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8. OPERATIONAL DEFINITION OF TERMS 

Capital intensity: indicates the ratio of capital to labour. 

Energy efficiency: the act of producing a given level of output using lesser amounts of energy or 

producing a higher level of output without an increase in energy use. 

Energy intensity: indicates the amount of energy used to produce a unit of output. 

Firm: an establishment involved in the production of goods through the use of factor inputs. 

Labour productivity: refers to the ratio of output to labour input. 

Manufacturing sector: a combination of various firms engaged in the production of goods through 

the employment of factors of production. 

Productivity: indicates the ratio of output to inputs 

Sub-sector: a combination of firms producing similar products. 
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9. ABSTRACT 

Energy holds a pivotal role in an economy’s social and economic transformation and it is a key 

ingredient driving the production of nearly entire goods and services.  Consequently, energy 

demand has been increasing over years globally and locally owing to expanded population and 

economic activity. The manufacturing sector, a key engine of growth, is one of the largest energy 

end-user. While energy is a key input in the manufacturing processes, there is unease over its 

effects on the environmental quality, human health, and competitiveness of firms.  This thesis 

sought to analyze energy efficiency, productivity, and energy and non-energy input substitution 

possibilities in Kenya’s manufacturing sector. It was structured into three essays. 

The first essay analyzed sub-sector energy efficiency differences, energy efficiency change as well 

as energy efficiency drivers in Kenya’s manufacturing sector. Sub-sectors of concern were: 

chemicals, pharmaceuticals and plastics, food, textiles and garments, and paper and other 

manufacturing. Analysis was also conducted at the sectoral level for robustness check. The 

stochastic frontier analysis and more specifically translog input distance functions were estimated 

by adopting a pooled regression model covering the period 2007, 2013, and 2018 in the assessment 

of electricity efficiency and 2007 and 2013 in the assessment of fuel efficiency. The Malmquist 

index was applied to analyze energy efficiency change over the period under review. The World 

Bank Enterprise Surveys provided data used in this analysis. Study findings show considerable 

space to cut electricity and fuel wastage across the four sub-sectors and the overall sector. The 

Malmquist index showed an improvement in electricity efficiency in the chemicals, 

pharmaceuticals and plastics and textiles and garments sub-sectors. A decline in electricity 

efficiency was observed in the food and paper and other manufacturing sub-sectors and overall 

sector. Fuel efficiency improved in food and paper and other manufacturing sub-sectors and 

overall sector but declined in chemicals, pharmaceuticals and plastics and textiles and garments 

sub-sectors. Findings show that electricity and fuel efficiency could be enhanced by investing in 

research and development, exporting activities, female firm ownership, and highly experienced 

top management. The influence of these variables varied between the two energy forms and across 

sub-sectors. Firm age and size had no clear effect on electricity and fuel efficiency while labour 

productivity had a negative effect. These findings reveal the need to design policies that enhance 

technological innovations, uptake of new technologies, exporting and female firm ownership. 
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The second essay sought to explore the energy efficiency and productivity relation in the Kenyan 

manufacturing sector. Energy intensity was applied to indicate energy efficiency. Total factor 

productivity was analyzed using the Levinsohn-Petrin algorithm. A dynamic panel data model was 

employed to establish the energy efficiency and total factor productivity relation. An unbalanced 

panel data for the years 2007, 2013, and 2018 drawn from World Bank Enterprise Survey was also 

adopted in this essay. Study findings showed heterogeneity in energy intensity across sub-sectors. 

Heterogeneity in total factor productivity was also observed across sub-sectors, firm sizes, and 

firm age. Energy efficiency was found to positively influence total factor productivity. Study 

findings also showed that capital intensity, age and size of the firm, top manager’s experience, 

foreign ownership, and exporting status positively influenced total factor productivity. The effect 

of these variables was found to be heterogeneous across sub-sectors and firm sizes. Study findings 

suggest that policies to improve energy efficiency should be matched with policies to enhance total 

factor productivity. 

The third essay sought to assess energy and non-energy input substitution possibilities besides 

establishing whether these substitution possibilities varied with firm size in the Kenyan 

manufacturing sector. Iterated seemingly unrelated regression was applied on a pooled model and 

an unbalanced panel dataset for the years 2007, 2013, and 2018 drawn from World Bank Enterprise 

Survey and Energy and Petroleum Regulatory Authority. Analysis was performed in two steps. In 

the first step, there was a joint estimation of a translog cost function with cost-share equations. 

Elasticities were then worked out from parameter estimates of the translog cost function and cost 

shares in the second step. The Cross-price elasticities indicated that capital and labour were 

substitutes for energy across all sub-sectors and overall sector but capital was a weak substitute 

for energy in the chemicals, pharmaceuticals and plastics sub-sector. The Morishima elasticities 

affirmed that capital and labour were substitutes for energy across all sub-sectors and the overall 

sector. The cross-price elasticities at firm size level analysis showed that capital and labour were 

substitutes for energy across all firm sizes but capital was at best a weak substitute for energy in 

small firms. The Morishima elasticities further affirmed that capital and labour were substitutes 

for energy across firm sizes. Substitution of capital for energy was found to increase with firm size 

but no consistent pattern was observed in the substitution of labour for energy. Study findings 

suggest that energy price policies could reduce energy consumption and potentially boost capital 

intensiveness, employment, and environmental quality.
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10. CHAPTER ONE: INTRODUCTION 

1.1 Background 

Energy holds a vital function in an economy’s social and economic development and drives the 

production of nearly all goods and services. The World Economic Forum (WEF), observes that 

energy is an enabler of the growth of an economy and is helpful in two main avenues: directly 

generating jobs and implicitly expanding economic activity and citizens’ well-being by stimulating 

growth in the rest of the sectors (WEF, 2012). The importance of energy makes it hold a central 

position in Sustainable Development Goal seven (SDG 7). Under this goal, nations commit to offer 

economical, reliable, sustainable and current energy to all citizens by the year 2030 (United 

Nations, 2015). The realization of this goal will create a world of openings for billions of people 

via emerging economic prospects and employment, empowered women, children, and youth, 

improved education and health, more reliable, equitable, and all-encompassing societies, and better 

safeguards from, and buoyancy to climate change (United Nations, 2015). 

In Vision 2030 and the “Big Four” Agenda development plans, Kenya has recognized energy as a 

key ingredient in economic transformation. Subsequently, Kenya has set to lay down energy 

infrastructure to meet an anticipated increase in energy consumption. A huge share of energy 

investments has been channelled to more reliable renewable energy (Republic of Kenya, 2020a). 

However, non-renewable energy continues to dominate energy use in Kenya. Biomass 

consumption leads at 69 percent followed by petroleum at 22 percent and electricity at 9 percent 

in that order (Republic of Kenya, 2020a).  

Energy demand has increased with time both worldwide and domestically as a result of increased 

economic activity, a rising populace and persistent improvement in the standard of life. For 

instance, the International Energy Outlook (IEO) anticipates worldwide energy consumption to 

grow by nearly 56 percent between 2010 and 2040 (IEO, 2014). Locally, an increase in electricity 

and fuel use has been witnessed with time. For instance, in the last decade, local demand for 

petroleum products rose from 3879.6 (‘000 Tonnes) in 2011 to 4678.5 (‘000 Tonnes) in 2020, 

representing a 21.11 percent increase. In the same period, local electricity demand rose from 

6273.6 (Million KWh) to 8796.4 (Million KWh) representing a 40.21 percent increase (Republic 

of Kenya, 2014, 2021).  
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The manufacturing sector in Kenya is a major energy consumer. It dominates in electricity use and 

is the second-highest consumer of fuel behind the transport sector (Republic of Kenya, 2018). For 

example, during the period 2011-2020, electricity consumption in the manufacturing sector was 

consistently higher than that for domestic and small commercials and other consumers as shown 

in Figure 1 (Republic of Kenya, 2014, 2021). Figure 2 shows that the sector’s consumption of 

petroleum was second after transport (road transport, marine, and aviation) (Republic of Kenya, 

2014, 2021).  

 

Figure 1.1:Electricity demand, 2011-2020 

Source: Republic of Kenya (2014; 2021) 

 

  

Figure 1.2:Petroleum consumption, 2011-2021 

Source: Republic of Kenya (2014; 2021) 
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The manufacturing sector performs a sizeable role in propelling economic transformation given 

that it harbours highly productive commercial activities. Persistent growth of this sector promotes 

a country’s competitiveness, creates employment, and improves efficiency in the employment of 

resources. Due to its solid links with the rest of the sectors, the manufacturing sector assumes a 

major role in the “Big Four” Agenda which aims to spur the economic growth of the Kenyan 

economy (Republic of Kenya, 2020c).  The five-year plan running 2018-2022 seeks to enlarge the 

manufacturing sector’s input to GDP from 8.4 to 15 percent. With this growth, the sector is 

expected to cut the existing trade deficit and generate employment by creating 1,000,000 additional 

jobs (Republic of Kenya, 2020c).  

Over years, the manufacturing sector has remarkably supported the Kenyan economy through its 

contribution to GDP, employment, and export of goods. On average, the sector accounted for 9.31 

percent of the overall GDP in the decade running 2011-2020. Figure 3 however, shows that the 

sector’s contribution to GDP has been declining over time (Republic of Kenya, 2013; 2021). It 

plunged from 11.75 percent in 2011 to 7.61 percent in 2020. Nonetheless, the sector has on average 

been third in contributing to GDP after the service (55.78 percent) and agriculture, forestry and 

fishing (19.96) sectors (Republic of Kenya, 2014;2021).  

  

Figure 1.3:Performance of the manufacturing sector, 2011-2020. 

Source: Author’s computation from World Bank Development Indicators and Republic of Kenya (2014; 

2021) 

On employment, the World Development Indicators (WDI) show that the sector has historically 
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that the contribution of the manufacturing sector’s employment to total employment has been 

increasing over time. On average, the sector contributed 12.63 percent of the overall wage 

0

10

20

30

40

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

P
er

ce
n

ta
ge

Year

Percentage contribution to GDP Percentage contribution to wage Employment

Percentage contribtuion to Export



4 

 

employment in the same decade (Republic of Kenya, 2014;2021). In addition, the sector is a 

significant source of informal employment, contributing an average of 20.05 percent in the period 

under review (Republic of Kenya, 2014, 2021). The sector’s contribution to total employment is 

expected to be even higher due to its robust links and spill-over effects on other sectors in the 

economy. With regards to exports, Figure 1.3 shows that even though the sector’s contribution to 

total exports was unstable over the period under review, this contribution was significant at an 

average of 31.87 percent of the total exports. (Republic of Kenya, 2014, 2021). 

The sector uses energy as an input in the conversion of raw materials to intermediate and final 

capital and consumer goods and distribution and transport services (Onuonga et al., 2011; Boyd 

and Lee, 2019). Energy is also used to power machinery, heaters, ventilation and air condition 

equipment, lamps, material handlers, and office equipment while petroleum fuels are used in steam 

generators and heaters (Onut and Soner, 2006). Whereas energy is a vital ingredient in the 

manufacturing sector, there has been unease among researchers regarding its undesired 

implications on the environment, human health and financial performance of firms (Lin and Long, 

2015; Campi et al., 2015; Wang and Yuan, 2019).  

The negative effect of energy use on the environment and human health is caused by pollutant 

emissions stemming from the combustion of fossil fuels. Such emissions include Greenhouse 

Gases (GHG) associated with climate change and poisonous smoke linked to pneumonia, lung 

damage, and the risk of acute respiratory infection in children thereby resulting in premature deaths 

among children aged below 5 years (Basu et al, 2016). Fossil fuels are non-renewable implying 

that their continued use may lead to their depletion in the future and hence limiting the amount of 

resources available for use by future generations. In addition, with energy being an input in 

production, energy costs become a constraint for production thereby negatively impacting firms’ 

competitiveness both in the domestic and foreign markets.  

Given the concern over undesired implications of energy use, the necessity to promote energy 

efficiency is more pronounced. The International Energy Agency (IEA) (2014) opines that energy 

efficiency performs a fundamental function in containing energy-related shortcomings. The 

significance of energy efficiency has been reinforced by SDG 7, which has bestowed energy 

efficiency to play a pivotal role in containing climate change (United Nations, 2015). A production 

entity is said to be energy efficient if fewer amounts of energy can be used to produce a given 

amount of output. This infers that there is a reduction in energy wastage. Therefore, understanding 
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the actual energy efficiency levels in the manufacturing sector would be useful in devising policies 

to cut energy consumption.  

Secondly, while energy efficiency is highlighted to be a suitable approach to reducing energy use, 

its effect on economic performance cannot be ignored. This is more so in developing countries 

which are relatively more dependent on energy for their economic activities. An understanding of 

how energy efficiency affects manufacturing sector productivity is important in revealing whether 

policies to promote energy efficiency should incorporate productivity benefits. Thirdly, the 

substitution of non-energy inputs for energy is one of the key mechanisms to reduce energy use 

(Zha and Ding, 2014; Haller and Hyland, 2014). However, a prior understanding of the energy and 

non-energy inputs relation is useful in indicating whether energy price policies could lead to a 

decline or rise in energy consumption along with its implication on demand for non-energy inputs.  

1.2 Statement of the Problem 

Among economic sectors in Kenya, the manufacturing sector is a significant energy end-user. It is 

the second-highest consumer of petroleum fuels after the transport sector and is the highest 

consumer of electricity (Republic of Kenya, 2018). Energy is used as a key input in the 

manufacturing and transportation of produced goods and services. Although energy is a critical 

input to this sector, its uncontrolled use is associated with environmental degradation, ill health, 

and a high cost of production, particularly when energy prices are high. To avoid negativities 

linked to energy application in the manufacturing sector, the need for enhancing energy efficiency 

has received huge attraction. In spite of attempts to enhance energy efficiency in Kenya, energy 

application in the manufacturing sector has had a sustained increase with time. Contrastingly, the 

sector has exhibited an unsatisfactory performance that is typified by a declining growth rate and 

a drop in contribution to GDP over time.  

The expansion in energy use that is not backed by the sector’s improvement in economic 

performance raises uncertainty regarding the sector’s energy efficiency level. The need to have an 

analytical assessment of the exact level of energy efficiency in Kenya’s manufacturing sector 

cannot be overemphasized. Although this assessment is critical, there is limited evidence for the 

Kenyan manufacturing sector. The limited existing linked research has not centred on this sector. 

For example, Ndichu et al. (2015) investigate the execution of energy efficiency techniques by 

maize milling firms whereas Zhang et al. (2011) estimate total factor energy efficiency in the 

overall economy. Besides providing an in-depth assessment of energy efficiency, the present study 
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investigates energy efficiency change and explores energy efficiency drivers in Kenya’s 

manufacturing sector.  

Although energy efficiency is pivotal in dealing with issues emanating from energy use, a section 

of economists has raised concern over its implications on the productivity of firms. An 

understanding of the energy efficiency and manufacturing sector productivity relation is useful in 

informing whether productivity benefits should be incorporated in policies promoting energy 

efficiency. While various studies have assessed this relationship, there remains no consensus 

among researchers. Some studies have found energy efficiency to promote productivity while 

others have found energy efficiency to negatively influence manufacturing sector productivity. 

The failure to build consensus among studies could be signalling that the energy efficiency and 

manufacturing sector productivity relation could be country-specific thus calling for more country-

specific studies. Further, the majority of existing studies have provided evidence for developed 

countries and evidence for developing countries is limited, yet these countries heavily depend on 

energy for their economic activities. This study, therefore, explores how energy efficiency 

influences productivity in Kenya’s manufacturing sector.  

The global discussion regarding energy and non-energy inputs substitution has been fueled by 

concerns about the implications of uncontrolled energy use on environmental quality and 

manufacturing sector competitiveness. An investigation of the energy and non-energy inputs 

substitution possibilities focuses on explaining how non-energy inputs demand responds to 

variations in energy prices. This has implications on investment and capital formation, 

employment and environmental quality. Whereas research on this subject has been extensively 

done, a mix of findings has been reported. The uncertainty in findings calls for more analysis on 

the subject, particularly in developing countries where evidence is scanty. In Kenya, Onuonga et 

al. (2011) find capital and labour to substitute energy. However, this study has applied time-series 

data at the macro level yet such data has been associated with results that suffer from aggregation 

bias (Solow, 1987). Further, the study does not provide recent elasticities, yet a shift in preferences 

or tastes and technological change is likely to adjust production relationships with time (Fiorito 

and van den Bergh, 2015). The present study offers an assessment of the energy and non-energy 

input substitution possibilities for Kenyan manufacturing using the most recent available micro-

level data. 
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1.3 Research Questions 

The thesis attended the following research questions: 

a) What is the level of energy efficiency in Kenya’s manufacturing sector? 

b) What is the effect of energy efficiency on Kenya’s manufacturing sector productivity? 

c) What are the substitution possibilities between energy and non-energy inputs in Kenya’s 

manufacturing sector? 

1.4 Objectives of the Study 

The overall objective of this study was to analyze energy efficiency, productivity, and energy and 

non-energy input substitution possibilities in Kenya’s manufacturing sector. To attain this 

objective, the study sought to focus on the following specific objectives: 

a) To investigate the level of energy efficiency in Kenya’s manufacturing sector. 

b) To analyze the effect of energy efficiency on productivity in Kenya’s manufacturing sector. 

c) To establish energy and non-energy input substitution possibilities in Kenya’s 

manufacturing sector. 

1.5 Contribution of the Study 

This thesis furthers the extant literature regarding energy efficiency, productivity, and energy and 

non-energy input substitution possibilities in some avenues. First, the study provides empirical 

evidence for energy efficiency in Kenya’s manufacturing sector.  Previous research in Kenya has 

not addressed this subject. For instance, Ndichu et al. (2015) concentrate on exploring the 

execution of energy efficiency techniques while Zhang et al. (2011) focus on analysing economy-

wide total factor energy efficiency. This research is important because the manufacturing sector is 

a significant energy end-user and the sector constitutes a key economic activity. The study provides 

evidence by analyzing the sub-sector differences in energy efficiency and by providing an 

examination of drivers of energy efficiency. This evidence is provided separately for electricity 

and fuel because the production process needs vary with energy form (Boyd and Lee, 2019). 

Estimating sub-sector energy efficiency differences is important because different sub-sectors are 

highly likely to have different technologies. Exploring drivers of energy efficiency is important in 

identifying factors responsible for sub-sector energy efficiency differences. The Ministry of 

Energy and Petroleum and manufacturing firms could find this useful in the development of 
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policies to promote energy efficiency. Additionally, the study applies the Malmquist index to 

decompose energy efficiency change into efficiency change and technical change. Such a 

decomposition is useful in identifying factors that drive energy efficiency change.  

Second, the study provides an empirical estimation of the manufacturing sector TFP using the most 

recent firm-level data. An investigation of the effect of energy efficiency on TFP is provided for 

the Kenyan manufacturing sector where evidence is limited despite a probable energy efficiency 

and productivity trade-off. To account for heterogeneity, the study provides analysis for different 

sub-sectors and firm size categories separately. In the process of this analysis, this research also 

furthers extant literature by providing an analysis of determinants of manufacturing sector TFP. 

The Ministry of Energy and Petroleum could find the results of this study important in indicating 

how energy efficiency policies should be designed. Manufacturing firms could also use the 

findings of the study to design policies to promote firm productivity. Some studies such as Sahu 

and Narayanan (2011a) in Indian manufacturing and Montalbano and Nenci (2019) in 

manufacturing firms in Latin American Caribbean (LAC) states fail to address reverse causality. 

This means that estimates of the effects of energy efficiency on manufacturing firm productivity 

are likely to be biased. This study addresses potential endogeneity resulting from reverse causality 

by estimating a dynamic panel data model. 

Third, the study furthers the literature by presenting analytical evidence for energy and non-energy 

inputs substitution in Kenya’s manufacturing sector. The Energy and Petroleum Regulatory 

Authority (EPRA) could apply the findings of this assessment in the design of energy price 

policies. A previous study by Onuonga et al. (2011) uses time-series data at the macro level. 

Estimates of elasticities provided by this study are therefore likely to suffer from aggregation bias. 

This is because estimates from such data capture more than technical substitution (Leon-Ledesma 

et al., 2010). In addition, it fails to provide recent elasticities. Research on this subject requires the 

use of recent data because production relations adjust over time as preferences or tastes and 

technological shifts over time. This study provides evidence on the subject using the most recent 

available firm-level data and analysis is done at the sub-sector and size category level. This is 

because production technology is likely to vary across sub-sectors and different manufacturing 

size categories resulting in different cost functions.  

1.6 Structure of the Thesis 
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This thesis is structured into five chapters. The first chapter covers the introduction. Chapter two 

presents the analysis of energy efficiency in the Kenyan manufacturing sector. Chapter three 

explores the effect of energy efficiency on manufacturing sector productivity in Kenya. Chapter 

four provides an analysis of non-energy inputs and energy substitution possibilities in the Kenyan 

manufacturing sector. Chapter five provides the summary, conclusions, policy recommendations, 

and suggestions for further research.  
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11. CHAPTER TWO: ENERGY EFFICIENCY IN THE KENYAN 

MANUFACTURING SECTOR 

12. ABSTRACT 

Being a major energy end-user, the Kenyan manufacturing sector consumed 46.67 percent of the 

total electricity consumed in the country in 2020. It consumed 10.57 percent of total fuel which 

was the second-highest after that consumed by the transport sector. Providing an analytical 

assessment of sub-sector energy efficiency differences and drivers of energy efficiency besides 

exploring energy efficiency change in the sector is critical. Sub-sectors of concern were: 

chemicals, pharmaceuticals and plastics, food, textiles and garments, and paper and other 

manufacturing. Analysis was also conducted at the sectoral level for robustness check. The 

stochastic frontier analysis and more specifically translog input distance functions were estimated 

by adopting a pooled regression model covering the period 2007, 2013, and 2018 in the 

investigation of electricity efficiency and 2007 and 2013 in the investigation of fuel efficiency. 

The Malmquist index was applied to analyze energy efficiency change over the period under 

review. The World Bank Enterprise Surveys provided data used in this analysis. Study findings 

show considerable space to cut electricity and fuel wastage across the four sub-sectors and the 

overall sector. The Malmquist index reveals variations in electricity and fuel change across sub-

sectors and time. Findings show that electricity and fuel efficiency could be enhanced by investing 

in research and development, exporting activities, female firm ownership, and highly experienced 

top management. The influence of these variables varied between the two energy forms and across 

sub-sectors. Firm age and size had no clear effect on electricity and fuel efficiency while labour 

productivity had a negative effect. These findings reveal the need to design policies that enhance 

technological innovations, uptake of new technologies, exporting and female firm ownership. 
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2.1 Introduction 

Energy efficiency is one of the best methods by which the manufacturing sector can respond to 

energy use concerns (IEA, 2014). Such concerns include potential energy paucity, high energy 

prices, energy insecurity, and environmental degradation (Andrews-Speed, 2009). By definition, 

energy efficiency implies the use of less amount of energy for a given level of production or the 

use of the same amount of energy for more production (Mukherjee, 2008a). Therefore, it is the 

firm’s ability to reduce energy wastage during production (Zhang, 2016). Manufacturing firms can 

achieve energy efficiency by employing more efficient machines, adopting modern systems, 

enhancing operation and maintenance activities, and substitution, especially energy for capital 

(Onut and Soner, 2006; Mukherjee, 2008a).  

Improving energy efficiency comes with several benefits (Mukherjee, 2008a). First, energy 

efficiency promotes the conservation of energy, particularly that obtained from fossil fuels. 

Second, it helps in boosting a country’s energy security. Third, by cutting greenhouse gas 

emissions, energy efficiency promotes environmental quality. Fourth, energy efficiency helps 

firms attain the objective of cost minimization, thus enhancing their competitiveness (Mukherjee, 

2008a; Scheich, 2009). Fifth, energy efficiency relieves an economy from exchange rate pressure 

resulting from high energy import bills. Lastly, as the demand for energy among firms reduces, 

the overall demand for energy in the economy goes down resulting in less demand for energy-

infrastructure investments at the national level. Savings from these investments can be reallocated 

to other sectors of the economy, which promotes the generation of jobs and value addition in the 

overall economy, thus helping in alleviating poverty. 

Nevertheless, existing literature shows that running an effective energy efficiency policy often 

faces some obstacles. According to Scheich (2009), such obstacles include scant information on 

energy efficiency opportunities and energy efficiency measures, hidden costs associated with 

energy-efficient technologies, lack of access to capital to finance energy efficiency projects, and 

risk and uncertainty associated with energy-efficient technologies. Others are low level of 

technical education, especially at the management level, principal-agent barriers, ineffective 

regulation, split incentives, inefficient market structures, and rigidity to changes in the operating 

environment (Singh and Lalk, 2016; Worrell, 2011; Hassan et al., 2017). With the range of 

impediments to the implementation of an energy efficiency policy, it is important for governments 



12 

 

to first direct their efforts to institutions where the greatest effect is likely to be realized and to use 

the most effective instruments (Energy Charter Secretariat, 2007).  

In Kenya, given the pivotal position held by the manufacturing sector both in its effect on the 

economy and energy end-use, the objective of enhancing energy efficiency in this sector has 

occupied an even larger significance. The Ministry of Energy in collaboration with the Kenya 

Association of Manufacturers (KAM) created a Centre for Energy Efficiency and Conservation 

(CEEC) in the year 2006. The centre creates programmes to help firms enhance energy efficiency 

and conserve energy (Republic of Kenya, 2020d).  The main objective of these initiatives is to cut 

costs and promote competitiveness and profitability as well as promote a clean and healthy 

environment. Among the programmes run by CEEC are energy audits which are expected to 

provide suggestions for firms to cut about 20 percent of energy costs. CEEC also provides a 

specialized training programme that equips firms with energy management skills which can help 

cut energy use and related costs significantly. 

To coordinate energy efficiency measures in more sectors, the government recently established the 

Kenya National Energy Efficiency and Conservation Strategy (NEECS). NEECS provides a 

master plan for setting and realizing energy efficiency targets across various sectors (Republic of 

Kenya, 2020d). Under NEECS, CEEC is expected to increase energy audits in the manufacturing 

sector from 1800 to 4000 during 2019-2025. The sector is also expected to undertake 

recommended energy conservation actions to conserve 100 megawatts (MW) of electricity, 250 

million litres of heavy fuel oil, and 9 million litres of industrial diesel oil from a baseline of 20MW 

of electricity, 51 million litres of heavy fuel oil and 1.8 million litres of industrial diesel oil in the 

same period (Republic of Kenya, 2020d). In addition, NEECS sets out to undertake resource 

mobilization in concerned government agencies to finance energy efficiency programs. 

Despite concerted efforts to enhance energy efficiency in Kenya’s manufacturing sector, 

consumption of energy in this sector has been rising over the years. For example, fuel use in the 

sector expanded from 414.6 thousand tonnes in 2010 to 635.5 thousand tonnes in 2019, 

representing a 38.57 percent increase. Nevertheless, the sector’s fuel use reduced to 494.4 thousand 

tonnes in 2020 due to reduced economic activity occasioned by COVID-19 as shown in Figure 2.1 

(Republic of Kenya, 2014;2021). Consumption of electricity soared from 3204.9 GWh in 2010 to 
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4441.0 GWh in 2019, representing a 38.57 percent increase. In 2020, electricity consumption 

reduced to 4281 GWh (Republic of Kenya, 2014;2021).  

 

Figure 2.1:Energy consumption in the manufacturing sector in Kenya (2010-2020) 

Source: Republic of Kenya (2014; 2021) 

While researchers such as Essen and Bayrak (2017) and Tapsin (2017) have linked increased 

energy use to increased economic activity, the situation has been different in the context of Kenya’s 

manufacturing sector performance. This is evidenced by the performance of the sector in the 

decade under review period as provided in Figure 2.2.  

 

Figure 2.2:Performance of the manufacturing sector in Kenya (2010-2020) 

Source: World Bank Indicators, 2021 

Figure 2.2 illustrates that the manufacturing sector’s growth rate remained unstable through the 

period 2010-2020. The sector’s contribution to GDP displayed a declining trend over the same 

0

1000

2000

3000

4000

5000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

En
er

gy
 c

o
n

su
m

p
ti

o
n

Year

Electricity (Gwh) Fuel("000"tonnes)

-2

0

2

4

6

8

10

12

14

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

P
er

ce
n

ta
ge

Year

Annual growth rate of GDP Contribution to GDP



14 

 

period. With the declining contribution to GDP, there is doubt if the manufacturing sector will 

achieve its set target of contributing 15 percent of the total GDP in 2022 as envisioned in the ‘Big 

Four’ Agenda (KAM, 2018a).  

Failure of the manufacturing sector to match increased energy demand to improved performance 

could bring into question the sector’s magnitude of energy efficiency. This calls for an analytical 

analysis of the sector’s energy efficiency to ascertain the actual level of inefficiencies and potential 

ways to abate these inefficiencies. The ability to enhance energy efficiency nonetheless is expected 

to change across sub-sectors. This is because sub-sectors differ in terms of the structure of their 

capital, quality of labour force, and manufacturing output. This study, therefore, takes a sub-sector 

approach. The sub-sectors of concern were: chemicals, pharmaceuticals and plastics, food, textile 

and garments, and paper and other manufacturing sub-sectors. 

The food sub-sector consists of alcoholic beverages and spirits, cocoa, chocolate, sugar and 

confectionery products, bakery and miller’s products, dairy products, juices, water and other soft 

drinks, meat products, tobacco, and edible oils (KAM, 2018b). The sub-sector significantly adds 

to the total manufacturing sector’s input to GDP. For example, in 2015, the sub-sector contributed 

52 percent of the manufacturing sector’s input to GDP (KAM, 2018a). The chemicals, 

pharmaceuticals and plastics sub-sector consists of paints and resins, agrochemicals, cosmetics 

and hygiene products, pharmaceutical and health care products, PVC pipes and fittings, packaging 

bags, plastics shoes, crates, bottles, floor tiles, household wares, and containers (KAM 2018b). In 

2015, the sub-sector contributed around 13 percent of the manufacturing sector’s input to GDP 

(KAM, 2018a). It is immensely reliant on imported raw materials. 

The textiles and garments sub-sector is labour-intensive and consists of textile and apparel 

products for local and export markets. Regional markets consume most of the exports. The sub-

sector contributed about 8 percent of the manufacturing sector’s input to GDP in 2015(KAM, 

2018a). Finally, paper and other manufacturing sub-sector contributed 27 percent of the overall 

manufacturing sector’s input to GDP in the same year (KAM, 2018a). The sub-sector consists of 

other firms that are not included in the three major sub-sectors. It includes firms in paper products, 

basic metals, fabricated metals, print media, non-metallic minerals, wood and furniture, and 

transport equipment and machinery. 
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2.1.1 Statement of the Problem 

Kenya’s manufacturing sector is the biggest electricity end-user and second-largest fuel end-user 

after the transport sector (Republic of Kenya, 2018). This sector uses energy as an input in the 

manufacturing and transportation of goods and services. Even though energy is critical to this 

sector its use is linked to environmental degradation and high cost of production. In the wake of 

these shortcomings and intending to conserve energy, the intention to enhance energy efficiency 

in the manufacturing sector has received significant interest.  

Various programmes have been initiated to help this sector enhance its energy efficiency. 

However, despite attempts to escalate energy efficiency, energy use in the sector has maintained 

an increasing trend over years. In the period 2010-2020, fuel use in the sector increased from 414.6 

in thousand tonnes in 2010 to 635.5 thousand tonnes in 2019 but reduced to 494.4 thousand tonnes 

in 2020 due to a decrease in production resulting from COVID-19. Similarly, electricity use 

increased from 3204.9 GWh to 4441.0 GWh in the period 2010-2019 but reduced to 4281 GWh 

in 2020 (Republic of Kenya, 2014; 2021). Contrastingly, the sector’s economic performance has 

remained unsatisfactory. The sector’s growth rate was unsteady and dipped from 5.56 to 2.49 

percent between 2010-2019. The growth rate dipped to -0.07 percent in 2020 due to COVID-19. 

Besides, the input to GDP by the sector dipped from 11.26 to 7.61 percent in the period under 

review. (Republic of Kenya, 2014; 2021).  

The expansion in energy consumption that is not supported by an enhancement in the sector’s 

economic performance raises uncertainty regarding the sector’s energy efficiency level. The 

necessity to have an analytical assessment of the exact level of energy efficiency and practical 

actions to ease existing inefficiencies in Kenya’s manufacturing sector need not be overstated. 

Whereas several studies such as Blomberg et al., (2012), Mandal and Madheswaran (2011), Li and 

Shi (2014), Filippini and Zhang (2016) and Moon and Min (2017) have estimated energy 

efficiency in the manufacturing sector in different countries, empirical evidence in Kenya’s 

manufacturing sector is scant. The scarce associated research concentrates on the approaches of 

executing energy efficiency or focuses on energy efficiency at the economy-wide level. For 

example, Ndichu et al. (2015) investigate methods of implementing energy efficiency in maize 

milling firms whilst Zhang et al. (2011) analyze economy-wide total factor energy efficiency. This 

study aimed to fill the gap in research by presenting analytical evidence in Kenya’s manufacturing 
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sector. This objective was realized by providing an analysis of sub-sector energy efficiency 

differences and drivers of energy efficiency besides exploring energy efficiency change. An 

understanding of energy efficiency drivers in addition to energy efficiency change is useful in 

formulating policies to enhance energy efficiency.  

2.1.2 Research Questions 

The study addressed the following questions: 

i. What are the sub-sector energy efficiency differences in Kenya’s manufacturing sector? 

ii. What is the extent of energy efficiency change over time in Kenya’s manufacturing sector? 

iii. What are the drivers of energy efficiency in Kenya’s manufacturing sector?  

2.1.3 Objectives of the Study 

The general objective of the study was to analyze energy efficiency in Kenya’s manufacturing 

sector. Specifically, this study sought to: 

i. To analyze sub-sector energy efficiency differences in Kenya’s manufacturing sector.  

ii. To assess the extent of energy efficiency change over time in Kenya’s manufacturing 

sector. 

iii. To establish drivers of energy efficiency in Kenya’s manufacturing sector.  

2.1.4 Significance of the Study 

Through several avenues, this research furthers extant literature on energy efficiency. First, the 

research gives empirical evidence on sub-sector energy efficiency differences in Kenya’s 

manufacturing sector. This is provided separately for electricity and fuel. Analyzing electricity 

efficiency and fuel efficiency distinctly is important given that the production process’s needs vary 

in energy form (Boyd and Lee, 2019). The less efficient manufacturing firms could use the results 

of this study in identifying well-performing peers from whom they can learn energy-efficient 

techniques. This analysis is important in revealing possible gains in terms of energy-saving and 

ultimately energy cost savings that may be realized by enhancing energy efficiency. Such 

information is useful to the manufacturing sector in devising policies to promote firm 

competitiveness. Second, information from this study will be useful in shaping policies to promote 

environmental quality. Third, understanding the drivers of energy efficiency and what causes 
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energy efficiency change is fundamental in the design and execution of sound and effective energy 

efficiency policies by the Ministry of Energy and Petroleum and manufacturing firms.  

2.2 Literature Review 

2.2.1 Theoretical Literature  

The central purpose of the broad application of efficiency analysis in economics is that contrasting 

the neoclassical theory, which assumes all firms to be perfectly efficient, firms are in practice never 

perfectly efficient. The neoclassical theory assumes that all economic actors have a maximizing 

behaviour with intentions to maximize profits and minimize costs and are in full knowledge of 

production possibilities. The theory further assumes that there exists a competitive environment 

where all inefficient entities are cleared from the market (Mefford, 2017). These assumptions have 

nevertheless been called into question following theoretical research on market failures. Owing to 

factors such as information asymmetry, agency problem and bargaining or contract costs, the 

assumptions may not hold (Abadi, 2014).  

In reality, two alike firms never produce similar amounts of output. In addition, input usage, costs, 

and profits are never the same. Differences in output levels, input usage, costs, and profits can be 

described in the context of technical and allocative inefficiencies and some unpredicted exogenous 

disturbances. Technical efficiency is concerned with the quality in which firms transform inputs 

to outputs while allocative efficiency is concerned with how firms assign resources to production 

given their prices. A large part of research on efficiency assessment has nevertheless centred on 

assessing technical efficiency. This is because in most cases, data on input prices required for 

evaluating allocative efficiency is not available (Kumbhakar and Tsionas, 2006). Consequently, 

this study bases the measurement of energy efficiency on technical efficiency where the quality in 

which energy input is applied in the production process is evaluated. 

The concept of technical efficiency is grounded in production theory. In this theory, production is 

defined as the process by which inputs are converted to output (Jehle and Reny, 2011). A 

production function describes the technology in a firm and the level of output that can be generated 

from a specified amount of inputs (Coelli et al., 2005). The state of technology describes the 

combinations of inputs and output that are technically feasible (Jehle and Reny, 2011). A firm’s 

production technology is specified through a behavioural objective function, such as cost 

minimization or profit maximization or a distance function expressed using input and output 
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production technology (Coelli et al., 2005). According to Christensen and Greene (1976), a 

production function is preferred in empirical works whenever the output is endogenous. 

Assessment of technical efficiency was initiated by seminal studies of Debreu (1951) and Farrell 

(1957). Previous attempts to estimate efficiency only produced unconvincing outcomes. One of 

the key causes of such outcomes is the failure to base measurement on theory. For instance, it was 

the norm to use a single-factor measure of efficiency. Under this measure, energy intensity is 

applied to indicate energy efficiency. It is expressed as the ratio of energy input to output and the 

inverse of this ratio indicates energy efficiency. A highly valued level of energy intensity suggests 

low energy efficiency while a low value of energy intensity suggests high energy efficiency. The 

weakness of the single-factor measure lies in its assumption that production involves the use of 

one input only, yet in reality, production involves the use of many inputs. Further, by assuming 

the use of one input only, it ignores the possibility of substitution among inputs. The seminal 

studies of Debreu (1951) and Farrell (1957) overcome such shortcomings by framing technical 

efficiency on production theory. This theory acknowledges that production involves the use of 

several inputs, primary among them being capital, labour, materials, and energy. It is the quality 

with which firms convert inputs to output that determines the level of technical efficiency.  

The Jovanovic (1982) theory partly explains variations in technical efficiency in firms. The theory 

specifically describes how firm size and age affect technical efficiency. Regarding firm size and 

technical efficiency, the Jovanovic theory argues that large firms are more technically efficient 

compared to small firms. This is because firms self-select themselves. Firms with higher technical 

efficiency survive and grow whereas lowly technical efficient firms remain sluggish or exit the 

market. The self-selection process is also implicated in the firm age and technical efficiency 

relationship. Old firms are anticipated to be highly technically efficient compared to young firms.  

According to the Jovanovic theory, new entrants have limited knowledge of their potential and 

require time to realize this potential. Their older counterparts on the other hand capitalize on gains 

from learning by doing. Thus as time moves, the least technically efficient firms clear from the 

market leaving the more technically efficient firms in each age group. 

The gender socialization and ethicality theories could partly explain variations in energy efficiency 

across firms. Women have been observed to be considerate and ethically caring (Atif et al., 2021). 

This consists of a considerable emphasis to cut off undesirable business habits, including those 
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that lead to environmental degradation. According to the gender socialization and ethicality 

theories, there are two reasons why women might be more concerned about greater societal issues. 

First, to women, morality is about responsibilities which include the duty to care about others in 

addition to the duty to alleviate recognizable troubles of this world (Gilligan, 1977). Second, 

women have a helping conduct characterized by a caring and fostering character for the long term 

(Atief et al., 2021). Given that promoting environmental quality requires long-term strategies, 

women are expected to be more inclined to adopt such strategies. According to Atief et al. (2021), 

current research reveals that women leadership addresses global warming as indicated by shifts 

towards energy efficiency and green building in addition to the execution of climate change 

policies. Therefore, firms with female ownership are expected to be more energy efficient as 

energy efficiency measures are linked to promoting environmental quality. 

2.2.2 Empirical Literature      

This section focuses on various strands of literature relating to the estimation of energy efficiency. 

The first strand concentrates on the various energy efficiency measurement approaches. Literature 

provides two broad approaches to the measurement of energy efficiency: the one-factor measure 

and the total-factor measure. In the single-factor measure, energy intensity is traditionally used to 

indicate energy efficiency. This measure has been applied by several studies such as Sahu and 

Narayanan (2011b) in India’s manufacturing sector, Montalbano and Nenci (2019) in Latin 

America’s manufacturing firms and Bogoviz et al. (2018) in Russia’s industrial sector.  

While energy intensity is simple to compute and understand, it is not a suitable measure of energy 

efficiency (Lundgren, et al.,2016). This is because it is a single-factor measure that fails to 

recognize that production involves other inputs other than energy. This makes it impossible to 

indicate substitution possibilities between factor inputs.  

The total factor measure acknowledges that the current production system is grounded on the 

application of many inputs. (Lin and Long, 2015). The measure, therefore, recognizes the 

substitution of factor inputs by firms. The non-parametric (DEA) and parametric (SFA) techniques 

dominate the total factor measure. Under DEA, efficiency is determined by the application of linear 

programming which entails the construction of a piecewise best linear frontier from observed data. 

Points deviating from the benchmark frontier are labelled as inefficiency measures. DMUs resting 

on the benchmark frontier are labelled efficient. Because DEA does not demand a prior description 
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of a functional form, studies applying it are less likely to suffer from functional form 

misspecification errors. In addition, DEA is advantageous because it accommodates multiple 

inputs and outputs and does not suffer from statistical issues due to its non-parametric nature. 

Examples of DEA employment are Mukherjee (2008a) in the estimation of energy efficiency in 

U. S’s manufacturing sector in the period 1970-2001 and Mukherjee (2008b) in the estimation of 

India’s manufacturing sector energy efficiency. In the Indian cement firms, Mandal and 

Madheswaran (2011) apply a micro panel during the period 1989-90 to 2006-07 to investigate 

energy efficiency. Al-Refaie et al. (2016) estimate energy efficiency in Jordan’s industrial sector 

during the period 1999-2013. In Korea, Moon and Min (2017) assess pure energy efficiency and 

economic efficiency in energy-intensive firms using data for 63 firms running from 2012-2014. Li 

and Shi (2014) apply DEA to estimate China’s industrial sector energy efficiency using data for 

the period 2001-2010. In India’s paper industry, Haider et al. (2019) employ a panel of 67 firms 

during the period 2003-2004 to analyze energy efficiency. However, given that DEA presumes 

that entire departures from the best linear frontier are because of inefficiency, studies employing 

DEA could potentially overvalue or undervalue energy efficiency levels (Chirwa, 2001). 

By using SFA, this problem is controlled. This is because SFA considers that both random 

variations and inefficiency could contribute to deviations from the linear best frontier. Examples 

of SFA applications include Lundgren et al. (2016) who analyze Sweden’s manufacturing sector 

energy efficiency by applying an unbalanced panel of 4297 firms running from 2000-2008. In the 

Chinese chemical industry, Ling and Long (2015) analyze energy efficiency by utilizing a panel 

of 30 provinces during the period 2005-2011. With the employment of a firm-level panel during 

the period 1987-2012, Boyd and Lee (2019) analyze energy efficiency in U. S’s metal-based 

durable manufacturing sectors. Other applications of SFA are Filippini and Hunt (2011) in the 

assessment of 29 OECD economies’ energy demand and energy efficiency during the period 1978-

2006 and Filippini and Zhang (2016) in the analysis of 29 Chinese provinces’ energy efficiency 

using data running from 2003-2012. 

The next part of the literature focuses on the objectives assumed during estimation. Examination 

of energy efficiency is founded on two main fundamental objectives; the energy conservation 

objective and the economic objective. The energy conservation objective is mainly pursued 

whenever the goal for a cut in energy use is to improve environmental quality. This is attained 
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through a cut in emissions resulting from fossil fuel combustion (Mukherjee, 2008a). Under this 

objective, the level of energy efficiency is obtained through the technical efficiency approach. An 

essential benefit of this method is that it needs less information. Only information on the quantity 

of output and inputs is needed whereas the economic objective needs information on the input and 

output prices in addition to the quantity of output and inputs. Studies that have adopted this 

objective include Mukherjee (2008a) in the US manufacturing sector, Mukherjee (2008b) in 

India’s manufacturing sector, and Lin and Long (2015) in China’s chemical industry.  

The economic objective is comprised of two sub-objectives; cost minimization and profit 

maximization. Under cost minimization, researchers analyze cost efficiency while profit efficiency 

is analyzed under profit maximization. Cost minimization however remains the most 

predominantly assumed sub-objective. Studies that have assumed this sub-objective are Mukherjee 

(2008a) in the U. S’s manufacturing sector, Mukherjee (2008b) in the manufacturing sector in 

India, Lundgren et al. (2016) in Swedish manufacturing, and Boyd and Lee (2019) in the metal-

based durable industry in the U.S. Under this sub-objective, energy efficiency is computed as the 

ratio of optimum energy use resulting from the cost minimization bundle to the exact energy 

consumed.  

The attainment of cost efficiency requires firms to allocate inputs efficiently given the input prices. 

Input prices may however fail to change in the same proportion and hence a firm may be compelled 

to vary the input portions in response to the price changes. For example, during a period of high 

energy price, a change in input proportions may call for the substitution of the low-priced inputs 

for the relatively highly-priced energy (Mukherjee, 2008a). Substitution of the cheaper inputs for 

the relatively expensive energy may make energy reductions to be higher than those made under 

the energy conservation objective. For instance, in the U.S manufacturing sector, Mukherjee 

(2008b) finds energy efficiency scores from the cost minimization bundle to be lower than those 

from the energy conservation objective. The relatively lower efficiency scores imply that US 

manufacturing has a higher potential to reduce energy use under the cost minimization objective 

than under the energy conservation objective. 

Nevertheless, the cost minimization objective may fail to guarantee a reduction in energy use. In 

occasions where the energy prices are relatively low, the cost minimization objective may advocate 

for use of more energy by substituting energy for the highly-priced factors of production. For 
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instance, in the manufacturing sector in India, Mukherjee (2008a) find energy efficiency scores 

got from the cost minimization objective to be larger than those got from the energy conservation 

objective. This implies that fewer energy reductions should be made in the cost minimization 

objective than in the energy conservation objective. Mukherjee (2008a) and Ling and Long (2015) 

argue that this happens because the prices used in the computation of energy efficiency under the 

cost minimization approach do not account for social costs such as environmental and 

intergenerational costs. For instance, failure to account for externalities in energy prices may make 

energy appear relatively cheaper thus leading to more of its consumption.  

In addition, the cost minimization objective fails to account for price regulation and imperfect 

market competition (Lin and Long, 2015). In many instances where the government is regulating 

energy prices, prices paid by users are often lower than those that would have been dictated by a 

competitive market and hence encouraging more consumption of energy.  

The third strand of the literature concentrates on variations in findings by various studies. 

Researchers seem to agree that there exists sizable room to increase energy efficiency in the 

manufacturing sector. The room to enhance energy efficiency is found to vary across firms and 

localities. Considering differences across firms, Ohlan (2019) in India’s iron and steel industry, 

finds bigger firms to be more energy-efficient than small and medium firms. In U. S’s metal-based 

durable manufacturing sector, Boyd and Lee (2009) establish that new firms are better in energy 

efficiency compared to old firms. Mukherjee (2008a) establishes that in U.S manufacturing, the 

highest energy-using sub-sectors are more efficient compared to low energy-using sub-sectors. 

Lundgren et al. (2016) establish that in the Swedish manufacturing sector, the fabricated metal 

sub-sector performs best in fuel efficiency whilst the food sub-sector performs the least. The 

rubber/plastics sub-sector is observed to perform best in electricity efficiency as the stone/mineral 

sub-sector performs the least.  

Concerning variation across localities, Mukherjee (2008b) observes that in the manufacturing 

sector in India, Goa, Haryana, and Maharashtra regions are the most energy-efficient whilst 

Andhra Pradesh, Madhya Pradesh, Orissa, and Rajasthan regions are the least energy efficient. In 

the chemical industry in China, Lin and Long (2015) find the Eastern region to be the most energy-

efficient while the Western region is the least energy efficient. Bhat et al. (2018) find that in the 

Indian pulp industry, Bihar, Goa and Rajasthan states are on the efficient frontier while 
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Chhattisgarh, Andhra Pradesh and West Bengal, Gujarat and Karnataka states have a big room to 

enhance energy efficiency. In China’s iron and steel industry, Lin and Wang (2014) find firms 

located in the North to be more energy-efficient compared to those situated in the West and Central 

parts.  

To explain variations in results, several studies have shown effort in exploring drivers of energy 

efficiency. The first is ownership structure. In this case, firms are classified as local or foreign-

owned. Sahu and Narayanan (2011b) in the manufacturing sector in India establish that foreign 

ownership promotes energy efficiency. The second is firm size. Lin and Long (2015) in the 

Chinese chemical industry, Lundgren et al. (2016) in Sweden’s manufacturing, and Moon and Min 

(2017) in Korea’s high energy-consuming firms find energy efficiency to increase with firm size. 

Contrasting small firms, large firms are characterized by better-skilled management, ample finance 

to procure superior technologies, and the potential to utilize economies of scale.  

Some studies find a non-linear (Inverted-U shape) link between energy efficiency and firm size, 

indicating that very small and very large firms are potentially less energy efficient. As firms expand 

their scale of production, they become more energy efficient but after a certain scale of production, 

their internal structures get complicated making them consume more energy. This offsets gains 

made by firms in their relatively smaller scale of production. The studies include Mandal and 

Madheswaran (2011) in the cement industry in India, Sahu and Narayanan (2011b) in India’s 

manufacturing industries, Li and Shi (2014) in the Chinese industry, and Haider et al. (2019) in 

the paper industry in India.  

The third is exporting. Roy and Yasar (2015) on Indonesian firms and Campi et al. (2015) on 

Spanish firms find exporting to promote energy efficiency. By exporting, firms get exposed to 

technological innovations and their employees are introduced to better management practices. This 

outcome could also be due to firms adjusting to clean technologies as they comply with 

environmental standards set by importing countries (Roy and Yasar, 2015). 

The fourth is firm age. Sahu and Narayanan (2011b) in the Indian manufacturing sector, Boyd and 

Lee (2019) in U. S’s durable metal-based industry, and Haider et al. (2019) in India’s paper 

industry establish that young firms have higher energy efficiency compared to older firms. Young 

firms operate under new technologies while old firms are characterized by old equipment which 
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makes them less energy efficient. Nevertheless, in the Indian cement industry, Mandal and 

Madheswaran (2011) establish firm age to have an insignificant influence on energy efficiency.  

The fifth is labour productivity. Lin et al. (2011) in China’s steel industry, Mukherjee, (2008b) in 

the Indian manufacturing sector, and Mandal and Madheswaran, (2011) in India’s cement industry 

find labour productivity to positively influence energy efficiency. According to Mandal and 

Madheswaran (2011), high labour productivity is characterized by the use of specialized energy-

efficient technologies. However, in India’s manufacturing sector, Sahu and Narayanan (2011b) 

establish that labour productivity has an insignificant influence on energy efficiency.  

The sixth is R&D. Lutz et al. (2017) in the German manufacturing firms and Lin et al. (2011) in 

the Chinese steel industry establish that R&D promotes energy efficiency. By financing R&D 

activities, firms become more innovative and get to learn about specialized technologies that help 

them enhance energy efficiency. In contrast, Sahu and Narayanan (2011b) establish that R&D 

investments negatively affect energy efficiency. The study observes that firm-level data used does 

not classify whether R&D investments made are for product upgrading or coming up with energy-

efficient technologies. Thus, the negative relationship between R&D and energy efficiency could 

imply that R&D investments were utilized on techniques to enhance products that could be energy-

intensive and not in developing energy-efficient technologies. R&D’s effect on energy efficiency 

is found to be insignificant by Li and Shi (2014) in China’s industrial sectors and Haider et al. 

(2019) in India’s paper industry. Li and Shi (2014) hold that this outcome could be due to the 

inability to peel off R&D expenditure on energy efficiency from total spending on R&D. 

The fourth strand of literature looks at studies that have examined energy efficiency change. For 

U.S manufacturing, Boyd and Lee (2019) by employing SFA and using a panel for the period 

1987-2012 examine energy efficiency change using the Malmquist index. The study finds modest 

advances in electricity efficiency while fuel efficiency has varying changes with both 

improvements and declines. In both instances, advances are a result of technological change. In 

addition, the inability to catch up, measured by efficiency change, erodes the improvement 

resulting from technical change leading to negative energy efficiency change in some sectors. By 

use of DEA, Wei et al. (2007) perform a similar estimation in china’s iron and steel sector using a 

panel for the period 1994-2003. The study finds substantial improvement in energy efficiency both 

in state-owned and private-owned plants. This improvement is largely credited to technical change. 
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Still, in China, Wu et al. (2012) perform a non-parametric examination of energy efficiency for 

the industrial sector through the period 1997-2008. The study reveals that energy efficiency change 

improved over time. Efficiency change contributed negatively to this change while technological 

change had a positive contribution which overrun the negative effect of efficiency change giving 

an overall improvement in energy efficiency change. In Europe, Morfeldt and Silveira (2014) 

investigate energy efficiency trends in the iron and steel industry through the period 2000-2010 

using DEA. While examining these trends, four-phase periods are identified where energy 

efficiency change is found to vary from improvements to declines. The decomposition of energy 

efficiency change reveals mixed contributions of catching up effect and technological change on 

energy efficiency change. 

In a recent study for the European Union, Makridou et al. (2016) analyze energy efficiency trends 

of the high energy-using industries for the period 2000-2009. Findings show that there is a general 

improvement in energy efficiency across all sectors throughout the study period. A decomposition 

of the Malmquist Index reveals that most of the improvements in the majority of the sectors could 

be attributed to technical change. Contribution of efficiency change to overall energy efficiency 

improvement is at moderate levels. 

