometals (Mn, Fe, Cu, Se). The 2D spatial distribution maps of the trace biometals revealed 
high spatial correlations between Cu and Fe ((0.941) and (0.923)) in DU_D3 and DU_D4 in cancerous compared 
to normal cell culture stages (V_D3 and V_D4) at 0.661 and 0.203 respectively. Utilizing PC1 and PC2 scores from 
selected fluorescence L (Lα and Lβ) lines of Fe and Cu, ANN distinctively classified the cell cultures into cancerous 
and healthy groups. Further, the selected fluorescence L-lines of Fe, Cu and Compton scatter spectral profiles 
enabled ANN classification of cancerous cultured cells into early, intermediate and advanced stages. The study 
has provided proof of concept for early diagnosis of cancer based on the multivariate alterations and spatial 
distribution of the trace biometals as cancer biomarkers.   

1. Introduction 

Soft X-rays can penetrate through varying thickness of biomedical 
samples [1] for qualitative and quantitative analysis of elements. Syn-
chrotron radiation source provides a highly polarizing and stable 
monochromatic emission of high flux and low divergence [2] beam of 
soft X-rays valuable for cellular and sub-cellular elemental imaging in 
complex biological systems [3]. Synchrotron radiation X-ray fluores-
cence (SR-XRF) further combines the flexibility of variable incident X- 
ray energy and advanced sample manipulation for the realization of 

sample analysis with low detection limits [4] and micro-analysis [5]. 
The tunability of synchrotron sources further improves the spatial res-
olution of quantitative imaging [6]. In this regard, synchrotron radiation 
in microscopy domain has the potential for determination of spatial 
distributions of trace biometals in individual cells for disease (cancer) 
diagnostics via biochemical mechanisms at reduced spectral background 
and minimum scatter [7]. 

The low Z elements in biomedical samples are difficult to detect in 
fluorescence mode thus leads to low fluorescence yield and absorption 
contrast. The trace biometals are therefore masked in the high 
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background and are not easily studied by soft X-rays to provide 
biochemical levels and distribution [1]. Each cell has characteristic 
biochemical composition that changes in response to pathological 
stimuli which impairs the immune system and results in changes in 
cellular chemical and structural profiles. The essential trace biometals 
such as Mn, Fe, Cu and Se maintain homeostatic balance and regulate 
enzymatic reactions [1]; therefore changes in their concentrations as 
well as their spatial distributions alter the cellular functions [8]. Dis-
tribution and alterations of trace biometals such as Mn, Fe, Cu and Se 
together with their correlative localization in cellular microenviron-
ments can be used as ‘biomarkers’ for early cancer diagnosis [9]. Ac-
cording to 2019 World Health Organization (WHO) statistics, cancer is 
ranked as among the major cause of death for the population below 70 
years in 112 out of 183 countries [10]. Prostate cancer is currently the 
most commonly diagnosed cancer in men [11] and is globally the sixth 
most common cancer [12]. Early diagnosis of cancer remains a chal-
lenge due to the limitations of conventional diagnostic methods. 

SR-XRF enabled analysis of trace element levels in healthy and 
cancerous serum human breast [13] where significantly high concen-
trations of Cu, Fe, and Pb but low concentrations of Mn, Ti, Cr and Zn 
were evident. Synchrotron radiation total reflection X-ray fluorescence 
(SR-TXRF) determined the concentration of Fe, Zn, Cu and Rb in human 
prostate cancer tissue [14] where high levels of Fe and Zn were evident. 
Synchrotron radiation induced X-ray emission (SRIXE) quantified Fe, K, 
Zn and Cu in normal and cancerous breast tissue where high concen-
trations of Fe in cancerous tissue were recorded [15]. Synchrotron 

radiation micro-XRF enabled spatial distributions of Cu and Fe in human 
prostate spheroid cells using DU145 (cancerous) and RWPE-1 (normal) 
cell lines supplemented with zinc chloride [16]. In this study, inhomo-
geneous distributions of both Cu and Fe were observed in all the 
spheroids due to their significant regulatory role in carcinogenesis. 
Turyanskaya et al. (2021) used laser ablation inductively coupled 
plasma mass spectrometry (LA-ICP-MS) based micro-XRF spectrometry 
to analyze both healthy and diseased human bones and cartilage [7] 
where Ca, P, Zn, Pb and Sr were highly spatially distributed. Further 
quantitative analysis through matrix-matched reference standards 
indicated that Ca and P levels were elevated (120 ppm and 80 ppm 
respectively) in bone and cartilage. The in vivo toxicity of zebra fish 
embryos has been assessed through analysis of bio-distribution of 
nanoparticles by synchrotron radiation X-ray fluorescence (SR-XRF) 
imaging [17]. Micro XRF imaging enabled the segmentation of 
elemental distribution images in stromal and neoplastic ovarian tu-
mours and healthy tissue [18]. In this study, the non-negative matrix 
factorization and K-means clustering and were used for image segmen-
tation for characterization of stromal, tumour or unclassified areas uti-
lizing elemental (P, Mg and Zn) distribution maps as potential 
biomarkers for cancer diagnosis. 

The above SR-based XRF methods are not only limited by weak 
spatial and spectral signals but also difficulties in analysis and inter-
pretation of highly-dimensional data for cancer diagnostics. Effective 
cancer management calls for early detection and diagnosis preferably at 
the cellular level with complex cellular microenvironments with subtle 
spatial distribution of the trace bimetals. Cancer diagnostics at the local 
stage of development based on pixel spatial distribution of trace bio-
metals as biomarkers [19] can be achieved by SR-XRF quantitative im-
aging at sub-micrometer resolution with low detection limits at cellular 
levels. However, individual pixels may contain biometal contributions 
from other different sources [20] as well as tissue morphological in-
formation hence the need to utilize multivariate techniques for the 
spectral data analysis. 

Table 1 
Spectral feature selection of L (Lα and Lβ) lines for multivariate exploratory 
analysis.  

Biometal Line series Energy range (keV) 

Mn L 0.625–0.639 
Fe L 0.692–0.712 
Cu L 0.915–0.935 
Se L 1.360–1.431  

Fig. 1. Visible light microscopy images (10×) for (a) cancerous and (b) normal cell cultures.  
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1.1. Machine learning 

The identity and distribution of elements in the spectral images are 
limited by the complexity of cell structure and bio environment which 
complicate trace quantification and diagnostic interpretation of the 
spectral and spatial profiles. Further, deconvolution of L-lines and 
multivariate data visualization can be a challenge in differentiating 
several cell constituents as their spectral characteristics tend to overlap 
which constitute a multivariate analytical problem requiring the appli-
cation of novel image data processing techniques. Machine learning 
(ML) enabled μ-XRF has the potential for cancer diagnosis [21] at the 
local stage of development. Multivariate Principal Component Analysis 
(PCA) can reduce the complexity (removes redundant variables) of 
micro-XRF data sets and retains the most important and original infor-
mation [22] potential to mine information about the biochemical 
composition of the samples. PCA can be utilized in reconstructing spatial 
images back to their original stack to extract latent features [23]. Neural 
networks (NNs) have the potential to model and train human brain 
neurons to explore, recognize and characterize complex patterns [24] 
observed in the PC scores. 

In this study, machine learning (ML) enabled μ-XRF was aimed to 
elucidate the spatial distribution of trace biometals (Mn, Fe, Cu and Se) 
as biomarkers for cancer diagnostics, which was realized from pixel- 
based spectral datasets. SR-XRF micro-imaging spectrometry combined 
with machine learning (ML) has shown the potential for mining trace 
Mn, Fe, Cu and Se markers towards early cancer diagnosis, based on 
their quantitative distribution and correlations in cell cultures (DU145 
and Vero cell lines). 

2. Materials and methods 

2.1. Cell culture and sample preparation 

Optically transparent silicon nitride (100 nm thick) windows were 
used as substrate for monolayer cell culturing [25] as they promote 
robust cell growth [26]. About 1 ml aliquot of prostate cancer cell line 
(DU_145) and healthy cell line (Vero) suspensions in culture growth 
media at a density of 1 × 106 cells per ml were seeded on the silicon 
nitride windows in cell culture tubes. The cells were then cultured in 
10% fetal bovine serum and 1% of an antibiotic–antimycotic mixture 
(1%; Sigma Aldrich) [27] in Dulbecco's modified Eagle's medium 
(DMEM). Two days (48 h) after seeding, the monolayer formed. About 2 
ml of fresh DMEM growth media with10% fetal bovine serum, about 10 

Fig. 2. X-ray fluorescence spectra of (a) DU_D1 and (b) overlapped DU_D1 
and V_D1. 

Fig. 3. Correlation of Fe and Cu L line intensities in (a) DU_D2 and (b) V_D2 cell cultures.  
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ml penicillin-streptomycin, 10 mM HEPES and 1 mM sodium hydrogen 
carbonate [28] were added. The cells were then cultured at 37 ◦C at the 
Kenya Medical Research Institute (KEMRI) cell culture laboratory and 
harvested at intervals of 1 day (24 h) for 4 consecutive days so as to 
mimic the various stages of normal (healthy) and cancerous cell devel-
opment. The monolayer cells were harvested in duplicate, fixed in 4% 
paraformaldehyde (Sigma Aldrich) and cells cleaned with phosphate- 
buffered saline (PBS) prior to μ-XRF analysis. The cells on silicon 
nitride membranes were photographed (10×) under optical light mi-
croscope and mounted on the spectrometer stage. 

2.2. Micro-XRF analysis 

Low energy μ-XRF analysis of the cell cultures was performed at the 
TwinMic beamline of the Elettra Synchrotron in Trieste (Italy). The 
microscope was set in a scan transmission mode with the X-ray beam of 
spot size 690 nm focused on the sample plane through a zone plate (∅ 
600 μm, zone width: 50 nm). Despite the fact that radiation damage due 
to soft X-ray was less significant [1], it was reduced through minimi-
zation of the radiation dose in μ-XRF analysis of the cell cultures. The 
incident photon energy was set to 1.7 keV with a photon flux of 2.5 ×

Table 2 
Trace biometal correlation coefficients in cancer (DU) and healthy (V) cultured cells.   

Mn Fe Cu Se  Mn Fe Cu Se 

DU_D1     V_D1     

Mn 1    Mn 1    
Fe 0.999 1   Fe 1 1   
Cu 0.607 0.605 1  Cu 0.794 0.793 1  
Se 0.844 0.842 0.472 1 Se 0.974 0.973 0.76 1  

DU_D2     V_D2     
Mn 1    Mn 1    
Fe 0.67 1   Fe 0.998 1   
Cu 0.831 0.839 1  Cu 0.527 0.521 1  
Se 0.073 0.1 0.079 1 Se 0.899 0.895 0.438 1  

DU_D3     V_D3     
Mn 1    Mn 1    
Fe 0.752 1   Fe 0.832 1   
Cu 0.824 0.941 1  Cu 0.890 0.661 1  
Se 0.439 0.528 0.586 1 Se 0.662 0.716 0.739 1  

DU_D4     V_D4     
Mn 1    Mn 1    
Fe 0.629 1   Fe 0.912 1   
Cu 0.751 0.923 1  Cu 0.224 0.203 1  
Se 0.293 0.414 0.453 1 Se 0.725 0.679 0.143 1 

p > 0.05. 

