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Abstract

Introduction

This study investigated the interactions between a low protein high calorie (LPHC) diet and

an integrase inhibitor-containing antiretroviral drug regimen (INI-CR)in light of evidence sug-

gesting that the initiation of cART in patients with poor nutritional status is a predictor of mor-

tality independent of immune status.

Methods

Freshly weaned Sprague Dawley rats (120) were randomized into the standard, LPHC and

normal protein high calorie (NPHC) diet groups (n = 40/group) initially for 15 weeks. Thereaf-

ter, experimental animals in each diet group were further randomized into four treatment

sub-groups (n = 10/group) Control (normal saline), group 1(TDF+3TC+DTG and Tesamore-

lin), group 2 (TDF+3TC+DTG), and Positive control (AZT+3TC+ATV/r) with treatment and

diets combined for 9 weeks. Weekly body weights, fasting blood glucose (FBG), oral glu-

cose tolerance test (OGTT); lipid profiles, liver weights, hepatic triglycerides and adiposity

were assessed at week 24.

Results

At week 15, body weights increased between the diet group in phase 1(standard 146 ± 1.64

vs. 273.1 ± 1.56 g), (NPHC, 143.5 ± 2.40 vs. 390.2 ± 4.94 g) and (LPHC, 145.5 ± 2.28 g vs.

398.3 ± 4.89 g) (p< 0.0001). A similar increase was noted in the FBG and OGTT (p<
0.0001). In phase 2, there was an increase in FBG, OGTT, body weights, lipid profile, liver

weights, hepatic triglycerides, adiposity and insulin levels in group 2 and positive control in

both NPHC and LPHC diet groups (p<0.0001). Growth hormone levels were decreased in

Tesamorelin-free group 2 and positive control in both NPHC and LPHC (p< 0.0001).
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Conclusions

The obesogenic activities of the LPHC diet exceeded that of the NPHC diet and interacted

with both integrase-containing and classical cART drug regimens to reproduce cART asso-

ciated metabolic dysregulation. The effects were however reversed by co-administration

with tesamorelin, a synthetic growth hormone releasing hormone analogue.

Introduction

Although the advent of combined Antiretroviral Therapy (cART), has resulted in increased

lifespans and quality of life, it is often associated with the development of metabolic dysregula-

tion e.g., dyslipidemia, insulin resistance, abnormalities in glycemic control, and lipodystrophy

[1]. The cART-associated metabolic dysregulation appears to be a universal characteristic asso-

ciated with antiretroviral drugs with even the newer IICR being associated with these meta-

bolic derangements [2].

The rapid rates of urbanization in sub-Saharan Africa amidst poorly performing economies

has resulted in a large proportion of the urban population having limited access to social ame-

nities and food adequate in both quality and quantity [3]. Indeed, urban diets in the low-

income urban informal settings are often high calorie (high fat/high sugar) and low protein

diets (high calorie protein malnutrition).

Since Sub-Saharan Africa has a high prevalence of human immunodeficiency virus and

acquired immune deficiency syndrome (HIV/AIDS) a significant proportion of patients on

cART would be reasonably expected to be suffering from this high calorie protein malnutrition

[4]. This study investigated the relationship between diet, cART regimens and the resulting

metabolic derangements in light of recent studies that have reported increased mortality after

cART initiation among patients on high calorie low protein diets than in the general popula-

tion in sub-Saharan Africa [5].

Material and methods

Diet preparation

The various diets i.e., standard rat chow (4.8% fat, 17.1% protein, 34.6% complex carbohy-

drates and 5.3% sucrose), normal protein high calorie/high fat (36% fat, 17.1% protein, 42%

complex carbohydrates and 20% sucrose) and low protein high calorie/high fat (36% fat, 6%

protein, 42% complex carbohydrates and 20% sucrose were specially formulated and manufac-

tured by Unga group limited, Nakuru, Kenya.

Experimental animals’ selection, grouping and treatment

One hundred and twenty (120) freshly weaned Sprague-Dawley rats (6–8 weeks old) weighing

approximately 150 grams, were obtained from the Kabete veterinary laboratories, Nairobi.

The animals were grouped-housed in the animal house situated within the department of

medical physiology, adhering to specified ambient conditions: a room temperature ranging

from 23 ± 2˚C, relative humidity maintained at 30–50%, and a 12-hour light/day cycle. Prior

to the initiation of the study, a seven-day period was dedicated to habituating the animals to

both the experimenter and the environmental conditions. The study was performed in two

stages. The first phase involved the investigation of the relative obesogenic nature of the three

different diets (standard chow, normal protein high calorie diet and low protein high calorie
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diet) while the second phase involved evaluating the interactions of the various treatments

with the aforementioned diets.

Phase one. The experimental animals were randomized into the (n = 40/group) standard

rat chow, normal protein/high calorie and low protein/high calorie diet groups. The respective

diets and water were supplied ad libitum to all the groups throughout the duration of the

study. This phase had a duration of fifteen weeks.

Phase two. The experimental animals in each diet group were further randomized into

four experimental subgroups on week 16, into (n = 10/group): control (vehicle normal saline),

test group 1(Tenofovir disoproxil fumarate (TDF) + Lamivudine (3TC) + Dolutegravir (DTG)

+ Tesamorelin, test group 2 (Tenofovir disoproxil fumarate (TDF) + Lamivudine (3TC)

+ Dolutegravir (DTG), and Positive control (Zidovudine (AZT) +Lamivudine (3TC) +-

Atazanavir/ritonavir (ATV/r)). A paradigm illustration of the experimental study groups are

shown in Fig 1.

The respective treatments were administered daily between 1500hrs and 1700hrs via oral

gavage for nine (9) weeks. The dosage calculations were made using the rat to human body

weight/ surface area normalization formula for drug dose calculations [6].

HED mg =kgð Þ ¼ Animal dose mg=kgð Þ � Animal Km=Human Kmð Þ

HED is Human Equivalent Dose, Km is Correction factor

Rat Km ¼ 6:2;Human Km ¼ 37

The animals were weighed weekly using a standard laboratory weighing scale

(Ohaus1SJX6201N/E scout portable balance).

Fig 1. A paradigm illustration of the experimental study groups.

https://doi.org/10.1371/journal.pone.0298752.g001
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Serum biochemistry and other assays

Fasting blood glucose and oral glucose tolerance test determination. Weekly fasting

blood glucose (FBG) levels were assessed using a glucometer (On Call1 EZ II) throughout the

study. Blood samples were obtained via lateral tail vein blood sampling after a six-hour fast,

following the application of Topical Lidocaine ten (10) minutes prior to mitigate pain and

stress associated with the test, using the Lee and Goosens protocol [7].

Oral glucose tolerance tests were conducted in the 15th and 24th weeks of the experimental

period, following Bartoli’s protocol [8]. Briefly, rats underwent a six-hour fast before baseline

blood glucose levels were determined using the previously described procedure. Subsequently,

each rat received a loading dose of glucose (2 g/kg) via oral gavage. Blood glucose levels were

then measured at 30, 60, 90, and 120 minutes post-administration of the glucose load. The

blood glucose levels obtained were used to calculate the area under the curves (AUCs).

Fasting plasma insulin and growth hormone levels. The fasting plasma insulin and

growth hormone levels were determined using the enzyme-linked immunosorbent assay

(ELISA) method using a rat insulin and growth hormone kit (Bioassay Technology laboratory,

Shanghai, China). The fasting insulin levels was used for determination of Homeostatic Model

Assessment (HOMA) score for insulin resistance and β-cell function (HOMA-IR and HOMA-

β) which were calculated using the following equation [9].

HOMA � IR ¼
Insulin U∕Ið Þ � Blood glucose mmol∕Ið Þ

22:5

HOMA � b ¼
20� Insulin U=Ið Þ

Blood glucose mmol=Ið Þ
� 3:5

Lipid profile and adipose tissue depot weight determination. The rats underwent

euthanasia following an overnight fasting period, achieved through intraperitoneal administra-

tion of 6% Phenobarbital on week 24. Subsequently, blood samples were obtained via cardiac

puncture, left to clot, and then subjected to centrifugation at 1500 revolutions per minute for

ten (10) minutes. The resulting serum was transferred into vacutainers and transported to the

Department of Clinical Chemistry at the University of Nairobi. In this department, the levels

of serum triglycerides, total cholesterol, low-density lipoprotein, and high-density lipoprotein

were determined.

The various visceral adipose tissues depots (retroperitoneal adipose tissue, mesenteric adi-

pose tissue and pericardial adipose tissue) were carefully extracted and weighed after euthana-

sia of the experimental animal.

Determination of liver weights and hepatic triglycerides. Following the euthanization

of the experimental animals, as detailed earlier, a midline incision was performed on the ven-

tral surface of each rat’s body to expose the abdominal cavity, and the liver was subsequently

excised. The respective liver weights were determined and recorded for the assessment of

hepatic triglycerides. The determination of hepatic triglycerides followed the procedure out-

lined by Bulter and Mailing [10]. In brief, 2 grams of the respective livers were homogenized

in eight milliliters of phosphate buffer. A resulting 1-milliliter portion of the homogenate was

added to four grams of activated charcoal, pre-moistened with two milliliters of chloroform.

