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Background: Evidence on the distribution of pre-treatment HIV-1 drug resistance (HIVDR) among risk groups is 
limited in Africa. We assessed the prevalence, trends and transmission dynamics of pre-treatment HIVDR within 
and between MSM, people who inject drugs (PWID), female sex workers (FSWs), heterosexuals (HETs) and peri
natally infected children in Kenya. 

Methods: HIV-1 partial pol sequences from antiretroviral-naive individuals collected from multiple sources be
tween 1986 and 2020 were used. Pre-treatment reverse transcriptase inhibitor (RTI), PI and integrase inhibitor 
(INSTI) mutations were assessed using the Stanford HIVDR database. Phylogenetic methods were used to de
termine and date transmission clusters. 

Results: Of 3567 sequences analysed, 550 (15.4%, 95% CI: 14.2–16.6) had at least one pre-treatment HIVDR 
mutation, which was most prevalent amongst children (41.3%), followed by PWID (31.0%), MSM (19.9%), FSWs 
(15.1%) and HETs (13.9%). Overall, pre-treatment HIVDR increased consistently, from 6.9% (before 2005) to 
24.2% (2016–20). Among HETs, pre-treatment HIVDR increased from 6.6% (before 2005) to 20.2% (2011–15), 
but dropped to 6.5% (2016–20). Additionally, 32 clusters with shared pre-treatment HIVDR mutations were identi
fied. The majority of clusters had R0 ≥ 1.0, indicating ongoing transmissions. The largest was a K103N cluster involv
ing 16 MSM sequences sampled between 2010 and 2017, with an estimated time to the most recent common 
ancestor (tMRCA) of 2005 [95% higher posterior density (HPD), 2000–08], indicating propagation over 12 years. 

Conclusions: Compared to HETs, children and key populations had higher levels of pre-treatment HIVDR. 
Introduction of INSTIs after 2017 may have abrogated the increase in pre-treatment RTI mutations, albeit in 
the HET population only. Taken together, our findings underscore the need for targeted efforts towards equitable 
access to ART for children and key populations in Kenya.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
By the end of 2020, an estimated 30 million individuals were re
ceiving ART globally.1 The scale-up of ART has substantially 

reduced the rates of new HIV-1 infections, including vertical trans
missions, HIV-1 related mortality, and improved life expectancy 
for millions of people with HIV (PWHIV).1–3 However, widespread 
use of ART has been associated with the emergence of HIV-1 
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drug resistance (HIVDR) and the transmission of drug-resistant 
viruses that can compromise therapy outcomes.4

The WHO recommends routine nationally representative HIVDR 
surveys to inform treatment strategies.5 Increasing levels of pre- 
treatment HIVDR to NNRTIs has been recognized as a problem for 
many years, especially in low- and middle-income countries 
(LMICs) where virological monitoring of patients on ART is subopti
mal.6,7 In part, the increasing NNRTI resistance and poor tolerability 
to PIs informed WHO’s recommendation for a switch to integrase 
strand transfer inhibitors (INSTIs) as part of the first-line regimens 
in LMICs. INSTIs are more efficacious and have a high genetic barrier 
to resistance. Dolutegravir, a second-generation INSTI, is now wide
ly adopted for both treatment-naive and experienced PWHIV.8

However, the potential impact of the switch to dolutegravir-based 
regimens, which came into effect in LMICs in 2017, on emergence 
and circulation of NNRTI-resistant strains is unclear.

Further, key populations including MSM, people who inject drugs 
(PWID), female sex workers (FSWs) and transgender people are dis
proportionately impacted by HIV-1 in sub-Saharan Africa (sSA). 
HIV-1 transmission from these key populations is thought to con
tribute disproportionately to Africa’s generalized HIV-1 epidemic.9

We previously demonstrated that the majority of HIV-1 transmis
sions in Kenya occur within distinct risk groups, and that transmission 
from heterosexuals (HETs) to key populations is more common than 
vice versa.10,11 However, it remains unknown whether there is differ
ential transmission of HIVDR mutations among different risk groups. 
We aimed to describe prevalence, temporal trends and transmission 
linkages of pre-treatment HIVDR mutations within and between risk 
groups in Kenya.