Fig. 4. XRF absorption images for normal (V_D1 and V_D2) and cancerous (DU_D1 and DU_D2) cell cultures.  

Fig. 5. μ-XRF maps of Mn, Fe, Cu and Se in the culture growth media for day 1.  
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1011 photons/s. The samples were raster-scanned perpendicularly to the 
incident X-ray beam with a step size of 600 nm where a spatially 
resolving detector (CCD camera) recorded the transmitted X-ray photons 
absorption images. The incident beam was set perpendicular to the 
sample surface facing the symmetrically mounted 8 silicon drift de-
tectors (SDD) with their axes placed at 20◦ from the sample plane to 
record the emitted XRF fluorescence from the specimen in an energy 
range of 180–2200 eV [29]. The irradiation dwell time for the μ-XRF 
measurements was 10 s per pixel; and each image was acquired for 8 h. 
Scanning areas of the samples were selected and observed using a mi-
croscope and the BL15U saved the XRF spectrum data at each pixel. 
Elemental distributions were achieved by windowing on the biometal 
lines of interest in the XRF spectra. The windows can be applied during 
data collection or during data analysis since the full XRF spectrum is 
saved for each pixel [30]. 

2.3. Micro XRF data analysis 

Micro-XRF pixel spectra of the trace biometals (Mn, Fe, Cu and Se) 
were utilized to retrieve 2D maps of their distribution in the cell 

cultures. The multispectral image datasets were fitted and deconvoluted 
into 2D spatial distribution images by PyMca [31] of the trace biometals 
[32] which enabled the determination of net peak areas of the L (Lα and 
Lβ) lines for the trace biometals of interest. The spatial distribution of L 
line spectral intensity data was then utilized to explore correlations 
between the analyzed trace biometals to unravel existing (if any) syn-
ergetic or antagonistic biochemical interactions between the biometals. 
The trace biometals correlation test coefficients were used to investigate 
the relationship between the spectral distribution of trace biometals in 
cancerous and normal cell cultures where P < 0.05 values were 
considered statistically significant [33]. 

The trace biometal distribution and alterations profiles together with 
their correlative alterations in cellular microenvironments were mined 
in selected pixel spectral regions as potential ‘biomarkers’ for diagnosis 
of cancer. The L-lines pixel spectral regions of interest for trace bio-
metals were selected as shown in Table 1. 

2.4. Multivariate analysis of spectral data 

Multivariate analysis has the capability to reduce data dimensions of 

Fig. 6. μ-XRF maps of Mn, Fe, Cu and Se in Vero normal cell cultures.  
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major variations in samples under investigation [19]. Prior to multi-
variate analysis, the pixel spectral intensities datasets were auto-scaled, 
vector normalized and the high background subtracted. The PCA and 
ANN multivariate exploratory analysis were performed using quasar 
orange and origin software. PCA was used to reduce the dimension of the 
pixel spatial spectral data [34] which enabled visualization of the 
relationship between samples characterized by the multiple measured 
trace biometals spatial pixel intensity variables. PCA thus extracted 
underlying cancer diagnostic information data due to its ability to 
reduce the correlated pixel spatial intensity variables [35] by retaining 
the most relevant information. In the PCA domain, the original data 
matrix Xc is normally decomposed to a score matrix Y together with the 
loading matrix T and residuals E by subsequent orthogonal subtraction 
from the largest variation in spectral data [36] as shown in Eq. (1); 

Xc = YTY +E (1) 

The ANN model consists of processing nodes called neurons for 
exploratory and multivariate calibration. ANN algorithms receive inputs 
and process them to obtain an output modelled on the structure and 
behaviour of neurons in the human brain [24] and can be trained for 
complex pattern recognition and classification [37]. In ANN supervised 

approach, known class labels were used for supervising the learning 
process of the architecture and iterative flow of data through training 
using the training sets part of the data to determine the weight values of 
the network [38]. The input data (matrix) were the scores from principal 
component analysis (PCA) while the targets were given as the various 
stages of cancer development/ pathogenesis in the ANN model for 
exploratory classification. Supervised forward neural networks (FNN) 
approach [39] with 3 layers; input (3 neurons), hidden (5 neurons) and 
output (7 neurons) were used to reduce the root mean square (RMS) 
error and the 3-fold cross-validation used to evaluate the classification 
model for 200 iterations. 

The overall performance of ANN depended on the transfer function 
and the network architecture [40] as shown in Eq. (2); 

y = f

(
∑

i
wixi + w0

)

(2)  

where y is the output of the neuron, xi is the input and w0 is an offset 
term. 

To obtain outputs, an activation function was applied to the inputs 
connected to the weights by neurons. The Rectified Linear Unit (ReLU) 

Fig. 7. μ-XRF maps of Mn, Fe, Cu and Se in DU145 cancer cell cultures for day 1 to 4.  
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activation function was employed for classification where the optimi-
zation architecture reduced the complexity of the neural networks thus 
improving their classification ability. ANNs simulated the structure and 
behaviour of neurons in the human brain [24] where pattern recognition 
was achieved through adjusting ANN parameters to minimize the root 
mean square (RMS) error. 

3. Results and discussion 

Pathological advancement resulted in chemical and structural 
changes in the cultured cells that altered the micro XRF spectra gener-
ated which can be used as sensitive markers for cancer. The microscopy 
images of the various stages of cancerous (DU 145) and healthy (Vero) 
cell cultures are as shown in Fig. 1. The presence of cell residuals 
(growth media and dead cells residues) is evident and that fixation 
indeed preserved the biochemical and morphological properties of the 
cells in both cancerous and healthy samples. 

From the above images, the morphological transformations and al-
terations [41] of DU145 and Vero monolayers could not differentiate 
cancerous and healthy cells as the cells in colonies that were not distinct. 

Fig. 2 shows the typical micro XRF spectrum of DU_D1 acquired on 
the first day where an enhanced Kα line of Na was noted which is due to 
the presence of sodium bicarbonate in the growth medium or probably 
the high levels of Na in irradiated areas corresponding to the cell nucleus 
[42]. The elevated background radiation masked the weak spectral 
profiles of the L lines of trace biometals of interest (Mn, Fe, Cu, Se). 

The low energy region 0–1.25 keV was dominated by the K-shell of 
low Z elements like Na which overlapped the L-shell lines of analyte 
trace biometal fluorescence peaks as shown in Fig. 2 (a). Further, the 
overlapped fitted spectral intensities against the energy of both 
cancerous (DU_D1) and healthy (V_D1) cell cultures in Fig. 2 (b) were 
visually difficult to differentiate based on analytes of interest for cancer 
diagnostics thus the potential utility of multivariate machine learning 

tools (PCA and ANN) to mine cancer diagnostic information. 

3.1. Correlation between trace biometals 

Micro SR-XRF analysis of 2D distribution maps of trace Fe, Cu, Mn 
and Se in both cancerous and healthy cell cultures were explored for 
correlation by Spearman's method. The Spearman's correlation scatter 
plots in Fig. 3 show a comparison of the spatial distribution of Fe and Cu 
in both cancerous and healthy cell cultures. 

The correlations were indicative of trace biometals distributions in 
cells correlated with the pathological status of the cell lines. The 
enhanced positive correlation of Fe-Cu in cancerous cell cultures was 
due to the increase of Fe as a consequence of the increased Cu levels 
probably bound to the same proteins [33] implying that the concen-
tration of Fe and Cu were probably higher in cancerous compared to the 
corresponding healthy cultured cells. Table 2 shows the resultant cor-
relations matrices of analyte trace biometal interrelations in both 
cancerous and healthy cell cultures. 

The cancerous and healthy cell cultures show significant (P < 0.05) 
and positive correlations as indicated in the triangular matrices of 
Table 2. The correlation of Fe-Cu increases from day 1 (D1) to day 4 (D4) 
in cancerous as compared to healthy cell cultures. The relatively strong 
positive correlation of Cu-Fe; 0.941 and 0.923 in DU_D3 and DU_D4 
respectively compared to corresponding correlations in normal cell 
cultures (0.661 and 0.203) is probably due to their role in the patho-
genesis [43] of cancer. The results further indicate as concluded else-
where [34] that Mn is strongly positively correlated to other trace 
biometals in both cancerous and normal cell cultures due to its vital role 
in the morphological structure of the cell. On the other hand, Se shows 
strong positive correlations in healthy cell cultures but a weak correla-
tion in cancerous cells for the 10 days probably due to its anti- 
carcinogenic role [44,45]. For instance, increased concentration of Se 
in glutathione peroxidases tends to protect the DNA damage by oxygen 

Fig. 8. μ-XRF maps of (a) Cu and (b) Fe in DU145 cancer cell cultures.  
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radicals [46]. 

3.2. Distribution maps of the trace biometals 

The spatial fluorescence intensity maps were obtained from the 

typical illuminated pixel areas as shown in Fig. 4. The cells were visible 
with strong self-absorption and differential phase contrasting images 
[42] partially attributed to the dark matrix of light elements (H, C, O and 
N). 

The 2D micro XRF images were acquired in the above absorption 
microscopy regions with high absorption signals to retain essential in-
formation in the low-energy μ-XRF maps [42]. 

The fluorescence intensity maps provide information on the trace 
biometal distribution in the cultured cells irradiated by the beam at each 
scan. Fig. 5 shows 2D distribution maps of Mn, Fe, Cu and Se in the 
culture growth media. 

The sparse spatial distribution of trace biometals in the culture media 
that was used for culturing both the cancerous and healthy cells was 
evident. Fig. 6 shows the spatial distributions in the Vero healthy cell 
cultures in corresponding to their emitted characteristic fluorescence 
lines from day 1 to 4. 

The results show low distribution of trace biometals (Mn, Fe, Cu and 
Se) in healthy Vero cell culture compared to the cancerous cell cultures 
in Fig. 7. This can be linked to their functional role in metabolic pro-
cesses of normal cell growth as a result of their probable co-localization 
in cancerous cell cultures especially in the perinuclear/cytoplasmic re-
gion of the cells. Altered distribution of Mn (12.5–150) and Se (20–175) 
with a slight increase in the distribution of Fe (150 and 200) and Cu 
(3000 and 5000) on day 3 (D3) and day 4 (D4) respectively were evident 
in the healthy cell cultures. The non-homogenous distributions of the 
trace biometals suggest their active role in angiogenesis [47] for normal 
cell growth. The sparse distribution of Se was probably due to its 

Fig. 9. PCA score plot of cell cultures using whole fluorescence and scatter.  

