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ABSTRACT

Many cell phone cameras perform poorly in backlighting situations due to
low dynamic range, which then leads to the creation of low-quality pictures
known as backlit images. Conventional image enhancement algorithms are not
well suited to improve the quality of backlit images. Over-saturation or a loss
of contrast are typical outcomes when these methods are applied. In this thesis,
a novel image enhancement algorithm is presented for improving the visual
perception of a single backlit image. The algorithm uses a region-based
histogram specification scheme in combination with the discrete wavelet
transform image fusion to correct exposure disparities between foreground and
background scenes. Computer simulations in MATLAB R2018a and on a
dataset of 162 backlit images revealed that the proposed algorithm significantly
improves the backlit image's visual perception without distorting colours or
adding artefacts. The Peak Signal-to-Noise Ratio, Structural Similarity Index
Measure, and Naturalness Image Quality Evaluator metrics objectively
validated these results. The algorithm produced PSNR values ranging from 19
dB to 30 dB for images with low backlit degradation while retaining more than
(60-70) % structural similarity to the inputs. Lower PSNR and SSIM values
were consistent with severely degraded images. These findings agreed with the
outcomes of the subjective evaluations. However, multiple iterations of the
proposed algorithm increased the PSNR quality by up to 12 dB after the first
three iterations. By comparison, the proposed algorithm significantly
outperformed existing image enhancement techniques such as Histogram
Equalization, Multiscale Retinex, and Low-light Image Enhancement via

Illumination Map Estimation.

XVi



CHAPTER 1

INTRODUCTION

1.1. Background

Backlit images are low-quality digital pictures produced due to backlighting,
a poor lighting condition that causes significant degradation in image quality.
As shown in Figure 1.1, foreground areas (F-region) in a backlit image are
frequently under-exposed, whereas background sectors (B-region) are either
well-lit or over-exposed. Traditional image enhancement algorithms are
rendered ineffective by this type of illumination. Therefore, research in this
domain focuses on alternative methods that improve backlit images while

preserving their details and colours [1].

(@) (b)

Figure 1.1. Examples of backlit images (a) Backlit portrait (b) Backlit
cityscape [2]

1.2. Assessment of backlighting
Backlighting is a poor illumination setting that occurs when an excessive
reflection of light is incident to an image-capturing device or when the dominant

light source in a picture scene lies behind the main object(s) [1]. As seen in



Figure 1.1, it creates low contrast in an image's foreground and impairs its
overall quality.

Many digital cameras cannot perform well in backlighting due to their low
dynamic range. An image sensor capable of detecting extremely low and high
luminance simultaneously would be required to capture high-quality pictures in
such a situation. A device of this type would have a dynamic range compared
to the human visual system (HVS). Nonetheless, professional photographers
have used digital cameras' low dynamic range to convey mystery, drama,
emotion, and mood. This is known as silhouette photography, and it has grown

in popularity over the last decade [3]. Figure 1.2 depicts a silhouette image.

Figure 1.2. Example of silhouette photography [3]

1.3. Problem Statement

Backlighting is a commonly encountered problem for cell phone users. It
usually results in low-quality images known as backlit images. Conventional
image enhancement methods such as the well-known histogram equalization

algorithm [4] or Retinex-based algorithms [5]-[7] cannot achieve the desired



enhanced effects of backlit images. Oversaturation and loss of contrast are
typical outcomes when these methods are applied.

Various research investigations have been conducted in recent years to
address these challenges. The majority of these efforts have not however
focused on the use of backlit image enhancement algorithms in cell phone
applications. As a result, despite recent developments in smartphone
technology, there is no commercially accepted technique for improving backlit
pictures on cell phones.

Alternative methods such as Auto-exposure (AE) [8] and High Dynamic
Range (HDR) imaging [9] are being used by smartphone manufacturers to
handle backlighting and other types of poor illumination situations. However,
these methods have significant drawbacks that outweigh their benefits in poor
lighting situations. For instance, under backlighting, AE cannot reveal items in
the foreground while simultaneously exposing details in the background. As a
result, a well-exposed foreground will cause a loss of information in the
background scene and vice-versa. Likewise, HDR, developed primarily to
handle low-light situations, is susceptible to motion blur since it relies on fusing
two or more sequential images with varying exposures [9]. Furthermore, it
cannot enhance low-quality photographs after they have been acquired.
Therefore, this research investigation sought to develop a more optimal

technique for enhancing backlit images, particularly on cell phones.



1.4. Objectives

1.4.1. Main objective
This work aimed to develop a new image enhancement algorithm that can be
employed in cell phone applications to improve the visual quality of backlit

images.

1.4.2. Specific objectives

The specific objectives were:

(i) To investigate the use of histogram-based contrast-stretching
techniques for backlit image enhancement, taking into consideration
their applicability to cell phones.

(i) To develop an optimized backlit image enhancement algorithm with
low-computational cost using a novel region-based histogram
specification (RBHS) scheme in combination with the discrete wavelet
transform (DWT) image fusion approach.

(iii) To evaluate the performance of the work on standard backlit images
captured in various backlit situations by commercially available cell

phones, based on existing image quality assessment (IQA) techniques.

1.5. Justification for the study

Smartphones have become the standard design for cell phones and other
mobile devices, and they currently represent the fastest-growing market
segment in the telecommunications industry [10]. According to Statista, global
smartphone sales increased from 680 million in 2012 to about 1.54 billion in

2019, as shown in Figure 1.3 [11]. This significant increase is often due to the



many capabilities offered within the device compared to regular mobile devices.
Among these capabilities, the camera remains one of the most important. It is a
principal factor influencing consumer choice of one mobile device over another.

As the smartphone industry expands, consumers will continue to expect and
demand high-quality cameras on their cell phones. Manufacturers, on the other
hand, cannot achieve the optimal performance of cell phone cameras in backlit
situations due to the hardware constraints of smartphone camera sensors and a
lack of adequate software to compensate for such hardware limitations. As a
result, this research investigated a more effective and less expensive software-
based approach to handle backlighting and improve the quality of backlit
images on cell phones.

1800
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1600 14'_:15.9&55“"'5‘l
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1400 1378.72
1244.74

1200
1000 969.72

800 630.11

600
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. muR
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Figure 1.3. Global smartphone sales [11]



1.6. Beneficiaries of the research findings

The results of this research investigation are beneficial to:

(i) Cell phone manufacturers: the results of this research investigation
could provide smartphone companies with a practical software
approach for handling backlight illumination. Small cell phone
companies with limited resources to invest in high-quality camera
hardware can leverage the research findings to improve the quality of
their mobile camera system.

(if) Smartphone users: since many smartphone users are not professional
photographers, they are unaware of the ideal lighting conditions for
taking photos. As a result, the research outcome could allow them to
capture high-quality pictures even in poor lighting situations.

(iii) The computer vision community: the proposed technique in this
research investigation is useful as a pre-processing task in object
detection and image recognition scenarios.

(iv) Manufacturers and end-users of small-scale computer displays with
similar hardware limitations to cell phones.

(v) Manufacturers and end-users of surveillance apparatus such as CCTV
cameras, bodycams, and spyware: Governments, private or public
institutions could leverage the results of this research investigation to
improve the picture quality of these devices.

(vi) Technology companies that develop third-party mobile or desktop
photo-editing applications: The results of this research investigation
could be used as a tool in existing photo-editing software.

6



1.7. Scope of work

This research focused on the following areas:

(i) The use of global contrast stretching with image fusion for backlit

image enhancement

Over the years, researchers have proposed several techniques for improving
backlit images. They include but are not limited to global and local contrast
stretching, image fusion, and learning-based modelling. This research focused
on the integration of histogram-based contrast stretching with the discrete
wavelet transform image fusion to improve the under- and over-exposed regions
of a single backlit image. The discrete wavelet transform image fusion was

selected because of its minimum colour distortion property.

(i) The selection of a single mobile environment

Although there are numerous mobile platforms available, the scope of this
research was limited to cell phones that run the Google Android operating
system. Google Android smartphones are widely available, ranging from
budget-friendly options to high-end flagship devices. This makes Android a
suitable choice for conducting cost-effective research. The platform's popularity
also ensures a large user base, maximizing the potential impact of the research
findings. Within the dataset, degraded backlit images captured with the
Samsung Galaxy A7 were included, for which adequate enhancement solutions

have been proposed.



(iii) Exposure correction in degraded backlit images

Backlit images captured by commercial cell phones degrade due to different
exposure settings for foreground and background illumination. Therefore, the
focus of this research was limited to correcting exposure disparities after
acquisition to improve image quality. Other types of degradation, such as those

caused by digital noise or lens aberrations, were not addressed.

1.8. Organization of the thesis

The rest of the thesis is organized as follows: chapter two covers topics
related to the development of the proposed method. Chapter three contains the
materials and methods of the proposed framework, following a section on the
type of measures used to evaluate its performance. Experimental results are
presented with their analysis in chapter four, while the conclusion and
recommendations are provided in chapter five. The Appendix contains
additional information, including the MATLAB source code and the research

prototype.

1.9. Note on publications and patent application

As part of the research, significant contributions were made towards
knowledge dissemination through the submission of papers and a patent. This
section provides details on the submitted papers and the patent application

associated with the research findings.

(i) A paper titled "A Region-based Histogram and Fusion Technique for
Single Backlit Image Enhancement” was submitted to the Elsevier

journal. This paper presented a novel approach for enhancing backlit



images using the proposed region-based histogram and fusion
approach.

(i) Another paper titled "A Low-Light Image Enhancement Technique
Based on Histogram Matching and Fusion™ was submitted to the
Institute of Electrical and Electronics Engineers (IEEE) Imaging
Systems and Techniques conference, scheduled for October 17-19,
2023, in Copenhagen, Denmark. This paper focused on addressing the
challenges of low-quality photos captured in low-light situations. The
paper presented a novel technique to enhance such images via
histogram matching and image fusion.

(iii) In addition to the submitted papers, a patent application was filed
through the University of Nairobi Intellectual Property Management
Office to the Kenya Industrial Property Institute. The application
disclosed the research methods with an aim to protect the intellectual

property associated with the research findings.



CHAPTER 2
LITERATURE REVIEW
This chapter provides the theoretical basis of important image processing
concepts as well as related works. The discussion begins with an overview of
fundamental concepts in digital image processing, such as wavelet theory,
wavelet transforms, and image fusion, before a review of related works in
backlit image enhancement. At the end of the chapter, the knowledge gaps in

the existing enhancement procedures are identified.

2.1. Digital image acquisition

A digital image is a discrete and finite two-dimensional (2-D) representation
of a physical or abstract phenomenon that has been recorded, processed, and
stored electronically. Mathematically, it is defined as a 2-D function F(x,y),
where x and y are spatial coordinates, and the amplitude of F at any pair of
coordinates (x,y) is the intensity or grey level of the image at that point. The
range of intensity levels [0, L — 1], where L = 2", is determined by the bit-
depth (n) of the image. For an 8-bit image, grey levels range from 0 to 255, with
0 representing a black pixel and 255, a white pixel. Similarly, a binary or 1-bit
image will have levels ranging from 0 (black) to 1 (white) [12].

Digital image acquisition, also known as digital imaging, is the process of
creating a digital image from an energy source [12]. Electromagnetic (EM)
waves are often used as the primary energy source for generating digital images.
For example, ionizing radiation from gamma rays is used in nuclear medicine

and astronomy. X-rays are frequently used in medical diagnostics and industrial
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inspection of products, while ultraviolet light has seen applications in
lithography and microscopy [12].

Gamma-rays, X-rays, and Ultraviolet light are a few sources of the EM
spectrum. Other sources include visible light, infrared, microwave, and radio
waves. Visible light is the most common energy source used for multimedia,
security, and entertainment. Infrared has also been employed in security and
surveillance [12].

Electromagnetic waves are not the only sources of energy used in digital
imaging. Other sources include sound waves and electron beams. Electron
beams are used in electron microscopy, and sound waves are used in sonar
imaging and ultrasound applications [12]. Regardless of the nature of the energy
source, the fundamental components in a digital imaging system, as depicted in
Figure 2.1, include an imaging sensor, a processing and storage unit, and an
output device, usually a computer display. This, however, does not apply to

synthetic images generated by a computer.

Image Sensor » Processing Unit » Output Device

Figure 2.1. The basic structure of a digital imaging system
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2.2. Digital image sensors

The first task of a digital imaging system is to convert the energy emitted by
a source into electrical signals. A digital image sensor handles this task. Charge-
coupled devices (CCD) and complementary metal-oxide semiconductors
(CMOQS) are the two main types of digital image sensors. They both use arrays
of light-sensitive elements (photosites) that convert photons into electrons. Over
time, the charge collected at each site within the sensing plane is converted to a
voltage which is processed and then assigned a pixel value [13],[14].