After topping up the mixture with eighteen milliliters of chloroform, it was gently shaken for

ten minutes, followed by filtration.

The resulting filtrate was divided into three test tubes, and an additional 1-milliliter portion

of standard oil solution (1%) was pipetted into three separate test tubes. All test tubes were
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placed in a water bath at 80˚C to evaporate excess chloroform. To the first and second tubes,

0.5 milliliters of alcoholic potassium hydroxide were added, and the third tube containing the

filtrate and the test tube with the standard corn oil solution received 0.5 milliliters of 95% alco-

hol. The test tubes were maintained in water at 60˚C for twenty minutes, followed by the addi-

tion of 0.5 milliliters of 0.2N sulphuric acid to each tube. The resulting mixtures were heated

in a water bath (100˚C) for an additional twenty minutes, cooled, and then subjected to the

addition of 0.1 milliliter sodium metaperiodate and 0.1 milliliter sodium arsenide. Five millili-

ters of chromotropic acid were added to each test tube after ten minutes, and the tubes were

placed in a water bath (100˚C) for half an hour. The optical densities at 540 nm were deter-

mined using a spectrophotometer. The obtained optical densities were utilized to calculate

hepatic triglyceride content through the following formula:

Let

R ¼
Optical density O:Dð Þsaponified unknown � O:D unsaponified unknown
O:D saponified corn oil standard � O:D unsaponified corn oil standard

And A = volume of aliquot of chloroform extract in ml (1 ml was used in the present

study).

Then triglyceride contents in milligram per gram of tissue

200

A
� R� 0:05 ¼ 10

R
A

Ethical considerations

The experimental protocol was approved by Biosafety, Animal Use and Ethics Committee,

Faculty of Veterinary Medicine, University of Nairobi (permit number FVM BAUEC/2022/

354). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were

made to minimize suffering.

Statistical analysis

The experimental data were presented as mean ± standard error of the mean (S.E.M.), and sta-

tistical analysis was conducted through one-way ANOVA. In cases of significance (defined as

p� 0.05), Tukey’s test was applied. The analysis was carried out using GraphPad Prism1 ver-

sion 8.0.1(244).

Results

Phase one

Body weight during the diet induction phase. There were no significant differences in

the body weight between the three experimental groups at the beginning of the study

[146 ± 1.64 grams (standard diet) vs.143.5 ± 2.40 grams (normal protein high calorie diet)

vs.145.5 ± 2.28 grams (low protein high calorie diet): p = 0.5538] up to the end of week 4:

[179 ± 0.75 grams (standard diet) vs.181 ± 1.01 grams (normal protein high calorie diet)

vs.182.6 ± 1.38 grams (low protein high calorie diet): p = 0.0688].

There were significant differences in the body weight between the three experimental

groups at the end of week 5: [183 ± 1.24 grams (standard diet) vs.196 ± 1.30 grams (normal

protein high calorie diet) vs. 198.6 ± 0.61 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant
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differences between standard diet and normal protein high calorie diet (p< 0.0001) and stan-

dard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 6: [188.7 ± 1.33 grams (standard diet) vs. 216 ± 4.27 grams (normal

protein high calorie diet) vs. 219.6 ± 1.53 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 7: [197.7 ± 1.43 grams (standard diet) vs. 230 ± 2.70 grams (normal

protein high calorie diet) vs. 233.3 ± 1.52 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 8: [208.7 ± 1.27 grams (standard diet) vs. 255 ± 2.69 grams (normal

protein high calorie diet) vs. 258 ± 1.46 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 9: [218 ± 2.44 grams (standard diet) vs. 277 ± 7.06 grams (normal

protein high calorie diet) vs. 283 ± 4.09 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 10: [221 ± 1.40 grams (standard diet) vs. 286.8 ± 3.20 grams (normal

protein high calorie diet) vs. 292 ± 3.77 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 11: [228.6 ± 1.22 grams (standard diet) vs. 302 ± 4.88 grams (normal

protein high calorie diet) vs. 307 ± 4.89 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 12: [237 ± 1.31 grams (standard diet) vs. 322 ± 5.47 grams (normal

protein high calorie diet) vs. 329 ± 2.93 grams (low protein high calorie diet): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between standard diet and normal protein high calorie diet (p< 0.0001) and standard

diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 13: [246.6 ± 1.44 grams (standard diet) vs. 341.2 ± 5.15 grams (nor-

mal protein high calorie diet) vs. 352.2 ± 6.22 grams (low protein high calorie diet): p<

0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed
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significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 14: [256.4 ± 1.49 grams (standard diet) vs. 360.2 ± 5.60 grams (nor-

mal protein high calorie diet) vs. 372.3 ± 3.48 grams (low protein high calorie diet): p<

0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed signifi-

cant differences between standard diet and normal protein high calorie diet (p< 0.0001) and

standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the body weight between the three experimental

groups at the end of week 15: [273.1 ± 1.56 grams (standard diet) vs. 390.2 ± 4.94 grams (nor-

mal protein high calorie diet) vs. 398.3 ± 4.89 grams (low protein high calorie diet): p<

0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed signifi-

cant differences between standard diet and normal protein high calorie diet (p< 0.0001) and

standard diet and low protein high calorie diet (p< 0.0001).

The graphical presentation of the mean body weights at weekly interval during the diet

induction phase is shown in Fig 2 (line graph) and Table 1.

Fasting blood glucose. There were no significant differences in the fasting blood glucose

between the three experimental groups at the beginning of the experiment [3.86 ± 0.04 mmol/

L (standard diet) vs. 3.85 ± 0.03 mmol/L (normal protein high calorie diet) vs. 3.85 ± 0.18

mmol/L (low protein high calorie diet): p = 0.9996] up to the end of week 4: [4.00 ± 0.02

mmol/L (standard diet) vs. 4.03 ± 0.02 mmol/L (normal protein high calorie diet) vs.

4.06 ± 0.02 mmol/L (low protein high calorie diet): p = 0.3748].

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 5: [4.00 ± 0.04 mmol/L (standard diet) vs. 4.08 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.09 ± 0.01 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p = 0.0013)

and standard diet and low protein high calorie diet (p = 0.0004).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 6: [4.05 ± 0.02 mmol/L (standard diet) vs. 4.14 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.20 ± 0.01 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p = 0.0003)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 7: [4.06 ± 0.02 mmol/L (standard diet) vs. 4.18 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.23 ± 0.02 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 8: [4.02 ± 0.02 mmol/L (standard diet) vs. 4.23 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.32 ± 0.02 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 9: [4.08 ± 0.02 mmol/L (standard diet) vs. 4.37 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.43 ± 0.02 mmol/L (low protein high calorie
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diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 10: [4.12 ± 0.02 mmol/L (standard diet) vs. 4.45 ± 0.02

mmol/L (normal protein high calorie diet) vs. 4.50 ± 0.02 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 11: [4.10 ± 0.01 mmol/L (standard diet) vs. 4.57 ± 0.03

mmol/L (normal protein high calorie diet) vs. 4.86 ± 0.03 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 12: [4.11 ± 0.02 mmol/L (standard diet) vs. 5.10 ± 0.03

Fig 2. Line graph showing the mean body weights (g) at weekly interval during the diet induction phase. Results expressed as mean± SEM.

https://doi.org/10.1371/journal.pone.0298752.g002
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mmol/L (normal protein high calorie diet) vs. 5.34 ± 0.04 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 13: [4.14 ± 0.02 mmol/L (standard diet) vs. 5.65 ± 0.04

mmol/L (normal protein high calorie diet) vs. 5.96 ± 0.04 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 14: [4.05 ± 0.02 mmol/L (standard diet) vs. 5.72 ± 0.05

mmol/L (normal protein high calorie diet) vs. 6.26 ± 0.30 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001).

There were significant differences in the fasting blood glucose between the three experi-

mental groups at the at the end of week 15: [4.05 ± 0.02 mmol/L (standard diet) vs. 5.83 ± 0.05

mmol/L (normal protein high calorie diet) vs. 6.56 ± 0.30 mmol/L (low protein high calorie

diet): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between standard diet and normal protein high calorie diet (p< 0.0001)

and standard diet and low protein high calorie diet (p< 0.0001). The graphical representations

of the experimental data are shown in Fig 3.

Oral glucose tolerance test at week 15 (Diet induction phase). There were significant

differences in the AUC values between the three experimental groups on week 15: [530 ± 2.31

mmol/L.min (standard diet) vs. 768.4 ± 4.03 mmol/L.min (normal protein high calorie diet)

vs. 927.9 ± 2.80 mmol/L.min (low protein high calorie diet): p< 0.0001]. Post-hoc statistical

Table 1. Mean body weights (g) during the diet induction phase.