2.2.3 Overview of Literature 

Estimation of technical efficiency is centred on the seminal works of Debreu (1951) and Farrel 

(1957). These works were a departure from the neoclassical theory which presumed that all DMUs 

are perfectly efficient. The seminal works acknowledge the presence of inefficiency in the real 

world. Such inefficiencies are caused by several factors: information asymmetries, agency 

problem, bargaining, or contract costs among others. 

Empirical studies provide two methods of measuring energy efficiency: the one-factor method and 

the total-factor method. Under the single-factor method, studies adopt energy intensity. This 

method is considered unsuitable for it is assumed that production involves the use of energy as the 

only factor of production, yet many factors are used. Further, it ignores substitution between 

factors of production.  

The total factor method overcomes these shortcomings. Under this method are the non-parametric 

and parametric techniques. DEA dominates the non-parametric technique. This approach has 

several advantages. First, it accommodates numerous inputs and numerous outputs. Second, it is 
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free from functional misspecification errors because it does not necessitate a prior description of 

the production function. Finally, it is immune from statistical issues due to its non-parametric 

nature. However, DEA may provide misleading efficiency scores given that it assumes all 

deviations from the benchmark frontier are a result of inefficiency. In reality, departures from the 

benchmark frontier are a consequence of both inefficiency and random shocks. The parametric 

approach dominated by SFA acknowledges the presence of random shocks and inefficiencies.  

Reviewed literature shows that researchers assume two objectives when estimating energy 

efficiency: energy conservation objective and economic objective. Under the energy conservation 

objective, researchers’ main goal is to achieve a cut in energy consumption to improve 

environmental quality. On the economic objective, researchers aim at cost minimization or profit 

maximization but cost maximization is predominantly assumed. This objective has however been 

put into question given that in nearly all cases, prices of energy do not account for social costs 

such as environmental and intergenerational costs, price regulation, and imperfect market 

competition.  

Findings from reviewed studies indicate that there exists room to enhance energy efficiency in the 

manufacturing sector. This potential varies among sub-sectors as found by Mukherjee (2008a) and 

Lundgren et al. (2016) and regions as found by Mukherjee (2008b), Lin and Long (2015), Lin and 

Wang (2014). Reviewed literature indicates that several factors are liable to variations in energy 

efficiency: ownership structure ( for example Sahu and Narayanan, 2011b), firm size (for instance 

Lin and Long, 2015; Lundgren et al., 2016; Moon and Min, 2017; Sahu and Narayanan, 2011b; 

Mandal and Madheswaran, 2011; Li and Shi, 2014; Haider et al., 2019), exporting (for example 

Roy and Yasar, 2015; Campi et al., 2015), firm age (For example Sahu and Narayanan, 2011b; 

Boyd and Lee, 2019; Haider et al., 2019), labour productivity (for example Mukherjee, 2008b; Lin 

et al., 2011; Mandal and Madheswaran, 2011) and R&D (for instance Lin et al., 2011; Lutz et al., 

2017). 

Finally, almost all studies reviewed report an improvement in energy efficiency over time. These 

include Boyd and Lee (2019), Wei at al. (2007), Wu et al. (2012), Morfeldt and Silveira (2014), 

and Makridou et al. (2016). A further decomposition of the efficiency change reveals that in almost 

all studies technical change positively influenced enhancements in energy efficiency while 

efficiency change contributed negatively. 
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Reviewed literature shows that there is scant empirical evidence on energy efficiency in the 

manufacturing sector in developing economies and in particular Kenya. The few existing related 

studies focus on analysing economy-wide energy efficiency or investigating the execution of 

energy efficiency strategies. For example, Zhang et al. (2011) investigate economy-wide total 

factor energy efficiency whilst Ndichu et al. (2015) investigate the extent of the application of 

energy efficiency methods in Kenya’s maize milling firms. Further, evidence of energy efficiency 

change is scanty. This study sets out to analyze energy efficiency, its determinants and energy 

efficiency change in Kenya’s manufacturing sector. Part of this thesis’s novelty is the assessment 

of the effect of top manager’s experience and female firm-ownership on energy efficiency. 

Because SFA recognizes the contribution of both random shocks and inefficiencies in explaining 

deviations from the best linear frontier, it is preferred in this study over DEA. 

2.3 Methodology 

2.3.1 Theoretical Framework 

Debreu (1951) and Farrel (1957) provided groundbreaking studies in production efficiency. 

Debreu (1951) introduced the estimation of technical efficiency under the output-orientation 

approach while Farrel (1957) established the measurement of technical efficiency under the input-

oriented approach. The output-oriented measure ascertains the quantity of output that can be 

proportionately raised with no change in input levels. The input-oriented measure determines the 

maximum proportionate cut in inputs without a change in output. According to Kumbharkar 

(2000), the two approaches are jointly referred to as Debreu-Farrel efficiency and they form the 

basis for analysis in the present research.  

Assume a firm that produces output, Q, using Z inputs under the input vector X≡  𝑥1,…, 𝑥𝑧. 

Following Aigner et al. (1977) its stochastic production frontier can be expressed as: 

𝑄𝑖 = g( 𝑋𝑖, 𝛼) +  휀𝑖; 휀𝑖 =  𝜇𝑖 −  𝜈𝑖          (2.01) 

Where i represents the observation of the ith firm (i = 1,…, N; N is the total number of firms), 𝑄𝑖  

is the output of the ith firm, g(.) is the production technology, 𝑋𝑖 is a vector of factor input 

quantities for the ith firm, and  𝛼 is a vector of parameters. 휀𝑖is a composite error term comprised 

of the symmetric disturbance component (𝜇𝑖) and the technical inefficiency component (− 𝑣𝑖). 

Following Kumbhakar and Lovell (2000), it is presumed that the disturbance term has similar 

properties as the disturbance term in the classical linear regression model (CLRM). Thus it is 
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independent and identically distributed with N(0, 𝜎𝜇
2). The technical inefficiency term has the same 

properties but its mean is truncated at zero to ensure that all the inefficiencies are non-negative. It 

is thus an independent and identically distributed truncated random variable with 𝑁+(𝑣, 𝜎𝜈
2), 𝑣 >

0.  

Other often adopted models for the inefficiency term are the half-normal model (𝑁+(0, 𝜎𝜈
2), 

exponential model 𝑁+(𝜆, 𝜎𝜈
2) and gamma model (𝑁+(𝜆, 𝑚), where m is the degree of freedom 

(Coelli et al., 2005). The terms 𝜇𝑖 and 𝜈𝑖 are further presumed to be homoskedastic [E(𝜇𝑖
2) = 𝜎𝜇

2 

and E(𝑣𝑖
2) =  𝜎𝜈

2] and distributed independently of each other [E(𝜇𝑖𝜇𝑗) = 0 and E(𝑣𝑖𝑣𝑗) = 0] and 

of explanatory variables. The random component (𝜇𝑖) accounts for aspects that cannot be managed 

by the firm. Examples of such are measurement errors in the dependent variable, omitted 

regressors, and machine performance (Aigner et al., 1977). This makes the deterministic 

component (𝑔( 𝑋𝑖, 𝛼)) to vary across firms. The technical inefficiency component (𝜈𝑖) on the flip 

side represents deviations from the stochastic production frontier (𝑔( 𝑋𝑖, 𝛼) +  휀𝑖) that are within 

the control of the firm. 

Considering energy conservation is the objective of the firm, the study follows Lin and Long 

(2015) in employing a stochastic input distance function form of the input-oriented model 

suggested by Shephard (1970). This equation is written as follows: 

𝐷(𝑄, 𝑋) = max{𝛾: 𝑋/𝛾| 𝛾 ∈  𝑊𝑡(𝑄)},  𝑊𝑡(𝑄)= { X𝜖 𝑅+
𝑍: X can produce Q}  (2.02) 

where X is an input vector and Q is an output vector. 𝛾 is a positive scaler “distance” by which the 

input vector can be deflated and 𝑊𝑡(𝑄) is the technology set which encompasses a set of all input 

vectors, X𝜖 𝑅+
𝑍,  which can potentially generate output vector Q 𝜖 𝑅+

𝐻.  

Equation (2.02), suggests that at time t, for an identified level of output vector Q and the existing 

technology, the input vector X is cut by the largest fraction and for any practical output, 𝐷(𝑄, 𝑋) 

≥ 1. If  𝐷(𝑄, 𝑋) = 1, point (X, Q) lies on the production frontier, an indication of full efficiency. 

If 𝐷(𝑄, 𝑋) > 1, point (X, Q) lies outside the frontier signalling that possibly, technical inefficiency 

exists in the production process (Lin and Wang, 2014). It is assumed that the input distance 

function is linearly homogeneous and non-declining in inputs, declining in output, concave in the 

input vector and quasi-concave in the output vector (Coelli, 2000; Lin and Long, 2015). 



29 

 

As provided by Boyd (2008) and Zhou et al. (2008), a sub-vector input distance function can be 

feasibly developed from equation (2.02) by scaling a subset of some inputs while letting others 

remain unchanged. Because this research aims at finding the maximum feasible proportionate 

reduction in energy consumption, energy is scaled as follows: 

𝐷𝐼(𝑋𝑧−1, 𝑅, 𝑄) = max{ 𝛾: (𝑋𝑧−1,
R

γ
, 𝑄) ∈ W, W = { (X,Q) : (𝑋 ) produces Q}   (2.03) 

Where 𝑋𝑧−1 is a Z-1 vector of fixed inputs, R is energy and Q is output.  

The sub-vector input distance function can also be explained graphically as follows: 

 

 

    

 

 

 

 

 

 

       

             

Figure 2.1:  Shepard Input Distance Function 

Source: Boyd and Lee (2019) 

 

In Figure 2.1, SS signifies the full technical efficiency isoquant and GG denotes the isocost line. 

Points W and N represent technically efficient DMUs given that they sit on the efficient frontier. 

If a DMU produces a unit of output with the application of inputs outlined by point P, line NP 

signifies the input distance function. This is the amount by which all inputs could be 

proportionately scaled down with no drop in output level. The technical efficiency of this DMU is 

the ratio OP/ON. This study is however not interested in the whole vector of inputs, but the distance 

covered by energy. Thus, a sub-vector energy input distance is obtained by letting energy be a 

variable input while other inputs remain fixed. The energy sub-vector input distance is represented 

by the line WP, denoting the maximum amount possible to proportionately reduce energy use with 
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no change in output level. In this case, the ratio OP/OW provides the energy efficiency of the 

DMU.  

2.3.1.1 Malmquist Index Decomposition 

The Malmquist Index is a measure of productivity change first proposed by Malmquist (1953). 

Caves et al. (1982) later developed it by extending its measurement to the application of distance 

functions. The index presumes that the majority of firms lie inside the production frontier. The 

best practice observations lie on the frontier’s surface and any productivity change is a 

consequence of technological and efficiency changes. Technical change denotes a shift in the 

production frontier. The shift may be positive indicating technological improvement or negative 

indicating a decline in technology. Technological improvements may be achieved directly through 

innovations or indirectly by spillover effects. On the other hand, efficiency change indicates that 

non-best practice firms are moving nearer to or far away from the best frontier.  

This study only focuses on energy efficiency, thus technical change and efficiency change refer to 

energy efficiency, not the whole production technology. To determine the Malmquist Index of 

energy efficiency change, the study follows Boyd and Lee (2019) and (Wei et al., 2007). Suppose 

there are two periods, s and t with s as the reference period. The Malmquist index of energy 

efficiency change between periods s and t is expressed as the geometric mean of the ratio of the 

input distance function in every period, estimated at the examined input-output mix (Boyd and 

Lee, 2019). This index estimates the total change in relative efficiency (that is, the total change in 

how far observed energy use is from the lowest possible energy use) from period s to t (Wei, et al., 

2007). The index is expressed as 

Mi (𝑞
𝑡, 𝑥𝑡 , 𝑞𝑠, 𝑥𝑠) = [

𝐷𝑖
𝑠(𝑞𝑠,𝑥𝑠)𝐷𝑖

𝑡(𝑞𝑠,𝑥𝑠)

𝐷𝑖
𝑠(𝑞𝑡,𝑥𝑡)𝐷𝑖

𝑡(𝑞𝑡,𝑥𝑡)
]

1

2         (2.04) 

where Mi is the Malmquist index of the ith firm, 𝐷𝑖 is the input distance function and q and x are 

output and input vectors respectively. The index is then decomposed into its two parts, efficiency 

change and technical change, first introduced by Fare et al.  (1994). This decomposition helps to 

distinguish factors that drive energy efficiency change. Efficiency change is expressed as  

MEi (𝑞
𝑡 , 𝑥𝑡 , 𝑞𝑠, 𝑥𝑠)= [

𝐷𝑖
𝑠(𝑞𝑠,𝑥𝑠)

𝐷𝑖
𝑡(𝑞𝑡,𝑥𝑡)

]          (2.05) 
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where MEi is the Malmquist efficiency change index of the ith firm. Equation (2.05) shows that 

efficiency change is the ratio between two consecutive input distance functions. It evaluates the 

firm’s ability to increase efficiency from period s to t and is often used to denote a catching-up 

effect (Coelli et al., 2005). The energy efficiency measurement framework adopted by this study 

constructs a benchmark frontier based on the data from all firms in the sample. Each firm is 

compared to the benchmark frontier. The extent to which a firm is closer to the benchmark frontier 

is what is referred to as “catching up” (Wei et al., 2007). Following the definition of efficiency 

change, technical change, MTCi, is expressed as  

MTCi (𝑞
𝑡 , 𝑥𝑡 , 𝑞𝑠, 𝑥𝑠)=[ 

𝐷𝑖
𝑡(𝑞𝑡,𝑥𝑡)𝐷𝑖

𝑡(𝑞𝑠,𝑥𝑠)

𝐷𝑖
𝑠(𝑞𝑡,𝑥𝑡)𝐷𝑖

𝑠(𝑞𝑠,𝑥𝑠)
]

1

2        (2.06) 

Thus, 

Mi=MEi. MTCi            (2.07) 

2.3.2 Analytical Model 

A functional form specification needs to be made before empirical estimation of equation (2.03). 

With the availability of panel data, a translog production function is assumed in this study. 

Contrasting the Cobb-Douglas production function, the translog production function is flexible, 

gives room to the interaction of variables and fulfils the convexity condition (Lin and Wang, 2014). 

In addition, the translog production function fulfils the condition of linear homogeneity in inputs. 

This condition is imposed by normalizing data. According to Kumbhakar et al. (2015), data is 

normalized by deflating the distance measure and the Z-1 inputs by the Z-th input variable. Because 

energy is the variable of concern, it is treated as the numeraire variable as follows:  

𝐷𝐼𝑖𝑋𝑧𝑖
−1= g(𝑥 𝑖, 𝑄𝑖) where 𝑥 = (

𝑋1
𝑋𝑧

⁄ , … ,
𝑋𝑧−1

𝑋𝑧
⁄ )     (2.08) 

Taking logs on both sides yields: 

𝑙𝑛 𝐷𝐼𝑖- ln 𝑋𝑧𝑖= ln g(𝑥 𝑖, 𝑄𝑖)         (2.09) 

The translog input distance function for equation (2.09) is presented as follows: 

Ln𝐷𝐼𝑖𝑡-ln 𝑅𝑖𝑡 = 𝛼0+ 𝛼𝑞ln 𝑄𝑖𝑡+ 𝛼𝑘ln 𝑘𝑖𝑡+ 𝛼𝑙ln 𝑙𝑖𝑡+ 𝛼𝑚ln 𝑚𝑖𝑡+𝛼𝑇 𝑇𝑖𝑡 + 
1

2 
𝛼𝑞𝑞(ln 𝑄𝑖𝑡)2+ 

 
1

2 
𝛼𝑘𝑘(ln 𝑘𝑖𝑡)2+

1

2 
𝛼𝑙𝑙(ln 𝑙𝑖𝑡)2+

1

2 
𝛼𝑚𝑚(ln 𝑚𝑖𝑡)2+𝛼𝑘𝑙ln𝑘𝑖𝑡ln𝑙𝑖𝑡+𝛼𝑘𝑚ln𝑘𝑖𝑡ln𝑚𝑖𝑡+ 

 𝛼𝑘𝑞ln𝑘𝑖𝑡ln𝑄𝑖𝑡+𝛼𝑙𝑚ln𝑙𝑖𝑡ln𝑚𝑖𝑡+𝛼𝑙𝑞ln𝑙ln𝑄𝑖𝑡+𝛼𝑚𝑞ln𝑚𝑖𝑡𝐿𝑛𝑄𝑖𝑡+
1

2 
𝛼𝑇𝑇(ln 𝑇𝑖𝑡)2+ 

 𝛼𝑘𝑇ln𝑘𝑖𝑡ln𝑇𝑖𝑡+ 𝛼𝑚𝑇ln𝑚𝑖𝑡ln𝑇𝑖𝑡 + 𝛼𝑙𝑇ln𝑙𝑖𝑡ln𝑇𝑖𝑡 + 𝛼𝑞ln𝑄𝑖𝑡𝐿𝑛𝑇𝑖𝑡     (2.10)          
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where 𝑘𝑖𝑡 = 𝐾𝑖𝑡 𝑅𝑖𝑡⁄  is capital,  𝑙𝑖𝑡 =  𝐿𝑖𝑡 𝑅𝑖𝑡⁄  is labour, 𝑅𝑖𝑡 is energy, 𝑚𝑖𝑡 = 𝑀𝑖𝑡 𝑅𝑖𝑡⁄  is materials,  

𝑄𝑖𝑡is output, i is firm and t is time. α0, αz, αT , αzj, αzT are parameters to be estimated. T is a time 

trend incorporated to represent technical change.  

For Ln𝐷𝐼𝑖𝑡 ≥ 0, the following symmetric conditions should be fulfilled by equation (2.10). 

∑ αzjz = ∑ αzyz = ∑ αzTz = 0,  αzj= αjz, z≠j       (2.11) 

Ln𝐷𝑖𝑡 in equation (2.10) is not observable, indicating that assessment of the model is not practical. 

Therefore, the equation is reorganized to yield: 

−Ln 𝑅𝑖𝑡 = g(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡, 𝑄𝑖𝑡, 𝑇) - Ln𝐷𝑖𝑡        (2.12) 

𝐿𝑛𝐷𝑖𝑡 is an inefficiency term. Therefore letting Ln𝐷𝑖𝑡 = 𝑣𝑖𝑡, 𝑣𝑖𝑡 > 0 and introducing the error term 

𝜇𝑖𝑡 gives: 

-Ln 𝑅𝑖𝑡 =  g(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡, 𝑄𝑖𝑡, 𝑇) + 𝜇𝑖𝑡 - 𝑣𝑖𝑡                    (2.13) 

Equation (2.13) presents a stochastic frontier model for energy input. Taking antilog on this 

equation generates:  

𝑅𝑖𝑡= g(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡, 𝑄𝑖𝑡, 𝑇)exp(-𝑣𝑖𝑡 + 𝜇𝑖𝑡)       (2.14) 

where 𝑅𝑖𝑡 indicates the actual energy input, g(𝑘𝑖𝑡, 𝑙𝑖𝑡, 𝑚𝑖𝑡, 𝑄𝑖𝑡, 𝑇) denotes the derived energy 

demand function and exp(-𝑣𝑖𝑡 + 𝜇𝑖𝑡) is a composite error component.  

By using the Debreu-Farrell efficiency framework as the basis for modelling, the study considers 

the derived energy demand function to be the best linear frontier (Lin and Long, 2015). Deviations 

of the actual energy input from the best linear frontier denote the excess energy consumption 

originating from technical inefficiency. Detaching the inefficient component from the composite 

error (-𝑣𝑖𝑡 + 𝜇𝑖𝑡) yields the level of energy efficiency:  

𝐸𝐹𝑖𝑡= 
𝐸(𝑅𝑖𝑡|𝑣𝑖𝑡=0,𝑘𝑖𝑡,𝑙𝑖𝑡,𝑚𝑖𝑡,𝑄𝑖𝑡,𝑇)

𝐸(𝑅𝑖𝑡|𝑣𝑖𝑡≠0,𝑘𝑖𝑡,𝑙𝑖𝑡,𝑚𝑖𝑡,𝑄𝑖𝑡,𝑇)
  = 

𝑅𝑖𝑡
𝐹

𝑅𝑖𝑡
= exp(-𝑣𝑖𝑡)      (2.15) 

where E(∙) indicates conditional expectation and 𝐸𝐹𝑡 denotes energy input efficiency, 𝑅𝑖𝑡
𝐹 is the 

benchmark or minimum energy demand and 𝑅𝑖𝑡 is the actual energy input of the ith firm in time t 

Various panel data model specifications can be employed in the evaluation of a stochastic frontier 

function. These include the pooled model (PM), the random effects model (REM), the true fixed 

effects model (TFEM) and the true random effects model (TREM) (Filippini and Zhang, 2016)1. 

                                                           
1 For more detailed information on these models, see Farsi and Filippini (2009). 
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Further, in recent studies by Filippini and Hunt (2012;2013) on the aggregate energy demand, a 

segment of the stochastic frontier models has been analysed by an adjustment proposed by 

Mundlak (1978). This adjustment allows for prospective unobserved heterogeneity bias and splits 

transient inefficiency from time-invariant unobserved heterogeneity. The highlighted models are 

characterized by both strengths and weaknesses and the task of selecting a suitable model is not 

clear-cut. Model selection is dependent on the research objectives, data type and existing 

covariates (Filippini and Hunt, 2013). 

The PM is the SFA model in its initial state introduced by Aigner et al. (1977) and modified for 

panel data by Pitt and Lee (1981). This model fails to capitalize on panel data by allowing for time-

invariant unobserved heterogeneity. Thus, the model is subject to suffering from unobserved 

heterogeneity bias. In contrast, the REM proposed by Pitt and Lee (1981) acknowledges the 

standard panel data individual random effects as inefficiencies instead of unobserved heterogeneity 

as is the case in conventional literature on panel data econometrics (Filippini and Hunt, 2013). 

To address this drawback by applying panel data, Greene (2005a;2005b) suggested TFEM and 

TREM through which the SFA model in its initial form is broadened by including fixed and 

random individual effects respectively. In TFEM and TREM, the intercept is substituted with a 

series of firm-specific fixed or random effects that allow for time-invariant unobserved 

heterogeneity. The TFEM and TREM can separate time-invariant unobserved heterogeneity from 

the time-varying level of efficiency component. Nonetheless, in these models, any time-invariant 

or persistent component of inefficiency is completely absorbed in the firm-specific constant terms 

(Filippini and Hunt, 2013). Thus, because some energy inefficiency sources can induce time-

invariant excess energy use, these models’ estimates could generate relatively high and inaccurate 

energy efficiency levels (Filippini and Hunt, 2011).  

Lastly, the PM, REM and TREM could all suffer from ‘unobserved heterogeneity bias’; for 

instance, a case where the correlation between observable and unobservable variables could bias 

some coefficients of the explanatory covariates (Filippini and Hunt, 2013). To attend to this 

problem, Farsi et al. (2005a; 2005b) suggested the use of the Mundlak version of the REM. The 

Mundlak version is where the correlation of the firm-specific effects and the explanatory covariates 

are considered in an auxiliary equation which is included in the main equation and estimated using 

the REM (Filippini and Hunt, 2013). Given that correlation between the individual-specific effects 
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and the explanatory variables is at least partially captured in the model, the heterogeneity bias is 

predicted to be fairly low.  

This model would be appropriate for this study. However, despite its attractive nature and that of 

other random and fixed effects models, the models failed to converge. The panel data suffers from 

a large number of entries and exits by firms so that only a few firms are in the sample for all the 

years included in the analysis. Consequently, following Filippini and Hunt (2011) the PM model 

fit by maximum likelihood estimation (MLE) was adopted in this study.   

2.3.2.1 Likelihood Ratio Test 

The generalised likelihood ratio (LR) test statistic is applied in testing for restrictions on 

parameters of the stochastic frontier. It has a chi-square distribution with the degrees of freedom 

(j) defined by the number of restricted parameters. The restricted model is captured by the null 

hypothesis (𝐻0) while the unrestricted model is captured by the alternative hypothesis (𝐻1). 

Following Coelli et al. (2005), the LR test statistic is computed as follows: 

LR =  −2[ln(l(H0)) − ln (l(H1))]~ χj
2         (2.16) 

where 𝑙(𝐻0) is the log-likelihood function value for the model with restricted parameters as 

identified by the null hypothesis and 𝑙(𝐻1) is the log-likelihood function value for the model with 

unrestricted parameters as stated by the alternative hypothesis. At a level of significance, 𝜃, the 

null hypothesis (𝐻0) is rejected if the computed LR  overdoes the critical value 𝜒1−𝜃
2 (j). 

2.3.2.2 Malmquist Decomposition of Energy Efficiency Change 

To evaluate and decompose the Malmquist index, this study uses the outcome of the translog input 

distance function obtained in the SFA first-stage estimation. On one hand, the efficiency change 

index for the ith firm is obtained as: 

𝑀𝐸𝑖= 
𝐸𝐹𝑖𝑡

𝐸𝐹𝑖𝑠
            (2.17) 

where 𝐸𝐹𝑖𝑡is the energy efficiency for the ith firm in period t and 𝐸𝐹𝑖𝑠 is the energy efficiency for 

the ith firm in period s. On the other hand, the technical change index from period s to t is computed 

right from the estimated parameters of the translog input distance function. Following Coelli et al. 

(2005), the process involves first getting the partial derivatives of the translog production function 



35 

 

provided in equation (2.10) with respect to time using firm data for the ith firm for periods s and 

t. For period s, technical change is provided as 

𝜕𝑙𝑛𝑅𝑖𝑠

𝜕𝑇
= 𝛼𝑇 + 𝛼𝑇𝑇𝑇 + 𝛼𝑞𝑇𝑙𝑛𝑄𝑖𝑠 + ∑ 𝛼𝑧𝑇𝑙𝑛𝑋𝑧𝑖𝑠

3
𝑧=1         (2.18) 

and period t technical change is provided as 

𝜕𝑙𝑛𝑅𝑖𝑡

𝜕𝑇
= 𝛼𝑇 + 𝛼𝑇𝑇𝑇 + 𝛼𝑞𝑇𝑙𝑛𝑄𝑖𝑡 + ∑ 𝛼𝑧𝑇𝑙𝑛𝑋𝑧𝑖𝑡

3
𝑧=1         (2.19) 

where 𝑅𝑖𝑡 is energy, 𝑄𝑖𝑡is output, 𝑋𝑖𝑡 is a vector of z-1, T is the time trend, i is firm and s and t are 

time. The technical change index between the two neighbouring periods is then obtained by 

calculating the geometric mean of the two partial derivatives. 

𝑀𝑇𝐶𝑖=[(1 +
𝜕𝑙𝑛𝑅𝑖𝑠

𝜕𝑇
) × (1 +

𝜕𝑙𝑛𝑅𝑖𝑡

𝜕𝑇
)]

1
2⁄  

[(1 + 𝛼𝑇 + 𝛼𝑇𝑇𝑇 + 𝛼𝑞𝑇𝑙𝑛𝑄𝑖𝑠 + ∑ 𝛼𝑧𝑇𝑙𝑛𝑋𝑧𝑖𝑠
3
𝑧=1 ) × (1 + 𝛼𝑇 + 𝛼𝑇𝑇𝑇 + 𝛼𝑞𝑇𝑙𝑛𝑄𝑖𝑡 +

             ∑ 𝛼𝑧𝑇𝑙𝑛𝑋𝑧𝑖𝑡
3
𝑧=1 )]

1
2⁄            (2.20) 

This index takes values of less than one, one or greater than one, which implies technical regress, 

no technical change and technical progress, respectively. Technical progress entails improvements 

in technology which are denoted by an upward shift in the production frontier while technical 

regress is denoted by a downward shift in the production frontier. 

The measures of efficiency change and technical change provided in equations (2.18) and (2.19) 

are then multiplied to get the Malmquist index. The Malmquist index of energy efficiency also 

takes values of less than one, one and greater than one, implying a respective decline, no change 

and an improvement in energy efficiency change. 

2.3.2.3 Determinants of Energy Efficiency 

In the investigation of energy efficiency determinants, this study applies the one-stage estimation 

approach. In this approach, energy efficiency level and determinants of energy efficiency are 

estimated simultaneously. The approach entails regressing proposed determinants on the 

inefficiency term 𝑣𝑖𝑡 conditional on the composite error term of the model (Battese and Coelli, 

1995). A major strength of this approach is that it accounts for potential sources of 

heteroscedasticity available in the stochastic term. The resulting model is expressed as follows: 

𝑣𝑖𝑡= 𝐶𝑖𝑡𝛽 + 휀𝑖𝑡,  𝑣𝑖𝑡 > 0.                 (2.21) 
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where 𝐶𝑖𝑡 denotes a vector of explanatory variables, 𝛽 represents a vector of parameters to be 

estimated and 휀𝑖𝑡 is an error term following a normal distribution with mean zero and variance 𝛿𝜀𝑖𝑡

2  

truncated at -𝐶𝑖𝑡𝛽. A positively signed coefficient of a regressor is taken to imply that the regressor 

has negatively affected energy efficiency and vice versa. 

2.3.3 Definition and Measurement of Variables 

Table 2.1:Definition and Measurement of Variables 

Variable Definition and measurement Source of variable and data 

Output 
Finished goods produced by manufacturing 

firms. Measured as total annual sales 

(Ksh). 

Lin and Long (2015), 

World Bank Enterprise Survey 

(WBES). 

Capital 
Physical machinery and equipment used in 

production. Measured as the total value of 

machinery and equipment (Ksh). 

Lin and Long (2015), 

World Bank Enterprise Survey 

(WBES). 

Labour 
Physical and mental workforce provided 

for wages and salaries. Measured as total 

wages paid to permanent, full-time 

employees (Ksh). 

Lin and Long (2015), 

World Bank Enterprise Survey 

(WBES). 

Materials 
Finished goods used in the final production 

of other goods. Measured as the cost of raw 

materials (Ksh). 

Lin and Long (2015), 

World Bank Enterprise Survey 

(WBES). 

Energy  
Electricity and petroleum used in 

production. Measured as the total cost of 

electricity and fuel (Ksh). 

Lin and Long (2015), 

World Bank Enterprise Survey 

(WBES). 

Labour productivity 
The ratio of output per unit of labour Mandal and Madheswaran 

(2011) 

World Bank Enterprise Survey 

(WBES). 

Firm age 
Time in years an establishment has been in 

existence 
Haider et al.,2019, 

World Bank Enterprise Survey 

(WBES). 

Firm size Number of permanent full-time workers in 

a firm 
Mandal and Madheswaran, 

(2011), 
World Bank Enterprise Survey 

(WBES). 

R&D The activity of discovering new products 

or services or enhancing the quality or 

mode of production of existing goods 

and services. Measured as a dummy 

variable, 1 if a firm takes part in R&D 

and 0 if otherwise. 

Lutz et al. (2017), 
World Bank Enterprise Survey 

(WBES). 

Foreign ownership Whether a firm is foreign-owned. 

Measured as a dummy variable with a 

value of 1 if foreign-owned and 0 if 

otherwise. 

Sahu and Narayanan (2011b), 
World Bank Enterprise Survey 

(WBES). 
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Exporting status Whether a firm exports or not. Measured as 

a dummy variable with a value of 1 if a 

firm exports and 0 if otherwise. 

Roy and Yasar (2015), 
World Bank Enterprise Survey 

(WBES). 

Top manager’s 

experience 

Skills gained by working. Measured as the  

time in years the top manager has been 

working 

Lemi and Wright (2018), 
World Bank Enterprise Survey 

(WBES). 

Female firm ownership Whether a firm has female ownership 

or not. Measured as a dummy variable, 

1 if there is a female member in firm 

ownership and 0 if there is none. 

World Bank Enterprise Survey 

(WBES). 

Source: Author’s compilation 

 

2.3.4 Data Type and Sources 

An unbalanced panel got from the WBES was applied in this thesis. The World Bank collects 

information on enterprises to have an understanding of the business environment firms face in the 

private sector. This information is intended to help the World Bank in developing policies to 

improve the business environment, which is key to job creation and sustainable growth. The 

WBES provides data on manufacturing and service firms collected through stratified random 

sampling. The levels of stratification are regions, sub-sectors and firm size. The surveys present 

information on individual firm features, infrastructure and services, sales and supplies, 

competition, finance, performance and business environment relations, crime, labour and land. 

The surveys are available in different waves for 169,000 firms in 146 countries. This gives room 

for the comparison of enterprise performance across countries and across time. In addition, the 

WBES can be used to create a firm-level panel that makes it feasible to trail developments in the 

operating environment and evaluate the effect of reforms. 

The surveys try as much as possible to match variables across waves. If required, matches are 

created by changing variable names in older waves to variable names in the most current wave. 

Panel data used in this study was for 2007, 2013 and 2018 where firms were followed over time. 

Natural occurrences such as the entry and exit of firms during the survey period make the panel 

unbalanced. In total, the panel had 2439 observations for both manufacturing and service firms 

from which a panel of 1265 observations for manufacturing firms was drawn. The electricity model 

applied data for the three waves which contain 1265 observations. Nevertheless, 2018 does not 

have data on fuel expenditure. Therefore, 810 observations for 2007 and 2013 were applied in the 

estimation of the fuel model. Given that some variables of interest had missing observations; the 

multiple imputation technique was applied to fill the missing gaps.  
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2.3.5 Justification for Inclusion of the Various Determinants of Energy Efficiency 

Following recent literature, the study uses firm size, firm age, labour productivity, foreign 

ownership, exporting status and R&D status to analyze determinants of energy efficiency (Mandal 

and Madheswaran, 2011; Lin and Long, 2015; Roy and Yasar 2015; Haider et al., 2019).  

Moreover, top manager’s experience and female ownership status are included as determinants of 

energy efficiency.  

Firm size was included to assess whether energy efficiency increased with firm size. It was 

anticipated to have an unclear effect on energy efficiency. On one hand, large firms were expected 

to be more energy-efficient relative to small firms. This is because, in contrast to small firms, large 

firms are characterized by skilled leadership, better access to financial resources, particularly from 

third parties and the potential to leverage on economies of scale (Lin and Long 2015; Lundgren et 

al., 2016; Moon and Min, 2017).  On the other hand, studies (Sahu and Narayanan, 2011b; Mandal 

and Madheswaran, 2011; Li and Shi, 2014) observe that firm size could negatively affect energy 

efficiency. This is because as firms expand in size, bottlenecks in management develop, rendering 

it difficult for them to detect inefficiencies.  

Firm age was included to establish whether energy efficiency increased with firm age. Firm age 

was anticipated to have an unclear effect on energy efficiency. On the one hand, the effect could 

be positive because of the benefits associated with learning-by-doing. Moreover, this effect could 

be observed because older firms could potentially have more R&D activities compared to younger 

firms. Contrastingly, firm age could have a negative effect on energy efficiency because old firms 

are likely to be characterized by energy-intensive vintage capital while young firms employ recent 

energy-efficient technology (Sahu and Narayanan, 2011b; Haider et al.,2019). 

R&D was included to investigate whether firms that invested in R&D activities were more energy-

efficient than those with no R&D investments. R&D was anticipated to have a positive effect on 

energy efficiency. This is because R&D activities increase innovations in firms and make them 

learn of recent technologies that may enhance energy efficiency. Such an outcome has been found 

by Lin et al. (2011) and Lutz et al. (2017). 

Top manager’s level of experience was added to investigate whether firms with highly experienced 

top managers were more energy-efficient than those with low experienced top managers. This 

variable was anticipated to positively affect energy efficiency. This is because experienced top 
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managers could potentially have assimilated the expertise and techniques required to enhance 

energy efficiency. Such a finding has been reported by Chaffai et al. (2012) and Lemi and Wright 

(2018).  

Female firm-ownership was included to test whether female firm-ownership was linked to higher 

energy efficiency. This variable was anticipated to positively affect energy efficiency. This 

according to ILO (2019) is because female members are observed to inject teamwork, skills to 

provide solutions to problems, ingenuity and innovation and honesty. These traits are essential to 

promoting energy efficiency. This could also be explained by the moral responsibility and care for 

the environment by women as outlined by the gender socialization and ethicality theories (Atif et 

al., 2021). 

Labour productivity was added to investigate whether high labour productivity was linked to 

higher energy efficiency. The influence of this variable on energy efficiency was expected to be 

positive. According to Mandal and Madheswaran (2011), high labour productivity is likely to be 

associated with the application of energy-efficient technologies. This outcome has been found by 

Mukherjee (2008b), Lin et al.  (2011) and Mandal and Madheswaran (2011). 

Exporting status was included to establish whether there were energy efficiency benefits in 

exporting activities. The influence of exporting status on energy efficiency was anticipated to be 

positive. This is because exporting firms get exposed to efficient technologies and their workers 

get to learn better management skills from foreign countries (Campi et al., 2015). This process is 

referred to as learning-by-exporting (Bigsten and Soderbom, 2006). Moreover, some destination 

countries may impose a condition requiring exporting nations to satisfy some environmental 

quality standards for them to gain entry to their markets (Roy and Yasar, 2015). This outcome has 

been found by Roy and Yasar (2015) and Campi et al. (2015). 

Foreign ownership status was included to investigate whether foreign-owned firms had higher 

energy efficiency than firms with no foreign ownership. The effect of this variable on energy 

efficiency was anticipated to be positive. This is because foreign-owned firms are exposed to 

advanced technologies and their workers get specialized training. Such an outcome has been 

reported by Sahu and Narayanan (2011b). 
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2.4. Results and Discussions 

This section contains descriptive statistics, empirical results of the stochastic frontier analysis for 

electricity and fuel, results of electricity and fuel change as well as the determinants of electricity 

and fuel efficiencies. 

2.4.1 Descriptive Statistics 
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Table 2.2 Descriptive statistics for variables included in the energy stochastic frontier production function 
Statistics Output Capital Labour Materials Electricit

y 

Fuel Firm 

size 

Firm 

Age 

TME LP FO FM Ex R&D 

Chemicals, Pharmaceuticals and Plastics sub-sector 

2007(N=28)               

Mean 167949.7 29008.61 9441.424 78625.78 11076.71 2997.11 113.0 7.25 13.64 2.271 0.1742 0.5955 0.4494 0.2921 

SD 292492.2 53246.83 15882.48 198591.6 35517.55 6226.11 306.0 4.02 10.08 3.413 0.3803 0.4922 0.4988 0.4560 

Minimum 500 500 180 16.8 6 12 1 1 1 0.054 0 0 0 0 

Maximum 1000000 250000 70000 1000000 180000 3000 1500 15 40 17.96 1 1 1 1 

2013(N=52)               

Mean 497064.1 362654.8 57713.78 180879.6 25993.75 18316.6 123.08 25.13 21.27 2.407 0.1154 0.5769 0.4038 0.25 

SD 1210990 2072631 125627.7 464971.9 67702.13 84686.51 244.08 8.07 12.25 7.528 0.8846 0.4989 0.4955 0.4372 

Minimum 1000 500 300 100 12 10 5 1 1 0.089 0 0 0 0 

Maximum 8000000 15000000 650000 3000000 400000 600000 1500 35 60 54.90 1 1 1 1 

2018(N=98)               

Mean 2025636 156492 161476.6 228133.6 16995.65  132.18 50.82 21.63 11.09 0.2041 0.5918 0.5204 0.3469 

SD 9799724 393919 644912.8 695357.1 44352.45  293.30 22.68 13.60 73.35 0.4051 0.4940 0.5022 0.4784 

Minimum 300 10.607 132 1 12  4 1 1 0.003 0 0 0 0 

Maximum 80000000 3000000 5000000 5000000 250000  2000 103 65 718.6 1 1 1 1 

Food sub-sector 

2007(N=110)               

Mean 359916.4 74901.92 34232.41 91473.01 7674.282 8440.883 65.35 10.56 13.24 2.966 0.1634 0.6636 0.3000 0.2455 

SD 1333275 262780.3 104294 260128.7 26699.44 52958.64 157.33 4.35 9.13 15.95 0.3348 0.4746 0.4604 0.4323 

Minimum 150 20 80 24 2.5 10 2 2 2 0.005 0 0 0 0 

Maximum 12000000 2500000 750000 1400000 192000 536000 1200 18 40 165.8 1 1 1 1 

2013(N=154)               

Mean 537768.5 109050.1 23826.06 129432.3 33460.68 7786.428 104.65 21.66 19.38 25.44 0.1883 0.6364 0.3896 0.3117 

SD 2767741 417816.4 64907.24 600339.4 285252.2 51265.79 235.14 7.58 10.07 242.4 0.3922 0.4826 0.4893 0.4647 

Minimum 300 100 150 30 7.5 10 4 3 1 0.008 0 0 0 0 

Maximum 33000000 4670000 434000 7000000 170000 600000 1600 36 40 2964 1 1 1 1 

2018(N=140)               

Mean 1771102 454789.8 111342.3 490036.7 49362.87  200.70 36.93 23.60 5.061 0.1643 0.6286 0.4929 0.3357 

SD 3785358 2096753 438871.8 2174520 309010.4    747.94 11.75 13.28 17.30 0.3719 0.4849 0.5017 0.4739 

Minimum 800 45.5 55 3 3.5  2 3 3 0.009 0 0 0 0 

Maximum 84000000 15000000 4200000 17000000 3500000  8000 65 50 141.1 1 1 1 1 

Paper and other manufacturing sub-sector 

2007(N=147)               

Mean 1369850 216360.1 76659.47 391678.3 14997.8 8839.272 127.33 10.03 12.34 2.432 0.1905 0.6327 0.3469 0.2109 

SD 10100000 1118047 308708 2994413 85096.11 51390.43 494.98 4.545 9.077 5.063 0.3940 0.4837 0.4776 0.4093 

Minimum 600 10.607 20 60 5 10 1 2 2 0.0001 0 0 0 0 
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Maximum 12000000

0 

12300000 2000000 36000000 900000 600000 5500 18 48 45.60 1 1 1 1 

2013(N=157)               

Mean 907697.8 280953.8 38938.56 479187.9 16046.66 13131.02   121.20 24.42 19.36 3.546 0.1274 0.6815 0.4650 0.2994 

SD 4385846 1579738 116268.5 3052786 58450.31 50071.05 219.64 9.151 10.11 16.82 0.3345 0.4674 0.5004 0.4954 

Minimum 100 45 45 20 5 10 2 2 0 0.051 0 0 0 0 

Maximum 50000000 15000000 1200000 36000000 488000 500000 1700 35 50 207.3 1 1 1 1 

2018(N=167)               

Mean 4527257 185035.8 81698.41 374821 19443.34  130.44 39.14 20.59 4.693 0.2096 0.5928 0.5449 0.3533 

SD 34500000 547615.4 228291 1307864 47097.87  280.44 17.09 11.01 14.68 0.4082 0.4928 0.4995 0.4794 

Minimum 500 100 132 100 0.5  3 2 2 0.009 0 0 0 0 

Maximum 42500000 4670000 2500000 10000000 300000  2700 93 50 142.3 1 1 1 1 

Textiles, and Garments sub-sector 

2007(N=111)               

Mean 626460.8 73253.59 20387.85 203415.5 4668.687 39694.74 91.31 10.06 13.15 2.462 0.1171 0.6937 0.3063 0.2432 

SD 2611685 220592.6 58583.8 1019236 13283.63 264215.5 230.09 4.106 7.765 5.502 0.3230 0.4630 0.4630 0.4310 

Minimum 450 10.607 50 20.3 3.6 28 2 2 2 0.008 0 0 0 0 

Maximum 18000000 1500000 360000 8000000 85000 1980000 1700 18 30 34.49 1 1 1 1 

2013(N=51)               

Mean 174226.7 41886.06 16647.21 73370.74 1606.079 3496.362 111.75 21.24 16.90 2.117 0.1373 0.6078 0.2941 0.2941 

SD 501042 58092.79 31486.39 204512.3 2962.064 10442.44 349.16 9.026 9.729 3.300 0.3475 0.4930 0.4602 0.4602 

Minimum 1500 200 50.8 25 8 12 2 2 3 0.060 0 0 0 0 

Maximum 3500000 270000 176000 1300000 15700 72000 2500 33 40 17.97 1 1 1 1 

2018(N=50)               

Mean 645406.6 395709.8 116167.7 770953.6 49397.47  175.18 45.04 17.26 2.235 0.2400 0.6000 0.3800 0.400 

SD 1187350 1752118 372756.2 4086824 253933.5  243.88 22.06 10.61 4.521 0.4314 0.4949 0.4903 0.5014 

Minimum 610   48 95 70 3.6  5 2 1 0.158 0 0 0  

Maximum 6500000 12300000 2500000 29000000 1800000  1000 107 40 26.95 1 1 1  

Note: The values of the variables output, capital, labour, intermediate materials, electricity and fuel are expressed in thousands of Kenya shillings. 

SD, TME, LP, FO, FM and Ex denote standard deviation, top manager experience, labour productivity, foreign ownership, female ownership and 

exporting respectively. 

Source: Own computations from the WBES panel data 
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Table 2.2 presents summary statistics of various covariates based on wave year and sub-sectors. 

The summary statistics obtained are mean, standard deviation, minimum and maximum. Variables 

for which the summary statistics are obtained are output, capital, labour, intermediate materials, 

electricity and fuel. Others include firm age, firm size, top manager’s level of experience, labour 

productivity, foreign ownership, female firm ownership, exporting and R&D. The sample 

comprised a broad size limit as demonstrated by the large disparities between the minimum and 

maximum values. This was pronounced in output, capital, labour, intermediate materials, 

electricity, fuel, firm size and firm age, labour productivity and top manager’s years of experience 

variables. The variability in these variables resulted in many of them exhibiting standard deviations 

that are greater than the mean. 

The averages for the different variables varied not only across sub-sectors but also through time. 

In general, the mean values for output increased through the three years under review. Firms in the 

paper and other manufacturing sub-sector recorded the highest output while those in the textiles 

and garments sub-sector recorded the least, especially in 2013 and 2018. Spending on electricity 

was higher than that on fuel across all the sub-sectors except in the textiles and garments sub-

sector. This indicates that firms in the textiles and garments sub-sector relied more on fuel-powered 

equipment than on electricity-powered equipment. Labour productivity was found to increase with 

time in the chemicals, pharmaceuticals and plastics and the paper and other manufacturing sectors. 

However, no consistent pattern was observed in the food and textile and garments sub-sectors. On 

average, the food sub-sector had the highest labour productivity while the textiles and garments 

sub-sector had the least. The relatively low labour productivity in the textiles and garments sub-

sector could in part have explained the relatively low output recorded in this sub-sector. The 

proportion of manufacturing firms with foreign ownership was significantly low with the majority 

of the sub-sectors recording less than 20 percent ownership. This implies that the Kenyan 

manufacturing sector was not optimally benefiting from the flow of foreign knowledge, technical 

progress and foreign capital that come with foreign investments.  

Less than half of the firms across all the sub-sectors were found to engage in research and 

development. This probably shows that the Kenyan manufacturing sector placed less emphasis on 

this activity, yet it holds a central role in the creation of new products, upgrading existing products 

and developing efficient technologies. A notable reason for this could be because of the character 
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of R&D. Blomberg et al. (2012) observe that R&D has a public good nature thereby reducing 

incentives for a single firm to undertake the activity. The proportion of firms that engaged in 

exporting was generally below 50 percent for most of the sub-sectors through the period under 

review apart from the chemicals, pharmaceuticals and plastics and paper and other manufacturing 

sub-sectors in 2018. The two sub-sectors had on average the highest proportion of exporting firms 

while the textiles and garments sub-sector had the least. These statistics indicated that there was 

room for firms to benefit from learning-by-exporting if export-promoting policies were to be 

implemented in-depth. 

Some of the very old firms were found to be in the chemicals, pharmaceuticals and plastics and 

textiles and garments sub-sectors. The two sub-sectors also had some of the most experienced top 

managers. Regarding firm size which was indicated by the number of permanent employees, 

statistics show that the food sub-sector had the largest firm size. More than 50 percent of firms 

across all the sub-sectors had female members among the owners. Interestingly, the food sub-

sector had the highest proportion of female firm ownership across the three periods while the 

chemicals, pharmaceuticals and plastics sub-sector had the least. This as provided by the World 

Bank Group (2019) indicated that women entrepreneurs in Kenya were still domiciled in the 

hospitality industry. Nevertheless, the more than 50 percent ownership in the chemicals, 

pharmaceuticals and plastics sub-sector signalled that female entrepreneurs were gaining entry into 

male-dominated sub-sectors. 
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2.4.2 Tests 

Table 2.3 provides log-likelihood findings for tests of the production function, equality of 

parameters, technical change and inefficiency effects. Inferences were made based on a 

comparison of log-likelihood statistics with Kodde and Palm (1986) critical values at 5 percent 

level of significance.  

Table 2.3:Log-likelihood test results for the stochastic frontier production function 

Null 

Hypothesis 

𝐻0 

Model 𝝌𝟐-  statistics 

(electricity 

model) 

𝝌𝟐-  

statistics(fuel 

model) 

Critical 

Value 

Cobb-Douglas 

 Chemicals, pharmaceuticals and 

plastics 
     90.76∗∗∗      97.91∗∗∗ 24.384 

 Food      70.32∗∗∗      55.21∗∗∗ 24.384 

 Textiles and garments      78.20∗∗∗      46.66∗∗∗ 24.384 

 Paper and other manufacturing      79.17∗∗∗      58.28∗∗∗ 24.384 

 Overall sector      260.58∗∗∗      84.31∗∗∗ 24.384 

Equality of parameters 

 Overall sector model        vs      63.43∗∗∗      344.91∗∗∗ 55.190 

 Sub-sector based model   

No technical change  

 Chemicals, pharmaceuticals and 

plastics 
      43.51∗∗∗       84.35∗∗∗ 11.911 

 Food       18.47∗∗∗       57.83∗∗∗ 11.911 

 Textiles and garments       19.15∗∗∗       25.80∗∗∗ 11.911 

 Paper and other manufacturing       30.54∗∗∗       45.41∗∗∗ 11.911 

 Overall sector       91.14∗∗∗       134.63∗∗∗ 11.911 

No efficiency effects  

 Chemicals, pharmaceuticals and 

plastics 
      60.23∗∗∗       66.84∗∗ 16.274 

 Food       22.63∗∗∗       75.51∗∗ 16.274 

 Textiles and garments       61.86∗∗∗       60.07∗∗ 16.274 

 Paper and other manufacturing     123.02∗∗∗       44.31∗∗ 16.274 

 Overall sector     308.09∗∗∗       114.41∗∗ 16.274 

𝜒2 indicates the log-likelihood test results, * p < 0.1, ** p < 0.05, *** p < 0.01 

Source: Author’s estimates from WBES data 

 

A translog production function was evaluated against a Cobb-Douglas production function to 

select the functional form that best suited the available data. Results in Table 2.3 show that the 

null hypothesis for a Cobb-Douglas production function against a translog production function 

was rejected in both electricity and fuel models across all the sub-sectors and the overall sector at 

5 percent level of significance. Therefore, the translog production specification was well suited for 
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the available data. A translog production function is also adopted by Lin and Long (2015) and Lin 

and Wang (2014).  

The null hypothesis that each of the four sub-sectors had similar slope parameters in both the 

electricity and fuel models was rejected at 5 percent level of significance. This signals that every 

sub-sector had distinct slope parameters and therefore pooling of the four sub-sectors could not be 

done. The results corroborate the findings of Chapelle and Plane (2005) and Ngui and Muniu 

(2012). The null hypothesis for no technological change in both electricity and fuel models was 

rejected across all the sub-sectors and in the overall sector. This means that in each of the sub-

sectors and the overall sector, the production functions adjusted with time. This signals that 

probably, the macroeconomic environment significantly influenced electricity and fuel efficiency 

over the period under review. Time trend variables were thus incorporated in the models to capture 

technological change.  

The null hypothesis for the absence of inefficiency effects in both the electricity and fuel models 

was rejected at 5 percent level of significance across all sub-sectors and in the overall sector. This 

implies that both random shocks and inefficiencies were responsible for deviations from the best 

linear frontier. Subsequently, regressors were incorporated in the first stage simultaneous 

estimation in the four sub-sector and overall sector models to identify determinants of energy 

efficiency. This outcome corroborates the findings of Chapelle and Plane (2005) and Ngui and 

Muniu (2012). 

The models are also assessed for multicollinearity using the variance inflation factor (VIF). When 

inputs applied in a translog production function are highly correlated, SFA estimates become 

imprecise. Nevertheless, multicollinearity in these functions is minimized through centering 

variables around their sample means before computing their interaction terms. A VIF of 1 signals 

no collinearity between any two regressors while a VIF greater than 10 indicates severe 

multicollinearity. Table 2.4 provides results for the multicollinearity test. 

Table 2.4:Multicollinearity test results 

Sub-sector Electricity 

   model         

     Fuel 

    model 

Translog production function 

Chemicals, pharmaceuticals and plastics     2.89      4.53 

Food     3.17      3.13 

Textiles and garments     3.32      3.52 

Paper and other manufacturing     2.99      3.33 
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Overall sector     3.56      4.01 

Determinants of energy efficiency   

Chemicals, pharmaceuticals and plastics     3.96      5.07 

Food     4.60      4.55 

Textiles and garments     3.12      4.77 

Paper and other manufacturing     2.78      4.15 

Overall sector     2.89      4.23 

Source: Author’s computation using data from WBES 

 

The VIF estimates show minimal collinearity among regressors in all the sub-sectors with values 

ranging between 2.89 and 3.32 in the electricity model and 3.13 to 4.53 in the fuel model. In the 

overall sector model, VIF estimates in the electricity and fuel models were 3.56 and 4.01 

respectively. The results in Table 2.4 also showed minimal collinearity among determinants of 

energy efficiency. The VIF estimates ranged from 2.78 to 4.60 in the electricity model, and 4.15 

to 5.07 in the fuel model. 