Several distinctions can be made between the CCD and CMOS sensors. First,
the charge-to-voltage conversion in a CCD sensor is performed externally from
the sensing plane. As for the CMOS sensors, each picture element contains its
charge-to-voltage and amplifier circuits that yield faster readout times [15].
Other differences include energy efficiency, cost, and noise. A CMOS sensor
has a lower fabrication cost and higher energy efficiency than CCD, but they
frequently yield more image noise [16]. However, cost and energy efficiency

make CMOS more popular in cell phone cameras [17].

2.3. Colour image processing

A colour image can be defined as a record of the chromatic light reflected by
objects in a picture scene. Every pixel in a colour image is defined by the
intensities of three colour components, red, green, and blue [12]. Generically, a
digital camera would require three unique sensors to record data for each
component. However, to reduce cost, many camera systems utilize the Bayer
colour filter array (CFA) to generate colour images with a single imaging
sensor, as illustrated in Figure 2.2. The Bayer CFA allows one of the three
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colour components to be recorded at each pixel location. Then by interpolation,
a demosaicking algorithm generates values for the remaining components

[18][19].

Bayer Image AD Calor White
Fiter Sensor  Conversion  Interpolation  Balance

Figure 2.2. Imaging sensor with Bayer CFA [18]

2.4. Colour models

A colour model or colour space is a mathematical system used to describe
how colours are represented [12]. Several colour models have been developed
for recording, displaying, printing, and processing digital images. The RGB
(red, green, blue) model is widely used for recording and displaying digital
images on a computer screen. Digital printers use the CMY (cyan, magenta,
yellow) and CMYK (cyan, magenta, yellow, black) models for colour printing.
For image processing, some algorithms utilize the HSV (hue, saturation, value)
model, which is synonymous with how humans perceive colours [12],[20]. The
most attractive feature of the HSV model is that it separates the luminance
information from the image colour profile, thus facilitating the development of

a variety of grey-scale enhancement applications [12].

13



2.5. Colour space conversion

Digital images can be processed using a variety of colour models. The
process of converting an image from one colour model to another is known as
colour space conversion. Numerical computation software such as the Matrix
Laboratory (MATLAB) [21] by MathWorks provides various tools to convert
from one colour model to another. Table 2.1 lists some MATLAB

transformations between RGB and different colour models [22].

Table 2.1. Colour space conversion in MATLAB

Description Function Description Function
RGB to HSV rgh2hsv HSV to RGB hsv2rgb
RGB to L*a*b rgb2lab L*a*b to RGB lab2rgb
RGB to YCbCr rgb2ychcr YCbCr to RGB ycber2rgb
RGB to YIQ rgh2ntsc YIQ to RGB ntsc2rgh

2.6. Dynamic range and exposure

Various factors influence the quality of an image captured with a digital
camera. These factors can be attributed to internal and external effects. Internal
effects include software and hardware limitations such as lens quality, colour
accuracy, type of compression used in storing the image, noise, and dynamic
range of the imaging sensor. External effects include ambient lighting as well
as the skill of the photographer [23]. This section focuses on the dynamic range

effect since it directly contributes to the formation of backlit images.

2.6.1. Dynamic range in digital imaging
Dynamic range is defined as the ratio of light to dark in a photographic image

[24]. 1t is determined by the “stops of light” that a digital camera sensor can
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capture. The term “stops of light”, also known as f-stops or exposure value (EV),
refers to how many increments between pure black and white an image sensor
can detect [24],[25]. The average camera sensor can detect up to 8 f-stops while
a high-end sensor like the Sony A7R IV captures up to 15 f-stops [26]. By
comparison, the human visual system (HVS) detects approximately 20 f-stops

[27]. These values are illustrated in Figure 2.3.

Dynamic Range by Comparison

A

The Human Visual System

v

A

High-end camera sensor 2

<+—— Average camera sensor —p-

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Picture scene referenced in f-stops (EV)

Figure 2.3. Dynamic range of various imaging sensors

2.6.2. Exposure in digital images

The exposure of an image describes how light or dark the image appears
when captured by a camera [28]. A digital picture can be classified as under-
exposed, over-exposed, or well-exposed. Under-exposed pictures tend to be
darker than they appear when photographed because they do not capture all the
light present in the scene, whereas over-exposed images include too much light
and thus look bright and overexposed. Images that are well-exposed capture
enough light to reveal the entire picture scene [28].

Figure 2.4 depicts the three kinds of exposure. Figure 2.4(a) shows an

underexposed image with low visibility in both the foreground and background
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scenes. The same photo is displayed in Figure 2.4(b) but with better clarity.
Finally, in Figure 2.4(c), the image is overexposed, as evident by the loss of

details in the sky.

Figure 2.4. Exposure level in a digital picture (a) Under-exposed (b) Well-
exposed (c) Over-exposed [29]

Two interesting phenomena can be observed in Figure 2.4. The first is the
transition from dark to light exposure levels. Digital cameras include a software
feature that allows users to change the camera exposure settings to
accommodate different ambient lighting situations within the limited dynamic
range of the image sensor [30]. Usually, this is achieved by the adjustment of
three parameters: ISO (International Standards Organization), lens aperture, and
shutter speed. The ISO is a dial that increases or decreases the camera’s light
sensitivity. Aperture determines how wide or narrow the camera lens is set,
while shutter speed controls how long the shutter is open [28],[30]. Together,

these three parameters influence the overall image exposure level.
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2.6.3. Impact of low dynamic range

The second phenomenon observed in Figure 2.4 reveals the impact dynamic
range has on image quality. The dynamic range limit of an image sensor
depends on the number of photons each photosite can capture [24]. Photosites
become saturated when exposed to too much light. At such point, they cannot
detect light variations in the picture scene which leads to blown-out highlights
as seen in Figure 2.4(c). In other words, the highlights are limited to the
maximum intensity value which is white. This effect is known as highlight
clipping. Shadow clipping is another effect which occurs when shadows are
limited to the minimum grey level, black, due to the significantly low amount
of light. Both highlight and shadow clippings are attributes of low dynamic

range problems in digital imaging.

2.6.4. Auto-exposure in smartphones

Auto-exposure (AE) is a feature that automatically adjusts the camera’s
exposure settings based on the ambient lighting situation [8]. This feature is
embedded in almost all native camera applications to improve picture quality in
poor lighting situations. Many smartphone users find it useful because adjusting
exposure parameters manually can be a challenge to those who are not
professional photographers. The major drawback to auto-exposure, however, is
it cannot reveal objects in the foreground of a backlit scene while
simultaneously exposing the background. As a result, a well-exposed
foreground will result in a loss of details in the background scenes and vice-

versa.

17



2.6.5. High dynamic range in smartphones

Modern smartphone technology uses high dynamic range (HDR) imaging
techniques to extend the dynamic range of images captured in poorly
illuminated scenes. A smartphone camera with HDR automatically captures two
or more successive images with different exposure settings and fuses them to
produce a significantly higher-quality image [9]. Figure 2.5 gives an example
of the HDR mode activated on a Google android phone. As seen in the figure,
HDR improves the visual perception of the image by increasing its range of grey

levels.

Figure 2.5. High Dynamic Range imaging on a smartphone [31]

The first drawback to HDR is its susceptibility to motion blur. While high
dynamic range imaging performs best for stationary scenes, in active scenes,
fast-moving objects frequently appear blurry since their positions are changing
with each successive image [32]. This is illustrated in Figure 2.6. Another

drawback is that HDR cannot enhance low-quality pictures after they have been
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acquired. This is because HDR relies on the fusion of two or more sequential

images with varying exposures [9],[32].

Figure 2.6. Motion blur effects of HDR [33]

2.7. Digital image enhancement

The primary objective of digital image enhancement is to process an image
signal so that viewers can assess the information it contains with greater clarity.
This process is considered subjective because it depends on the specific
information the user intends to extract. The information, however, must be
present in the image and not obscured by noise [12].

Many well-known approaches for digital image enhancement are
fundamentally based on contrast stretching, histogram modification, edge
sharpening, interpolation, thresholding, false colouring, or denoising. In this
section, the focus is placed on the theory of contrast stretching, image
thresholding, and histogram processing in relevance to their applications in

backlit image enhancement research.
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2.7.1. Contrast stretching

Contrast is defined as the difference in luminance or colour that distinguishes
one object from another [34]. An image is said to have a low contrast when its
features are not distinguishable. Contrast stretching algorithms enhance low-
contrast images by re-distributing pixels to span a wider range of grey levels

based on a transformation function T given by equation (2.1) [12].

9@, y) =T[f(x,y)] (2.1)

where f(x,y) is an input image and g(x,y) is the output image. The
enhancement effects on the output image depend on the type of transformation
function.

Linear and nonlinear contrast-stretching are the two most well-known
techniques. A linear contrast stretching is performed when T is a linear function.
Otherwise, the procedure is nonlinear. In linear contrast-stretching, the grey
levels of f(x,y) are uniformly distributed to span the full dynamic range, while
in non-linear contrast-stretching, the grey levels are re-distributed depending on
the type of nonlinear function, T [12],[35].

Some applications of linear contrast-stretching include correcting the
settings of lens aperture during image acquisition [36], improving low contrast
images, and high dynamic range (HDR) [9]. Piecewise linear is a variation of
the linear approach. It is used to increase contrast only in some parts of the
image [1]. This has applications in leukaemia detection [37]. Nonlinear contrast

stretching has been used in the study of micro-calcifications in breast tissue [38]
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and backlit image enhancement research, including Trongtirakul et al. [1] and

Ueda et al. [39].

2.7.2. Image thresholding

Thresholding is a basic approach in image segmentation, and it is widely
used as a pre-processing step in some backlit image enhancement algorithms
[1],[40]. Simple global thresholding is performed by setting a grey level T as
the threshold value. Pixel intensities above the set value are converted to white
(binary 1), and those below are converted to black (binary 0) as given in
equation (2.2) [12].

1if f(x,y) =T (2.2)
0 otherwise

g(x,y) = {

where f(x,y) is an input image, g(x,y) is the output image, and T is a threshold
value. The result is a binary image with the foreground as white and the
background as black.

Threshold-based segmentation depends entirely on the threshold value. As a
result, a poor threshold can lead to undesirable outcomes. Otsu’s [41] method
is popular for obtaining optimal thresholds. It involves iterating through all the
possible states and calculating a measure of spread for the pixel levels on each
side of the threshold representing the foreground and background. The optimal
threshold is determined where the sum of foreground and background escalates

at its minimum [41].
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2.7.3. Histogram processing
A histogram is a powerful tool for displaying the grey-level distribution in
an image. Mathematically, it is a discrete function h(r}) that returns the relative

frequency with which each grey level occurs.

h(r) = ny (2.3)
where 1y, is the kth grey level and n;, is the number of pixels having the grey
level r,. Equation (2.4) defines a normalized histogram p(r) which estimates
the probability of occurrence for grey level ;.. The value of p(r},) is obtained

by dividing n;, by the total number of pixels in the image, n.

p(r) = % (2:4)

Histograms are simple to compute using a computer, and they do not require
significant hardware resources. For this reason, histogram-based techniques
have become popular in real-time image enhancement applications [12]. The

procedure to construct an image histogram is summarized below:

Step (i): Input image with grey level [0,L — 1]

Step (ii): Initialize all bins h(ry) to zero, for 0 <k <L-1

Step (iii): For every grey level r;, count the number of pixels having the
respective grey level and assign the value to n.

Step (iv): Set h(r,) = n; and move to next bin h(ry4,) for 0 <k <L-1

The above procedure describes the process of obtaining the histogram for a

grey-scale image. To display the pixel distribution of multichannel images such
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as colour images, the histogram of each colour channel needs to be constructed

independently.

2.7.4. Histogram specification

Histogram specification (HS) is a global contrast stretching technique used
to modify the pixel intensities of an input image to match a target histogram
[12],[39]. The target histogram is often derived from a mathematical model or
a typical image [12]. The primary objective of HS is to obtain a transformation
function that establishes a relationship between the input and the desired output.

Let I(x,y) be a greyscale input with a normalized histogram p,(r;) and
pp(z;) be a normalized target histogram. The cumulative distribution functions
(CDFs) for p;(r;) and pp(z;) are obtained using equations (2.5) and (2.6),

respectively.

k
T(ry) = leopl(ﬂ') ; ke{0,L-1}/(L—-1) (@5)

" (2.6)
G(z) = 2 polz) s kEOL-1/L-1)
j:
Furthermore, letting U (+) be a transformation function such that U(ry) = z,
the grey level r;, can be mapped to the target value z, to satisfy the condition
T(r,) = G(z). The histogram-specified image is then obtained by applying

U(-) to every pixel in I(x,y) [12].