Body weights (g) Phase 1 (Diet induction phase)

Groups Standard diet Normal protein high calorie diet Low protein high calorie diet P = Value

Number of rats n = 40 n = 40 n = 40

Week 0 (Baseline) 146.8±1.642 143.5±2.400 145.5±2.283 0.5538

Week 1 150.1±1.402 153.0±1.132 151.5±0.9886 0.2254

Week 2 158.0±1.425 163.1±1.693 161.8±1.499 0.0613

Week 3 168.4±0.938 172.3±2.816 174.1±1.295 0.0910

Week 4 179.1±0.753 181.7±1.005 182.6±1.377 0.0688

Week 5 183.4±1.242 196.8±1.295 198.6±0.609 <0.0001****
Week 6 188.7±1.325 216.0±4.265 219.3±1.526 <0.0001****
Week 7 197.0±1.431 230.7±2.703 233.3±1.523 <0.0001****
Week 8 208.8±1.274 255.4±2.689 258.5±1.460 <0.0001****
Week 9 218.3±2.435 277.4±7.056 283.1±4.089 <0.0001****
Week 10 221.2±1.395 286.8±3.203 292.8±3.764 <0.0001****
Week 11 228.6±1.219 302.0±4.882 307.8±4.884 <0.0001****
Week 12 237.0±1.312 322.3±5.465 329.8±2.931 <0.0001****
Week 13 246.6±1.436 341.2±5.146 352.2±6.219 <0.0001****
Week 14 256.4±1.488 360.7±5.601 372.3±3.476 <0.0001****
Week 15 273.1±1.558 390.0±4.936 398.1±4.888 <0.0001****
https://doi.org/10.1371/journal.pone.0298752.t001
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analysis using Tukey’s multiple comparisons test revealed significant differences between stan-

dard diet and normal protein high calorie diet (p< 0.0001), standard diet and low protein high

calorie diet (p< 0.0001) and, normal protein high calorie diet and low protein high calorie diet

(p< 0.0001).

The graphical presentation of the mean blood glucose response and mean area under the

curve during the diet induction phase is shown in Fig 4.

Treatment phase

Body weights during treatment phase. Standard diet. There were no significant differ-

ences in the body weight between the four experimental groups at the end of week 16:

[277.2 ± 5.31 grams (normal saline) vs. 284 ± 3.38 grams (Test group 1) vs. 286.6 ± 2.43 grams

(Test group 2) vs. 288 ± 3.39 grams (positive control): p = 0.2011].

There were no significant differences in the body weight between the four experimental

groups at the end of week 17: [292.4 ± 2.73 grams (normal saline) vs. 293.8 ± 3.68 grams (Test

group 1) vs. 301.2 ± 2.41 grams (Test group 2) vs. 302.1 ± 3.10 grams (positive control):

p = 0.0612].

There were no significant differences in the body weight between the four experimental

groups at the end of week 18: [313.1 ± 1.79 grams (normal saline) vs. 315.4 ± 0.99 grams (Test

group 1) vs. 318.5 ± 1.88 grams (Test group 2) vs. 320.4 ± 3.24 grams (positive control):

p = 0.0900].

There were no significant differences in the body weight between the four experimental

groups at the end of week 19: [319.9 ± 0.80 grams (normal saline) vs. 318.0 ± 1.19 grams (Test

group 1) vs. 320.5 ± 1.65 grams (Test group 2) vs. 322.1 ± 1.09 grams (positive control):

p = 0.1520].

Fig 3. Line graph showing mean fasting blood glucose levels (mmol/l) at weekly intervals during the diet induction phase.

https://doi.org/10.1371/journal.pone.0298752.g003
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There were no significant differences in the body weight between the four experimental

groups at the end of week 20: [329.4 ± 1.05 grams (normal saline) vs. 327.1 ± 0.87 grams (Test

group 1) vs. 330.5 ± 0.54 grams (Test group 2) vs. 330.8 ± 1.60 grams (positive control):

p = 0.0901].

There were no significant differences in the body weight between the four experimental

groups at the end of week 21: [339.3 ± 1.11 grams (normal saline) vs. 341.0 ± 1.02 grams (Test

group 1) vs. 343.6 ± 0.94 grams (Test group 2) vs. 343.6 ± 0.94 grams (positive control):

p = 0.0790].

There were no significant differences in the body weight between the four experimental

groups at the end of week 22: [345.7 ± 1.10 grams (normal saline) vs. 346.3 ± 1.37 grams (Test

group 1) vs. 362.9 ± 1.44 grams (Test group 2) vs. 349 ± 1.82 grams (positive control):

p = 0.0521].

There were no significant differences in the body weight between the four experimental

groups at the end of week 23: [360 ± 0.79 grams (normal saline) vs. 360.6 ± 1.44 grams (Test

Fig 4. Mean blood glucose response (mmol/L) to an oral glucose bolus 2 g/kg over a 2-hour period and mean area under the curve (mmol/L.min)

during the oral glucose tolerance test. Results are expressed as mean ± SEM. ****- p< 0.0001.

https://doi.org/10.1371/journal.pone.0298752.g004
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group 1) vs. 364.3 ± 1.37 grams (Test group 2) vs. 362.9 ± 1.12 grams (positive control):

p = 0.0531].

There were no significant differences in the body weight between the four experimental

groups at the end of week 24: [374.8 ± 1.36 grams (normal saline) vs. 375.2 ± 1.66 grams (Test

group 1) vs. 378.6 ± 1.06 grams (Test group 2) vs. 377.1 ± 0.87 grams (positive control):

p = 0.1534].

Normal protein high calorie diet. There were no significant differences in the body weight

between the four experimental groups at the end of week 16: [418.3 ± 4.83 grams (normal

saline) vs. 414.1 ± 6.09 grams (Test group 1) vs. 412 ± 7.72 grams (Test group 2) vs. 415 ± 5.05

grams (positive control): p = 0.1917].

There were no significant differences in the body weight between the four experimental

groups at the end of week 17: [419.9 ± 3.32 grams (normal saline) vs. 413.9 ± 9.15 grams (Test

group 1) vs. 431.6 ± 7.68 grams (Test group 2) vs. 435 ± 5.60 grams (positive control):

p = 0.1092].

There were significant differences in the body weight between the four experimental groups

at the end of week 18: [424.2 ± 4.02 grams (normal saline) vs. 426.4 ± 5.47 grams (Test group

1) vs. 453 ± 7.74 grams (Test group 2) vs. 456 ± 5.82 grams (positive control): p = 0.0002].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p = 0.0059), normal saline and positive control

(p = 0.0026), Test group 1 and Test group 2 (p = 0.0117) and, Test group 1 and positive control

(p = 0.0053).

There were significant differences in the body weight between the four experimental groups

at the end of week 19: [433.2 ± 4.22 grams (normal saline) vs. 431.2 ± 4.40 grams (Test group

1) vs. 470 ± 7.27 grams (Test group 2) vs. 477 ± 5.73 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p = 0.0002), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 20: [441.5 ± 4.62 grams (normal saline) vs. 438.5 ± 4.32 grams (Test group

1) vs. 489.1 ± 6.87 grams (Test group 2) vs. 497 ± 5.73 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 21: [450.5 ± 4.54 grams (normal saline) vs. 448 ± 4.15 grams (Test group 1)

vs. 510.8 ± 6.51 grams (Test group 2) vs. 518.7 ± 5.75 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 22: [460.4 ± 4.63 grams (normal saline) vs. 461.3 ± 4.14 grams (Test group

1) vs. 532.8 ± 6.83 grams (Test group 2) vs. 539 ± 5.93 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).
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There were significant differences in the body weight between the four experimental groups

at the end of week 23: [469.2 ± 4.85 grams (normal saline) vs. 466.3 ± 2.62 grams (Test group

1) vs. 543.4 ± 13.6 grams (Test group 2) vs. 550.3 ± 13.72 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 24: [478.4 ± 4.53 grams (normal saline) vs. 479.9 ± 4.93 grams (Test group

1) vs. 564.3 ± 13.69 grams (Test group 2) vs. 582.4 ± 5.37 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

Low protein high calorie diet. There were no significant differences in the body weight

between the four experimental groups at the end of week 16: [413.9 ± 4.42 grams (normal

saline) vs. 410.6 ± 6.79 grams (Test group 1) vs. 419.4 ± 6.98 grams (Test group 2) vs.

419.6 ± 3.91 grams (positive control): p = 0.6240].

There were no significant differences in the body weight between the four experimental

groups at the end of week 17: [433.2 ± 3.92 grams (normal saline) vs. 428.5 ± 5.69 grams (Test

group 1) vs. 444.2 ± 7.21 grams (Test group 2) vs. 442.6 ± 3.80 grams (positive control):

p = 0.1312].

There were significant differences in the body weight between the four experimental groups

at the end of week 18: [442.1 ± 4.08 grams (normal saline) vs. 437.8 ± 5.96 grams (Test group

1) vs. 465.7 ± 7.54 grams (Test group 2) vs. 464.1 ± 3.58 grams (positive control): p = 0.0008].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p = 0.0226), normal saline and positive control

(p = 0.0382), Test group 1 and Test group 2 (p = 0.0053) and, Test group 1 and positive control

(p = 0.0095).