Fig. 10. PC loadings plot of cultured cells by fluorescence and scatter spectral.  
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essential role in selenoproteins in humans and subsequent promotion of 
apoptosis [40]. 

Fig. 7 shows the corresponding 2D trace biometal spatial distribu-
tions in cancerous cell cultures. The dense spatial distributions of Fe 
(25–300) and Cu (150–6000) at different stages of development were 
evident due to their active role in carcinogenesis. 

The low homogeneous distribution of Se and Mn in cancer cells as a 
result of their supressed distributions were evident. These can be 
attributed to the anti-carcinogenetic nature of Se involved in reactive 
oxygen species for antioxidant enzymes [48] (glutathione peroxidase) 
that inhibits the synthesis of tumour protein cells and DNA [49]. This 
prevents tumour formation and metastasis through the neutralization of 
free radicals. 

The cellular spatial accumulation of Cu and Fe in cancerous cells 
harvested at different stages of development are as shown in Fig. 8 (a) 
and (b) respectively. 

The homogenous and elevated distribution of Fe and Cu were as a 
result of their probable co-localization in cancerous cell cultures espe-
cially in the perinuclear [42] region of the cells as compared to the 
nucleus. Similar major alterations in the distribution of Cu and Fe were 
observed where Cu was relatively highly distributed in cancerous DU- 
145 cell as compared to Fe. This is due to high co-localization in 
cancerous cell cultures especially in the cytoplasmic region of the cells. 
Cu is also a co-factor of Fe for the generation of reactive oxygen species 
that are linked to carcinogenesis [19]. The catalytic role of Fe and Cu in 
the Fenton reaction results in the increased requirement for DNA syn-
thesis [50]. 

3.3. Multivariate analysis of micro XRF images of the cell cultures 

The complex multivariate correlations between trace biometals and 
their corresponding spectral patterns were discernible by machine 
learning. Multivariate techniques namely PCA and ANN enabled 
multivariate exploration of the spectral images to unravel latent patterns 
and relationships and the biometal concentrations and their spatial 
distributions. PCA enabled the mining of reduced data dimensions as 
input data in ANN models to probe the correlational patterns to inform 
cancer diagnosis. 

3.3.1. Principal component analysis (PCA) of the cell culture micro XRF 
images 

PCA decomposed the “pre-processed” datasets into 5 principal 
components (PCs) that contained spectral variations of each collected 
pixel spectral data. In this case, PCA reduced the dimensions of spectral 
images as it exploited the variance to mine maximum cancer diagnostic 
information. The 2D spectral intensities were filtered by PCA into a new 
data matrix with the principal components [51]. 

Fig. 9 shows exploratory analysis of cell cultures using the pixel 
spectra with an explained variance of 94% (90% and 4% for PC1 and 
PC2 respectively). The utility of the whole spectra data could not 
distinctively differentiate cancerous and normal cell cultures and char-
acterize the various stages of cancer development depicted by the 
different colour codes. 

The corresponding loadings plot in Fig. 10 indicated that the fluo-
rescence of major and trace biometals together with Compton scatter 

Fig. 11. ANN characterization of cultured cells by PC1 and PC2 of selected μ-XRF fluorescence image data.  
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regions seemingly contain vital information potential for cancer diag-
nosis thus need for further investigation with advanced multivariate 
techniques. 

The PC1 and PC2 loadings showed how the variance was attributed 
to Fe and Cu for both positive and negative values. From the above 
loadings plot, the fluorescence part of the spectra and scatter peaks in 
this study show potential biomarkers that can be utilized for charac-
terization of cancer into various stages of development. 

3.3.2. ANN classification of cell cultures 
Supervised ANN model enabled multivariate modelling of the trace 

biometal distribution profiles for early diagnosis of cancer. The principal 
components of selected L fluorescence lines of Fe and Cu (PC1 and PC2) 
at a total explained variance of 92% were used as input data in the ANN 
model as PCA reduced the background intensity to mine diagnostic in-
formation in the selected analytes as indicated in Table 1. 

The selected Fe and Cu biomarker fluorescence spectral profiles were 
partly responsible for the differentiation of the cultured samples into 
cancerous and normal groups. These enabled the visualization of 
cancerous and normal cultures as shown in Fig. 11 into two distinct 
clusters (cancerous and healthy). 

The spatial distribution of Cu and Fe in cells are therefore potential 
biomarkers for cancer diagnostic based on cellular trace metal bio-
markers rather than cellular morphology. The biometals act as a catalyst 
for hydroxyl radical production linked carcinogenesis and angiogenesis 
processes [52]. Cu also aids in the onset and development of tumours 
while Fe plays a vital function in oxygen metabolism [16]. Further, Fe is 

known to aid in blood supply to the malignant cells thus accelerating 
angiogenesis [53]. 

The inclusion of the Compton scatter region in the ANN model 
improved the characterization performance in the cultured cancerous 
cells. Three clusters for different stages (early, intermediate and 
advanced) of cancer development were now clearly visible with ANN 
input data at an explained variance of 88% (82% and 6% for PC1 and 
PC2 respectively) as shown in Fig. 12. 

The inclusion of Compton scatter to the selected fluorescence further 
improved the exploratory analysis in XRF 2D mapping. In this regard, 
ANN classified cultured cancerous cells into 3 stages of cancer severity 
with no clear distinction between DU_D3 and DU_D4 stages of cancer 
development. This can be based on the fact that the Compton scatter 
peak contains further information about to cell structure (morphology) 
which is significant in the characterization of various stages of cancer 
development. ANN has therefore indicated potential for prediction and 
diagnosis of cancer at early stage of development that can supplement 
the conventional cancer diagnostic techniques in a clinical setup. 

4. Conclusions 

We have demonstrated a feasible spectroscopic diagnostic method 
for cancer utilizing low-energy μ-XRF. The SR micro-XRF beam enabled 
2D imaging of trace biometals at high spatial resolution. The biometal 
profiles were detected, mapped and correlated to cancer to illustrate the 
associations of trace biometal distribution potential for early cancer 
diagnostics. The distribution, as well as correlations of trace elements 

Fig. 12. ANN classification of cultured cancer cells by selected μ-XRF fluorescence and scatter image data.  
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(Mn, Fe, Cu and Se), were altered in response to cancer development and 
thus were responsible for the characterization of the stages of cancer 
development. The distribution of Fe was low in the cancer cell cultures 
but with a corresponding increase in distribution of Cu. The strong 
correlation of Cu and Fe in cancerous cell culture suggests their vital 
diagnostic role in cancer development. Weak correlations of Se with 
other trace bimetals were evident in advanced stages of cancer cell 
cultures. Utility of Cu and Fe L-lines selected spatial fluorescence pro-
files in PCA enabled accurate ANN classification of cultured cells into 
cancerous and healthy groups. The inclusion of the Compton scatter 
region to the selected fluorescence further characterized cancer into 
early, intermediate and advanced stages. The results indicated predict-
able associations (2D fluorescence distribution profiles) of trace bio-
metals (Mn, Fe, Cu and Se) in conjunction with Compton Scatter as 
potentially valuable biomarkers for cancer diagnosis applicable at an 
early stage of development. 
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Chemometrics aided energy dispersive X-ray fluorescence and scattering for 
diagnostic modeling of trace biometals as cancer biomarkers 

J.J. Okonda a,*, H.K. Angeyo a, A. Dehayem-Kamadjeu b, A.E. Rogena c 

a Department of Physics, University of Nairobi, Kenya 
b Alan Alda Center for Communicating Science, Stony Brook University, New York, United States 
c Department Human Pathology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Kenya.P.O. Box, 30197-00100, Nairobi, Kenya   

A R T I C L E  I N F O   

Keywords: 
Energy dispersive X-ray fluorescence 
Multivariate chemometrics 
Trace biometals 
Biomarkers 
Compton scatter 
Cancer diagnosis 

A B S T R A C T   

Direct analysis of biometals in biomedical samples by energy dispersive X-ray fluorescence (EDXRF) for disease 
diagnostics has hardly been fully explored due to dark matrix analytical challenges. In this study, we exploited 
multivariate chemometrics modeling of cancer diagnostics in model human tissue simulates and cultures using 
selected biometals’ (Mn, Fe, Cu, Zn and Se) fluorescence and Compton scatter profiles. PCA successfully reduced 
the correlated data dimension to uncorrelated datasets for the characterization of the cell cultures. Artificial 
neural network (ANN) enhanced the classification of cancer staging and the development of a multivariate 
calibration strategy for the quantification of trace elements. ANN characterized cancer into early, intermediate, 
and advanced stages of development. Low concentrations of Fe (101 ± 28 ppm), Zn (59 ± 4 ppm) and Cu (21 ±
1 ppm) were evident in SV10 due to the lag phase stage of cancer development. Further, strong correlation 
(0.976) was evident in early-stage cancer between Zn and Se but with strong negative correlations between Mn 
and Se (− 0.973) and between Mn and Zn (− 0.900) probably due to their antioxidant effects. The results show 
predictable and systematic associations between the concentrations of Fe, Cu, Zn, Se and Mn as cancer bio-
markers with the potential to be used for cancer diagnosis at the early stage of development.   

1. Introduction 

Energy dispersive X-ray fluorescence (EDXRF) spectroscopy analyt-
ical method has the potential to identify and quantify elements by 
measuring their spectral energy and intensity. In practice, EDXRF 
spectra of dark matrix-dominated samples (biological specimens) 
consist of both fluorescence lines and scatter peaks as well as pro-
nounced Bremsstrahlung. The Bremsstrahlung masks the weak analyte 
fluorescence signals corresponding to the often low (ppb – a few ppm) 
trace biometals present in biomedical samples. This limits direct and 
rapid EDXRF analysis of trace elements in cell cultures due to organic 
matrices (Angeyo et al., 1998) that stimulated the development of 
chemometrics aided energy dispersive X-ray fluorescence and scatter 
(EDXRFS) spectrometry (Okonda et al., 2017). The conventional EDXRF 
spectrometry utilizes the most intense and interference-free peaks to 
perform quantification. In this study, EDXRFS exploits the X-ray 
Compton scatter peaks in addition to fluorescence spectral regions for 
multivariate quantitative analysis and implicit predictive modeling for 
model human tissues (Sichangi et al., 2019). 