Methods
Study population
HIV-1 partial pol sequences from Kenya were either newly generated 
from archived plasma samples (henceforth referred as newly generated) 
or retrieved from the Los Alamos HIV-1 sequence database (henceforth 
referred as published sequences).12 Newly generated HIV-1 pol se
quences [approximately 1020 nucleotides (nt), HXB2 (K03455) positions 
2267–3287] were generated from plasma obtained from the MSM 
Health Research Consortium. This is a multi-site collaboration between the 
Kenya Medical Research Institute-Wellcome Trust Research Programme 
(KWTRP) in Coastal Kenya,13–15 Nyanza Reproductive Health Society 
(NRHS) in Western Kenya,16 Sex Workers Outreach Program (SWOP) clinics 
in Nairobi, Kenya, the Targeted Research Advancing Sexual Health for Men 
who have Sex with Men (TRANSFORM) cohort from Nairobi, Kenya,17 and 
the national HIV-1 reference laboratory at the Kenya Medical Research 
Institute/Centre for Global Research (KEMRI/CGHR) in Kisumu, Kenya. 
Plasma samples from the collaboration were used to generate HIV-1 partial 
pol sequences as previously described.18 Published HIV-1 pol sequences of 
Kenyan origin were also retrieved from the Los Alamos HIV database on 
20 March 2022.12

Sociodemographic, clinical and ART status data for newly generated 
sequences were obtained from the respective cohorts, while those from 
published sequences were extracted from referenced publications and 
their accompanying supplementary material. Where data for published 
sequences were missing, information was obtained through direct com
munication with study authors. Newly generated and published se
quences were then annotated with sampling date, sampling location, 
risk group [HETs, MSM, PWID, FSWs and children (defined as individuals 
<18 years old)] and ART status (whether treatment naive or experienced). 
Where such information was still missing, related sequences were 

excluded from the analysis. Only sequences generated from ART-naive 
individuals were included in the analyses.

HIV-1 subtype determination
Newly generated and published HIV-1 partial pol sequences were aligned 
with the HIV-1 Group M (subtypes A–K + recombinants) subtype reference 
sequences (http://www.hiv.lanl.gov) using the MAFFT algorithm in 
Geneious Prime 2019.12 Subtypes were determined based on a 
maximum-likelihood (ML) phylogenetic tree generated in PhyML using 
the general time-reversible substitution model with a gamma-distributed 
rate variation and proportion of invariant sites (GTR + Γ4 + Ι).19 Branch sup
port was determined using the approximate likelihood ratio test with the 
Shimodaira–Hasegawa-like procedure (aLRT-SH) in PhyML and aLRT-SH ≥  
0.90 was considered significant. The phylogenetic tree was visualized 
using FigTree v1.4.4 (https://github.com/rambaut/figtree/releases), and 
subtypes assigned based on how sequences in our dataset clustered rela
tive to the HIV-1 Group M reference sequences. Subtype assignment con
gruence was confirmed with the web-based subtyping algorithm COMET 
(available at https://comet.lih.lu) and REGA (version 3.46, https://www. 
genomedetective.com/app/typingtool/hiv). Unique recombinant forms 
(URFs) were resolved by boot-scan analysis in SimPlot.20–22

Characterization of pre-treatment HIVDR
All sequences from antiretroviral-naive individuals were submitted to the 
Stanford HIV database (https://hivdb.stanford.edu) for determination and 
interpretation of HIVDR mutations. The Calibrated Population Resistance 
tool for protease and reverse transcriptase (PRRT) and for integrase (IN) 
sequences was used to identify pre-treatment HIVDR mutations based 
on the WHO list of mutations for the surveillance of transmitted 
HIVDR.23,24 Mutations were grouped and presented based on drug class 
as follows: NRTI, NNRTI, PI and INSTI mutations.