There were significant differences in the body weight between the four experimental groups

at the end of week 19: [448 ± 3.18 grams (normal saline) vs. 450.4 ± 4.90 grams (Test group 1)

vs. 482.2 ± 6.53 grams (Test group 2) vs. 488 ± 2.47 grams (positive control): p< 0.0001]. Post-

hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differences

between normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p<

0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p<

0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 20: [458.6 ± 2.88 grams (normal saline) vs. 464.2 ± 4.62 grams (Test group

1) vs. 503.8 ± 7.49 grams (Test group 2) vs. 510.9 ± 2.78 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 21: [468.5 ± 3.00 grams (normal saline) vs. 475.8 ± 5.29 grams (Test group

1) vs. 520.2 ± 6.21 grams (Test group 2) vs. 531.5 ± 2.16 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control
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(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 22: [479.2 ± 3.29 grams (normal saline) vs. 484.2 ± 5.90 grams (Test group

1) vs. 541.9 ± 6.03 grams (Test group 2) vs. 554.5 ± 1.91 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 23: [488.8 ± 2.73 grams (normal saline) vs. 492.2 ± 5.79 grams (Test group

1) vs. 561 ± 5.68 grams (Test group 2) vs. 577 ± 1.98 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in the body weight between the four experimental groups

at the end of week 24: [497.8 ± 3.10 grams (normal saline) vs. 501.7 ± 5.22 grams (Test group

1) vs. 589.9 ± 3.63 grams (Test group 2) vs. 600 ± 1.94 grams (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

The graphical presentation of the mean body weights at weekly interval during the treat-

ment phase is shown in Fig 5.

Fasting blood glucose during the treatment phase. Standard diet. There were no signifi-

cant differences in the fasting blood glucose between the four experimental groups at the end

of week 16: [4.05 ± 0.03 mmol/L (normal saline) vs. 4.09 ± 0.05 mmol/L (Test group 1) vs.

4.12 ± 0.03 mmol/L (Test group 2) vs. 4.17 ± 0.04 mmol/L (positive control): p = 0.1381].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 17: [4.06 ± 0.03 mmol/L (normal saline) vs. 4.09 ± 0.05

mmol/L (Test group 1) vs. 4.16 ± 0.03 mmol/L (Test group 2) vs. 4.17 ± 0.03 mmol/L (positive

control): p = 0.0581].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 18: [4.08 ± 0.04 mmol/L (normal saline) vs. 4.06 ± 0.03

mmol/L (Test group 1) vs. 4.12 ± 0.03 mmol/L (Test group 2) vs. 4.18 ± 0.03 mmol/L (positive

control): p = 0.0620].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 19: [4.08 ± 0.03 mmol/L (normal saline) vs. 4.10 ± 0.03

mmol/L (Test group 1) vs. 4.16 ± 0.05 mmol/L (Test group 2) vs. 4.20 ± 0.03 mmol/L (positive

control): p = 0.0964].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 20: [4.13 ± 0.05 mmol/L (normal saline) vs. 4.13 ± 0.03

mmol/L (Test group 1) vs. 4.20 ± 0.04 mmol/L (Test group 2) vs. 4.24 ± 0.04 mmol/L (positive

control): p = 0.1605].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 21: [4.16 ± 0.04 mmol/L (normal saline) vs. 4.15 ± 0.04

mmol/L (Test group 1) vs. 4.21 ± 0.04 mmol/L (Test group 2) vs. 4.20 ± 0.02 mmol/L (positive

control): p = 0.6454].
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There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 22: [4.18 ± 0.03 mmol/L (normal saline) vs. 4.17 ± 0.03

mmol/L (Test group 1) vs. 4.26 ± 0.04 mmol/L (Test group 2) vs. 4.22 ± 0.03 mmol/L (positive

control): p = 0.0867].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 23: [4.14 ± 0.03 mmol/L (normal saline) vs. 4.18 ± 0.02

mmol/L (Test group 1) vs. 4.23 ± 0.02 mmol/L (Test group 2) vs. 4.22 ± 0.04 mmol/L (positive

control): p = 0.8025].

There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 24: [4.16 ± 0.03 mmol/L (normal saline) vs. 4.12 ± 0.02

mmol/L (Test group 1) vs. 4.25 ± 0.02 mmol/L (Test group 2) vs. 4.21 ± 0.03 mmol/L (positive

control): p = 0.2334].

Normal protein high calorie diet. There were no significant differences in the fasting blood

glucose between the four experimental groups at the end of week 16: [5.76 ± 0.06 mmol/L

(normal saline) vs. 5.78 ± 0.07 mmol/L (Test group 1) vs. 5.84 ± 0.95 mmol/L (Test group 2)

vs. 6.01 ± 0.03 mmol/L (positive control): p = 0.0637].

Fig 5. Line graphs showing the mean body weights (grams) at weekly interval during the treatment phase. Expressed as mean ± SEM. A (standard

diet group), B (normal protein high calorie diet group), C (low protein high calorie diet group).

https://doi.org/10.1371/journal.pone.0298752.g005
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There were no significant differences in the fasting blood glucose between the four experi-

mental groups at the end of week 17: [5.89 ± 0.05 mmol/L (normal saline) vs. 5.91 ± 0.05

mmol/L (Test group 1) vs. 6.04 ± 0.06 mmol/L (Test group 2) vs. 6.08 ± 0.62 mmol/L (positive

control): p = 0.0535].

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 18: [6.05 ± 0.05 mmol/L (normal saline) vs. 6.06 ± 0.06 mmol/L

(Test group 1) vs. 6.26 ± 0.03 mmol/L (Test group 2) vs. 6.30 ± 0.04 mmol/L (positive control):

p = 0.0002]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p = 0.0102), normal saline and

positive control (p = 0.0018), Test group 1 and Test group 2 (p = 0.0154) and, Test group 1 and

positive control (p< 0.0028).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 19: [6.47 ± 0.05 mmol/L (normal saline) vs. 6.50 ± 0.03 mmol/L

(Test group 1) vs. 6.67 ± 0.05 mmol/L (Test group 2) vs. 6.69 ± 0.43 mmol/L (positive control):

p = 0.0005]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p = 0.0079), normal saline and

positive control (p = 0.0031), Test group 1 and Test group 2 (p = 0.2494) and, Test group 1 and

positive control (p = 0.0124).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 20: [6.42 ± 0.04 mmol/L (normal saline) vs. 6.43 ± 0.04 mmol/L

(Test group 1) vs. 6.81 ± 0.07 mmol/L (Test group 2) vs. 6.82 ± 0.11 mmol/L (positive control):

p = 0.0022]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p = 0.0021), normal saline and

positive control (p = 0.0016), Test group 1 and Test group 2 (p = 0.0027) and, Test group 1 and

positive control (p = 0.0021).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 21: [6.61 ± 0.06 mmol/L (normal saline) vs. 6.58 ± 0.05 mmol/L

(Test group 1) vs. 7.00 ± 0.04 mmol/L (Test group 2) vs. 7.15 ± 0.06 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 22: [6.77 ± 0.05 mmol/L (normal saline) vs. 6.72 ± 0.04 mmol/L

(Test group 1) vs. 7.11 ± 0.05 mmol/L (Test group 2) vs. 7.20 ± 0.05 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 23: [6.88 ± 0.05 mmol/L (normal saline) vs. 6.90 ± 0.06 mmol/L

(Test group 1) vs. 7.31 ± 0.03 mmol/L (Test group 2) vs. 7.36 ± 0.05 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 24: [6.94 ± 0.04 mmol/L (normal saline) vs. 7.42 ± 0.04 mmol/L

(Test group 1) vs. 7.41 ± 0.05 mmol/L (Test group 2) vs. 7.45 ± 0.05 mmol/L (positive control):
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p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

Low protein high calorie diet. There were significant differences in the fasting blood glucose

between the four experimental groups at the end of week 16: [6.50 ± 0.08 mmol/L (normal

saline) vs. 6.60 ± 0.07 mmol/L (Test group 1) vs. 7.17 ± 0.06 mmol/L (Test group 2) vs.

7.04 ± 0.06 mmol/L (positive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s

multiple comparisons test revealed significant differences between normal saline and Test

group 2 (p< 0.0001), normal saline and positive control (p< 0.0001), Test group 1 and Test

group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 17: [6.83 ± 0.08 mmol/L (normal saline) vs. 6.93 ± 0.05 mmol/L

(Test group 1) vs. 7.48 ± 0.04 mmol/L (Test group 2) vs. 7.44 ± 0.04 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 18: [7.23 ± 0.08 mmol/L (normal saline) vs. 7.30 ± 0.03 mmol/L

(Test group 1) vs. 7.66 ± 0.05 mmol/L (Test group 2) vs. 7.69 ± 0.04 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 19: [7.45 ± 0.07 mmol/L (normal saline) vs. 7.49 ± 0.07 mmol/L

(Test group 1) vs. 8.01 ± 0.05 mmol/L (Test group 2) vs. 8.03 ± 0.05 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 20: [7.70 ± 0.05 mmol/L (normal saline) vs. 7.56 ± 0.07 mmol/L

(Test group 1) vs. 8.40 ± 0.06 mmol/L (Test group 2) vs. 8.36 ± 0.05 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 21: [8.08 ± 0.06 mmol/L (normal saline) vs. 8.56 ± 0.07 mmol/L

(Test group 1) vs. 8.69 ± 0.06 mmol/L (Test group 2) vs. 8.74 ± 0.05 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 22: [8.36 ± 0.07 mmol/L (normal saline) vs. 8.35 ± 0.07 mmol/L

(Test group 1) vs. 8.84 ± 0.07 mmol/L (Test group 2) vs. 8.91 ± 0.05 mmol/L (positive control):
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p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 23: [8.51 ± 0.07 mmol/L (normal saline) vs. 8.61 ± 0.04 mmol/L

(Test group 1) vs. 9.01 ± 0.05 mmol/L (Test group 2) vs. 9.19 ± 0.07 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in the fasting blood glucose between the four experimen-

tal groups at the end of week 24: [8.72 ± 0.06 mmol/L (normal saline) vs. 8.77 ± 0.04 mmol/L

(Test group 1) vs. 9.29 ± 0.09 mmol/L (Test group 2) vs. 9.42 ± 0.07 mmol/L (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001). The graphical presentation of the mean fasting blood glucose at

weekly interval during the treatment phase is shown in Fig 6.