2.8. Wavelet transform theory
Wavelets are signals that oscillate for a finite duration. Wavelet bases, unlike

Fourier bases, can sparsely represent signals with transient characteristics since
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they are limited in both time and frequency. This property, among others, has
made wavelets useful in applications such as data compression, image fusion,

and analysis of signals with transient properties [12],[42],[43].

2.8.1. Wavelet families
A wavelet family is characterized by its “mother wavelet” Y (x). A “daughter
wavelet” 1, ,(x) can be obtained by the scaling and shifting of the mother

wavelet, as given in equation (2.7) [44].

Yap @) = =¥ (57); abeR (27)

where a is a scaling or dilation factor, a # 0, and b is a translation factor.
To ensure that the wavelet transform of 1 (x) is stably invertible, the mother
wavelet must satisfy the condition of having normalized energy and zero mean
[45]. Some wavelets from the Haar, Daubechies, Symlets, and Coiflets families
are displayed in Figure 2.7. The x-axis shows the temporal variation units and
the y-axis is the normalized amplitude. The index number, for example, db4,
refers to the number of wavelet coefficients. A particular family is selected

based on the kind of application.
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Figure 2.7. Examples of wavelet families (a) Haar (b) Daubechies (c) Symlets
(d) Coiflets [46]

2.8.2. Scaling functions

Scaling functions are another group of wavelets which is considered the
“father wavelet” in a family of wavelets. They are used to compute the wavelet
transform of a signal. If the mother wavelet 1 (x) is regarded as a high pass
filter, then the scaling function ¢(x) must be a low pass filter that covers the
low-frequency components of the signal [43]. For such conditions, ¢ (x) must

have a mean of one. i.e.

® 2.8
f p(x)dx =1 (2:8)
2.9. Discrete wavelet transforms

Wavelet transforms, particularly the discrete wavelet transform (DWT), are
widely used in the multiresolution analysis of signals. This section presents a

theory on discrete wavelet transforms (DWT). The presentation starts with an
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introduction to the 1-D DWT and then the 2-D DWT used in the proposed

algorithm.

2.9.1. One-dimensional DWT

The 1-D discrete wavelet transform decomposes a signal f(x) with length M,
into two types of wavelet coefficients known as approximation and detail
coefficients. As the name suggests, the approximation coefficients, denoted

W, (mo, k), contain an approximate representation of the input, and it is

obtained by a scaling function as shown in equation (2.9) [12],[44].

: ) 1 & (2.9)
W,(mg, k) = — Z X X
%) 0 \/M & f( )(pmo,k( )

where @, ,(x) is the scaled and translated version of the scaling function
@(x). The detail coefficients W,,(m, k), given by equation (2.10), contain

salient features that have been extracted from the input [12],[44].

1 & (2.10)
Wiy, 10) = == ,Zo F ()
where ¥, . (x) is the scaled and translated version of the wavelet y(x).
Given equations (2.9) and (2.10), an input signal can thus be represented as a
linear combination of the wavelets and scaling function [12]. Also, the signal
can be reconstructed by computing the inverse DWT of the approximation and

detail coefficients, as given in equation (2.11).
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M-1

Z W (0, k) ()

=0

%IH

(2.11)

1
+ — Z Wll) (m, k: Tl) lpm,k (x)

where m, is an arbitrary starting scale, W,(my, k) is the approximation
coefficient, and Wy, (m, k,n) is a detail coefficient. The 1-D DWT can only be

applied to 1-D signals. Therefore, to analyse two-dimensional signals such as

digital images, the 2-D DWT is required.

2.9.2. Two-dimensional DWT
Similar to the 1-D DWT, the 2-D DWT decomposes a signal f(x,y) into sets

of wavelet coefficients given by equations (2.12) and (2.13).

M-1N-1 (212)
Wy Gio,m,m) = F Z Z £ )P jomn ()
. 1 M-1N-1 (213)
Wyl Gmm =} > FII 00 (09)
x=0 y=0

where ¢; ..o (x,¥) is the scaled and translated version of the 2-D scaling
function ¢(x,y); wij,m,n(x’ y) for i € {H,V,D} are the scaled and translated
versions of the 2-D wavelets ¥ (x,y), ¥" (x,v), and ¥ (x, y), which measure
the signal variations in the horizontal, vertical, and diagonal directions
respectively; while W, (jo,m,n) and Wwi(j, m,n) are the respective
approximation and detail coefficients. As shown in equations (2.14) to (2.17),
the 2-D scaling and wavelet functions are derived from the product of two 1-D

basis functions [12],[44].
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o(x,y) = X)) (2.14)

P (x,y) = p()e®) (2.15)
P (x,y) = )Yy (2.16)
PP (x,y) = Y)Y () (2.17)

Finally, the signal f(x,y) can be reconstructed by calculating the inverse DWT

as given in equation (2.18) [12],[44].

1 M-1N-1
(x Y) = MN W(p(fo; m, n)(pjo,m,n(x'}’)
=0 n=0
2.18
1 J-1 M-1N-1 ( )
N Wy'Gom )t (x,y)

i=H\V,D j=jom=0 n=0

2.10. Image fusion

The fundamental idea of image fusion is to combine features from two or
more sources to form a composite image [47],[48]. The most basic image fusion
techniques are maximum selection, minimum selection, and averaging. In the
maximum and minimum selection methods, pixel intensity values are compared
at each spatial position [48]. The highest or lowest value (in the case of
minimum selection) is selected as the resulting pixel in the composite image.
As for the averaging approach, the mean is calculated and used as the resultant
pixel [48]. Following these basic techniques, advanced methods based on the
multiresolution analysis of signals were investigated. Some of these methods

included the Laplacian pyramid and DWT-based image fusion.
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2.10.1. Laplacian pyramid-based image fusion

Image pyramids are data structures used for processing digital pictures at
various spatial scales [48]. Two of the most widely used pyramids are the
Gaussian and Laplacian [47],[48]. In many image processing applications, the
low memory requirement of the Laplacian pyramid is more beneficial than the
Gaussian.

A block diagram of the Laplacian pyramid-based image fusion is given in
Figure 2.8. The first step in the procedure is to obtain the pyramid
decomposition for images A and B. Next, a selection or averaging method is
applied at each corresponding pyramid level. The fused image is generated by

calculating the inverse pyramid transform of the fused pyramid.

Pyramid &
Image & [ Interm ediate Result Fused Pyramid
— —
- Majotity Fused
FyrenidB Fus [E}’ Filtet ™ [E]-’ Image
' — S
Image B Y

Figure 2.8. Laplacian pyramid-based image fusion [48]

2.10.2. Discrete wavelet transform-based image fusion

The DWT-based image fusion takes a similar approach to the Laplacian.
However, instead of pyramid decomposition, the DWT fusion is based on
wavelet decomposition [43]. Figure 2.9 shows a block diagram of a single-level
DWT-fusion. The procedure begins with a wavelet decomposition of each input
signal into four sub-bands, namely, low-low (LL), high-low (HL), low-high
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(LH), and high-high (HH). The LL sub-band is calculated using equation (2.12)
and it holds an approximate representation for each input. The HL, LH, and HH
sub-bands are calculated using equation (2.13). These sub-bands contain salient
features such as lines or edges. The composite image is finally obtained by

computing the inverse DWT of the fused coefficients using equation (2.18).

Coefficients &
owT | LL HL
Image & > Fused Coefficients
LH | HH
o\ R [ AL oW1l Fugeq
oefficients
Rule e [tmage
DwT| LL | HL
Image B
LH | HH

Figure 2.9. Single-level 2-D DWT image fusion [43]

2.11. Related works

Over the years, researchers have proposed several techniques for backlit
image enhancement. They include contrast stretching, image fusion, and
learning-based approaches. This section examines some of the contrast-
stretching and image fusion techniques relevant to the development of the

proposed method.

2.11.1. Contrast stretching approach

Trongtirakul et al. [1] proposed a single backlit image enhancement
algorithm that employs a full-piecewise non-linear stretching function that
improves the brightness discriminately in local regions of the backlit image [1].

The procedure begins with the decomposition of the input image luminance
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component into under-exposed, over-exposed, and common regions via a set of
thresholds. As given in equation (2.19), the threshold T separates backlit and
common regions by calculating the relative local bright average of all intensities

yielding the highest correlation of dark and bright components [1].

—d
T = arg max, (—u{dlog (ut—_b>> (2.19)
K¢

ud — min{$}

where,

and

e = d —d
max {$ } — min{% }
(2.20)

b
-b _ ut

R —— {2} —min{®}

—min{?}

The parameters d, b, and t represent a dark component, a bright component,
and the intensity level of an original backlit image, respectively. uy¢ and p;?
are the normalized average brightness of the dark and the bright components.
Next, pixels within the dark, bright, and common regions are stretched to
occupy a wider range of grey levels using a set of non-linear functions given by

equations (2.21) to (2.23) [1].

fd(li,,-) 0<I; <xt

Si,j = Ii,j ) Il] = (2.21)
fd(li'j) , Xo < Ii,j < X1-1
) B\ (2.22)
fd(li‘j) = (S%ax Smm) (W) + Imin
max min
P\ (2.23)
fb(li,j) = (Sr?lax zn) <1b _ Ib > + Imin
max min

where I; ; represents a backlit luminance at any it" and j* pixel placement.

x; and x, define the backlit and common regions, respectively, while x; is the
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maximum grey level. %4, ,1b. 12 ., andIb,, , represent the minimum and
maximum luminance of under-exposed regions and exposed regions. The
functions S%;,,S2., , 5%, ,and S2,,. , are the new minimum and maximum
intensities of under-exposed regions and exposed regions, respectively. The
coefficients y, and yz are used for contrast correction (0 <y, <yz < 1.0)[1].

A logarithmic function was used to calculate the brightness level of the Bi-

Histogram Equalization (BHE) mapping function T, using equation (2.24) [1].

F; = pTy + (1 — p)log(T,); for 0 < p<1 (2.24)

Equation (2.24) is a logarithmic weighted luminance function, where p is a
weighting parameter. Finally, to achieve the final enhanced image, Trongtirakul
et al. [1] defined a minimal weighting fusion metric that combines two image

features into the same image. This was achieved by equation (2.25) [1].

[Yenlijk = [Ominlijx[Yipuelijx + [1 = ominlijx[Yinelijk (2.25)

where (Y, zug) represents the logarithmic image, which is characterized by
having uniform brightness in both backlit and common regions and (Y;yz)
represents the local enhanced image, which improves the details in backlit

sectors as well as the overall contrast. The function [oy,n];;x SPecifies a

normalized minimal luminance metric that considers the lowest intensity of the
original backlit image [1].

The approach by Trongtirakul et al. [1] has several limitations. First, well-lit
areas in the background appear to be over-enhanced in the final image. Next is

the use of thresholding to distinguish between foreground and common regions.
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This is a drawback because thresholding methods are sensitive to unintended
and uncontrolled changes in the light field. They require that the intensities of
objects in the foreground are distinguishable from those in the background
[49],[50].

Other contrast stretching techniques include Yelmanov et al. [51] and Toh et
al. [37]. Yelmanov et al. [51] employed an adaptive non-linear contrast
stretching approach using a piecewise non-linear transformation function to
enhance images in an automatic mode. Toh et al. [37] focused on the use of
High Dynamic Range (HDR) rendering and contrast stretching techniques to
enhance images captured during the diagnosis of acute leukaemia. Although the
application scenarios of these approaches are different, the stretching functions
proposed in these works can be used to enhance backlit images. However, in
terms of visual quality, they do not produce superior results compared to

Trongtirakul et al. [1].

2.11.2. Histogram specification approach

Ueda et al. [39] proposed a “straightforward” histogram specification-based
technique to enhance backlit images. In this approach, foreground-background
segmentation is first performed using a linear discriminant analysis (LDA)
threshold [41], which is then used to obtain the triangular target histogram
shown in Figure 2.10(a). The goal was to convert the intensity of the backlit
image via histogram specification. However, the conversion between the
foreground and background scenes was observed to be unbalanced. Therefore,
they employed two modified target histograms, Target 1 and Target 2, as shown
in Figures 2.10(b) and 2.10(c). Target 1 was obtained by equalizing the ratio of
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background and foreground regions with the area ratio of the input image, while
Target 2 was obtained by making the foreground region the same shape as the

input image histogram [39].
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Figure 2.10. Target histograms proposed by Ueda et al. [39]. (a) Basic shape
(b) Target 1 (c) Target 2 [39]

The intensity conversion is given by equation (2.26). The result is an

intensity image I;; obtained from an input colour image x;; = (x5, x{%, x) [36].
ol +xf + %)

I; = : (2.26)

Next, the histogram specification of the intensity image with respect to the

target histogram was computed using equation 2.27.
115 = inf{z|H(I;;) < H*" (2)}, 2.27)

where H and H%" represent the normalized cumulative histogram of an input
image and the target histogram, respectively. Alpha blending, given by equation

(2.28), was used to compensate for intermediate low-contrast values [39].

a = min {1, |Mi{_1|} , (2.28)

where M;;represents a Gaussian-filtered version of I;;, having a radius of r

jl
and I is a mean of I;;. Following the alpha blending, a desirable conversion

coefficient was obtained by equation (2.29) [39].
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I,ij = alg-s + (1 - a)lij; (229)

The intensity conversion is achieved by equation (2.30).