Measurable biometals may be regarded as biomarkers that can 
demonstrate the presence of malignancy as well as predict the devel-
opment of cancer (Hinestrosa et al., 2007). Atomic absorption spec-
troscopy (AAS) indicated high levels of Cu but low levels of Zn, Fe and Se 
in bladder cancer as compared to the non-cancerous patients (Goyal 
et al., 2006). Particle-induced X-ray emission (PIXE) enabled the 
determination of the concentrations of Fe and Zn in benign, malignant 
and normal breast tissues (Vatankhah et al., 2003). Their levels were 
significantly higher in malignant compared to benign tissues probably 
due to their role as cofactors in enzymes. Inductively coupled plasma 
mass spectrometry (ICP-MS) and neutron activation analysis (NAA) 
(Zaichick and Zaichick 2016) found significantly high levels of Cr, Mn 
and Fe, but low concentrations of Se and Zn in prostate adenocarcinoma 
and normal prostate tissues respectively. EDXRF spectrometry enabled 
determination of Zn and Cu in human tissues where a positive correla-
tion with age was established (Carvalho et al., 1998). Total reflection 
X-ray fluorescence (TXRF) has been utilized in analysis of the elemental 
levels of Ca, Ti, Fe, Cu and Zn in digested human breast tissue (normal 
and malignant) where multivariate discriminant analysis (MDA) 
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enabled classifications of human tissues into cancerous and 
non-cancerous (da Silva et al., 2009) groups. TXRF further enabled the 
determination of trace biometals; Fe, Br, Cu and Zn in normal and 
cancerous breast tissues in different age groups (Mirji et al., 2018). The 
concentrations Cu and Zn were significantly higher in healthy breast 
tissue compared to the malignant breast tissue in the samples of in 
samples different age groups. Multivariate chemometric modeling by 
soft independent class analogy (Farquharson et al., 2013) was used to 
classify human tissue samples where a significant (p < 0.01) increase in 
concentrations of K, Rb and Zn were found in the tumor samples that 
correlated with tumor reported in the sample. PCA has the potential to 
condense original data to a new dataset with few variables of most 
relevant information (principal components) and thereby increasing in-
formation mining (Einax et al., 1997; De Groot et al., 2001; Nagata et al., 
2006). PCA enhanced exploratory analysis (De Oliveira et al., 2010) that 
enabled classification of tissue samples into cancerous and 
non-cancerous groups. Energy-dispersive x-ray diffraction (EDXRD) 
(Farquharson and Geraki 2004) analysis of Fe, Cu and Zn by multivariate 
PLS and PCA differentiated between normal and cancerous breast tissues 
at classification accuracy of 71% and 60%. The X-ray fluorescence and 
coherent scatter determined concentrations of Fe, Cu and Zn for breast 
cancer diagnostics (Farquharson et al., 2013). Further utility of Multi-
variate soft independent modeling of class analogy in this study enabled 
model classification of breast tissue samples. 

Some of the above methods are invasive and their interpretations in 
cancer diagnosis are mostly limited to simple comparisons of concen-
tration levels, which is unreliable for early cancer diagnosis. The sample 
composition is paramount for the successful development of the cali-
bration curve and the FP method is limited by uncertainties due to mass 
absorption coefficients and also fluorescence yields (Angeyo et al., 
2012) of trace elements which result in limited analytical precision of 
unknown sample composition. Direct rapid but accurate trace metal 
determination and multivariate exploratory modeling for the detection 
and characterization of cancer at the early stages of development re-
mains a challenge. Localized cancers are curable but once they metas-
tasize they tend to be lethal (Speransky 2019). Despite the complex 
correlations and multivariate relationships among trace biometals in 
human body tissue, chemometrics approaches can mine vital diagnostic 
information from such complex spectra (Jose and Neil 2009). 

PCA enables visualization of the latent relationship between samples 
and variables via scores and loadings plots (Wentzell and Hou 2012). 
Principal components analysis (PCA) has the potential to reduce the 
complexity of EDXRFS spectral data to mine vital pathological infor-
mation for disease (cancer) diagnostics. ANN with its multivariate 
capability has the potential for classification and prediction application 
for spectral analysis (Ferreira et al., 2008). The datasets are first 
pre-processed by mean-centering and normalized prior to PCA (Angeyo 
et al., 2012). The analytical approach not only rapidly quantifies the 
trace biometals (Cu, Mn, Se, Zn, and Fe) directly in tissue but also 
characterizes cancer including at early stages (which is not possible via 
histopathological microscopy). Further, the method reliably explores 
latent multivariate alterations of these trace metal biomarkers as metrics 
in cancer diagnostics. 

In this study, we focused on the analysis of those trace metals 
inherent in cellular architecture (biometals) as opposed to general trace 
elements that may include those from occupational exposure which 
have also been linked to cancer (Mulware 2013). The ultimate goal was 
to exploit the power of multivariate chemometric enabled EDXRFS 
spectrometry to diagnose and characterize cancer using both fluores-
cence and the Compton scatter for exploratory analysis of trace bio-
metals in soft body tissues. 

2. Materials and method 

2.1. Sample preparation procedure 

Two sets of samples were prepared for analysis. 

2.1.1. Simulated tissues 
Synthetic standard human tissue simulated samples were prepared 

(Okonda et al., 2017) from highly purified (analytical grade) paraffin 
wax as the base matrix. The blank paraffin wax base matrix was spiked 
with multi-elemental stock solutions analytes (Mn, Fe, Cu, Zn and Se) 
within the range (Banaś et al., 2001; Kwiatek et al., 2004; Silva et al., 
2012) in which they occur in human body tissue; Mn (1.0–9.0 ppm), Fe 
(12–120 ppm), Cu (5–33 ppm), Zn (5.0–195 ppm) and Se (1–6 ppm). The 
simulate samples were chemically similar to tissue cell cultures for an 
accurate and precise qualitative and quantitative analysis of trace bio-
metals for cancer diagnostics. 

2.1.2. Tissue cell cultures 
A total of 20 samples were cultured (10 cancerous (SV1-SV10) and 

10 non-cancerous (SL1-SL10)) at Kenya Medical Research Institute 
(KEMRI). The Vero P33cells and healthy human lymphocytes (normal/ 
non-cancerous cells) enriched in 3 mL growth media were separately 
cultured at 370Cand 97% humidified atmosphere of 5% CO2(Podg-
orczyk et al., 2009). The lymphocyte cultures were microscopically 
examined on daily basis to check for contamination and periodically 
supplied with 1 mL fresh sterilized growth medium at intervals of 3 days. 
The Vero P33 cancer cells were maintained by pouring off the used 
growth media and trypsinized before adding 3 mL of fresh growth 
media. During culture harvesting, about 5 mL of peripheral blood 
mononuclear cells (PBMCs) suspension were centrifuged to obtain 100 
μL pellets while Vero P33cells were trypsinized and incubated for 5–10 
min to detach the cells from the surface of the culture flask before being 
centrifuged to obtain 100 μL pellet. Subsequent harvesting was done at 
intervals of every 24 h for 10 days to mimic the various stages of cancer 
development in humans. The VeroP33 and the PBMC pellets were then 
labeled as SV and SL respectively and stored at − 800C to minimize 
morphological damage. About 10 μL of each of the above samples was 
pipetted onto a 2 μm Mylar foil and dried at a temperature of 25 ◦C in a 
biosafety cabinet to form a thin sample substrate for EDXRFS spectro-
metric analysis. 

2.2. Energy dispersive X-ray fluorescence and scatter (EDXRFS) 
spectrometric analysis 

The EDXRFS spectral profiles from the above samples were acquired 
using Shimadzu EDX 800 HS spectrometer with a Rhodium X-ray tube. 
The samples were rapidly directly irradiated for 50 s in air under an 
applied voltage and current of 50 kV and 0.001–1 mA respectively. The 
spectral data were obtained through the multi-channel analyzer in the 
range 0–40 keV at a resolution of 160 eV at Mn Kα(5.9 keV) peak at a 
dead time of <25%. At these conditions, the fluorescence and Compton 
scatter spectral profiles were acquired for biometal quantification 
(Okonda et al., 2017) via multivariate calibration and subsequent 
multivariate chemometrics modeling. In order to determine the accu-
racy of EDXRFS analytical method, certified reference material (NIST 
Oyster tissue1566b) was prepared and analyzed in duplicate under same 
irradiation conditions. 

2.3. Multivariate chemometrics modeling for cancer diagnostics 

A typical EDXRFS spectrum of a diseased (cancer) tissue sample is 
mathematically a complex multivariate dataset. The multivariate che-
mometrics techniques enable the separation of characteristic and non- 
characteristic information from the spectra (Kessler et al., 2002). This 
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calls for dimension reduction and appropriate multivariate interpreta-
tion to yield accurate diagnostic information. In this work, chemo-
metrics techniques (PCA and ANN) were used for multivariate 
exploratory analysis and calibration towards quantitative analysis for 
tissue characterization (Meglen 1992). PCA and ANN have the potential 
to extract spectral information for exploratory analysis (Waddell et al., 
2004). Selected multiple fluorescence signatures of analyte biometals in 
Table 1 were used for the development of a multivariate calibration 
strategy for trace analysis and modeling for cancer diagnostics. 

The simulated tissue and Oyster tissue (certified reference standard) 
spectral fluorescence and Kα Compton scatter region (channel numbers 
950–1000) were selected. Prior to analysis, the datasets were pre- 
processed through mean-centering and normalization. The Quasar or-
ange software package (Toplak et al., 2021) was utilized for advanced 
data evaluation and chemometrics (PCA and ANN) analysis. 

PCA extracted underlying cancer diagnostic information from the 
complex multivariate EDXRFS data. The correlated variables of the 
original data (Jolliffe 1982) were reduced to important uncorrelated 
variables with the most relevant information (principal components). 
The data matrix X was decomposed to a score matrix t and the loading 
matrix p as shown in equation (1) (Brereton 2003; Geladi 2003). 

X = t1p1 + t2p2 + …tapa + E (1) 

Matrix E contained the residuals and t described the sample position 
in the new coordinate system. The new axis is visualized in the loading 
matrix p where PC loadings vectors give the hidden variable profiles 
while the scores reveal information on the elemental concentrations. 

Principal component scores were further used as inputs in the ANN 
model for the classification of cancer staging while the ANN multivariate 
calibration technique was based on standard calibration curves (Ferreira 
et al., 2008). ANN backpropagation techniques algorithm (McClelland 
et al., 1986) was constructed using the simulated tissue biometal con-
centrations. The input data (matrix) for each spectral dataset for the 
measured independent variable was utilized to build the ANN calibra-
tion strategy. The datasets were further split into 3 subsets; training, 
testing and validation (Okonda et al., 2017). The neurons in the hidden 
layer were chosen based on the root mean square error (RMS) and the 
training performance of each network where training was repeated 
several times until the best results of low MSE for acceptable perfor-
mance. Forward neural networks (FNN) supervised approach (Tomas 
et al., 2022) with 3 layers; input (3 neurons), hidden (5 neurons) and 
output (7 neurons) to minimize the root mean square (RMS) error. The 
3-fold cross-validation with ReLu activation function was used to eval-
uate the classification model at 200 iterations. 