2.4.3 Elasticities 

The estimation by maximum log-likelihood process involves finding the estimate of an 

unidentified parameter that maximizes the likelihood of extracting a certain sample of observations 

randomly. Maximization is done by computing the first derivative of the log-likelihood function 

and equating it to zero. Solving the first-order condition yields the parameter that maximizes the 

likelihood function. Providing analytical solutions of such parameters may however not be 

straightforward in the case of non–linear first derivatives such as those of the translog production 

function. An iterative optimization process that entails analytically assessing the log-likelihood 

function for various values of the parameters until one that maximizes the log-likelihood function 

is obtained, solves for maximum log-likelihood estimators in the case of non-linear first derivatives 

(Coelli et al.,2005).  The iterative optimization process may however not yield global maximum 

values but local maximum values. Various starting values are therefore set to confirm that the 

optimization process converges to a global maximum. In this study, different starting values were 

found to yield the same maximum likelihood estimates, a validation that the iterative process 

estimated converged to a global maximum. This was further reaffirmed by slope coefficients that 

were largely close to zero2. Robust standard errors were utilized to control for possible 

                                                           
2 Coelli et al. (2005) provide that convergence of the optimization process can be confirmed by gradients that are 

adjacent to zero. 
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heteroscedasticity. Tables 2.5 and 2.6 provide the maximum log-likelihood findings of the 

stochastic frontier model for electricity and fuel, respectively. 

Table 2.5:Stochastic frontier model estimation results of electricity for the Kenyan manufacturing 

sector. 

         Models    

   C, P and P     Food  T and G                P and O M    Overall 

Variables   sub-sector   sub-sector sub-sector   sub-sector    Sector 

Frontier      

lnQ -0.983*** -0.789*** -0.815*** -0.643*** -0.757*** 

 (0.0951) (0.137) (0.0906) (0.0717) (0.0511) 

lnm  0.483***  0.380**  0.159*  0.242**  0.267*** 

 (0.103) (0.154) (0.0905) (0.106) (0.0584) 

lnl  0.341*  0.518***  0.725***  0.513***  0.562*** 

 (0.176) (0.133) (0.101) (0.145) (0.0768) 

lnk 0.0877 0.0875 0.103* -0.0178 0.0287 

 (0.130) (0.134) (0.0605) (0.0626) (0.0435) 

T -0.0511 0.0308 -0.00225 0.0350 0.0150 

 (0.0548) (0.0350) (0.0390) (0.0282) (0.0164) 

lnQlnQ -0.00739 0.0305 0.0735*** 0.0460** 0.0435*** 

 (0.0184) (0.0416) (0.0236) (0.0182) (0.0124) 

lnllnl 0.0394 -0.101** -0.124*** 0.0180 -0.0125 

 (0.0516) (0.0397) (0.0472) (0.0528) (0.0329) 

lnmlnm -0.136*** -0.115*** -0.101*** -0.0402 -0.0843*** 

 (0.0329) (0.0244) (0.0358) (0.0271) (0.0146) 

lnklnk -0.0384 -0.0336 -0.0458*** -0.0189 -0.0253** 

 (0.0270) (0.0332) (0.0169) (0.0140) (0.00985) 

lnklnl -0.0128 0.0260 0.0537** 0.0103 0.0165 

 (0.0349) (0.0286) (0.0209) (0.0254) (0.0146) 

lnklnm 0.0140 -0.0112 -0.0232 -0.0197 -0.0133 

 (0.0172) (0.0345) (0.0176) (0.0173) (0.0105) 

lnklnQ -0.0397** 0.00853 0.00941 0.0259** 0.0108 

 (0.0178) (0.0308) (0.0164) (0.0121) (0.00931) 

lnllnm 0.0504** 0.112*** 0.0910** 0.0523** 0.0674*** 

 (0.0233) (0.0278) (0.0367) (0.0248) (0.0113) 

lnllnQ 0.00383 0.0166 0.0486* -0.0209 0.00345 

 (0.0233) (0.0355) (0.0252) (0.0183) (0.0150) 

lnmlnQ 0.00734 -0.00571 -0.0495*** 0.00543 -0.0139 

 (0.0162) (0.0341) (0.0171) (0.0185) (0.0102) 

TT -0.00447 -0.000411 0.00123 0.00756 0.00370 

 (0.00840) (0.00667) (0.00912) (0.00505) (0.00329) 

TlnQ -0.0108 -0.00391 0.00654 -0.00477 -0.00305 

 (0.00990) (0.00767) (0.00585) (0.00605) (0.00351) 

Tlnl -0.0251 -0.00349 0.00792 -0.0101 -0.00494 

 (0.0177) (0.00982) (0.0106) (0.00709) (0.00523) 

Tlnm 0.00817 -0.00729 -0.00221 -0.00292 -0.00552 

 (0.0136) (0.00942) (0.00889) (0.00842) (0.00434) 

Tlnk 0.0121 -0.00243 -0.00552 -0.00579 -0.000865 

 (0.00932) (0.00705) (0.00523) (0.00503) (0.00307) 

_cons 0.678** 0.679* 0.451*** 0.708*** 0.700*** 
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 (0.339) (0.353) (0.174) (0.160) (0.115) 

Determinants of electricity efficiency  

Labour  41.37*** -0.00219 3.507** 69.73*** 5.404*** 

Productivity (3.451) (0.00511) (1.618) (6.035) (0.427) 

Firm age -0.700** 1.349*** -0.373** -0.0794 0.00130 

 (0.344) (0.477) (0.187) (0.575) (0.0506) 

Firm age squared -0.00838 -0.0180** -0.0388*** 0.0115 0.000149 

 (0.0212) (0.00844) (0.0102) (0.0391) (0.00163) 

R and D -105.8*** 0.617 -1.155 -6.146 0.656 

 (32.39) (2.753) (1.673) (24.96) (1.266) 

Firm size 23.91*** 0.00231*** -0.00168 -0.260*** 0.00171*** 

 (3.943) (0.000703) (0.00152) (0.0118) (0.000497) 

Foreign  -45.60 -2.566 2.913 38.43 3.301 

ownership (31.64) (2.940) (2.109) (26.70) (2.108) 

Top manager’s 42.39 -0.309*** -0.0224 -51.87** -0.0195 

experience (31.75) (0.117) (0.159) (21.00) (0.0561) 

Female  7.572 -6.350** 0.981 -23.11 -4.026** 

ownership (25.85) (2.596) (1.645) (20.68) (1.587) 

Exporting -62.33** -6.875* -2.821** 21.08 -2.808* 

 (28.67) (3.754) (1.384) (16.98) (1.660) 

_cons -84.12 -8.416 -6.078 -198.6*** -18.58*** 

 (59.89) (16.67) (7.513) (65.92) (4.516) 

Usigma_cons 3.384*** 2.376*** 0.391 4.774*** 2.465*** 

 (0.426) (0.692) (0.652) (0.164) (0.0706) 

Vsigma_cons -0.477* -0.766* -0.958*** -0.771*** -0.683*** 

 (0.278) (0.410) (0.166) (0.161) (0.113) 

sigma_u 5.430*** 3.821*** 10.88*** 2.821*** 3.430*** 

 (1.157) (1.135) (0.894) (0.817) (0.121) 

sigma_v 0.788*** 0.682*** 0.680*** 0.748*** 0.711*** 

 (0.109) (0.140) (0.055) (0.068) (0.040) 

lambda 6.893*** 4.813*** 16.00*** 3.774*** 4.825*** 

 (1.191) (1.261) (0.903) (0.855) (0.116) 

Log-likelihood -221.8394 -521.5466 -213.8522 -568.5541 -1557.5051 

Returns to scale 1.017 1.267 1.227 1.555 1.321 

Dependent variable for the translog production function: -ln𝑅it. Dependent variable for 

determinants of fuel efficiency: 𝑣𝑖𝑡 
Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

paper and other manufacturing. All variables and coefficients are defined in section 2.1. 

Source: Author’s estimates from WBES data 

Table 2.5 provides estimated electricity stochastic frontier in the upper rows, determinants of 

electricity efficiency in the middle rows and variance parameters, log-likelihood statistics and 

returns to scale in the lower rows. Results of the overall sector were also included for robustness 

check. Not all parameters have significant coefficients in all the models. However, according to 

Greene (1993), the statistical characteristics of the estimates of the coefficients are of less 

importance in efficiency estimation. The highest existing estimator is applied for coefficients of 
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the inputs. Greene (1993) adds that for technical efficiency estimation, what should be longed for 

is consistency. Comparing this result with other similar studies, Lin and Long (2015) and Lin and 

Wang (2014) find that even though their estimation have insignificant input and output 

coefficients, the SFA models are still suitable for explaining energy efficiency. This is because the 

null hypotheses for no stochastic inefficiencies have been rejected implying that stochastic 

inefficiencies are present in the models. In the present study, at 5 percent level of significance, the 

p-value of lambda shows that the null hypothesis of the absence of inefficiency in the models was 

rejected, implying the presence of inefficiency hence validating the use of SFA. These findings 

were supported by the generalised log-likelihood test for inefficiency effects in Table 2.3. 

The input and output variables were provided in their natural logarithm forms and they were mean-

corrected by dividing each variable by its geometric mean before estimation. Because of these, the 

first-order coefficients of the translog production function were inferred as elasticities evaluated 

at their geometric means (Kumbhakar et al., 2007). The parameter estimates of output and all 

inputs had economically plausible signs at their geometric means apart from capital in the paper 

and other manufacturing sub-sector. Nevertheless, this variable’s coefficient was not statistically 

significant at 5 percent level of significance.  

The output elasticities were statistically significant and had negative signs which was in agreement 

with the property that output decreases with input distance functions. The input elasticities were 

positively signed and this conformed with the non-reducing in inputs property of input distance 

functions. All input covariates were significant at 5 percent level of significance, except capital 

which was only statistically significant in the textiles and garments sub-sector. 

Elasticities of labour were higher than those of materials and capital in all the sub-sectors and 

overall sector except capital in the chemicals, pharmaceuticals and plastics sub-sectors. The 

elasticity of materials was found to be higher than the elasticity of labour in this sub-sector. It 

could be inferred that firms did not have the same space to scheme for each factor of production. 

However, labour, materials and capital elasticities had no direct comparability because capital is a 

stock variable while labour and materials are flow variables (Ngui and Muniu, 2012).  

Output elasticities did not differ substantially across sub-sectors except in the chemicals, 

pharmaceuticals and plastics and paper and other manufacturing sub-sectors. Materials elasticities 

varied significantly across sub-sectors. Labour elasticities differed slightly in the paper and other 
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manufacturing sub-sectors but differed considerably in the chemicals, pharmaceuticals and plastics 

and textiles and garments sub-sectors. Capital elasticities varied slightly in the chemicals, 

pharmaceuticals and plastics and food sub-sectors but varied significantly in the textiles and 

garments and paper and other manufacturing sub-sectors. This in turn reflected significant 

technological idiosyncrasies. The result raised a question on the methodological accuracy of the 

regular practice of estimating production functions on groups of firms functioning in different sub-

sectors (Bottaso and Sembenelli, 2004).  

Time elasticities were statistically insignificant across all sub-sectors and the overall sector. 

Insignificant time elasticities denoted no shift of the input distance function, implying that there 

was no technical change over the period under review hence no change in electricity efficiency. 

This finding contracted generalised likelihood results of technical change in Table 2.3. The idea 

of Returns to scale applies to the technical property of production functions regarding the link 

between changes in output following changes in inputs. In input distance functions, returns to scale 

are obtained by computing the absolute inverse of the output elasticities. In this study, increasing 

returns to scale were observed because all output elasticities were higher than one. Thus a 

proportionate growth in output in all models could result in a less than proportionate increase in 

electricity consumption.  

Table 2.6:Stochastic frontier model estimation results of fuel for the Kenyan manufacturing sector. 

                            Models 

 C, P and P Food T and G              P and O M Overall 

Variables sub-sector sub-sector sub-sector sub-sector Sector 

Frontier      

lnQ -0.855*** -0.682*** -0.458*** -0.757*** -0.646*** 

 (0.128) (0.167) (0.133) (0.119) (0.0833) 

lnm 0.572*** -0.168 0.276** 0.424** 0.207*** 

 (0.144) (0.166) (0.113) (0.207) (0.0715) 

lnl 0.204 0.568*** 0.331 0.472* 0.586*** 

 (0.188) (0.127) (0.223) (0.230) (0.138) 

lnk -0.0306 -0.165 -0.0337 0.121 -0.0194 

 (0.249) (0.101) (0.0899) (0.113) (0.0568) 

T 0.204** -0.0272 -0.0428 0.0694 -0.00298 

 (0.0882) (0.0630) (0.0639) (0.0617) (0.0314) 

lnQlnQ -0.0171 0.0690 0.0893** 0.108** 0.0487*** 

 (0.0283) (0.0485) (0.0387) (0.0447) (0.0179) 

lnllnl 0.238** -0.0699 0.0195 -0.104* -0.0472 

 (0.0930) (0.0647) (0.0741) (0.0551) (0.0429) 

lnmlnm -0.0830 -0.0818** -0.0569 -0.0848 -0.0818*** 

 (0.0620) (0.0362) (0.0483) (0.0525) (0.0231) 

lnklnk -0.0309 0.0304 -0.0171 -0.0515** -0.0198 
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 (0.0505) (0.0233) (0.0229) (0.0260) (0.0125) 

lnklnl -0.0606 0.0203 -0.00936 -0.00864 0.0293 

 (0.0480) (0.0283) (0.0395) (0.0415) (0.0250) 

lnklnm 0.0702*** -0.0418 -0.0163 0.0309 -0.0174 

 (0.0224) (0.0304) (0.0228) (0.0386) (0.0134) 

lnklnQ -0.00193 0.0254 0.0561** 0.00656 0.0172 

 (0.0215) (0.0345) (0.0251) (0.0209) (0.0146) 

lnllnm -0.0521 0.103*** 0.0539+ 0.114*** 0.0776*** 

 (0.0665) (0.0278) (0.0288) (0.0413) (0.0178) 

lnllnQ -0.124*** -0.0458 -0.0564 0.0188 -0.0423* 

 (0.0414) (0.0472) (0.0344) (0.0324) (0.0250) 

lnmlnQ 0.114*** -0.0153 -0.0167 -0.0932*** -0.00168 

 (0.0434) (0.0363) (0.0280) (0.0299) (0.0184) 

TT 0.00219 0.00406 0.00329 0.00197 0.00220 

 (0.0153) (0.0807) (0.0162) (0.0578) (0.0335) 

TlnQ 0.0352 -0.0105 0.0129 0.000301 0.00440 

 (0.0302) (0.0186) (0.0124) (0.0131) (0.00677) 

Tlnl -0.00674 -0.00956 -0.0300** -0.0131 -0.00854 

 (0.0363) (0.0161) (0.0150) (0.0175) (0.00896) 

Tlnm 0.0296 0.00979 0.00859 0.0380** 0.00441 

 (0.0252) (0.0158) (0.0115) (0.0187) (0.00808) 

Tlnk -0.0155 0.00285 0.00494 -0.0187 -0.000531 

 (0.0168) (0.0129) (0.00962) (0.0115) (0.00573) 

_cons 1.048* 0.824*** 0.881*** 0.513* 0.825*** 

 (0.607) (0.254) (0.290) (0.264) (0.137) 

Determinants of fuel efficiency  

Labour  0.852*** 6.532* 22.44*** 8.043** 17.02*** 

productivity (0.110) (3.795) (2.524) (2.655) (2.686) 

Firm age 0.0320** -0.0332 0.225 0.396 -0.309 

 (0.0134) (0.484) (0.310) (0.367) (0.403) 

Firm age  0.000268 -0.0534 0.0947** -0.0637* -0.106* 

squared (0.00217) (0.0494) (0.0417) (0.0349) (0.0623) 

R and D -0.379** 9.797 34.72*** 0.779 36.36*** 

 (0.179) (6.907) (10.32) (1.792) (11.75) 

Firm size 0.224 -0.279 -0.251*** -0.795 -0.0508*** 

 (0.154) (0.261) (0.0407) (1.133) (0.00711) 

Foreign  -0.537* 10.19 13.28 1.038 17.16 

ownership (0.301) (13.95) (12.55) (2.352) (12.90) 

Top manager’s 0.251 -1.115 -5.028 -0.0528 3.459 

experience (0.319) (3.657) (7.075) (0.425) (4.276) 

Female -0.303** -5.922* -8.151 2.586 12.94 

ownership (0.131) (3.414) (6.537) (2.345) (10.57) 

Exporting -0.387** -1.525 -1.978 -7.620* 8.409 

 (0.189) (10.19) (9.954) (4.011) (7.125) 

_cons 0.0217 -31.79 -124.7*** -8.023 -194.2*** 

 (0.977) (26.52) (25.98) (6.431) (55.65) 

Usigma_cons -4.479*** 2.336** 3.593*** 1.724*** 3.560*** 

 (1.089) (0.739) (0.458) (0.509) (0.195) 

Vsigma_cons -1.674*** -1.149*** -1.014*** -1.296*** -0.745*** 

 (0.374) (0.233) (0.250) (0.245) (0.122) 

sigma_u 0.107* 3.216*** 6.028*** 2.368*** 5.929*** 
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 (0.058) (1.188) (1.380) (0.603) (0.694) 

sigma_v 0.433*** 0.563*** 0.602*** 0.523*** 0.689*** 

 (0.081) (0.066) (0.075) (0.064) (0.042) 

lambda 0.246*** 5.711*** 10.01*** 4.526*** 8.607*** 

 (0.130) (1.911) (1.433) (0.592) (0.578) 

Log-likelihood -46.7522 -272.0141 -348.0967 -162.7753 -959.9403 

Returns to scale 1.170 1.466 2.183 1.321 1.548 

Dependent variable for the translog production function: -ln𝑅it. Dependent variable for 

determinants of fuel efficiency: 𝑣𝑖𝑡 
Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

paper and other manufacturing. All variables and coefficients are defined in section 2.1. 

Source: Author’s estimates from WBES data 

Table 2.6 provides estimated fuel stochastic frontier in the upper rows, determinants of fuel 

efficiency in the middle rows and variance parameters, log-likelihood statistics, and returns to 

scale in the lower rows. Results of the overall sector were also included for robustness check. Some 

parameters had insignificant coefficients in all the models. However, as noted earlier, Green (1993) 

argues that in studies evaluating efficiency, the statistical features of the estimates of the 

coefficients are not of great significance. The highest existing efficient estimator is applied for 

coefficients of the inputs and what should matter in the estimation of technical efficiency is 

consistency. The null hypothesis for no stochastic inefficiencies indicated by the p-value of lambda 

was rejected at 5 percent level of significance across all the models, denoting that the SFA model 

was suitable for the present data. This finding is in line with Lin and Wang (2014) and Lin and 

Long (2015). 

The input and output variables were presented in their natural logarithm forms and they were 

similarly corrected for their geometric means before analysis. This means that first-order 

coefficients of the translog production function input were inferred as elasticities at their geometric 

means. Estimates of output and inputs had economically plausible signs at their geometric means 

apart from materials in the food sub-sector and capital in the chemicals, pharmaceuticals and 

plastics, paper and other manufacturing and textile and garments sub-sectors and the overall sector. 

However, the exceptional variables were insignificant. Output elasticities were negative and 

statistically insignificant at 5 percent level of significance. This was in agreement with the 

decreasing in output property of input distance functions. Input elasticities that were statistically 

different from zero at 5 percent level of significance had positive signs. This finding supported the 

non-decreasing in inputs property of input distance functions.  
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Labour elasticities were higher than material elasticities across all the sub-sectors and in the overall 

sector apart from materials in the chemicals, pharmaceuticals and plastics sub-sector. Labour 

elasticities were also higher than capital elasticities across all the sub-sectors and in the overall 

sector. This demonstrated that manufacturing firms have different spaces to plan for each factor 

input. Nevertheless, given that capital is a stock variable and labour and materials are flow 

variables, these inputs have no direct comparability (Ngui and Muniu, 2012).  

Output elasticities differed significantly across all the sub-sectors. Materials and labour elasticities 

also differed considerably across all the sub-sectors. Capital elasticities differed slightly between 

the chemicals, pharmaceuticals and plastics and textiles and garments sub-sectors but varied 

significantly in the food and paper and other manufacturing sub-sectors. This implies that these 

sub-sectors operated on different technologies. The result confirmed that the four sub-sector 

models should not be pooled during analysis. 

Time elasticities across the sub-sectors were statistically insignificant except in the chemicals, 

pharmaceuticals and plastics sub-sector where the coefficient was positive and statistically 

significant at 5 percent level of significance. The positive sign on this coefficient revealed that 

there could have been a downward move in the input distance function which might have led to an 

improvement in fuel efficiency with time. The prevailing macroeconomic surrounding could be 

responsible for this outcome. The finding for the chemicals, pharmaceuticals and plastics sub-

sector was in line with the outcome of the generalised log-likelihood test presented in Table 2.3. 

Returns to scale across the sub-sectors and in the overall sector were greater than one. This implies 

that expanding output resulted in a less than proportionate increase in energy consumption.  

2.4.4 Electricity Efficiency Point Estimates 

Table 2.7 presents empirical findings of electricity efficiency point estimates. Average electricity 

efficiency levels varied across sub-sectors indicating varying space to promote electricity 

efficiency across the four sub-sectors.  

Table 2.7:Summary statistics for electricity efficiency point estimates 

Model Mean Standard 

Deviation 

Skewness Minimum Maximum 

Chemicals, Pharmaceuticals and plastics 0.805 0. 169 -2.784 0. 005 0.960 

Food 0.648 0. 173 -1.904 0. 013 0.905 

Textiles  and Garments 0.786 0. 191 -1.966 0. 010 0.982 

Paper and other Manufacturing 0.678 0. 186 -1.679 0. 012 0.935 

Overall sector 0.645 0. 181 -1.589 0. 004 0.936   
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Source: Author’s estimates from WBES data. 

The average electricity efficiency levels in the chemicals, pharmaceuticals and plastics, food, 

textiles and garments and paper and other manufacturing sub-sectors were 80.5, 64.8, 78.6 and 

67.8 percent, respectively. They revealed that respective sub-sectors could potentially cut energy 

use by 19.5, 35.2, 21.4 and 32.2 percent without altering their output levels. In the overall sector, 

a mean electricity efficiency score of 64.5 percent showed that the overall manufacturing sector 

could continue producing the same output but consume 35.5 percent less electricity. These findings 

conform to other similar studies that have found significant room to enhance electricity efficiency.  

For instance, in Sweden’s 12 manufacturing sub-sectors, Lundgren et al. (2016) establish that 

electricity efficiency lies between 70 percent in the stone/mineral sub-sector and 98.2 percent in 

the rubber and printing sub-sector. Still, in Sweden, Blomberg et al. (2012) establish that electricity 

efficiency levels in the pulp and mills industry range from 81.3 percent to 97.7 percent. In the U.S 

manufacturing sector, Boyd and Lee (2019) establish that electricity efficiency ranges from 69 

percent to 81 percent. The electricity efficiency scores in different countries are, however, not 

directly comparable to those of the current study because of differences in data samples, models, 

and estimation methods. According to Ngui and Muniu (2012), efficiency scores are sensitive to 

the method of analysis, assumptions imposed on the distribution of error terms, and sample 

applied.  

The maximum electricity efficiency values were high and varied across sub-sectors revealing the 

existence of very electricity efficient firms across sub-sectors. The minimum electricity efficiency 

values were low and varied across sub-sectors signalling the presence of some very electricity 

inefficient firms across the sub-sectors. Lundgren et al. (2016) also find high maximum and low 

minimum electricity efficiency scores across sub-sectors in the Swedish manufacturing sector. 

Exploring the Kernel densities of electricity efficiency scores presented in Figure A1, the 

distribution showed that electricity efficiency across all the sub-sectors tended to be skewed 

towards the right. This implied that most firms had electricity efficiency scores that were above 

the average efficiency level. 

The Kruskal-Wallis test result for the null hypothesis of equality of electricity efficiency values in 

the four sub-sectors was 290.339 with three degrees of freedom and greater than the Kodde and 

palm critical value of 7.81 resulting in the rejection of the null hypothesis. This means that there 



56 

 

were substantial differences in electricity efficiency values in the four sub-sectors. However, as 

argued by O’Donell et al. (2008), efficiency scores cannot be compared directly across the four 

sub-sectors regarding whether one sub-sector has higher electricity efficiency compared to other 

sub-sectors. This is because efficiency analysis is founded on distinct sub-sector best linear 

frontiers. The comparison would be useful only in the case where different groups of firms have 

similar frontiers. O’Donell et al. (2008) provide that “as a general rule efficiency levels measured 

relative to one frontier cannot be compared with efficiency levels measured relative to another 

frontier.” Caution should therefore be observed when interpreting differences in electricity 

efficiency across sub-sectors. As such, interpretation should only be done grounded only on the 

underlying sample (Lissita and Odening, 2005). 

2.4.5 Distribution of Electricity Efficiency Point Estimates by Firm Size 

Table 2.8 presents the results of electricity efficiency distribution by firm size. Manufacturing 

firms were classified into three sizes following the WBES classification. The classes are small (5-

19 employees), medium (20-99 employees), and large (over 100 employees) sizes. This assessment 

is useful in singling firms with the greatest ability to achieve electricity efficiency goals.  

Table 2.8:Mean electricity efficiency point estimates by size and sub-sector 

Sub-sector Mean Minimum Maximum Kruskal-Wallis 

test statistic 

C, P and P     

Small 0.840 0.628 0.938  

Medium 0.817 0.180 0.960 7.349 

Large 0.763 0.005 0.935  

Food     

Small 0.651 0.013 0.893  

Medium 0.642 0.037 0.905 6.172 

Large 0.651 0.034 0.877  

T and G     

Small 0.744 0.020 0.979  

Medium 0.801 0.010 0.965 6.102 

Large 0.814 0.170 0.982  

P and OM     

Small 0.665 0.014 0.923  

Medium 0.688 0.012 0.922 8.022 

Large 0.675 0.013 0.935  

Overall     

Small 0.644 0.008 0.918  

Medium 0.650 0.009 0.936 7.232 

Large 0.638 0.004 0.921  

Source: Author’s estimates from WBES data. 
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Results in Table 2.8 reveal the presence of heterogeneity in electricity efficiency levels across 

firms of different sizes in each of the four sub-sectors and the overall sector. The Kruskal-Wallis 

test statistic was greater than the critical value of 5.991 at 2 degrees of freedom in each sub-sector. 

Therefore, the null hypothesis that the average electricity efficiency scores were equal in all firm 

sizes in each of the sub-sectors and the overall sector was rejected at 5 percent level of significance. 

The mean electricity efficiency was significantly different across the three firm sizes in each sub-

sector and the overall sector. 

Results also show that evidence of common patterns in electricity efficiency across firm sizes was 

limited. It was difficult to tell whether small or large firms had the highest level of electricity 

efficiency. Electricity efficiency rose monotonically with declines in firm size in the chemicals, 

pharmaceuticals and plastics sub-sector. Small and large firms had equal levels of electricity 

efficiency and this was higher than that of medium firms. Electricity efficiency rose monotonically 

with the growth of firms in the textiles and garments sub-sector. Mediums firms had the highest 

electricity efficiency levels compared to small and large firms in the paper and other manufacturing 

sub-sector. Large firms performed better than small firms. Medium firms were the most electricity 

efficient in the overall sector followed by large and small firms in that order.  

2.4.6 Fuel Efficiency Point Estimates  

Table 2.9 presents empirical findings of average fuel efficiency point estimates. The average fuel 

efficiency levels varied across sub-sectors indicating varying room for expanding fuel efficiency 

across the sub-sectors.  

Table 2.9:Summary statistics for fuel-efficiency point estimates 
Model Mean Standard 

Deviation 

Skewness Minimum Maximum 

Chemicals, Pharmaceuticals and plastics 0.739 0. 308 -0.800 0. 019 0.996 

Food 0.723 0. 205 -1.840 0. 023 0.978 

Textiles  and Garments 0.715 0. 200 -1.698 0. 004 0.955 

Paper and other Manufacturing 0.688 0. 187 -1.541 0. 007 0.975 

Overall sector 0.694 0. 162 -1.873 0. 023 0.942   

Source: Author’s estimates from WBES data. 

The average fuel efficiency levels were 73.9, 72.3, 71.5 and 68.8 percent in the chemicals, 

pharmaceuticals and plastics, food, textile and garments and paper and other manufacturing sub-

sectors, respectively. These scores implied that respective sub-sectors could potentially cut fuel 

consumption by 26.1, 27.7, 20.5 and 31.2 percent. The mean fuel efficiency score in the overall 

sector was 69.4 percent, which implied that the sector could potentially cut fuel consumption by 
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30.4 percent. The results of the current study corroborate similar studies that have established 

significant room to enhance fuel efficiency. Lundgren et al. (2016) find fuel efficiency in the 12 

manufacturing sub-sectors in Sweden to range from 63.4 percent in the food sub-sector to 94.3 

percent in the fabricated metals sub-sector. Nevertheless, a direct comparison of fuel efficiency 

results in the present study with those of Swedish manufacturing cannot be made because of 

differences in data and model employed.   

Very high maximum and low minimum values of fuel efficiency were found across sub-sectors 

signalling the presence of some very fuel-efficient and inefficient firms in each sub-sector. 

Lundgren et al. (2016) also find very high maximum and minimum values of fuel efficiency in 

Swedish manufacturing sub-sectors. Exploring Kernel densities of fuel efficiency scores presented 

in Figure A2, the distributions showed that fuel efficiency for each sub-sector tended to be skewed 

towards the right. This implied that the majority of the firms had fuel efficiency scores that were 

above average fuel efficiency.  

The Kruskal-Wallis test result for the null hypothesis of equality of fuel efficiency values in the 

four sub-sectors was 77.466 with three degrees of freedom and greater than the Kodde and palm 

(1986) critical value of 7.81 resulting in the rejection of the null hypothesis. This indicates that 

there were sizeable differences in fuel efficiency values in the four sub-sectors. Similarly, fuel 

efficiency values in the four sub-sectors could not be directly compared with regards to whether 

one sub-sector had a higher efficiency score than another sub-sector was less useful since 

efficiency scores for each sub-sector were established on a unique benchmark frontier.  

2.4.7 Distribution of Fuel Efficiency Point Estimates by Firm Size 

Table 2.10 presents sub-sector fuel efficiency distribution by firm size.  

Table 2.10:Mean fuel efficiency point estimates by size and sub-sector 

Sub-sector Mean Minimum Maximum Kruskal-Wallis 

test Statistic 

C, P and P     

Small 0.770 0.285 0.996  

Medium 0.763 0.086 0.995 7.072 

Large 0.682 0.019 0.992  

Food     

Small 0.743 0.026 0.978  

Medium 0.712 0.038 0.973 8.330 

Large 0.712 0.023 0.953  

T and G     

Small 0.680 0.011 0.939  



59 

 

Medium 0.742 0.004 0.955 8.741 

Large 0.725 0.252 0.936  

P and OM     

Small 0.664 0.094 0.933  

Medium 0.702 0.709 0.935 8.171 

Large 0.690 0.007 0.976  

Overall     

Small 0.687 0.035 0.920  

Medium 0.701 0.031 0.942 7.015 

Large 0.694 0.023 0.916  

Source: Author’s estimates from WBES data. 

The results show heterogeneity in fuel efficiency levels across different firm sizes in each sub-

sector. The Kruskal-Wallis test statistic was greater than the critical value of 5.991 at 2 degrees of 

freedom in each sub-sector and the overall sector. Therefore, the null hypothesis that the average 

fuel efficiency scores were equal in firms of all sizes in each sub-sector and the overall sector was 

rejected at 5 percent level of significance. The mean fuel efficiency scores differed significantly 

across the three firm sizes in each sub-sector and the overall sector. 

Evidence for common patterns in fuel efficiency levels across firm sizes was scarce. Thus, there 

was difficulty in asserting whether large or small firms were best performing in fuel efficiency. 

Fuel efficiency rose monotonically with declining firm size in the chemicals, plastics and 

pharmaceuticals sub-sector. Small firms had the highest fuel efficiency in the food sub-sector. 

Large and medium firms had equal levels of fuel efficiency. Medium firms were the most fuel-

efficient in the paper and other manufacturing sub-sector and in the overall sector followed by 

large firms and small firms in that order.  

2.4.8 Malmquist Decomposition of the Total Change in Electricity Performance 

Table 2.11 provides results of Malmquist decomposition of electricity efficiency change.  

Table 2.11:Electricity efficiency change in the manufacturing sector in Kenya 

Year                             2007-2013                            2013-2018 

Sub-sector ME MTC   M ME MTC    M 

C, P and P 0.998 1.088 1.085 0.988         1.080 1.067 

Food 0.905 0.988 0.895 0.962 0.986 0.948 

T and G 1.058 0.975 1.032 1.177 0.994 1.170 

P and O M 1.024 0.976 0.999 0.946 0.977 0.925 

Overall 0.986 1.000 0.986 0.968 0.990 0.967 

Source: Author’s estimates from WBES data. Notes: ME is Malmquist index of efficiency change, MTC is 

Malmquist index of technical change and M is Malmquist index of electricity efficiency change. 

The results in Table 2.11 reveal that electricity efficiency change was above 1 in the period 2007-

2013 in the chemicals, pharmaceuticals and plastics and textiles and garments sub-sectors but 
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below 1 in the food and paper and other manufacturing sub-sectors. This was indicative of an 

improvement in electricity efficiency in the chemicals, pharmaceuticals and plastics and textiles 

and garments sub-sectors and a regress in electricity efficiency in the food and paper and other 

manufacturing sub-sectors during the period under review. The improvement was by 8.5 and 3.2 

percent respectively in the chemicals, pharmaceuticals and plastics and textiles and garments sub-

sectors and the decrease was by 10.5 and 0.001 percent respectively in the food and paper and 

other manufacturing sub-sectors.  

In the period 2013-2018, there was an improvement in electricity efficiency in the chemicals, 

pharmaceuticals and plastics and textiles and garments sub-sectors and a continued decline in 

electricity efficiency in food and paper and other manufacturing sub-sectors. The improvement in 

electricity efficiency was by 6.7 and 17 percent in the chemicals, pharmaceuticals and plastics and 

textiles and garments sub-sectors respectively. A decrease of 5.2 and 7.5 percent in electricity 

efficiency was observed in the food and paper other manufacturing sub-sectors respectively. In the 

overall sector, electricity efficiency performance was below 1 in both periods, implying a sustained 

decline in electricity efficiency of 1.4 percent in the period 2007-2013 and 3.3 percent in 2013-

2018. Findings of improvement and decline in electricity efficiency over time among sub-sectors 

in this study corroborate the results of Boyd and Lee (2019). 

Following the decomposition of the Malmquist index, results show that the effect of efficiency 

change and technical change on electricity efficiency change varied across sub-sectors. This 

outcome corroborates the findings of Wei et al. (2007), Makridou et al. (2015), and Boyd and Lee 

(2019). In the period 2007-2013, technical progress was only registered in the chemicals, 

pharmaceuticals and plastics sub-sector. This implies that this sub-sector had successfully invested 

in innovations and processes to enhance electricity efficiency. The other sub-sectors registered 

technical regress, implying that they were not successful in investing in electricity efficiency-

enhancing innovations. The overall sector recorded no change, which implies that firms remained 

in their production frontier during the reference period.  

With regards to efficiency change, the textiles and garments and paper and other manufacturing 

sub-sectors recorded an improvement, implying that these sub-sectors had successful investments 

in catching up with the benchmark frontier. Nevertheless, the chemicals, pharmaceuticals and 

plastics and food sub-sectors, and the overall sector recorded a reduction in efficiency change, 
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implying that respective sub-sectors and the overall sector did not make successful efforts in 

catching up with the benchmark frontier. The efficiency improvement in the textiles and garments 

sub-sector overran the technical regress, implying that the catching-up effect was responsible for 

the improvement in electricity efficiency. Contrastingly, the enhancement in efficiency change in 

the food sub-sector was overpowered by technical regress. Hence the negative shift in the 

production frontier was responsible for the slight decline in electricity efficiency in this sub-sector. 

Technical progress was large enough to overpower the slight decline in efficiency change in the 

chemicals, pharmaceuticals and plastics sub-sector. This implies that the positive shift in the 

production frontier was responsible for the improvement in electricity efficiency. In the food sub-

sector, technical regress was reinforced by a decline in efficiency. Thus, both technical regress and 

failure to catch up with the benchmark frontier were responsible for the decline in electricity 

efficiency. In the overall sector, the decline in electricity efficiency was because of the reduction 

in efficiency change.  

In the period 2013-2018, technical progress was only reported in the chemicals, pharmaceuticals 

and plastics sub-sector. The other sub-sectors recorded technical regress. Improvement in 

efficiency change was only recorded in the textiles and garments sub-sector. In the chemicals, 

pharmaceuticals and plastics sub-sector, technical progress was large enough to overpower the 

decline in efficiency change. Therefore, the positive shift in the production frontier was responsible 

for the improvement in electricity efficiency. In the textiles and garments sub-sector, the 

improvement in efficiency change was large enough to overpower the technical regress. Thus, the 

catching-up effect with the benchmark frontier was responsible for the improvement in electricity 

efficiency. In the food and paper and other manufacturing sub-sectors and the overall sector, 

technical regress was reinforced by a decline in efficiency change. This implies that both a negative 

shift in the production frontier and failure to catch up with the benchmark frontier were responsible 

for the decline in electricity efficiency. 

2.4.9 Malmquist Decomposition of Total Change in Fuel Performance 

Table 2.12 provides results of Malmquist decomposition of fuel efficiency change.  

Table 2.12:Fuel efficiency change in the manufacturing sector in Kenya 

Year 2007-2013 

Sub-sector ME MTC   M 

C, P and P 0.854 0.904 0.772 

Food 1.004 1.013 1.017 
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T and G 1.038 0.897 0.931 

P and O M 0.993 1.032 1.025 

Overall 1.010 0.999 1.009 

Source: Author’s estimates from WBES data. Notes: ME is Malmquist index of efficiency change, MTC is 

Malmquist index of technical change and M is Malmquist index of electricity efficiency change. 

Results in Table 2.12 show that unlike in the electricity model where improvements in electricity 

efficiency were recorded in the chemicals, pharmaceuticals and plastics and textiles and garments 

sub-sectors only, fuel efficiency was found to have declined in these sub-sectors. The food and 

paper and other manufacturing sub-sectors and the overall sector, which recorded declines in 

electricity efficiency, recorded improvements in fuel efficiency.  Fuel efficiency declined by 22.8 

and 6.9 percent in the chemicals, pharmaceuticals and plastics and textiles and garments sub-

sectors respectively. The improvement in fuel efficiency was by 1.7 percent and 2.5 percent in the 

food and paper and other manufacturing sub-sectors respectively and by 0.9 percent in the overall 

sector. Improvement in fuel efficiency in these sub-sectors could partly explain why these sub-

sectors performed better in fuel efficiency than in electricity efficiency. Findings of improvement 

and decline in fuel efficiency over time among sub-sectors corroborate Boyd and Lee (2019). 

Then decomposition of the Malmquist index shows that the impact of efficiency change and 

technical change varied across sub-sectors. These results corroborate the findings of Wei et al. 

(2007), Makridou et al. (2015) and Boyd and Lee (2019). Technical progress was reported in the 

food and paper and other manufacturing sub-sectors, denoting successful investment in fuel 

efficiency-enhancing innovations. The other sub-sectors reported technical regress, implying that 

investments in fuel efficiency innovations were not successful in these sub-sectors. Improvement 

in efficiency change was reported in the food, textiles and garments sub-sectors as well as in the 

overall sector. This means that firms in these sub-sectors and the overall sector were successful in 

making investments to help them catch up with the benchmark frontier. A decline in efficiency 

change was recorded in the chemicals, pharmaceuticals and plastics and paper and other 

manufacturing sub-sectors, which means that efforts to catch up with the benchmark frontier were 

not fruitful.  

Technical progress in the food sub-sector was reinforced by an improvement in efficiency change 

resulting in an improvement in fuel efficiency. In the paper and other manufacturing sub-sector, 

technical progress overran the decline in efficiency change resulting in an improvement in fuel 

efficiency. In the textiles and garments sub-sector, technical regress overpowered the improvement 
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in efficiency change which led to a decline in fuel efficiency change. In the chemicals, 

pharmaceuticals and plastics sub-sector, the decline in efficiency change was bolstered by 

technical regress resulting in a decline in fuel efficiency change. In the overall sector, the 

improvement in efficiency change overpowered technical regress which led to an improvement in 

fuel efficiency. 

2.4.10 Determinants of Electricity Efficiency 

The determinants of electricity efficiency are provided in Table 2.5. The coefficient of labour 

productivity was positive and significant across the four sub-sectors, except in the food sub-sector, 

and the overall sector. This implies that high labour productivity influenced electricity efficiency 

negatively across all sub-sectors except in the food sub-sector. The results conflicted with the 

anticipation of the study. It appears that measures to improve labour productivity do not give 

additional emphasis to ensure a considerable level of skill advancement required to improve 

electricity efficiency. The finding contradicts Lin et al. (2011), Mandal and Madheswaran (2011) 

and Ohlan (2019). 

Firm age had an ambiguous effect on electricity efficiency. Its effect on electricity efficiency in 

the food sub-sector was negative. This finding implies that young firms had higher electricity 

efficiency scores compared to older firms. Probably, recent electricity efficient technologies were 

being applied in young firms, while older firms used old technologies because of the huge sunk 

costs. The use of old technologies by older firms could also be attributed to inertia and rigidity in 

adapting to changing economic environments. The finding contrasts the Jovanovic (1982) theory 

but is, however, in line with Sahu and Narayanan, (2011b) and Haider et al. (2019).  

Firm age had a positive and significant effect on electricity efficiency in the chemicals, 

pharmaceuticals and plastics and textiles and garments sub-sectors. This means that old firms had 

higher electricity efficiency levels compared to younger firms. Probably, old firms had learnt ways 

to improve electricity efficiency in their many years of production. The finding supports the 

Jovanovic (1982) theory and Mandal and Madheswaran (2011).  

Firm age squared positively affected electricity efficiency in the food and textiles and garments 

sub-sectors. This means that electricity efficiency in these sub-sectors increased as the firms grew 

older. In the food sub-sector, firm age and electricity efficiency had an inverted U relation. A 

probable explanation for the outcome of this study is that the process of creating and successfully 
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deploying efficient technologies is an active learning process, thus firms enhance their electricity 

efficiency levels as they advance in age. A second explanation could be that as firms grow older, 

their technologies become obsolete or break down, necessitating firms to replace them with new 

efficient technologies.  

The coefficient of top manager’s experience was negative and significant in the paper and other 

manufacturing and food sub-sectors. This implies that top managers with high experience led firms 

to achieve high energy efficiency levels compared to top managers with low experience. 

Experienced managers are likely to transform processes using skills and abilities accumulated over 

time. The finding confirms those of Chaffai et al. (2012) and Lemi and Wright (2018).  

Firm size had an ambiguous effect on electricity efficiency. It positively affected electricity 

efficiency in the paper and other manufacturing sub-sector. This means that electricity efficiency 

in this sub-sector was greater in large-sized firms than in small-sized firms. This could be because 

large firms are characterized by a skilled workforce, enough resources to acquire new and efficient 

technology, high specialization and the ability to capitalize on economies of scale. In addition, this 

outcome could be due to self-selection, a case where only electricity efficient firms persist and 

expand in size while electricity inefficient firms remain sluggish or exit the market. This finding 

supports the Jovanovic (1982) theory, Lin and Long (2015) and Li and Shi (2014). Firm size 

negatively affected electricity efficiency in the chemicals, pharmaceuticals and plastics and food 

sub-sectors. This means that electricity efficiency was high in small firms in respective sub-sectors 

compared to large firms. Firm size was also found to negatively influence electricity efficiency in 

the overall sector. This outcome could be explained by complexities in large firms that result in 

more electricity consumption.  

The effect of foreign ownership on electricity efficiency across all the sub-sectors and the overall 

sector was found to be insignificant. This was contrary to the predictions of the study. Foreign 

ownership patterns could have made it difficult to discern the effect of this variable on electricity 

efficiency. Table 2.1 shows that on average, only less than 20 percent of sampled firms were 

foreign-owned. This implies that spillovers from foreign world linkages accrued to only a few 

firms. The few foreign-owned firms were likely to keep the knowledge to themselves because of 

the limited number of firms aware of the existence of electricity efficient technologies. Limited 

foreign ownership means that the Kenyan manufacturing sector is denied the technological, 
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productivity and efficiency externalities that come with this form of ownership (Ngui and Muniu, 

2012). 

The coefficient of female ownership was negative in the food sub-sector and the overall sector. 

This means that electricity efficiency in female-owned firms was higher than in firms with no 

female ownership. Interestingly, the food sub-sector had on average the highest proportion of 

female-owned firms. Women could be better at coordination and in skills to solve operational 

challenges, besides their ingenuity, novelty and openness (ILO, 2019). The moral responsibility to 

care for societal issues including environmental quality through energy efficiency enhancement as 

captured in the gender socialization and ethicality theories could also explain this finding (Atif et 

al., 2021). 

Exporting had a positive effect on electricity efficiency across all the sub-sectors except the paper 

and other manufacturing sub-sector. This implies that exporting positively influenced electricity 

efficiency. The effect of exporting on electricity efficiency in the overall sector was also positive. 

Through learning by exporting, firms can enhance efficiency. Further, some buyers believe in 

environmentally friendly goods which makes exporting firms adhere to environmental quality 

standards (Roy and Yasar, 2015). The finding of this study corroborates Roy and Yasar (2015) and 

Campi et al. (2015). 

Lastly, R&D’s influence on electricity efficiency in the chemicals, pharmaceuticals and plastics 

sub-sector was found to be positive. This means that electricity efficiency was higher in firms with 

R&D investments than in those with no R&D spending. By investing in R&D, firms are exposed 

to inventions in recent production equipment which improve electricity efficiency. This result 

corroborates Lin et al. (2011) and Lutz et al. (2017).  

2.4.11 Determinants of Fuel Efficiency 

The drivers of fuel efficiency are provided in Table 2.6. Labour productivity negatively influenced 

fuel efficiency across all sub-sectors and the overall sector, a finding that was contrary to the 

expected outcome. It seems that measures to enhance labour productivity fail to provide additional 

weight to ensure a significant level of skill improvement needed to improve fuel efficiency. The 

finding contradicts the outcome of Lin et al. (2011) and Mandal and Madheswaran (2011). It was 

expected that labour productivity could help enhance fuel efficiency.  
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Firm age had a negative effect on fuel efficiency in the chemicals, pharmaceuticals and plastics 

sub-sector. This means that fuel efficiency was higher in young firms compared to old firms. 

Probably, young firms produced using recent technologies while older firms employed old 

technologies due to the huge sunk costs. Additionally, inertia and the inability to adapt to changing 

economic environments by old firms could have resulted in the application of old technologies. 

The finding contradicts the Jovanovic (1982) theory but is, however in line with Mandal and 

Madheswaran (2011). 

Firm age positively influenced fuel efficiency in the food sub-sector and the overall sector. This 

implies that as firms advanced in age, they became fuel-efficient. The process of creating and 

successfully deploying efficient technologies is an active learning process, thus firms could 

enhance their fuel efficiency levels as they advance in age. In addition, as firms advance in age, 

their technologies become obsolete or break down, necessitating them to replace these 

technologies with new efficient technologies. On the other hand, the coefficient of firm age squared 

was positive and significant in the textiles and garments sub-sector. This means that firm age 

squared negatively affected fuel efficiency. Probably, as firms in this sub-sector advanced in age, 

it became difficult to replace old technologies with new and efficient technologies due to huge 

sunk costs. 

Firm size positively influenced fuel efficiency in the textiles and garments sub-sector and the 

overall sector. This means that fuel efficiency was greater in large-sized firms than in small-sized 

firms. Unlike small firms, large-sized firms are well endowed with highly skilled management and 

finances to acquire efficient technologies. They also can utilize economies of scale. Moreover, this 

outcome could be due to self-selection, a case where only fuel-efficient firms survive and grow in 

size while fuel-inefficient firms remain sluggish or leave the market. This result corroborates the 

findings of Lin and Long (2015), Lundgren et al. (2016) and Moon and Min (2017).  

Foreign ownership had a positive effect on fuel efficiency in the chemicals, pharmaceuticals and 

plastics sub-sector. This means that foreign-owned firms had greater fuel efficiency compared to 

local-owned firms. Being foreign-owned, firms in the chemicals, pharmaceuticals and plastics sub-

sector are potentially exposed to better technologies from abroad. Additionally, foreign-owned 

firms have links within which knowledge and technological progress streams from foreign nations. 

This outcome corroborates the results of Sahu and Narayanan (2011b).  
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Female ownership had a positive effect on fuel efficiency in the chemicals, pharmaceuticals and 

plastics and food sub-sectors. This means that fuel efficiency was higher in female-owned firms 

compared to those with no female ownership. Women could be better in organization and abilities 

to solve operational challenges, in addition to their ingenuity, innovation and openness (ILO, 

2019). The finding could also be explained by the moral responsibility to care for societal concerns 

including environmental quality by improvements in energy efficiency as highlighted in the gender 

socialization and ethicality theories (Atif et al., 2021). 

Exporting status had a positive effect on fuel efficiency in the chemicals, pharmaceuticals and 

plastics and the paper and other manufacturing sub-sectors. This means that fuel efficiency was 

higher in exporting firms compared to non-exporting firms. The finding is in line with Roy and 

Yasar (2015) and Campi et al. (2015). Several explanations are probable for this outcome. First, 

by participating in exporting, particularly to industrialized countries, firms get exposed to fuel-

efficient technologies and their management gets introduced to good management practices. 

Second, importing countries may impose conditions on the nature of the production processes of 

the exporting countries. For instance, importing countries, especially in the European Union, may 

demand that some environmental quality standards be fulfilled by exporting nations for them to 

gain entry into foreign markets. Such conditions prompt exporting countries to initiate measures 

to protect the environment as they produce. Third, it’s probable that fuel-efficient firms in these 

sub-sectors self-select themselves to exporting.  

The influence of R&D on fuel efficiency in the chemicals, pharmaceuticals and plastics sub-sector 

was positive. This means that fuel efficiency was higher in firms with R&D investments compared 

to those without R&D spending. Probably, investing in R&D exposed firms to innovations in 

recent and efficient technologies which helped improve fuel efficiency. This finding supports the 

results of Lutz et al. (2017).  

Contrastingly, the influence of R&D on fuel efficiency in the paper and other manufacturing sub-

sector and the overall sector was negative. This implies that firms involved in R&D activities were 

less efficient than those with no R&D activities. This contradicted the expectation of the study. A 

possible explanation for this outcome could be due to the failure to distinguish R&D activities on 

fuel efficiency from those of developing new products and those of upgrading existing products. 

In addition, firms could be giving more emphasis on new product development and product 
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upgrading at the expense of research and development on fuel-efficient technological innovations. 

Failure to decouple R&D activities on fuel efficiency from overall R&D activities could as well 

be the reason for this outcome. This outcome corroborates the results of Sahu and Narayanan 

(2011b).  

2.5 Summary, Conclusion, Policy Implication and Areas for Further Research 

Summary and Conclusion 

Energy plays a pertinent function in a country’s social and economic transformation. The WEF 

(2012), points out that energy enables the growth of an economy in two major ways: directly 

through job creation and indirectly through stimulation of other sections of the economy. 

Nevertheless, the use of energy has been linked to environmental pollution, ill human health and 

reduced competitiveness. Consequently, it has been argued that energy efficiency is the best cost-

effective approach to attend to negativities associated with energy application. Because the 

manufacturing sector is a major energy consumer and a great player in the economy, understanding 

the state of energy efficiency in this sector is useful in developing suitable policies to deal with 

any inefficiencies that may be present. 

While some studies such as Sahu and Narayanan (2011b), Blomberg et al. (2012), Mandal and 

Madheswaran (2011), Li and Shi (2014), Filippini and Zhang (2016) and Moon and Min (2017) 

have estimated energy efficiency in the manufacturing sector in different countries, empirical 

evidence in Kenya’s manufacturing sector is scant. The scarce associated research concentrates on 

the approaches of executing energy efficiency or focuses on energy efficiency at the economy-

wide level. For example, Ndichu et al. (2015) investigate methods of implementing energy 

efficiency in maize milling firms whilst Zhang et al. (2011) analyze the overall economy’s total 

factor energy efficiency. This research aimed at filling the existing gap in research by presenting 

analytical evidence in Kenya’s manufacturing sector. This objective was realized by providing an 

analysis of sub-sector energy efficiency differences and drivers of energy efficiency besides 

exploring energy efficiency change.  

The stochastic frontier analysis technique was applied in the assessment of energy efficiency. 

Specifically, an input distance function with the assumption of a translog production function was 

estimated in a pooled regression model covering the years 2007, 2013 and 2018 in the analysis of 

electricity efficiency and 2007 and 2013 in the analysis of fuel efficiency. Data was sourced from 
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the World Bank Enterprise Surveys (WBES). The findings revealed the existence of considerable 

room to enhance electricity and fuel efficiency in the Kenyan manufacturing sector. Energy 

efficiency point estimates were found to be varying across sub-sectors and between the two forms 

of energy. In general, energy efficiency point estimates showed that about 19.5, 35.2, 21.4, 32.2 

and 35.5 percent of electricity could be reduced without cutting output in the chemicals, 

pharmaceuticals and plastics, food, textiles and garments and paper and other manufacturing sub-

sectors and the overall sector respectively. For fuel, this potential was 26.1, 27.7, 28.5, 31.2 and 

30.6 percent in respective sub-sectors and the overall sector. 