Phylogenetic determination of clusters
HIV-1 sequences were grouped into subtype-specific datasets. For each in
dex sequence, the 20 most similar sequences were obtained from the NCBI 
GenBank using the BLAST tool, as previously described.25 After removal of 
duplicate sequences from the same individual, the Kenyan sequences 
from our dataset and the reference sequences obtained from the BLAST 
search were compiled into subtype-specific alignments, excluding codon 
positions associated with drug-resistance mutations. ML phylogenies were 
generated in PhyML using the GTR + Γ4 + Ι model.19 For each subtype-specific 
phylogenetic tree, monophyletic clades with aLRT-SH support ≥ 0.9 and 
which were dominated (≥80%) by Kenyan sequences (compared with ref
erence sequences) were defined as Kenyan HIV-1 clusters. Clusters were 
classified based on the number of sequences into dyads (two sequences), 
networks (3–14) and large clusters (>14 sequences).25 ML phylogenetic 
trees were annotated based on the most common mutations per drug 
class, i.e. K103NS, Y181CIV and G190AES (for NNRTI resistance mutations) 
and M184VI and T215 revs (for NRTI resistance mutations).

Hierarchical phylogenetic modelling and Bayesian 
inference
Hierarchical phylogenetic models (HPMs) are useful for phylogenetic infer
ences when analysing a sparse sample.26 HPMs comprise two components: 
(i) an across-partition-level model, which captures the shared evolutionary 
history among all species in an analysis, often at a higher taxonomic level; 
and (ii) an individual partition model that provides more detailed informa
tion about evolutionary relationships within specific partitions. HPMs innova
tively allow for the simultaneous fitting of both the across-partition-level 
model and individual partition models. Thus, information inferred at the 
broader taxonomic level can be shared as a prior with the individual parti
tion models. This ‘feedback’ or sharing of information results in a borrowing 
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of strength from one partition to another, which can lead to more accurate 
and precise estimates of evolutionary relationships.26

HPMs were incorporated in our phylodynamic analyses to date clusters. 
BEAST software (version 1.10.4) was used. The HKY nucleotide substitution 
model (unlinked for all partitions) was applied while selecting empirical base 
frequencies and a gamma site heterogeneity model with four gamma cat
egories. Codon partitions were turned off. A strict clock model (unlinked for 
all partitions) was specified, and a constant size tree prior (with unlinked 
tree priors for all trees) maintained as a simple coalescent tree prior. We 
specified hierarchical priors for the substitution model parameters (on the 
log-normal scale for both ‘kappa’ and ‘alpha’ parameters, while setting 
the normal population mean hyperprior standard deviation to 5.0, as well 
as a gamma population precision hyperprior of initial value 1.0, shape value 
0.01 and scale value 100.0). A second HPM was set for the clock rates 
(on the log-normal scale, with a normal population mean hyperprior stand
ard deviation set to 100.0, and a gamma population precision hyperprior 
with an initial value 1.0, shape value 0.001 and scale value 1000.0). A final 
HPM was specified for the population sizes, setting the normal hyperprior 
standard deviation to 100.0, and the gamma hyperprior shape and scale 
to 0.001 and 1000.0, respectively. Markov chain Monte Carlo (MCMC) runs 
with a chain frequency of 300 million generations were computed in 
BEAST, logging every 300 000th iteration, and discarding the first 10% as 
chain burn-in. Convergence was determined in Tracer v.1.7.0 [defined as ef
fective sample size (ESS) ≥ 100].27 Maximum clade credibility (MCC) trees 
were summarized from the posterior tree distribution using TreeAnnotator 
v1.10.4 (BEAST suite) and visualized using Figtree (v1.4.4, https://github. 
com/rambaut/figtree/releases).

Additional phylodynamic analyses were performed to estimate the 
population growth rate (r, years−1) per cluster using the GTR + Γ4 + Ι nu
cleotide substitution model, and a logistic growth coalescent tree 
prior.28–30 The basic reproductive number (R0, defined as the number of 
secondary infections that arise from a typical primary case in a complete
ly susceptible population) per cluster was estimated based on the re
spective cluster growth rate I using the formula R0 = rD + 1 (where D 
represents the average duration of infectiousness, i.e. for individuals 
with uncontrolled viraemia who are more likely to transmit the virus, as
suming uniform transmission rates over time).28–30 In the absence of em
pirical data on the duration of infectiousness in Kenya, R0 was modelled 
assuming varying D values (range, 1–8 years).