3. Results and discussion 

Typical overlaid EDXRFS spectra of simulated and cultured tissue 
samples are as shown in Fig. 1. Besides the fluorescence lines and scatter 
peaks, a pronounced background continuum (Bremsstrahlung) masked 
the weak fluorescence analyte signals of trace biometals hence poor 

detection limits and signal-to-noise ratio (SNR) of analytes (Kaniu et al., 
2012). 

The diagnostic trace biometal peaks are not clearly discernible for 
selected fluorescence (4.5–12.0 keV) against the pronounced back-
ground, thus their recovery and trace quantitative deconvolution re-
mains a challenge. These limits the direct and rapid EDXRF analysis of 
trace biometals in biomedical sample matrices for disease (cancer) 
diagnostic. 

3.1. Multivariate characterization of cell culture samples 

Multivariate exploratory analysis of the fluorescence and scatter 
spectral profiles enabled exploratory analysis and quantitative deter-
mination of biometal utilizing multivariate chemometric techniques 
(PCA and ANN). 

3.2. Principal component analysis of cell culture samples 

Fig. 2 shows the utility of entire EDXRFS spectral features in the PCA 
model in which had no potential for exploring the various stages of 
cancer development. The modeling was also not specific to the studied 
trace metal biomarkers. 

The score plot had an explained variance of 90% (80% and 10% for 
PC1 and PC2 respectively) with hardly any clear classifications. There is 
need for further exploration of the ability of both fluorescence and 
Compton scatter in chemometrics EDXRFS for diagnostic modeling of 
cancer. From the corresponding loadings plot, the fluorescent peaks of 
the trace biometals together with Compton scatter are possible potential 
biomarkers to be exploited for cancer diagnosis. 

Fig. 3 shows a PCA score and corresponding loadings plots for 
modeling of cancer development (early and advanced stages of cancer) 
based on the selected fluorescence (4.5–12.0 keV) signatures of trace 
biometals. 

The above PCA score plot with 97% (82% and 15% for PC1 and PC2 
respectively) of the total explained variance classified the cultured 
samples into 2 major distinct clusters; early cancer (SV1, SV2, SV3 SV4 
and SV5) and advanced cancer (SV6, SV7, SV8 and SV10). The positive 
PC1 loadings plot shows the score plot clusters are mostly influenced by 
Mn, Fe, Cu, and Zn but not Se. 

3.2.1. ANN classification of cultured cancerous samples 
The classification of the various stages of cancer development was 

further achieved by the utility of PC scores as input data in ANN char-
acterization. The 2 dominant PCs of selected fluorescence and the 

Table 1 
Analyte spectral feature selection.  

Element Actual (or Expected) 
Fluorescence Peak 

Energy 
(keV) 

Channel Number (Spectrum 
region of interest) 

Mn Kα 5.90 287–296 
Kβ 6.49 320–329 

Fe Kα 6.40 315–324 
Kβ 7.06 347–356 

Cu Kα 8.05 397–406 
Kβ 8.91 440–449 

Zn Kα 8.64 428–437 
Kβ 9.57 474–483 

Se Kα 11.22 561–568 
Kβ 12.50 618–627  

Fig. 1. Typical overlaid EDXRFS spectra of model tissue samples acquired 
at 200s. 
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Compton scatter with a total explained variance of 91% were used as 
input data matrix in ANN. The cultured cancerous samples were char-
acterized into various stages of development as shown in Fig. 4. In this 
case, the scatter region contained the main distinguishing feature in 
cancer staging, which indicates high concentration of low-Z elements 
(O, C and H) in the cultured samples. 

The potential applicability of our method in Fig. 4 which shows a 
clear characterization of cancerous cultured samples into early, inter-
mediate and advanced stages of development. The vital cancer 

characterization information was partially contained in the scatter re-
gion (Kessler et al., 2002) due to low-Z elements, which were exploited 
by multivariate ANN. This was attributed to the difference in the cell 
structure at various stages of cancer development. The scatter (Comp-
ton) region due to low-Z elements reveals further information on the 
mean atomic number and the density of the sample (Compton and 
Allison 1935; Kunzendorf 1972) which influence tissue cellular 
morphology (Malenica et al., 2021). 

3.2.2. Concentration of trace biometals 
The calibration strategy developed for direct determination of the 

concentrations of trace biometals (Okonda et al., 2017) was used for 
quantification of trace biometals in certified reference material (NIST 
Oyster tissue 1566b) in order to test the accuracy of the calibration 
models as shown in Table 2. 

The results in Table 2 above demonstrated the potential of chemo-
metric aided EDXRFS spectrometry method in direct rapid trace bio-
metals analysis for cancer diagnostics modeling. The application of our 
method for the quantitative determination of trace biometals in Oyster 
tissue was within the acceptable limits of accuracy. This was attributed 
to the potential of chemometric machine learning through robust 
multivariate modeling for quantitative analysis of trace biometals in 

Fig. 2. PCA score and loadings plots of cultured tissue samples utilizing the entire spectra.  

Fig. 3. Selected fluorescence PCA score and loading plots for cultured cancerous samples.  

Fig. 4. Selected fluorescence and Compton scatter.  

Table 2 
EDXRFS concentrations of trace biometals in Oyster tissue (NIST 1566b).  

Biometal Certified value ± SD 
(ppm) 

EDXRFS ± SD 
(ppm) 

EDXRFS % 
deviation 

Mn 18.5 ± 0.2 16.9 ± 1.2 5.6 
Fe 205.8 ± 6.8 238 ± 15.6 4.9 
Cu 71.6 ± 1.6 66.8 ± 4.6 6.7 
Zn 1424 ± 46 1280.5 ± 29.0 6.8 
Se 2.06 ± 0.15 3.6 ± 1.1 31.1  
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complex biomedical sample specimen (Sichangi et al., 2019). The 
similar comparison between EDXRFS measured and certified concen-
trations of biometals in Oyster tissue shows the potential for the quan-
titative determination of trace biometals towards cancer diagnosis. The 
poor performance by Se could be due to suppressed levels of Se close to 
its detection limit of 1.6 ppm (Okonda 2015) in Oyster tissue hence the 
low fluorescence yield (Okonda et al., 2017) thus EDXRFS was ineffi-
cient in quantifying low concentrations such as that of Se. This was clear 
in the performance of the PCA models above which showed Mn, Fe, Cu 
and Zn as better trace metal cancer biomarkers compared to Se. 

3.2.2.1. Concentration of trace biometals in cell cultures. The concentra-
tions of the cancer biomarker metals in the cell cultures were obtained 
using simulate validated ANN multivariate calibration model (Okonda 
et al., 2017). These concentrations are shown for both cancerous and 
normal cell cultures in Table 3 as a result of biological alterations 
(Carvalho et al., 2007). 

The above results depict the subtle alterations of the trace biometals 
that occurs during the various stages of cancer development. The 
notably elevated levels of Fe and Zn in cancer cultures (SV) as compared 
to corresponding normal cultured tissues (SL) may be attributed to 
increased cell division and proliferation as cancer develops from the 
early to the malignant stage. Elevated Fe in malignant tissues (Geraki 
et al., 2004) was found probably due to its regulatory role for angio-
genesis and its catalytic role in Fenton reaction which results in an 

increased requirement for DNA synthesis (Heath et al., 2013) for tumor 
angiogenesis. 

The concentrations alterations of trace biometals at each stage of 
cancer proliferation are as shown in Fig. 5. 

The clearest distinctions were noted in concentrations of Fe, Zn and 
Se, particularly due to their role in the Fenton reaction that results in 
carcinogenesis (Jomova and Valko 2011). The accumulation of Fe and 
Zn in cancerous cultures (SV) can be attributed to increased cell division 
and proliferation (Guntupalli et al., 2007). The trace biomarkers (Fe, Cu 
and Zn) indicated similar patterns for early-stage cancer (SV1-SV4) and 
advanced-stage cancer (SV5-SV9) which explains the observed clus-
tering for early and late stages of cancer development. Cancerous cul-
tures (SV7, SV8, SV9 and SV10) at a late stage of cancer development 
had elevated concentrations of Zn compared to corresponding 
non-cancerous cultured samples which can be attributed to demands for 
excessive cell division in rapidly growing tumors. Sample SV10 had low 
concentrations of Fe (101 ± 28 ppm), Zn (59 ± 4 ppm) and Cu (21 ± 1 
ppm). This can be explained based on the lag phase stage of cancer 
development which does not require high amounts of Fe, Cu and Zn due 
to reduced cell division and proliferation in mature cancer tissues. 

The observed differences in trace biometal concentrations in healthy 
and cancerous cell cultures were evaluated by Student’s t-test (Pearson 
correlation) as shown in Tables 4–6, which reveal latent associations 
between the trace biometals and their role during tumor growth. 

The strong positive correlations between Fe and other trace bio-
metals (Cu, Zn and Se) during the onset of cancer development (early 
stage) were evident and probably attributed to the exponential phase of 
cell division and proliferation as a result of increased cellular activity 
(Raju et al., 2006). It further emphasized the function of Cu as an 
important co-factor for the metabolism of Fe in tissues. Another 
distinctly notable strong correlation (0.976) for this early-stage cancer is 
between Zn and Se for rapid cell division and proliferation. Nonetheless 
associated with this early stage of cancer development are two very 
strong negative correlations between Mn and Se (− 0.973) and between 
Mn and Zn (− 0.900) due to their antioxidant effects. 

During the intermediate stage, the association among the trace bio-
metals is considerably different with only three significant correlations: 
positive correlations between Fe and Cu and between Cu and Zn; and 
another strong negative correlation between Se and Zn. The stronger 
positive correlation between Cu and Zn can be linked to an increase in 
metabolic activities in malignant tissues (Kubala-Kukuś et al., 2004). 

At the advanced stage of cancer development, there are three notable 
strong positive associations: between Fe and Zn and Se (the very strong 
association between Fe and Cu that was manifest during early cancer is 
now absent). Nonetheless, the very strong correlation between Se and Zn 
that was also noted for early-stage cancer. It should be noted that this 
correlation was highly negative in the intermediate stage of cancer 
development. 

The above results show varying levels of trace biometals in the 
cancerous cultures. The trace biometals (Cu, Fe, Zn, Mn and Se) are 
imperative for the maintenance of physiological homeostasis in organ-
ism proteins involved in cellular processes (Gruber et al., 2020) thus 
their alterations has a potential role in carcinogenesis. The levels of Fe, 
Cu and Zn in cultured cancer tissues are in agreement with previous 
studies (Carvalho et al., 2007) as a result of increased cellular activity in 
cancerous tissues. This study further indicates elevated levels of Zn in 
cancerous tissue samples for cell proliferation that supports tumor 
growth (Lee et al., 2003) and cell division. Additionally, high levels of 
Cu in cancerous samples were also evident due to the increased free 
radicals in the Fenton reaction (Yaman et al., 2005). 