Energy efficiency change was analysed by employing the Malmquist index. An improvement in 

electricity efficiency in the chemicals, pharmaceuticals and plastics and textiles and garments sub-

sectors and a drop in electricity efficiency in the food and paper and other manufacturing sub-

sectors, as well as the overall sector, was recorded. For fuel, an improvement in fuel efficiency 

was recorded in the food and paper and other manufacturing sub-sectors and the overall sector 

while a decline in fuel efficiency was observed in the chemicals, pharmaceuticals and plastics and 

textiles and garments sub-sectors. A decomposition of the Malmquist index revealed that the 

contribution of technical progress and efficiency change on energy efficiency change varied across 

sub-sectors. A positive shift in the frontier and a catching-up effect were responsible for the 

improvement in electricity efficiency in the chemicals, pharmaceuticals and plastics and textiles 

and garments sub-sectors respectively for both periods 2007-2013 and 2013-2018. 

The decline in electricity efficiency in the food sub-sector in the two periods was attributed to both 

a negative shift in the frontier and a failure to catch up with the benchmark frontier. In the paper 

and other manufacturing sub-sector, the decline was attributed to a negative shift in the frontier in 

the first period and both a negative shift in the frontier and failure to catch up with the benchmark 

frontier in the second period. At the sectoral level, a reduction in efficiency change was responsible 

for the decline in electricity efficiency in the first period while both declines in efficiency change 

and a negative shift in frontier were responsible for the decline in electricity efficiency in the 

second period. 

For fuel efficiency change in the period 2007-2013, both technical regress and failure to catch up 

with the benchmark frontier were responsible for the decline in fuel efficiency in the chemicals, 

pharmaceuticals and plastics sub-sector. In the textiles and garments sub-sector, the decline in fuel 
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efficiency was attributable to technical regress. An improvement in fuel efficiency in the food sub-

sector was attributable to both technological progress and the catching-up effect. In the paper and 

other manufacturing sub-sector, the improvement in fuel efficiency was attributable to technical 

progress. The catching-up effect was responsible for the improvement in fuel efficiency in the 

overall sector. 

An investigation of the determinants of energy efficiency indicated that factors influencing energy 

efficiency differed not only across sub-sectors but also between electricity and fuel. This reveals 

inherent differences across the sub-sectors in each energy form meaning that interventions to 

enhance energy efficiency should not only be sub-sector specific but also energy form specific. 

The effect of labour productivity on electricity efficiency was found to be negative across all sub-

sectors apart from the food sub-sector. The same was observed in the overall sector. It influenced 

fuel efficiency negatively in the four sub-sectors of interest and the overall sector. It seems that 

initiatives to increase labour productivity fail to provide additional weight to ensure a significant 

level of skill improvement needed to enhance energy efficiency. 

Firm age had an ambiguous effect on energy efficiency. It promoted electricity efficiency in the 

chemicals, pharmaceuticals and plastics and textiles and garments sub-sectors. This means that old 

firms in the two sub-sectors could be employing recent equipment. The outcome could also be due 

to the advantages of learning-by-doing. Firm age negatively affected electricity efficiency in the 

food sub-sector and fuel efficiency in the chemicals, pharmaceuticals and plastics sub-sector. This 

implies that old firms in these sub-sectors could be using vintage technologies while younger firms 

could be using new efficient technologies.  

Firm age squared positively affected electricity efficiency in the food and textiles and garments 

sub-sector. It had the same effect on fuel efficiency in the paper and other manufacturing sub-

sector and the overall sector. This indicated that as firms in these sub-sectors advanced in age, 

there was an enhancement in energy efficiency because of learning-by-doing. In addition, it could 

be the case that equipment in firms in these sub-sectors became obsolete or even broke down as 

firms advanced in age prompting them to replace these technologies with recent equipment. The 

effect of firm age squared on fuel efficiency in the textile and garments sub-sector was negative. 

Huge sunk costs incurred in replacing old technologies could be responsible for this outcome.  
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The top manager’s level of experience was found to positively influence electricity efficiency in 

the food and paper and other manufacturing sub-sectors. Experienced top managers are likely to 

improve processes using skills and capabilities acquired over time. Firm size ambiguously affected 

energy efficiency. It had a positive effect on electricity efficiency in the paper and other 

manufacturing sub-sector and fuel efficiency in the textile and garments sub-sector and the overall 

sector. This could be due to the ability of large firms to employ a highly skilled workforce, the 

financial ability to acquire modern equipment and the potential to capitalize on economies of scale. 

Firm size had a negative effect on electricity efficiency in the chemicals, pharmaceuticals and 

plastics and food sub-sectors. This outcome could be due to complications in the inner structure 

of large firms which leads to high energy use. 

Foreign ownership positively influenced fuel efficiency in the food sub-sector. This implies that 

foreign-owned firms in this sub-sector receive technical support in addition to technical know-how 

from abroad. Female firm-ownership positively influenced electricity efficiency in the food sub-

sector and the overall sector and fuel efficiency in the chemicals, pharmaceuticals and plastics and 

food sub-sector. This implies that female members promote the performance of firms by 

inculcating cooperation, solutions to challenges, ingenuity and invention and honesty. 

Exporting was found to promote electricity efficiency in the chemicals, pharmaceuticals and 

plastics, food and textile and garments sub-sectors and the overall sector. A similar effect was 

found on fuel efficiency in the chemicals, pharmaceuticals and plastics and paper and other 

manufacturing sub-sectors. This outcome could be because of learning-by-exporting, especially 

from industrialized countries of destination. It could also be due to measures put in place by firms 

to improve energy efficiency as the foreign market, especially European Union deem purchasing 

environmentally friendly goods as key to promoting environmental quality.  

R&D had a positive effect on both electricity and fuel efficiency in the chemicals, pharmaceuticals 

and plastics sub-sector. R&D investments could have exposed firms in these sub-sectors to 

innovations in energy efficiency. Nevertheless, R&D’s influence on fuel efficiency was negative 

in the textile and garments sub-sector and the overall sector.  The inability to disentangle R&D on 

energy efficiency from that of new product development and upgrading of existing products could 

be the reason for this outcome. Further, it could be possible that firms are emphasizing new product 

development as well as product upgrading at the expense of energy efficiency improvements. 
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Policy Implication 

Several policy implications can be made from the findings of this study. Given the heterogeneity 

in drivers of efficiency across sub-sectors and energy types, the policy implications need to be sub-

sector and energy-specific. The policy implications are highlighted as follows: 

Enhancing technological innovation. The adoption of new technologies is the basis of energy 

efficiency. The National Treasury and Planning needs to increase R&D funds to enable the 

discovery of modern technologies and the development of new equipment. Available data shows 

that in 2018, R&D funding stood at only 0.48 percent of GDP. This was below the 2 percent 

recommended in the National Research Fund (NRF) Science, Technology and Innovation Act 

2013. Further, the National Treasury and Planning may foster R&D subsidies. Low-interest loans 

and tax incentives could also be provided to firms that spend on R&D. The support of technological 

innovation will go a long way in supporting the government’s effort to promote energy efficiency 

and conservation as highlighted in the Least Cost Power Development Plan (Republic of Kenya, 

2020a). 

Exporting had a positive effect on electricity efficiency across all the sub-sectors except in the 

paper and other manufacturing sub-sector and on fuel efficiency in the chemicals, pharmaceuticals 

and plastics and the paper and other manufacturing sub-sectors. There is a need for the Ministry 

of Industrialization, Trade and Enterprise Development to promote exports beyond the creation of 

export processing zones. Sourcing foreign markets is particularly important in this regard. The 

ministry also needs to provide specialized counselling and training to exporters on how to make 

the most of existing business opportunities abroad. Further, it is useful to train exporters on ways 

to access specific markets, for instance, those that may impose certain conditions regarding 

technical regulation and environmental quality standards. 

Firm size had a positive effect on electricity efficiency in the chemicals, pharmaceuticals and 

plastics sub-sectors and fuel efficiency in the textiles and garments sub-sector. This result supports 

the literature that argues that large-sized firms are potentially more energy-efficient compared to 

small firms because of their ease of accessing financial resources, especially from third parties. 

Stringent requirements such as the availability of collateral limit access to credit by small firms. 

They also face high-interest loans because the economic risk is higher. For example, small firms 

have limited diversification in their product portfolio which exposes them to harmful economic 
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shocks. There is a need for The National Treasury and Planning to offer financial inducements 

such as tax exemptions, low-interest loans and subsidies to small firms to help them make energy 

efficiency investments. 

The effect of the top manager’s experience on electricity efficiency in the food and paper and other 

manufacturing sub-sectors was positive. This demonstrates the need for manufacturing firms to 

persistently offer formal training to staff to polish their energy efficiency skills. Female firm-

ownership was found to positively influence electricity efficiency in the food sub-sector and fuel 

efficiency in the chemicals, pharmaceuticals and plastics and food sub-sectors. The Ministry of 

Public Service, Gender, Senior Citizens Affairs and Special Programmes needs to devise policies 

that increase the visibility of female entrepreneurs in these sub-sectors. These include policies that 

support continuous education and training programmes on business skills. Publicizing success 

stories of successful female entrepreneurs through media and other platforms is also useful in 

encouraging and increasing the confidence of other potential female entrepreneurs. Women face 

hurdles when seeking credit, especially from formal third parties. For instance, they could be 

required to provide collateral for them to get loans from banks yet in most cases women do not 

own collateral. Accordingly, there is a need for lending institutions to rethink the requirements to 

advance credit to female entrepreneurs. 

Other policies. There is a need for the government to promote foreign ownership, particularly in 

the chemicals, pharmaceuticals and plastics sub-sector where this variable was found to influence 

fuel efficiency. The management in foreign-owned firms needs to also utilize prevailing foreign 

direct policies, for instance, tax incentives promoting the importation of recent technologies from 

host countries. Through foreign ownership, there will be spillover effects on local firms.  The 

Ministries of Energy and Petroleum and Mining also need to increase awareness of energy 

efficiency in manufacturing firms. This could be through conferences and leadership forums. For 

instance, if producers learn the benefits associated with energy efficiency measures, such measures 

may be scaled up. 

Limitations of the Study 

The 2018 WBES did not have information on fuel expenditure. Consequently, the analysis of fuel 

efficiency change was limited to one period only, that is, 2007-2013. This is unlike the analysis of 
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electricity efficiency where electricity efficiency change was evaluated in two periods, that is, 

2007-2013 and 2013-2018.  

Future Research 

Further research on this area can analyse the regional energy efficiency differences in Kenya’s 

manufacturing sector. This study only concentrated on the sub-sector differences but energy 

efficiency could also be varying across regions. This is because the different regions could be 

having unique characteristics such as energy prices and electricity connectivity that may influence 

the energy demand. Further, with the availability of more data, this research can be extended to 

cover more periods allowing for more observations on each firm. The richness of information may 

be suitable for drawing a more discerning conclusion on the extent of energy efficiency in the 

manufacturing sector. Research in this area can be extended to analysing how energy efficiency 

changes over time by carrying out separate analyses by years. Lastly, a notable finding of this 

study is the significant role female firm ownership plays in enhancing energy efficiency in the 

manufacturing sector. However, the issue of gender and energy efficiency is an extensive area and 

this study might not have exhaustively covered it. Future research can investigate the role of gender 

in boosting energy efficiency as this can inform important policies on climate change. 
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13. CHAPTER THREE: EFFECTS OF ENERGY EFFICIENCY ON FIRM 

PRODUCTIVITY IN THE KENYAN MANUFACTURING SECTOR 

14. ABSTRACT 

This research explored the relationship between energy efficiency and total factor productivity in 

the Kenyan manufacturing sector using a sample of firms sourced from the World Bank Enterprise 

Survey. The relationship has not been explored in depth, particularly in sub-Saharan Africa, yet 

these countries heavily depend on energy to spur their economies. The probable trade-off between 

energy efficiency and firm productivity further fuels the need for this research. Energy intensity 

was applied to indicate energy efficiency. Total factor productivity was estimated by following the 

Levinsohn-Petrin Algorithm. A dynamic panel data model was applied in the assessment of the 

energy efficiency and total factor productivity relation. The empirical analysis was provided at the 

sectoral and sub-sector levels. The sub-sectors of concern were: chemicals, pharmaceuticals and 

plastics, food, textile and garments and paper and other manufacturing sub-sectors. The findings 

of this research showed heterogeneity in energy intensity across the manufacturing sub-sectors. 

Total factor productivity was also found to be heterogeneous across the sub-sectors and firms of 

different size and age. The estimates showed that energy efficiency significantly promoted total 

factor productivity. Other factors that were found to significantly affect total factor productivity 

include capital intensity, firm age and size, top manager’s years of experience, foreign ownership 

and exporting status. However, the effect varied across the sub-sectors and firm sizes. Study 

findings suggest that policies to improve energy efficiency should be matched with policies to 

enhance total factor productivity. 
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3.1 Introduction 

The International Energy Agency (IEA) has recognized energy efficiency to be the best cost-

effective way to deal with energy-use-related problems (IEA, 2014). However, the effect of energy 

efficiency on economic performance cannot be overlooked, particularly in developing countries 

where dependence on environmental resources is relatively high. This is of concern because while 

energy efficiency is expected to lead to reduced energy consumption, developing countries need 

to increase energy production and consumption to spur their economies (Cantore et al., 2016). 

Reinforcing this opinion is an extensive view among some development economists that clean 

environment growth policies pose a risk more than a prospect of growth (Dercon, 2014). 

This study sheds light on the relationship between energy efficiency-indicated by energy intensity 

- and economic performance in the Kenyan manufacturing sector by considering productivity as a 

measure of economic performance. Energy intensity, computed as the ratio of energy to output in 

monetary terms, quantifies the amount of energy needed to produce one unit of output (Haider and 

Bhat, 2020). An energy-intensive production system uses more energy to process a unit of output. 

This signals low energy efficiency (Fisher-Vanden et al., 2016). Production systems that are low 

energy-intensive are considered to be energy efficient. Even though some studies have criticized 

the use of energy intensity to measure energy efficiency because it assumes the application of one 

input only, studies such as Cantore et al. (2016), Fan et al. (2017), Montalbano and Nenci (2019), 

Haider and Ganaie (2017) have adopted the measure while investigating the energy efficiency and 

economic performance relation. According to Fan et al. (2017) and Haider and Ganaie (2017), 

energy intensity acts as a good proxy for energy efficiency in such an analysis because of its 

simplicity and ease of application in guiding policy assessment and design.  

The manufacturing sector is a high end-user of energy through its production activities. It is also a 

high primary polluter. For instance, globally, the sector together with refining, mining, agriculture 

and construction which collectively form the industrial sector accounted for more than 50 percent 

of end-use energy use in 2019 (IEO, 2019). In Kenya, the manufacturing sector dominates in 

electricity use and it is the second-highest user of fuel after the transport sector (Republic of Kenya, 

2021).  In 2020, the manufacturing sector consumed 48.67 percent of the total demand for 

electricity in Kenya. Domestic and small commercial consumers, rural electrification and street 

lighting consumed 43,53, 6.956 and 0.847 percent respectively (Republic of Kenya, 2021). In the 
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same year, the manufacturing sector consumed 10.57 percent of the total petroleum fuel sales. 

Sales to the transport sector were 86.69 percent and sales to other consumers were 2.74 percent 

(Republic of Kenya, 2021). Energy is utilized in the manufacturing sector to convert raw materials 

into intermediate and final capital and consumer goods, assemble and fabricate final capital and 

consumer goods and distribute and transport goods (Onuonga et al., 2011; Boyd and Lee, 2019).  

Productivity is a suitable indicator of a manufacturing sector’s economic performance. It shows 

the ability of a sector to create technological change because it establishes the quantity of output 

that can be generated from a given amount of inputs collectively (Cantore et al.,2016). It is useful 

in shaping the competitiveness of firms in both local and international markets (Sehgal and 

Sharma, 2011; Chege et al., 2014). Ideally, a firm’s goods and services should compete 

domestically with imports and at the same time compete in foreign markets.  

Lowly productive firms have a low chance of competing in either local or export markets, 

especially in the current open trade regimes where economies remove trade restrictions and 

embrace export-oriented policies (Chege et al., 2014).  Firm productivity is also critical in 

influencing profits, wages and the overall welfare of society through poverty alleviation (Chege et 

al., 2014). Firm productivity is thus considered critical both in the growth of the manufacturing 

sector and the overall economy. At the macro level, Harris and Moffat (2015) and Seker and 

Saliona (2018) link differences in countries’ levels of income and growth patterns to differences 

in productivity.  

One of the reasons for the disquiet among some economists with regard to the adoption of clean 

environment production is that acquisition of clean technologies becomes essential leading to 

additional high costs to manufacturing firms. The direct implication of the technology acquisition 

is a decline in firm performance as the total cost of production becomes more for the same level 

of output (Hamamoto, 2006). Further, the acquisition of new technology may result in firms taking 

time to adjust to their learning curves, during which productivity may decline. The concern among 

researchers on the implications of clean production measures on manufacturing sector 

performance, particularly in developing countries, has affected climate change deliberations. 

According to Cantore et al. (2016), international discussions on climate change treaties are 

presently festering primarily because developing nations are unwilling to sign up binding 

emissions restraints because they are afraid that this could stifle their growth pathway. 
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Notwithstanding this disquiet, there is an expanding body of literature showing that the adoption 

of clean technologies may not necessarily stifle manufacturing sector economic performance, but 

may instead enhance it. For instance, Worrell et al. (2003) provide that a cut in energy use resulting 

from enhanced energy efficiency is one of the measures to boost a manufacturing firm’s 

productivity. Firms enhance energy efficiency by investing in innovations and by applying recent 

and more efficient technologies. These technologies reduce energy consumption, provide energy 

cost savings and generally improve the overall production process (Worrell et al., 2003).  

First among these improvements is a reduction in the cost of maintenance. Firms incur a lower 

total cost of production for the same level of output.  Second, by adopting energy-efficient 

technologies, output by firms as well as the quality of products increase. New technologies can 

reduce wastage in input use thus resulting in the production of more output for the same level of 

inputs. These technologies provide clean environments for production leading to high-quality 

products. Third, energy-efficient technologies could result in an improvement in working 

conditions because of lower pollutants. Workers are less likely to get sick and their productivity is 

enhanced as they engage more labour hours. Finally, energy efficiency measures cut energy use in 

the manufacturing sector leading to a fall in overall energy demand at the national level. This 

implies lesser energy-infrastructure investments. The cost savings thereof could be channelled to 

non-energy goods leading to the creation of jobs and value addition in the economy (Celani de 

Macedo et al., 2020). 

The additional benefits arising from the adoption of energy-efficient technologies are jointly called 

productivity benefits or non-energy benefits from reducing energy consumption. They enhance 

productivity in the manufacturing sector (Worrell et al., 2003). The cost of implementing energy 

efficiency programmes should incorporate the productivity benefits that may arise from such 

programmes. The benefits, when captured correctly will make the energy efficiency programmes 

to be more cost-effective. Ultimately, this will increase their uptake. Ignoring productivity benefits 

while designing energy efficiency programmes leads to underestimation of their cost-

effectiveness. 

3.1.1 Statement of the Problem  

There is concern among economists regarding the effect of energy efficiency on manufacturing 

sector productivity. The concern is mainly fueled by the probable trade-off between energy 
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efficiency and firm productivity. Energy forms a key input in production and an understanding of 

the link between energy efficiency and productivity is important in the formulation of energy 

efficiency programmes. 

Even though energy intensity is important in indicating energy efficiency and settings goals and 

designs of energy policies, there is only scant research on energy intensity in Kenya’s 

manufacturing sector. This is also regardless of the fact that this sector is among the leading 

energy-consuming sectors in the country. The majority of existing studies focus on developing 

countries in India such as Subrahmanya (2006), Sahu and Sharma (2016) and Haider and Bhat 

(2020) and Latin America, for example, Montalbano and Nenci (2019) leaving a gap for sub-

Saharan Africa. 

In the estimation of productivity, while studies such as Cantore et al. (2016) and Haider and Ganie, 

(2017) have adopted TFP as a measure of productivity, studies such as Subrahmanya (2006) and 

Montalbano and Nenci (2019) have adopted partial productivity measures, particularly labour 

productivity. While TFP takes into account all inputs used in production, partial productivity 

measures fail to recognize the contribution of other inputs in production. Failure to recognize other 

inputs ignores the possibility of substitution among inputs, yet firms continuously adjust their input 

mix when responding to changes in economic conditions and technology. 

Even though various studies (such as Boyd and Pang, 2000; Worrel et al., 2003; Subrahmanya, 

2006; Sahu and Narayanan, 2011; Pons et al., 2013; Cantore et al., 2016; Haider and Ganaie, 2017; 

Filippini et al., 2020; Montalbano and Nenci, 2019 and Celani de Macedo, 2020).) have 

investigated the effect of energy efficiency on manufacturing sector productivity, the direction in 

which energy efficiency affects manufacturing sector productivity remains unclear. While the 

majority of the studies such as Boyd and Pang (2000) Worrel et al. (2003), Subrahmanya (2006), 

Sahu and Narayanan (2011a), Cantore et al. (2016), Filippini et al. (2020), Montalbano and Nenci 

(2019) and Celani de Macedo (2020) find energy efficiency to positively affect productivity, 

Haider and Ganie (2017) find energy efficiency to negatively affect total factor productivity (TFP). 

Pons et al. (2013) find that the adoption of energy-efficient technologies has no significant 

relationship with the economic performance of the Spanish and Slovenian manufacturing sectors.  

The mix of findings implies that the energy efficiency and productivity relationship could be 

country-specific and this calls for country-specific studies. These studies should particularly focus 
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on developing countries. This is because the majority of the existing studies present evidence from 

China, Spain and U.S effectively ignoring developing countries in Africa, yet these countries 

heavily depend on energy to spur the growth of their economies. Energy use in developing 

countries is even anticipated to increase in the future and energy efficiency measures are required 

in this respect (Cantore et al., 2016). This study sought to present empirical evidence of energy 

intensity and TFP in Kenya’s manufacturing sector. The research also aimed to explore the effect 

of energy efficiency on TFP in Kenya’s manufacturing sector. In this analysis, energy intensity 

was applied to indicate energy efficiency.  

3.1.2 Research Questions 

The thesis addressed the following questions: 

i. What is the level of energy intensity in Kenya’s manufacturing sector? 

ii. What is the level of total factor productivity in Kenya’s manufacturing sector? 

iii. What is the effect of energy efficiency on total factor productivity in Kenya’s 

manufacturing sector? 

3.1.3 Objectives of the Study 

The general objective of this study was to analyze the effect of energy efficiency on firm 

productivity in Kenya’s manufacturing sector. Specifically, the study sought to: 

i. To determine the level of energy intensity in Kenya’s manufacturing sector. 

ii. To estimate the level of total factor productivity in Kenya’s manufacturing sector 

iii. To assess the effect of energy efficiency on total factor productivity in Kenya’s 

manufacturing sector. 

3.1.4 Significance of the Study 

This study furthers extant literature on the effect of energy efficiency on manufacturing sector 

performance by first providing an analytical assessment of energy intensity and total factor 

productivity (TFP) in Kenya’s manufacturing sector using recent firm-level data. Accurate 

measurement of TFP provides room for comparing productivity distributions within and across 

sub-sectors. The manufacturing sector can use the findings of this study to design policies to 

promote TFP in manufacturing firms. Second, the study provides analytical evidence on the 

relation between energy efficiency and manufacturing sector productivity in developing 
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economies, particularly Kenya, for which evidence is scarce despite potential energy efficiency 

and productivity trade-off. Given potential heterogeneity in the relation between energy efficiency 

and productivity across different types of manufacturing firms, this study provides evidence at the 

sub-sector and firm size levels. Further, establishing this relationship also adds to existing literature 

that analyses determinants of manufacturing sector productivity. Lastly, the outcome of this study 

has important policy implications on how the Ministry of Energy and Petroleum should devise 

energy efficiency policies to incentivize the uptake of energy efficiency measures among 

manufacturing firms. A positive effect of energy efficiency on productivity implies that the 

productivity benefits of an energy efficiency programme should be incorporated when evaluating 

the cost-effectiveness of such a programme. Including the productivity benefits in the design of 

such programmes may make them appear more cost-effective compared to when only the goal of 

a reduction in energy consumption is captured. 

3.2 Literature Review 

3.2.1 Theoretical Literature Review 

Literature provides four indicators to monitor energy intensity. These are thermodynamic, 

physical-thermodynamic, economic-thermodynamic and economic indicators (Patterson, 1996). 

The indicators define energy intensity as a ratio of energy input into a production process to output. 

Thermodynamic indicators depend solely on measurements stemming from the science of 

thermodynamics. However, these indicators have been criticized for failure to satisfactorily 

capture the end-use service needed by consumers in the measurement of output. Instead, they 

measure output either as heat substances or some work potential. Physical-thermodynamic and 

economic-thermodynamic indicators attempt to circumvent this weakness by providing hybrid 

pointers (Patterson, 1996). In both indicators, energy input remains quantified by thermodynamic 

units. Output is captured by physical units such as tonnes of produce in the physical-

thermodynamic indicators, whereas the economic-thermodynamic indicators improve the 

measurement of output by capturing it in market prices.  

Some economists have held that the two indicators are still not sufficient in monitoring energy 

intensity (Patterson, 1996). They argue that both input and output quantities need to be computed 

based on economic value because such measurement provides an accurate indication of the 

economic activity provided energy and output prices exhibit the demand and supply forces. The 
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use of energy prices also offers a way out of the energy quality challenge- that is the challenge of 

logically summing up energy inputs of varying qualities. Economic indicators, which provide 

measurement for both energy inputs and output in monetary terms, are therefore more useful for 

policy analysis and are adopted by this study. 

The concept of TFP is embedded in the neo-classical framework which attributes growth to two 

sources: factor accumulation and TFP growth. Most of the research has concentrated on TFP 

growth. According to Felipe (1999), this is because growth resulting from factor accumulation 

cannot be sustained in the long run due to diminishing returns to the factors. Therefore, to 

understand growth, the argument has to be beyond factor accumulation embedded in the 

production function to the discussion of how countries or institutions develop new skills, improve 

their organizational settings, enhance their technologies and more importantly the combination of 

all these which results to efficient and economical employment of factor inputs. Thus, with the 

optimal application of inputs in production, TFP could proxy long-run technological advancement 

(Haider and Bhat, 2020). Krugman (1990) holds that productivity is not the only important thing 

in a country but that it is the one that mainly matters in the long run.  

The Porter Hypothesis provides a theoretical basis for the relationship between environmental 

quality and firm productivity (Porter and Van der Linder, 1995). It is a departure from the 

conventional view among economists that a reduction of an externality causing input such as 

energy stifles firm productivity by increasing the cost of production following the acquisition of 

new technologies and through reduced competitiveness. According to these economists, 

environmental quality enhancement measures such as energy efficiency require firms to assign 

certain inputs to pollution abatement, which is unproductive from a business point of view. The 

Porter hypothesis however claims that well-formulated environmental policies can result in 

enhanced firm productivity by promoting efficiency levels and nurturing innovations. The 

argument by Porter and Van der Linder, (1995) is fundamentally established on the reality that 

pollution is an indicator of economic waste and entails unwarranted and insufficient use of 

resources (Ambec et al., 2013). Therefore, curbing pollution can increase productivity through 

which resources are utilized.  

According to the hypothesis, when a firm acquires an environmentally friendly technology, the 

cost of acquisition may be offset by cost savings rising from technological improvement prompted 
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by the need for a clean environment. This is referred to as innovation offset (Porter and Van der 

Linder, 1995). The innovation offset in Porter’s hypothesis is achieved following technological 

innovation rising from firm Research and Development (R&D) activities. This can have a sizeable 

and long-term effect on productivity improvement if environmental protection measures can 

stimulate the formation of more productive and environmentally friendly production processes. 

The Porter hypothesis, therefore, provides that adopting environmentally friendly production can 

achieve double dividends in which firms concurrently realize both objectives of a cleaner 

environment and higher productivity.  Ultimately, environmentally friendly measures would not 

only promote private benefit but will also promote public benefit. 

3.2.2 Empirical Literature Review 

Considerable effort has been made to estimate energy intensity, TFP and empirically test the effect 

of energy efficiency on manufacturing sector productivity. This study explores three strands of 

literature: one reviewing studies estimating energy intensity, a second one exploring the estimation 

of TFP and a third one reviewing the energy efficiency and productivity relation.  

Beginning with the first strand, reviewed studies show heterogeneity in energy intensity which 

runs from regions, clusters or industries. In India’s small-scale bricks and foundry clusters, 

Subrahmanya (2006) calculates energy intensity as the ratio of energy cost to output value by 

considering 38 brick makers and 31 foundries. The findings of this study show that the brick-

making cluster is more energy-intensive than the foundry cluster. The study further assesses the 

statistical significance of the correlation between energy intensity and capital intensity and value 

output among others in an attempt to establish what drives energy intensity. Findings indicate that 

high capital intensities in the foundries cluster could lead to increases in energy intensities. High 

capacity utilization and high output size are found to be accompanied by smaller energy intensities 

and vice versa in the brick-making cluster. However, this study focuses on only the small-scale 

industry by assuming this industry could be consuming a considerable amount of energy in India’s 

total industrial demand for energy. The study ignores the larger-scale industry, yet both the small-

scale and large-scale industries collectively contribute to the high energy consumption. The current 

study focuses on a sample of firms in the overall manufacturing sector in Kenya which is a 

significant consumer of energy. 
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Using annual survey data for the period 2002-2008, Sahu and Sharma (2016) calculate energy 

intensity for the Indian manufacturing sector. Findings show that energy intensity varies across 

various sub-sectors. An analysis of drivers of energy intensity reveals that TFP, output and firm 

age among others negatively influence energy intensity. The study, however, fails to capture the 

relationship between capital intensity and energy intensity yet literature shows that capital intensity 

is a key determinant of energy intensity. This study establishes how capital intensity is linked to 

energy intensity in the manufacturing sector in Kenya. 

Still in India, Haider and Bhat (2020) calculate energy intensity based on state-level data for the 

paper industry covering 21 major states. Energy intensity is calculated as the ratio of fuel consumed 

to the gross value of output and it is found to decline from the period 2001-02 to 2013-14. Further, 

energy intensity is found to vary across states. In an analysis of drivers of energy intensity, capital 

intensity, labour productivity and TFP are found to negatively influence energy intensity while the 

share of gross output in total manufacturing output in the paper industry is found to positively 

influence energy intensity. The study considers the paper industry only, yet the manufacturing 

sector is composed of many industries which collectively contribute to high energy consumption. 

This study considers the whole of the Kenyan manufacturing sector. 

In Latin America, Montalbano and Nenci (2019) compute energy intensity using World Bank 

Enterprise Survey (WBES) firm-level data. Results show that energy intensity varies across 

different countries, industries and firm size categories. However, this study does not explore the 

link between energy intensity and other factors, yet this analysis is important in identifying 

determinants of energy intensity. The current study explores how the capital intensity and output 

value are linked to energy intensity. Existing literature shows that capital intensity and output are 

important in determining energy intensity. 

Moving to the second strand of literature, conventionally, a commonly applied measure of 

productivity is the partial factor measure of productivity. In this measure, productivity is expressed 

as the ratio of output to a particular input. For example, labour productivity is measured as the 

ratio of total sales to the number of staff. Examples of studies that have adopted this measure 

include Montalbano and Nenci (2019) in the manufacturing sector in thirty Latin American 

Caribbean States, Ulku and Pamukcu (2015) in the Turkish manufacturing sector, Gomez-Tello 
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and Nicolini (2017) in the Spanish manufacturing sector and Heshmati and Rashdghalam (2016) 

in the Kenyan manufacturing and service industries.  

Even though the partial factor productivity measure is simple to compute, it does not reflect a true 

measure of productivity given that it assumes production involves the application of only one 

factor of production. Total factor productivity (TFP) provides a theoretically convincing measure 

of productivity. TFP acknowledges that the production process is principally multi-input based. 

This measure permits researchers to observe how efficiently firms combine factor inputs to 

produce output. It has thus received attention from many researchers. Among studies that have 

adopted TFP include Kreuser and Newman (2018) in South Africa’s manufacturing sector during 

the period 2010-2013. In this study, the method of Ackerberg et al. (2006) is applied to tax data 

obtained from South African Revenue Services (SARS). The findings of the study show significant 

heterogeneity in the distribution of TFP by industry, firm size and firm age. However, this study 

has not reported the actual firm TFP levels, yet this information is important in signalling the extent 

of policies needed to improve productivity. The present study provides results of firm-level TFP 

at the sub-sector levels in the Kenyan manufacturing sector.  

In the Indian paper industry, Haider and Bhat (2020) estimate TFP using regional data for the 

period 2001-2013 by applying the Levinsohn and Petrin (2003) methodology. Results of this study 

show significant variation in TFP across regions and time. The study however fails to analyse 

determinants of TFP, yet such an analysis is important in revealing key factors to promoting 

productivity. The current study provides this analysis by investigating how energy efficiency and 

other factors affect TFP in the Kenyan manufacturing sector.  

Blazkova et al. (2020) estimate Czech’s food industry TFP in the period 2003-2017 by applying 

firm-level data sourced from the Magnus Web database. The study applies Ordinary least squares 

(OLS), instrumental variable (IV) and two-way generalised method of moments (GMM) 

estimators. The findings of the study show the mean TFP to be 0.5 in all estimation approaches. 

However, the study fails to show the distribution of TFP across various firm characteristics, even 

though such information is important in revealing the type of policies needed to promote 

productivity for the different types of firms. The present study provides the distribution of TFP 

across various firm characteristics in Kenya’s manufacturing sector. 
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Ding et al. (2016) estimate TFP in China’s large and medium-sized industrial firms in the period 

1998-2007 using micro-level data sourced from the National Bureau of Statistics. The study 

employs the GMM estimator. Findings show significant heterogeneity in the distribution of TFP 

over time, regions, political affiliations and exporting status. Given that this study does not target 

small firms, the performance of these firms remains unknown, yet such firms form a significant 

portion of manufacturing firms and contribute significantly to GDP. The current study estimates 

TFP in small, medium and large firms in the Kenyan manufacturing sector.  

In Kenya, Chege et al. (2014) estimate the manufacturing sector’s TFP by applying firm-level data 

for the period 2007 obtained from the WBES. The study employs a parametric estimation 

technique and finds some heterogeneity in firm-level TFP across sub-sectors, firm size, exporting 

and legal status. However, the study does not provide an analysis of the determinants of TFP, yet 

such an assessment is important in identifying factors that promote productivity. The present study 

provides this analysis by assessing how energy efficiency and other factors affect TFP in the 

manufacturing sector in Kenya.  

Turning to the third strand of literature, significant effort has been made to analytically investigate 

how energy efficiency and firm productivity are linked, but mixed results have been reported. 

While a bulk of the studies show that energy efficiency promotes firm productivity, few studies 

show a negative or no significant effect of energy efficiency on firm productivity. Beginning with 

studies that show a positive effect, Worrell et al. (2003) review the relationship between 

advancement in energy efficiency and productivity in U. S’s iron and steel industry. The findings 

of the study reveal that energy efficiency can promote the general productivity of the industry. The 

study proposes that non-energy benefits should be counted in when reviewing energy efficiency 

policies as this would make them appear more cost-effective as opposed to when they are excluded. 

Even though this study provides an important investigation, the use of case review analysis fails 

to give quantifiable evidence. The current study provides an empirical assessment of how energy 

efficiency relates to firm productivity in the manufacturing sector in Kenya.  

Celani de Macedo et al. (2020) investigate the extent to which energy efficiency measures can 

create concurrent improvements in value-added, employment and energy savings in the Republic 

of North Macedonia industries using input-output models. The findings of this study show that 

energy efficiency measures can achieve triple dividends in value-added, employment and energy 
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saving. The study adopts value-added output and employment as indicators of performance, 

however, these measures do not show the capability of firms to generate technological change.  

In the Indian small-scale bricks and foundry clusters and by using multiple regression analysis, 

Subrahmanya (2006) estimates the energy efficiency and economic performance relation. The 

study employs primary data obtained from 38 bricks enterprises and 31 foundries. The findings of 

the study indicate that energy efficiency positively influences the proportion of energy expenditure 

in entire variable expenditure, the value of output and factor productivities. However, this study 

uses returns to scale as a measure of firm performance. As in the study by Celani de Macedo et al. 

(2020), this measure also does not conclusively show the ability of firms to create technological 

change. The current study adopts TFP, which effectively shows the ability of a firm to create 

technology, to indicate firm performance. 

By applying a standard constant return to scale Cobb-Douglas production function and pooled 

ordinary least squares (POLS), Montalbano and Nenci (2019) examine the linkage between energy 

efficiency, productivity and exporting in thirty Latin American Caribbean (LAC) states using firm-

level information obtained from the WBES. The findings of this study corroborate the Porter 

Hypothesis. The results suggest that improving energy efficiency could result in enhanced 

productivity. The study also suggests that current energy reduction policies should incorporate 

non-energy benefits as a form of productivity benefits. However, the study fails to correct for 

potential reverse causality given that productivity could also influence energy efficiency 

positively. The present study adopts a dynamic panel data model to correct for potential reverse 

causality.  

The findings of Worrel et al. (2003), Subrahmanya (2006) and Montalbano and Nenci (2019) are 

corroborated by Zhang (2016) in the Swedish Industry. The study employs a true random effects 

SFA model to measure energy efficiency from which it establishes its effect on productivity. The 

study observes that a management initiative that stresses energy efficiency is anticipated to be 

more cost-effective and advantageous for the general productivity of the industry. In addition, 

Cantore et al.  (2016) explore the influence of energy efficiency on productivity and economic 

growth in low-income countries using fixed effects estimation. The study uses panel data on 

manufacturing firms from 29 developing countries obtained from the WBES. The outcome of the 

study indicates that improvements in energy efficiency enhance productivity and economic 
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growth. The research proposes that policies recommending the removal of energy efficiency 

barriers need to be adopted by developing countries.  

By resulting to cross-section data sourced from the Center for Monitoring Indian Economy Sahu 

and Narayanan (2011a) apply OLS in assessing the energy efficiency and Indian manufacturing 

productivity relation. The finding of the study reveal energy efficiency positively influences 

productivity. The study proposes that the Indian government should come up with financial 

incentives for enhancing energy efficiency. In a similar way to Montalbano and Nenci (2019), 

studies by Zhang (2016), Cantore et al.  (2016) and Sahu and Narayanan (2011a) do not correct 

for potential reverse causality, which the present study does by estimating a dynamic panel data 

model. 

Moving to studies that have found a negative effect and those that have found no significant effect, 

Haider and Ganaie (2017) by employing time series data and vector error correction mechanism 

(VECM) find energy efficiency to negatively influence productivity in India. This study 

establishes a unidirectional causality moving from energy efficiency to productivity. In the long 

run, high productivity will be realized by high energy application. The study investigates energy 

efficiency and productivity relation at the economy-wide level and does not provide evidence at 

the manufacturing sector level. This is even though the manufacturing sector is a major energy 

consumer. Further, analysis at the sector level is important because different sectors have different 

energy demands necessitating sector-specific energy policies. The current study provides empirical 

evidence in Kenya’s manufacturing sector.  

In the investigation of the influence of energy efficiency technologies on Spanish and Slovenian 

manufacturing sector performance using linear regression, Pons et al. (2013) find the application 

of energy-saving technologies has no clear impact on firm economic performance. The study 

establishes that energy-saving technologies positively influence environmental performance. This 

study proposes that policymakers should make better regulation plans and recommendations to 

save energy and protect the environment. Although the study adopts the rate of return as an 

indicator of firm performance, the indicator does not show the ability of a firm to create 

technological change. The present study shows the ability of a firm to create technological change 

by adopting TFP as a measure of productivity in Kenya’s manufacturing sector.  
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3.2.3 Overview of Literature 

Thermodynamic indicators historically dominated the modelling of energy intensity. Due to 

limitations with regard to how they captured output units, some alternative indicators have 

emerged. Among these are physical-thermodynamic and economic-thermodynamic indicators. 

However, these indicators still do not provide satisfactory modelling of energy intensity given that 

both indicators measure energy in physical units. In addition, the physical-thermodynamic 

indicators express output in physical units. Economic indicators, which model energy intensity by 

expressing energy input and output in monetary terms, are more useful in policy analysis and have 

been adopted by this study.  

Total factor productivity is anchored in the neo-classical framework which ascribes growth to two 

sources: factor accumulation and TFP growth. However, given that growth resulting from factor 

accumulation cannot be maintained in the long run because of weakening returns to the factors, 

more focus in productivity literature has been directed to TFP. TFP-led growth is the growth that 

is not explained by an increase in inputs. It is mainly attributed to the improvement of skills, 

organizational settings, improvements in technology and efficient use of the factor inputs among 

others.  

The link between environmental performance and firm productivity is mainly established by the 

Porter Hypothesis. This hypothesis provides that well-designed environmental quality-enhancing 

measures can result in productivity benefits. This hypothesis is a departure from the conventional 

view that provides that environmental quality-enhancing measures result in a decline in firm 

productivity given that they necessitate the purchase of new technologies and thus additional 

production costs. The Porter Hypothesis however opines that such additional costs are in the long 

run offset by energy cost savings making it cheaper to produce a unit of output. 

Reviewed literature shows energy intensity has been used to indicate energy efficiency in some 

studies. In these studies, energy intensity is found to be heterogeneous across regions, industries 

and even different firm sizes. Several studies have made effort to evaluate the relation between 

energy intensity and other factors. Key among these factors are capital intensity and the size of the 

output. However, such analysis remains inconclusive, yet it is important in determining factors 

that could drive energy intensity. More studies calculating energy intensity and establishing the 
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relationship between energy intensity and its suspected driving factors are needed, particularly for 

developing countries in Africa where empirical evidence is scarce. 

The studies assessed further show that two broad measures of productivity exist: single-factor 

productivity measure and total factor productivity measure. The single-factor productivity measure 

has received criticism among researchers on the account that it ignores the application of many 

inputs in the production process. The total factor measure acknowledges that manufacturing is a 

multi-input production process and has gained the attraction of many researchers. While some 

studies have provided analysis of determinants of productivity, some have not, yet this information 

is important in identifying factors that are key in promoting productivity. Further, some studies 

have not provided the distribution of TFP across various firm characteristics, yet such distribution 

is important in identifying areas that require more policies to promote productivity. There is a need 

for more empirical estimation of firm-level TFP and assessment of the distribution of this TFP 

across various firm characteristics, particularly for the manufacturing sector in Africa where 

empirical evidence is limited. Such an analysis needs to also be extended to the identification of 

factors that promote TFP. 

Reviewed literature on the effect of energy efficiency on firm productivity shows evidence for 

countries in Asia, Europe and America. Evidence for Africa is scanty yet developing countries in 

Africa are anticipated to consume large amounts of energy to support their growing economies. A 

mixture of findings on the energy efficiency and firm performance relation is reported in the 

studies reviewed. While a bulk of the studies, for instance, Worrel et al. (2003), Celani de Macedo 

et al. (2020), Subrahmanya (2006), Montalbano and Nenci (2019), Zhang (2016) Cantore et al. 

(2016) and Sahu and Narayanan (2011a) report a positive effect, Haider and Ganaie (2017) report 

a negative effect and Pons et al. (2013) report no significant effect. More studies analysing the 

relationship between the two variables may be required to help build a consensus. These studies 

should in particular be concentrated in developing countries. 

Examined studies have mainly adopted models such as simple linear regression, fixed effects, 

input-output, multiple regressions, GMM and VECM among others to explore the influence of 

energy efficiency on firm productivity. Some studies have used rate of return, value-added and 

employment as indicators of firm performance. These indicators however do not show the 

capability of a firm to create technological change. Further, some studies have assessed the effect 
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of TFP on energy efficiency and there is empirical evidence indicating that TFP influences energy 

efficiency positively. This indicates a possibility of feedback causality moving from TFP to energy 

efficiency. This causality needs to be corrected as it may result in endogeneity. However, reviewed 

literature shows that there are studies that have not corrected the feedback causality. This study 

sought to attend to the existing research gap by presenting analytical evidence on the effect of 

energy efficiency on productivity in Kenya’s manufacturing sector by adopting TFP as a 

productivity measure and by employing the dynamic panel data model to correct for potential 

endogeneity resulting from reverse causality. 

3.3 Methodology 

3.3.1 Theoretical Framework 

This study models energy intensity through economic indicators, which provide measurement in 

monetary terms. According to Subrahmanya (2006), given a measure of energy (E) and output (Q), 

energy intensity (EI) is expressed as the ratio of energy to output.  

EI = 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑈𝑠𝑒𝑓𝑢𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑢𝑡 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
 = 

𝐸

𝑄
         (3.01) 

From equation (3.01), energy efficiency is modelled as the inverse of energy intensity 

EF = 
1

𝐸𝐼
           (3.02) 

where EF represents energy efficiency. 

Analysis of TFP is founded on the theory of the firm, which describes how firms convert inputs 

into output using some given technology. TFP is a suitable productivity measure because it 

considers the employment of several factor inputs in a production process (Cantore et al., 2016). 

This is unlike partial productivity measures, for example, labour productivity which assumes that 

the production process involves the use of only one input. By taking into account other inputs, TFP 

also acknowledges the role of input substitution, particularly when responding to changes in 

technology and economic conditions.   

Following Van Beveren (2012) and Harris and Moffat (2015), the study adopted a Cobb Douglas 

production specification and the Solow Residual approach in measuring TFP. The Cobb-Douglas 

function was expressed as: 

𝑄 = 𝐴 𝐾𝛼𝑘𝐿𝛼𝑙             (3.03) 
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In equation (3.03), output, Q, is expressed as a function of capital, K, labour, L, and Hicks neutral 

measure of efficiency, A, which denotes the productivity index. The productivity index measures 

the efficiency in the utilization of the factor inputs (labour and capital). 𝛼𝑘 and 𝛼𝑙  denote the 

output elasticities of capital and labour respectively. Output elasticity measures the percentage 

change in output resulting from a percentage change in capital or labour. Following Cantore et al. 

(2016), the Cobb Douglas specification in equation (3.03) can be extended to include materials, 

M, as follows: 

𝑄 = 𝐴 𝐾𝛼𝑘𝐿𝛼𝑙  𝑀𝛼𝑚                        (3.04) 

where 𝛼𝑚  represents the output elasticity of materials. From equation (3.02), TFP is derived as 

follows:  

TFP= A = 
𝑄

𝐾𝛼𝑘𝐿𝛼𝑙
           (3.05) 

From equation (3.05), TFP was expressed as a ratio of output to inputs collectively. Including 

materials explicitly, 

TFP= A = 
𝑄

𝐾𝛼𝑘𝐿𝛼𝑙𝑀𝛼𝑚
                      (3.06) 

According to Felipe (1999), TFP is exogenously determined and can be interpreted as an index of 

other factors besides capital, labour and materials which are not explicitly considered in the 

equation but participate in the creation of output all the same. Such factors include R&D, 

managerial abilities and organizational proficiency and technology uptake (Felipe, 1999). The TFP 

derived, in this case, is suitable for evaluating the impact of various policy measures (Van Beveren, 

2012). It was applied in the present study to investigate how energy efficiency impacts 

manufacturing firms’ productivity.  

3.3.2 Analytical Model 

The analytical framework in this study followed a three-stage process. With the availability of 

panel data, in the first stage, the study estimated energy intensity in a firm by dividing energy input 

by output produced. 

𝐸𝐼𝑖𝑡 = 
𝐸𝑖𝑡

𝑄𝑖𝑡
           (3.07) 
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where EI is energy intensity, i denotes the ith firm, t indicates time. Energy efficiency was obtained 

by taking the inverse of energy intensity 

𝐸𝐹𝑖𝑡 =
1

𝐸𝐼𝑖𝑡
           (3.08) 

Where 𝐸𝐹𝑖𝑡 is the energy efficiency for firm i at time t. The study linearized equation (3.04) in the 

second stage as a step towards getting TFP by taking natural logs. 

𝑞𝑖𝑡 =  𝛽 +  𝛼𝑘𝑘𝑖𝑡 + 𝛼𝑙𝑙𝑖𝑡 + 𝛼𝑚𝑚𝑖𝑡 + 휀𝑖𝑡                   (3.09) 

and  ln 𝐴𝑖𝑡 = 𝛽 + 휀𝑖𝑡          (3.10) 

where lower-case letters denote natural logarithms, 𝛽 measures the average efficiency across firms 

and time. 휀𝑖𝑡 denotes time- and firm-specific variation from the average efficiency and it is further 

decomposable into discernible and indiscernible elements (Van Beveren, 2012). The 

decomposition yielded the following expression: 

𝑞𝑖𝑡 =  𝛽 +  𝛼𝑘𝑘𝑖𝑡 + 𝛼𝑙𝑙𝑖𝑡 + 𝛼𝑚𝑚𝑖𝑡 + 𝑣𝑖𝑡 +  𝑢𝑖𝑡
𝑞                    (3.11) 

where 𝜑𝑖𝑡= 𝛽 + 𝑣𝑖𝑡 denotes firm-level productivity and 𝑢𝑖𝑡
𝑞 is an i.i.d term that represents random 

variations from the mean. The variations emanate from measurement error, unpredicted 

interruptions or other exogenous factors beyond the firm’s control.   

To solve for 𝜑𝑖𝑡 , equation (3.11) would have to be estimated. Estimating this equation using the 

ordinary least squares (OLS) method would provide biased and inconsistent parameter estimates 

because of simultaneity bias (Van Beveren, 2012). OLS estimates would be correct if only factor 

inputs were exogenous, that is, if factor inputs were determined separately from the firm’s 

productivity level. However, input choices are affected by firm productivity. For instance, the 

number of employees or the amount of materials procured hinges on unseen managerial capability, 

which is a feature of TFP unobservable to a researcher but known to the firm. Thus, the amounts 

of inputs chosen are correlated with unobserved productivity shocks resulting in simultaneity bias 

(De Loecker, 2011).  

Several alternatives to OLS have been proposed including fixed effects estimation. According to 

Levinsohn and Petrin (2003), by  supposing that 𝜑𝑖𝑡 is firm-specific and time-invariant, a fixed 

effects model could be applied in the estimation of equation (3.11)  The equation could be rewritten 

as: 
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𝑞𝑖𝑡 =  𝛽 +  𝛼𝑘𝑘𝑖𝑡 + 𝛼𝑙𝑙𝑖𝑡 + 𝑚𝑖𝑡 + 𝜑𝑖  +  𝑢𝑖𝑡
𝑞                      (3.12) 

Equation (3.12) could be analyzed in levels by Least Square Dummy Variable (LSDV) or in first 

differences. As long as 𝜑𝑖𝑡 remains time-invariant, this estimation would give unbiased and 

consistent coefficients for the inputs. As pointed out in Wooldridge (2009), for the fixed effects 

model to be applied, the inputs need to be strictly exogenous, conditional on firm heterogeneity. 

This implies that the selection of inputs must not be in response to productivity shocks. In reality, 

however, this notion might not hold. (Wooldridge, 2009). 

A second alternative to OLS is the instrumental variable approach, where endogenous explanatory 

variables are instrumented. Unlike the fixed effects estimation method, this method does not 

require strict exogeneity of inputs (Wooldridge, 2009). For the IV estimator to be consistent, the 

instruments have to satisfy three conditions. First, there should be correlation between the 

instruments and the endogenous variables. Second, there should be no direct entry of the 

instruments into the production function. Third, there should be no correlation between the 

instruments and the error term. However, it is often difficult to obtain valid instruments for the 

endogenous regressors in a production function. Input prices are often employed as instruments, 

but they are not often reported by firms. In cases where they are reported, they are in an unsuitable 

manner. Annual accounts, for example, record labour expenses as mean wage per worker. If this 

variable were to signal exogenous labour market price, then it would be a valid instrument. 

Nevertheless, wages often tend to change with the skills and quality of employees. Given that these 

factors affect firm-level productivity, a correlation between the instrument and productivity 

prevails making the instruments to be invalid (Van Beveren, 2012). 

A third alternative to OLS is the Olley-Pakes estimation algorithm. The method, which was 

developed by Olley and Pakes (1996), builds a consistent semi-parametric estimator. The estimator 

applies firm investment decisions to proxy unobserved productivity shocks as a step towards 

solving for simultaneity bias. For an estimator to be consistent, some assumptions have to be 

observed. First, it is assumed that at the firm level, productivity is the only unobserved state 

variable. This variable is presumed to grow as a first-order Markov process, implying that future 

unobserved productivity is only contingent on current unobserved productivity. Second, 

monotonicity of the investment variable is assumed, implying that investments should expand with 

productivity improvements, contingent on the amounts of all state factors. This assumption implies 
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that only positive values of investment are utilized. Lastly, if industry-level price indices are 

employed in deflating input and output values for them to proxy respective quantities, an 

assumption is made that all firms in the industry are exposed to the common input and output 

prices (Olley and Pakes, 1996).  

However, the monotonicity assumption undermines its empirical application.  According to Van 

Beveren (2012), given the assumption that investments should only take positive values, there may 

be a substantial loss in efficiency contingent on the available data. Further, if investments take zero 

values in a substantial number of observations, the soundness of the monotonicity assumption may 

be put into question. Following this concern, Levinsohn and Petrin (2003) developed the 

Levinsohn-Petrin (LP) estimation algorithm. This algorithm replaces investments as a proxy for 

unobserved productivity shocks with intermediate inputs. This is on account that firms report 

positive values for materials and energy used every year and keep records of these observations. 

When this is the case, the monotonicity precondition is likely to bind. The method appealed to this 

study. 