Oral glucose tolerance test at week 24 (Treatment phase). Standard diet. There were no

significant differences in the AUC values between the four experimental groups on week 24:

[638.3 ± 2.88 mmol/L.min (normal saline) vs. 646.4 ± 2.10 mmol/L.min (Test group 1) vs.

642.5 ± 4.31 mmol/L.min (Test group 2) vs. 648 ± 3.96 mmol/L.min (positive control):

p = 0.1645].

Normal protein high calorie diet. There were significant differences in the AUC values

between the four experimental groups on week 24: [917.7 ± 2.99 mmol/L.min (normal saline)

vs. 928.7 ± 3.17 mmol/L.min (Test group 1) vs. 1025 ± 4.90 mmol/L.min (Test group 2) vs.

1029 ± 6.18 mmol/L.min (positive control): p< 0.0001]. Post-hoc statistical analysis using

Tukey’s multiple comparisons test revealed significant differences between normal saline and

Test group 1 (p< 0.0001), normal saline and positive control (p< 0.0001), Test group 1 and

Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001).

Low protein high calorie diet. There were significant differences in the AUC values between

the four experimental groups on week 24: [1120.7 ± 5.53 mmol/L.min (normal saline) vs.

1128.4 ± 5.39 mmol/L.min (Test group 1) vs. 1264 ± 8.98 mmol/L.min (Test group 2) vs.

1282 ± 6.07 mmol/L.min (positive control): p< 0.0001]. Post-hoc statistical analysis using

Tukey’s multiple comparisons test revealed significant differences between normal saline and

Test group 1 (p< 0.0001), normal saline and positive control (p< 0.0001), Test group 1 and

Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001). The graphical

presentation of the mean blood glucose response and mean area under the curve during the

treatment phase is shown in Fig 7.

Serum lipids during the treatment phase. Standard diet. There were no significant dif-

ferences in total serum cholesterol between the four experimental groups on week 24:

[1.67 ± 0.07 mmol/L (normal saline) vs. 1.60 ± 0.01 mmol/L (Test group 1) vs. 1.78 ± 0.04

mmol/L (Test group 2) vs. 1.77 ± 0.04 mmol/L (positive control): p = 0.1245].

There were no significant differences in serum triglycerides between the four experimental

groups on week 24: [0.96 ± 0.05 mmol/L (normal saline) vs. 0.81 ± 0.05 mmol/L (Test group 1)

vs. 0.99 ± 0.04 mmol/L (Test group 2) vs. 0.98 ± 0.06 mmol/L (positive control): p = 0.1983].
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Fig 6. Line graphs showing the mean fasting blood glucose (mmol/L) at weekly interval during the treatment phase. Expressed

as mean ± SEM. A (standard diet group), B (normal protein high calorie diet group), C (low protein high calorie diet group).

https://doi.org/10.1371/journal.pone.0298752.g006
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There were no significant differences in LDL cholesterol between the four experimental

groups on week 24: [0.49 ± 0.01 mmol/L (normal saline) vs. 0.45 ± 0.02 mmol/L (Test group 1)

vs. 0.51 ± 0.02 mmol/L (Test group 2) vs. 0.50 ± 0.02 mmol/L (positive control): p = 0.1855].

There were no significant in differences HDL cholesterol between the four experimental

groups on week 24: [0.73 ± 0.04 mmol/L (normal saline) vs. 0.73 ± 0.03 mmol/L (Test group 1)

vs. 0.63 ± 0.03 mmol/L (Test group 2) vs. 0.64 ± 0.06 mmol/L (positive control): p = 0.1855].

Fig 7. Line graphs showing the mean blood glucose (mmol/l) response to an oral glucose bolus 2 g/kg over a 2-hour period and

bar graphs using the mean area under the curve (mmol/l) during the oral glucose tolerance test. Results are expressed as

mean ± SEM. ****- p< 0.0001. A (Standard diet), B (Normal protein high calorie diet, C (Low protein high calorie diet).

https://doi.org/10.1371/journal.pone.0298752.g007
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The graphical presentation of the lipid profile results of the standard diet group during the

treatment is shown in Fig 8.

Normal protein high calorie diet. There were significant differences in total serum choles-

terol between the four experimental groups on week 24: [2.87 ± 0.08 mmol/L (normal saline)

vs. 2.66 ± 0.06 mmol/L (Test group 1) vs. 6.05 ± 0.05 mmol/L (Test group 2) vs. 6.01 ± 0.05

mmol/L (positive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple

comparisons test revealed significant differences between normal saline and Test group 2 (p<

0.0001), normal saline and positive control (p< 0.0001), Test group 1 and Test group 2 (p<

0.0001) and, Test group 1 and positive control (p< 0.0001).

There were significant differences in serum triglycerides between the four experimental

groups on week 24: [3.14 ± 0.11 mmol/L (normal saline) vs. 2.85 ± 0.07 mmol/L (Test group 1)

vs. 7.41 ± 0.13 mmol/L (Test group 2) vs. 7.49 ± 0.13 mmol/L (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in LDL cholesterol between the four experimental groups

on week 24: [1.38 ± 0.13 mmol/L (normal saline) vs. 1.32 ± 0.15 mmol/L (Test group 1) vs.

3.94 ± 0.03 mmol/L (Test group 2) vs. 3.83 ± 0.08 mmol/L (positive control): p< 0.0001]. Post-

hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differences

between normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p<

0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p<

0.0001).

There were significant differences in HDL cholesterol between the four experimental

groups on week 24: [2.02 ± 0.04 mmol/L (normal saline) vs. 1.99 ± 0.03 mmol/L (Test group 1)

vs. 0.38 ± 0.05 mmol/L (Test group 2) vs. 0.40 ± 0.05 mmol/L (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001). The graphical presentation of the lipid profile results of the normal protein high

calorie diet group during the treatment is shown in Fig 9.

Low protein high calorie diet. There were significant differences in total serum cholesterol

between the four experimental groups on week 24: [3.77 ± 0.06 mmol/L (normal saline) vs.

3.64 ± 0.06 mmol/L (Test group 1) vs. 8.60 ± 0.15 mmol/L (Test group 2) vs. 8.65 ± 0.16

mmol/L (positive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple

comparisons test revealed significant differences between normal saline and Test group 2 (p<

0.0001), normal saline and positive control (p< 0.0001), Test group 1 and Test group 2 (p<

0.0001) and, Test group 1 and positive control (p< 0.0001).

There were significant differences in serum triglycerides between the four experimental

groups on week 24: [4.49 ± 0.14 mmol/L (normal saline) vs. 4.24 ± 0.12 mmol/L (Test group 1)

vs. 9.25 ± 0.13 mmol/L (Test group 2) vs. 9.13 ± 0.18 mmol/L (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

There were significant differences in LDL cholesterol between the four experimental groups

on week 24: [2.51 ± 0.11 mmol/L (normal saline) vs. 2.68 ± 0.10 mmol/L (Test group 1) vs.

4.78 ± 0.14 mmol/L (Test group 2) vs. 5.12 ± 0.09 mmol/L (positive control): p< 0.0001]. Post-

hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differences
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Fig 8. Lipid profile of the standard diet group during the treatment phase.

https://doi.org/10.1371/journal.pone.0298752.g008
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Fig 9. Lipid profile of the normal protein high calorie diet group during the treatment phase. Results are expressed as

mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g009
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between normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p<

0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p<

0.0001).

There were significant differences in HDL cholesterol between the four experimental

groups on week 24: [3.37 ± 0.07 mmol/L (normal saline) vs. 3.37 ± 0.13 mmol/L (Test group 1)

vs. 0.19 ± 0.03 mmol/L (Test group 2) vs. 0.20 ± 0.03 mmol/L (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001). The graphical presentation of the lipid profile results of the low protein high calo-

rie diet group during the treatment is shown in Fig 10.