4. Conclusion and prospects 

The potential of chemometrics Energy Dispersive X-Ray Fluores-
cence and Scattering (EDXRFS) spectrometry for direct and rapid 
determination of trace biometals (Fe, Cu, Mn, Se and Zn) fluorescence 

Table 3 
ANN model predicted biometal concentration for cultured samples.  

Stage Sample Mean biometal concentrations ± standard deviation 
(ppm) 

Mn Fe Cu Zn Se 

Early-stage SV1 4.4 ±
0.1 

42 ± 9 21 ± 2 44 ± 4 2.4 ±
0.2 

SL1 4.4 ±
0.2 

54 ±
11 

18.7 ±
0.1 

55 ± 8 1.5 ±
0.2 

SV2 4 ± 1 126 ±
14 

21.1 ±
0.3 

82 ± 7 3 ± 1 

SL2 4 ± 1 76 ± 8 21 ± 2 58 ± 6 2.5 ±
0.2 

SV3 4.5 ±
0.2 

99 ±
29 

22 ± 3 56 ± 3 3 ± 1 

SL3 4 ± 1 84 ±
33 

19 ± 1 66 ± 23 2 ± 1 

Intermediate 
stage 

SV4 4.5 ±
0.1 

72 ± 1 24 ± 8 50.8 ±
0.3 

1.7 ±
0.1 

SL4 4.4 ±
0.2 

83 ± 3 19.1 ±
0.3 

52 ± 4 2.0 ±
0.1 

SV5 3.6 ±
0.4 

160 ±
16 

25 ± 2 93 ± 7 4 ± 1 

SL5 4 ± 1 57 ±
16 

20 ± 1 47 ± 7 1.7 ±
0.2 

SV6 3.8 ±
0.3 

161 ±
11 

23.7 ±
0.1 

87 ± 14 3.9 ±
0.3 

SL6 4.3 ±
0.2 

64 ± 4 19 ± 1 57 ± 2 1.6 ±
0.4 

SV7 4 ± 1 148 ±
7 

22 ± 3 86 ± 4 3.8 ±
0.4 

SL7 4 ± 1 75 ±
13 

18 ± 1 53 ± 2 3 ± 1 

Late-stage SV8 3.9 ±
0.1 

156 ±
14 

24 ± 2 87 ± 7 4 ± 1 

SL8 4.6 ±
0.3 

59 ± 9 19 ± 1 55 ± 4 1.9 ±
0.1 

SV9 4.2 ±
0.1 

168 ±
14 

25 ± 3 108 ± 5 3.9 ±
0.2 

SL9 3.4 ±
0.2 

40 ±
11 

18 ± 2 40 ± 30 1.7 ±
0.3 

SV10 4.3 ±
0.1 

101 ±
28 

24 ± 5 59 ± 6 2.2 ±
0.4 

SL10 4.3 ±
0.1 

52 ±
26 

16 ± 4 40 ± 18 1.5 ±
0.3  
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Fig. 5. Comparative concentrations of Cu, Fe, Se, Zn and Mn in cancerous (SV) and normal (SL) cultures.  
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and Compton scatter, their multivariate associations and alterations in 
model human tissues (cell cultures) as cancer biomarkers has been 
established. This was demonstrated in the detection and characteriza-
tion of cancer in model human samples (tissue cultures). The trace 
biometals were detected and quantified in cancerous and healthy cul-
tures for cancer diagnostics. The trace biometals changes (concentra-
tions and alterations) were detected and characterized as “fingerprints” 
for cancer diagnostics. The concentrations of Fe, Cu and Zn were 
elevated in cancerous as compared to normal cell cultures. The strong 
positive correlation between Fe and Cu (0.871) was evident in cancerous 
samples as compared to healthy cultures. The results indicated pre-
dictable associations of trace biometals fluorescence together with the 
Compton scatter as cancer biomarkers with the potential to be used for 
cancer detection and characterization, especially at the local stage of 
development. ANN characterized cancer into early, intermediate and 
advanced stages of development by the utility of the trace biometal 
profiles (fluorescence and corresponding scatter signatures). This work 
has demonstrated that the change in concentrations, alterations and 
correlations of trace biometals can be used as biomarkers for cancer 
diagnostics. However, there is a need for further studies with a wider 
sample size to better validate and consolidate the present conclusion on 
the potential of our method for the determination of trace biometals as 
cancer biomarkers. 
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H I G H L I G H T S

• The X-Ray fluorescence and scatter regions can be utilized to derive comprehensive sample composition information.

• Multivariate calibration techniques enhance direct rapid simultaneous analysis of trace biometals in model soft tissues.

• The nested approach (ANN and PCR) for multivariate calibration is an efficient technique for direct quantitative analysis of specific trace elements in model soft
tissue.

A R T I C L E I N F O

Keywords:
Chemometrics
Calibration strategy
Biometals
Model soft tissue
Oyster tissue

A B S T R A C T

Compton scatter-modulated fluorescence and multivariate chemometric (artificial neural network (ANN) and
principal component regression (PCR)) calibration strategy was explored for direct rapid trace biometals (Mn,
Fe, Cu, Zn, Se) analysis in “complex” matrices (model soft tissues). This involved spectral feature selection
(multiple fluorescence signatures) normalized to or in conjunction with Compton scatter. ANN model resulted in
more accurate trace biometal determination ( >R 0.92 ) compared to PCR. Hybrid nested (ANN and PCR) approach
led to optimized accurate biometals’ concentrations in Oyster tissue (≤±10%).

1. Introduction

Energy dispersive X-ray fluorescence (EDXRF) spectroscopy (variant
of X-ray fluorescence spectrometry) is an analytical technique for
identification and quantification of elements in materials by means of
measurement of the elements’ specific characteristic fluorescence en-
ergies and intensities (Silva et al., 2012). However, its utility in direct
rapid analysis of elements is faced by challenges arising from the en-
hanced spectral background due to high mass absorption coefficients of
especially “dark matrices” (low-Z dominated), extreme matrix effects
and spectral overlaps (Angeyo et al., 1998). In order to minimize some
of the above challenges, Total Reflection X-ray Fluorescence (TXRF) is
used as its sensitivity can be improved by the fact that, at very low
incidence glancing angles, the high background due to scatter from the
sample support is minimized (Eppis et al., 2001). TXRF spectrometric
quantification through internal standardization for small sample mass
leads to low detection limits due to improvement in the peak to

background ratio (Eppis et al., 2001; Markowicz et al., 1993). However,
TXRF is limited by tedious and invasive sample preparation (digestion
process) which compromises the integrity of the sample
(Kallithrakas‐Kontos et al., 2009) and may also lead to loss of vital
information especially volatile elements. This study exploits conven-
tional EDXRF instrumentation to address some of the above limitations
by developing chemometric multivariate calibration strategies for di-
rect and rapid analysis of selected trace biometals (Mn, Fe, Cu, Zn and
Se) in model soft tissues. In this domain, chemometrics aids in modeling
multivariate spectroscopic data (Adams, 1995). EDXRF and scattering
spectrometry (Angeyo et al., 2012; Kaniu et al., 2012); exploits not only
fluorescence peaks, but also scattering profiles for quantitative and
qualitative modeling (Compton and Allison, 1935). Previously,
Compton scattering has been used for correction of matrix effects
through normalization of the fluorescence line (Feather and Willis,
1976; Nielson, 1977).

Biometals are regarded as nutritionally essential for various
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biochemical processes in humans and are present in the order of a few
micrograms per gram (Prasad, 2013) in proteins, enzymes and cellular
membranes (Carvalho et al., 1998; Rose, 2016). They act as activators
or inhibitors of enzymatic reactions, enhances competition between
elements and metal proteins for binding positions and modification in
permeability of cellular membranes (Carvalho et al., 1998; Yaman
et al., 2007). The levels of trace biometals in tissues are altered by
pathogenesis and metabolic processes. Thus knowledge of the changes
in concentrations of certain trace elements in body tissues can be used
as biomarkers for disease diagnostics (Kubala-Kukuś et al., 2004).
Synchrotron Radiation X-ray Fluorescence (SR-XRF) with high sensi-
tivity has been utilized for determination trace biometals’ levels in
tissues (Kwiatek et al., 2004; Silva et al., 2009). Though highly sensi-
tive, SR-XRF analysis of trace biometals is expensive with laborious
sample preparations.

In this study, we exploit chemometric enabled energy dispersive X-
ray fluorescence (EDXRF) and` scattering spectrometry for developing a
robust hybrid multivariate calibration strategy for direct rapid and non-
invasive quantification of trace biometals in “complex” matrices (soft
model tissues) prepared as paraffin wax-embedded thin sections on a
Mylar based film. Chemometrics enables direct relation of spectral in-
tensities to analyte concentration through multivariate calibration in
which peak overlaps, weak signals and matrix effects are mathemati-
cally resolved and compensated (Eriksson et al., 2014). In this study we
have utilized Artificial Neural Networks (ANNs) and Principal Com-
ponent Regression (PCR) for developing the multivariate calibration
strategies. ANNs consists of a large number of processing units (neu-
rons) connected together to mimic the biological structure of the brain
and nervous system (Liu et al., 1993). On the other hand, PCR performs
the regression analysis of concentration based on selected principal
components (with greatest variance) of spectral data (Martens and
Naes, 1992).