I';;
x'ij = Jxl-j (230)
To produce an enhanced backlit image with hue and saturation preserved, the
algorithm searches for a point on a constant-hue plane in an RGB colour space
with an intensity of I';; and saturation of x";;. The saturation d;;, given by

equation (2.31), was used to compute the saturation of x;; [39].

Q- \/(xRij —x0y)" + (x%y = xBy)" + (6% = xFy)” (2.31)
= 3

The method proposed by Ueda et al. [39] has several limitations. The use of
thresholding for segmentation is one of the drawbacks. Thresholding techniques
have proven effective in a variety of applications; but, as described in [49], they
do not account for spatial interactions between pixels and are vulnerable to
unintended and uncontrolled changes in the light field in general. Furthermore,
the target histograms used by [39] produce washed-out and unnatural hues. To
minimize noise and prevent colour artefacts in the enhanced image, more
processing is required. Lastly, the method increases details in both the
foreground and the background without distinction. As a result, the well-

exposed regions of the image are further exaggerated.

2.11.3. Image fusion approach
Over the years, fusion-based image enhancement technologies have received

a lot of attention. The basic idea of image fusion is to combine features from
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two or more images to form a composite image [52]. Wang et al. [47] proposed
a fusion-based method for single backlit image enhancement using a multi-scale
fusion approach. In this work, they combined three derived input images, each
with a different weighted map, to form a single final image. Pre-processing was
done on the input backlit image to derive three unique input images. This
included converting the image from RGB to HSV colour space and improving
luminance and contrast using a logarithm function and a gamma correction
function [47]. The three input images and their weight maps were then fused
using a multi-scale fusion approach proposed by Burt et al. [53].

Buades et al. [54] proposed a fusion-based method using global tone
mappings and image fusion. In this approach, the tone mapping functions given

in equations (2.32) and (2.33) were first applied to each colour channel of the

input image.
I Y
6N =255(5z) , v e040608123) (232)
255log (al + 1
L)) =228 @l + D) 0102,03,0) (2.33)

log (255a¢ + 1) ’

where I is the original RGB image and G(y) and L(«a) are the gamma and
the logarithmic tone mapping functions used to increase or decrease the overall
luminance in the image depending on the value of y and «, respectively [53].
Next, the images obtained by equations (2.31) and (2.32) were then combined
using a variation of Merten’s algorithm [54]. The fused image was sharpened to

improve contrast. Finally, a chrominance correction procedure which attempts
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to recover the original colours of the input image is used to create the final image
[54].
Another approach was proposed by Li et al. [55]. In their work, they employ
a pair of complementary gamma functions to enhance contrast in the under- and
over-exposed sectors of the backlit image as follows:
yi=1—(1-x) (2.34)
v, =(1—(1—-x) "y (2.35)
where x is the normalized input intensity image in the HSV colour space, and
y, and y, are the normalized output images. The attributes of y, and y, are
dependent on the coefficient y. Using naive blending, the enhanced image y was

derived as follows [55].

Y =C1Y1 T CY2 (2.36)

where y; and y, are the images obtained from equations (2.34) and (2.35),
respectively. The parameters c; and c, are the weighting factors which are

obtained by equation (2.37) [55].

ci=2]'/i . forie {12} (2.37)

~.

where V; is the mean value of the image y;. A fusion process is used to
combine the output of equation (2.36) with a sharpened copy of the original
input intensity image. The final enhanced colour image is produced by
converting the fused HSV image to RGB.

Each method discussed in this section can improve contrast in the under- and

over-exposed regions of the backlit image. The major drawback to these
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approaches, however, is the high dependency on the choice of input and weight
maps. This acts as a constraint, such that if the incorrect inputs and weight maps
are used, the algorithm will not achieve the desired result [47]. Another
drawback particular to the method proposed by Buades et al. [54] is the use of
a chrominance correction algorithm to restore the original colour profile of the
input. A better approach would be to extract and process only the luminance
component of the input image, as demonstrated by Wang et al. [47] and Li et al.

[55].

2.11.4. Learning-based approach

In recent years, supervised learning algorithms have seen some applications
in backlit image enhancement. Li et al. [56] proposed a spatially adaptive
learning-based algorithm to enhance a single backlit image using optimal tone
mappings and image fusion. In this approach, a soft binary classifier based on
two support vector machines (SVMs) is used to segment backlit and front-lit
regions. Next, two unique tone mapping functions are employed to improve
details in the backlit and front-lit areas of the image. The mapping functions are
generated by maximizing contrast gain with bounded aberrations in tone and
chromaticity. Finally, the results obtained by the two mapping functions are
fused to form the final enhanced image [56].

The primary drawback with learning-based methods, in general, lies within
their computational complexities. As a result, they cannot be implemented
directly on cell phones. Another drawback particular to the method proposed by
Li et al. [56] is the accuracy of the binary classifier in separating the front-lit
and backlit regions of images with shadows and dark-coloured surfaces. In such
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cases, the output of the classifier is frequently ambiguous [56]. The method
proposed in this thesis takes a better approach that avoids image segmentation
to improve the enhancement quality and reduce the algorithm's computational

complexity.

2.12. Knowledge gaps

This research investigation exploits several gaps in the related works to
develop a flexible, fast, and robust algorithm that achieves an enhancement
quality comparable to state-of-the-art techniques but at a significantly lower
cost of computation.

The first gap identified is based on exposure correction. Exposure correction
has not been centric on the development of contrast stretching and image fusion-
based techniques. In the related works on contrast stretching, no attempts have
been made to balance the overall exposure in the output image after
enhancements are done locally in the foreground scenes. Additionally, the
image fusion-based approaches have not considered the variations in luminance
from one backlit input to another since the same set of transformation functions
proposed in each related work is consistently applied to all inputs regardless of
the type of backlit degradation. These constraints have been enforced in this
research investigation in such a way that the mapping functions generated by
the proposed algorithm automatically adapt to the luminance profile of the
backlit input image.

The second gap is as follows: Histogram-based approaches are known to be
less computationally expensive compared to the pixel-wise contrast-stretching
and image fusion algorithms, but they frequently result in over-saturation,
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colour distortion, and washed-out hues when directly applied to backlit images.
These effects however have not been addressed in previous methods. Moreover,
a generalized framework for obtaining optimal target functions and handling
low brightness problems in Histogram matching scenarios for backlit image

enhancement has not been thoroughly investigated.
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CHAPTER 3
METHODOLOGY
This chapter is divided into three sections. Section 3.1 presents the materials
used in the research investigation. The materials include hardware and software
resources and the dataset used for testing the performance of the proposed
method. The methodology of the proposed enhancement algorithm is presented
in section 3.2, and the image quality metrics used to validate its performance

are discussed in section 3.3.

3.1. Materials
The section describes the hardware and software materials used in the

research investigation.

3.1.1. Hardware

The hardware resources include:

(1) Dell XPS 15-9500 laptop [57]: The laptop has 32GB of RAM, a
2.60GHz Intel Core i7 processor, and a 1TB Solid State Drive (SSD)
loaded with Microsoft Windows 10, 64-bit operating system. The
hardware served as a processing and data storage unit.

(i) Samsung Galaxy A7 smartphone [58], released 2018: The Galaxy A7
has 4GB RAM, a 24-megapixel rear camera equipped with the Sony
IMX576 CMOS sensor, and operates on the Google Android 8.0
(Oreo) operating system. The device was used to collect backlit image
samples for testing. Although this model has been discontinued, the

Galaxy A7 acts as a baseline for current smartphone performance.
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(iii) Dell DA20 USB type-C to type-A v3.0 adapter: The Dell DA20 USB
adapter [57] was used to transfer image data from the Samsung Galaxy
A7 smartphone to the Dell XPS 15-9500 laptop because it uses only

USB type-C ports.

3.1.2. Software

The proposed enhancement algorithm in this thesis was developed and tested
using MATLAB R2018a software. MATLAB is a programming platform used
worldwide by scientists and engineers for designing and analysing systems [21].
MATLAB R2018a was selected because it is readily available and offers
various in-built toolboxes for image processing, image fusion, and wavelet

analysis.

3.1.3. Data sources

The dataset for this thesis is comprised of 162 low-quality images with an 8-
bit resolution. The Samsung Galaxy A7 was used to record 44 backlit samples
in the dataset. Twenty-four (24) samples were selected from the widely used
Li's database [2], which comprises over 38 standard backlit photos that have
been used in similar research. In addition, 88 samples were taken from the
Exclusively Dark (ExDark) database [59], which contains 7,363 images
captured in various poor lighting situations. The remaining six (6) were obtained
from internet sources [60]-[62].

The images were classified into four categories based on their backlit
degradation. The categories were: low backlit sector, high backlit sector, low

background highlight, and high background highlight, as shown in Figure 3.1.
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The low backlit sector category contained 36 backlit images characterized by a
well-lit background and soft shadows in the foreground. Conversely, the high
backlit sector featured 29 images with a well-lit background and hard shadows
in the foreground. The low background highlight category included 73 images
with significantly lower background radiance, whereas the high background
highlight category comprised 24 images with high background radiance. Images
in the high backlit sector category are prone to shadow clipping. Similarly,

highlight clipping is common in images with a high background highlight.

Figure 3.1. Classification of backlit images (a) low backlit sector, (b) high
backlit sector, (c) low background highlight, and (d) high background
highlight.

3.2. Methods

This section presents the proposed algorithm. Subsection 3.2.1 deliberates
on the enhancement procedures. Section 3.2.2 discusses the optimization of the
DWT fusion, and 3.2.3 introduces an iterative procedure that further improves

the enhancement quality of the proposed algorithm.
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3.2.1. The proposed method

The proposed method integrates a region-based histogram specification
(RBHS) scheme with the discrete wavelet transform (DWT) image fusion to
improve the visual quality of a single backlit image. Figure 3.2 and Figure 3.3
describes the proposed procedure. Figure 3.2 gives a summary of the overall
procedure while Figure 3.3 is the architecture of the system relating each
process to the input and output. The two descriptions provide useful insight into

the enhancement algorithm. The key steps are:

Step (i):  Pre-processing the input image
Step (ii): Generation of target histograms
Step (iii): Enhancement of F- and B- regions
Step (iv): Adaptive brightness control

Step (v): Fusion of input masks with the backlit input image.

These steps are further illustrated in the block diagram of Figure 3.2 and more

details are provided in Figure 3.3.
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Input Backlit Image

v

Convert RGB to HSV and Decouple V-Channel

v

Create Input Mask M; and M,

v

Generate Target Histograms Tar(z) and Tar,(z)

v

Enhance F- and B- regions using Region-based Histogram Specification

v

Apply Adaptive Brightness Control on M; and M,

v

Recouple HSV’ Channels in M; and M,

v

Convert HSV’ to RGB

v

Fuse F- and B- Masks with Backlit Input via DWT Fusion

!

Enhanced Image Output

Figure 3.2. A block diagram illustrating the proposed method
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Figure 3.3. System Architecture of the proposed method
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(@) Pre-processing of input image

Colour space conversion and input masking are the two major tasks realized
in the pre-processing step. First, the RGB to HSV transformation [63] is
performed on the backlit input image, denoted I = (x% x% xB). The
transformation yields the resultant image I’ = (x,x5,x"), which represents
the hue, saturation, and value properties of the backlit input. Two input masks
M; and M,, are then created using identical copies of the value or intensity
image I',,. Histogram specification will be performed discriminately on M, and

M, to improve contrast in the under-exposed and over-exposed regions of I',,.

(b) Generation of target histograms

The proposed algorithm enhances the F- and B- regions of a single backlit
image using two unique target histograms, Target 1 and Target 2. The shapes of
these histograms affect the output quality of the proposed algorithm. Therefore,
generating the appropriate contours is a crucial step. In this thesis, a simple but
intuitive approach is adopted to obtain the target histograms in Figure 3.4 from
typical images. Target 1 in Figure 3.4(a) is obtained from a well-lit, high-
contrast image, with no peaks in the dark and light tones of its histogram and
Target 2 in Figure 3.4(b), from a relatively low-light photo with peaks in the
dark tones but none in the lightest tones. Such selection for Target 1 is expected
to enhance details in the under-exposed F-region at the expense of lowering
contrast in well-lit areas, while Target 2 is expected to reduce high radiance in
the over-exposed sectors of the B-region at the cost of exaggerating under-

exposure in the F-region.
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Figure 3.4. Target Histograms (a) Target 1 (b) Target 2
(c) Enhancement of F- and B- regions
The enhancement of the foreground and background regions is achieved by

applying the region-based histogram specification (RBHS) scheme illustrated

in Figure 3.5.
Target 1
Specif)_/ Histogram Enhanced
Input in M, Image G;
Intensity

Image
Specify Histogram Enhanced
I in M, Image G,

?