Statistical analysis
Prevalence of pre-treatment HIVDR was determined as a proportion of se
quences with at least one HIVDR mutation relative to the total number of 
sequences included in the analysis. Prevalence estimates were aggregated 
by calendar year of sampling into 5 year intervals to reflect major changes 
in treatment guidelines in Kenya as follows: before 2005 (before introduc
tion of combination ART), 2005–10 (introduction of combination ART), 
2011–15 (scale up of combination ART) and 2016–20 (introduction of 
INSTI-based regimens). Categorical data were compared with the χ² test 
and continuous data were compared with the Kruskal–Wallis test, where 
appropriate. Statistical differences between risk group and calendar year in
tervals were assessed using the Dunn’s test for multiple comparisons, with 
Bonferroni correction. Overall, drug class-specific, and mutation-specific 
HIVDR prevalence estimates and 95% CIs were presented. HIVDR temporal 
trends were assessed using nptrends, a non-parametric extension of the 
Wilcoxon rank-sum test.31 Data analysis and summary plots were done 
using Stata 15 (StataCorp LLC, College Station, TX, USA) and RStudio (version 
1.2.5001) with the ggplot2 package.32

Nucleotide sequence accession numbers
Newly generated nucleotide sequences are available from GenBank un
der the accession numbers (MT084914–MT085076) and (OM109695– 
OM110282).

Ethics
For newly generated sequences, informed consent for use of data and 
samples for research studies was obtained from participants under re
spective study protocols. Since published sequences were obtained 
from an open access repository, informed consent was not retrospective
ly obtained. Instead, science and ethics approval were obtained from the 
Kenya Medical Research Institute (KEMRI) Scientific and Ethics Review 
Unit (SERU 3547). All newly generated and published sequences were 
de-identified at source before inclusion in the analysis.

Results
Study population
Overall, 5572 HIV-1 pol sequences [newly generated (n = 755; 
Table S1, available as Supplementary data at JAC Online) and 
published (n = 4817)] sampled between 1986 and 2020 were 
considered. Of these, 3567 sequences were from ART-naive indi
viduals and were included in the analysis (Figure 1). These com
prised sequences covering the reverse transcriptase (n = 3567; 
100.0%), protease (n = 2491; 69.8%) and IN (n = 106; 3.0%) 
coding regions. Most sequences were from the HET population 
(n = 2947; 82.6%), collected between 2006 and 2010 (n = 1997; 
56.0%) and from the former Nairobi province (n = 1479; 41.5%) 
(Table 1). The most common circulating strain was HIV-1 sub- 
subtype A1 (n = 2282; 64.0%) (Figure 2), with subtype distribution 
being mostly similar across risk groups (Table S2).

Prevalence of pre-treatment HIVDR
Of 3567 sequences, 550 (15.4%, 95% CI: 14.2–16.6) had at least 
one pre-treatment HIVDR mutation. Overall, pre-treatment 
HIVDR mutations were most common amongst children (n =  
31; 41.3%), followed by PWID (n = 18; 31.0%), MSM (n = 68; 
19.9%), FSWs (n = 22; 15.1%) and HETs (n = 411; 13.9%), with 
the distribution differing significantly across risk groups 
(Figure 3a, Table S3 and Table S4). NNRTI resistance mutations 
were most common [n = 453; 12.7% (95% CI: 11.6–13.8)], fol
lowed by NRTI [n = 232; 6.5% (95% CI: 5.7–7.4)] and PIs [n = 23; 
0.9% (95% CI: 0.6–1.4)]. There were no INSTI resistance muta
tions observed (Figure 3b, Table S3 and Table S4). NNRTI resist
ance mutations were highest among children (n = 29; 38.7%), 
followed by MSM (n = 62; 18.2%), HETs (n = 345, 11.7%) and 
FSWs (n = 16; 11.0%). NRTI resistance mutations were highest 
among PWID (n = 18; 31.0%), followed by children (n = 15; 
20.0%), FSWs (n = 10; 6.8%), HETs (n = 172; 5.8%) and MSM (n =  
17; 5.0%). PI resistance mutations were <1.0% in HETs, FSWs 
and MSM, and none were observed in children and PWID 
(Figure 3c).