Materials are shown to be hinged on capital and productivity, that is 𝑚𝑖𝑡 = 𝑚(𝑘𝑖𝑡, 𝜑𝑖𝑡). Given that 

monotonicity condition binds and that materials are strictly increasing in 𝜑𝑖𝑡, this equation could 

be inverted to allow unobserved productivity shock to be expressed as a function of observable 

inputs, that is 𝜑𝑖𝑡 = 𝜑(𝑘𝑖𝑡, 𝑚𝑖𝑡), where 𝜑(. ) = 𝑚−1(.). Using this expression, equation (3.12) is 

rewritten as: 

𝑞𝑖𝑡 =  𝛽 +  𝛼𝑘𝑘𝑖𝑡 + 𝛼𝑙𝑙𝑖𝑡 + 𝑚𝑖𝑡 + 𝜑(𝑘𝑖𝑡, 𝑚𝑖𝑡)  +  𝑢𝑖𝑡
𝑞                  (3.13) 

According to Levinsohn and Petrin (2003), the estimation of equation (3.13) takes place in two 

steps. In the first step, the following conditional moments are estimated 

𝐸(𝑞𝑖𝑡|𝑘𝑖𝑡 , 𝑚𝑖𝑡) and  𝐸(𝑙𝑖𝑡|𝑘𝑖𝑡, 𝑚𝑖𝑡) by, for instance, regressing 𝑞𝑖𝑡 on 𝑘𝑖𝑡 and 𝑚𝑖𝑡. The locally 

weighted quadratic least-squares approximation is used for each conditional mean3. The 

expectation of equation (3.13) conditional on (𝑘𝑖𝑡, 𝑚𝑖𝑡) is then deducted from equation (3.13) to 

get: 

                                                           
3 The local weighed quadratic least squares estimation utilizes weighted least squares to build predictions of 𝑞𝑖𝑡 
given (𝑘𝑖𝑡 , 𝑚𝑖𝑡) and using the regressors as grounds for a second-order polynomial approximation in (𝑘𝑖𝑡 , 𝑚𝑖𝑡). Given 

any particular point (�̅�𝑖𝑡 , �̅�𝑖𝑡) where an estimate of the expected value of 𝑞𝑖𝑡  is required, the regression weights 

most often rely on observations that are nearest to (�̅�𝑖𝑡 , �̅�𝑖𝑡).  The intercept from the local quadratic regression 

gives a consistent estimator of 𝐸(𝑞𝑖𝑡|𝑘𝑖𝑡 = �̅�𝑖𝑡 , 𝑚𝑖𝑡 = �̅�𝑖𝑡).   
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𝑞𝑖𝑡 − 𝐸(𝑞𝑖𝑡|𝑘𝑖𝑡, 𝑚𝑖𝑡)  =  𝛼𝑙(𝑙𝑖𝑡 − 𝐸(𝑙𝑖𝑡|𝑘𝑖𝑡, 𝑚𝑖𝑡))  +  𝑢𝑖𝑡
𝑞                                                   (3.14) 

Equation (3.14) is estimated using the OLS regression method without an intercept to obtain 

consistent coefficients of labour. To estimate the coefficients of capital, materials and a measure 

of firm-level productivity requires a second step. The step uses two population moment conditions 

to ascertain 𝛼𝑘 and 𝛼𝑚. The first-moment condition ascertains 𝛼𝑘 by presuming that capital is 

invariant of innovations in productivity 𝜉𝑖𝑡. The second moment ascertains 𝛼𝑚 by observing that 

the selection of materials in the last period should not be correlated with the innovations in 

productivity in the current period (Levinsohn and Petin, 2003). The two-moment conditions are as 

follows: 

𝐸[(𝜉𝑖𝑡 + 𝑢𝑖𝑡
𝑞)𝑘𝑖𝑡] = 𝐸[𝜉𝑖𝑡𝑘𝑖𝑡] = 0        (3.15) 

and  

𝐸[(𝜉𝑖𝑡 + 𝑢𝑖𝑡
𝑞)𝑚𝑖𝑡−1] = 𝐸[𝜉𝑖𝑡𝑚𝑖𝑡−1] = 0       (3.16) 

An estimate of the residual is then gotten from the following function: 

𝜉𝑖𝑡 + 𝑢𝑖𝑡
𝑞(𝛼∗)= 𝑞𝑖𝑡 - �̂�𝑙𝑙𝑖𝑡 − 𝛼𝑚

∗ 𝑚𝑖𝑡 − 𝛼𝑘
∗ 𝑘𝑖𝑡 − 𝐸[𝜑𝑖𝑡|𝜑𝑖𝑡−1]                 (3.17) 

The residual is directly referenced as a function of two parameters 𝛼𝑚
∗ , 𝛼𝑘

∗  (that is, 𝛼∗= (𝛼𝑚
∗ , 𝛼𝑘

∗ )). 

𝐸[𝜑𝑖𝑡|𝜑𝑖𝑡−1] is a measure of expected unobserved productivity shocks and is estimated using 

values of 𝜑𝑖𝑡 obtained from first-stage estimation. The Generalized Method of Moments (GMM) 

is then applied to get estimates of  𝛼𝑘 and 𝛼𝑚.  To achieve this,  five over-identifying conditions 

are included, leading to a total of seven population moment conditions obtained by the following 

vector of expectations as given by Levinsohn and Petrin (2003): 

𝐸[(𝜉𝑖𝑡 + 𝑢𝑖𝑡
𝑞)𝑍𝑖𝑡]          (3.18) 

where 𝑍𝑖𝑡 is a vector of instruments provided by 𝑍𝑖𝑡 = {𝑘𝑖𝑡, 𝑚𝑖𝑡−1, 𝑙𝑖𝑡−1, 𝑘𝑖𝑡−1, 𝑚𝑖𝑡−2}. The 

estimates of �̂�𝑚and �̂�𝑘 are obtained by minimizing the following GMM equation: 

𝑄𝑁(𝛼∗) = 𝑚𝑖𝑛𝛼∗ ∑ (∑ ∑ (𝜉𝑖𝑡 + 𝑢𝑖𝑡
𝑞(𝛼∗))𝑍𝑖ℎ𝑡)2𝑇𝑖1

𝑡=𝑇𝑖0𝑖
5
ℎ=1      (3.19) 

where h represents the five instruments and 𝑇𝑖0 and 𝑇𝑖1denote the previous and current period 

respectively. The estimated productivity is then computed as follows: 

𝜑𝑖�̂�= �̂� + 𝑣𝑖�̂�= 𝑞𝑖𝑡 −  𝛼�̂�𝑘𝑖𝑡 − 𝛼�̂�𝑙𝑖𝑡 − 𝛼�̂�𝑚𝑖𝑡                  (3.20) 
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TFP in levels is obtained by taking the exponential of 𝜑𝑖�̂�, that is 

𝑇𝐹𝑃𝑖𝑡 = exp(𝜑𝑖�̂�)          (3.21) 

Equations (3.13) to (3.21) mark the second stage estimation. The third stage estimation follows 

Sahu and Narayanan (2011a), Cantore et al. (2016), Haider and Ganaie (2017) and Montalbano 

and Nenci (2019) where TFP is modelled as a function of energy efficiency. 

𝑇𝐹𝑃𝑖𝑡 = 𝑔(𝐸𝐹𝑖𝑡 )           (3.22) 

where 𝐸𝐹𝑖𝑡 denotes energy efficiency or the inverse of energy intensity while 𝑇𝐹𝑃𝑖𝑡 stands for total 

factor productivity in levels. i represents the ith firm and t represents time. The analytical model 

is then expressed as: 

ln𝑇𝐹𝑃𝑖𝑡 =   𝛾 + 𝜃𝑒𝑓ln𝐸𝐹𝑖𝑡 + 𝜇𝑖𝑡        (3.23) 

𝛾 is an intercept and 𝜇𝑖𝑡 is i.i.d error term. Following Cantore et al. (2016) equation (3.23) could 

be further expanded as in equation (3.24) to allow for other controls of firm-level TFP.  

ln𝑇𝐹𝑃𝑖𝑡 =  𝛾 + 𝜃𝐸𝐹ln𝐸𝐹𝑖𝑡  + 𝜃𝑐𝐶𝑖𝑡 +  𝜃𝑤𝑊𝑖 + 𝜇𝑖𝑡      (3.24) 

𝐶𝑖𝑡 and 𝑊𝑖 are vectors of firm-specific variables which are time-variant and time-invariant, 

respectively. 𝜃𝑐 and 𝜃𝑤 are vectors of coefficients for time-variant and time-invariant controls, 

respectively. Estimating equation (3.24) using the OLS method could lead to biased estimates of 

energy efficiency since the variable is potentially endogenous. According to Cantore et al. (2016), 

there are two probable sources of endogeneity. First is omitted variables in form of unobserved 

firm characteristics. Such variables are likely to influence both energy efficiency and TFP. For 

instance, managerial ability could potentially influence the uptake of energy efficiency 

technologies by firms and at the same time affect firm TFP. To solve the endogeneity problem, the 

constant coefficient is allowed to vary across firms, hence capturing unobserved heterogeneity 

across firms that may be correlated with energy efficiency. 

ln𝑇𝐹𝑃𝑖𝑡 =  𝛾𝑖 + 𝜃𝐸𝐹ln𝐸𝐹𝑖𝑡  + 𝜃𝑐𝐶𝑖𝑡 +  𝜃𝑤𝑊𝑖 +  𝜇𝑖𝑡                 (3.25) 

Cameron and Trivedi (2005) provide that the fixed effects (FE) and random effects (RE) 

techniques could be used to estimate equation (3.25). The main difference between the two 

techniques lies in the relationship between firm-specific effects and other regressors. In the fixed 

effects approach, an assumption that correlation prevails between firm-specific effects and the 
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covariates is made. In the random effects approach, an assumption that the firm-specific effects 

are uncorrelated with the covariates is made.  

The second potential cause of endogeneity is reverse causality from TFP to energy efficiency 

which could result in inconsistent estimates (Cantore et al., 2016). To deal with this problem and 

following Haider and Bhat (2020), a dynamic panel data model is recommended. This model 

entails the inclusion of the past period explained variable as an independent variable in equation 

(3.25) as follows:  

ln𝑇𝐹𝑃𝑖𝑡 = 𝜃𝑃ln𝑇𝐹𝑃𝑖𝑡−1  + 𝜃𝐸𝐹ln𝐸𝐹𝑖𝑡  + 𝜃𝑐𝐶𝑖𝑡 + 𝜃𝑤𝑊𝑖 + 𝛾𝑖 +  𝜇𝑖𝑡    (3.26) 

The lagged independent variable reduces the feedback effect from TFP to energy efficiency. The 

logic behind this is that the resolution to improve technology is made in preceding periods, 

persuaded by the firm’s performance. The fixed effects and random effects models could be 

assessed using the first difference estimator and the within (fixed) estimator. The first difference 

estimator gets rid of the unobserved heterogeneity (γi) by applying the first difference 

transformation. The first difference of equation (3.26) is:  

ln𝑇𝐹𝑃𝑖𝑡 − ln𝑇𝐹𝑃𝑖𝑡−1 = 𝜃𝑃(ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖𝑡−2)  + 𝜃𝐸𝐹(ln𝐸𝐹𝑖𝑡 − ln𝐸𝐹𝑖𝑡−1) 

+𝜃𝑐(𝐶𝑖𝑡 − 𝐶𝑖𝑡−1) +  𝜃𝑤(𝑊𝑖 − 𝑊𝑖) + (𝛾𝑖 − 𝛾𝑖) +  (𝜇𝑖𝑡-𝜇𝑖𝑡−1)    (3.27) 

Equation (3.27) could be re-written as: 

∆ln𝑇𝐹𝑃𝑖𝑡 = 𝜃𝑃∆ln𝑇𝐹𝑃𝑖𝑡−1  + 𝜃𝐸𝐹∆ln𝐸𝐹𝑖𝑡  + 𝜃𝑐∆𝐶𝑖𝑡 +  ∆𝜇𝑖𝑡    (3.28) 

The first difference transformation of equation (3.26) eliminates the unobserved heterogeneity by 

subtracting the lagged equation from the level equation. However, this transformation does not 

completely wind out endogeneity. The first difference of the error term could be correlated with 

the first difference of the lagged TFP (that is, Cov (𝜇𝑖𝑡-𝜇𝑖𝑡−1, 𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖𝑡−2)≠0) because 

𝑇𝐹𝑃𝑖𝑡−1 is correlated with 𝜇𝑖𝑡−1. 

The within estimator handles unobserved heterogeneity (𝛾𝑖) by applying a time-demeaned 

transformation. Applying the transformation on equation (3.26) yields: 

ln𝑇𝐹𝑃𝑖𝑡 − ln𝑇𝐹𝑃𝑖
̂ = 𝜃𝑃(ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖,−1)̂  + 𝜃𝐸𝐹(ln𝐸𝐹𝑖𝑡 −  ln𝐸𝐹𝑖)̂ + 𝜃𝑐(𝐶𝑖𝑡 − 𝐶�̂�) +

 𝜃𝑤(𝑊𝑖 − 𝑊𝑖) + (𝛾𝑖 − 𝛾𝑖) + (𝜇𝑖𝑡 − 𝜇�̂�)        (3.29) 

Equation (3.29) could be re-written as: 
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ln𝑇𝐹𝑃𝑖𝑡 − ln𝑇𝐹𝑃𝑖
̂ = 𝜃𝑃(ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖,−1)̂  + 𝜃𝐸𝐹(ln𝐸𝐹𝑖𝑡 −  ln𝐸𝐹𝑖)̂ + 𝜃𝑐(𝐶𝑖𝑡 − 𝐶�̂�) +

 (𝜇𝑖𝑡 − 𝜇�̂�)           (3.30) 

Even though the estimator eliminates unobserved firm heterogeneity, endogeneity could still be a 

potential problem. The time demeaned error term could be correlated with the time demeaned 

lagged TFP (that is, Cov (𝜇𝑖𝑡-𝜇�̂�, ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖,−1
̂ )≠0) because ln𝑇𝐹𝑃𝑖,−1

̂  is correlated with 

𝜇�̂�. Therefore, using the first difference estimator and the within estimator on a dynamic panel 

model could give inconsistent parameter estimates.  

According to Cameron and Trivedi (2005), the instrumental variable approach could be used to 

manage the endogeneity problem in a dynamic panel model. For panel data, Cameron and Trivedi 

(2005) argue that it is easier to find instruments compared to cross-sectional data. In panel data, 

exogenous covariates in other periods could be used as instruments for endogenous covariates in 

the present period. A valid instrument is one with no correlation with the error term but with a 

strong correlation with the endogenous regressor (Cameron and Trivedi, 2005). 

Anderson and Hsiao (1981) on instrumental variables require that equation (3.26) be transformed 

by first differencing as provided in equation (3.28) and then ln𝑇𝐹𝑃𝑖𝑡−2 is used as an instrument 

for (ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖𝑡−2). This is a valid instrument because ln𝑇𝐹𝑃𝑖𝑡−2 is uncorrelated with 

(𝜇𝑖𝑡-𝜇𝑖𝑡−1), under the assumption that the errors 𝜇𝑖𝑡 are serially uncorrelated. In addition, 

ln𝑇𝐹𝑃𝑖𝑡−2 is a good instrument because it is correlated with (ln𝑇𝐹𝑃𝑖𝑡−1 − ln𝑇𝐹𝑃𝑖𝑡−2). To use this 

method, at least three-period data for each observation is required (Cameron and Trivedi, 2005). 

Alternatively, ∆ln𝑇𝐹𝑃𝑖𝑡−2 could be used as an instrument for ∆ln𝑇𝐹𝑃𝑖𝑡−1, but this requires at least 

four-period data for each observation. Nevertheless, the method has been challenged because it 

requires that the instrumental variable be specified and defined. Therefore, this method may 

provide consistent estimators, but the estimators may not be efficient, since the instrumental 

variable estimation under this approach fails to utilize all the existing moment conditions (Arellano 

and Bond, 1991).  

A more efficient estimator could be got by employing an instrument obtained from lagging the 

dependent variable more times (Arellano and Bond, 1991). For instance, ln𝑇𝐹𝑃𝑖𝑡−2 and ln𝑇𝐹𝑃𝑖𝑡−3 

could be better instruments. With these, the model is overidentified, and so estimation should either 

be by two-stage least squares (2SLS) or panel GMM (Cameron and Trivedi, 2005). Further, the 

higher the periods, the higher the number of instruments. In a three-time period, only 𝑙𝑛𝑇𝐹𝑃𝑖𝑡−2 is 
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available as an instrument, in four time periods, ln𝑇𝐹𝑃𝑖𝑡−2 and ln𝑇𝐹𝑃𝑖𝑡−3 are available and so on. 

Arellano and Bond (1991) recommended panel GMM estimators which use more diverse 

instrument sets. The resulting estimator is referred to as the Arellano-Bond estimator and is 

adopted in this study. For the estimator to be feasible, the order condition must be satisfied. The 

number of instruments should be equal to or more than the parameters of the endogenous variables 

(r≥ 𝐾) (Cameron and Trivedi, 2005). The validity of the instruments is ascertained by the Sargan-

Hansen test of overidentifying restrictions. 

To obtain the Arellano-Bond estimator, all T observations for the ith firm in equation (3.28) are 

first stacked as follows: 

𝑦�̃�= 𝑥�̃�𝜃+ 𝜇�̃�           (3.32) 

𝑦𝑖is the dependent variable, 𝑥𝑖 is a vector of the explanatory variables, 𝜃 is a vector of parameters 

to be estimated, 𝜇𝑖 is the error term and ~ denotes differencing transformation. Assuming there is 

a T× r matrix of instruments 𝑍𝑖 and G parameters to be estimated, where r≥G is the number of 

instruments that meet the r moment conditions 

E[𝑍𝑖
′𝜇�̃�] = 0.           (3.33) 

Given the moment conditions, the GMM estimator is obtained by minimizing the following 

associated quadratic form 

𝑄𝑁(𝜃)= [∑ 𝑍𝑖
′𝜇�̃�

𝑁
𝑖=1 ]′ 𝑊𝑁 [∑ 𝑍𝑖

′𝜇�̃�
𝑁
𝑖=1 ]        (3.34) 

where 𝑊𝑁 represents an r × r weighting matrix. Since 𝜇�̃�= 𝑦�̃�-𝑥�̃�𝜃, algebraically solving for the 

minimized quadratic form (3.34) yields the following Arellano-Bond estimator 

𝜃𝐴�̂� = [(∑ 𝑥𝑖
′𝑍𝑖
̃𝑁

𝑖=1 )𝑊𝑁 (∑ 𝑍𝑖
′𝑥�̃�

𝑁
𝑖=1 )]′(∑ 𝑥𝑖

′𝑍𝑖
̃𝑁

𝑖=1 )𝑊𝑁 (∑ 𝑍𝑖
′𝑥�̃�

𝑁
𝑖=1 )    (3.35) 

In the case of a model over-identification, it is useful to verify whether the available data suits a 

panel GMM estimator or a two-stage least squares (2SLS) estimator. Pagan and Hall (1983) test 

of heteroscedasticity in the error term helps in making this verification (Baum et al., 2003). The 

GMM estimator is relatively more efficient than 2SLS if heteroscedasticity prevails. However, in 

the absence of heteroscedasticity, the 2SLS estimator is relatively more efficient. Nonetheless, 

applying the GMM estimator in case heteroscedasticity is present comes at a price. According to 

Hayashi (2000), the optimal weighting matrix is a function of fourth moments, and a large sample 
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is needed to guarantee logical estimates. If this is not available, the GMM estimator may possess 

poor small sample properties. 

3.3.3 Definition and Measurement of Variables  

Table 3.1:Definition and Measurement of Variables 

Variable Definition and measurement Source of variable and data 

Output 
Finished goods produced by manufacturing 

firms. Measured as total annual sales 

(Ksh). 

Van Beveren (2012), 

World Bank Enterprise Survey 

(WBES). 

Capital 
Physical machinery and equipment used in 

production. The total replacement value of 

machinery and equipment is used as a 

measure of capital(Ksh). 

Van Beveren (2012), 

World Bank Enterprise Survey 

(WBES). 

Labour 
The physical and mental workforce 

provided for wages and salaries. The total 

wages paid to permanent, full-time 

employees are used as a measure of capital 

(Ksh). 

Van Beveren (2012), 

World Bank Enterprise Survey 

(WBES). 

Materials 
Finished goods used in the final production 

of other goods and services. Measured as 

the cost of raw materials (Ksh). 

Van Beveren (2012), 

World Bank Enterprise Survey 

(WBES). 

Energy  
Electricity and fuel used in production. 

Measured by the total cost of electricity and 

fuel (Ksh). 

Cantole et al. (2016), 

World Bank Enterprise Survey 

(WBES). 

Energy efficiency 
Energy consumed per unit of output. The 

inverse of energy intensity, which is 

expressed as energy per unit of out is used 

as a measure of energy efficiency.  

Cantole et al. (2016), 

World Bank Enterprise Survey 

(WBES). 

Firm age 
The duration an establishment has been in 

existence. It is measured in years.  

Kreuser and Newman (2018), 

World Bank Enterprise Survey 

(WBES). 

Firm size Number of permanent full-time employees 

in a firm 

Kreuser and Newman (2018), 

World Bank Enterprise Survey 

(WBES). 

R&D The activity of discovering new products or 

services or enhancing the quality or mode 

of production of existing goods and 

services. A dummy variable, 1 if a firm has 

R&D activities and 0 if it does not is used 

as a measure of R&D.  

Kreuser and Newman (2018), 

World Bank Enterprise Survey 

(WBES). 

Foreign ownership Whether a firm is foreign-owned. 

Measured as a dummy variable with a 

value of 1 if foreign-owned and 0 if 

otherwise. 

Harris and Moffat (2015), 

World Bank Enterprise Survey 

(WBES). 
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Exporting status Whether a firm exports or not. Measured as 

a dummy variable with a value of 1 if a 

firm exports and 0 if otherwise. 

Kreuser and Newman (2018), 

World Bank Enterprise Survey 

(WBES). 

Capital intensity The extent of mechanization in the 

production process. Measured as a ratio of 

capital to labour. 

Kreuser and Newman (2018), 

Rath, 2018, 
World Bank Enterprise Survey 

(WBES). 

Top manager’s 

experience 

Skills gained by working. Measured as the 

number of years the top manager has been 

working 

Fernandes (2008), 

World Bank Enterprise Survey 

(WBES). 

Source: Author’s compilation 

 

3.3.4 Justification for Inclusion of the Various Variables in the Models 

In the investigation of the effect of energy efficiency on TFP, several explanatory variables were 

included in addition to energy efficiency. Following Kreuser and Newman (2018), Harris and 

Moffat (2015), Satpathy et al (2017), Fernandes (2008), Rath (2018) and Seker and Saliola (2018), 

the variables include firm age, firm size, foreign ownership, exporting status, capital intensity, 

R&D and top manager’s experience.  

Firm age was included to investigate whether younger firms that are characterized by relatively 

new equipment produce with higher efficiency compared to old firms. Further, this variable helped 

in testing whether productivity is enhanced by learning-by-doing. Learning-by-doing effects take 

place when firms improve their productivity as they learn new production techniques and they 

integrate these advancements into their production schedules (Coad et al., 2013). The relation 

between productivity and firm age is related to the Jovanovic (1982) theory. According to the 

theory, firms are born with fixed productivity levels which they learn as they advance in age. Low 

productivity firms exit the market as highly productive firms thrive. Consequently, the average 

productivity of a certain age cohort increases as the age of this cohort advances (Coad et al., 2013). 

Firm age is anticipated to have an unclear effect on productivity given that young firms could have 

higher TFP because of their relatively new technologies, but older firms could have greater TFP 

because of learning-by-doing effects.  A positive effect has been reported in Sahu and Narayanan 

(2011a) and Kreuser and Newman (2018) while a negative effect has been reported in Schiffbauer 

and Ospina (2010) and Harris and Moffat (2015). 

Firm size entered the model to test whether larger firms are more productive because they have 

easier access to recent technologies and learning-by-doing effects obtained from their long 

experience or small firms are more productive because they are more flexible and have less 
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complex management structures. Firm size is anticipated to have an unclear effect on TFP. A 

positive effect has been recorded in Schiffbauer and Ospina (2010), Satpathy et al. (2017) and 

Kreuser and Newman (2018) while a negative effect has been reported in Fernandes (2008) and 

Seker and Saliola (2018). 

R&D entered the model because it is hypothesized that R&D enhances TFP via two channels 

(Harris and Moffat, 2015). First, R&D activities promote TFP by encouraging process innovation 

which allows production to be made at a greater efficiency (mainly through reduced costs). R&D 

also allows product innovation which enhances TFP if new products are created more efficiently 

than existing products. In the second channel, R&D enhances TFP by developing firms’ absorptive 

capacity. This promotes a firm’s capability to detect, absorb and utilize external knowledge from 

other firms and R&D actors for instance universities and research institutions (Fernandes, 2008; 

Harris and Moffat, 2015; Ding et al., 2016). The concept of absorptive capacity is premised upon 

the fact that certain knowledge is implicit and difficult to obtain except if a firm is engaged in 

R&D activities. R&D is found to promote TFP in Harris and Moffat (2015), Satpathy et al. (2017) 

and Kreuser and Newman (2018). 

Foreign ownership was included to investigate whether firms with foreign ownership had 

relatively higher TFP. According to Harris and Moffat (2015), foreign-owned firms, particularly 

from developed countries, which are believed to be superior in technologies, have higher TFP. 

Foreign firms establish or acquire firms in the domestic market because of attributes that give them 

an upper hand in, for instance, cost over domestic firms. Such attributes include special skills in 

production and management or marketing skills. Nevertheless, if cultural differences between 

foreign owners and local workers create disharmony, this could undermine TFP, particularly in the 

immediate period after acquiring ownership of a local enterprise. But as foreign owners become 

familiar with the domestic operating environment, the problem is resolved (Ding et al., 2016).  

Further, foreign-owned firms could be anticipated to have lower TFP if they opt to have high-

valued production in host countries and lower-valued production in their subsidiaries abroad. 

Consequently, they may employ a low-skilled workforce and old technologies abroad. 

Nevertheless, foreign ownership was expected to influence TFP positively in this study as in 

Fernandes (2008), Schiffbauer and Ospina (2010), Sahu and Narayanan, (2011a) and Harrris and 

Moffat (2015).  
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The variable of exporting status was introduced in the model to help investigate whether exporting 

firms had relatively higher TFP. Existing literature shows that exporting firms learn from foreign 

buyers about new production technologies which helps them to enhance their TFP. It is also 

possible that exporting firms improve their production technology to take advantage of the 

stringent but more profitable foreign markets (Fernandes, 2008). The variable was expected to 

positively influence TFP in this study. Studies that find exporting status to positively influence 

TFP, include, Fernandes (2008), Schiffbauer and Ospina (2010), Sahu and Narayanan (2011a), 

Kreuser and Newman (2018) and Montalbano and Nenci (2019). 

The variable of top manager’s experience was included in the study based on findings in the 

literature that firms run by highly experienced top managers are likely to have relatively higher 

TFP. Experienced managers are expected to have skills and techniques to guide production 

towards improved productivity. The variable was expected to influence TFP positively as in 

Fernandes (2008). 

Capital intensity was included in the model to establish whether firms with higher use of capital 

per unit of labour were more productive compared to firms that used lower levels of capital per 

unit of labour. Capital intensity was expected to be associated with high firm TFP. According to 

Rath (2018), a combination of high capital and labour inputs is likely to improve productivity. 

Further, firms with high capital intensity have modern and advanced processes that improve 

productivity. Studies that report capital intensity to positively influence TFP include Kreuser and 

Newman (2018) and Montalbano and Nenci (2019). 

3.3.5 Data Type and Sources 

This research applied an unbalanced panel got from the World Bank Enterprise Surveys (WBES). 

The data is useful in understanding the business environment faced by private sector firms and in 

developing policies to improve the business environment. The data on manufacturing and service 

firms was collected through stratified random sampling. The levels of stratification are regions, 

sub-sectors and firm sizes. The surveys present information on specific firm features, infrastructure 

and services, sales and supplies, competition, finance, performance and business environment 

relations, crime, labour and land. They are available in many waves for 169,000 firms in 146 

countries. This gives room for the comparison of enterprise performance across countries and 
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across time. The data can be used to create a firm-level panel to monitor variations in the business 

environment over time and evaluate the impact of reforms.  

The surveys try to match variables across waves. If desired, variables can be matched by changing 

variable names in older waves to variable names in the most current wave. The panel used in this 

study was for 2007, 2013 and 2018 where firms were followed over time. The panel was 

unbalanced due to natural causes such as the entry and exit of firms during the study period. In 

total, the panel had 2439 observations for both manufacturing and service firms from which a panel 

of 1265 observations for manufacturing firms was drawn. The manufacturing firms in the panel 

were broadly categorized into four sub-sectors: chemicals, pharmaceuticals and plastics; food; 

textiles and garments and paper and other manufacturing sub-sectors. According to Saliola and 

Seker (2011), the categorization of firms gives room for sub-sector level analysis. Some variables 

of interest had missing observations and the multiple imputation technique was applied to fill the 

gaps.  

3.4. Results and Discussions 

The first section contains descriptive statistics of the covariates applied in the estimations.  

3.4.1 Descriptive Statistics  

Table 3.2 contains summary statistics of capital intensity in firms.  

Table 3.2Descriptive statistics of capital intensity in Kenya’s manufacturing sector 

Sub-sector Mean SD Minimum Maximum 
Chemicals, Pharmaceuticals and Plastics sub-sector 

2007(N=28) 12.46 28.60 0.069 144 

2013(N=52) 11.30 19.68 0.028 107.7 

2018(N=98) 14.21 41.34 0.004 355.6 
Food sub-sector 
2007(N=110) 8.305 19.53 0.005 153.8 

2013(N=154) 43.18 323.7 0.0001 3891.7 

2018(N=140) 11.80 37.95 0.004 383.3 
Textiles, and Garments sub-sector 

2007(N=111) 0.8963 19.79 0.003 130 

2013(N=51) 38.36 146.9 0.028 1009.1 

2018(N=50) 21.96 81.37 0.002 420 
Paper and other manufacturing sub-sector 
2007(N=147) 7.250 4.020 1 15 

2013(N=157) 25.13 8.07 1 35 

2018(N=167) 50.82 22.68 1 103 

 Source: own computation from WBES data. 
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Table 3.2 reveals that paper and other manufacturing sub-sector had on average higher capital 

intensity than other sub-sectors. This implies that the paper and other manufacturing sub-sector 

employed relatively more capital per unit of labour than other sub-sectors. Capital intensity was 

observed to increase over time in this sub-sector, but no clear pattern was observed in other sub-

sectors. 

The descriptive statistics of factor inputs used in the production function, firm size, firm age, top 

manager’s level of experience, foreign ownership, exporting and R&D status were shown in 

chapter two of the thesis. 

3.4.2 Energy Intensity in Kenya’s Manufacturing Sector 

Table 3.3 shows the results of average energy intensity, average total energy consumption and 

capital intensity across the four sub-sectors of the Kenyan manufacturing sector.  

Table 3.3:Average energy intensity, total energy consumption and capital intensity scores in the 

Kenyan manufacturing sector 

Sub-sector Energy 

intensity 

Total energy 

consumption 

(‘000’ shillings) 

Capital 

intensity 

Chemicals, pharmaceuticals and plastics 0.120 896,883.3 12.66 

Food 0.413 889,595.6 21.10 

Textile and Garments 0.064 482,031.4 20.41 

Paper and other manufacturing  0.225 2,268,268.3 27.73 
Source: Own computation from WBES data 

The food sub-sector had the highest energy intensity score of 0.413. Theoretically, this implies 

that firms in this sub-sector had the highest amount of energy to produce a unit of output. It signals 

the least energy efficiency among the four sub-sectors. The paper and other manufacturing sub-

sector followed with a score of 0.225 and the chemicals, pharmaceuticals and plastics sub-sector 

with 0.120. The textiles and garments sub-sector had the least energy intensity score of 0.064, 

implying that this sub-sector was the most energy-efficient.  

Comparing energy intensity and total energy consumption by firms in the various sub-sectors, 

results showed that the textiles and garments sub-sector besides having the least energy intensity 

also had the least average energy consumption. This suggested that energy efficiency was 

associated with less energy consumption in this sub-sector. However, in the other sub-sectors, 

there was no clear pattern between energy consumption and energy intensity. The finding is 
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consistent with the outcome of Subrahmanya (2006). Subrahmanya (2006) explains that the lack 

of a clear pattern between energy consumption and energy intensity could be expounded by the 

fact that holding other factors constant, energy intensity depends on capacity utilization rate and 

amount of output.  

Subrahmanya (2006) observes that higher capital intensity can potentially lead to more energy 

consumption and energy intensity. The food sub-sector and paper and other manufacturing sub-

sector, which were more capital-intensive than other sub-sectors, were also more energy-intensive. 

The textiles and garments and chemicals, pharmaceuticals and plastics sub-sectors were less 

intensive in capital and energy. Some correlation analyses to test for statistical significance 

between energy intensity and capital intensity and energy intensity and value of output were done. 

The results are presented in Table 3.4. 

Table 3.4:Correlation between energy intensity and capital intensity and energy intensity and value 

of output in Kenya’s manufacturing sector 

 C, P and P Food P and O M T and G 

Capital Intensity 0.0323** 0.1711*** 0.1911*** 0.0714 

Value of output -0.3180*** -0.2786*** -0.3232*** -0.3700*** 

 * p < 0.10, ** p < 0.05, *** p < 0.01.  

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

paper and other manufacturing. 

Source: own computation from WBES data 
 

Table 3.4 reveals that at 5 percent level of significance, capital intensity and energy intensity were 

positively related in all the four sub-sectors except the textiles and garments sub-sector. This 

signalled that higher capital intensities led to high energy use. The consequence was higher energy 

intensity. Therefore, a high level of capital investment in the three sub-sectors did not result in 

high energy efficiency. This finding is consistent with Subrahmanya (2006) in the foundry industry 

in India. 

Concerning energy intensity and the value of output, Table 3.4 shows that at 5 percent level of 

significance, energy intensity was negatively related to the value of output. This implies that higher 

capacity utilization could produce higher output at lower energy intensity. According to 

Subrahmanya (2006), if capacity use and size of output in a firm were low, energy intensity would 

be high. A steady expansion of capacity utilization, as well as the size of output, allows firms to 

lower energy intensity. 
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3.4.3 The Production Function in Kenya’s Manufacturing Sector 

The study estimated a production function as a step towards measuring TFP in Kenya’s 

manufacturing sector. Parameter estimates of the production function were applied in the 

calculation of TFP. A linearized Cobb-Douglas production function was estimated using the 

Levinsohn-Petrin (LP) estimation algorithm for each sub-sector based on the assumption that firms 

in a particular sub-sector use common technology (Kreuser and Newman, 2018). The log of output 

was regressed on the log of factor inputs - labour, capital and materials. The coefficients showed 

elasticity of output with respect to a change in a factor input. Table 3.5 provides LP and OLS 

estimates of the production function in each sub-sector. OLS estimates were provided for 

robustness check. 

Table 3.5:Parameter estimates of production functions in Kenya’s manufacturing sector 
                                   LP                                                                                     OLS 

 T and G C, P and 

P 

Food P and OM T and G C, P and P Food P and 

OM 

Dependent variable: lnQ 

lnL 0.571*** 0.497*** 0.429*** 0.408*** 0.558*** 0.535*** 0.432*** 0.435*** 

 (0.0890) (0.115) (0.0560) (0.0728) (0.0637) (0.0643) (0.0442) (0.0429) 

lnK 0.133 0.0396 0.135 0.332** 0.117*** -0.00894 0.0538 0.0214 

 (0.0836) (0.228) (0.137) (0.139) (0.0383) (0.0539) (0.0331) (0.0285) 

lnM 0.121 0.831*** 0.443*** 0.0907 0.310*** 0.398*** 0.451*** 0.497*** 

 (0.129) (0.277) (0.144) (0.196) (0.0473) (0.0544) (0.0364) (0.0348) 

RTS 0.825 1.368 1.007 0.831 0.985 0.924 0.937 0.953 

Wald test 

Chi2 1.720 0.85 0.00 2.90     

P value 0.190 0.358 0.962 0.089     

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

C, P and P is chemicals, pharmaceuticals and plastics sub-sector, T and G is textiles and garments sub-

sector and P and O M is paper and other manufacturing sub-sector.  

Source: own computation from WBES data 

LP results show that the elasticity of output with respect to labour was statistically significant in 

all the sub-sectors at 5 percent level of significance. The elasticity of output with respect to 

materials was only statistically significant in the chemicals, pharmaceuticals and plastics and food 

sub-sectors at 5 percent level of significance. The elasticity of output with respect to capital was 

only statistically significant in the paper and other manufacturing sub-sector at 5 percent level of 

significance. The coefficient of labour was higher in OLS than in LP estimation in all the sub-

sectors except in the textiles and garments sub-sector. According to Kreuser and Newman (2018), 

this indicates that labour was positively correlated with productivity shocks. Therefore, the labour 

coefficient in OLS estimation was biased upwards. The finding is consistent with Fernandes (2008) 
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and Kreuser and Newman (2018). OLS underestimated the coefficient of labour in the textile and 

garments sub-sector. This suggested that labour employed in this sub-sector had a negative 

correlation with productivity shocks. Therefore, the labour coefficient in OLS estimation was 

biased downwards.   

All the coefficient estimates of capital were higher in LP than in OLS. This suggested that capital 

was negatively correlated with productivity shocks. Consequently, the coefficient of capital in 

OLS estimation was biased downwards. The finding is consistent with Fernandes (2008) and 

Kreuser and Newman (2018). The coefficient estimates of materials in OLS were larger than those 

of LP in all the sub-sectors except in the chemicals, pharmaceuticals and plastics sub-sector. This 

suggested that materials were positively correlated with productivity shocks. Thus, the coefficient 

of materials in OLS estimation was biased upwards. The outcome is in line with Goncalves and 

Martin (2016). 

All the factor elasticities had economically plausible signs. Holding all other factors constant, an 

increase in any one input resulted in increased output. A unit increase in labour increased output 

across all the sub-sectors by a bigger margin compared to a unit increase in capital. The result 

corroborates the findings of Fernandes (2008), Kreuser and Newman (2018), Saleem and Zaki 

(2018) and Seker and Saliola (2018). Saleem and Zaki (2018) explain that this is because labour 

includes both the skilled and unskilled components which are crucial elements in production. The 

textile and garments sub-sector had the highest elasticity of output with respect to labour (0.571). 

The Paper and other manufacturing sub-sector had the least elasticity in this regard (0.408).  

The elasticity of output with respect to materials was in some instances higher and in others lower 

than the elasticity of output with respect to capital or labour. A unit change in material input 

brought the highest change in output in the chemicals, pharmaceuticals and plastics sub-sector 

(0.831) and the least change in the paper and other manufacturing sub-sector (0.0907). This 

indicated that material inputs were important in the production of goods in the chemicals, 

pharmaceuticals and plastics sub-sector. The paper and other manufacturing sub-sector had the 

highest capital elasticity (0.332) while the chemicals, pharmaceuticals and plastics sub-sector had 

the least (0.0396). The textile and garments sub-sector and food sub-sector had almost similar 

capital elasticities at 0.135 and 0.133, respectively. However, capital elasticity was significant in 

the paper and other manufacturing sub-sector only.  
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The sum factor elasticities give an insight into returns to scale in each sub-sector. Where the sum 

exceeds one, that shows increasing returns to scale. A sum less than one shows decreasing returns 

to scale and a sum equal to one denotes constant returns to scale. The study found increasing 

returns to scale in the chemicals, pharmaceuticals and plastics (1.368) and food (1.007) sub-

sectors. The textiles and garments (0.825) and paper and other manufacturing (0.831) sub-sectors 

had decreasing returns to scale. A proportional rise in factor inputs in the chemicals, 

pharmaceuticals and plastics and the food sub-sectors resulted in a more than proportional rise in 

output. A proportional rise in inputs in the textiles and garments and paper and other manufacturing 

sub-sector led to a less than proportional rise in output. The study performed a Wald test to 

investigate the null hypothesis that there existed constant returns to scale in all the sub-sectors. 

The findings show that at 5 percent level of significance, the null hypothesis was rejected in the 

four sub-sectors of interest. However, in the paper and other manufacturing sub-sector, the finding 

was weakly in line with the Wald test at 10 percent level of significance.  

3.4.4 Estimated Average TFP in Kenya’s Manufacturing Sector. 

The average productivity in each sub-sector is presented in Table 3.6. 

Table 3.6:Average TFP in the Kenyan manufacturing sector 

Sub-sector Average TFP 

Chemicals, pharmaceuticals and plastics 3.071 

Food 2.925 

Textile and Garments 2.079 

Paper and other manufacturing  2.722 
Source: own computation from WBES data 

Table 3.6 reveals that the chemicals, pharmaceuticals and plastics sub-sector had an estimated 

average TFP of 3.071, the food sub-sector had 2.925, the paper and other manufacturing sub-

sectors had 2.722 and the textiles and garments sub-sector had 2.079. The average TFPs are not 

directly comparable across the sub-sectors given that production functions are different across sub-

sectors. Technology is assumed to be common within the sub-sectors but different across them. 

Nevertheless, TFP distribution across sub-sectors could be compared (Kreuser and Newman, 

2018). TFP distribution is more useful in explaining the extent of heterogeneity in productivity 

levels within and across the sub-sectors. According to Tybout (2000), heterogeneity in productivity 

across firms prevails significantly, even when the manufacturing sector is narrowly defined.  
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Appendix 2 presents plots of the TFP distribution of each sub-sector. The y-axis contains densities 

of the distributions while the x-axis contains logarithms of TFP. A widely dispersed plot denotes 

greater heterogeneity across firms within a sub-sector. Of concern also is whether firms are highly 

concentrated in the higher segment or lower segment of the TFP distribution. A tight dispersion in 

TFP distribution was witnessed in the paper and other manufacturing sub-sector as well as the 

chemicals, pharmaceuticals and plastics sub-sector. This was indicative of less heterogeneity in 

productivity in these sub-sectors. The distribution of TFP in the food sub-sector showed tight 

dispersion but not as in the paper and other manufacturing and chemicals, pharmaceuticals and 

plastics sub-sectors. This also signalled minimal heterogeneity in productivity. 

The textiles and garments sub-sector TFP distribution showed that this sub-sector had the widest 

dispersion, especially on the lower parts of the plot, and a relatively sizable density below the 

mean. This pointed to relatively sizable heterogeneity in TFP, implying the coexistence of high-

productivity and low-productivity firms in the sub-sector. According to Kreuser and Newman 

(2018), such a distribution signals the existence of rigidities or other distortions that hinder the 

efficient allocation of resources within the sub-sector.  

3.4.5 TFP by Sub-Sector and Firm Size in Kenya’s Manufacturing Sector 

The heterogeneity of TFP in Kenya’s manufacturing sector was further analyzed on firm attributes 

of age and size. The empirical literature provides that these characteristics are major sources of 

heterogeneity in productivity (Van Biesebroeck, 2005; Fernandes, 2008). The analysis is crucial 

in singling out firm characteristics with the highest potential to improve productivity and receive 

the most resources. Table 3.7 shows the average TFP by firm size within the sub-sectors. The 

WBES categorization of small (5-19 employees), medium (20-99 employees) and large (over 100 

employees) firms was followed. 

Table 3.7:Average TFP by firm size in the Kenyan manufacturing sub-sectors 

Sub-sector                                                                          Size category 

 small medium large 

Chemicals, pharmaceuticals and plastics 2.923 2.658 3.865 

Food 2.784 2.669 3.395 

Textile and garments 2.303 1.969 1.938 

Paper and other manufacturing 3.200 2.432 2.650 
Source: Own calculations from WBES data 

In the chemicals, pharmaceuticals and plastics and food sub-sectors, TFP was highest in large 

firms. In these sub-sectors, TFP was higher in small firms compared to medium firms. That large 
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firms possessed the highest TFP could probably be because they had better access to financial 

resources that allowed them to upgrade their production technology and achieve better 

performance. It could also be that workers here had better skills and productivity. This finding is 

in line with Van Biesebroeck (2005), and Seleem and Zhaki (2018).  

In the textile and garments and paper and other manufacturing sub-sectors, small firms had the 

highest TFP. This could be because small firms in these sub-sectors were more flexible with less 

complex management structures. The results for the textiles and garments sub-sector show that 

productivity decreased monotonically with an increase in firm size. The outcome of this study 

conforms with the results of Fernandes (2008) and Seleem and Zhaki (2018) which show the 

performance of small firms is devoid of the disadvantages of scale inefficiencies. Productivity was 

higher in large firms than in medium firms in the paper and other manufacturing sub-sector. 

3.4.6 TFP by Sub-sector and Firm Age in the Kenyan Manufacturing Sector 

Table 3.8 presents the average TFP of firms of different ages and sub-sectors. The age categories 

are 1-10, 11-20, 21-30, 31-40 and 40+ years. 

Table 3.8:Average TFP by firm age in the Kenyan manufacturing sub-sectors 
                                     Firm age in years 

Sub-sector 1-10  11-20 21-30 31-40 40+ 

Chemicals, pharmaceuticals and plastics 3.666 6.038 3.513 1.336 2.441 

Food 1.395 3.062 3.359 5.292 1.982 

Textile and garments 1.776 2.874 1.550 1.130 2.451 

Paper and other manufacturing 2.796 2.789 1.709 3.176 3.390 

Source: Own calculations from WBES data 

The results reveal an unclear pattern of firm age and productivity relation across the sub-sectors. 

In the chemicals, pharmaceuticals and plastics sub-sector, young firms, particularly in the first two 

age cohorts had on average greater productivity compared to older firms. The result agrees with 

the literature that links young firms with recent and more productive technologies. Another 

possible explanation for this finding as pointed out by Coad et al. (2013) is that old firms could 

suffer from inertia effects, which manifest in two forms. First, old firms could be susceptible to 

the liability of obsolescence, a situation in which old firms fail to adapt to changing business 

environments. Second, they could be susceptible to the liability of senescence, a situation in which 

old firms become rigid by accrued rules, habits and organizational configurations. This finding is 

in line with Seleem and Zhaki (2018). 
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The food sub-sector exhibited an inverted U relationship between productivity and firm age. TFP 

was low in firms aged 1-10 years but increased in successive age cohorts to reach the highest level 

in firms of 31-40 years then fell drastically in firms beyond 40 years. According to Fernandes 

(2008), the inverted U life cycle pattern is an indication that firms begin at low TFP but learn by 

doing. They, for instance, venture into new investments, take part in foreign markets, or achieve 

economies of scale and improve TFP. However, after attaining a particular age (40 years in the 

sample used), firm know-how, operations and production turn out to be obsolete, inertia strikes 

and TFP declines. This finding is consistent with Fernandes (2008). 

The paper and other manufacturing sub-sector exhibited a U relationship between firm 

productivity and age. After ranking the firms, TFP was high in firms aged 1-10 years and decreased 

entered the 11-20 age bracket. The decrease continued in the 21-30 age bracket but increased in 

subsequent years. The firms in this sub-sector begin at high TFP probably because they have new 

and efficient technologies but as they grow old, these technologies become outdated and TFP 

declines to low levels. The poor performance then makes the firms rethink their operations and 

change their technologies or make new investments. Their flexibility in making technology change 

investments could be because of the ease of access to financial resources. According to Coad et al. 

(2013), old firms have ease of access to long-term credit, have large equity capital, which facilitates 

access to external financing, and have good internal cash flow. Finally, the textiles and garments 

sub-sector showed no clear pattern of TFP change with firm age.  

3.4.7 Effect of Energy Efficiency on TFP in Kenya’s Manufacturing Sector 

Table 3.9 provides the results of panel GMM regression. The statistical significance was tested by 

applying the dynamic panel data estimation using a clustered robust technique to deal with 

potential heteroscedasticity. 

Table 3.9:Regression results of the effect of energy efficiency on TFP in Kenya’s manufacturing 

sector 

 Overall Food T and G  P and O M 

TFP Sector Sub-sector Sub-sector Sub-sector 

TFPt-1 0.0821 -0.180 0.048 0.253 

 (0.0674) (0.227) (0.045) (0.250) 

Energy efficiency 0.220*** 3.246*** 0.001*** 0.227* 

 (0.0432) (0.819) (0.0003) (0.129) 

Capital Intensity 0.00136* 1.738** 0.0121*** -0.342*** 

 (0.000744) (0.818) (0.00265) (0.0768) 

Firm age 0.0299*** 0.500* -0.247 1.367*** 

 (0.0107) (0.292) (0.449) (0.320) 



114 

 

Firm size 0.0546** -0.152 -0.068 0.00145** 

 (0.0268) (0.591) (0.069) (0.000698) 

Top Manager’s experience 0.210* 0.0734 0.015 0.00916 

 (0.116) (0.135) (0.010) (0.0142) 

Foreign owned 0.222 -1.672 0.616* -1.333 

 (0.209) (3.740) (0.315) (1.008) 

Export -0.162 0.894 0.739** -0.593 

 (0.157) (3.286) (0.367) (0.536) 

R&D 0.114 1.390 0.831*** -0.443 

 (0.162) (3.327) (0.170) (0.395) 

Year( base year: 2007)     

2013 -3.152*** -22.50* 0.171** 2.337 

 (0.718) (12.66) (0.343) (3.827) 

2018 -3.381*** -23.36 0.294 -0.640 

 (0.787) (15.60) (0.032) (3.425) 

Region(base region: Nyanza)     

Central 0.565 0.643 1.564 -0.718 

 (0.436) (6.839) (2.747) (1.574) 

Coast 0.368 4.312 -2.828 -1.752 

 (0.406) (6.350) (3.102) (1.681) 

Nairobi 0.481 4.058 0.215 -1.297 

 (0.389) (6.351) (2.413) (1.590) 

RV 0.354 5.485 -0.258 -2.074 

 (0.415) (6.588) (2.773) (1.823) 

Sub-sector( base C P and P)     

Food 0.194    

 (0.261)    

T and G -0.0819    

 (0.244)    

P and O M -0.0299    

 (0.289)    

Endogeneity Test 

H0: Exogenous 

Chi-sq                                               4.349                     3.936                     3.215                     6.280 

Prob> chi-sq                                    0.037                     0.047                     0.067                     0.012 

Heteroscedasticity test 

H0: Homoscedasticity 

Chi-sq                                               38.44                     30.19                     32.35                     52.21 

Prob> chi-sq                                     0.042                     0.088                     0.028                     0.000 

Sargan-Hansen test 

Chi-sq 6.410 8.051 9.252 4.684 

Prob> chi-sq 0.698 0.781 0.160 0.585 

Dependent variable: TFP 

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

T and G is textiles and garments and P and O M is paper and other manufacturing. RV is Rift Valley and 

D denotes a dummy variable. TFPt-1 is the first lag of TFP.  

Source: own computation from WBES data 

Table 3.9 provides results of the assessment of the effect of energy efficiency on TFP. Analysis 

was done at the overall manufacturing sector and sub-sector levels. In the overall sector model, the 
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null hypothesis of exogeneity of energy efficiency was rejected at 5 percent level of significance. 

It indicated the presence of endogeneity which could be addressed by adopting a 2SLS or panel 

GMM estimator. At 5 percent level of significance, the Pagan and Hall (1983) test confirmed the 

presence of heteroscedasticity. The GMM estimator was therefore the suitable estimator. The 

Sargan-Hansen test of the null hypothesis of validity of overidentifying restrictions was accepted 

at 5 percent level of significance. Therefore, all the instruments adopted in the overall sector model 

were valid.  

The effect of energy efficiency on TFP was positive. This finding was consistent with the Porter 

Hypothesis which argues that the adoption of clean production can lead to the achievement of 

double dividends, where higher productivity is realized in the process of ensuring clean production. 

According to the hypothesis, the cost of acquiring clean production technologies is offset by cost 

savings arising from the use of such technologies, a phenomenon known as innovation offset. This 

finding is useful in dispelling fear, particularly in developing countries, where there is disquiet 

about the implications of reductions in energy use on growth. The finding corroborates the results 

of Sahu and Narayanan (2011a) in the manufacturing sector in India and Cantore et al. (2016) in 

manufacturing firms in 29 low-income countries.  However, the result contrasts Haider and Ganaie 

(2017) who find energy efficiency to negatively influence TFP in India and Montalbano and Nenci 

(2019) who finds the effect of energy efficiency on productivity in Latin America’s manufacturing 

sector to be insignificant.  

Capital intensity, expressed as a ratio of capital to labour, positively influenced TFP. Theoretically, 

higher capital intensity indicates that usage of capital per employee has improved. The result of 

this study suggests that capital deepening and widening have a favourable effect on TFP. High 

capital intensity is probably associated with recent and advanced technology, which promote TFP. 

The finding corroborates Kreuser and Newman (2018) and Montalbano and Nenci (2019). 

Firm age was found to positively affect TFP. This implies that TFP was higher in old firms 

compared to young firms. The finding was in line with the Jovanovic (1982) theory that postulates 

that at the time of establishment, firms have fixed productivity which they understand as they grow 

old. In the process, firms possessing low productivity leave the market as those with high 

productivity thrive. According to Coad et al. (2013), this process makes the average productivity 

of firms that survive attrition increase with time. Further, the outcome of this study could be 
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expounded by the learning-by-doing effect. Firms learn modern production techniques and 

integrate them over time. This outcome is in line with Sahu and Narayanan (2011a) and Kreuser 

and Newman (2018). 