Target 2

Figure 3.5. Region-based Histogram Specification Scheme

In Figure 3.5, the grey levels of the backlit input intensity image are mapped

to that of the target histograms in Figure 3.4 using equation (3.1).
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G (x,y) = HS{', (x,y), Tar,(2)} 3.1)

where G (x,y) is the histogram-specified image of the input mask M,
obtained by the target Tar,(z), for k € {1,2}. The mappings are based on
generalization. This means, the grey-level distribution in G (x,y) only
approximates the shape of the target T'ary (). This flexibility, however, permits
the proposed method to be employed in other types of poor illumination
situations, such as low lighting.

Figure 3.6 displays the outcome of applying equation (3.1) on a sample
backlit image. Figure 3.6(a) is the input intensity image and Figures 3.6(b) and
3.6(c) are the outputs of M; and M,, respectively. As expected, the result of M,
have higher contrast in the F-region than M,. This is evident when comparing
the facial details of the man in Figures 3.6(b) and 3.6(c). On the other hand, high
radiance is suppressed in the output of M,, for example, in areas such as the

pavement and the sky.
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Figure 3.6. RBHS on sample backlit image (a) Intensity image (b) M1 output
(c) M2 output
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(d) Adaptive brightness control

The histogram specification of the input masks can result in low brightness
problems in the final enhancement stages. This problem occurs due to the
shifting of pixel intensity values in the lightest tones to darker shades of grey as
shown in the output histograms of Figures 3.6(b) and 3.6(c). Therefore, to
compensate for this loss, an adaptive brightness control (ABC) mechanism is
employed. The term “adaptive brightness control” or “automatic brightness
control” is often associated with the automatic adjustment of a display panel’s
brightness level based on the ambient light environment [64]. This method is
used mostly as an energy-saving feature in smartphones, tablets, and digital
television systems [64],[65]. On the contrary, ABC is defined in this thesis as a
method of automatically compensating for low brightness in the input masks
after RBHS is performed. Though the nomenclatures are the same, the
differences rest within the methods and applications.

Figure 3.7 describes the proposed ABC algorithm. The algorithm addresses
the problem of low brightness in an input mask by increasing pixel intensity
values by a factor a, known as the adaptation factor. The value of a is
determined by the brightness level of the input. Currently, there is no
conventional method for measuring brightness levels in digital images, despite
the various approaches suggested [41],[66],[67]. Furthermore, brightness, as
defined by Wyszecki et. al [68], is subjective as well as its perception by a
human viewer. Taking these two accounts into consideration, the proposed
algorithm selects a value of a based on the subjective judgment of the input’s

illumination.
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(i) Brightness threshold

In Figure 3.7, the threshold T defines a minimal point of perceived brightness
on the intensity spectrum of an input’s histogram. A pixel with an intensity
value greater than T is considered a bright element, denoted as 7. i.e., it
contributes primarily to the lightness of the image. Mathematically, a bright
element is defined by equation (3.2).

q)b:{l, ifL-1=>21L0,y)>T
0, ifLxy)<T

(3.2)
where I,(x, y) is an input intensity value and L = 2™ is the maximum grey

level of the input determined by its bit-depth (n). The value of T must correlate

with the range of grey levels in I, since it depends on the bit-depth of the input.

To assign a weight to the variable T, the threshold methods proposed by Otsu
[41] and Trongtirakul [1] were investigated. These methods provide a basis for
image segmentation, but they proved inadequate for the nature of brightness
compensation because they extend to a broader range of grey levels beyond the
lightest tones. As a result, this thesis employed a simple but intuitive approach
to obtain the value T.

According to digital imagery, the luminous scale in a histogram estimates the
brightness level of each pixel as a percentage [69]. A normalized histogram will
scale from 0% brightness (black) to 100% brightness (white) with the shadow
region comprising 0% to 25%, while the highlights range from 75% to 100%,
approximately [68]. Since high-intensity values localize in the highlight region,

T can be defined by experimenting with various thresholds in the range of

[75% — 100%]. The effects of various values of T are depicted in Figure 3.8.
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T=87% T=90% T=94% T=96%

Figure 3.8. Some selected values for brightness threshold

As shown in Figure 3.8, the values of T > 94% cause no significant
improvement in the perceptual quality of the backlit image, while values below
90% lead to noise and washed-out hues in the enhanced output. These
observations indicate that high values of T result in better image quality.
Therefore, after performing a series of experiments with values between
[90%, 94%], the brightness threshold T was desired at 94% brightness. This is
given as hsv(0° 0%, 94%) and rgb(240,240,240) in the HSV and RGB
colour models, respectively. Therefore, on the histogram spectrum, pixels with

intensity levels greater than T = 240 are considered bright elements.

(if) Adaptation factor
The adaptation factor determines the magnitude of brightness compensation,
and it is computed using equation (3.3). Given the additive nature of the ABC
procedure, values of « must occur between 0 < a < 1 to correspond to the input

mask’s normalized intensity values.

_ N
T WN-n)

a 1 (3.3)
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n= ) H,(r,>T) (3.4)
2 A

where H, is the histogram of I,, N is the total number of pixels in the input;
1 IS an input intensity in the range [0, L — 1]; and n, given by equation (3.4), is
the sum of pixels within bins H,(r, > T) = ¢P.

Table 3.1 shows the values of « for some selected backlit images which are

shown in Figure 3.1.

Table 3.1. Adaptation factor for selected backlit input

No. Test Image Size n o

01 Backlit 2.jpg 448 x 296 16,627 0.1434
02 Backlit 5.jpg 375x300 23,411 0.2628
03 Backlit 7.jpg 480x316 9,559 0.0673
04 Backlit 10.jpg 600x450 75,177 0.3959
05 Backlit 15.jpg 480x320 45,239 0.4175
06 Backlit 124.jpg 1120x700 951 0.0012

(iii) Brightness compensation
Brightness compensation is achieved in an input mask by shifting pixel
intensity values to the right (highlight region) of the histogram by the adaptation
factor a obtained in equation (3.3). The relationship is given in equation (3.5).
x Y
Ge(x,y) =a+ Z Z G (x,y), fork =1,2 (3.5)
i=1 j=i
where G, (x,y) is the histogram-specified image of an input mask M, and
G, (x,y) is the ABC output image that is coupled with the hue and saturation
channels of the backlit input. The RGB output image for M, is obtained by the

HSV to RGB transformation [63] of G, (x, y).
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(iv) Alpha-clipping

Brightness over-compensation was observed to be a common problem in
images with many bright elements. The overcompensation is caused by
relatively high o values, which frequently results in colour oversaturation in the
input masks. To address this problem, the concept of alpha-clipping is
introduced in the ABC process. Letting a;;, be a limiting parameter, all values
from equation (3.3) greater than «a;,, are clipped, as shown in Figure 3.7. The
parameter a;,, IS desired at 0.23. Values of « greater than 0.23 may result in
excessive brightness for backlit images containing many bright elements. This
phenomenon can be observed in Figure 3.9 which shows the o values for the

various brightness thresholds displayed in Figure 3.8.

)

a=0.99

a=0.33 a=0.21 a=0.07 a=0.04

Figure 3.9. Brightness compensation for various values of a

(e) Fusion of F- and B- masks with backlit input

The input masks M; and M, can also be referred to as the foreground (F) and
background (B) masks, respectively. This is because M, contains the desired
foreground information to be extracted from the backlit input, whereas M,, the
improved background details. The combination of M; and M, with the backlit

input is achieved using the discrete wavelet transform method of image fusion.
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This method is preferred because it has proven effective in suppressing colour
artefacts [70]. In the next section, a straightforward single-stage DWT fusion is
presented followed by the proposed two-stage DWT process that yields the final

enhanced image.

(i) Single-stage DWT fusion
Figure 3.10 is a pseudo-code that illustrates a straightforward fusion of two
RGB images, I; and I,, based on a given wavelet function ¢, ;(x,y). The
procedure begins with the 2-D wavelet decomposition of the input channels z*
as given by equation (3.6).
[cAk, cHy, ¢V, cDi]" = DWT{Ii (2", 1, (x, ¥)} (36)
where cA, is the approximation coefficient matrix; cHy, cVy, and cD;, are
the horizontal, vertical, and diagonal detail coefficient matrices, respectively.
The variable k € {1,2} and i € {R, G, B}. Each input I, will yield a sum of 12
wavelet coefficients, 4 obtained from each colour channel and their combined
sum equivalent to 24. Following equation (3.6), the mean X = ZTX is computed
for each I; and I, channel pair as shown in Figure 3.10. This procedure yields
an average feature vector X! « [cA,cH,cV,cD]* for each colour channel [i],
reducing the total number of wavelet coefficients to 12. Using equation (3.7),
the composite image for each colour channel is obtained.
6" = IDWT{X", q (x, )} 3.7)
where X' is the mean vector of the coefficient matrices [cA, cH,cV,cD]’;

VYap(x,y) is the wavelet type used to decompose the inputs; and 6° is a
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greyscale output image. Finally, merging the RGB channels (6%, 06¢,6%)

produces the fused image 6.

% Pseudo code for a single-stage dwt fusion
Input:I; = (xR, x%, xB); I, = (yR,y%,y5);
Wavelet-type: 1, , (x, v);

Result: 6 (rgb);
for each Input k € {I;,1,}:
for each channel z! of I,:
get the DWT{I(z%),ap (x, M };
output— [cAg, cHy, cVy, ch]i;
end;
end;
for each channel i € {R, G, B} pair of I, - I,:
get the mean X* « [cA, cH, cV,cD]%;
cA = X(cAq, cAy);
cH = X(cHy, cH,);
cV = X(cVy,cVy);
cD = X(cDy, cD,);
compute 8¢ = IDWT{X!, 1, ,(x,y)};
end;

Result: set 6 = (6%, 6¢,065);

Figure 3.10. Single-stage DWT fusion

57



(ii) Two-stage DWT fusion process

The two-stage DWT fusion process illustrated in Figure 3.11 is used to
combine the salient features of the enhanced histogram-specified images G; and
G, with the backlit RGB input. The procedure involves the cascading of two
single-stage fusions. In the first stage, the outputs of M; and M, are fused. The
resultant image F; (x,y) is fused with the backlit input /(x,y) in the second

stage to produce the final enhanced image F,(x, y).

i : . : . Enhanced
et |y DUTTuion |of DVEn ) S
1 ivl] ¥l 1 2 ¥ F;(}L‘-)
Input mask Backlit Input
G2 (xy) 1(x.y)

Figure 3.11. Two-stage RBHF fusion Process

(iit) Optimization of DWT fusion

The single-stage DWT fusion shown in Figure 3.10 uses a nested for loop to
perform an element-wise operation in computing the mean feature vector X°.
As a result, the time complexity of the proposed algorithm increases
significantly by 0(n?) for a given input. A vectorized approach is proposed in
this section to accelerate the algorithm, particularly the DWT fusion (DWT-F).
Vectorization is the process of converting loop-based, scalar-oriented code to
matrix or vector operations [71]. The MATLAB R2018a [21] platform supports

vectorized computing.
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From equation (3.6), the wavelet coefficients for each input channel z¢ yields

the matrices [cAy, cHy, cVy, cDy]t, where k € {1,2} and i € {R,G,B}. The

mean feature vector X! « [cA, cH,cV,cD]* is then obtained by summing each

pair of the coefficient matrix and dividing the resultant elements by 2, as given

in equations (3.8) to (3.11).

3.2.2. Multiple

cA = (cA; + cA,)t/2

cH = (cHy + cH,)!/2

cV = (cVy + cV,)i/2

cD = (cDy + ¢D,)t/2

RBHF process

(3.8)
(3.9)
(3.10)

(3.11)

The enhancement quality of the proposed method can further be improved

through an iterative process known as multiple RBHF. This process is

established by configuring the proposed method in a feedback loop with a

counter defined by the parameter Iter, as shown in Figure 3.12. The value of

Iter determines the number of iterations. An Iter of 1 will yield the outcomes

of a single RBHF process.

Enhanced
image

Input Proposed
. Method Qutput
Backlit > — )
imase (RBHF) Foxy)
Set Iter p| Do forn=Tter-1 -
Figure 3.12. Proposed Multiple RBHF process
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3.3. Measures

This section presents the image quality metrics used to evaluate the
performance of the proposed method. The presentation begins with a discussion
on the three objective measures, i.e., Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM) index, and the Natural Image Quality Evaluator
(NIQE), followed by a subjective assessment based on the International

Telecommunication Union (ITU) framework.