Adipose tissue weight at the end of the treatment phase. Standard diet. There were no

significant differences in retroperitoneal adipose tissue weight between the four experimental

groups [8.11 ± 0.06 g (normal saline) vs. 8.08 ± 0.04 g (Test group 1) vs. 8.38 ± 0.11 g (Test

group 2) vs. 8.22 ± 0.11 g (positive control): p = 0.0980].

There were no significant differences in mesenteric adipose tissue weight between the four

experimental groups [11.08 ± 0.08 g (normal saline) vs. 10.96 ± 0.12 g (Test group 1) vs.

11.24 ± 0.09 g (Test group 2) vs. 11.31 ± 0.08 g (positive control): p = 0.0748].

There were no significant differences in pericardial adipose tissue weight between the four

experimental groups [2.82 ± 0.04 g (normal saline) vs. 2.76 ± 0.05 g (Test group 1) vs.

2.91 ± 0.04 g (Test group 2) vs. 2.92 ± 0.05 g (positive control): p = 0.0631]. The graphical pre-

sentation of the adipose tissue weights results of the standard diet group during the treatment

is shown in Fig 11.

Normal protein high calorie diet. There were significant differences in retroperitoneal adi-

pose tissue weight between the four experimental groups [10.49 ± 0.08 g (normal saline) vs.

10.25 ± 0.11 g (Test group 1) vs. 12.75 ± 0.09 g (Test group 2) vs. 12.82 ± 0.07 g (positive con-

trol): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in mesenteric adipose tissue weight between the four

experimental groups [13.64 ± 0.10 g (normal saline) vs. 13.54 ± 0.09 g (Test group 1) vs.

16.75 ± 0.11 g (Test group 2) vs. 16.60 ± 0.10 g (positive control): p< 0.0001]. Post-hoc statisti-

cal analysis using Tukey’s multiple comparisons test revealed significant differences between

normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001),

Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001).

There were significant differences in pericardial adipose tissue weight between the four

experimental groups [4.43 ± 0.78 g (normal saline) vs. 4.27 ± 0.07 g (Test group 1) vs.

8.35 ± 0.10 g (Test group 2) vs. 8.24 ± 0.73 g (positive control): p< 0.0001]. Post-hoc statistical

analysis using Tukey’s multiple comparisons test revealed significant differences between nor-

mal saline and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001), Test

group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001). The

graphical presentation of the adipose tissue weights results of the normal protein high calorie

diet group during the treatment is shown in Fig 12.

Low protein high calorie diet. There were significant differences in retroperitoneal adipose

tissue weight between the four experimental groups [14.46 ± 0.11 g (normal saline) vs.

14.52 ± 0.13 g (Test group 1) vs. 17.51 ± 0.09 g (Test group 2) vs. 17.48 ± 0.10 g (positive con-

trol): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed

significant differences between normal saline and Test group 2 (p< 0.0001), normal saline and
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positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001).

There were significant differences in mesenteric adipose tissue weight between the four

experimental groups [15.51 ± 0.12 g (normal saline) vs. 15.25 ± 0.07 g (Test group 1) vs.

20.47 ± 0.09 g (Test group 2) vs. 20.53 ± 0.89 g (positive control): p< 0.0001]. Post-hoc statisti-

cal analysis using Tukey’s multiple comparisons test revealed significant differences between

normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001),

Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001).

Fig 10. Lipid profile of the low protein high calorie diet group during the treatment phase. Results are expressed as

mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g010
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There were significant differences in pericardial adipose tissue weight between the four

experimental groups [6.43 ± 0.08 g (normal saline) vs. 6.21 ± 0.08 g (Test group 1) vs.

9.41 ± 0.10 g (Test group 2) vs. 9.46 ± 0.13 g (positive control): p< 0.0001]. Post-hoc statistical

analysis using Tukey’s multiple comparisons test revealed significant differences between nor-

mal saline and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001), Test

group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001). The

graphical presentation of the adipose tissue weights results of the normal protein high calorie

diet group during the treatment is shown in Fig 13.

Liver weights during the treatment phase. Standard diet. There were no significant dif-

ferences in mean liver weight between the four experimental groups [15.58 ± 0.32g (normal

saline) vs. 16.04 ± 0.11 g (Test group 1) vs. 16.14 ±0.24 g (Test group 2) vs. 16.25 ± 0.14 g (posi-

tive control): p = 0.2986].

Normal protein high calorie diet. There were significant differences in mean liver weight

between the four experimental groups [20.99 ± 0.25 g (normal saline) vs. 21.21 ± 0.29 g (Test

group 1) vs. 23.34 ± 0.29 g (Test group 2) vs. 23.22 ± 0.19 g (positive control): p< 0.0001].

Fig 11. Adipose tissue weights (grams) of the standard diet group during the treatment phase.

https://doi.org/10.1371/journal.pone.0298752.g011
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Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

Low protein high calorie diet. There were significant differences in mean liver weight

between the four experimental groups [24.92 ± 0.19 g (normal saline) vs. 25.11 ± 0.11 g (Test

group 1) vs. 28.22 ± 0.18 g (Test group 2) vs. 28.72 ± 0.19 g (positive control): p< 0.0001].

Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed significant differ-

ences between normal saline and Test group 2 (p< 0.0001), normal saline and positive control

(p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

The graphical presentation of the liver weights during the treatment phase is shown in Fig

14.

Fasting plasma insulin levels during the treatment phase. Standard diet. There were no

significant differences in fasting plasma insulin levels between the four experimental groups

[4.420 ± 0.2529 mU/L (normal saline) vs. 4.750 ± 0.1668 mU/L (Test group 1) vs.

4.970 ± 0.1430 mU/L (Test group 2) vs. 4.910 ± 0.1501mU/L (positive control): p = 0.1641].

Normal protein high calorie diet. There were significant differences in fasting plasma insulin

levels between the four experimental groups [5.750 ± 0.1759 mU/L (normal saline) vs.

5.590 ± 0.1882 mU/L (Test group 1) vs. 10.73 ± 0.2587 mU/L (Test group 2) vs. 11.02 ± 0.2555

Fig 12. Adipose tissue weights (grams) of the normal protein high calorie group during the treatment phase.

https://doi.org/10.1371/journal.pone.0298752.g012
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mU/L (positive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple com-

parisons test revealed significant differences between normal saline and Test group 2 (p<

0.0001), normal saline and positive control (p< 0.0001), Test group 1 and Test group 2 (p<

0.0001) and, Test group 1 and positive control (p< 0.0001).

Low protein high calorie diet. There were significant differences in fasting plasma insulin

levels between the four experimental groups [8.410 ± 0.2238 mU/L (normal saline) vs.

8.840 ± 0.1956 mU/L (Test group 1) vs. 17.30 ± 0.2547 mU/L (Test group 2) vs. 18.04 ± 0.2837

mU/L (positive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple com-

parisons test revealed significant differences between normal saline and Test group 2 (p<

0.0001), normal saline and positive control (p< 0.0001), Test group 1 and Test group 2 (p<

0.0001) and, Test group 1 and positive control (p< 0.0001). The graphical presentation of the

fasting serum insulin level during the treatment phase is shown in Fig 15.

Homeostatic model assessment for insulin resistance (HOMA-IR) during the treatment

phase. Standard diet. There were no significant differences in HOMA-IR between the four

experimental groups [0.8160 ± 0.05523 arbitrary units (normal saline) vs. 1.729 ± 0.05642 arbi-

trary units (Test group 1) vs. 3.535 ± 0.09142 arbitrary units (Test group 2) vs. 3.649 ± 0.08888

arbitrary units (positive control): p = 0.1173].

Fig 13. Adipose tissue weights (grams) of the low protein high calorie group during the treatment phase.

https://doi.org/10.1371/journal.pone.0298752.g013
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Normal protein high calorie diet. There were significant differences in HOMA-IR between

the four experimental groups [1.772 ± 0.04624 arbitrary units (normal saline) vs.

0.8700 ± 0.03197 arbitrary units (Test group 1) vs. 0.9210 ± 0.02354 arbitrary units (Test group

2) vs. 0.9170 ± 0.02970 arbitrary units (positive control): <0.0001]. Post-hoc statistical analysis

using Tukey’s multiple comparisons test revealed significant differences between normal saline

and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001), Test group 1

and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001).

Low protein high calorie diet. There were significant differences in HOMA-IR between the

four experimental groups [3.264 ± 0.1052 arbitrary units (normal saline) vs. 3.446 ± 0.07845

arbitrary units (Test group 1) vs. 7.146 ± 0.1516 arbitrary units (Test group 2) vs.

7.552 ± 0.1189 arbitrary units (positive control): < 0.0001]. Post-hoc statistical analysis using

Tukey’s multiple comparisons test revealed significant differences between normal saline and

Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001), Test group 1 and

Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001). The graphical

presentation of the HOMA-IR during the treatment phase is shown in Fig 16.

Homeostatic model assessment for β-cell function (HOMA-B) during the treatment

phase. Standard diet. There were no significant differences in HOMA-B between the four

experimental groups [17.78 ± 1.247 arbitrary units (normal saline) vs. 19.56 ± 0.7834 arbitrary

units (Test group 1) vs. 20.38 ± 0.8163 arbitrary units (Test group 2) vs. 19.84 ± 0.7179 arbi-

trary units (positive control): p = 0.2274].