Firm size was found to positively influence TFP. This indicates that TFP was higher in large firms 

compared to smaller firms. The outcome was in agreement with theoretical frameworks on 

industrial dynamics which project large firms to produce at higher productivity compared to small 

firms (Jovanovic, 1982). The models provide that while entering the industry, firms are of small 

size and have low productivity. Many depart shortly after joining, while the surviving ones expand 

and quickly converge to the industry average size and productivity level. Departure from the 

industry is first preceded by a period of decreasing firm size and productivity (Van Biesebroeck, 

2005). It is also probable that productivity is relatively high in large firms because of their better 

access to formal credit compared to smaller firms. Access to credit helps them acquire new 

technologies which are essential in boosting productivity. Their better financial position also 

enables them to run formal training programs that provide workers with the skills necessary to 

improve productivity. This finding corroborates the outcome of Van Biesebroeck (2005), 

Schiffbauer and Ospina (2010), Satpathy et al. (2017), and Montalbano and Nenci (2019). 

Fernandes (2008) on the other hand finds productivity to be more in small firms compared to large 

firms.  

The coefficient of top manager’s years of experience was shown to be positive and statistically 

significant. Highly experienced managers were associated with higher TFP. According to 

Fernandes (2008), a top manager’s experience captures management ability. The outcome of this 

study indicates that top managers in the Kenyan manufacturing sector are of high ability. The 

finding is consistent with Fernandes (2008).  

Exporting had an insignificant effect on TFP. Though literature provides that exporting is linked 

to higher TFP, the view is not supported by the study findings. The composition of Kenya’s exports 

may explain this unexpected outcome. For instance, according to the Republic of Kenya (2019), 

even though export levels increased by 14.1 percent in the five years 2014-2018, there was a 

varying growth rate in key export components. Agricultural exports which account for the largest 

component of exports had horticulture and tea grow by 14.36 percent and 9.92 percent respectively 

in the same period. On the other hand, exports of manufactured products such as leather products 
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and medicinal and pharmaceutical products declined by 11.72 percent and 1.5 percent respectively. 

This may reflect that policies to promote exports were more concentrated in agriculture, with less 

emphasis on manufacturing products and hence the results of no TFP premiums by exporting 

activities. The finding corroborates the outcome of Vu et al. (2016). On the other hand, Montalbano 

and Nenci (2019) and Kreuser and Newman (2018) find exporting to promote TFP. 

Foreign ownership had a positive but insignificant coefficient contrary to the study’s prediction. 

This finding contradicted the results of both Fernandes (2008) in the Bangladesh manufacturing 

industry and Harris and Moffat (2015) in the majority of the foreign-owned groups of firms in 

Great Britain, who find foreign ownership to positively influence TFP. 

The effect of R&D on TFP was not significantly different from zero. This implies that there was 

no noticeable TFP advantage from engaging in R&D activities. It was expected that R&D would 

significantly influence TFP through the process and product innovation and through developing 

firms’ absorptive capacity but this was not evident. The low R&D investments in firms in the 

sample could partly be the reason for this finding. It is also possible that the absorptive capacity 

for the few firms engaging in R&D activities was not advanced enough to permit productivity 

improvements. The outcome is in line with Van Biesebroeck (2005) and Rath (2018). However, 

Harris and Moffat (2015), Satpathy et al. (2017) and Kreuser and Newman (2018) find R&D to 

positively influence TFP.  

With regards to year dummies, the study found TFP to decrease in 2013 and 2018 relative to the 

2007 level. This indicates that the business environment for the Kenyan manufacturing sector was 

less conducive in 2013 and 2018 compared to 2007. 

3.4.8 Effect of Energy Efficiency on TFP by Sub-sector in Kenya’s Manufacturing Sector 

Following Montalbano and Nenci (2019), this study accounted for heterogeneity by performing 

separate regressions for the different sub-sectors. The findings are provided in Table 3.9. The Sub-

sectors of concern were: chemicals, pharmaceuticals and plastics, food, textile and garments and 

paper and other manufacturing sub-sectors. The chemicals, pharmaceuticals and plastics sub-

sector had low sample sizes and the estimation failed convergence tests. Consequently, this sub-

sector was dropped. 

Table 3.9 shows that in all the models, the null hypothesis for exogeneity of energy efficiency was 

rejected at 5 percent level of significance, except for the textile and garments sub-sector where the 
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null hypothesis was weakly rejected at 10 percent level of significance. This was indicative of the 

presence of endogeneity which could be addressed by adopting a 2SLS estimator or panel GMM 

estimator. At 5 percent level of significance, the Pagan and Hall (1983) test confirmed the presence 

of heteroscedasticity across all the sub-sectors apart from the food sub-sector where it was 

confirmed at 10 percent level of significance. A panel GMM estimator was thus the suitable 

estimator for the sample used in the study. The Sargan-Hansen test of the null hypothesis of 

overidentifying restrictions was accepted at 5 percent level of significance. Thus, all the 

instruments adopted in the models were valid.  

Energy efficiency was found to positively affect TFP across all the sub-sectors. This means that 

energy efficiency in each sub-sector yielded double dividends in terms of promoting a clean 

environment and realizing higher TFP. The finding was in line with the Porter Hypothesis. It 

agreed with Cantore et al. (2016) in a majority of sub-sectors in 29 low-income countries and 

Montalbano and Nenci (2019) in a majority of the sub-sectors in Latin America’s manufacturing 

sector.  

The findings from the regression analysis showed evidence of heterogeneity in other TFP 

correlates across the sub-sectors. The coefficient of capital intensity was positive and significant 

in the food and textile and garments sub-sectors. This implies that high capital intensity was linked 

to higher TFP. This could mean that high capital-intensive firms in these sub-sectors have recent 

technologies and advanced production processes which play a big role in enhancing TFP. This 

outcome corroborates the findings of Montalbano and Nenci (2019) who find capital intensity to 

positively influence TFP in the food, textiles and apparel and chemicals and minerals sub-sectors 

in Latin America and Rath (2018) who find capital intensity to boost TFP in India’s textile sub-

sector. Nevertheless, the coefficient of capital intensity in the paper and other manufacturing sub-

sector was negative and significant. This implies that firms with high levels of capital achieved 

lower TFP. The finding was in line with Van Biesebroeck (2005) in nine countries in Africa. 

The coefficient of firm age was found to be positive and significant in the food and paper and other 

manufacturing sub-sectors. Old firms in these sub-sectors had higher TFP than younger firms. The 

finding was in line with the Jovanovic (1982) theory, which provides that firms learn their 

productivity capabilities as they advance in age. In the process, low-productivity firms leave the 

industry as the high productive firms thrive. The finding also suggested the presence of learning-
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by-doing effects. Firms learned new production techniques with time and assimilated them into 

their production processes, ultimately boosting their TFP. This outcome is in line with Sahu and 

Narayanan, (2011a) and Kreuser and Newman (2018).  

Firm size had a positive effect on TFP in the paper and other manufacturing sub-sector. Large 

firms in this sub-sector had higher TFP compared to smaller firms. This outcome was in line with 

the Jovanovic (1982) theory which explains that firms start small. Many of them exit and the 

remaining ones grow in size and quickly converge into the industry average size and productivity. 

Before exiting, firms decline in size and productivity (Van Biesebroeck, 2005). The good 

performance in TFP by large firms in the paper and other manufacturing sub-sector could also be 

because they had easy access to credit compared to small firms. The credit could have helped them 

to update their technology and provide formal training to workers. Trained workers have skills that 

enhance TFP. The finding contradicts Montalbano and Nenci (2019) who find firm size to 

positively influence TFP in all the Latin America manufacturing sub-sectors apart from the other 

manufacturing sub-sector where firm size has no significant effect on TFP. 

Foreign ownership had a positive and significant coefficient in the textiles and garments sub-

sector. This indicates that foreign ownership was linked to higher TFP. It could be argued that for 

foreign investors to find it justifiable to establish or acquire local ownership, they must have 

characteristics that give them an upper hand in cost over local firms. Such characteristics include 

better technologies, management and access to delivery and advertising means (Fernandes, 2008; 

Harris and Moffat, 2015). This outcome corroborates the results of Fernandes (2008), Schiffbauer 

and Ospina (2010), Sahu and Narayanan (2011a) and Harrris and Moffat (2015). 

Exporting status positively affected TFP in the textiles and garments sub-sector. This indicates that 

there were TFP premiums for exporting firms. Probably, exporting firms in this sub-sector learned 

ways to boost their productivity from their foreign clients. Exporting firms could also be producing 

using advanced technologies to meet the strict but profitable requirements of foreign clients. They 

also learn to meet commodity demands on time and to assure commodity quality in competitive 

markets. It could also be that high TFP firms self-select into foreign markets. Fernandes (2008), 

however, observes that self-selection and learning-by-exporting are not mutually exclusive given 

that high TFP firms with the advantage of accessing export markets could persistently have better 

TFP due to acquaintance with exporting. This outcome agrees with the result of Montalbano and 
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Nenci (2019) who establish that exporting positively influences TFP across all Latin America’s 

manufacturing sub-sectors apart from the machinery and other manufacturing sub-sectors where 

exporting does not affect TFP. 

R&D positively influenced TFP in the textiles and garments sub-sector. This implies that firms 

with R&D activities had higher TFP. Probably, engaging in R&D activities led to process and 

product innovations which boosted TFP. Moreover, R&D activities could have enhanced the 

firm’s absorptive capacity thereby boosting the firm TFP. This finding corroborates Harris and 

Moffat (2015), Satpathy et al. (2017) and Kreuser and Newman (2018). 

TFP decreased in 2013 relative to 2007 in the food and textiles and garments sub-sector. Probably, 

the operating environment for this sub-sector was less conducive in 2013. 

3.4.9 Effect of Energy Efficiency on Kenya’s Manufacturing Sector TFP by Firm Size  

The study further accounted for firm heterogeneity by analyzing the effect of energy efficiency on 

Kenya’s manufacturing sector’s TFP by firm size. The findings are provided in Table 3.10.  

Table 3.10:Regression results of the effect of energy efficiency on Kenya’s manufacturing sector’s 

TFP by firm size 
 small medium large 

TFP firms firms firms 

TFPt-1 -6.343 0.167 0.205 

 (4.069) (0.167) (0.196) 

Energy efficiency 5.346*** 0.572*** 0.0000536 

 (1.507) (0.134) (0.000720) 

Capital intensity 0.455*** 0.011* 0.247* 

 (0.0831) (0.006) (0.141) 

Firm age 0.973** -0.461* 1.388** 

 (0.421) (0.263) (0.685) 

Manager’s experience 0.103 -0.001 0.000705 

 (0.562) (0.021) (0.0388) 

Foreign owned -8.182 1.198* -0.464 

 (11.60) (0.627) (1.222) 

Export 12.63** -0.601 1.013 

 (6.121) (0.400) (0.864) 

R&D -11.80 0.403 0.145 

 (17.06) (0.394) (0.846) 

Year( base year: 2007)    

2013 -37.99 -1.306 -6.085 

 (58.47) (1.375) (4.901) 

2018 -58.44 -1.273 -6.070 

 (55.63) (1.540) (5.597) 

Region(base region: Nyanza    

Central -26.17 -1.602* 1.655 

 (24.05) (0.965) (1.209) 



121 

 

Coast -12.75 -1.607*** 0.712 

 (31.01) (0.791) (1.053) 

Nairobi 3.737 -1.625*** 0.933 

 (31.72) (0.746) (1.132) 

Rift Valley -32.54 -1.039 1.069 

 (32.41) (0.768) (2.568) 

Sub-sector( base C P and P)    

Food 73.52*** -0.401 0.551 

 (25.86) (0.579) (0.781) 

P and OM 25.03 -0.351 -0.197 

 (23.07) (0.546) (0.882) 

T and G 31.72 -0.651 -0.388 

 (22.35) (0.576) (0.851) 

Endogeneity Test 

H0: Exogenous                                                                    

Chi-sq                                         6.923                               5.285                              3.134 

Prob> Chi-sq                              0.009                               0.022                              0.077 

Heteroscedasticity Test 

H0: Homoscedasticity 

Chi-sq                                          36.83                              34.65                              34.62 

Prob> Chi-sq                               0.025                              0.042                              0.043 

Sargan-Hansen test 

Chi-sq 2.792 10.45 9.022 

Prob> chi-sq 0.732 0.729 0.425 

Dependent variable: TFP 

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

Paper and other manufacturing. TFPt-1 is the first lag of TFP.  

Source: Author’s computation from WBES data 

 

From the endogeneity test as shown in Table 3.10, the null hypothesis for exogeneity of energy 

efficiency was rejected in small and medium firms at 5 percent level of significance. In large firms, 

it was rejected at 10 percent level of significance. The test indicated endogeneity in the model. The 

problem could be resolved by adopting a 2SLS or panel GMM estimator. The null hypothesis of 

homoscedasticity was rejected at 5 percent level of significance in all firm sizes. Thus, the panel 

GMM was the suitable estimator in this study.  From the Sargan-Hansen test, the null hypothesis 

of validity of overidentifying restrictions was accepted at 5 percent level in each of the size cohort 

models. Thus, the instruments adopted in each of the cohort models were valid. The robust standard 

errors in the separate panel data regressions took care of any potential standard heteroscedasticity 

in the models.  

The coefficient of energy efficiency was found to be positive and significant in all size categories, 

except in large firms. Energy efficiency in the manufacturing sector was in general associated with 
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high TFP except in large firms. The outcome was consistent with the Porter Hypothesis. The 

finding corroborates the outcome of Montalbano and Nenci (2019). However, for Montalbano and 

Nenci (2019), energy efficiency positively influenced TFP in micro, medium and large firms but 

had an insignificant effect in small firms.  

Capital intensity had a positive effect on TFP across all the firm sizes. Firms that produce with a 

large capital stock per employee were linked to higher TFP. Probably, the high levels of capital 

were characterized by modern technologies which are key to boosting TFP. This finding is in line 

with Montalbano and Nenci (2019) for Latin American manufacturing firms.  

Firm age had a mixed effect on TFP in the different firm sizes. It had a positive influence on TFP 

in small and large firms. This finding confirmed the Jovanovic (1982) theory. Older firms in the 

two firm size categories had higher TFP. In the medium firms, the coefficient of firm age was 

negative and significant, implying that younger firms had higher TFP than old firms. The finding 

was consistent with sections of literature that postulate that young firms potentially have high 

productivity compared to old firms because they use new technologies and produce at higher 

efficiency levels.  Further, the high TFP in young firms could be a result of their flexibility to 

technological changes. Old firms suffer from inertia effects, which show in two forms. According 

to Coad et al. (2013), old firms are susceptible to the liability of obsolescence, a scenario in which 

old firms fail to be flexible enough to accommodate changing business environments. They are 

also susceptible to the liability of senescence, a scenario in which old firms become inflexible due 

to accrued rules, norms and organizational settings. The outcome of this study contradicts Seleem 

and Zhaki, (2018) who find the firm size to negatively affect TFP in large firms and has no 

significant effect in small and medium firms. 

The coefficient of foreign ownership was positive and significant in the medium firms, implying 

that foreign-owned medium firms had higher TFP than medium local firms. Probably, foreign 

firms possessed characteristics that gave them an edge in cost reduction over local firms. Such 

characteristics could include better technology, management or access to delivery and advertising 

means (Fernandes, 2008; Harris and Moffat, 2015). Such characteristics boost TFP (Fernandes, 

2008; Harris and Moffat, 2015). The finding contrasts Seleem and Zhaki (2018) who find foreign 

ownership to significantly affect TFP in small firms but have no significant effect in medium and 

large firms.  



123 

 

The coefficient of exporting status was positive and significant in small firms. This implies that in 

this size category, TFP was higher in exporting firms compared to non-exporting firms. Probably, 

exporting firms learnt useful lessons from their foreign clients. It could also be that exporting firms 

operate with higher technology to satisfy the stringent but profitable requirements of foreign 

markets. They also learn to meet orders on time and to guarantee commodity quality in competitive 

markets. Moreover, firms with high TFP self-select into export markets. Nevertheless, as discussed 

earlier, self-selection and learning-by-exporting are not mutually exclusive. High TFP firms with 

access to export markets could maintain better TFP because of acquaintance with exporting 

(Fernandes, 2008). Montalbano and Nenci (2019) find exporting status to promote TFP in medium 

firms. However, exporting status has no significant effect on TFP in small and large firms.  

TFP was reported to decrease in Nairobi, Central and Coast regions relative to the Nyanza region 

in medium-sized firms. Probably, the business environment in these sub-sectors was less 

conducive compared to that of the Nyanza region. With regards to sub-sector dummies, TFP was 

found to increase in the food sub-sector relative to the chemicals, pharmaceuticals and plastics 

sub-sector in small firms. This suggests that the business environment could be more conducive in 

the food sub-sector compared to the chemicals, pharmaceuticals and plastics sub-sector in small 

firms. 

3.5 Summary, Conclusion, Policy Implication and Areas for Further Research 

Summary and Conclusion 

Energy efficiency is considered to be the best approach for dealing with energy-use-related issues. 

However, there is concern among economists on the firm productivity outcome of energy 

efficiency. This study used an unbalanced micro-panel for the years 2007, 2013 and 2018 got from 

the World Bank Enterprise Survey (WBES) to measure energy intensity and TFP and to test energy 

efficiency and TFP relation in Kenya’s manufacturing sector.  

Given that Kenya’s manufacturing sector is comprised of several sub-sectors, average energy 

intensity scores were summarized by sub-sectors. The sub-sectors of concern were: the chemicals, 

pharmaceuticals and plastics sub-sector, food sub-sector, textiles and garments sub-sector and 

paper and other manufacturing sub-sector. Energy intensity was largest in the food sub-sector at 

0.413 followed by the paper and other manufacturing sub-sector at 0.225. The chemicals, 

pharmaceuticals and plastics had a score of 0.120. The textile and garments sub-sector had the 
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least energy intensity score of 0.064. Further analysis of the capital intensity and output value 

relation with energy intensity revealed that in general, energy intensity had a significant positive 

correlation with capital intensity. With regards to the value of output, energy intensity had a 

significant negative correlation with the value of output. The results indicate that large capital 

investment did not translate to efficient energy use. However, the production of a higher level of 

output was accompanied by efficient energy use. 

The study estimated TFP by use of the Levinsohn-Petrin (LP) estimation algorithm. The average 

TFP in the chemicals, pharmaceuticals and plastics was 3.071, food 2.925, paper and other 

manufacturing 2.722 and textiles and garments 2.079. The study further established the level of 

heterogeneity of TFP in the Kenyan manufacturing sector by providing distributions of TFP for 

each sub-sector. The paper and other manufacturing and chemicals, plastics and pharmaceuticals 

sub-sectors had tightly dispersed distribution plots, implying that there was less heterogeneity in 

productivity in these sub-sectors. The distribution TFP in the food sub-sector had a tight dispersion 

but was lower than the paper and other manufacturing and chemicals, pharmaceuticals and plastics 

sub-sectors. The textiles and garments sub-sector had widely dispersed distribution plots, 

particularly on the lower parts of the plot and with a sizable density below the mean. This signalled 

more heterogeneity in TFP, implying that there coexisted high-productivity and low-productivity 

firms in this sub-sector. Such a dispersed distribution signals the existence of rigidities or other 

distortions that hinder the efficient allocation of resources within a sub-sector. Further, results 

showed heterogeneity in average firm-level TFP across the different firm-size categories for each 

sub-sector and different age categories for each sub-sector. 

In the evaluation of the effect of energy efficiency on productivity, the study adopted panel GMM 

to deal with potential endogeneity resulting from unobserved heterogeneity and feedback 

causality. Energy efficiency was found to significantly affect TFP in the Kenyan manufacturing 

sector. Higher energy efficiency was related to higher TFP. The finding was in line with the Porter 

Hypothesis. Capital intensity influenced TFP positively. This signals that capital deepening and 

widening had a favourable effect on TFP.  

Firm age was found to positively influence TFP, a finding that was in line with the Jovanovic 

(1982) theory. The outcome can also be explained by learning-by-doing effects. Firm size was 

found to positively influence TFP, a finding consistent with the Jovanovic (1982) theory. It is also 
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probable that large firms have better access to credit which they used to acquire new and advanced 

technologies and to train their employees, thereby boosting productivity. The top manager’s 

experience positively influenced TFP. A top manager’s experience is an indicator of management 

ability and can potentially lead to higher TFP. The learning-by-doing effect associated with top 

managers with high experience could also be at play in Kenya’s manufacturing sector. TFP was 

found to decrease in 2013 and 2018 relative to 2007. This suggests that the business environment 

for the Kenyan manufacturing sector could have been less favourable in 2013 and 2018 compared 

to 2007.  

Separate regressions for the manufacturing sector by sub-sector and firm sizes were performed to 

take account of heterogeneity. The sub-sectors of concern were: textiles and garments, food and 

paper and other manufacturing sub-sectors. The chemicals, pharmaceuticals and plastics sub-

sector had low sample sizes and the estimation failed convergence tests. The sub-sector was 

therefore dropped. Energy efficiency was found to positively influence TFP across all the sub-

sectors. Energy efficiency was linked to high TFP. This was consistent with the Porter Hypothesis. 

A positive effect of capital intensity on TFP was found in the food and textile and garments sub-

sectors. This indicates that high capital investments boosted TFP. However, in the paper and other 

manufacturing sub-sector, it was found to have a negative influence. 

Firm age was found to positively influence TFP in the food and paper and other manufacturing 

sub-sectors. This can be explained by learning-by-doing effects. Firm size was reported to promote 

TFP in the paper and other manufacturing sub-sector. Probably, large firms had better access to 

credit which helped them acquire better technologies and train their staff, thereby enhancing TFP. 

Foreign ownership was found to boost TFP in the textiles and garments sub-sector. Probably, 

foreign-owned firms had some cost advantage over local firms. Exporting status was found to 

promote TFP in the textile and garments sub-sector. Probably, exporting firms in this sub-sector 

learnt better ways to produce from export markets. R&D was found to enhance TFP in the textile 

and garments sub-sector. This indicates that through R&D, there are TFP premiums of process and 

product innovations.  R&D activities could also have improved the absorptive capacity of firms. 

TFP was found to decline in 2013 relative to 2007 in the food and textiles and garments sub-

sectors. This indicates that the business environment for the two sub-sectors was less conducive in 

2013 compared to 2007. 



126 

 

In the firm size analysis, sizes of interest were: small, medium and large. Energy efficiency had a 

positive influence on TFP in small and medium firms. High energy efficiency was associated with 

TFP premiums in these firm sizes. Capital intensity was found to positively influence TFP across 

all size categories. Capital deepening and widening had favourable effects on TFP. There were 

mixed findings on the effect of firm age on TFP. While firm age positively influenced TFP in small 

and large firms, it had a negative effect in medium firms. Younger firms had higher TFP than old 

firms in the medium-size category. Probably, younger firms had recent and advanced technologies. 

There is a need for older firms to adopt newer technologies and overcome inertia to boost 

productivity. Better access to credit could explain the outcome in small and large firms.  

Foreign ownership was found to positively affect TFP in medium firms. Foreign-owned firms 

could be having some cost advantage over domestic firms, which promoted TFP. Small exporting 

firms were found to have higher TFP. They probably learnt about new technologies from their 

counterparts.  

Policy Implication 

In general, higher energy efficiency was found to be related to stronger TFP. The result reveals 

that policies to promote energy efficiency also promote firm productivity contrary to fears in some 

quarters. There is a need for the manufacturing sector to enhance energy efficiency through 

technological innovation. The National Treasury and Planning could provide a platform where 

manufacturing firms get credit at a low-interest rate to help them acquire new technologies. The 

government needs to devise policies that increase foreign investments in the manufacturing sector 

as this could promote the flow of knowledge and technological progress. Exporting has the same 

effect and should be promoted by the Ministry of Industrialization, Trade and Enterprise 

Development. Through exporting, the sector improves energy efficiency by learning-by-exporting 

which leads to improvement in TFP. Policies that help in the dissemination of information 

regarding energy efficiency and potential benefits such as improvement in TFP should also be 

formulated. Incorporating productivity benefits in the energy efficiency measures could make 

them even more cost-effective.  

More policies to enhance TFP can be drawn from the findings of the control covariates. The study 

established strong heterogeneity by sub-sector and firm sizes revealing that there can be no 

common solution across the sub-sectors and firm size categories. Policies to improve productivity 



127 

 

should therefore be sub-sector and firm size specific. Capital intensity was in general found to 

positively affect TFP, signalling that capital deepening and widening provides a viable channel to 

promote productivity. This study recommends the National Treasury and Planning to develop 

policies that increase the uptake of capital, especially technologically superior investments 

associated with modern and advanced technologies and innovations, be designed.  

Firm age had a positive influence on TFP in the majority of the sub-sectors and firm sizes, implying 

that old firms enjoy the gains of learning-by-doing effects and better technology. However, in the 

medium firms, firm age was found to negatively influence firm-level TFP, implying that young 

firms enjoy the benefits of recent and advanced technologies and flexible working structures. This 

study recommends that policies encouraging startups for instance through access to formal credit 

at ease be designed by the Ministry of Industrialization, Trade and Enterprise Development. Top 

manager’s experience positively affected TFP in the overall model. This study recommends 

manufacturing firms to develop structures that continuously equip staff with formal training to 

sharpen their skills. 

Foreign ownership positively influenced TFP in the textile and garments sub-sector and the 

medium firms. This study recommends that policies that facilitate an increase in the number of 

foreign investors be designed by the Ministry of Industrialization, Trade and Enterprise 

Development.  Exporting was found to positively affect TFP in the textile and garments sub-sector 

and small firms. The insignificant effect of exporting on TFP across other sub-sectors and medium 

and large-size firms could be a result of declining manufacturing sector export performance. Since 

exports create learning-by-exporting effects, the study recommends the promotion of 

manufacturing sector exports by the Ministry of Industrialization, Trade and Enterprise 

Development. 

Limitations of the Study 

The chemicals, pharmaceuticals and plastics had a low sample size and thus failed convergence 

tests in the estimation of the effect of energy efficiency on TFP. This sub-sector was therefore 

dropped in the analysis. 

Future Research 
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Given that policies to improve energy efficiency could also promote TFP, further research should 

seek to understand why in many cases uptake of energy efficiency measures is low even though 

energy efficiency has TFP premiums. Policies from this research may help remove impediments 

to energy efficiency in Kenya’s manufacturing sector. In addition, there is a need to extend this 

research to the investigation of how energy efficiency affects profitability in Kenya’s 

manufacturing sector. This analysis is important given the huge sunk cost of acquiring energy-

efficient technologies. 
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15. CHAPTER FOUR: ENERGY AND NON-ENERGY INPUT SUBSTITUTION IN 

KENYA’S MANUFACTURING SECTOR 

16. ABSTRACT 

Energy substitution is viewed as one of the pivotal processes in reducing energy consumption. 

Debate on the direction and extent of substitution has been wide but with little consensus. This 

study employed the translog cost function at the sub-sector and firm size levels to analyze energy 

and non-energy input substitution possibilities in Kenya’s manufacturing sector. The iterated 

seemingly unrelated regression technique was applied on a micro panel drawn from World Bank 

Enterprise Survey and Energy and Petroleum Regulatory Authority for the years 2007, 2013 and 

2018. The sub-sectors of concern were: chemicals, pharmaceuticals and plastics, food, textile and 

garments and paper and other manufacturing sub-sector while the firm sizes of interest were small, 

medium and large. The overall sector was also included for robustness check. The findings 

revealed that in general, energy is the highest price-sensitive input across sub-sectors and firm 

sizes. The Morishima elasticities of substitution revealed that capital and labour could substitute 

energy across all sub-sectors and firm sizes. Substitutability of capital for energy increased with 

firm size. However, no consistent pattern was found in the substitutability of labour for energy. 

Findings suggest that energy price policies could be important in reducing energy use and in 

boosting capital investments and employment. 
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4.1 Introduction 

The current mode of industrial production is heavily reliant on non-renewable energy. The use of 

this form of energy has several attendant problems that include resource depletion, environmental 

pollution and a limit on firm competitiveness. Reliance on non-renewable energy resources could 

be reduced through two approaches: technical change and input substitution (Fiorito and van den 

Bergh, 2015). Technical change is achieved through advancements in the efficiency of input use. 

Input substitution possibilities are often assessed through the evaluation of elasticities of 

substitution. The evaluation quantifies the extent of flexibility of an economy in producing output 

with the application of various input combinations.  

Globally, the debate on whether energy and non-energy inputs, particularly capital and labour, are 

substitutes or complements took centre stage following the oil price shocks in the 1970s (Haller 

and Hyland, 2014). It has further been stimulated by rising environmental consciousness in 

societies and governments (Koetse et al., 2008). Early studies in this regard were motivated by the 

need to determine optimal energy taxes and evaluate the effect of oil price shocks on economies. 

Recent studies on energy and non-energy input substitution are driven by the necessity to cut 

energy use and harmful emissions stemming from the combustion of fossil fuels. They are also 

driven by a desire to predict future energy demand and to identify the implication of an 

environmental policy, such as energy tax, on the utilization of energy and non-energy inputs 

(Arnberg and Bjorner, 2007; Fiorito and van den Bergh, 2015).  

An assessment of the energy and non-energy inputs substitution possibilities focuses on assessing 

how demand for non-energy inputs reacts to variations in energy prices. Energy price uncertainties 

significantly affect the selection of other factor inputs and this has effects on output, productivity, 

capacity utilization and prices of goods and services (Apostolakis, 1990).  If capital and labour are 

substitutes for energy, a rise in energy price, either due to growing energy scarcity or high cost of 

energy production and distribution, will lead to more demand for capital and labour inputs to 

compensate for a reduction in energy use (Apostolakis, 1990; Berndt and Wood, 1975). In the 

context of production functions, demand for more capital in reaction to high energy prices is 

captured by the adoption of energy-saving technologies (Koetse et al., 2008). Therefore, the 

substitution of capital and labour for energy could result in more capital formation and, thereby an 
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improvement in labour productivity, more employment of labour and scarce energy resources 

cannot form a major bottleneck to growth (Apostolakis, 1990; Berndt and Wood, 1975).   

On the other hand, if capital and labour complement energy in production, a rise in energy price 

would reduce demand for not only energy but also capital and labour (Apostolakis, 1990). This 

would imply a reduction in capital formation and productivity, which heavily depends on capital 

accumulation and a decline in employment. Ultimately output would also decline (Arnberg and 

Bjorner, 2007; Haller and Hyland, 2014). According to Apostolakis (1990) and Berndt and Wood 

(1975), it is also possible that energy and non-energy inputs could have limited substitution 

possibilities which means that adjustments by the manufacturing sector to higher energy prices 

may be challenging, that cost of production may increase sharply, that the constitution of output 

might move away from energy-intensive goods and that considerable adjustments in the 

underlying technological structure may be needed. Therefore, the enquiry of whether energy and 

non-energy inputs are substitutes or complements is central, particularly following the high energy 

prices and global financial and economic crisis in the last decade (Fiorito and van den Bergh, 

2015). It has important policy implications on capital intensity, rate of capital formation, 

investment behaviour, employment and environment.  

As discussed earlier, the Kenyan manufacturing sector is one of the central sectors of the economy 

both in its economy-wide contribution and final energy consumption. Even though the total 

requirement of electricity in the country is almost fully met by domestic production (for example, 

98.82 percent in 2020), the total fuel requirement is met from imports (Republic of Kenya, 2021).  

This contributes significantly to the country’s total import bill. For instance, in 2020, from an 

import bill of Ksh. 1643.6 billion, oil imports, even though severely reduced by COVID-19, 

accounted for Ksh. 201.1 billion, which was 12.24 percent of the total import bill (Republic of 

Kenya, 2021). With total export earnings of Ksh. 567.37 billion in the same year, it implies that 

35.45 percent of the export earnings went to cover the oil import bill. Further, the high oil import 

bill contributed significantly to the balance of trade deficit in the country, which stood at Ksh. 

999.85 billion in that year (Republic of Kenya, 2021). 

The heavy reliance on energy by this sector constrains its growth by increasing the total cost of 

production. For instance, in the textile and garments sub-sector, the cost of electricity can increase 

to a high of 40 percent of the unit cost of manufacture (KAM, 2018b). In the metal and allied sub-
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sector, electricity cost averages between 40-50 percent of the total conversion cost (KAM, 2018b). 

The high electricity cost is in part due to high tariffs. For example, in 2018, the manufacturing 

sector electricity tariff in Kenya was third-highest after that of Rwanda and Burundi in the East 

Africa region as shown in Table 4.1. 

Table 4.1:Manufacturing electricity tariffs in the East Africa region, 2018 

 Ethiopia Tanzania Sudan Uganda Kenya Rwanda Burundi 

Tariff (Ksh/KWh) 1.66 6.88 10.58 12.26 13.65 13.82 20.11 

Source: KAM (2019). 

Dependence on petroleum fuels by this sector makes it vulnerable to price volatility from unstable 

global oil supplies and economic sanctions (Republic of Kenya, 2018). The high energy prices and 

associated high total cost of production results in high product prices. Moreover, the electricity 

supply in the country is often characterized by frequent blackouts and low voltage which results 

in losses in production and sales and the breakdown of equipment (KAM, 2018a). Ultimately, the 

shortcomings impact negatively on the cost of production and undermine the competitiveness of 

Kenya’s manufactured goods locally and internationally (KAM, 2018a).  

The energy situation in Kenya begs the question of whether non-energy inputs could substitute 

energy inputs in the manufacturing sector. The increased global concern over the effects of energy 

use on environmental quality (depletion of energy resources and release of greenhouse gases, 

GHGs), further fuels this debate. Kenya’s input to GHG emissions on a universal level is small, 

but the country’s fast-increasing populace and enlarging economic activity can result in a 

substantial upsurge in its future GHG levels. This would aggravate climate change (Dalla Longa 

and van der Zwaan, 2017). Kenya in its Intended Nationally Determined Contribution (INDC) has 

undertaken to cut its GHG emissions by 30 percent in 2030 (Republic of Kenya, 2015). The 

undertaking is in reaction to resolutions agreed upon at the 21st sitting of the Conference of the 

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) of 2015 in 

Paris (Dalla Longa and van der Zwaan, 2017). 

The World Development Indicators show that in Kenya, the majority of carbon dioxide emissions, 

which are the main GHG emissions, are from liquid fuel combustion. For instance, over the last 

decade, carbon dioxide emissions from fuel consumption accounted on average 79 percent of the 

total carbon dioxide emissions in the country. Therefore, analysis of the energy and non-energy 
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input substitution potential in the manufacturing sector is also important in indicating whether 

Kenya can meet its emission reduction commitment by substituting capital or labour for energy. 

This is on account that the manufacturing sector is one of the highest consumers of liquid fuel in 

the country.  

The ability to substitute non-energy inputs for energy is likely to vary across sub-sectors and firm 

sizes. This is because production technology varies across sub-sectors and firm sizes. Therefore, 

information on sub-sector and firm-size energy and non-energy input substitution possibilities may 

be of policy relevance. There is a need to investigate the effect of a policy instrument on various 

sub-sectors and firms of different sizes since there may be heterogeneity in their reaction to energy 

prices. The sub-sectors of concern were: chemicals, pharmaceuticals and plastics, food, textile and 

garments and paper and other manufacturing sub-sectors. The firm sizes of interest were small, 

medium and large. 

4.1.1 Statement of the Problem 

The global concerns about the implications of energy use in production on environmental quality 

and the manufacturing sector’s competitiveness have fueled debate on whether non-energy inputs 

could substitute energy in production.  

The question has been investigated extensively with mixed findings. Starting with energy-capital 

substitution possibilities, Koetse et al. (2008), Onuonga et al. (2011), Smyth et al. (2011), 

Krishnapillai and Thompson (2012), Zha and Ding (2014), Haller and Hyland (2014) and Wang 

et al. (2019) have found capital to be a substitute for energy. Others such as Arnberg and Bjorner, 

(2007), Tovar and Iglesias (2013), Fiorito and van den Bergh (2015) and Deininger et al. (2018) 

have found capital to be a complement for energy. Only a few studies have examined energy-

labour substitution possibilities. The majority of these studies for instance Onuonga et al. (2011), 

Symth, et al. (2011) and Dissou et al. (2014) have established that labour is a substitute for energy. 

In contrast, Dahl and Erdogan (2000), Zha et al. (2012) and Wang et al. (2019) have found labour 

to be a complement for energy. 

The mixed findings suggest that energy and non-energy substitution possibilities in production is 

a worthy research theme, especially in sub-Saharan Africa where evidence is scanty. In Kenya, 

Onuonga, et al. (2011) have found capital and labour to be substitutes for energy using macro time-

series data. However, macro data suffer from aggregation bias and capture more than technical 
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substitution (Leon-Ledesma et al., 2010). Micro-level data is arguably unbiased. In addition, the 

study does not capture recent substitution potential, yet production relationships adjust over time, 

under the stimulation of shifting preferences or tastes and technological change (Fiorito and van 

den Bergh, 2015). More recent studies are needed to inform on recent developments with 

implications on energy and non-energy input substitution possibilities in the manufacturing sector. 

Further, the study fails to assess whether the substitution potential varies across sub-sectors and 

firm sizes. Such analysis is important because different sub-sectors and sizes could be operating 

at varying technologies. This analysis is useful in identifying the sub-sectors and firm sizes that 

are more flexible in altering their input mix following changes in factor prices.  

This study sought to fill the existing research gaps by analysing energy and non-energy inputs 

substitution potential inputs in the Kenyan manufacturing sector at sub-sector and firm size levels 

using the most recent firm-level data.  

4.1.2 Research Questions 

The study addressed the following questions 

i. What are the energy-capital substitution possibilities in Kenya’s manufacturing sector? 

ii. What are the energy-labour substitution possibilities in Kenya’s manufacturing sector? 

iii. How do energy and non-energy inputs substitution possibilities vary across firms of 

different sizes in Kenya’s manufacturing sector? 

4.1.3 Objectives of the Study 

The general objective of the study was to establish the energy and non-energy inputs substitution 

possibilities in Kenya’s manufacturing sector. Specifically, the study sought to analyze: 

i. The energy-capital substitution possibilities in Kenya’s manufacturing sector. 

ii. The energy-labour substitution possibilities in Kenya’s manufacturing sector. 

iii. Whether energy and non-energy substitution possibilities vary across firm sizes in Kenya’s 

manufacturing sector. 

4.1.4 Significance of the Study 

This research furthers the literature on input substitution by assessing energy and non-energy 

inputs substitution potential using recent surveys of Kenyan manufacturing firms. This is a 

developing economy in sub-Saharan Africa where analytical evidence on the matter is scant. 
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Second, by using firm-level data, the research adds to the current literature by carrying out 

estimation at the decision-making unit (the firm) where evidence is scanty. Third, this research 

furthers extant literature by presenting sub-sector as well as firm-size level evidence on energy 

and non-energy substitution potential. This is important in taking into account heterogeneity in 

production. Lastly, the findings of the study could inform the National Treasury and Planning and 

EPRA on the implications of changing energy prices and macroeconomic implications of energy 

price shocks on investment behaviour, employment and environmental quality. 

4.2 Literature Review 

4.2.1 Theoretical Literature Review 

Theoretical literature shows that input substitution has extensively been a matter of intense 

controversy among economists. This is underscored by the Georgescu-Roegen versus 

Solow/Stiglitz debate (Daly 1997a, b; Stiglitz, 1997). At the centre of the disagreement was 

whether the energy and capital relation was of substitution or complementary nature. The concern 

on this subject dates back to the theoretical works of Georgescu-Roegen (1971) who opined that 

energy and materials were constraining factors to economic growth because of their exhaustible 

nature. Georgescu in the fund-flow model of the production process argued that what is often 

referred to as “production” is in real sense transformation - of natural resources into valuable goods 

and waste products (Daly, 1997b).  

In this modelling, labour and capital inputs are opined to be agents of transformation, while natural 

resources are observed to be the material to be transformed. Therefore, one agent of transformation 

can often be substituted for another, or one natural resource can be substituted for another, but the 

relationship between agents of transformation and natural resources is primarily one of a 

complementary nature, not of a substitution nature (Daly, 1997b). However, neoclassical 

economists led by Stiglitz (1974) opposed the suggestion that limited natural resources present a 

constraint to growth. According to Stiglitz (1974), there exist at least two economic forces to offset 

the limits compelled by natural resources: technical change and substitution of capital for natural 

resources. 

More specifically, machines that are made from fairly ample resources can cut the wastage of 

scanty natural resources. Technical change, some of which results from investments in research 

and development (R&D), which is a type of capital, can help moderate the quantities of physical 
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capital and natural resources needed to produce output (Stiglitz, 1997). In general, economists 

show confidence in the reduction of energy along with other material intensity through these 

economic forces, which are observed to be steered to a large extent by price mechanisms (Dasgupta 

and Heal, 1974; Stiglitz, 1974). Consequently, the neoclassical production framework forms the 

basis for analysing the energy and non-energy input substitution possibilities in Kenya’s 

manufacturing firms. Under this framework, it is possible to assess how demand for inputs changes 

following changes in the price of the inputs. According to Sakai (1973), variation in the price of 

one input, j, brings a change in the demand for input i by changing the input price ratios which 

prompts technical substitution among the inputs along the old isoquant frontier. 

4.2.2 Empirical Literature Review 

Considerable effort has been employed in analysing energy and non-energy input substitution 

possibilities. Mixed findings have been found across various studies. This study focuses on 

reviewing three strands of literature: one showing energy-capital substitution possibilities, another 

one showing energy-labour substitution possibilities and a third one showing whether firm size 

matters in the relationship between energy and non-energy inputs. Beginning with the first strand 

of literature, Zha et al. (2012) by adopting a translog cost model in the Chinese electricity industry 

use annual time-series data obtained from various China Statistical Yearbooks for the period 1985-

2007. Capital is found to be a substitute for energy. However, the results obtained by this study 

are likely to suffer from aggregation bias. According to Solow (1987), aggregation bias may be a 

result of the use of aggregate data. This is because estimates of factor substitutability encapsulate 

more than technical substitution. For instance, Arnberg (2007) argues that what may appear as 

factor substitution at the aggregate level may be arising from demand effects, which cause 

adjustments in the output shares of firms. Solow (1987) therefore holds that input substitution is a 

microeconomic effect that is best analysed using micro-level data as variations in energy intensities 

are wide and aggregate outcomes will be propelled by composition effects. Consequently, this 

study employs a micro-panel of firm-level data. 

Smyth et al. (2011) employ a translog production function and annual time series data drawn from 

China Statistical Yearbooks for the period 1978-2007 in China’s energy-intensive iron and steel 

sector. Findings reveal a strong substitution possibility between energy and capital. Estimates from 

a production function are however subject to bias given that input factors are highly likely to be 
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endogenous (Koetse et al., 2008). The study has not corrected this problem and thus estimates are 

likely to be biased. In the Chinese power sector, Zha and Ding (2014) employ a translog cost 

function and aggregate time-series data for the period 1995-2008 drawn from various statistical 

Yearbooks. Results of the study show that energy and capital substitute each other.  

Still, in China and in a more recent study, Wang et al. (2019) also adopt the translog cost function 

to examine the elasticity of factor substitution and the determinants of energy intensity in China’s 

Industry. The study focuses on three sectors namely the mining and quarrying industry, the 

manufacturing industry and the electricity, gas and water industry for the period 1984-2011. 

Aggregate time series data is drawn from various China Statistical Yearbooks. The study finds 

capital and energy to be very strong substitutes. Studies by Symth et al. (2011), Zha and Ding 

(2014) and Wang et al. (2019) also use aggregate data and their estimates are also likely to suffer 

from aggregation bias. 

By use of a micro panel for the period 1991 to 2009, Haller and Hyland (2014) employ a translog 

cost function in Irish manufacturing firms. The findings of the study reveal that energy and capital 

substitute each other. A similar outcome has been found by Krishnapillai and Thompson (2012) in 

the U.S manufacturing industry. The study adopts a translog production function and cross-section 

data obtained from the 2007 U.S. Census Bureau report. Estimates from a production function in 

this study are also likely to be biased because the factor inputs used in the function are likely to be 

endogenous.   

By use of panel data running from 1993 to 1997 sourced from energy surveys conducted by the 

Denmark Statistics, Arnberg and Bjorner (2007) employ a translog cost function and a linear logit 

function in the Denmark industrial companies. In both models, energy and capital are observed to 

be complements. In a more recent study using a similar modelling approach, Deigner et al. (2018) 

use a micro panel running from 1997 to 2008 to estimate energy-capital substitution in Swiss, 

manufacturing companies. The study finds energy and capital to substitute each other in the less 

energy-intensive companies, but in the more energy-intensive companies, energy and capital are 

found to complement each other. Fiorito and van den Bergh (2015) apply a translog cost function 

in seven OECD countries and aggregate time-series data during the period 1970-2005. The study 

finds energy and capital to be complements. As observed earlier, the use of aggregate data is likely 
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to lead to estimates with aggregation bias, which this study seeks to circumvent by using firm-

level data.  

Turning to Kenya, Onuonga, et al. (2011) apply a translog cost function and aggregate time-series 

data for the period 1970-2005. The study finds energy to be a substitute for capital. However, the 

use of aggregate data makes estimates of this study to be susceptible to aggregation bias. In 

addition, given that some years have passed since the study was done, its findings may not correctly 

provide the current energy-capital substitution possibilities. This is because production 

relationships adjust over time, under the stimulation of shifting preferences or tastes and 

technological change (Fiorito and van den Bergh, 2015). This study seeks to provide evidence for 

energy-capital substitution possibilities for Kenyan manufacturing firms using recent micro firm-

level panel data. 

Moving to the second strand of literature, Zha et al. (2012) employ a translog cost function and 

aggregate time-series data obtained from various China Statistical Yearbooks for the period 1985-

2007 in China’s electricity industry. The findings of the study show that labour is a complement 

for energy. However, given that the study uses aggregate time-series data, estimates are highly 

likely to suffer from aggregation bias. This study circumvents this problem by using micro-level 

panel data. Smyth et al. (2011) apply a translog production function and annual time series data 

drawn from China’s statistical Yearbooks for the period 1978-2007 in China’s energy-intensive 

iron and steel sector. The study finds energy and labour to be substitutes. These estimates are 

however likely to be biased given that factor inputs could be potentially endogenous. This study 

shuns the problem of endogeneity by employing a cost function. In China’s power sector, Zha and 

Ding (2014) establish that energy and labour are weak substitutes. Still, in China, Wang et al. 

(2019) establish that energy and labour complement each other in the manufacturing industry. 

Estimates of energy-capital substitution possibilities obtained by Smyth et al. (2011), Zha and 

Ding (2014) and Wang et al. (2019) are also susceptible to aggregation bias given that they use 

aggregate time-series data. This study bypasses this potential problem by using micro panel data. 

Haller and Hyland (2014) establish that energy and labour are substitutes in the Irish 

manufacturing firms, an outcome that is similar to that of Krishnapillai and Thompson (2012) in 

U.S manufacturing. However, estimates of energy-labour substitution possibilities obtained by 

Krishnapillai and Thompson (2012) are also likely to be biased given that the study applies a 
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production function and input factors are subject to endogeneity. This study avoids the problem of 

endogeneity by using a cost function. In the Swiss manufacturing firms, Deininger et al. (2018) 

find that energy and labour substitute each other. Dissou et al. (2015) apply a constant elasticity 

of substitution (CES) production function and time-series data running for the period 1962-1997 

in the Canadian manufacturing industries. The study reports that energy and labour substitute each 

other. However, because the study employs time-series data, estimates of energy-capital 

substitution have a likelihood of suffering from aggregation bias. Further, the estimates are 

potentially biased because factor inputs applied in a production function are likely to be 

endogenous. 

For the Kenyan case, Onuonga et al. (2011) establish that energy and labour are substitutes. 

Nevertheless, these estimates are likely to suffer from aggregation bias. Further, they do not show 

the current energy-labour substitution possibilities as they rely on old data, yet as observed earlier, 

production relationships vary over time, under the influence of varying preferences or tastes and 

technological change. To avoid potential aggregation bias and to provide current energy-labour 

substitution possibilities, this study employs a panel of recent firm-level data. 

On the third strand of literature, Nguyen and Reznek (1993) seek to analyse possible variation in 

input substitution in U. S’s small and large manufacturing firms using cross-section data retrieved 

from the Census Bureau’s LRD for 1977 and 1982. A translog production function is adopted for 

five four-digit industries. The Findings of the study show that capital and materials and materials 

and labour substitute each other. The study finds that the magnitude of substitution in the three 

inputs is common through all firm sizes, implying that small enterprises are as flexible as large 

enterprises. However, estimates from this study are prone to bias given that factor inputs applied 

in the translog production function are likely to be endogenous. Further, this study does not handle 

energy as a separate input in the production process and thus findings do not reveal the energy and 

non-energy inputs relation.  

Nguyen and Streitwieser (1999) seek to establish whether plant size matters in U. S’s 

manufacturing using the 1991 Manufacturing Energy Consumption Survey and 1991 Annual 

Survey of manufacturers cross-section data set. A translog production function is adopted. 

Findings show that energy and capital and energy and labour are substitutable to one another. The 

magnitude of substitution among the inputs is found to be generally similar across all plant sizes, 
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implying that small and large plants are equally flexible in substituting factor inputs. Estimates 

from this study are also prone to bias given that factor inputs applied in the translog production 

function are likely to be endogenous. 

The findings of Nguyen and Streitwieser (1999) are corroborated by the results of Haller and 

Hyland (2014) in Irish manufacturing. The study finds no consistent pattern of elasticity of capital 

with respect to energy prices in Irish manufacturing. Bardazzi et al. (2015) seek to establish 

whether firm size matters in reaction to energy prices by Italian manufacturing firms. The study 

applies a translog cost function and an unbalanced panel drawn from the Italian Enterprise 

Integrated and Systematized Information System and Manufacturing Product Survey for the years 

2000-2005. Firms are categorized into small and medium firms and large firms. The study finds 

capital to be a substitute for energy and labour to be a substitute for energy. Large enterprises have 

higher elasticities of capital and labour with respect to changes in energy prices, which means that 

large enterprises are more flexible in factor substitution than small and medium enterprises. While 

Bardazzi et al. (2015) findings provide valuable insights into the issue of energy and non-energy 

substitution across firm sizes, the failure to treat small and medium establishments as separate 

enterprises does not permit analysis of whether factor substitution varies across the two sizes.  

Reviewed studies show mixed findings for energy-capital and energy-labour substitution 

possibilities. Some researchers have attempted to reconcile the varying findings. First, differences 

in findings have been attributed to differences in data types (Apostolakis, 1990). Estimation based 

on cross-sectional data is considered to measure the long-run relationship between inputs and is 

thus argued to show a substitution relationship between energy and non-energy inputs. In contrast, 

time-series data is argued to seize short-run factor relationships since adjustments to factor prices 

take time (Solow, 1987). Studies using this data are thus argued to find that energy and non-energy 

inputs have a complementary relationship.  

The idea that energy and non-energy inputs complement each other in the short run is supported 

by the results of Fiorito and van den Bergh (2015) for the energy-capital substitution and Wang et 

al. (2019) for the energy-labour substitution. That of energy and non-energy inputs being 

substitutes is supported by the results of Krishnapillai and Thompson (2012). However, the avenue 

for reconciliation based on the type of data used is not conclusive as there are studies using time 

series data such as Smyth et al. (2011), Zha and Ding (2014), Onuonga et al. (2011) for energy-
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capital substitution and Wang et al. (2019) for energy-labour substitution which find energy and 

non-energy inputs to substitute each other. Further, some studies which use cross-sectional data 

such as Arnberg and Bjorner (2007) find the energy and non-energy inputs to complement each 

other.  

A second avenue for reconciliation of the varying results is provided by Berndt and Wood (1979), 

who note that variations in findings can be because of the number of factor inputs incorporated in 

the model. The study holds that studies that involve three-factor inputs (that is capital, labour and 

energy) report substitutability, for example, between energy and capital while those that include 

materials as a fourth factor report a complementary relationship. Although this argument is 

theoretically convincing, there exist some studies whose findings are not consistent with this 

theoretical argument. For instance, Haller and Hyland (2014) establish that energy and capital 

substitute each other yet the study adopts four-factor inputs in its cost function and Arnberg and 

Bjorner (2007) establish that energy and capital are complements even though the study adopts 

three-factor inputs.  This means that the theoretical argument does not tell the story. 

A third avenue is the measurement of factor inputs. Specifically, the disaggregation of capital into 

physical capital and working capital is argued to provide differences in findings. Physical capital 

implies real machinery, while working capital implies other forms of capital, such as buildings and 

constructions, land and monetary assets (Koetse et al. 2008). Solow (1987) however notes that 

such disaggregation has failed to provide clear reconciliation. In an attempt to provide more 

convincing avenues for variations in findings, Koetse et al. (2008) provide a meta-analysis to 

assess the capital-energy substitution in North America and Europe using different data and time. 

The study finds that heterogeneity in findings can be explained by differences in the measurement 

of energy, where aggregate energy information is used or a distinction between fuel and electricity 

is made. Other reasons for heterogeneity provided by the study are variations in model 

specification, location and time. Nevertheless, Zha and Ding (2014) note that sources of 

heterogeneity in findings remain unresolved. This necessitates more analytical elucidation on the 

energy and non-energy input substitution possibilities. This study builds on previous studies to 

analyse energy and non-energy inputs substitution possibilities in Kenya’s manufacturing sector. 
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4.2.3 Overview of Literature 

The theoretical literature on energy and non-energy substitution potential is mainly anchored on 

the neoclassical production framework. The framework shows how firms change energy and non-

energy input combinations in reaction to varying energy prices. The framework is a departure from 

the conventional view that energy and materials are constraining factors to economic growth 

because these resources are exhaustible. The neoclassical economists oppose the conventional 

view and note that the growth limits compelled by natural resources can be offset by technical 

change and substitution of manmade factors (for example capital) for natural resources. 