Of sequences with any pre-treatment HIVDR, the most com
mon pre-treatment NNRTI, NRTI and PI drug-resistance muta
tions were K103NS (n = 210; 5.9%), M184VI (n = 130; 3.6%) and 
M46IL (n = 12; 0.5%), respectively (Figure 3d and Table S5). The 
most common mutations by risk group were the T215revs (for 
PWID), Y181CIV (for children) and K103NS (for HETs, MSM and 
FSWs) (Figure 3e).

Temporal trends in pre-treatment HIVDR
Overall, there was an increase in pre-treatment HIVDR from 6.9% 
(before 2005) to 13.4% (2011–15), 22.0% (2011–15) and 24.2% 

Pre-treatment HIV-1 drug resistance in Kenya (1986–2020)                                                                           

289

https://github.com/rambaut/figtree/releases
https://github.com/rambaut/figtree/releases
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad375#supplementary-data


(2016–20) (P < 0.001) (Figure 4a, Table S6 and Table S7). NNRTI 
resistance increased from 3.8% (before 2005) to 22.9% (2016– 
20, P< 0.001) while NRTI resistance increased from 4.2% (before 
2005) to 8.1% (2016–20, P = 0.061). PI resistance remained 
stable below 2% throughout the calendar periods (P = 0.298).

Amongst the HET population, pre-treatment HIVDR increased 
from 6.6% (before 2005) to 13.2% (2006–10), 20.2% (2011–15), 
followed by a significant decline to 6.5% (2016–20) (P < 0.001) 
(Figure 4b, Table S6 and Table S7). Levels of NNRTI and NRTI re
sistance also increased from 3.7% and 4.0% (before 2005) to 
17.7% and 8.1% (2011–15), followed by a decline to 6.5% and 
3.2% (2015–20, P < 0.001 and P = 0.079, respectively). PI resist
ance remained low at 0.0% (before 2005), 1.0% (2011–15) and 
3.2% (2016–20, P = 0.839).

Among FSWs, NNRTI resistance also increased significantly 
between 2006–10 and 2015–20 (P = 0.001) (Figure 4c, Table S6
and Table S7). Among MSM there was an overall increase in 
NNRTI and NRTI resistance between 2006–10 and 2015–20, 
though this did not achieve statistical significance (P = 0.399 
and P = 0.241, respectively) (Figure 4d, Table S6 and Table S7). 
Data on PWID and children fell within one calendar year period 
(2006–10 and 2011–15, respectively), and were therefore ex
cluded from trend analysis.

Phylogenetic clustering of sequences with shared 
pre-treatment HIVDR mutations
Overall, 491 sequences with pre-treatment HIVDR mutations 
were analysed, comprising HIV-1 sub-subtype A1 (n = 377), sub
type C (n = 31) and subtype D (n = 83). Phylogenetic analysis re
vealed 32 clusters (size range, 2–16 sequences) with shared 
mutations K103NS (n = 10; 31.3%), Y181CIV (n = 6; 18.8%), 
M184VI (n = 5; 15.6%), G190AES (n = 3; 9.4%), T215revs (n = 4; 
12.5%), K103NS/M184VI (n = 3; 9.4%) and K103NS/K101P (n = 1; 
3.1%). Clusters included dyads (n = 26; 81.3%), networks (n = 4; 
12.5%) and large clusters (n = 1; 3.1%). Clusters were either 
risk-group exclusive, i.e. HETs only (n = 24; 75.0%), MSM only 
(n = 2; 6.3%) and PWID only (n = 1; 3.1%) or mixed clusters 
including HETs/MSM (n = 2; 6.3%), HETs/FSWs (n = 1; 3.1%) and 
HETs/children (n = 2; 6.3%) (Table 2).

Bayesian dating was performed for networks and large clus
ters, which included four sub-subtype A1 and one subtype D clus
ters (Table 3 and Figure 5). The largest comprised 16 MSM with 
the K103N mutation. This cluster had an estimated time to the 
most recent common ancestor (tMRCA) of 2005 [95% higher pos
terior density (HPD), 2000–08], where the most recent sample 
was collected in 2017, suggesting that this lineage had persisted 

Newly generated 
(n=755) 

Published 
(n=4,817) 

Compiled sequences 
(n=5,572) 

Analyzed sequences 
(n=3,567) 

ART experienced (n=1778) 
Unverified ART status (n=227) 

RT not 
covered 
(n=0) 