Normal protein high calorie diet. There were significant differences in HOMA-B between

the four experimental groups [13.07± 0.5179 arbitrary units (normal saline) vs.

12.56 ± 0.6062 arbitrary units (Test group 1) vs. 25.47 ± 0.7097 arbitrary units (Test group

2) vs. 26.09 ± 0.6906 arbitrary units (positive control): <0.0001]. Post-hoc statistical

Fig 14. Liver weights (grams) at the end of the treatment phase. A (standard diet group), B (normal protein high calorie diet group), C (low protein

high calorie diet group). Results are expressed as mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g014
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analysis using Tukey’s multiple comparisons test revealed significant differences between

normal saline and Test group 2 (p< 0.0001), normal saline and positive control (p<

0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control

(p< 0.0001).

Low protein high calorie diet. There were significant differences in HOMA-B between

the four experimental groups [15.77± 0.4268 arbitrary units (normal saline) vs.

16.66 ± 0.4482 arbitrary units (Test group 1) vs. 33.75 ± 0.4470 arbitrary units (Test group

2) vs. 34.83 ± 0.7251 arbitrary units (positive control): <0.0001]. Post-hoc statistical analy-

sis using Tukey’s multiple comparisons test revealed significant differences between nor-

mal saline and Test group 2 (p< 0.0001), normal saline and positive control (p< 0.0001),

Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p<

0.0001). The graphical presentation of the HOMA-B during the treatment phase is shown

in Fig 17.

Hepatic triglycerides during the treatment phase. Standard diet. There were no signifi-

cant differences in hepatic triglycerides content between the four experimental groups

[3.77 ± 0.12 mg/g (normal saline) vs. 3.75 ± 0.07 mg/g (Test group 1) vs. 3.95 ± 0.07 mg/g

(Test group 2) vs. 3.96 ± 0.06 mg/g (positive control): p = 0.1664].

Normal protein high calorie diet. There were significant differences in hepatic triglycerides

content between the four experimental groups [4.46 ± 0.15 mg/g (normal saline) vs.

4.80 ± 0.16 mg/g (Test group 1) vs. 6.15 ± 0.14 mg/g (Test group 2) vs. 6.05 ± 0.17 mg/g (posi-

tive control): p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test

Fig 15. Fasting plasma insulin levels (mU/L) at the end of the treatment phase. A (standard diet group), B (normal protein high calorie diet

group), C (low protein high calorie diet group). Results are expressed as mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g015
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Fig 16. HOMA-IR (arbitrary units) at the end of the treatment phase. A (standard diet group), B (normal protein high calorie diet group), C (low

protein high calorie diet group). Results are expressed as mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g016

Fig 17. HOMA-B (arbitrary units) at the end of the treatment phase. A (standard diet group), B (normal protein high calorie diet group), C (low

protein high calorie diet group). Results are expressed as mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g017
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revealed significant differences between normal saline and Test group 2 (p< 0.0001), normal

saline and positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test

group 1 and positive control (p< 0.0001).

Low protein high calorie diet. There were significant differences in hepatic triglycerides con-

tent between the four experimental groups [6.46 ± 0.10 mg/g (normal saline) vs. 6.18 ± 0.09

mg/g (Test group 1) vs. 9.73 ± 0.14 mg/g (Test group 2) vs. 9.70 ± 0.12 mg/g (positive control):

p< 0.0001]. Post-hoc statistical analysis using Tukey’s multiple comparisons test revealed sig-

nificant differences between normal saline and Test group 2 (p< 0.0001), normal saline and

positive control (p< 0.0001), Test group 1 and Test group 2 (p< 0.0001) and, Test group 1 and

positive control (p< 0.0001). The graphical presentation of the hepatic triglycerides during the

treatment phase is shown in Fig 18.

Growth hormone levels during the treatment phase. Standard diet. There were no sig-

nificant differences in growth hormone levels between the four experimental groups

[9.992 ± 0.2529 ng/mL (normal saline) vs. 10.45 ± 0.1840 ng/mL (Test group 1) vs.

9.923 ± 0.2186 ng/mL (Test group 2) vs. 9.921 ± 0.1418 ng/mL (positive control): p = 0.1344].

Normal protein high calorie diet. There were significant differences in growth hormone lev-

els between the four experimental groups [9.728 ± 0.09886 ng/mL (normal saline) vs.

9.735 ± 0.1791 ng/mL (Test group 1) vs. 8.593 ± 0.2344 ng/mL (Test group 2) vs.

8.600 ± 0.1986 ng/mL (positive control): p =<0.0001]. Post-hoc statistical analysis using

Tukey’s multiple comparisons test revealed significant differences between normal saline and

Test group 2 (p = 0.0006), normal saline and positive control (p = 0.0006), Test group 1 and

Test group 2 (p = 0.0006) and, Test group 1 and positive control (p = 0.0006).

Low protein high calorie diet. There were significant differences in growth hormone levels

between the four experimental groups [8.565 ± 0.1440 ng/mL (normal saline) vs.

Fig 18. Hepatic triglyceride (mg/g) at the end of the treatment phase. Expressed as mean ± SEM. A (standard diet group), B (normal protein high

calorie diet group), C (low protein high calorie diet group).

https://doi.org/10.1371/journal.pone.0298752.g018
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8.654 ± 0.1497 ng/mL (Test group 1) vs. 7.529 ± 0.2114 ng/mL (Test group 2) vs.

7.514 ± 0.1063 ng/mL (positive control): p< 0.0001]. Post-hoc statistical analysis using

Tukey’s multiple comparisons test revealed significant differences between normal saline

and Test group 2 (p = 0.0002), normal saline and positive control (p = 0.0002), Test group 1

and Test group 2 (p< 0.0001) and, Test group 1 and positive control (p< 0.0001). The

graphical presentation of growth hormone levels during the treatment phase is shown in Fig

19.

Discussion

Although Sub-Saharan Africa contains only about 18% of the global population it bears a dis-

proportionate burden of the global HIV/AIDS burden with 60% of the people living with

HIV/AIDS (PLWH) being found there [11]. In addition, the majority of the world’s poorest

people live in SSA meaning that many of the PLWH face nutritional challenges in terms of

accessing balanced diets bearing in mind that dietary protein is generally more expensive than

carbohydrates and lipids [12]. The objective of this study was to examine the obesogenic prop-

erties of the low protein high calorie diet as well as its interactions with the newly introduced

Integrase-based cART regimens. The normal protein high calorie and low protein high calorie

diets successfully induced; hyperglycemia, insulin resistance, and weight gain by the 15th week

of the study. The normal protein high calorie diet model has previously been shown to induce

metabolic syndrome in Sprague Dawley rats [13, 14].

The low protein high calorie diet was significantly obesogenic in this study and indeed dis-

played greater though non-significant obesogenic activity than the classical normal protein

high calorie diet (cafeteria diet). In addition, it had significantly more deleterious effects on

Fig 19. Growth levels (ng/mL) at the end of the treatment phase. A (standard diet group), B (normal protein high calorie diet group), C (low protein

high calorie diet group). Results are expressed as mean ± SEM. (****- p< 0.0001).

https://doi.org/10.1371/journal.pone.0298752.g019
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glucose tolerance than the cafeteria diet. There are several possible mechanistic explanations

for the observed experimental findings.

Protein malnutrition is associated with inflammation due to intestinal dysbiotic micro-

biota (low diversity, increased prevalence of aerotolerant and decreased prevalence of bene-

ficial commensal species) [15] and increased plasma concentrations of several mediators of

the inflammatory cascade such as pro-inflammatory cytokines e.g., interleukin 6, C-reac-

tive protein and the soluble receptors tumor necrosis factor α (sTNFR-p55 and sTNFR-

p75) [16]. The antioxidant status is also significantly reduced [17]. Pro-inflammatory cyto-

kines decrease insulin secretion in a clonal pancreatic β-cell line, explaining the classical

features of metabolic syndrome, including central adiposity, hyperglycemia, and dyslipide-

mia seen in-vivo models [18]. An alternative theory is that protein malnutrition can cause

the characteristics features of metabolic syndrome by inducing the production of hepatic

fibroblast growth factor 21(FGF21) [19] which then interacts with β-klotho receptors in the

brain triggering hyperphagia and ultimately resulting in energy overconsumption [20].

Similarly, a low protein diet is associated with histological evidence of hepatic steatosis that

are attributed to endoplasmic reticulum stress, perturbation of autophagy, mitochondrial

dysfunction, hepatocellular apoptosis, gut microbiota imbalance, dysregulation of micro-

RNAs [21] and a loss of peroxisomes, which are important for normal liver metabolic func-

tion [22].

In cases of obesity, adipocytes undergo both hyperplasia and hypertrophy, displaying

structural and functional deficiencies that ultimately alter their secretory and humoral char-

acteristics [23]. The release of inflammatory agents by enlarged fat cells [24] is linked to the

chronic low-grade inflammation (meta inflammation) characteristic of metabolic syn-

drome. Increased visceral fat is correlated with various adverse health effects. For instance,

adipocytes laden with fat exhibit poor responsiveness to insulin stimulation [25] leading to

hyperinsulinemia (insulin resistance) and hyperglycemia. This impaired insulin response

extends beyond adipocytes, affecting other tissues such as skeletal muscle and the liver [26,

27].