3.3.1. Objective Measures
The PSNR is a well-known image quality metric that compares the maximum
pixel intensity, L, of an image to the power of corrupting noise. It is defined as

a ratio given by equation (3.12) [71].

L2
= S 3.12
PSNR = 10l0g10 <~ (3.12)
M—-1N-1
where, MSE = [I(x,y) — K(x,y)]? (3.12)
x=0 y=0

where I(x,y) is an input or reference image with sizes M x N, and K (x,y)
is the enhanced image. High values in PSNR tend to suggest good image quality.
However, this assessment is not consistent with human perception of quality
[72].

The SSIM is another popular quality metric that measures the structural
similarity between two images. The SSIM index is a single score that combines
local image structure, luminance, and contrast and it can be expressed as given

in (3.13) [721,[73]:

60



(z.uxl"y + Cl)(zo-xy + CZ)
(uf + u5 + c1) (0% + 05 + ¢2)

SSIM(x,y) = (3.13)

where 1, and p,, are the means of x and y, respectively; o is the variance

of x; a5, the variance of y; g,, is the covariance of x and y; the variable ¢

(k,L)? and ¢, = (k,L)?%; L is the maximum pixel intensity; k; = 0.01and k, =
0.03 by default [73]. The SSIM score range from 0 to 1. High values indicate
high image quality.

The NIQE is a no-reference image quality model that measures the
naturalness of an image based on only observable deviations from statistical
regularities detected in natural photographs, with no training or exposure to
distorted images [74]. The NIQE can be expressed as a simple distance metric
between the model statistics and that of the distorted image as given in equation

(3.14).

D(Vy Vy, 51, 55) = j((vl—w (M) (V1—VZ)) (3.14)

2

where V;, V, and X, X, represent the mean vectors and covariance matrices
of a natural multivariate Gaussian (MVG) model and the MGV model of the
distorted image, respectively. Images with high quality are expected to have a

lower NIQE value [74].

3.3.2. Subjective Measures
The radio communication sector of the International Telecommunication
Union (ITU-R) recommends the ITU-R BT.500-14 [75] image quality

assessment framework. The framework employs human observers to judge
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image quality. It specifies the number of observers, viewing conditions, and
grading scales to be utilized during each subjective test [75].

The framework recommends a minimum of 15 observers for each evaluation.
The observers are expected to be non-experts with no prior knowledge of the
backlit image artefacts that the proposed method may introduce. Before each
test session, they are examined for normal visual acuity and colour vision. They
are also informed about the nature of the test, image sequence, time interval,
and the grading scheme of 1 to 5, as shown in Table 3.2 [75]. Each level is

designed to reflect the judgment of the observer.

Table 3.2. ITU-R BT.500-14 subjective quality assessment metric [75]

Level Distortion in the image Quality
5 Imperceptible Excellent
4 Perceptible but not annoying Good

3 Slightly annoying Fair

2 Annoying Poor

1 Very annoying Bad
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

Various experiments were conducted on a dataset of 162 backlit images
using MATLAB R2018a on a PC with 32GB RAM and a 2.6GHz Intel Core i7
processor. The parameters of the ABC and fusion stages in all simulations were
defined as follows: T = 240; a;;, = 0.23; and y, ,(x, y) = sym5. The results
are presented in this chapter as follows: section 4.1 gives the results of the
proposed method for images with low backlit sectors. In section 4.2, the results
for the high backlit sector category are presented, followed by those of the low
and high background highlight categories in sections 4.3 and 4.4, respectively.
Next, section 4.5 gives a computational analysis of the proposed algorithm
before and after the DWT-F optimization. Following this, section 4.6 presents
the results of applying multiple RBHF processes on several backlit images to
improve enhancement quality.

In section 4.7, the proposed method's performance is compared to existing
enhancement techniques such as Histogram Equalization [4], Multiscale
Retinex (M-Retinex) [76], and Low-Light Image Enhancement via lllumination
Map Estimation (LIME) [77]. Section 4.8 compares some properties of the
backlit inputs to the enhanced output images. Finally, the impact of the wavelet
parameter ¥, , (x, y) on the enhancement quality of the final output image is

discussed in section 4.9.
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4.1. Enhancement of images with low backlit sector

Figures 4.1(a) to 4.1(t) display the results of 20 selected backlit inputs
characterized by soft “shadows” in the foreground. In each Figure, the first
image from left to right is the backlit image, and the second is the enhancement
result. Overall, the proposed method significantly improved the visual quality
of the backlit images without any noticeable distortion or colour artefacts. More
particularly, the outcomes of images B7, B11, B21, B24, and B125 demonstrate
that the proposed method can effectively correct exposure disparities between

the F- and B- regions and provide a more uniformly lit picture scene.

(a) Image B7 (b) Image B8

(c) Image B12 7 (d) Image B18

(e) Image B19

ig) Image B24 7 (h) Image B65

Figure 4.1. Enhancement of images with low backlit sectors
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(i) Image B84 (i) Image B98

(o) Image B11
o

g

(q)lmageBZ?

(s) Image B133 (t) Image B132

Figure 4.1. (continued) Enhancement of images with low backlit sectors
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4.1.1. Objective assessment

In this section, the PSNR, SSIM, and NIQE image quality metrics are used
to evaluate the results in Figure 4.1. Table 4.1 displays the outcomes of each
evaluation, and the results are plotted in Figures 4.2, 4.3, and 4.4. The proposed
method obtained high PSNR for most test images. The average value achieved
from the dataset in Table 4.1 was 19.2 dB, with more than half the images
having values above or slightly below the average, as shown in Figure 4.2.
However, due to a relatively higher backlit degradation, five outcomes,
including B63, B65, B98, B102, and B131, yielded low PSNR, more than 3 dB
lower than the average.

Figure 4.3 displays the SSIM quality scores in Table 4.1. By expressing the
values as percentages, the proposed method tends to maintain more than (60-
70) % structural similarity with the backlit inputs. Image B65, for example.
Despite having the lowest PSNR, it realized an SSIM index of 0.67. Outcomes
such as images B102, B98, B113, and B131, with values below 0.5, are
characteristic of high backlit degradation (noise) in the input image, as seen in
Figure 4.1.

The results of the NIQE assessment are displayed in Figure 4.4. For each test
image, the NIQE score of the input (I/P) is compared to that of the output (O/P).
As shown in the graph, the proposed method preserves or slightly improves the
naturalness quality of the backlit input. This result is consistent with the non-

appearance of artefacts in the enhanced images in Figure 4.1.
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Table 4.1. Objective test for images with low backlit sector

SIN | Test | Descriptor Size PSNR | SSIM | NIQE | NIQE
Image (dB) I/P o/P
1 B7 Man Outdoor 480 x 316 23.7 0.91 2.26 2.15
2 B8 Woman Outdoor 399 x 299 24.8 0.84 2.62 2.46
3 B11 Office Building 360 x 480 19.0 0.72 2.63 2.40
4 B12 Girl 260 x 194 234 0.87 3.99 3.56
5 B18 | Sunset Rocks 480 x 319 226 (084 |249 | 288
6 B19 | Football 400 x 266 204 091 |501 |451
7 B21 Building Statue 212 x 209 21.1 0.75 3.01 3.34
8 B24 Cityscape 600 x 400 191 0.84 2.64 2.34
9 B27 Outdoor Yard 189 x 250 17.3 0.77 4.83 4.85
10 | B63 Broad Street 478 x 640 164 |0.73 264 | 282
11 | B65 City Street 2048 x 1536 | 14.0 0.65 1.81 1.60
12 | B84 Sunset Mountain 640 x 425 18.0 0.67 2.82 2.50
13 | B98 Dark Room Block | 1024 x 586 153 0.47 1.69 1.91
14 | B102 | Dark Room Table | 640 x 427 153 0.37 2.74 2.45
15 | B105 | Living Room 500 x 335 19.8 | 0.69 329 | 273
16 | B113 | Dark Room Bed 1024 x 685 152 |0.39 254 | 261
17 | B125 | City Road 704 x 518 21.2 0.82 3.92 3.20
18 | B131 | KICC Building 424 x 540 15.0 0.47 5.36 5.45
19 | B132 | Hilton Hotel 436 x 572 20.1 0.69 4.79 4.38
20 | B133 | National Archives | 510 x 680 221 |0.87 342 |3.59
Average 19.2 0.71 3.22 3.09
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Figure 4.2. PSNR evaluation of images with low backlit sector
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Figure 4.3. SSIM assessment of images with low backlit sector
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Figure 4.4. NIQE assessment of images with low backlit sector

4.1.2. Subjective assessment

A subjective evaluation of the enhancement results in Figure 4.1 was
conducted by 16 subjects using the ITU-R BT.500-14 image quality framework.
The test subjects included 6 students from the Railway training institute in
Nairobi and 10 residents of the Plainsview community in South B with no
exposure to image processing technology. Initially, they were tested for visual
acuity and colour vision, then briefed on the experiment's parameters and asked
to rank the quality of each image in Figure 4.1 using the recommended scale in
section 3.3.2. Table 4.2. gives the results of their evaluations.

Table 4.2 presents each image's ranking by the number of test subjects. The
average quality score per image was calculated by weighting every quality level:
Bad=1, Poor=2, Fair=3, Good=4, and Excellent=5. On average, the proposed

method achieved values ranging from 3.56 to 4.88, with many images scoring
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"good" or "excellent."” Image B63 ranked the highest, followed by images B133,

B24, B27, and B132.

Table 4.2. Subjective test for images with low backlit sector

S/IN | Test | Descriptor Number of test subjects per quality Average
Image score Quality
Bad | Poor | Fair | Good | Excellent
1 B7 Man Outdoor 0 0 3 8 5 4.13
2 B8 Woman 0 0 3 5 8 4.31
Outdoor
3 B11 Office Building | 0 0 1 3 12 4.69
4 B12 Girl 2 1 3 6 4 3.56
5 B18 | Sunset Rocks 0 1 3 4 8 4.19
6 B19 Football 1 0 1 8 6 4.13
7 B21 Building Statue | 0 2 3 8 3 3.75
8 B24 Cityscape 0 0 0 4 12 4.75
9 B27 | Outdoor Yard 0 0 0 4 12 4.75
10 B63 | Broad Street 0 0 1 0 15 4.88
11 B65 City Street 0 0 1 3 12 4.69
12 B84 Sunset 0 0 2 2 12 4.63
Mountain
13 B98 Dark Room 0 0 3 2 11 4.50
Block
14 B102 | Dark Room 0 0 1 5 10 4.56
Table
15 B105 | Living Room 0 0 2 6 8 4.38
16 B113 | Dark Room Bed | 0 1 0 5 10 4.50
17 B125 | City Road 0 4 3 5 4 3.56
18 B131 | KICC Building | 0 1 1 4 10 4.44
29 B132 | Hilton Hotel 0 0 1 2 13 4.75
20 B133 | National 0 0 1 1 14 4.81
Archives
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4.2. Enhancement of images with high backlit sector

Figure 4.5(a) to 4.5(1) show the enhancement results for 12 backlit images
characterized by hard shadows in the foreground. In each figure, the first image
(left to right) is the backlit input, and the second is the enhanced output. The
overall result shows significant improvement in the perception of details in the
highly under-exposed foreground. A few examples can be found in the
outcomes of images B4, B5, B20, B100, B124, and B116. However, the
enhancement quality of images B33, B91, and B129 was impacted by shadow
clipping. As a result, shadow-clipped areas in the input are seen to have no
visual information in the enhanced output. This is evident in the boy's facial

features in Figure 4.5(f) or the dining floor in Figure 4.5(e).

(a) Image B4 (b) Image B5

E

(c) Image B14 (d) Image B20
W10 o 108

(e) Image B91 () Image B33

Figure 4.5. Enhancement of images with high backlit sector

71



(9) Image 100 (h) Image B114

(i) Image B124 () Image B116

(k) Image B120 (1) Image B129
Figure 4.5. (continued) Enhancement of images with high backlit sector

4.2.1. Objective assessment

The quality metrics in section 3.3.1 are used to evaluate the results of Figure
4.5. The PSNR, SSIM, and NIQE measurements are given in columns (4), (5),
and (6) of Table 4.3, respectively. Their values are also plotted in Figures 4.6 to
4.8. On average, the proposed method achieved a PSNR quality of 16.9 dB. This
value is about 3 dB less than the average for images with low backlit sectors.
However, this is a significant gain given the high backlit degradation in the
inputs of Figure 4.5.

Figure 4.7 displays the SSIM results in Table 4.3. For most test images, the
proposed method achieved more than (40-60) % structural similarity. However,

photos such as B114 and B120 realized the least SSIM scores. Such outcomes
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are expected because the enhanced images of B114 and B120 contained more

salient features than their backlit inputs.