The reviewed literature reveals mixed findings on energy and non-energy input substitution 

possibilities. For energy-capital substitution, the majority of the studies, for example, Onuonga et 

al., (2011), Smyth et al. (2011), Krishnapillai and Thompson (2012), Haller and Hyland (2014), 

Zha and Ding (2014), Deigner et al. (2018) and Wang et al., 2019) have found energy and capital 

to substitute each other. In contrast, few studies, for example, Fiorito and van den Bergh (2015) 

have found energy and capital to be complements. On energy-labour substitution, some studies, 

for instance, Onuonga et al. (2011), Smyth et al. (2011), Krishnapillai and Thompson (2012), 

Deininger et al. (2018) and Haller and Hyland (2014) have found energy and labour to be 

substitutes while others such as Dahl and Erdogan (2000) and Wang et al. (2019) have found them 

to be complements. On whether firm size matters in the energy and non-energy input substitution 

possibilities, empirical evidence on this subject is scarce. For the few existing studies, mixed 

findings are found. Nguyen and Streitwieser (1999) and Haller and Hyland (2014) find small firms 

to be as flexible as large firms in substituting non-energy inputs for energy while Bardazzi et al. 

(2015) find larger firms to be more flexible than small and medium establishments. 

The majority of the studies have used a cost function to model energy and non-energy input 

substitution possibilities. However, few have adopted a production function and their estimates are 

potentially biased because input factors used in the production function could be endogenous. 

Applying a cost function overcomes this problem. Moreover, some studies have applied micro-

level data while others have applied aggregate time-series data. Nevertheless, the use of aggregate 

data is observed to provide estimates that suffer from aggregation bias as aggregate data capture 

more than responses to price changes. 
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Finally, some studies have attempted to provide avenues for reconciling differences in findings 

across studies. Among the avenues suggested are the type of data used (Solow, 1987), number of 

factor inputs incorporated in the model (Berndt and Wood, 1979), measurement of factor inputs, 

variations in the model specification (Solow, 1987; Koetse et al., 2008), location of study and 

study period (Koetse et al., 2008). Nevertheless, the source of heterogeneity in findings remains 

contentious. Therefore, the demand for more empirical elucidation on energy and non-energy 

substitution possibility becomes significant. This study locates itself to provide empirical evidence 

for the manufacturing sector in Kenya, where there is a dearth of research in this area. A notable 

existing study for the Kenyan manufacturing sector is by Onuonga et al. (2011). This study is 

however found to have applied aggregate data on a translog cost function and hence findings are 

likely to suffer from aggregation bias. The study also fails to provide empirical analysis at the 

disaggregate sub-sector and firm size levels. The use of a uniform policy instrument may result in 

varying impacts on different subsectors and firm sizes given the heterogeneity in the reaction of 

sub-sectors and firm sizes to varying market conditions. Further, the study does not give the current 

substitution possibilities as it relies on old data. This study addresses the research gap by 

employing the most recent firm-level data on a cost function. The empirical analysis is provided 

at the sub-sector and firm size level. 

4.3 Methodology 

4.3.1 Theoretical Framework 

The study followed the works of Berndt and Wood (1975, 1979) and Tovar and Iglesias (2013) to 

develop a framework for modelling energy and non-energy inputs substitution possibilities. The 

study assumed that manufacturing firms have a twice differentiable, weakly separable and strictly 

quasi concave production function exhibiting the functional relation between output, Q, and inputs 

capital, K, labour, L, and energy, E. The production function takes the following general form: 

Q = f(KLE)           (4.01) 

It was further assumed that the production function is characterized by constant returns to scale, 

separable in factor inputs and any technical change affecting K, L and E is Hicks-neutral. A 

common problem while estimating production functions is that factor inputs are likely to be 

endogenous due to simultaneity bias leading to biased estimates (Koetse, 2008; Haller and Hyland, 

2014). The dual to the production function is a cost function that reflects the production 
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technology. The application of factor prices in the cost function alleviates the problem of 

endogeneity. Hence a cost function is preferable to a production function (Koetse, 2008). The cost 

function takes the following general form: 

C = C( Q, 𝑃𝑘 , 𝑃𝑙 , 𝑃𝑒 , 𝑇)         (4.02) 

where C is the total cost, 𝑃𝑘, 𝑃𝑙 , 𝑃𝑒  are the input prices of K, L and E, respectively and T captures 

Hicks-neutral technical change (changes in output brought about by technological change). In 

minimizing total costs subject to constraints and following Tovar and Iglesias (2013), equation 

(4.02) could be expressed as follows:  

C = C( Q, 𝑃𝑖 , 𝑇)=min𝑖{𝑃′𝑖: 𝑓(𝑖), 𝑖 ≫ 0}       (4.03) 

Where P is a vector of input prices with (𝑃𝑘, 𝑃𝑙 , 𝑃𝑒  )′ ≫ 0, i is input demand and f(∙) is the 

production function. It is assumed that the cost function is homogenous of degree one in input 

prices, quasi-concave, twice differentiable and weakly separable. Further, the function is assumed 

to be non-declining in output and input prices (Haller and Hyland, 2014; Tovar and Iglesias, 2013). 

4.3.2 Analytical Model 

For cost function C to be assessed, a functional form needs to be specified. Following Berndt and 

Wood (1975, 1979), Tovar and Iglesias (2013) and Haller and Hyland (2014), this study adopted 

a transcendental logarithmic (translog) cost function, which was suggested by Christensen et al. 

(1973). The cost function is flexible, twice differentiable and does not demand advance 

assumptions on the link between the factor inputs (Berndt and Wood, 1975; Haller and Hyland, 

2014). The link is established through analysis. The function is expressed as follows: 

ln 𝐶𝑓𝑡 =  𝛼0 +  ∑ 𝛿𝑖
𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 + 

1

2
 ∑ ∑ 𝛼𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 ln 𝑃𝑗𝑓𝑡 + ∑ 𝛽𝑖

𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 ln 𝑄𝑓𝑡 + 𝜏𝑞ln𝑄𝑓𝑡+ 

𝜏𝑞𝑞(ln𝑄)2 + ∑ 𝜇𝑓𝑖
𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡        i,j = k,l,e  i≠ 𝑗      (4.04) 

where ln is the natural log, f indicates firms, i and j represent the three-factor inputs (capital, labour 

and energy) at time t, C is the total cost, Q is output, P is the price of each of the inputs, μ is the 

residual and 𝛼0,  𝛿𝑖 𝛼𝑖𝑗, 𝛽𝑖, 𝜏, and 𝜇𝑓𝑖 are coefficients to be estimated. Efficiency in estimation is 

improved by augmenting the translog cost function with factor share equations as suggested by 

Diewert (1974). Factor share equations are got by differentiating the translog cost function with 

respect to input prices as suggested by Shepard’s lemma. They are provided as follows: 
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𝑆𝑖𝑓𝑡 = 𝛿𝑖 + ∑ 𝛼𝑖𝑗
𝑛
𝑗=1  ln 𝑃𝑗𝑓𝑡+ 𝛽𝑖 ln 𝑄 + 𝜇𝑖𝑓                         (4.05) 

where S indicates factor shares, 𝛿𝑖 and 𝛼𝑖𝑗 are distribution and substitution parameters, respectively 

(Christensen et al., 1973). The distribution parameters measure the change in cost-share in reaction 

to a change in input price as a consequence of factor substitution. The substitution parameter 

reflects the price elasticity of substitution between the various inputs.  

Given that firms differ in various ways, accounting for firm heterogeneity is essential. However, 

according to Haller and Hyland (2014), in the case of joint estimation of cost function and share 

equations, controlling for firm heterogeneity by adding firm-level fixed effects is not 

computationally practical. This is because the intercept in the share equation (𝛿𝑖) is the coefficient 

on price in the translog cost function. Following Iqbal (1986) and Haller and Hyland (2014), this 

study adopted a panel-pooled model and exploited the available data to model firm heterogeneity 

directly by incorporating foreign ownership and exporting status dummies. Further, the study 

included time dummies to capture variations over time. According to Haller and Hyland (2014), 

time dummies provide a straightforward and often applied approach to modelling Hicks-neutral 

change. Controls account for the reality that cost functions are not homogenous across firms, and 

that firms in dissimilar sub-sectors use different production technologies. The resulting cost 

function was expressed as follows: 

ln 𝐶𝑓𝑡 =  𝛼0 +  ∑ 𝛿𝑖
𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 + 

1

2
 ∑ ∑ 𝛼𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 ln 𝑃𝑗𝑓𝑡 + ∑ 𝛽𝑖

𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡 ln 𝑄𝑓𝑡 + 𝜏𝑞ln𝑄𝑓𝑡+ 

𝜏𝑞𝑞(ln𝑄𝑓𝑡)2 + ∑ 𝜇𝑓𝑖
𝑛
𝑖=1 ln 𝑃𝑖𝑓𝑡  + θz𝑍𝑓𝑡 + θ𝛾𝛾𝑡,                i, j = k, l, e  i≠ 𝑗   (4.06) 

where Z is a dummy vector of foreign ownership and exporting status, 𝛾 captures time dummies, 

and 𝜃𝑧 and 𝜃𝛾 are the coefficients to be estimated. The subsequent factor share equations are 

provided as follows: 

𝑆𝑖𝑓 = 𝛿𝑖 + ∑ 𝛼𝑖𝑗
𝑛
𝑗=1  ln 𝑃𝑗𝑓𝑡+ 𝛽𝑖 ln 𝑄𝑓𝑡 + 𝜇𝑖𝑓       (4.07) 

To make certain that the cost function is symmetric and homogenous of degree one in input prices, 

the following constraints are imposed: 

∑ 𝛿𝑖
𝑛
𝑖=1 = 1; ∑ 𝛼𝑖𝑗

𝑛
𝑖−1 = 0; i, j =1,…, n; ∑ 𝛽𝑖 

𝑛
𝑖=1 = 0  (for homogeneity condition) 

𝛼𝑖𝑗= 𝛼𝑗𝑖, i, j = k, l, e; i≠ j          (for symmetry)        (4.08) 
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Equations (4.06) and (4.07) were jointly analysed using Zellner’s iterated seemingly unrelated 

regression (iSUR) method. According to Haller and Hyland (2014), this technique takes care of 

possible correlation between errors in the equations. Given that the factor shares must add up to 

one, one of the factor shares (in this case capital) was arbitrarily dropped and it was calculated as 

a residual. Employing iSUR ensured that the estimated parameters remained unchanged with 

regard to the dropped factor (Haller and Hyland, 2014). 

The joint estimation of the translog cost function and the factor share equations provided the initial 

step of a two-step process. In the second step, elasticities were calculated directly from the 

estimated parameters of the translog cost function and predicted cost shares. The study first 

estimated own - and cross-price elasticities of demand (PED). Own-price elasticities provide the 

percentage change in demand for an input following a percentage change in its price. Cross-price 

elasticities provide the percentage change in demand for an input in reaction to a one percent 

change in the price of another factor input. The price elasticity of demand was calculated as 

follows: 

𝜖 𝑥𝑖𝑃𝑖
 = 𝜎𝑖𝑖 ×  𝑆𝑖 = 

𝛼𝑖𝑖+𝑆𝑖×𝑆𝑖 

𝑆𝑖
           (4.09) 

𝜖 𝑥𝑖𝑃𝑗
 = 𝜎𝑖𝑗 ×  𝑆𝑖 = 

𝛼𝑖𝑗+𝑆𝑖×𝑆𝑗 

𝑆𝑖
             (4.10) 

Where 𝜖 𝑥𝑖𝑃𝑖
  is own-price elasticity and 𝜖 𝑥𝑖𝑃𝑗

 is cross-price elasticity. 

For the cross-price elasticity, if 𝜖 > 0, the variable inputs were taken to be substitutes. This means 

that a rise in the relative price of one input increased demand for the other input. If 𝜖 < 0, the inputs 

were considered to be complements. This implies that a rise in the relative price of one factor 

reduced demand for the other input. Haller and Hyland (2014) note that own-and cross-price 

elasticities can be helpful to policymakers who might desire to identify the potential effect of, for 

instance, a carbon tax on demand for energy and other factor inputs. The elasticities measure the 

actual change in demand for non-energy inputs following an increase in energy price. 

Nevertheless, some literature has opined that price elasticity of demand is not a satisfactory 

measure of factor substitutability because it fails to measure the ease of substitution or curvature 

of the production function (Haller and Hyland 2014; Zha and Ding 2014). In addition, Zha and 

Ding (2014) note that the own- and cross-elasticities of substitution are measures of absolute 
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substitution and do not reveal changes in factor input ratios, yet they are of important economic 

interpretation.  

Allen elasticity of substitution (AES) and Morishima elasticity of substitution (MES) are 

theoretically better measures of substitution (Haller and Hyland 2014; Zha and Ding 2014).  

According to Frondel (2004), they reveal the scenario in which substitution possibilities are 

determined entirely by technology. AES was first proposed by Hicks and Allen (1934) and was 

later improved by Allen (1938) and Uzawa (1962). It is thus often referred to as Allen–Uzawa 

elasticity of substitution and is expressed as follows: 

𝐴𝐸𝑆 𝑥𝑖𝑃𝑗
= 

𝜖 𝑥𝑖𝑃𝑗

𝑆𝑗
            (4.11) 

AES estimates the actual percentage change in demand for factor input i in reaction to variation in 

factor j’s price and has the same sign as cross-price elasticity. However, Blackorby and Russell 

(1989) note that this measure suffers from three weaknesses: first, AES does not measure the ease 

of substitution or curvature of the production function and it adds no information to cross-price 

elasticities; second, the measure does not provide evidence of relative factor shares, yet this is the 

rationale for the elasticity of substitution; lastly, it cannot be elucidated as a derivative of a quantity 

ratio with respect to a price ratio, implying that it is entirely unproductive. In addition, Zha and 

Ding (2014) note that this measure provides partial elasticities as it considers a case of two inputs 

only. This means that AES fails to permit for optimum alteration of all inputs to a variation in price 

ratio.  

MES provides an alternative to AES. It was first developed by Morishima (1967) and Blackorby 

and Russell (1989). The measure gives a natural generality of the two-factor elasticity of 

substitution to a situation of more than two-factor inputs. It alters along an isoquant, thus giving 

an accurate measure of factor substitution (Zha and Ding, 2014). Further, Blackorby and Russell 

(1989) note that MES is a measure of ease of substitution, provides information about relative 

factor shares and is a derivative of the quantity ratio with respect to the price ratio. MES is therefore 

preferred to AES in this study. It is calculated as follows: 

𝑀𝐸𝑆𝑖𝑗= 
𝜕 ln(𝑋𝑖 𝑋𝑗)⁄

𝜕 ln 𝑃𝑗
= 𝜖 𝑥𝑖𝑃𝑗

- 𝜖 𝑥𝑗𝑃𝑗
          (4.12) 



148 

 

where 𝑋𝑖 and 𝑋𝑗 are demands for factor inputs i and j and 𝜖 𝑥𝑖𝑃𝑗
 and  𝜖 𝑥𝑗𝑃𝑖

 are cross- and own-price 

elasticities. Equation (4.12) reveals that MES corrects cross-price elasticity for variations in the 

requirement for a factor input when its price varies. It describes the change in the ratio of two 

factors (𝑋𝑖 𝑋𝑗)⁄  when the price of one-factor input (𝑃𝑗) varies and exemplifies the technical 

substitution possibility between the inputs. Based on this measure, factors i and j are substitutes if 

the i/j input ratio increases (MES > 0) following a rise in price 𝑃𝑗. Thus, in case of a rise in the 

price of energy input, the demand for both the energy and non-energy input, say capital, drops but 

the demand for capital falls less. In this case, capital and energy would be categorized as 

Morishima substitutes. This is indicative of the reality that the production process is now more 

capital-intensive. If on the other hand MES < 0, the two-factor inputs i and j are labelled MES – 

complements. 

4.3.3 Data Type, Source and Measurement of Variables 

The study applied an unbalanced panel data of 1265 observations obtained from the World Bank 

Enterprise Surveys (WBES) for the most recent years (2007, 2013 and 2018). Data was also 

sourced from various Energy and Petroleum Regulatory Authority electricity tariffs and maximum 

retail pump prices of petroleum releases. WBES provide data on manufacturing and service firms 

collected through stratified random sampling. The stratification is based on regions, sectors and 

firm size. WBES contain data on demographic information of firms, infrastructure and services, 

sales and supplies, competition, finance, performance and business environment relations, crime, 

labour and land. The data is available in many waves thus giving room for panel data analysis. In 

this study, the data of interest was firm total sales and expenditure on electricity, fuel and capital, 

wages and the wage rate per employee.  

The study computed the average price of a tonne of equivalent (TOE) of electricity and fuel from 

the Energy and Petroleum Regulatory Authority data.  EPRA prescribes tariffs, charges and rates 

to be charged by KPLC to consumers of electricity after every three years. It also revises fuel 

prices for various regions in the country every 14th of the month taking into account the landing 

cost of fuel, storage and distribution costs, margins for oil marketing companies and various taxes 

and levies. The average maximum pump price of a TOE of electricity and the average price of a 

TOE of fuel was computed to give room for energy price aggregation. Information on the specific 
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type of fuel consumed was not available and thus light diesel was used as a proxy for fuel. This is 

the fuel used by manufacturing firms to run power generators.  

Table 4.2:Definition, measurement and sources of variables 

Variable Definition and measurement Source of variable and data 

Energy Electricity and fuel used in 

production. Measured by the 

total cost of electricity and fuel 

(Ksh). 

Tovar and Iglesias (2013), Haller 

and Hyland (2014) and Zha and 

Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Output Finished goods produced by 

manufacturing firms. Measured 

as total annual sales (Ksh). 

Arnberg and Bjorner (2007), 

Haller and Hyland (2014) and 

Zha and Ding (2014) 

World Bank Enterprise Survey 

(WBES). 

Labour The physical and mental 

workforce provided for wages 

and salaries measured by total 

wages paid to permanent, full-

time employees (Ksh). 

Arnberg and Bjorner (2007), 

Haller and Hyland (2014) and 

Zha and Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Capital Physical machinery and 

equipment used in production. 

Measured by the total value of 

machinery and equipment (Ksh). 

Arnberg and Bjorner (2007), 

Haller and Hyland (2014) and 

Zha and Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Foreign ownership Whether a firm is foreign-owned. 

This variable was included as a 

control for heterogeneity.  

Measured by a dummy variable 

with a value of 1 if foreign-

owned and 0 if otherwise 

Haller and Hyland (2014) 

World Bank Enterprise Surveys 

(WBES). 

Exporting status Whether a firm exports or not. 

This variable was included as a 

control for heterogeneity. 

Measured by a dummy variable 

with a value of 1 if a firm exports 

and 0 if otherwise. 

Haller and Hyland (2014) 

World Bank Enterprise Surveys 

(WBES). 

Year dummies Year when data collection was 

done. The variable was 

introduced to capture Hicks-

neutral technical change. The 

dummy variable assumes a value 

Haller and Hyland (2014) 

World Bank Enterprise Surveys 

(WBES). 
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of 1 in the year of observation 

and 0 if otherwise. 

Total cost The total cost incurred in the 

production of goods. Measured 

by the summing capital, labour 

and energy costs (Ksh). 

Tovar and Iglesias (2013), Haller 

and Hyland (2014) and Zha and 

Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Factor shares Proportions of the cost of each 

factor of production in the total 

cost of production. Calculated by 

obtaining the ratio of the 

expenditure on each factor to the 

total cost of production. 

Tovar and Iglesias (2013), Haller 

and Hyland (2014) and Zha and 

Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Price of capital The price of capital was defined 

as the user cost of capital. 

According to Romer (2012), the 

user cost of capital, which is the 

implied rate of renting capital, is 

drawn from the investment 

behaviour of firms established on 

the neoclassical theory of capital 

accumulation. In this case, it is 

expressed as a function of real 

interest rate, depreciation rate 

and capital gains. Data on user 

cost of capital was not available 

for this study and hence total 

replacement cost of capital was 

used as a proxy (Ksh). 

World Bank Enterprise Surveys 

(WBES). 

Price of labour Mean wage earnings per 

employee. Obtained by dividing 

the total wages paid to 

permanent, full-time employees 

by the number of permanent, 

full-time employees (Ksh). 

Arnberg and Bjorner (2007), 

Haller and Hyland (2014) and 

Zha and Ding (2014) 

World Bank Enterprise Surveys 

(WBES). 

Price of energy Defined as the cost of a unit of 

energy expressed in Kenya 

shillings per tonne of equivalent. 

Following Haller and Hyland 

(2014), this study computed the 

price of energy based on the price 

of electricity and fuel, weighted 

by firm-level electricity and fuel 

consumption. The price of 

electricity was defined as the 

average spending per TOE on 

electricity (Ksh). The price of 

fuel was defined as the average 

Haller and Hyland (2014). 

Energy and Petroleum 

Regulatory Authority (EPRA) 
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maximum retail pump price of 

fuel per TOE (Ksh). 

Source: Author’s compilation 

4.4 Results and Discussions 

This section covers descriptive statistics, findings of cost shares, estimates of the translog cost 

function and own-price, cross-price elasticities and MES. 

4.4.1 Descriptive Statistics of Variables Used in the Estimation 

Summary statistics of labour, capital and energy, exporting and foreign ownership are provided in 

chapter two of the thesis. Table 4.3 provides summary statistics of the remaining variables of the 

price of capital, energy and labour. 

Table 4.3: Summary statistics of input prices by manufacturing sub-sector in Kenya, 2007, 2013 and 

2018 
Statistics Price of capital Price of labour Price of electricity Price of fuel 

Chemicals, Pharmaceuticals and Plastics sub-sector 

2007(N=28)     

Mean 304.32 66.04 135.95 615.13 

SD 394.43 69.99 0.615 1.573 

Minimum 5.5 2.039 135.84 614.50 

Maximum 2000 269.2 139.91 618.92 

2013(N=52)     

Mean 207.29 3078.4 153.11 950.23 

SD 392.35 12833.2 2.838 11.25 

Minimum 0.55 1.579 149.33 924.14 

Maximum 2000 91666.6 158.40 971.15 

2018(N=98)     

Mean 18533.48 7096.41 187.64 934.02 

SD 172652.6 44445.1 3.275 7.784 

Minimum 0.4 0.286 186.20 907.47 

Maximum 1710000 428571.4 195.50 953.23 

Food sub-sector 

2007(N=110)     

Mean 484.61 1262.7 142.12 615.98 

SD 2477.48 3470.8 6.132 2.095 

Minimum 0.3 0.216 139.09 614.50 

Maximum 25000 17669.4 156.19 618.92 

2013(N=154)     

Mean 11408.88 2033.9 158.86 953.43 

SD 137777.4 6561.2 3.922 13.70 

Minimum 0.07 0.038 151.42 924.14 

Maximum 1710000 70000 172.59 971.15 

2018(N=140)     

Mean 1771.20 12977.8 195.39 938.59 

SD 12972.16 75725.2 3.977 122.98 

Minimum 0.005 0.217 183.41 907.47 

Maximum 150000 70000 211.78 955.84 

Paper and other manufacturing sub-sector 

2007(N=147)     

Mean 220.84 3167.9 138.14 615.97 
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SD 628.23 14236.9 2.700 2.087 

Minimum 0.12 0.200 135.84 614.50 

Maximum 7000 133333.3 142.35 618.91 

2013(N=157)     

Mean 13014.08 1648.46 155.58 948.54 

SD 159598.4 4503.3 2.720 14.25 

Minimum 0.08 0.065 149.33 924.14 

Maximum 2000000 33333.33 172.58 971.15 

2018(N=167)     

Mean 6244.99 7410.4 190.47 935.49 

SD 56477.59 49189.3 5.172 13.46 

Minimum 0.04 1.25 183.41 907.47 

Maximum 700000 625000 211.78 955.84 

Textile and garments sub-sector 

2007(N=111) 

  

Mean 117.00 818.3 143.47 615.77 

SD 398.33 2261.8 3.579 2.008 

Minimum 0.06 0.429 142.35 614.50 

Maximum 4000 16950 154.80 618.91 

2013(N=51)     

Mean 187.90 1047.1 157.91 950.14 

SD 494.08 2293.8 1.253 11.09 

Minimum 0.21 0.677 154.80 924.14 

Maximum 3050 13000.1 158.40 971.15 

2018(N=50)     

Mean 4682.24 27473.1 195.19 936.70 

SD 28253.15 176496.2 1.581 9.271 

Minimum 0.07 0.588 186.20 907.47 

Maximum 200000 1250000 195.50 952.78 

Source: Author’s computation from WBES and EPRA data 

Notes: The prices of labour, electricity and fuel are expressed in thousands of Kenya shillings while 

the price of capital is in millions of Kenya shillings. 

 

In each of the sub-sectors, the price of labour was found to increase over time, except for the paper 

and other manufacturing sub-sector where it declined in the year 2013. A probable explanation for 

this trend is that employees were able to successfully negotiate for higher wages to cushion 

themselves from inflation or firms engaged more expensive skilled labour because of evolving 

complexities in production. The wage was found to vary significantly across sub-sectors. The food 

sub-sector paid the highest wage in 2007 while the chemicals, plastics and pharmaceuticals sub-

sector paid the least. In 2013, the chemicals, plastics and pharmaceuticals sub-sector paid the 

highest wage while the textile and garments sub-sector paid the least. In 2018, the textile and 

garments sub-sector paid the highest wage while the paper and other manufacturing sub-sector 

paid the least. 

The price of capital, proxied by the replacement cost of capital, was found to vary significantly 

across time and sub-sectors. In 2007, the average price of capital was highest in the food sub-sector 
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and least in the textile and garments sub-sector. In 2013, the average price of capital was highest 

in the paper and other manufacturing sub-sector and least in the textile and garments sub-sector. 

In 2018, the chemicals, plastics and pharmaceuticals sub-sector recorded the highest average price 

of capital while the food sub-sector recorded the least. 

The average price of electricity increased with time across the sub-sectors. An increase in 

electricity price over time reflected price adjustments on electricity tariffs by EPRA to capture 

changes in non-fuel costs and fuel costs incurred in electricity production, foreign exchange rate 

fluctuation adjustment, inflation adjustment, security support facility costs, water levy and taxes 

and levies. The chemicals, plastics and pharmaceuticals sub-sector paid the lowest average price 

of electricity in the period under review. The textile and garments sub-sector paid the highest 

average price of electricity in 2007 while the food sub-sector paid the highest average price in 

2013 and 2018.   

The average price of fuel varied across time and sub-sectors. 2013 recorded the highest average 

price of a TOE while 2007 recorded the least. Variations in fuel price over time reflected changes 

in the average cost of landing of the imported fuel. Differences in fuel prices across sub-sectors 

could be explained by differences in regional prices of fuel given that firms in various sub-sectors 

were located in different regions of the country and fuel prices vary across regions.  

4.4.2 Average Cost Shares of Factor Inputs in the Kenyan Manufacturing Sector 

Table 4.4 provides findings of the average cost shares of labour, capital and energy in Kenya’s 

manufacturing sector. 

Table 4.4:Average cost shares of labour, capital and energy in Kenya’s manufacturing sector 

Factor Cost Share 

Labour 0.315 

Capital 0.573 

Energy 0.112 
Source: author’s computation from WBES and EPRA data 

 

The results in Table 4.4 show that capital cost-share was dominant at 57.3 percent followed by that 

of labour at 31.5 percent while the energy cost-share was the least at 11.2 percent. The finding on 

cost shares of capital and energy conforms with Haller and Hyland (2014) who establish that the 

two inputs have the highest and least cost shares respectively in the Irish manufacturing sector. 
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The finding on energy cost shares conforms with the results of Arnberg and Bjorner (2007) in 

Denmark industrial companies and Deininger et al. (2018) in Swiss manufacturing firms. 

However, the findings in the current study contrast Arnberg and Bjorner (2007) and Deininger et 

al. (2018) who find cost shares of labour to be higher than cost shares of capital.  

4.4.3 Diagnostic Test 

The models were assessed for heteroskedasticity using the White test, and multicollinearity using 

the variance inflation factor (VIF). The null hypothesis of homoskedasticity could not be rejected 

at 5 percent level of significance across all the sub-sectors and the overall sector model. Thus the 

presence of heteroskedasticity could not be accepted. VIF evaluates the effect of collinearity 

among explanatory variables in a regression model on the accuracy of estimates. It indicates how 

the presence of multicollinearity inflates the variance of an estimator (Greene, 2008). A VIF of 1 

indicates no collinearity between any two explanatory variables. VIF increases with collinearity 

and in the limit, it can become infinite (Greene, 2008). A VIF greater than 10 is in general 

indicative of severe multicollinearity. The VIF scores in Table 4.5 indicated that there was minimal 

collinearity among variables. The values ranged between 2.12 and 2.60. 

Table 4.5: Heteroskedasticity and Multicollinearity test in Kenyan manufacturing sub-sectors 

 
  Sub-sector   

 
C, P and P Food T and G P and O M Overall sector 

Heteroskedasticity test 

H0:Homoskedasticity 

Chi-sq 103.95 117.86 140.11 112.24 219.38 

Prob> chi-sq 0.975 0.838 0.277 0.914 0.171 

Multicollinearity test 

VIF 2.220 2.230 2.600 2.250 2.120 

Source: Author’s estimates from WBES and EPRA data. 

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

paper and other manufacturing. VIF is the Variance Inflation Factor. 

 

Table 4.6 presents heteroskedasticity and multicollinearity test results in the Kenyan 

manufacturing sector by firm size. 
 

Table 4.6:Heteroskedasticity and Multicollinearity test in Kenyan manufacturing sector - by firm 

size 

 Small firms Medium firms Large firms 

Heteroskedasticity test    
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H0:Homoskedasticity    

Chi-sq 220.43 222.31 218.28 

Prob> chi-sq 0.161 0.160 0.186 

Multicollinearity test    

VIF 2.830                                    2.120                                   2.380 

Source: Author’s estimates from WBES and EPRA data.  

The null hypothesis for homoscedasticity could not be rejected at 5 percent level of significance 

across the various size categories. Thus, the presence of heteroskedasticity could not be accepted. 

The VIF estimates showed minimal collinearity among the variables with values ranging between 

2.12 and 2.83.  

4.4.4 Elasticity of Factor Substitution in the Kenyan Manufacturing Sector. 

This section provides an analysis of the elasticity of substitution between energy and non-energy 

inputs in the Kenyan manufacturing sector by sub-sector. According to Nguyen and Streitwieser 

(2008), firms across various sub-sectors have different cost functions, partly due to their product 

mix. For this reason, the degree of elasticity of substitution in reaction to changes in factor inputs 

is likely to vary across sub-sectors. Consequently, this study estimated the translog cost function 

jointly with share equations, separately for each sub-sector with the adding up, homogeneity and 

symmetry conditions factored in. An examination of whether elasticities differ across firms in 

different sub-sectors is useful in identifying those sub-sectors where firms are more flexible in 

reacting to variations in energy prices by modifying their input mix.  

The sub-sectors of interest were: the chemicals, pharmaceuticals and plastics, food, textile and 

garments and the paper and other manufacturing sub-sector. The study also examined the overall 

manufacturing sector for robustness check. Following Tovar and Iglesias (1986) and Haller and 

Hyland (2014), the study added three dummy variables in the overall manufacturing sector model 

to control for heterogeneity in cost structure in the four sub-sectors. The estimates of the cost 

functions are presented in Table 4.7. 

Table 4.7:Translog cost function estimation results by sub-sector and overall sector 

   Sub-sector   

Variable C, P and P Food T and G P and O M Overall sector 

lnPk 0.338*** 0.347*** 0.316*** 0.333*** 0.346*** 

  (0.025) (0.016) (0.024) (0.016) (0.009) 

lnPl 0.422*** 0.416*** 0.351*** 0.414*** 0.407*** 

  (0.016) (0.010) (0.015) (0.010) (0.006) 
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   Sub-sector   

Variable C, P and P Food T and G P and O M Overall sector 

lnPe 0.240*** 0.237*** 0.333*** 0.253*** 0.247*** 

  (0.018) (0.014) (0.025) (0.012) (0.008) 

lnq 0.290*** 0.353*** 0.355*** 0.289*** 0.308*** 

  (0.038) (0.027) (0.037) (0.026) (0.015) 

lnPklnPk -0.008 0.00007 0.011 0.039*** 0.015** 

  (0.019) (0.010) (0.018) (0.011) (0.006) 

lnPllnPl 0.040*** 0.029*** 0.033*** 0.034*** 0.033*** 

  (0.006) (0.004) (0.007) (0.004) (0.002) 

lnPelnPe 0.009 0.023** 0.030 0.025*** 0.022*** 

  (0.011) (0.009) (0.020) (0.008) (0.005) 

lnqlnq 0.014 0.039** 0.036 0.037*** 0.039*** 

  (0.023) (0.016) (0.024) (0.014) (0.008) 

lnPklnPl 0.062*** 0.004 -0.027 0.028** 0.014** 

  (0.021) (0.011) (0.017) (0.011) (0.006) 

lnPklnPe -0.059 0.004 -0.019 -0.027 0.065* 

  (0.120) (0.068) (0.068) (0.058) (0.034) 

lnPllnPe -0.009 -0.014** -0.021** -0.015*** -0.014*** 

  (0.007) (0.005) (0.011) (0.005) (0.003) 

lnPklnq -0.041* 0.013 0.015 -0.012 -0.002 

  (0.022) (0.013) (0.019) (0.010) (0.006) 

lnPllnq -0.004 -0.009 -0.015 -0.003 -0.007** 

  (0.010) (0.006) (0.009) (0.006) (0.003) 

lnPelnq 0.009 0.011 0.012 0.006 0.010** 

  (0.010) (0.009) (0.016) (0.008) (0.005) 

Exporting -0.267 -0.116 -0.216 -0.127 -0.032 

  (0.166) (0.100) (0.139) (0.095) (0.057) 

Foreign -0.134 -0.368*** -0.075 -0.189 0.046 

  (0.192) (0.120) (0.158) (0.117) (0.072) 

D2013 -0.086 -0.004 -0.129 -0.101 0.311*** 

  (0.150) (0.096) (0.130) (0.093) (0.065) 

D2018 0.037 -0.003 0.039 -0.093 0.316*** 

  (0.168) (0.102) (0.154) (0.097) (0.065) 

Food         -0.318*** 

          (0.059) 

T and G         -0.222*** 

          (0.056) 

P and O M         -0.237*** 

          (0.064) 

Intercept 0.107 -0.330*** -0.640*** -0.130* -0.385*** 

  (0.125) (0.077) (0.105) (0.072) (0.043) 

R2 0.561 0.530 0.514 0.451 0.515 

Adj. R2 0.515 0.509 0.472 0.430 0.507 

N 178 404 212 471 1265 
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   Sub-sector   

Variable C, P and P Food T and G P and O M Overall sector 

Source: Author’s estimates from WBES and EPRA data.  

Note: ***p < 0.01; **p < 0.05; *p < 0.1. Dependent variable: lnTC 

C, P and P is chemicals, pharmaceuticals and plastics, T and G is textiles and garments and P and O M is 

paper and other manufacturing 

.  

Table 4.7 provides coefficient estimates of the translog cost functions for the four sub-sectors 

considered and the overall sector. The estimates of the adjusted R-squared showed that the 

explanatory variables more than average explained variations in the total cost across the sub-

sectors and the overall sector, except for the textile and garments and paper and other 

manufacturing sub-sectors.  

The estimates of the translog cost function have modest insightful implications due to the 

complexity of the function (Haller and Hyland, 2014). Hence, the study only considered first-order 

coefficients of the functions. Price and output variables were normalized around the mean by 

dividing observed values by their mean. Thus, the first-order coefficients reflected the sensitivity 

of total cost to the various explanatory variables at the sample mean (Onghena et al., 2014).  

Therefore, the first-order coefficients were cost elasticities valued at the sample mean (Onghena 

et al., 2014).  

The first-order price and output coefficients were statistically significant at 5 percent level of 

significance with the expected signs. The cost elasticity of output was positive, implying that total 

costs in all the sub-sectors and the overall sector increased as output increased. When output 

increased by 1 percent in the textiles and garments sub-sector, total costs increased by 35.5 percent. 

The sub-sector experienced the highest increase in costs. In the paper and other manufacturing 

sub-sector, when output increased by 1 percent costs increased by 28.9 percent. This was the least 

increase among the sub-sectors. In the chemicals, pharmaceuticals and plastics, food sub-sectors 

and overall sector, an increase in output by 1 percent increased costs by 29 percent, 35.3 percent 

and 30.8 percent respectively. 

The coefficients of factor prices in the chemicals, plastics and pharmaceuticals sub-sector showed 

that at the sample mean capital, labour and energy accounted for 33.8 percent, 42.2 percent and 24 

percent of total cost, respectively. In the food sub-sector, respective inputs accounted for 34.7 

percent, 41.6 percent and 23.7 percent of the total cost. In textile and garments, the corresponding 
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contribution to total costs was 31.6, 35.1 and 33.3 percent, respectively. In the paper and other 

manufacturing sub-sector, it was 33.3, 41.4 and 25.3 percent, respectively. In the overall sector, 

respective units accounted for 34.6, 40.7 and 24.7 percent of the total cost. Total costs decreased 

with foreign ownership in the food sub-sector but increased in 2013 and 2018 relative to 2007. 

Across the sub-sectors, total costs decreased in food, textile and garments and paper and other 

manufacturing sub-sectors relative to the chemicals, plastics and pharmaceuticals sub-sector.  

Before the sub-sector elasticities of substitution were computed, the study first tested whether the 

sub-sector and overall sector translog cost functions were well-behaved. This involved establishing 

whether the estimated translog cost functions satisfied monotonicity and quasi-concavity 

conditions in factor prices. According to Hunt (1984), for the monotonicity condition to be 

satisfied, cost shares fitted at all data points need to be positively signed. For this study, fitted cost 

shares were positive for all observations in all sub-sectors and overall sector models. The quasi-

concavity condition is fulfilled if the Hessian matrix from the analysis is negative semi-definite 

implying that own-price elasticities are negative at every observation (Haller and Hyland, 2014). 

Own-price elasticities were found to be negative at all observations across all the sub-sectors and 

the overall sector. Having satisfied monotonicity and quasi-concavity conditions, the translog cost 

functions were well-behaved and elasticities of factor substitution were calculated from their 

estimates. The findings on monotonicity and quasi-concavity conditions are largely in line with 

the results of Haller and Hyland (2014). However, for this study, 99.9 percent of the fitted cost 

shares are positive and data points with negative fitted cost shares are dropped. Further, only 0.3 

percent of the observations failed to meet the quasi-concavity condition. Table 4.8 provides 

findings of sub-sector own-price and cross-price elasticities. 

Table 4.8:Own and cross-price elasticities of demand for factor inputs in the Kenyan manufacturing 

sector 

   Sub-sector   

PED C, P and P  Food  T and G P and OM Overall sector 

𝜖𝑘𝑘              -0.692 -0.653 -0.649 -0.530 -0.606 

𝜖𝑘𝑙                 0.642  0.427  0.261  0.511  0.452 

𝜖𝑘𝑒                0.030  0.248  0.271  0.160  0.454 

𝜖𝑙𝑘               0.303  0.356  0.234  0.406  0.383 

𝜖𝑙𝑙              -0.471 -0.512 -0.550 -0.495 -0.504 

𝜖𝑙𝑒               0.215  0.202  0.269  0.214  0.210 
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𝜖𝑒𝑘               0.091  0.364  0.259  0.225  0.611 

𝜖𝑒𝑙               0.383  0.355  0.286  0.355  0.350 

𝜖𝑒𝑒             -0.722 -0.665 -0.577 -0.648 -0.664 

Source: Author’s estimates from WBES and EPRA data. Notes: C, P and P is chemicals, pharmaceuticals 

and plastics, T and G is textiles and garments and P and O M is paper and other manufacturing. 

PED is the price elasticity of demand, 𝜖𝑘𝑘 is the own-price elasticity of  capital, 𝜖𝑙𝑙 is own-price 

elasticity of labour, 𝜖𝑒𝑒 is own-price elasticity of energy, 𝜖𝑘𝑙 is cross-price elasticity of labour for 

capital, 𝜖𝑘𝑒 is cross-price elasticity of energy for capital, 𝜖𝑙𝑘 is cross-price elasticity of capital for 

labour, 𝜖𝑙𝑒 is cross-price elasticity of energy for labour, 𝜖𝑒𝑘 is cross-price elasticity of capital for 

energy and 𝜖𝑒𝑙 is cross-price elasticity of labour for energy. 
 

Table 4.8 shows that sub-sector own-price elasticities of substitution were negative. The three-

factor inputs were sensitive to changes in their price. Holding all other factors unchanged, a one 

percent increase in a factor’s price decreased its demand. This finding was in line with the 

fundamental principle of demand for a normal good. All the inputs had inelastic demand since the 

own-price elasticities of substitution were less than one. The study reveals that energy was the 

most sensitive input across all the sub-sectors except in the textile and garments sub-sector where 

capital was the most sensitive input. In the overall sector, energy was still the most sensitive input 

to own-price change. The finding suggested that changes in energy prices impact production in the 

manufacturing sector considerably.  

Capital was the second most sensitive input to own-price changes across all the sub-sectors except 

for the textile and garments sub-sector where energy was the second most sensitive. In the overall 

sector capital was also the second most sensitive input to own-price change. Labour was the least 

sensitive input to own-price change across all the sub-sectors as well as in the overall sector. This 

suggested that it was difficult to replace labour in production (e.g., by automating operations). This 

was probably explained by the high sunk costs of automation or the influence of trade unions in 

protecting workers against lay-offs and wage cuts. The findings here broadly conform with 

Arnberg and Bjorner (2007). Haller and Hyland (2014) also establish that energy is the most 

sensitive input and labour is the least sensitive input. The findings contrast Onuonga et al. (2011) 

who find capital to be most responsive to own price changes followed by labour and energy is least 

responsive. Zha and Ding (2014) find labour to be the most responsive input to own-price changes 

while energy is least sensitive to own-price changes.  
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The own-price elasticities displayed considerable variation across the sub-sectors. Own-price 

elasticity of capital ranged from -0.692 in the paper and other manufacturing sub-sector to -0.530 

in the chemicals, pharmaceuticals and plastics sub-sector. Own price elasticity of energy ranged 

from -0.722 in the chemicals, pharmaceuticals and plastics sub-sector to -0.577 in the textile and 

garments sub-sector. For labour, own-price elasticity ranged from -0.550 in the textile and 

garments sub-sector to -0.471 in the chemicals, pharmaceuticals and plastics sub-sector. Findings 

of heterogeneity in own-price elasticities across sub-sectors are in line with Nguyen and 

Streitwieser (2008) and Wang et al. (2018). 

The estimates of cross-price elasticities were positive and this indicated that all factor inputs in 

Kenya’s manufacturing sector were substitutes in the production process. The elasticities were 

inelastic for all factor inputs across all the sub-sectors and the overall sector. The elasticities of 

substitution were also in general asymmetric. The textile and garments sub-sector exhibited the 

highest cross-price elasticity of capital for energy (𝜖𝑘𝑒= 0.271) followed by the food sub-sector 

(𝜖𝑘𝑒 = 0.248) and paper and other manufacturing sub-sector (𝜖𝑘𝑒 = 0.160). An increase in the price 

of energy in these sub-sectors was associated with more capital investment and investment in 

energy-efficient equipment.   

The chemicals, plastics and pharmaceuticals sub-sector exhibited the least cross-price elasticity of 

substitution of capital for energy (𝜖𝑘𝑒 = 0.030). While this estimate denotes that increasing energy 

prices would not result in a decline in capital formation, the finding reveals that the complexity in 

adjusting capital may result in a steep increase in the cost of production, ultimately compelling a 

radical change away from energy-intensive production processes. The overall sector also displayed 

inelastic demand for capital following variations in energy prices. The elasticity of substitution of 

capital for energy in the overall sector (𝜖𝑘𝑒 = 0.454) was however higher than in individual sub-

sectors.  

On substitution of energy for capital, results showed that except for the paper and other 

manufacturing sub-sector, the elasticities were higher than those of substitution of capital for 

energy. These elasticities were also less than one suggesting that energy demand was inelastic to 

changes in capital price. The elasticities ranged from 𝜖𝑒𝑘 = 0.091 in the chemicals, plastics and 

pharmaceuticals to 𝜖𝑒𝑘= 0.364 in the food sub-sector. In the textile and garments sub-sector, cross-

price elasticity of substitution of energy for capital was 𝜖𝑘𝑒 = 0.259 while in paper and other 
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manufacturing sub-sector, it was 𝜖𝑘𝑒 = 0.225.  The cross-price elasticity of substitution of energy 

for capital in the overall sector was higher than in individual sub-sectors. The elasticity was 𝜖𝑘𝑒 = 

0.611 and its magnitude also indicated that energy demand was inelastic to changes in capital price. 

Comparing the findings of this study with those of other studies, Haller and Hyland (2014) find 

capital to be a weak substitute for energy (𝜖𝑘𝑒 = 0.040) and energy is a stronger substitute for 

capital ( 𝜖𝑒𝑘 = 0.920). Krishnapillai and Thompson (2012) find capital to be a substitute for energy 

across U.S manufacturing industries, but the cross-price elasticities of energy for capital are more 

than those of capital for energy. Nguyen and Streitweiser (2008) establish that energy and capital 

are complements in some industries such as the glass container industry. They however establish 

that energy and capital are substitutes in other industries such as the organic fibres industry.  

Study findings show that elasticities of substitution of labour for energy were positive and less 

than one across all the sub-sectors and the overall sector. An increase in the price of energy resulted 

in more uptake of labour, albeit less than proportionately. Variation of elasticities across sub-

sectors was however not huge. The elasticities ranged from 𝜖𝑙𝑒 = 0.202 in the food sub-sector to 

𝜖𝑙𝑒= 0.269 in the textile and garments sub-sector. In the chemicals, pharmaceuticals and plastics 

sub-sector, this elasticity was 𝜖𝑙𝑒 = 0.215 and in the paper and other manufacturing sub-sector, it 

was 𝜖𝑙𝑒 = 0.214. The overall sector had 𝜖𝑙𝑒= 0.210. Haller and Hyland (2014) and Krishnapillai 

and Thompson (2012) find labour to be a weak substitute for energy.  

Results show elasticities of substitution of energy for labour were positive and less than one across 

all sub-sectors and the overall sector. An increase in labour price led to an increase in demand for 

energy even though less than proportionately. The elasticities were, however, higher than those of 

substitution of labour for energy and variation across sub-sectors was not to a large extent, except 

in the textile and garments sub-sector. They ranged from 𝜖𝑒𝑙= 0.286 in the textile and garments to  

𝜖𝑒𝑙= 0.383 in the chemicals, pharmaceuticals and plastics sub-sector. The overall sector had 𝜖𝑒𝑙= 

0.350. Haller and Hyland (2014) and Krishnapillai and Thompson (2012) find energy to be a 

substitute for labour.  

Table 4.8 further shows that capital and labour were substitutes with inelastic demand. This applied 

across all sub-sectors. Nonetheless, the elasticity of substitution of capital for labour was higher 

than that of labour for capital. This implied that there was more space to expand capital by 

increasing labour prices than there was to expand labour by increasing capital prices. Haller and 
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Hyland (2014) and Wang et al. (2018) also find capital to be a more substitute for labour than 

labour is a substitute for capital. 

Cross-price elasticities are limited as they only provide a measurement of how one input reacts to 

changes in the price of another input (Nguyen and Streitwieser, 1999). MES provide a measure of 

the technical substitution relationship between factor inputs. Table 4.9 provides results for MES. 

Table 4.9:Morishima elasticities of substitution of energy for non-energy factors in the Kenyan 

manufacturing sector 

MES C, P and P  

sub-sector 

Food 

sub-sector  

T and G 

Sub-sector 

P and OM 

sub-sector 

Overall 

Sector 

MESkl                              1.114  0.939  0.811  1.006 0.957 

MESke                            0.752  0.913  0.848  0.808 1.119 

MESlk                             1.198  1.009  0.883  0.937 0.989 

MESle                             0.936  0.866  0.846  0.862 0.874 

MESek                             0.813  1.016  0.906  0.756 1.218 

MESel                           0.854  0.867  0.836  0.850 0.854 

Source: Author’s estimates from WBES and EPRA data 

Table 4.9 presents results for Morishima elasticities of substitution (MES). All the estimates were 

positive confirming substitution possibilities between all factor inputs. The MES estimates were 

higher than cross-price elasticities. This was expected since MES correct cross-price elasticities 

for changes in demand for a factor input in reaction to variation in its price. This is achieved by 

subtracting own-price elasticities from cross-price elasticities. The elasticities had a clear 

asymmetry between the factor inputs. According to Krishnapillai and Thompson (2012), MES 

displays asymmetry because MES evaluates the sensitivity of input ratios to variations in different 

factor prices.  

Table 4.9 shows that the capital-energy ratio was inelastic to changes in energy prices across all 

sub-sectors. The MES of capital for energy ranged from 0.752 in the chemicals, pharmaceuticals 

and plastics to 0.913 in the food sub-sector. In the textiles and garments and paper and other 

manufacturing sub-sectors, the elasticities were 0.848 and 0.808 respectively. The corresponding 

MES in the overall sector was elastic at 1.119. This elasticity was higher than for individual sub-

sectors.  Results of MES of capital for energy suggest that energy price policies could boost capital 

investments and spur investments in energy-efficient technologies without stifling growth in the 
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manufacturing sector. The findings of this study corroborate Nguyen and Streitwieser (2008), 

Krishnapillai and Thompson (2012) and Haller and Hyland (2014). 

Apart from the paper and other manufacturing sub-sector, the energy-capital ratio was more 

sensitive to variations in capital price compared to the capital-energy ratio reaction to variations 

in energy prices. This was across all sub-sectors and the overall sector. A probable explanation for 

this is that during a time of high capital price, the old machinery was still being operated with 

energy inefficiency as less amount of capital was invested to replace them. The results are in line 

with Nguyen and Streitwieser (2008), Krishnapillai and Thompson (2012) and Haller and Hyland 

(2014).  

On labour-energy substitution, results revealed that the labour-energy ratio in the Kenyan 

manufacturing sector was inelastic to changes in energy price. This applied across all the sub-

sectors and the overall sector. The elasticities exhibited minimal variation across all sub-sectors 

and the overall sector, except in the chemicals, plastics and pharmaceuticals sub-sector. They 

ranged from 0.846 in textiles and garments to 0.936 in the chemicals, pharmaceuticals and plastics 

sub-sector. The MES of labour for energy in the food and paper and other manufacturing sub-

sectors and the overall sector were 0.866, 0.862 and 0.874, respectively. The findings of this study 

affirm that energy price policies could lead to an upward intake of labour across the sub-sectors 

and the overall sector. These findings are in line with Krishnapillai and Thompson (2012) and 

Haller and Hyland (2014). The energy-labour ratio revealed that energy was a substitute for labour, 

but energy demand was inelastic to changes in labour price. This applied across all the sub-sectors 

and the overall sector. Thus an increase in labour price could lead to more consumption of energy 

even though less than proportionately. These findings corroborate Krishnapillai and Thompson 

(2012) and Haller and Hyland (2014). 

The capital-labour ratio was elastic to changes in labour price. This applied in the chemicals, 

pharmaceuticals and plastics sub-sector ( MESkl= 1.114)  and paper and other manufacturing sub-

sector (MESkl = 1.006). The Capital-labour ratio was however inelastic in the food sub-sector 

(MESkl= 0.939) and the textile and garments sub-sector (MESkl= 0.811) and the overall sector 

(MESkl= 0.957). The labour-capital ratio was elastic to changes in capital price in the chemicals, 

pharmaceuticals and plastics sub-sector (MESlk = 1.198) and food sub-sector (MESlk = 1.009), but 
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inelastic in the textile and garments (MESlk = 0.883), paper and other manufacturing sub-sector 

(MESlk = 0.937) and the overall sector (MESlk = 0.989). 

4.4.5 Elasticity of Substitution in the Kenyan Manufacturing Sector – by Firm Size 

This section provides an analysis of the energy and non-energy input substitution possibilities 

across firms of different sizes. The analysis is useful in identifying the size category in which firms 

are more flexible in response to changes in energy prices by modifying their input mix. The issue 

of whether small or large firms respond more with regard to altering their input use to varying 

factor prices is eventually an empirical one (Nguyen and Streitwieser, 1999). Firms of different 

sizes have different cost functions and thus varying degrees of factor substitution in reaction to 

changes in factor prices. According to Haller and Hyland (2014), the response is higher among 

larger, financially stable and more innovative firms than in small firms. However, if smaller firms 

are more flexible and price responsive, they react better to changes in factor prices. 

The study considered three firm size categories based on the WBES classification: small (5-19 

employees), medium (20-99 employees) and large (over 100 employees). The estimates of the 

translog cost function based on different firm sizes are provided in Table 4.10. 