PR not 
covered 

(n=1076) 

IN not 
covered 

(n=3461) 

IN (n=106) 

HET (n=69, 65.1%) 
MSM (n=21 (19.8%) 
FSW (n=16, 15.1%) 
PWID (n=0, 0.0%) 
Children (n=0, 0.0%) 

PR (n=2491) 

HET (n=2001, 80.3%) 
MSM (n=341, 13.7%) 
FSW (n=146, 5.9%) 
PWID (n=0, 0.0%) 
Children (n=3, 0.1%) 

RT (n=3567) 

HET (n=2947, 82.6%) 
MSM (n=341, 13.7%) 
FSW (n=146, 5.9%) 
PWID (n=58, 1.6%) 
Children (n=75, 2.1%) 

Figure 1. A flowchart summarizing the number of HIV-1 pol sequences (1986–2020) analysed in this study. RTI, reverse transcriptase inhibitor. The 
HET population was defined as at-risk men and women who did not report sex work or male same-sex behaviour.
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over 12 years [growth rate = 0.10/year and R0 = 1.10 (95% HPD, 
−5.08–11.28)]. Another long-standing cluster involved 11 PWID 
having the T215rev mutation with an estimated tMRCA of 1999 
(95% HPD, 1998–01), where the most recent sample was col
lected in 2010, indicating that this lineage may have persisted 
for over 11 years [growth rate = 0.38/year, R0 = 1.38 (95% HPD, 
1.00–3.91)]. Overall, the majority of clusters had basic reproduct
ive number, R0 ≥ 1.0 (assuming D values ranging from 1 to 
8 years), which may be indicative of ongoing propagation of pre- 

treatment HIVDR mutations among untreated individuals in 
Kenya (Table 3 and Table S8).

Discussion
We used HIV-1 pol sequence data spanning a period of more 
than three decades to assess the prevalence, temporal trends 
and transmission of pre-treatment HIVDR among different 
risk groups in Kenya. Overall prevalence of pre-treatment 
HIVDR was high (15.4%), which was largely a reflection of 
the high levels of pre-treatment NNRTI drug-resistance muta
tions. Notably, there was comparatively lower (<10%) pre- 
treatment NRTI drug resistance and no pre-treatment INSTI 
resistance in the study population, albeit based on a limited 
number of HIV-1 IN gene sequences mostly collected prior 
to the transition to INSTI-based regimens in Kenya. Taken to
gether, these observations justify the retention of two NRTIs 
and the switch to a dolutegravir-based regimen for HIV-1 
treatment in Kenya.33

We observed an increasing trend in pre-treatment HIVDR at a 
countrywide level, which was also largely driven by NNRTI resist
ance. This is consistent with previous subnational data from 
Kenya and data from elsewhere in the global context.6,7,34–36

NNRTIs have a low genetic barrier to resistance, which permits 
outgrowth of resistant variants under suboptimal drug pressure, 
and mutations may persist for long durations, facilitating their 
onward transmission.37,38 Of interest, pre-treatment NNRTI and 
NRTI resistance among HETs (the largest risk group in this study, 
which is representative of the HIV-1 epidemic in Kenya) increased 
between 2005 and 2015 but declined between 2015 and 2020. 
This coincides with the nationwide transition from NNRTI to 
INSTI-based ART regimens,33 suggesting that scale-up of 
dolutegravir-based regimens may have abrogated emergence 
and circulation of pre-treatment NNRTI and NRTI resistance mu
tations. In contrast, pre-treatment HIVDR among FSWs and MSM 
increased consistently through to 2015–20. Interestingly, as of 
2020, ART coverage was lower among key populations: 73% in 

Table 1. Distribution of newly generated and published HIV-1 pol 
sequences from antiretroviral therapy-naive individuals in Kenya (n =  
3567; 1986–2020)

Characteristics

Newly generated 
N = 396 
n (%)

Published 
N = 3171 

n (%)

Total 
N = 3567 

n (%)

Risk group HETs 78 (19.7) 2869 (90.5) 2947 (82.6)
MSM 190 (48.0) 151 (4.8) 341 (9.6)
PWID 0 (0.0) 58 (1.8) 58 (1.6)
FSWs 128 (32.3) 18 (0.6) 146 (4.1)
Children 0 (0.0) 75 (2.4) 75 (2.1)