According to Table 4.3 and Figure 4.8, the proposed method tends to

preserve or slightly improve the naturalness quality of the backlit inputs in terms

of NIQE. This can be seen in the outcomes of B5, B20, B91, and B124. The

result of image B120, on the other hand, shows a significant decrease in the

NIQE value. This is consistent with the output in Figure 4.5(k), which is less

naturally appealing compared to other results in Figure 4.5.

Table 4.3. Objective test for images with high backlit sector

S/N | Test Descriptor Size PSNR | SSIM | NIQE | NIQE
Image (dB) I/P o/P
1 B4 Woman Fields 452 x 300 21.2 0.64 | 271 |257
2 B5 Teddy bear 375 x 300 16.5 0.63 | 466 |4.30
3 B14 Woman Fields 2 329 x 220 19.2 072 |317 |361
4 B20 Signboard 694 x 460 20.5 069 |29 |241
5 B33 Boy at Window 1400x 1049 | 158 | 053 |380 |344
6 BI1 Dining Room 506 x 338 159 |0.37 |3.67 |3.49
7 B100 | Dining Hall 640 x 480 15.0 0.33 |3.01 |347
8 B114 | Office 1 640 x 426 134 0.16 |3.07 |3.52
9 B116 | Photographer 640 x 426 153 040 |392 |350
10 | B120 | Office 2 427 x 640 13.3 0.15 339 |49
11 | B124 | Street Kitchen 1120 x 700 | 20.0 0.70 | 440 |3.25
12 | B129 | Parking Lot 440 x 586 16.4 048 |3.23 |3.49
Average 16.9 0.48 |3.50 |3.50
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Figure 4.6. PSNR evaluation of images with high backlit sector
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Figure 4.7. SSIM evaluation of images with high backlit sector
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Figure 4.8. NIQE evaluation of images with high backlit sector

4.2.2. Subjective assessment

A group of 16 people, as referenced in section 4.1.2, were asked to judge the
results in Figure 4.5 following the ITU-R BT.500-14 image quality framework.
Table 4.4 shows the outcome of their assessments. The average quality score
per image was calculated by weighting every quality level: Bad=1, Poor=2,
Fair=3, Good=4, and Excellent=5.

The results in Table 4.4 show that the proposed method achieved lower
enhancement quality for the images with a high backlit sector which is
consistent with the PSNR evaluation in Table 4.3. Except for images B20 and

B116, many images realized values in the range of 2.13 to 3.88 on average.
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Table 4.4. Subjective test for images with high backlit sector

S/N | Test | Descriptor Bad | Poor | Fair | Good | Excellent | Average
Image
1 B4 Woman Fields 2 5 4 3 2 2.88
2 B5 Teddy bear 3 4 5 2 2 2.75
3 B14 | Woman Fields2 | 3 3 2 4 4 3.19
4 B20 Signboard 0 0 2 5 9 4.44
5 B33 Dining Room 3 9 3 1 0 2.13
6 B91 Boy at Window | 3 4 4 4 1 2.75
7 B100 | Dining Hall 1 5 3 2 5 3.31
8 B114 | Office 1 0 3 2 5 6 3.88
9 B116 | Photographer 1 1 3 2 9 4.06
10 | B120 | Office 2 5 1 4 3 3 2.88
11 | B124 | Street Kitchen 3 2 2 1 8 3.56
12 | B129 | Parking Lot 3 1 2 5 5 3.50

4.3. Enhancement of images with low background highlight

Images in the low background highlight category are grouped based on lower

radiance in the B-regions. However, these images differ in terms of their backlit

degradation. Figures 4.9(a) to 4.9(n) displays the enhancement results for some

selected inputs with low background highlights. In each figure, the first image

from left to right is the backlit input, and the second is the enhanced output. The

results in Figure 4.9 show significant improvements in the visual quality of the

backlit inputs without noticeable distortion or colour artefacts. Furthermore, the

outcomes of images B55, B119, and B121 versus B54, B75, and B79,

demonstrate how the proposed method dynamically adjusts the exposure for

various inputs while maintaining their natural scenery.
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(a) Image B37 (b) Image B48

(c) Image B54 (d) Image B55

(e) Image B119 ! (f) Image B121

(i) Image 74 () Image B75

(k) Image B79 (1) Image B101

(m) Image B85 (n) Image B59

Figure 4.9. Enhancement of images with low background highlights
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4.3.1. Objective assessment

Table 4.5 gives the objective measures for the enhancement results of Figure
4.9. The PSNR measurements are provided in column (4), followed by the SSIM
scores in column (5). Columns (6) and (7) give the NIQE measurements for the
input and output images, respectively. Figures 4.10 to 4.12 further illustrate the
results. On average, the proposed method achieved a PSNR quality of 18.1 dB.
Images with high backlit degradation such as B119, B121, B71, B48, B66, and
B55 tend to have low PSNR values up to 5 dB less than the average, as seen in
Figure 4.10. These images in Figure 4.11 also seem to have a lower structural
similarity index. Such outcomes were observed in sections 4.1.1 and 4.2.1 and
appear consistent with severely degraded backlit images. Finally, in terms of the
NIQE assessment, in many instances, the proposed method improved the

naturalness quality of the inputs, as seen in Figure 4.12.
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Table 4.5. Objective test for images with low background highlight

S/N Test Descriptor Size PSNR | SSIM | NIQE | NIQE
Image (dB) I/P o/p
1 B85 Boat Morning | 774 x 23.3 0.82 2.00 2.10
1032

2 B79 Boat 1023 x 20.3 0.65 4.00 3.37
Sundown 633

3 B75 Ocean Sunset | 512x 334 | 25.0 0.95 4.45 4.74

4 B74 Boat Night 507 x338 | 19.0 0.56 441 4.48

5 B71 Bush Bicycle | 900x 602 | 14.9 0.40 1.95 2.47

6 B66 Woods 789x504 | 154 0.34 211 2.02
Bicycle

7 B59 Street Night 338 x507 |19.8 0.83 2.75 2.42

8 B55 Fields Bicycle | 640x 480 | 14.9 0.31 3.44 3.42

9 B54 Ocean 500x 333 | 22.2 0.82 5.82 4.04
Cycling

10 B48 Residential 640 x 424 | 15.1 0.48 2.54 2.24

11 B37 Camping 640 x 427 | 18.6 0.60 5.17 4.03

12 B121 | Fields Table 1600 x 144 0.14 2.66 2.15

1067
13 B119 | Court Room 925x692 | 13.6 0.20 2.84 3.15
14 B101 | Dawn Train 640 x 480 | 17.2 0.54 2.35 2.34
Average 18.1 0.54 3.32 3.07
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Figure 4.10. PSNR evaluation of images with low background highlights
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Figure 4.11. SSIM evaluation of images with low background highlights
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Figure 4.12. NIQE evaluation of images with low background highlights

4.3.2. Subjective assessment

Table 4.6 gives the subjective evaluation of the results in Figure 9. In each
test, a group of 16 people, as referenced in section 4.1.2, were asked to judge
the image enhancement quality according to the ITU-R BT.500-14. A weight

was assigned to each quality level, i.e. Bad=1, Poor=2, Fair=3, Good=4, and

Excellent=5, and the average quality score per image was calculated.

In Table 4.6, the proposed method achieved high-quality scores for many test
images. The average quality per image ranged from 4.0 to 4.94 except for image
B119 which received the lowest score of 3.38. The best enhancement quality,

according to Table 4.6, was achieved by image B101 and the second best was

B8S.
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Table 4.6. Subjective test for images with low background highlight

S/IN | Test Descriptor Bad | Poor | Fair Good | Excellent | Average
Image
1 B85 Boat Morning | 0 0 0 2 14 4.88
2 B79 Boat Sundown | 0 0 2 5 9 4.44
3 B75 Ocean Sunset | 0 0 1 5 10 4.56
4 B74 Boat Night 2 0 1 6 7 4.00
5 B71 Bush Bicycle |0 0 0 4 12 4.75
6 B66 Woods 0 0 4 5 7 4.19
Bicycle
7 B59 Street Night 0 0 1 4 11 4.63
8 B55 Fields Bicycle | 0 0 2 2 12 4.63
9 B54 | Ocean 0 0 0 5 11 4.69
Cycling
10 | B48 Residential 0 0 2 0 14 4.75
11 | B37 Camping 0 0 0 6 10 4.63
12 | B121 | Fields Table 0 0 1 7 8 4.44
13 | B119 | Court Room 1 1 7 5 2 3.38
14 | B101 | Dawn Train 0 0 0 1 15 4.94

4.4. Enhancement of images with high background highlights

Images in the high background highlight category are characterized by high
radiance in the B-regions. Nevertheless, these images differ with respect to their
backlit degradation. Figures 4.13(a) to 4.13(l) show the enhancement results of
some selected backlit inputs. The first image in each figure (left to right) is the
backlit image and the second is the enhancement results. Overall, the proposed
method significantly improved visibility in the under-exposed foreground
despite the high radiance in background areas. Some examples can be seen in
the results of B10, B25, B89, B31, B93, and B111. The outcomes of B15 and

B31 in Figure 4.13(d) and 4.13(g), respectively, show the proposed method
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attempting to reclaim details of the sky from the over-exposed areas around the
sun. However, this created noticeable fluctuations in the intensity level of

neighbouring pixels.

UL

(a) Image B6

(c) Image B13 id) Image B15

(e) Image B17 () Image B25

C: a

(k) Image B111 (1) Image B117

Figure 4.13. Enhancement of images with high background highlights
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4.4.1. Objective assessment

Table 4.7 shows the performance of the proposed method on the test images
in Figure 4.13. In column (4) are the PSNR quality measurements plotted in
Figure 4.14, followed by the SSIM scores in column (5) and displayed in Figure
4.15. Columns (6) and (7) provide the NIQE metrics for the input and output
images, respectively. Their collective results are displayed in Figure 4.16. The
proposed method yielded high PSNR for many of the test images. Images with
high backlit degradation such as B89, B117, and B111 tend to have low PSNR,
more than 3 dB less than the average. As for the SSIM index, Figure 4.15 shows
that the proposed method achieved more than (40-60) % structural similarity for
many test images. Low SSIM scores, however, were also frequent with highly
degraded inputs. The NIQE results in Figure 4.16 show improvements in the
naturalness quality of several backlit inputs, including B93, B6, B25, B15,
B111, B110, and B10. A slight decrease was reported in the outcomes of B13

and B17.
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Table 4.7. Objective test for images with high background highlight

S/N Test Descriptor Size PSNR | SSIM | NIQE | NIQE
Image (dB) /P o/P
1 B93 Restaurant 1 | 1021 x 17.8 0.58 2.41 2.08
732
2 B89 Restaurant 2 | 500 x 375 | 13.4 0.39 4.54 4.66
3 B6 Cityscape 514x 385 | 21.8 0.77 3.56 2.78
4 B31 Girl 1 Field | 500x328 | 25.8 0.97 3.84 3.71
5 B25 Boy Sea 400 x 300 | 20.4 0.79 3.92 3.70
6 B17 Girl Outside | 320x212 | 22.3 0.82 4.43 4.56
7 B15 Girl Sea 480 x 320 | 25.6 0.98 4.18 3.54
8 B13 Lakeside 400 x 300 | 17.7 0.65 2.20 2.90
9 B117 | Eating Room | 640 x 427 | 13.4 0.18 4.29 4.90
10 B111 | Classroom 493 x 331 | 14.7 0.32 4.23 3.48
11 B110 | Sitting Room | 1024 x 15.7 0.36 2.34 1.85
663
12 B10 Damside 600 x 450 | 16.6 0.70 2.25 2.19
Average 18.7 0.62 3.51 3.36
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Figure 4.16. NIQE evaluation of images with high background highlights

4.4.2. Subjective assessment

Table 4.8 gives the subjective measurements for the results in Figure 4.13.
In each experiment, a group of 16 people, as referenced in section 4.1.2, were
asked to judge the image enhancement quality according to the ITU-R BT.500-
14. A weight was assigned to each quality level, i.e., Bad=1, Poor=2, Fair=3,
Good=4, and Excellent=5, and the average quality score per image was
calculated.