Table 4.10: Kenyan manufacturing sector Translog cost function parameter estimates, - by firm size 

  Small firms Medium firms Large firms 

lnPk 0.308*** 0.345*** 0.299*** 

  (0.018) (0.016) (0.018) 

lnPl 0.439*** 0.435*** 0.418*** 

  (0.011) (0.010) (0.010) 

lnPe 0.253*** 0.220*** 0.282*** 

  (0.013) (0.011) (0.014) 

lnq 0.299*** 0.289*** 0.282*** 

  (0.026) (0.024) (0.028) 

lnPklnPk 0.002 0.047*** 0.014 

  (0.011) (0.015) (0.009) 

lnPllnPl 0.061*** 0.051*** 0.031*** 

  (0.005) (0.005) (0.005) 

lnPelnPe 0.028*** 0.028*** 0.017** 

  (0.008) (0.007) (0.008) 

lnqlnq 0.048*** 0.063*** 0.023 

  (0.014) (0.015) (0.015) 

lnPklnPl -0.018 0.028** 0.015 

  (0.014) (0.013) (0.011) 

lnPklnPe -0.070 0.037 0.076 

  (0.060) (0.066) (0.065) 
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  Small firms Medium firms Large firms 

lnPllnPe -0.024*** -0.021*** -0.012** 

  (0.005) (0.005) (0.006) 

lnPklnq 0.001 -0.014 0.009 

  (0.015) (0.013) (0.010) 

lnPllnq -0.031*** -0.022*** 0.003 

  (0.007) (0.006) (0.006) 

lnPelnq 0.017** 0.014** 0.014 

  (0.008) (0.007) (0.009) 

Food -0.330*** -0.256*** -0.268** 

  (0.098) (0.090) (0.117) 

T and G -0.324*** -0.132 -0.197* 

  (0.095) (0.088) (0.106) 

P and O M -0.202** -0.268** -0.084 

  (0.096) (0.105) (0.123) 

Exporting -0.006 0.001 -0.057 

  (0.091) (0.090) (0.106) 

Foreign 0.101 0.058 -0.047 

  (0.117) (0.110) (0.139) 

D2013 0.463*** 0.172* 0.309** 

  (0.109) (0.099) (0.127) 

D2018 0.331*** 0.277*** 0.178 

  (0.111) (0.099) (0.124) 

Intercept -0.396*** -0.487*** -0.410*** 

  (0.072) (0.071) (0.077) 

R2 0.599 0.563 0.463 

Adj. R2 0.578 0.546 0.435 

N 386 491 388 

Source: Author’s estimates from WBES and EPRA data. Note: Dependent variable: ln TC 

 

Table 4.10 provides estimates of the translog cost function of the Kenyan manufacturing sector 

based on firm size. The estimates of adjusted R-squared showed that the explanatory variables 

more than average explained variations in total cost across all firm sizes, except in the case of large 

firms. 

All first-order input prices as well as output coefficients across the various firm sizes were 

statistically significant at 5 percent and had the expected signs. The cost elasticity of output was 

positive implying that total cost increased as output increased across firms of all sizes. When output 

increased by one percent, total cost increased by the highest proportion (29.9 percent) in the small 

manufacturing firms followed by medium firms (28.9 percent). The large firms had the least 

increase (28.2 percent). 
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The coefficients of factor prices showed that at the sample mean, capital, labour and energy 

accounted for 30.8, 43.9 and 25.3 percent, respectively, of the total costs in small manufacturing 

firms. In medium firms, the inputs accounted for 34.5, 43.5 and 22 percent of total costs, 

respectively. In large firms, the respective shares were 29.9, 41.8 and 28.2 percent. The total costs 

decreased in the food sub-sector relative to the chemicals, pharmaceuticals and plastics sub-sector 

across all the firm sizes. The total cost decreased in the textiles and garments sub-sector relative 

to the chemicals, pharmaceuticals and plastics sub-sector in small and large firms. The total costs 

decreased in the paper and other manufacturing sub-sector relative to the chemicals, 

pharmaceuticals and plastics sub-sector in small and medium firms. The total costs increased in 

2013 relative to 2007 across all firm sizes. In small and medium firms, total costs increased in 

2018 relative to 2007.  

The study evaluated the behaviour of the translog cost function in the different firm-size levels. 

This was done by testing whether the functions increased monotonically and were quasi-concave 

in input prices. The estimated translog cost functions for the various firm-size samples reasonably 

met the regularity conditions. Only 0.257 percent of the fitted capital cost shares in the large firm-

size sample violated the monotonicity condition. In the small firm-size sample, 0.258 percent of 

the fitted capital cost shares and 0.258 of the fitted labour cost shares violated the monotonicity 

condition. In the medium firm-size sample, only 0.204 percent of the fitted capital cost shares 

violated the monotonicity condition. Only 0.204 percent of the labour own-price elasticities 

violated the quasi-concavity condition. Nguyen and Streitwieser (1999) find the violations of 

monotonicity and quasi-concavity to be significantly less than 5 percent in many cases for the U.S 

manufacturing sector.  

Given that the regularity conditions were fairly well met, the translog cost functions were found 

to be well-behaved and elasticities of factor substitution could be calculated from their estimates 

with accuracy. 

Table 4.11 presents the results of the own-price and cross-price elasticities across firms of different 

sizes. 

Table 4.11:Own and cross-price elasticities of factor inputs in the Kenyan manufacturing sector -  by 

firm size 

PED Small  

firms 

Medium 

firms 

Large 

firms 

𝜖𝑘𝑘              -0.681 -0.504 -0.645 
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𝜖𝑘𝑙                 0.352  0.308  0.478 

𝜖𝑘𝑒               -0.080  0.339  0.582 

𝜖𝑙𝑘               0.262  0.418  0.338 

𝜖𝑙𝑙              -0.404 -0.430 -0.502 

𝜖𝑙𝑒               0.193  0.163  0.386 

𝜖𝑒𝑘               0.024  0.521  0.571 

𝜖𝑒𝑙               0.343  0.335  0.374 

𝜖𝑒𝑒             -0.635 -0.648 -0.655 

Source: Author’s estimates from WBES and EPRA data 

 

The findings in Table 4.11 reveal that all own-price elasticities were negative, which is consistent 

with the fundamental principle of demand for a normal good. The own-price elasticities had 

absolute values less than one indicating that all the inputs had inelastic demand. This contrasts 

Nguyen and Streitwieser (1999) who find factor inputs to respond to own-price changes more than 

proportionately. Energy was on average the most sensitive to change in own price in the and 

medium firms. In small-sized firms, capital was the most sensitive factor to own price change.  

Own-price elasticities of labour and energy increased with firm size. However, for energy, there 

was minimal variation across various firm sizes. Large firms were the most sensitive to labour 

own-price change (𝜖𝑙𝑙 = -0.502) followed by medium firms (𝜖𝑙𝑙 = -0.430) and small firms (𝜖𝑙𝑙 = -

0.404). Large firms were the most sensitive to energy’s own-price change (𝜖𝑒𝑒 = -0.655) followed 

by medium-sized firms (𝜖𝑒𝑒= -0.648) and small firms (𝜖𝑒𝑒= -0.635). No clear pattern was evident 

for capital own-price elasticities across the three firm sizes. Small firms were the most sensitive to 

capital’s price change (𝜖𝑘𝑘 = -0.681) followed by large-sized firms (𝜖𝑘𝑘 = -0.645) and medium-

sized firms (𝜖𝑘𝑘 = -0.504). The patterns of own-price elasticities in this study contrast Nguyen and 

Streitwieser (1999) who find no consistent patterns across the various firm-size categories. 

The cross-price elasticities of capital with respect to changes in energy price displayed a consistent 

pattern across firm sizes. The elasticities were found to be positive and with absolute values less 

than one in medium (𝜖𝑘𝑒 = 0.339) and large-sized firms (𝜖𝑘𝑒 = 0.582). However, in the small-

sized firms, the estimate was negative with a small absolute value (𝜖𝑘𝑒 = -0.080). The finding 

showed that capital could be a substitute for energy in medium and large firms even though less 

than proportionately, but not in small firms. Large-sized firms exhibited a higher substitution 

possibility than medium-sized firms possibly because large firms were better placed financially to 
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replace old energy-intensive equipment with energy-efficient technologies compared to medium 

firms. Further, it could be that large firms channelled more resources into research and 

development geared towards innovation compared to smaller firms.  

In small firms, capital was at best a weak complement for energy. This means that a rise in energy 

prices resulted in a very small decline in demand for capital. The finding implied that the cost of 

production in small firms could rise considerably following a rise in energy prices. In a similar 

study, Haller and Hyland (2014) find no consistent pattern in the cross-price elasticity of capital 

with respect to changes in energy price across firm sizes. Nguyen and Streitwieser (1999) find 

capital to be at best a weak substitute for energy in some firm sizes and a weak complement in 

others. The cross-price elasticity of capital with respect to energy price exhibited minimal variation 

across firms of different sizes in this study.  

The estimates in Table 4.11 show asymmetry in cross-price elasticities of capital and energy. The 

cross-price elasticities of substitution of energy for capital were positive with absolute values less 

than one. This means that energy was a substitute for capital across firms of all sizes. A rise in 

capital price could result in a rise in demand for energy, although less than proportionately. The 

cross-price elasticities of substitution of energy for capital increased with the size of firms. Large 

firms had the highest cross-price elasticity of substitution of energy for capital (𝜖𝑒𝑘 = 0.571) 

followed by medium-sized firms (𝜖𝑒𝑘 = 0.521) and small firms (𝜖𝑒𝑘 = 0.024). The finding for 

small-sized firms exhibited at best weak substitution possibility of energy for capital.  

Table 4.11 shows that cross-price elasticities of labour with respect to energy prices were positive 

and inelastic across firms of all sizes. This implies that labour was a substitute for energy, but a 

change in energy price elicited less than proportionate change in demand for labour. This suggested 

that a rise in energy prices could result in the expansion of employment across firms of all sizes. 

However, the estimates revealed no consistent pattern in the elasticity of labour with respect to 

energy prices across the various firm sizes. Large-sized firms were the most sensitive (𝜖𝑙𝑒 = 0.386) 

followed by small firms (𝜖𝑙𝑒= 0.193) and medium firms (𝜖𝑙𝑒= 0.196). Comparing the findings of 

this study with others, Nguyen and Streitwieser (1999) find labour to be a weak substitute for 

energy across firms of all sizes except in size class 5 (firms with 500-999 employees) where it is 

found to be at best a weak complement for energy.  
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Table 4.11 shows that the substitution possibility between labour and energy was also asymmetric. 

Other than in large-sized firms, the elasticity of energy with respect to change in labour price was 

higher than the elasticity of labour with respect to change in energy price. However, there was no 

clear pattern in the elasticity of energy with respect to labour prices across firms of different sizes. 

Large firms (𝜖𝑒𝑙= 0.374) had the highest response to changes in labour price followed by small 

firms (𝜖𝑒𝑙= 0.343) and medium firms (𝜖𝑒𝑙= 0.335) in that order. 

With regard to labour and capital substitution, estimates in Table 4.11 reveal that the elasticity of 

capital with respect to labour price change was positive with absolute values less than one across 

firms of all sizes. Capital was therefore a substitute for labour, but a rise in labour price led to a 

less than proportionate surge in demand for capital. Therefore, labour price policies could lead to 

more capital formation across all firm sizes. Nevertheless, no clear pattern in the elasticity of 

capital with respect to labour prices was observed. Capital in large firms was the most sensitive to 

changes in labour price (𝜖𝑘𝑙= 0.478) followed by small-sized firms (𝜖𝑘𝑙= 0.352) and medium-sized 

firms (𝜖𝑘𝑙= 0.308).  

The elasticity of labour with respect to change in capital price was positive with an absolute value 

of less than one across all firm sizes. Labour was therefore a substitute for capital. However, a rise 

in the price of capital led to a less than proportionate surge in demand for labour. Capital price 

policies could result in more employment of labour across all firm sizes. There was also no clear 

pattern in the elasticity of labour with respect to capital price change. Labour in medium firms was 

the most sensitive to changes in capital price (𝜖𝑙𝑘= 0.418) followed by large firms (𝜖𝑙𝑘= 0.338) and 

small firms (𝜖𝑙𝑘= 0.262) in that order.  

The substitution possibility between capital and labour was asymmetric. Except for medium-sized 

firms, elasticities of labour with respect to capital price change were higher than elasticities of 

capital with respect to labour price change. This implies that in large and small firms, labour price 

policies would lead to more capital formation than labour employment that would arise from 

capital price policies. In medium firms, capital price policies could lead to more labour 

employment than capital formation arising from labour price policies.  

Nguyen and Streitwieser (1999) observe that cross-price elasticities are limited since they only 

provide a measurement of how one input reacts to variation in the price of another input. MES 
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provides a measure of the technical substitution relationship among factor inputs used in 

production. Table 4.12 provides estimates of MES. 

Table 4.12:Morishima elasticities of substitution in the Kenyan manufacturing sector – by firm size 

MES Small  

firms 

Medium 

firms 

Large 

firms 

MESkl                              0.756  0.738  0.980 

MESke                            0.555  0.987  1.237 

MESlk                             0.943  0.921  0.983 

MESle                             0.828  0.811  1.042 

MESek                             0.705  1.025  1.216 

MESel                           0.747  0.765  0.876 

Source: Author’s estimates from WBES and EPRA data. 

 

The MES estimates in Table 4.12 were positive confirming that there existed substitution 

possibilities between the factor inputs under consideration across all the firm sizes. The MES 

estimates were higher than the cross-price elasticities reported in Table 4.11. This is because MES 

alters cross-price elasticities for variations in demand of a factor input following a change in its 

price. This was realized by subtracting the negatively signed own-price elasticities, from cross-

price elasticities. MES estimates in Table 4.12 also displayed asymmetric behaviour.  

Considering the capital-energy MES estimates, results showed that the capital-energy ratio 

increased with firm size and captured the possibility of substitution of capital for energy. Large-

sized firms had the highest capital-energy ratio (MESke= 1.237) followed by medium firms 

(MESke= 0.987) and small firms (MESke= 0.555) in that order.  Therefore, large firms were 

relatively more flexible in substituting capital for energy compared to smaller firms. As alluded to 

earlier, large firms have the financial capacity to replace old energy-intensive equipment with 

energy-efficient technologies which smaller firms do not have. Large firms could also be more 

innovative than smaller firms.  

The capital-energy MES estimate for large firms was more than unity and this showed that these 

firms were highly responsive to variations in energy prices. In small and medium firms, the capital-

energy ratio was less than one indicating that changes in energy price led to less than proportionate 

change in the capital-energy ratio. Even though cross-price elasticities of substitution of capital for 

energy showed that capital was at best a weak complement for energy, MES estimates showed that 
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capital was a substitute for energy. This brings out the fact that cross-price elasticities do not tell 

the whole story as they only provide the measurement of how one input reacts to variation in price 

in another input (Nguyen and Streitwieser, 2008). MES provides a measure of technical 

substitution among inputs and thus presents theoretically superior estimates of factor substitution 

(Nguyen and Streitwieser, 2008).  

Comparing the results of this study with similar studies, Nguyen and Streitwieser (1999) find 

capital-energy ratio estimates to be positive and more than unity across all firm sizes in the U.S. 

manufacturing sector. The estimates show the degree of substitution among the factor inputs to be 

similar in general across the various firm sizes. This implies that small firms are as flexible as large 

firms in factor substitution. Haller and Hyland (2014) find no significant variation in capital-

energy ratio across firms of different sizes. The study finds the largest firms to be most responsive 

to variations in energy prices.  

In consideration of the energy-capital ratio, Table 4.12 MES estimates show that the ratio increased 

with firm size. The energy-capital ratios in medium and large firms were more than unity, implying 

that these firms were greatly responsive to variations in capital price. The energy-capital ratio was 

more responsive to variations in capital price than the capital-energy ratio was to changes in energy 

price. This applied across firms of all sizes except in large firms where the capital-energy ratio was 

found to be relatively more responsive to variations in energy price than the energy-capital ratio 

was to changes in capital price. 

On the labour-energy ratio, the MES estimates showed no consistent pattern across firms of 

different sizes. The ratio was highest in large firms (MESle= 1.042) followed by small firms 

(MESle= 0.828) and medium firms (MESle= 0.811) in that order. The MES estimates showed that 

large firms were highly sensitive to variations in energy prices. In small and medium firms, the 

labour-energy ratio changed less than proportionately to variation in the price of energy. The 

findings of the labour-energy ratio support the notion that labour could replace energy in 

production. Energy could be reduced by increasing labour without hampering production across 

firms of different sizes. These findings are in line with the outcome of Nguyen and Streitwieser 

(1999) who find no consistent pattern in labour-energy ratios. 

The MES of energy for capital was higher than that of energy for labour in medium and large 

firms. This suggested a relatively higher substitution possibility of energy for capital. In small 
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firms, the MES of energy for labour was higher than that of energy for capital. This suggested a 

relatively higher substitution of labour for energy.   

MES estimates of labour and capital showed no consistent pattern in the capital-labour ratio. Large 

firms had the highest capital-labour ratios (MESkl= 0.980) followed by small firms (MESkl= 0.756) 

and medium firms (MESkl= 0.738) in that order. There was also no consistent pattern in the labour-

capital ratio. Large firms had the highest energy-labour ratio (MESlk= 0.983) followed by small 

firms (MESlk= 0.943) and medium firms (MESlk= 0.921) in that order. The results indicated that 

the labour-capital ratio was more sensitive to variations in capital prices than the capital-labour 

ratio was to changes in labour prices.  

4.5 Summary, Conclusion, Policy Implication and Areas for Further Research 

Summary and Conclusion 

The global concern over the implications of energy use in industrial production on competitiveness 

and environmental quality resulting from the process brings out the issue of whether energy and 

non-energy inputs are substitutes or complements. The relationship has implications on capital 

investment and formation, employment and environmental quality. While the conventional view 

holds that natural resources such as energy and materials limit growth in the long run because they 

are exhaustible, neoclassical economists argue that the limitation could be overcome through 

technical change and the substitution of factor inputs.  

Some studies have set to establish the energy and non-energy substitution in the manufacturing 

sector. However, they do not reach a consensus on energy and non-energy input substitution 

possibility. For example, in the case of energy-capital substitution, Onuonga, et al. (2011), Smyth 

et al. (2011), Krishnapillai and Thompson (2012), Haller and Hyland (2014), Zha and Ding (2014), 

Deigner et al. (2018) and Wang et al. (2019) have found capital to be a substitute for energy. On 

the other hand, Fiorito and van den Bergh (2015) have found capital to be a complement for energy. 

In energy-labour substitution, Onuonga, et al. (2011), Smyth et al. (2011), Krishnapillai and 

Thompson (2012), Deininger et al (2018) and Haller and Hyland (2014) have found labour to be a 

substitute for energy while Dahl and Erdogan (2000), Wang et al. (2019) have found labour to be 

a complement for energy. 

Due to a lack of consensus on the issue, discussions on how a rise in energy price could affect 

demand for a non-energy input cannot be overemphasized. This calls for more empirical research 
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on the subject, particularly in the case of developing countries. In sub-Saharan Africa, there is a 

dearth of evidence in this regard, yet these countries heavily rely on energy in production. In Kenya 

and using time series data at the macro level, Onuonga, et al. (2011) find capital and labour to be 

substitutes for energy. But macro-level data has been criticized for the purpose since it yields 

estimates that suffer from aggregation bias. Micro-level data is recommended instead as it is free 

from such bias.  

Secondly, Onuonga, et al. (2011) does not provide current substitution potential between energy 

and non-energy inputs, yet production relationships adjust over time given the varying preferences 

or tastes and technological change. Furthermore, the study does not provide an analysis of sub-

sector and firm size differences in the substitution of non-energy inputs for energy. Yet this 

information is useful in isolating firms that are flexible in responding to energy price changes from 

those that are rigid. This study sought to fill the gaps by assessing the substitution prospects 

between energy and capital and energy and labour in the Kenyan manufacturing sector using the 

most recent available firm-level data. The study assessed sub-sector and firm size differences in 

the substitution of energy and non-energy inputs. The sub-sectors of concern were: chemicals, 

plastics and pharmaceuticals, food, textile and garments and paper and other manufacturing sub-

sector. For robustness check, the study further analysed the situation at the aggregate 

manufacturing sector level.  The firm sizes considered were small, medium and large. 

The analysis was performed in two stages. In the first stage, a translog cost function with controls 

for firm heterogeneity was jointly estimated with cost-share equations by applying the iterated 

seeming unrelated regression (iSUR) technique with the adding up, homogeneity and symmetry 

conditions imposed. In the second stage, elasticities were calculated right from the estimated 

parameters of the translog cost function and predicted cost shares. An unbalanced panel data of 

1265 observations obtained from the World Bank Enterprise Survey (WBES) for the most recent 

years (2007, 2013 and 2018) was employed. Additionally, data on energy prices for respective 

years was drawn from EPRA. The findings showed that capital had the highest cost share (57.3 

percent) followed by labour (31.5 percent) while energy had the least share (11.2 percent).  

At the sub-sector level, the estimates of the translog cost functions showed that the coefficients on 

input prices and output had economically plausible signs. The coefficients on input prices revealed 

the contribution of capital, labour and energy, evaluated at the sample mean, on the total cost. This 
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varied across inputs and sub-sectors. The coefficient on output showed the cost elasticity of output. 

A positive sign on this variable revealed that a 1 percent increase in output led to an increase in 

total cost. The increase was highest in the food sub-sector (35.5 percent) and lowest in the paper 

and other manufacturing sub-sector (28.9 percent). 

The translog cost functions passed the monotonicity and quasi-concavity tests. Own-price 

elasticities of capital, labour and energy were negative. Energy was the most sensitive input to 

own-price change across the sub-sectors as well as the overall sector, except in the textile and 

garments sub-sector where capital was most sensitive. Capital was the second most sensitive to 

own price change across the sub-sectors as well as the overall sector, except in the textile and 

garments sub-sector where energy was second most sensitive. Labour was the least sensitive factor 

to own-price change across the sub-sectors and the overall sector. 

The estimated cross-price elasticities were positive with absolute values of less than unity. That 

indicated the existence of substitution possibilities between the factors. A change in one factor’s 

input price led to a less than proportionate change in demand for a second input. Factor substitution 

possibilities varied in degree among the various factors and across sub-sectors. The elasticities of 

substitution were asymmetric in general.  

The textile and garments sub-sector had the highest cross-price elasticity of substitution of capital 

for energy (𝜖𝑘𝑒 = 0.271) while the chemicals, plastics and pharmaceuticals sub-sector had the least 

(𝜖𝑘𝑒 = 0.030). The corresponding elasticities in the food and paper and other manufacturing sub-

sectors were (𝜖𝑘𝑒 = 0.248), and (𝜖𝑘𝑒 = 0.160), respectively. In the overall sector, the cross-price 

elasticity of capital for energy was (𝜖𝑘𝑒 = 0.454). The findings implied that energy price changes 

could see the highest substitution of capital for energy in the textile and garments sub-sector and 

the least in the chemicals, plastics and pharmaceuticals sub-sector. Even though the elasticity of 

substitution in the chemicals, plastics and pharmaceuticals sub-sector was small and positive 

implying that a rise in energy price would not cause a reduction in capital investment, the findings 

reflected that the complexity in adjusting capital in this sub-sector could result in a large increase 

in the cost of production. The cross-price elasticity of energy for capital showed that estimates 

ranged from 𝜖𝑒𝑘 = 0.091 in the chemicals, plastics and pharmaceuticals sub-sector to 𝜖𝑒𝑘= 0.364 

in the food. Estimate for the overall sector 𝜖𝑒𝑘 = 0.611.  
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The estimates of substitution of labour for energy showed minimal variation across the sub-sectors. 

They ranged from 𝜖𝑙𝑒 = 0.202 in the food sub-sector to 𝜖𝑙𝑒= 0.269 in the textile and garments sub-

sector. In the chemicals, plastics and pharmaceuticals sub-sector, the elasticity was 𝜖𝑙𝑒 = 0.215 

while in the paper and other manufacturing sub-sector, it was 𝜖𝑙𝑒 = 0.214. The overall sector had 

𝜖𝑙𝑒= 0.210. The findings implied that an energy price policy could be successful in reducing energy 

consumption and in expanding labour employment. Such a policy would be most effective in the 

food sub-sector and least effective in the textile and garments sub-sector. Elasticities of 

substitution of energy for labour were higher than those of substitution of labour for energy. They 

ranged from 𝜖𝑒𝑙= 0.286 in the textile and garments sub-sector to 𝜖𝑒𝑙= 0.383 in the chemicals, 

plastics and pharmaceuticals sub-sector. In the overall sector, this elasticity was 𝜖𝑒𝑙= 0.350. The 

estimates of capital-labour substitution showed that both factor inputs could substitute each other 

across all the sub-sectors and the overall sector. There was a greater substitution of labour for 

capital than of capital for labour.  

MES estimates confirmed the substitution possibilities between the factor inputs. The degree of 

substitution, however, varied across factors and sub-sectors. The MES estimates were also 

asymmetric but higher than those of cross-price elasticities. The capital-energy MES estimates 

ranged from 0.752 in the chemicals, plastics and pharmaceuticals sub-sector to 0.913 in the food 

sub-sector. The corresponding estimate in the textile and garments and the paper and other 

manufacturing sub-sectors were 0.848 and 0.808, respectively. In the overall sector, the MES 

estimate was 1.119. The findings confirmed that besides energy price variations affecting energy 

consumption, they could also affect capital investment in Kenya’s manufacturing sector. Except 

in the paper and other manufacturing sub-sector, findings showed that the energy-capital ratio was 

more sensitive to variation in capital price than the capital-energy ratio was sensitive to variation 

in energy price. 

The labour-energy estimates exhibited minimal variation across the sub-sectors except in the 

chemicals, plastics and pharmaceuticals sub-sector. They ranged from 0.846 in the textile and 

garments sub-sector to 0.936 in the chemicals, plastics and pharmaceuticals sub-sector. The MES 

estimates in the food and paper and other manufacturing sub-sectors were 0.866 and 0.862, 

respectively. The estimate for the overall sector was 0.874. Intuitively, estimates implied that 

energy price changes could affect employment across the Kenyan manufacturing sector. On 
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capital-labour substitution, demand for labour was more sensitive to changes in capital price than 

demand for capital was with respect to changes in labour price across all sub-sectors except the 

paper and other manufacturing sub-sector where demand for capital was more sensitive to changes 

in labour price than demand for labour was with respect to change in capital price. 

Firm size level analysis considered three size categories: small firms (5-19 employees), medium 

firms (20-99, employees) and large firms (over 100 employees). The estimates of the translog cost 

function showed that input prices and output had economically plausible signs. The translog cost 

functions passed the monotonicity and quasi-concavity tests, implying that the functions were 

well-behaved and elasticities of substitution could be calculated from their estimates. The 

estimated own-price elasticities were negative with absolute values less than one. Energy was the 

most sensitive input to own-price change across firms of all sizes, apart from the small firms where 

capital was the most sensitive input to own-price change. There was a clear consistent pattern in 

labour and energy own-price elasticities, but no consistent pattern in capital own-price elasticities. 

Labour and energy own-price elasticities increased with firm size and there was minimal variation 

in energy own-price elasticities across firm sizes. Small firms had the highest own-price elasticities 

of capital followed by large firms and medium firms had the least own-price elasticities of capital.  

The cross-price elasticity of substitution of capital for energy in medium firms was 0.339 and 0.582 

in large firms. The estimates were positive and with absolute values of less than unity. They 

indicated the substitution possibility of capital for energy. The possibility increased from medium 

to large firms. Large firms could be well endowed financially to replace old equipment with 

energy-efficient technologies than smaller firms. It is also probable that large establishments had 

more investments in R&D than smaller establishments. Nonetheless, in small firms, the cross-price 

elasticity of capital for energy was negative with a small absolute value of -0.080. This implied 

that capital was at best a weak complement for energy. This means that a rise in energy prices in 

small firms could lead to a high cost of production. Cross-price elasticities of substitution of energy 

for capital were found to be positive with absolute values less than one. These elasticities increased 

with the size of firms. 

The cross-price elasticities of substitution of labour for energy were positive with absolute values 

less than one. This implied that a change in energy price could lead to expansion of employment 

across the firms, but the increase in demand for labour was less than proportionate. No clear 
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consistent pattern of these elasticities was observed across firm sizes. Labour was most sensitive 

to changes in energy prices in Large firms (𝜖𝑙𝑒= 0.386) followed by small firms (𝜖𝑙𝑒= 0.193) and 

medium firms (𝜖𝑙𝑒= 0.196) There was also no clear consistent pattern in elasticities of energy with 

respect to variations in labour price. Large firms had the highest response to changes in labour 

price followed by small firms. Medium firms had the least response. 

The cross-price elasticities of substitution between capital and labour were positive with absolute 

values less than one across firms of all sizes. No consistent patterns were found in these elasticities 

and they displayed asymmetric behaviour. Except in the medium firms, the cross-price elasticities 

of labour with respect to change in capital price were higher than cross-price elasticities of capital 

with respect to change in the price of labour. This implied that in small and large firms, labour 

price changes could attract more capital formation than an expansion of labour arising from a 

change in capital price. In medium firms, capital price changes could lead to more labour 

employment than capital formation resulting from a change in labour price. 

In the MES, all estimates were positive, indicating that there existed substitution possibilities 

between factor inputs across firms of all sizes. The estimated values were higher than those of 

respective cross-price elasticities.  On capital-energy substitution, MES estimates showed that the 

capital-energy ratio increased with firm size. This implies that large firms were relatively more 

flexible in substituting capital for energy than smaller firms. Large firms had the highest ratio 

capital-energy ratio (MESke= 1.237) followed by medium firms (MESke= 0.987) and small firms 

had the least ratio (MESke= 0.555).  The MES estimates in small firms contrasted the cross-price 

elasticities which had displayed a weak complementarity between capital and energy. MES 

estimates are theoretically superior as they provide a measure of technical substitution among 

inputs. MES estimates of the energy-capital ratio were also found to increase with firm size. 

The MES estimates of the labour-energy ratio were highest in large firms (MESle= 1.042) followed 

by small firms (MESle= 0.828) and medium firms had the least ratio (MESle= 0.811). This result 

implied that a rise in energy price could lead not only to a cut in energy use but also to an expansion 

in the employment of labour. The energy-labour ratio increased with firm size. The Labour-energy 

ratio was more responsive to variations in energy price than the energy-labour ratio was sensitive 

to changes in labour price. The labour-capital ratio was more responsive to changes in capital price 

than the capital-labour ratio was to changes in labour prices.  
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Policy Implication 

Capital and labour were observed to be substitutes for energy in Kenya’s manufacturing sector. 

Energy price movements could therefore have important implications on energy use, 

environmental quality, capital investment and labour employment. Energy price policies that lead 

to an increase in energy prices, such as carbon tax or environmental tax are likely to boost capital 

investment and employment. They may also stimulate investment in energy-efficient equipment. 

Further, they could also promote the competitiveness of the manufacturing sector. This is because 

a reduction in energy use resulting from substituting capital and labour for energy could save firms 

some energy costs that increase the total cost of production. Ultimately manufactured products 

could become cheaper. Given that energy prices in Kenya are prescribed by the government 

through EPRA, the energy pricing system needs to reflect the environmental cost of fossil fuels. 

Limitations of the Study 

In the analysis of factor substitution possibilities, the price of capital defined as the user cost of 

capital is one of the useful information needed, yet the WBES did not have firm data on this 

variable. The total replacement cost of capital was employed as a proxy for the price of capital. 

Future Research 

Further research in this area could be on the analysis of regional and firm age differences in the 

substitution possibilities between energy and non-energy inputs in the Kenyan manufacturing 

sector. This is because firms in different regions and firm ages use different product mixes. This 

implies that the firms could be having different cost functions at the regional levels or firm ages. 

Moreover, this research can be extended to other high-consuming sectors of the economy, such as 

the transport sector. 
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17. CHAPTER FIVE: SUMMARY, CONCLUSIONS AND POLICY IMPLICATIONS 

5.1 Introduction 

This chapter concludes the thesis by providing a summary of the study, highlighting key findings 

and policy implications. Limitations of the study and areas for further research are also discussed 

in this chapter.  

5.2 Summary and Conclusions 

The research sought to analyse energy efficiency, productivity and energy and non-energy 

substitution potential in Kenya’s manufacturing sector. Specifically, the main objective of the 

study was to analyze energy efficiency in Kenya’s manufacturing sector; assess the effect of energy 

efficiency on productivity in Kenya’s manufacturing sector and; investigate the energy and non-

energy input substitution possibilities in Kenya’s manufacturing sector. The first chapter presented 

a background of energy consumption and the economic performance of Kenya’s manufacturing 

sector and a basis for the three essays in the thesis.  

The first objective of the study sought to analyze sub-sector energy efficiency differences, 

determine the extent of energy efficiency change and establish energy efficiency drivers in 

Kenya’s manufacturing sector. Sub-sectors of concern were: chemicals, pharmaceuticals and 

plastics, food, textiles and garments and paper and other manufacturing sub-sector. Energy 

efficiency and its drivers were assessed by the use of SFA. More precisely, an input distance 

function with the assumption of a translog production function was estimated in a pooled 

regression model covering the years 2007, 2013 and 2018 in the assessment of electricity 

efficiency and 2013 and 2018 in the assessment of fuel efficiency. Data was obtained from WBES.  

Findings revealed that there existed significant potential to improve electricity and fuel efficiency 

in the Kenyan manufacturing sector. The mean electricity efficiency levels in the chemicals, 

pharmaceuticals and plastics, food, textiles and garments and paper and other manufacturing sub-

sectors and the overall sector were 80.5, 64.8, 78.6, 67.8 and 64.5 percent, respectively. Average 

fuel efficiency scores for respective sub-sectors and the overall sector were 73.9, 72.3, 71.5, 68.8 

and 69.4 percent. The Malmquist index revealed that electricity efficiency improved in the 

chemicals, pharmaceuticals and plastics and textile and garments sub-sectors but had a decline in 

the food and paper and other manufacturing sub-sectors as well as in the overall sector. An increase 
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in fuel efficiency was recorded in the food and paper and other manufacturing sub-sectors and 

overall sector and a decline in fuel efficiency was recorded in the chemicals, pharmaceuticals and 

plastics and textiles and garments sub-sectors.  

Analysis of drivers of energy efficiency revealed that determinants of energy efficiency varied 

across sub-sectors and between electricity and fuel. Labour productivity influenced fuel efficiency 

negatively in all sub-sectors and the overall sector. It influenced electricity efficiency negatively 

in all sub-sectors, except the food sub-sector, and the overall sector. This suggests that measures 

to improve labour productivity do not provide further emphasis to ensure a significant level of skill 

improvement required to increase energy efficiency. Firm age negatively influenced electricity 

efficiency in the food sub-sector and fuel efficiency in the chemicals, pharmaceuticals and plastics 

sub-sector. This suggests that old firms could be employing old technologies whilst young firms 

employ current technologies. It had a positive effect on electricity efficiency in the chemicals, 

pharmaceuticals and plastics and textiles and garments sub-sectors. This outcome could be due to 

the benefits of learning-by-doing. Firm age squared positively influenced electricity efficiency in 

the food and textiles and garments sub-sectors and fuel efficiency in the paper and other 

manufacturing sub-sector and the overall sector. Benefits linked to learning-by-doing could be 

responsible for this outcome. Firm age squared negatively influenced fuel efficiency in the textiles 

and garments sub-sector.  This suggests that huge sunk costs could be a barrier to the replacement 

of old technologies in this sub-sector. 

Top manager’s experience was found to promote electricity efficiency in the food and paper and 

other manufacturing sub-sectors. This suggests that experienced managers could have improved 

electricity efficiency using skills and abilities gained over time. Firm size had a positive effect on 

electricity efficiency in the paper and other manufacturing sub-sector and fuel efficiency in the 

textiles and garments sub-sector and the overall sector. This indicates that large firms could have 

employed a highly skilled workforce and had the financial ability to purchase recent technologies. 

Firm size had a negative effect on electricity efficiency in the chemicals, pharmaceuticals and 

plastics and food sub-sectors. This suggests that complications in the inner structure of large firms 

could have led to more energy use.  

Foreign ownership positively influenced fuel efficiency in the food sub-sector. This indicates that 

foreign-owned firms attract technical support from host countries. Female firm-ownership was 
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found to have a positive influence on electricity efficiency in the food sub-sector and overall sector 

and fuel efficiency in the chemicals, pharmaceuticals and plastics and food sub-sectors. This 

suggests that female members enhance firm performance by providing cooperation, solutions to 

problems, inventiveness and ingenuity and honesty.  

Exporting had a positive influence on electricity efficiency in the chemicals, pharmaceuticals and 

plastics, food and textiles and garments sub-sectors and the overall sector. In a similar way, 

exporting had a positive influence on fuel efficiency in chemicals, pharmaceuticals and plastics 

and paper and other manufacturing sub-sectors. This suggests that there were benefits associated 

with learning-by-exporting. R&D had a positive effect on both electricity and fuel efficiency in 

the chemicals, pharmaceuticals and plastics sub-sector. This suggests that R&D activities could 

have exposed firms to innovations in electricity and fuel efficiency. 

In the second objective, the study sought to investigate how energy efficiency influenced TFP in 

the Kenyan manufacturing sector TFP. Energy intensity measured as the ratio of expenditure on 

energy to the value of output was used to indicate energy efficiency. TFP was estimated using 

Levinsohn-Petrin (LP) algorithm. To achieve the objective, a dynamic panel model and an 

instrumental variable GMM estimator were adopted. This was suitable in dealing with the potential 

endogeneity of energy efficiency resulting from unobserved heterogeneity and reverse causality. 

An unbalanced panel for the years 2007, 2013 and 2018 drawn from WBES was used in this 

objective.  

Findings show that energy intensity was highest in the food sub-sector at 0.413 followed by paper 

and other manufacturing at 0.225, chemicals, pharmaceuticals and plastics at 0.120 and textiles 

and garments at 0.064. Energy intensity was found to have a positive correlation with capital 

intensity. This indicates that widening capital investment did not necessarily result in efficient 

energy use. Energy intensity had a negative correlation with the value of output. This suggests that 

a large amount of output was produced at high energy efficiency.  

TFP levels for the chemicals, pharmaceuticals and plastics, food, paper and other manufacturing 

and textiles and garments sub-sectors were 3.071, 2.925, 2.722 and 2.079 respectively. The paper 

and other manufacturing and chemicals, pharmaceuticals and plastics sub-sectors had tightly 

dispersed distribution plots. This suggests minimal heterogeneity in productivity. The food sub-

sector had tight dispersion but lower than that in the paper and other manufacturing and chemicals, 
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pharmaceuticals and plastics sub-sectors. This also suggests minimal heterogeneity in 

productivity. The textile and garments sub-sector had widely dispersed distribution plots with a 

relatively large density below the mean. This suggests sizable heterogeneity in productivity and 

signals the existence of rigidities or other distortions that pose a barrier to the efficient allocation 

of resources within the sector. 

Energy efficiency was found to positively affect TFP in the Kenyan manufacturing sector, a 

finding that was in line with the Porter Hypothesis. This implies that the enhancement of energy 

efficiency is key to realizing higher TFP in this sector. Capital intensity had a positive influence 

on TFP. This indicates that firms with high capital investment realize high TFP. Firm age 

positively influenced TFP. This suggests that there were TFP premiums of learning-by-doing. Firm 

size positively influenced TFP. This implies that large firms had highly skilled staff and better 

access to financial resources which helped them acquire recent technologies, thereby enhancing 

productivity. Top manager’s experience was found to positively influence TFP. This suggests that 

learning-by-doing effects linked to managers with high experience promoted productivity. 

Separate regressions by sub-sectors and firm sizes were also performed to account for 

heterogeneity. Sub-sectors of concern were: food, textiles and garments and paper and other 

manufacturing sub-sector. The chemicals, pharmaceuticals and plastics sub-sector was dropped 

because the analysis failed convergence tests. Energy efficiency was found to positively influence 

TFP across all sub-sectors. This was in agreement with the Porter Hypothesis. Capital intensity 

was found to positively influence TFP in the food and textile and garments sub-sectors. This 

suggests that high capital investment was linked to high TFP.  Nevertheless, capital intensity 

negatively influenced TFP in the paper and other manufacturing sub-sector.  

Firm age had a positive influence on TFP in the food and paper and other manufacturing sub-

sectors. This implies that TFP premiums were arising from learning-by-doing effects. Firm size 

positively influenced TFP in the same sub-sectors. This indicates that large firms had access to 

highly skilled staff and better technologies which boosted their productivity. Foreign ownership 

positively influenced TFP in the textiles and garments sub-sector. This suggests that foreign-

owned firms had some cost advantage over domestic firms. Exporting status positively influenced 

TFP in the textile and garments sub-sector. This indicates that exporting firms learned better 

production techniques from foreign markets. R&D positively influenced TFP in the textile and 
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garments sub-sector. This suggests that R&D activities led to process and product innovation 

besides improving the absorptive capability of firms, thereby promoting productivity.  

On firm size analysis, firm sizes of interest were: small, medium and large. Energy efficiency was 

observed to have a positive influence on TFP in small and medium firms. The finding supported 

the Porter Hypothesis. Capital intensity had a positive influence on TFP across all firm sizes. This 

suggests that firms with more capital investments had higher TFP. Firm age had a positive 

influence on TFP in small and large firms. This indicates that there were TFP premiums associated 

with learning-by-doing effects. Firm age had a negative influence on TFP in medium firms. 

Probably, old firms in this size category had old technologies. Foreign ownership positively 

influenced TFP in medium-sized firms. This signals that foreign-owned firms had some features 

that gave them a cost edge over local firms, which boosted productivity. Exporting influenced TFP 

positively in small firms. This suggests that exporting firms learned new production technologies 

from the export market.  

The third objective sought to analyse energy and non-energy input substitution possibilities in 

addition to establishing whether these substitution possibilities varied with firm size in the Kenyan 

manufacturing sector. Iterated seeming unrelated regression (iSUR) was applied on a pooled model 

and unbalanced panel data for the years 2007, 2013 and 2018 drawn from WBES. Additional data 

on energy prices for respective years was obtained from EPRA. The empirical analysis was 

conducted in two steps. First, a translog cost function was jointly estimated with cost-share 

equations using iSUR with the adding up, homogeneity and symmetry conditions imposed. In the 

second step, estimated parameters of the translog cost function and cost shares were directly 

applied to compute elasticities. 

Empirical results revealed that the translog cost function met monotonicity and quasi-concavity 

conditions. Elasticities of substitution could therefore be drawn from them. Factor substitution was 

found to vary in degree among various factors across sub-sectors. The cross-price elasticities of 

substitution of capital for energy in the textile and garments, food, paper and other manufacturing 

and chemicals, pharmaceuticals and plastics sub-sectors and the overall sector were 0.271, 0.248, 

0.160 and 0.030 and 0.454 respectively. These elasticities indicate that capital was a substitute for 

energy. The cross-price elasticities of labour for energy across sub-sectors had minimal variation. 

They ranged from 0.202 in the food sub-sector to 0.269 in the textiles and garments sub-sector. In 
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the chemicals, pharmaceuticals and plastics and paper and other manufacturing sub-sectors and 

the overall sector, the elasticities were 0.215, 0.214 and 0.210 respectively. These elasticities 

indicate that labour was a substitute for energy. 

MES estimates confirmed substitution possibilities between factor inputs. The capital-energy MES 

estimates in the food, textile and garments, paper and other manufacturing and chemicals, 

pharmaceuticals and plastics sub-sectors and the overall sector were 0.913, 0.848, 0.808, 0.752 

and 1.119 respectively. These estimates suggest that capital was a substitute for energy. Energy 

price policies could thus cut energy consumption and carbon emissions and promote capital 

investments in the Kenyan manufacturing sector. The labour-energy MES estimates in the 

chemicals, pharmaceuticals and plastics, food, paper and other manufacturing and textile and 

garments sub-sectors and the overall sector were 0.936, 0.866, 0.862, 0.846 and 0.874 respectively. 

The estimates indicate that labour was a substitute for energy. Therefore, energy price policies 

could be suitable in reducing energy consumption, cutting carbon emissions and boosting 

employment in the Kenyan manufacturing sector. 

Finally, on analysis at the firm level, cross-price elasticities of substitution of capital for energy 

showed that capital was a substitute for energy in the medium (0.339) and large (0.582) firms. 

These estimates indicate that the substitution possibility of capital for energy increased from 

medium to large firms. However, in small firms (-0.080), cross-price elasticities showed that 

capital was at best a weak complement for energy. Cross-price elasticities of labour for energy 

showed that labour was a substitute for energy. However, estimates did not show a consistent 

pattern across firm sizes. Elasticities in small, medium and large firms were 0.193, 0.163 and 0.386 

respectively.  

MES estimates at the firm size level confirmed that capital was a substitute for energy and 

substitution increased with firm size. Small firms had the lowest estimates at 0.555 followed by 

medium firms at 0.987 and large firms at 1.237. No consistent pattern was observed in the labour-

energy MES estimates across firm sizes. MES estimates for small, medium and large firms were 

0.828, 0.811 and 1.042 respectively. Findings at the firm size level also implied that energy price 

policies could be useful in reducing energy consumption, cutting carbon emissions and expanding 

capital investments and employment in the Kenyan manufacturing sector. 
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5.3 Policy Implications 

The employment of new technologies is the basis for energy efficiency. There is a need to 

strengthen technological innovation in the manufacturing sector. An increase in R&D funds is 

important in enabling the discovery of recent technologies and the development of new equipment. 

Available data shows that R&D funding in 2018 only stood at 0.48 percent of GDP, which was 

below the 2 percent level recommended in the NRF Science, Technology and Innovation Act 2013. 

In addition, there is a need for The National Treasury and Planning to provide R&D subsidies and 

low-interest loans or tax incentives to firms engaging in R&D activities. Supporting technological 

innovation will be instrumental in supporting the government’s effort to enhance energy efficiency 

and conservation as indicated in the Least Cost Power Development Plan. 

Exporting status had a positive influence on electricity efficiency in all the sub-sectors except the 

paper and other manufacturing sub-sector. It promoted fuel efficiency in the chemicals, 

pharmaceuticals and plastics and the paper and other manufacturing sub-sectors. There is a need 

for the Ministry of Industrialization, Trade and Enterprise Development to promote exports beyond 

the establishment of export processing zones. Finding foreign markets is especially important in 

this regard. It is also important to offer specialized counselling and training to exporters on how to 

capitalize on business opportunities abroad. Additionally, the ministry needs to offer training to 

exporters on ways to access specialized foreign markets such as those requiring products to meet 

certain environmental quality standards.  

Firm size had a positive effect on electricity efficiency in the chemicals, pharmaceuticals and 

plastics sub-sectors and fuel efficiency in the textiles and garments sub-sector. This finding 

supports the argument that large firms are potentially more energy-efficient than small firms 

because of their better access to financial resources, particularly from third parties. Small-sized 

firms are limited by such factors as the inability to provide collateral. They also face lenders who 

require high interest on loans given that the economic risk is greater. For instance, small firms 

have less diversification in their product portfolio which exposes them to hurting economic shocks. 

Therefore, there is a need for The National Treasury and Planning to offer financial incentives 

such as tax exemptions, low-interest loans and subsidies to small firms that to help them make 

energy efficiency investments. 
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Top manager’s experience positively influenced electricity efficiency in the food and paper and 

other manufacturing sub-sectors. There is a need for manufacturing firms to constantly provide 

staff with formal training to refine their energy efficiency skills. Female firm-ownership had a 

positive effect on electricity efficiency in the food sub-sector and fuel efficiency in the chemicals, 

pharmaceuticals and plastics and food sub-sectors. There is a need for the Ministry of Public 

Service, Gender, Senior Citizens Affairs and Special Programmes to design policies that increase 

the visibility of female entrepreneurs. Such policies include sustained education and training 

programmes on business skills. It is also important to publicize the success stories of female 

entrepreneurs through mainstream media and other facilities. This could be useful in encouraging 

and expanding the confidence of other potential women entrepreneurs. One of the main barriers to 

women entrepreneurship is the failure to access capital because of stringent requirements by 

lending institutions. For instance, women are required to offer collateral for them to access loans, 

which in most instances they do not own. Therefore, there is a need for finance lending institutions 

to rethink the requirements to advance credit to female entrepreneurs to increase access to this 

facility.  

Other policies to enhance energy efficiency include policies to promote foreign ownership, 

especially in the chemicals, pharmaceuticals and plastics and food sub-sectors where this variable 

positively affected fuel efficiency. The management in foreign-owned firms could also capitalize 

on present foreign direct policies such as tax incentives encouraging the importation of modern 

technologies from host countries. There is also a need for the Ministries of Energy and Petroleum 

and Mining to promote awareness of energy efficiency benefits in manufacturing firms. This could 

be through conferences and leadership forums. Such an initiative may increase the uptake of 

energy efficiency measures particularly after producers learn the benefits linked to such measures. 

Energy efficiency was found to be positively associated with higher TFP. This finding has 

important implications for energy efficiency and productivity policies. Policies to enhance energy 

efficiency need to be paired with policies to promote growth. Policies to promote energy efficiency 

should incorporate increased total factor productivity to make them, even more, cost-effective. 

Policies to enhance TFP could also be drawn from other covariates. The findings of the study show 

that there cannot be a one-size-fits-all solution to TFP due to the existence of strong heterogeneity 

by sub-sectors and firm sizes. Capital intensity was found to promote TFP in the overall sector, 

food and textile and garments sub-sector and in all firm sizes. There is a need for The National 
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Treasury and Planning to put up measures to strengthen the uptake of capital, and in particular, 

capital associated with modern and advanced technologies. 

Firm age was found to positively promote TFP in the overall sector, food and paper and other 

manufacturing sub-sectors and small and large firms. Productivity premium in old firms could be 

a result of learning-by-doing effects or the ability of old firms to easily acquire better production 

technologies. Nevertheless, firm age had a negative influence on TFP in medium firms, implying 

that young firms could be enjoying the advantages of new and advanced technologies and flexible 

internal structures. There is a need for the Ministry of Industrialization, Trade and Enterprise 

Development and the business community to promote startups through measures such as 

mentorship of young manufacturers and the opening of manufacturing innovation hubs across the 

country. Firm size was found to influence TFP positively in the overall sector and paper and other 

manufacturing sub-sector. There is a need for the Ministry of Industrialization, Trade and 

Enterprise Development to provide a favourable business environment to enable the growth of 

firms. For instance, the government could support efforts that expose small firms to international 

markets from which they can expand their sales and earn more profits. 

Top manager’s experience had a positive effect on TFP in the overall sector. There is a need for 

manufacturing firms to constantly furnish staff with formal training to hone their expertise. Foreign 

ownership was found to promote TFP in the textiles and garments sub-sector and medium firms. 

This means that these sub-sector and size categories benefitted from superior technologies and 

management and access to distribution and marketing channels and networks that come with 

foreign ownership. As highlighted earlier, there is a need for the government to continue 

supporting foreign direct investments through measures such as corporate tax incentives. Top 

managers of foreign-owned firms should continue leveraging existing tax incentives to import 

superior technology from host countries. Exporting was found to positively influence TFP in small 

firms. This implies that small firms enjoyed productivity gains resulting from learning-by-

exporting. As discussed earlier, there is a need for the Ministry of Industrialization, Trade and 

Enterprise Development to go beyond creating export promotion zones to exploring new foreign 

markets. Specialized counselling and training on approaches to exploit prevailing business 

openings abroad and how to access particular markets such as those requiring certain conditions 

and quality standards to be met need to be offered to exporters. 
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Capital and labour were found to be substitutes for energy in the Kenyan manufacturing sector. 

The findings implied that energy policies could not only have useful implications on energy 

consumption and environmental quality but also capital investments and employment. Given that 

energy prices in Kenya are set by the government through EPRA, there is a need for the energy 

pricing system to reflect the environmental cost of fossil fuels. Such a policy could boost capital 

investment and employment and may also enhance the uptake of energy-efficient equipment. 

Further, the policy could be useful in promoting the competitiveness of the manufacturing sector 

by reducing energy costs.  

5.4 Limitations of the Study 

In the analysis of energy efficiency, the 2018 WBES did not have data on fuel expenditure. 

Therefore, the analysis of fuel efficiency change was limited to the period 2007-2013. In the 

evaluation of the effect of energy efficiency on TFP, the chemicals, pharmaceuticals and plastics 

sub-sector had a low sample size and thus the analysis failed the converge tests. Consequently, this 

sub-sector was dropped from the analysis. In the assessment of energy and non-energy input 

substitution possibilities, the WBES did not have firm-level data on the price of capital, yet this 

variable is important in the analysis of factor substitution. The study used the total replacement 

cost of capital as a proxy for the price of capital. 

5.5 Areas for Further Research 

This study acknowledged that energy efficiency could be varying across sub-sectors because of 

varying production technologies. Consequently, analysis was at the sub-sector level. Future studies 

should consider analysis at the regional level. This is because different regions have unique 

characteristics such as energy prices and access to electricity which may influence demand for 

energy among firms and thus lead to regional differences in energy efficiency. Upon the 

availability of more data, more periods may be included in the panel data to allow more 

observations on each firm. More information is important in developing more discerning 

conclusions on energy efficiency. Analysis may also be extended to separate regressions based on 

years to provide an understanding of changes in energy efficiency over time. Further, a more 

comprehensive study could be done on gender and energy efficiency relation. Although this study 

found female firm ownership to positively influence energy efficiency, the issue of gender and 
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energy efficiency is wide and this study might have failed to study it exhaustively. Findings from 

the proposed study are likely to offer important policies to address climate change. 

Energy efficiency policies could be a win-win solution in terms of environment and productivity. 

Thus, there is a need to investigate why the uptake of energy efficiency measures is low yet such 

measures are linked to higher TFP. An investigation of the effect of energy efficiency on the 

productivity of the Kenyan manufacturing sector can also be complemented by an investigation of 

the energy efficiency and profitability relation in the manufacturing sector. Such an assessment is 

important by itself because of the high cost incurred in adopting energy-efficient technologies. 

Research on energy and non-energy substitution possibilities can be extended to investigating 

regional and firm age differences in substitution possibilities. This is because different regions and 

firm age categories could be using varying product mixes and thus they could be operating on 

different cost functions leading to regional and firm age differences in energy and non-energy 

substitution possibilities. Research could also be extended to other high-energy consumers such as 

the transport sector. 
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18. APPENDICES 

19. APPENDIX 1: Kernel Density Function of Energy Efficiency 
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Figure A.1.1:Kernel Density function of electricity efficiency 
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Figure A.1.2:Kernel Density Function of fuel efficiency 
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20. APPENDIX 2: Distribution of TFP by sub-sector 
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Figure A.2.1:TFP distribution by manufacturing sub-sector 
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