Year (range) Before 2005 18 (4.5) 433 (13.7) 451 (12.6)
2006–10 110 (27.8) 1887 (59.5) 1997 (56.0)
2011–15 41 (10.4) 842 (26.6) 883 (24.8)
2016–20 227 (57.3) 9 (0.3) 236 (6.6)

Province Nairobi 150 (37.9) 1329 (41.9) 1479 (41.5)
Coast 175 (44.2) 852 (26.9) 1027 (28.8)
Nyanza 71 (17.9) 662 (20.9) 733 (20.5)
Rift Valley 0 (0.0) 294 (9.3) 294 (8.2)
Central 0 (0.0) 33 (1.0) 33 (0.9)
North-Eastern 0 (0.0) 1 (0.0) 1 (0.0)

HET is defined as presumed heterosexual, i.e. at-risk men and women not 
reporting sex work or male same-sex behaviour.

Figure 2. HIV-1 subtypes distribution within and between risk groups in Kenya (n = 3567; 1986–2020). A stacked bar graph summarizing subtype dis
tribution in the full Kenyan HIV-1 sequence dataset. Subtypes are depicted on the x-axis and the frequency per risk group on the y-axis, coloured per 
risk group (green: children; sky blue: FSWs; vermillion: HETs; purple: MSM and dark blue: PWID). The most dominant subtypes were A1, D and C (and their 
recombinant forms) (n = 3567; 1986–2020).
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Figure 3. Distribution of pre-treatment HIVDR by: (a) proportion of individuals with at least one pre-treatment HIVDR mutation by risk groups, with 
pairwise comparisons and Bonferroni corrections; (b) proportion of individuals with at least one pre-treatment HIVDR mutation by drug class (with 
95% CI); (c) proportion of individuals with at least one pre-treatment HIVDR mutation by both risk group and drug class (with 95% CI); (d) proportion 
of pre-treatment HIVDR mutations by drug class (with 95% CI); and (e) proportion of the five most prevalent pre-treatment HIVDR mutations per drug 
class distributed by risk groups, in Kenya (n = 3567; 1986–2020).

Figure 4. Temporal trends in pre-treatment HIVDR in Kenya among (a) overall ART-naive individuals (all risk groups combined); (b) HETs in the general 
population; (c) FSWs; and (d) MSM. Proportions are presented with error bars representing 95% CIs as estimated by a non-parametric linear-by-linear 
test for trends (nptrends) (n = 3567; 1986–2020).
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FSWs, 68% in PWID and 63% in MSM, compared with 86% in the 
general HET population.39 Taken together, these observations 
may explain the higher resistance levels observed in key popula
tions compared with the HET population, and warrants further 
investigation.

Our observations are consistent with findings from a WHO-led 
systematic review reporting higher levels of pre-treatment HIVDR 
among key populations compared with the HET population in the 
global context (with better sampling densities from higher- 
income countries, but with limited representation of data from 
key populations in Africa).5 With the transition to INSTI-based 
regimens, enhanced monitoring of INSTI resistance using 

contemporary sequences from children, HETs and key popula
tions would be prudent to inform future treatment strategies in 
Kenya.

We observed high levels of K103NS, Y181CIV and G190AES 
mutations, which likely reflect extensive selection in persons re
ceiving nevirapine and efavirenz, both of which comprised the 
main NNRTI options for first-line regimens historically in 
Kenya.40 This observation was more evident among children, 
who had the highest prevalence of pre-treatment HIVDR, with 
NNRTI-associated mutations Y181CIV and K103NS being the 
most common, which is consistent with literature.41,42 These mu
tations likely point towards the widespread use of nevirapine for 
prevention of mother-to-child transmission (pMTCT). Due to a 
paucity of HIV-1 sequence data from children during the 2016– 
20 time interval, temporal trend analyses were not possible. 
Continued surveillance of pre-treatment HIVDR in children to as
sess the impact, if any, of the transition to a dolutegravir-based 
regimen on NNRTI-associated mutations in Kenya is therefore 
warranted.