The glucose handling in the animals belonging to the low protein high calorie diet group

was significantly worse than in the animals belonging to the other dietary groups as shown by

the fasting blood glucose and oral glucose tolerance tests. Both the fasting blood glucose and

oral tolerance tests have been used as hallmark tests for the evaluation of insulin sensitivity

and insulin resistance [28]. Previous published studies have shown that low protein diets are

often associated with decreased glucose tolerance and reduced insulin secretion [29]. High cal-

orie diets have been shown to have similar effects [30]. The morphology of the pancreatic islet

has been shown to be altered in animal models of high calorie malnutrition [31]. The dimin-

ished number of β-cells per islet coupled with decreased levels of insulin secretion per unit β-

cell may explain the observed hyperglycemia [32]. The increased inflammation and gut leakage

may also explain the above experimental results [33].

The utilization of DTG is on the rise, particularly in low to middle-income countries, where

it is incorporated into a single-tablet regimen known as tenofovir/lamivudine/dolutegravir

(TLD). This is attributed to DTG’s high resistance barrier, once-daily dosing, and its indepen-

dence from pharmacologic boosting [34]. Consequently, it becomes crucial to assess potential

adverse effects of DTG, especially among people living with HIV (PLWH), particularly those

experiencing metabolic changes typically associated with older cART regimens. The second

phase of this study aims to explore the interactions between DTG-based cART and diet, with a

specific focus on a comparison with older cART regimens. In addition, it also aimed to investi-

gate whether tesamorelin, a growth hormone secretion stimulant ameliorated the observed

metabolic derangements.
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There were significant weight gains in the animals receiving DTG-containing cART treat-

ment regimens as well as those receiving the classical cART regimens in both the normal pro-

tein high calorie and low protein high calorie but not in the normal diet groups. These results

are in line with those in literature where weight gain has been described as the most prominent

metabolic side effect of second-generation integrase strand transfer inhibitors (INSTI) e.g.,

DTG [35]. The underlying pathophysiologic mechanisms underlying INSTI- associated weight

gain remain unknown but proposed mechanisms include but are not limited to, direct impacts

on adipogenesis [36], and gut microbiome disturbances [37] among others. It is noteworthy

that the DTG effects on weight gain were prevented by co-administration with tesamorelin in

this study, implying that it possesses additional activity against cART-induced obesity in addi-

tion to its documented anti lipodystrophy activity.

Several recent studies, predominantly conducted at single sites or with specific cohorts,

indicate a higher incidence of weight gain in individuals initiating antiretroviral therapy

(ART) with integrase strand transfer inhibitor (INSTI)-based regimens compared to those

using protease inhibitors (PI) or non-nucleoside reverse transcriptase inhibitors (NNRTI)-

based regimens. For instance, in a Brazilian cohort, people living with HIV (PLWH) on Ralte-

gravir (RAL)-based regimens were seven times more likely to develop obesity (BMI� 30 kg/

m2) than those on NNRTI- or PI-based regimens [38]. Other observational studies also sug-

gest that INSTI-based regimens, and particularly those utilizing dolutegravir (DTG) as part of

ART, tend to be associated with a higher likelihood of weight gain [39]. In clinical trials, it has

been observed that women and individuals of black ethnicity experience the most significant

weight gain when using integrase inhibitors. Furthermore, there is evidence indicating that the

nucleoside reverse transcriptase backbone may contribute to additional effects on weight gain,

with tenofovir alafenamide potentially intensifying this effect [40].

Both the DTG-based and the classical cART regimens were associated with the develop-

ment of hyperglycemia and impaired oral glucose tolerance when administered animals in the

normal protein high calorie as well as the low protein high calorie diet groups respectively.

These deleterious effects on glucose handling were however absent in the normal diet groups.

In addition, these deleterious effects were prevented when the DTG-containing cART regi-

mens were co-administered with tesamorelin.

Previous published studies have reported that integrase strand transfer inhibitor (INSTI)

based cART regimens are associated with accelerated hyperglycemia in obese patient popula-

tions [40]. The pathophysiologic mechanisms responsible for the acceleration of hyperglyce-

mia in these populations remain unclear but it has been postulated that these agents may

contribute to beta-cell dysfunction and/or insulin resistance independent of weight again [41].

While the use of pharmacological doses of recombinant human Growth Hormone is

known to lead to hyperglycemia, insulin resistance, fluid retention, and carpal tunnel syn-

drome [42], the utilization of analogs of growth hormone-releasing factor (GRF)/growth hor-

mone-releasing hormone (GHRH) presents an alternative approach. These analogs stimulate

natural increases in growth hormone (GH) levels while preserving the negative feedback

mechanisms of insulin-like growth factor-1 (IGF-1). This helps address the metabolic irregu-

larities and changes in body composition associated with low GH levels particularly with

regard to hyperglycemia [43]. Indeed, MR-409, a GHRH receptor agonist, has been shown to

induce Akt signaling via activation of insulin receptor substrate 2 (IRS2), a central controller

of survival and growth in β-cells, occurs through a PKA-dependent mechanism [44]. The ele-

vation in the functionality of the cAMP/PKA/CREB/IRS2 pathway induced by MR-409 was

linked to a reduction in β-cell mortality and enhanced insulin secretion in both mouse and

human islets exposed to proinflammatory cytokines. In addition, type 1 diabetic mice treated

with MR-409 which (induced via the administration of low-dose streptozotocin) demonstrated
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improved glucose regulation, elevated insulin levels, and maintenance of β-cell mass [45]. The

foregoing discussion therefore provides a probable explanation for the improved glycemic

control observed when tesamorelin was co-administered with the various cART regimens in

this study. Both the DTG-containing and classical cART regimens induced the central adipos-

ity, dyslipidemia (hypertriglyceridemia, elevated LDL and total cholesterol, lowered HDL-cho-

lesterol), as well as the non-alcoholic fatty liver disease (as shown by the elevated hepatic index

and hepatic triglycerides) that are characteristic of cART associated metabolic dysfunction. It

is noteworthy that this cART associated metabolic dysfunction was absent in the normal diet

groups.

Integrase strand transfer inhibitor (INSTI) based antiretroviral therapy has been

reported to exhibit minimal increases in total cholesterol, serum triglyceride levels, LDL-

cholesterol as well as causing an increase in HDL-cholesterol in a general population [46].

These results were replicated in this study in the normal diet group. However, dyslipidemia

was observed in both the normal protein high calorie and low protein high calorie groups

indicating that the DRG-based cART regimen interacts with high calorie diets in a manner

analogous to that of the traditional cART. This to our knowledge, is the first study that has

attempted to investigate the interaction between INSTI-based cART regimen and a high cal-

orie diet and is a potentially novel finding.

Initiation of cART is often associated with central adiposity and eventually an increase in

body weight [47]. Central adiposity is associated with low serum growth hormone levels [48].

Indeed, GH serum levels have been reported to be significantly lower in persons with lipody-

strophy regardless of HIV status with the extent of visceral adipose tissue accumulation being

closely correlated to the level of blunting of GH secretion [49]. Additionally, in-depth physio-

logical investigations have revealed a diminished growth hormone (GH) secretion per pulse in

individuals with normal pulse frequency. GH plays a role in increasing lipolysis and inhibiting

de novo lipogenesis, establishing a mechanistic connection between decreased GH secretion

and the documented buildup of abdominal fat and hepatic steatosis within this specific patient

group [50]. The foregoing discussion provides an explanation for the ameliorative effects of

tesamorelin when co-administered together with cART in both the low protein high calorie

and normal protein diets in this study.

In particular, tesamorelin significantly ameliorated the central adiposity, possessed signifi-

cant antidyslipidemic effects, and reduced hepatic adiposity. These beneficial effects mirror

those in published literature where it has been reported to significantly reduce visceral fat by

nearly 20%, decrease triglycerides by roughly 15%, reduced liver fat thereby halting the pro-

gression of hepatic fibrosis in patients with HIV-associated non-alcoholic fatty liver disease

(NAFLD). This approach is accompanied by positive alterations in hepatic gene expression,

contributing to an enhanced quality of life for patients. [51]. The limitation of this study is that

the rats were not HIV positive and therefore cannot completely reproduce the cART dysregu-

lations seen in HIV positive human subject.

Conclusion

This study showed that the low protein high calorie diet was obesogenic. These obesogenic

activities were as great as /exceeded that of the classical cafeteria diet (normal protein high

calorie diet) in addition this lowprotein high calorie diet interacted with both IICR and

classical cART drug regimen to reproduce cART associated metabolic dysregulations.

These dysregulations were however reversed by co-treatment with tesamorelin indicating

the possible involvement of the growth hormone system dysfunction in its

pathophysiology.
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The finding from this study therefore may provide a potential pathophysiologic explanation

for the observed increased mortality rate seen in sub-Saharan Africa when cART is initiated in

patients with nutritional insufficiency.
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