2. Materials and methods

2.1. Sample preparation

Model soft body tissues were prepared from high purity (analytical
grade) paraffin wax as the tissue equivalent material (Bethesda, 1989;
Ferreira et al., 2010). For each element of interest, the corresponding
compound of a given mass was dissolved in 15 ml of ethanol to obtain a
stock solution of pre-determined concentrations. Appropriate volumes
of stock solutions corresponding to the analyte concentrations spanned
for preparation of simulate samples were pipetted and homogeneously
mixed in 1.8 ml vials which was then topped to 1.8 ml using ethanol
that resulted to a dilution factor of 2 for the initial concentrations. This
was done in triplicate (constituting 30 samples) at different con-
centration within the range in which the biometals occur in native soft
body tissues (Banaś et al., 2001; Silva et al., 2012) as Cu: 5–32.5 ppm,
Zn: 5.0–67.5 ppm, Fe: 11.5–120 ppm, Mn: 0.8–9.0 ppm and Se:
0.5–6 ppm

The multi-element solutions of predetermined concentration were
pipetted onto steel moulds and appropriate amounts of acetone (uni-
versal secondary fixative with low toxicity and freely miscible with
water and organic solvents) added together with 0.2 g of silicone gel to
simulate the organ cells in body tissues. The mixtures were thoroughly
stirred for homogeneity prior to adding about 2 ml of molten paraffin
wax (paraplast extra) and heated to a temperature of C560 in a tissue
cassette (for acetone to evaporate) thus leaving the elements of interest
embedded in paraffin wax matrix which mimics the soft tissue. The
mixture was further stirred for about 3–5 min to increase homogeneity
and then cooled on a cold plate of the tissue cassette. The solid simulate
samples were dried on steel moulds at room temperature until solidified
and then kept in sealed labeled plastic containers. For each sample,
10 µm thick sections were made using a microtome and mounted on a
2 µm Mylar foil with same sample geometry maintained for EDXRF

analysis.
In order to evaluate the accuracy our method, a certified reference

material (NIST Oyster tissue1566b) was dried at room temperature in a
bio-safety cabinet to a constant mass and subjected to similar sample
preparation for EDXRF and scattering analysis. The Oyster tissue sam-
ples were also analyzed by conventional classical EDXRF method and
analyzed by AXIL-QXAS algorithm (Bernasconi, 1993) in the funda-
mental parameters approach for comparison with the results obtained
by our method. The analysis conditions were; irradiation time of 50 s
and applied voltage of 5–50 kV in the X-ray tube current of automated
current in the range 0.001–1 mA.

2.2. Multivariate calibration

This study is mainly focused on the complementary (nested) utility
of the two chemometric approaches namely: ANN and PCR, for multi-
variate calibration utilizing EDXRF and scattering spectrometry.
Multivariate calibration involves development of a mathematical model
that furnishes specific sample properties (De Oliveira et al., 2010) de-
scribing the relation between the EDXRF (and scatter) spectral data and
the analyte concentration. It consists of modeling, which establishes a
mathematical relation between X (spectral data) and Y (concentration)
by determining the regression coefficient which can be used to re-
produce Y given X, and validation which involves optimizing the model
for prediction of the same elements in unknown samples of similar
matrix composition (Nagata et al., 2006)

The neural network was constituted by three node layers; input,
hidden and output with a large number of parallel connected neurons
(Kallithrakas‐Kontos et al., 2009). The multi-input/output relationships
mimic human cognitive processes using Back propagation (BP) ANN
training function with Levenberg-Marquardt (LM) algorithm for
training the feed forward networks for function approximation (non-
linear regression). As compared to other algorithms, BP-ANN was found
appropriate enhances lower mean square errors and faster convergence
(Beale et al., 2012).

The EDXRF and scatter trace biometal spectral responses in the
training data set were input into the first layer in the network to yield
outputs Xi. The net input Netj is given by (Luo et al., 1997);

∑= +Net x W θ( )j i ij ij (1)

where Wij and θij are weight and node threshold parameters respec-
tively.

After successive transformation by nonlinear sigmoid function f to
the node k in the last layer, the output (OUTj) of the node j is given by;

=OUT f Net( )k k (2)

The output (OUTk) in the last layer is obtained and then compared
neuron by neuron with the corresponding component concentrations
(Yk) in the training data set and the error (Liu et al., 1993)

= +Y F OUT ε( )k k (3)

where F is the network training function and ε the error of calibration as
a result of the residuals.

The same trace biometal spectral responses were also analyzed by
PCR in a two-step process. PCR considers the most descriptive principal
components (PC) obtained by Principal Component Analysis (PCA) as
independent variables instead of adopting original variables (Pires
et al., 2008). The PCA analysis decomposes the raw data matrix, X into
two matrices, T and V, (Bueno et al., 2005).

= +X TV εT (4)

where T is the score matrix which represents the position of the samples
in the new coordinate system and contains elemental concentration
information while V is the loadings matrix and describes the hidden
profiles that are common to all measured data – i.e. in the case of
EDXRF and scatter spectra, the loadings contain qualitative information
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such as elements giving rise to the spectra, and ε the residual. The
unique scores from each dataset were used to regress back against the
known concentration matrix for quantitative prediction given by

=
∧ ∧

y x Vi i (5)

where
∧
yi is the predicted concentration of sample i, and

∧

V the loadings
of the selected PCs of X.

The root mean squared error of prediction (RMSEP) was also de-
termined for the expected average error when constituent concentra-
tions of samples with similar matrix composition are to be predicted
(Facchin et al., 1999).

=
∑ −

=RMSEP
y y

n
( )i

n
pred i i1 ,

2

(6)

where ypred i, is the predicted concentration and yi the known con-
centration for sample i, and n the number of samples.

2.3. Spectral analysis

Fig. 1 shows a typical schematic diagram of Shimadzu EDX-800HS
model CE (212–23701-36) spectrometer that was used in this study.

The spectrometer is equipped with a Rhodium (Rh) X-ray tube and
aluminum (Al) filter and collimation diameter of 10 mm spectrometer.
In order to minimize attenuation effects, each sample was placed at
about 45o to the incident radiation (Tertian and Claisse, 1982), and
irradiated at 50 s (time optimized for rapid analysis and reasonable
signal to noise ratio of analytes). The spectral measurements were made
in the range 0–40 keV using a multi-channel analyzer in air at dead time
of< 25% with current and voltage were adjusted automatic during
spectral acquisition. Both the characteristic fluorescence and scattered
radiation from the sample were detected by the Si (Li) detector at about
90o (for strong linear polarization of radiation beam for enhancing
signal to noise ratio) to the incident beam with 140 eV full width at half
maximum (FWHM) for Mn Kα at 5.9 KeV. For each spectrum, 2047
channels were acquired under same irradiation conditions. Standard
reference material (NIST Oyster tissue1566b) samples were also ana-
lyzed in triplicate under same irradiation conditions as the model tis-
sues.

Peak identification and spectrum deconvolution was done on a re-
presentative simulate sample using the AXIL (Analysis of X-ray spectra
by Iterative Least-square fitting) for feature selection of the fluores-
cence spectral signature positions corresponding to the selected trace
biometals (Beckhoff et al., 2007). The independent variables were
constructed in such a way that the rows corresponded to samples and
columns to the spectral signature intensities corresponding to selected
spectral regions of each trace element of interest as shown in Table 1.

Additionally, Kα Compton scatter region corresponding to channel
numbers 940–980 and energy keV19.15 of Rh Kα was selected.
Biomedical samples are mostly composed of the “dark matrix” (low-Z
matrix due to carbon, hydrogen and oxygen (C-H-O) and low-Z ele-
ments (Z<10) which dominates Compton scatter (Knoll, 2010; Verbi
et al., 2005). The Compton peak being much broader with non-

Sample

Filter (Al)

X-Ray Tube

Electronics

Air

Computer 

Liquid 

nitrogen

Detector

Fig. 1. Schematic presentation of EDXRF instrumentation.

Table 1
Selected spectral region (feature selection) for multivariate calibration.

Element Peak Energy (KeV) Channel numbers
(spectral region of interest)

Mn Kα 5.89 287–296
Kβ 6.49 320–329

Fe Kα 6.40 315–324
Kβ 7.06 347–356

Cu Kα 8.04 397–406
Kβ 8.90 440–449

Zn Kα 8.63 428–437
Kβ 9.57 474–483

Se Kα 11.21 561–568
Kβ 12.49 618–627

Table 2
Detection limits (ppm) for the direct analysis of indicated analytes in model soft tissue.

Element Kα energy (keV) Atomic number, Z Detection limit (ppm)

Mn 5.89 25 3.2
Fe 6.40 26 10.0
Cu 8.04 29 4.5
Zn 8.63 30 4.6
Se 11.21 34 1.6
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Fig. 2. Typical spectrum of certified reference material (NIST
1566b, Oyster tissue) at 50 s.
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Gaussian shape makes it difficult for determination of intensity by
spectrum evaluation programs (Markowicz et al., 1993) which relies on
Gaussian peak shapes. The Rayleigh peak is fairly described by a
Gaussian width which corresponds to the spectrometer resolution.
However, owing to its partial overlap with the Compton region, the

Rayleigh peak is also difficult to model (Van Gysel et al., 2003). The
inclusion of Compton scatter was necessary for compensation of the
strong matrix effects through Compton normalized fluorescence peaks
(Kaniu et al., 2012) and direct analytical exploitation of spectral data
by chemometrics-enabled energy dispersive X-ray fluorescence and
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Fig. 3. Typical EDXRFS spectra of domestic dog tissue obtained at
50 s irradiation time.
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scattering spectrometry method.
As opposed to classical XRF analysis where only a single fluores-

cence line (normally the one with the highest fluorescence yield, good
signal-to-noise ratio and free from spectral overlaps) is used, in this
approach multiple fluorescence peaks regardless of spectral overlaps
(Kaniu et al., 2011) are exploited in multivariate domain. The selected
spectral set (fluorescence and/or the Compton scatter peaks) were pre-
processed though normalization and mean centering to minimize noise
and enable similar sample contribution to the calibration strategy.

ANN model training involved four stages: (i) assembling of training
data, (ii) creation of the network, (iii) training the network, and (iv)
simulating the network response to new inputs (Angeyo et al., 2012) of
the similar matrices. Back propagation (BP-ANN) training function with
Levenberg-Marquardt (LM) algorithm was used for feed forward net-
works training with an aim of function approximation (Banaś et al.,
2001). The input data was divided into three sets; 60% for network
training, 20% for validating and 20% for testing how well the network
will perform on new data sets of similar matrices. The predictive ability
of ANN multivariate calibration was achieved through optimization of
the neural network architecture as the models were trained, tested and
validated. This was aimed at achieving the smallest training error as a
function of the added neurons to the intermediate layer. The best model
was initialized as that corresponding to high R value, low mean-squared
error and 4 neurons in the hidden layer.

A complementary PCR calibration strategy was also developed using
the same spectral data and was validated by using leave-one-out cross
validation method (Full Cross validation method) in the PCA. The re-
gression of Y (concentrations) was based on selected principal compo-
nents of PCA (PC1 and PC2) instead of the original X-variables (Jolliffe,
1982) for relating X-variables to the dependent Y-variable(s). The re-
gression coefficients were obtained by regressing the 2 Pcs against the
simulated concentrations to predict the concentrations of the sample
constituents in the test data set. Spectra modeling by multivariate

chemometric techniques (ANN and PCR) realized detection and quan-
tification of low signal to noise ratio (SNR) analytes in complex ma-
trices through direct transformation of EDXRF and scatter spectra to
trace biometal concentrations. The normally strong matrix effects and
overlapping spectral lines were mathematically resolved.

The applicability of the chemometric aided EDXRF and scatter
method for analysis of trace biometals in model soft tissues was as-
certained by calculating the detection limits DL (Table 2), of the bio-
metals in the Standard Reference Material (NIST 1566b, oyster tissue)
using the following equation (Debertin and Helmer, 1988; Markowicz
et al., 1993);

=DL
S

I
T

3 b

b (7)

where Ib is the background counts under the characteristic peaks, Tb the
irradiation time and S is the elemental sensitivity.