We observed several HIV-1 clusters with shared mutations 
spanning more than 10 years, indicating onward propagation 
of HIVDR among treatment-naive individuals as new infections, 
which has also been reported from developed settings.43 There 
was more frequent HIV-1 clustering of K103NS strains, indicating 
extensive transmission of this pre-treatment mutation in Kenya, 
possibly dating back to the single-dose nevirapine era. Most of 
the clusters had a basic reproductive number, R0 ≥ 1.0, suggest
ing ongoing propagation of NRTI and NNRTI HIVDR transmissions. 
Assessment of these trends over the next years is needed to 
determine whether roll-out of the more efficacious INSTIs as 
first-line regimens will terminate circulation of NNRTI resistance 
mutations in Kenya.

The main strength of our study was the analysis of sequence 
data from multiple geographically diverse regions from Kenya 
and spanning over three decades. However, the study is not with
out limitations, most of which are consistent with population- 
level studies that leverage secondary sources of data. First, 
although we included all the Kenyan HIV-1 pol sequences 
available in the public domain and complemented the sample 
size by generating more sequences from well-characterized 
cohorts, the distribution of sequences was still sparse in some 
risk groups during some time intervals. This may have resulted 
in potential sampling bias, which may have impacted our 
temporal trends and phylodynamic inferences, and warrants 
cautious interpretation of our findings. Second, we extracted a 
limited set of demographic and clinical data including year of 
sampling, risk group and ART status. This implies that we were 
not able to control for other factors like duration from the 
estimated date of infection and unreported history of pre- 
exposure prophylaxis use. While it would have been ideal to con
trol for these factors in our analyses, most are usually either not 
available or not systematically collected across parent studies.

In conclusion, we demonstrated an increase in pre-treatment 
HIVDR over the last two decades, which justifies the switch to 
INSTI-based therapy. Importantly, we show that children and 
key populations have significantly higher levels of pre-treatment 
HVIDR compared with the general HET population in Kenya. 
Remarkably, INSTI-based regimens may have abrogated propa
gation of RTI mutations among the general HET population, but 

Table 2. Characteristics of clusters (n = 32) with shared pre-treatment 
HIVDR mutations and distributed into subtypes and risk group

HIVDR mutation
Cluster  
number subtype

Number of  
tips (n) Risk group

G190AES #1 A1 2 HETs/children
#2 A1 2 HETs
#3 A1 2 HET/FSWs

K103NS #4 A1 2 HETs
#5 A1 2 HETs/MSM
#6 A1 2 HETs/MSM
#7 A1 3 MSM
#8 A1 16 MSM
#9 D 2 HETs

#10 D 2 HETs
#11 D 2 HETs
#12 D 2 HETs
#13 D 2 HETs

M184VI #14 A1 2 HETs
#15 A1 2 HETs
#16 A1 2 HETs
#17 D 2 HETs
#18 D 2 HETs

T215revs #19 A1 2 HETs
#20 A1 2 HETs
#21 A1 11 PWID
#22 D 2 HETs/children

Y181CIV #23 A1 2 HETs
#24 A1 2 HETs
#25 A1 2 HETs
#26 D 6 HETs
#27 D 2 HETs
#28 D 2 HETs

K103NS/M184VI #29 A1 2 HETs
#30 A1 2 HETs
#31 A1 2 HETs

K103N/K101P #32 A1 3 HETs

Number of clusters with the most dominant pre-treatment HIVDR muta
tions per drug class i.e. NNRTI (K103NS, Y181CIV, G190AES) and NRTI 
(M184VI and T215revs). Two clusters shared more than one mutation 
(K103NS/M184VI and K103N/K101P). HET is defined as presumed hetero
sexual, i.e. at-risk men and women not reporting sex work or male same- 
sex behaviour.
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not in hard-to-reach key populations. Our study further under
scores the challenges with access to HIV care and treatment 
for key populations, as demonstrated with increasing pre- 
treatment HIVDR in MSM and FSWs, despite the broad nationwide 
introduction of INSTI-based regimens. Using phylodynamic ana
lyses, we also demonstrate long-standing and ongoing propaga
tion of pre-treatment HIVDR strains, that were mostly risk-group 
exclusive. Taken together, our findings underscore need for 

targeted efforts towards equitable access to ART for children 
and key populations in Kenya.
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