It was assumed that the concentrations of trace biometals in any
typical soft tissue which are below the detection limits in Table 2 above
are impossible to quantify directly by classical EDXRF analysis (perhaps
also by the chemometrics-enabled energy dispersive X-ray fluorescence
and scattering spectrometry method).

2.4. Results and discussion

Spectral deconvolution enabled feature selection of observable peak
positions corresponding to the biometals in Oyster tissue as shown in
Fig. 2.

The predominant features evident in the above spectrum are the X-
ray fluorescence peaks (Kα and Kβ) and enhanced Compton scatter
peak. The enhanced background due to the ‘dark matrices’ in Oyster
tissue is a limitation for accurate and direct quantitative analysis of low
concentration analytes in the absorbing and interfering matrix.

Fig. 3 shows a typical spectrum of domestic dog tissue sample with
similar matrices to the model soft tissue.

The immediate apparent features in the above domestic dog spec-
trum (for a typical soft body tissue) is the enhanced Fe peak and barely
discernible fluorescence peaks of Zn, Cu, Mn and Se. The prominent Fe

Table 3
Regression coefficients of ANN and PCR for model soft tissue.

Element Regression coefficients (R2 values)

Fluorescence Multiple
fluorescence +
Compton scatter

Multiple
fluorescence
normalized to the
Compton scatter

ANN PCR

Kα Kα+Kβ Kα Kα+Kβ ANN PCR ANN PCR

Mn 0.816 0.923 0.752 0.906 0.679 0.946 0.886 0.998
Fe 0.931 0.880 0.550 0.850 0.916 0.869 0.921 0.936
Cu 0.789 0.894 0.859 0.871 0.941 0.827 0.890 0.680
Zn 0.777 0.876 0.301 0.830 0.995 0.688 0.718 0.772
Se 0.621 0.814 0.366 0.875 0.613 0.318 0.784 0.635

Table 4
Comparison of RMSEP for ANN and PCR for simulate tissue.

Element Root mean square error of prediction (RMSEP)

Multiple fluorescence Multiple fluorescence + Compton scatter Multiple fluorescence normalized to the Compton scatter

ANN PCR

Kα Kα+Kβ Kα Kα+Kβ ANN PCR ANN PCR

Mn 1.259 1.257 0.457 1.509 1.259 0.456 2.051 0.253
Fe 15.039 3.795 17.748 3.844 15.039 17.714 10.782 20.859
Cu 3.944 0.987 6.121 4.302 3.943 4.601 2.318 6.348
Zn 1.456 5.576 11.362 9.368 2.061 11.363 9.244 20.646
Se 0.599 0.938 0.961 1.135 0.847 1.245 0.69 0.837

Table 5
Regression coefficients for determination of trace biometals in soft tissue.

Element Best regression
coefficients (R2)

RMSEP
(ppm)

Method Spectral region
utilized

Mn 0.998 0.253 PCR Normalized
fluorescence

Fe 0.880 3.795 ANN Multiple fluorescence
Cu 0.924 0.987 ANN Fluorescence +

Compton
Zn 0.995 2.061 ANN Fluorescence +

Compton
Se 0.814 0.938 ANN Multiple fluorescence
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peak can be attributed to its high concentration in tissues based on its
significant role in blood circulation in body tissues (Silva et al., 2009).
In such cases, the trace elements’ fluorescence peaks of interest are
hardly discernible against the high background. The Compton peak is
observed to be intense which underscores its potential utility in our
EDXRF and scattering spectrometric modeling approach in soft body
tissues. The major challenge is direct and rapid determination with
good accuracy the trace biometals of interest in soft tissues whose
spectral features resemble those shown in Fig. 3 above. The ratio of
characteristic and Compton scatter intensities is less sensitive to var-
iation in sample composition and thus it can be used to mathematically
eliminate strong matrix effects (Markowicz, 2011) thus a linear func-
tion of the concentration of the analytes. Additionally, the character-
istic fluorescence and the Compton scatter peaks can be simultaneously
used to determine the concentration of the analytes in soft body tissues.

The calibration strategy curves of ANN and PCR models of Cu in
model tissue samples are shown in Figs. 4 and 5 respectively. They
indicate how well (close correlation between measured and predicted
trace elements at low detection limits) the models are likely to perform
for future prediction evaluation of Cu in tissue samples of similar matrix
composition in multivariate domain.

From the above calibration curves using the validation set of model
tissue samples, it is clear that ANN model prediction for Cu in model
soft tissue is better compared to PCR model. The utility of multivariate
fluorescence peaks and Compton scatter peaks in PCR leads to poorer
model performance as opposed to the use of multivariate fluorescence
peaks. This can probably be attributed to the linearity of PCR model
which may not be appropriate for modeling the non-linear relations in
multivariate space between the trace biometal concentration and the
spectral signatures (fluorescence and Compton scatter) combined as
model input data. However, ANN model training with purlin linear
function and sigmoid non-linear function used in the hidden layer of
neural network resolved both linear and non-linear relations between
several responses (sample spectral data matrix) and vector of properties
(concentrations of analytes) in the tissue samples (Markowicz, 2011). It
is noted that ANN is more robust in reducing matrix effects for direct
rapid analysis of Cu and other analytes in soft tissues. The ANN and PCR
regression coefficients for all the trace elements of interest (Fe, Mn, Cu,
Zn and Se) are summarized in Table 3.

The ANN and PCR multivariate calibration results of multiple
fluorescence spectra utilizing Kα and Kβ fluorescence peaks are better
(high regression coefficients) than the utility of Kα fluorescence.
Quantification accuracy is therefore independent of signal-to noise ratio
of the analyte fluorescence signatures. The results show enhanced
prediction accuracy for both fluorescence and Compton scatter in
model development as opposed to Kα fluorescence peaks (see Fe, Cu. Zn
in the ANN model, and Mn in the PCR model). Compton fluorescence
normalized spectral data increased the accuracy even more. The re-
gression coefficients of trace biometals in Table 3 above gives guidance
on the choice of the best quantitative model for a specified trace bio-
metal in model soft tissue in the nested model approach. The perfor-
mance not only provides potential for the simultaneous utilization of
both fluorescence and Compton scatter, but also normalization of the
fluorescence to the Compton in direct rapid quantitative analysis of
trace elements in complex biological matrices. For instance, the quan-
titative determination of Mn in model tissues can be best achieved using
PCR model incorporating use of Compton scatter ( =R 0.998)2 and Zn
using ANN model ( =R 0.995)2 utilizing Compton scatter normalized
fluorescence and selected fluorescence (Kα and Kβ) peaks.

The quality of multivariate analytical modeling is not only given by
regression coefficients (R2) but also the root mean square error of
prediction (RMSEP) as shown in Table 4. The RMSEP describes how
ANN and PCR may be used for prediction of the trace biometals in
unknown tissues of matrix composition closely matching the model soft
tissues.

In general, the results in Table 5 indicate however that, the overallTa
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ANN model predictions of the concentrations of Mn, Fe, Cu, Zn and Se
are better (more accurate for most elements of interest with >R 0.9002 )
than the corresponding values obtained through PCR model. This can
be attributed to the fact that ANN has the capability to model both
linear and non-linear relations (concentration in relation to fluores-
cence peaks and Compton scatter spectral signatures). The R2 values
were selected based on the low RMSEP in the validation where both the
information in Tables 3, 4 were used to make a compromised hybrid
selection of the optimal calibration model (Table 5) for direct rapid
analysis of each biometal of interest in soft tissue.

The robustness and accuracy of the developed calibration strategy
was evaluated by analysis of the trace metals in the standard reference
material (Oyster tissue NIST 1566b) using fundamental parameters (FP)
method based classical EDXRF for comparison with our method
(Table 6).

The EDXRF and scattering measured concentrations of most of the
trace biometals in Oyster tissue in Table 6 are in agreement with the
certified values to within <10% except for Se. The poor results for Se is
probably due to low concentration of Se in the Oyster tissue close to its
detection limit (1.6 ppm) thus low fluorescence yield and so the de-
veloped analytical model may not be robust enough for such cases. The
inapplicability of the fundamental parameter method EDXRF analysis
to such tasks (direct rapid simultaneous determination of trace bio-
metals) in complex matrix samples (model soft tissues) is apparent in
Table 6 as the concentrations of Mn, Fe, Cu and Se are far from the
certified values. This is due to the fact that FP-EDXRF assumes X-ray
fluorescence peak intensity (of a well resolved single fluorescence line
with appreciable signal-to-noise ratio) as a simple linear function of

concentration (He and Van Espen, 1990). This is not easily realized in
direct trace element analysis of biological samples. The results de-
monstrate that EDXRF and scattering spectrometry coupled with che-
mometrics is superior alternative to classical method for direct rapid
analysis of trace biometals in model soft tissues.

Fig. 6 shows a nested multivariate calibration model for quantitative
analysis of trace biometals in model soft tissues. It may be noted that
the combined utility of multiple fluorescence and Compton scatter
peaks, in EDXRF and scattering spectrometry in conjunction with
multivariate chemometric techniques, offers a versatile tool for direct
rapid trace elements analysis in soft body tissues. The method is non-
invasive (avoids the sample digestion process), affordable and is cap-
able of mining additional information (in Compton scatter) to elemental
profiles in the tissues.

2.5. Conclusion

This study was undertaken to develop and evaluate the potential of
energy dispersive X-ray fluorescence and scattering (EDXRFS) spectro-
metry in conjunction with multivariate chemometric techniques,
namely ANN and PCR for direct rapid simultaneous analysis of trace
biometals in model soft tissues. The method is rapid (involves minimum
sample preparation with no sample pre-treatments, 50 s analysis time),
cost-effective (as it can also be easily done using radioisotope sources),
direct and is applicable to simultaneous determination of biometals at
trace levels in complex matrices. The results clearly demonstrate the
nested approach (ANN and PCR) multivariate calibration as an efficient
method for quantitative analysis of trace elements in model soft tissues.

Model soft tissue 

simulate samples  

Accuracy 

Acceptable 

Apply method to 

samples of similar 

matrix 

New tissue sample 

of similar matrix 

Spectra library building 
Spectral library use 

No Yes

Optimize 

EDXRF and scatter 

spectral data

EDXRF and scatter 

spectral feature selection 

Acquire spectra 

ANN calibration  

PCR 

calibration  

Select the better for each biometal 

sequentially

Preprocess 

data

Fig. 6. Nested multivariate calibration model for model soft tissue
samples.
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The study provides proof of concept for multivariate calibration that
needs further studies with more model tissue samples in order to con-
solidate the present conclusions.
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