Overall, the proposed method achieved high-quality scores for many test
images. The average quality per image ranged from 4.06 to 4.56 except for
images B15 and B117 which received the lowest scores of 2.19 and 3.63,
respectively. According to Table 4.8, the highest quality was achieved in images

B110 and B10, followed by images B111, B89, and B17.
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Table 4.8. Subjective test for images with high background highlight

S/IN | Test Descriptor Bad | Poor | Fair | Good | Excellent | Average
Image
1 B110 | Sitting Room | 0 1 2 0 13 4.56
2 B10 Damside 0 0 2 3 11 4.56
3 B111 | Classroom 0 0 3 2 11 4.50
4 B89 Restaurant2 | 0 0 1 7 8 4.44
5 B17 Girl Outside | 0 0 2 5 9 4.44
6 B31 Girl 1 Field 0 0 3 4 9 4.38
7 B25 Boy Sea 0 0 3 5 8 4.31
8 B93 Restaurant1 | 0 1 3 5 7 4.13
9 B15 Girl Sea 3 9 2 2 0 2.19
10 | B6 Cityscape 1 0 2 6 7 4.13
11 | B13 Lakeside 0 0 3 9 4 4.06
12 | B117 | Eating Room | 1 1 5 5 4 3.63
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4.5. Computation time analysis of the proposed method

This section discusses the runtime of the proposed algorithm in section 3.2.1.
The runtime analysis is based on the results of Figure 4.1. All findings can be
applied to the dataset in sections 4.2, 4.3, and 4.4.

Table 4.9 presents the computation time obtained for the 20 simulations in
Figure 4.1 using the tik and tok functions in MATLAB. The data is organized
from the lowest picture resolution to the highest. The computation time before
the DWT-F optimization is given by CTBO, and CTAO is the time
measurement after optimization. The average computation time was found to be
5.33 seconds before optimization. However, it took roughly twice the average
time to enhance images like B98 and B113 with a resolution of more than
600,000 pixels. Furthermore, photos with higher resolution, such as B65,
required approximately eight times the average score.

Comparing the results of CTBO to CTAO, a significant reduction in the
computation time was achieved. Precisely, the optimization of the DWT-F
process reduced the computation time by 92.5%, as shown in Table 4.9, with a
standard deviation of 0.82. As a result, the average time required to enhance
each backlit input in Figure 4.1 was reduced from 5.33s to 0.4s. Such

improvement in performance can be seen in the outcome of image B65.

89



Table 4.9. Computation time analysis of the proposed method

S/IN | Test Descriptor Size Time (s) | Time (s)
Image CTBO CTAO
1 B21 Building Statue 212 x 209 0.62 0.04
2 B27 Outdoor Yard 189 x 250 0.67 0.04
3 B12 Girl 260 x 194 0.78 0.04
4 B19 Football Outdoor 400 x 266 1.61 0.07
5 B8 Woman Outdoor 399 x 299 1.65 0.07
6 B7 Man Outdoor 480 x 316 211 0.12
7 B18 Sunset Rocks 480 x 319 1.98 0.11
8 B105 Living Room 500 x 335 2.16 0.13
9 B1l1 Office Building 360 x 480 3.15 0.14
10 | B1l31 KICC Building 424 x 540 2.63 0.16
11 | B24 Cityscape 600 x 400 3.19 0.18
12 | B132 Hilton Hotel 436 x 572 2.95 0.20
13 | B84 Sunset Mountain 640 x 425 4.47 0.26
14 | B102 Dark Room Table 640 x 427 4.64 0.26
15 | B63 Broad Street City 478 x 640 4.23 0.31
16 | B133 National Archives 510 x 680 4.15 0.34
17 | B125 City Road 704 x 518 4.48 0.34
18 | B98 Dark Room 1024 x 586 10.47 0.63
19 | B113 Dark Room 1024 x 685 9.59 0.77
20 | B6S City Street 2048 x 1536 41.16 3.79
Average 5.33 0.40
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Figure 4.17 further illustrates the results in Table 4.9. The runtime of the
proposed algorithm is seen to increase with the input size. As a result, for larger
image resolutions like B98 or B113, the practicality of the proposed algorithm
is limited. However, with the DWT-F optimization, the time complexity is

improved, thus making the algorithm computationally efficient.
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Figure 4.17. Proposed method’s computation time analysis

4.6. Multiple RBHF Process for improving enhancement quality

The experimental results in sections 4.1 to 4.4 show that the proposed method
significantly improves the visual quality of the backlit image. These results were
validated using objective and subjective measurements. On many occasions, the
proposed method achieved high PSNR, SSIM, and NIQE quality. However, test
images like B55, B71, B98, and B114 often realized low PSNR and SSIM index.
These images were consistent with high backlit degradation. Therefore, to

further improve their PSNR quality, the multiple RBHF process in section 3.2.3
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was proposed. In theory, it is a valid approach since the proposed method has
demonstrated the ability to preserve details and colour in the enhanced output.
This section evaluates the impact of multiple RBHF process on some selected
backlit inputs.

Figure 4.18 displays the results of applying ten (10) iterations of the proposed
algorithm on sample backlit images. The backlit inputs are shown in Figure
4.18(a). Figures 4.18(b) to 4.18(K) are the enhancement results per iteration. The
number of iterations was set at ten because, after ten iterations, there is no
structural difference between the input and output images, as given by the SSIM
index. Overall, the algorithm seems to improve the exposure of the backlit input
with each iteration. Significant improvements in perceptual quality can be seen
after the second and third iterations in Figures 4.18(c) and 4.18(d), respectively.

The proposed method also maintains the natural or original hues of the
backlit input, even for ten iterations. Details such as edges and textures are
preserved without underlining artefacts. A few examples can be seen in the
outcomes of images B7, B11, B37, B55, B98 and B132. However, during the
second iteration of B114, the effect of shadow clipping became visible in the
enhanced image. Also, over-exposure tends to occur in the results of B65 by the
5th iteration. This problem occurs when the exposure level is higher than the

amount required to illuminate the scene.
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Figure 4.18. Performance of multiple RBHF (a) Backlit input (b) iter =1
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Figure 4.18. (continued) Performance of multiple RBHF (a) Backlit input
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4.6.1. Objective assessment

The PSNR, SSIM, and NIQE quality metrics are used to evaluate the results
in Figure 4.18. The PSNR measurements in Figures 4.19 and 4.20 show that
multiple iterations of the proposed method significantly increase the PSNR
quality of the backlit image. For many test inputs, up to a 12 dB increase was
realized during the first three iterations. Some examples can be seen in the
outcomes of B11, B48, and B55 in Figure 4.19 and B65, B114, and B98 in
Figure 4.20. The PSNR values for inputs B7 and B65 tend to increase steadily
for the ten iterations, while other inputs such as B37, B11, B48, and B114
appear to converge. The results of B7 and B65 also suggest that the PSNR
quality can be improved beyond ten iterations.

Figures 4.21 and 4.22 display the SSIM measurements for the simulation
results in Figure 4.18. For each iteration (n), the output image is compared to
the enhanced image of the previous iteration (n-1), except for the first iteration,
where the output image is compared to the original input. Figures 4.21 and 4.22
show a high increase in the backlit inputs' SSIM index within the first three
iterations. After the third iteration, the SSIM values converged to absolute
similarity. Beyond this point, there is no apparent difference between the input
and output images.

The SSIM scores in Figures 4.23 and 4.24 measure the structural similarity
between the original backlit image and the output for each iteration. The results
show that the multiple iterations of the proposed method do not improve the
enhanced image’s structural similarity with the degraded backlit input. About a

10% reduction in the SSIM index occurred after the 2nd iteration. The decrease
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in the SSIM values of Figures 4.23 and 4.24 is expected because as the backlit
degradation is reduced by each iteration, more salient features are revealed in
the enhanced images. Nevertheless, the proposed method maintained 80%
structural similarity on average in the outcome of image B7 and (40-50) % in
that of B11, B37, B65, and B132.

Figures 4.25 and 4.26 give the results of the NIQE assessment of the multiple
RBHF process. Slight changes in the NIQE scores are observed for images B7,
B55, B11, B48, and B132. However, the graphs suggest a noticeable drop in the

naturalness quality of backlit inputs B37, B65, and B98 after each iteration.
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Figure 4.19. PSNR Evaluation of Multiple RBHF (Set 1)
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Figure 4.22. SSIM Evaluation 1 of Multiple RBHF (Set 2)
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Figure 4.24. SSIM Evaluation 2 of Multiple RBHF (Set 2)
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Figure 4.26. NIQE Evaluation of Multiple RBHF (Set 2)

4.6.2. Subjective assessment

Following the ITU-R BT.500-14, 16 people, consisting of 10 residents from
the Plainsview community in South B and 6 students from the Railways
Training Institute, Nairobi, were asked to judge the enhancement result for each
iteration in Figure 4.18. They were also required to choose the outcome having
the best picture quality. Table 4.10 gives the result of their subjective
assessments, which is further illustrated in Figure 4.23.

Table 4.10 and Figure 4.23 demonstrate that two iterations of the proposed
algorithm are often sufficient in producing a significantly higher image quality.
However, for some inputs like B48 and B114, one iteration was deemed
sufficient while others such as B55 required three iterations. These results are

consistent with the SSIM evaluation in Figure 4.20.
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Table 4.10. Subjective evaluation for multiple RBHF
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4.6.3. Computational Time Analysis

Figure 4.28 shows the average runtime per iteration. The results are limited
to the computation after the DWT-F optimization. Image B65, with a resolution
of 2048 x 1536 pixels, had the highest time cost, as expected. However, low-
resolution images such as B7, B11, B114, B37, and B132, were enhanced in

about 0.65 seconds per iteration.
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Figure 4.28. Time analysis for the Proposed Multiple RBHF Process

4.7. Comparative analysis with existing methods

In this section, the proposed method’s performance is compared to existing
enhancement algorithms such as Histogram Equalization [4], Retinex [76], and
LIME [77]. The performance of each algorithm is evaluated both qualitative

and quantitative in sections 4.7.1 and 4.7.2, respectively.

4.7.1. Qualitative evaluation
Figure 4.29 compares the enhanced results of the proposed method to that of

existing image enhancement algorithms. The test images are displayed in Figure
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4.29(a). The outcomes for Histogram Equalization [4], Retinex [76], and LIME
[77] are shown in Figures 4.29(b), 4.29(c), and 4.29(d), respectively, whereas
the proposed method in Figures 4.29(e) and 4.29(f).

The results in Figure 4.29 show that the proposed method outperforms
existing image enhancement methods in terms of visual quality. Histogram
Equalization, for example, enhanced visual perception of backlit inputs while
distorting or washing out hues. Consider the outcome in Figure 4.29(a). The sky
in image B7 appears to have shifted from a light blue to a purple tint, whereas
the colours in images B48 and B55 are clearly washed-out. Figure 4.29(d)
shows a similar colour distortion.

In most simulations, M-Retinex and LIME produced slightly better results
than Histogram Equalization. However, M-Retinex frequently caused an
unnatural appearance in the inputs, as seen in the outcomes of B7, B65, and B11
in Figure 4.25(c). LIME, in contrast, exaggerated image details, as shown in B7
and B11 of Figure 4.29(d). As a result, the proposed method outperforms
Histogram Equalization, M-Retinex, and LIME by achieving higher visual
quality while avoiding colour distortion, over-enhancement, or hue washing-

out.
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4.7.2. Quantitative evaluation

(@) PSNR Assessment

Table 4.11 gives the PSNR assessment for the results in Figure 4.29. The
first iteration of the proposed method achieved the highest PSNR quality in 8
out of 10 simulations when compared to histogram equalization, M-Retinex,
and LIME. The second iteration, on the other hand, outperformed these methods

completely in all simulations.

Table 4.11. Comparison of PSNR for various methods

S/IN | Test Descriptor HE M- LIME | Proposed | Proposed
Image Retinex iter=1 iter=2
1 B7 Man Outdoor 20.9 10.7 18.8 | 23.7 29.6
2 B11 Office Building | 14.2 8.1 189 | 19.0 24.8
3 B37 Camping 8.4 10.1 13.6 18.6 24.1
4 B48 Residential 6.9 8.4 12.8 15.1 21.1
5 B55 Fields Bicycle | 6.4 8.2 12.3 14.9 20.9
6 B65 City Street 11.3 7.1 14.7 14.0 19.7
7 B71 Bush Bicycle 8.1 7.3 4.6 14.9 20.8
8 B98 Dark Room 7.2 7.7 14.0 153 21.0
9 B114 Office 1 5.7 5.3 14.6 134 195
10 | B132 Hilton Hotel 13.6 9.7 178 | 20.1 25.9

(b) SSIM Assessment

Table 4.12 measures the structural similarity between the backlit input and
the enhanced results in Figure 4.29. In 9 out of 10 simulations, the first iteration
of the proposed method obtained the highest structural similarity compared to

histogram equalization, M-Retinex, and LIME. It also achieved the second-best
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SSIM quality for many test images in the second iteration, outperforming

histogram equalization and M-Retinex.

Table 4.12. Comparison of SSIM index for various methods

S/N | Test Descriptor HE | M- LIME Proposed | Proposed
Image Retinex iter=1 iter=2
1 B7 Man Outdoor 0.79 | 0.65 0.75 0.91 0.84
2 Bl1l Office Building | 0.59 | 0.45 0.66 0.72 0.62
3 B37 Camping 0.33 | 0.37 0.43 0.60 0.47
4 B48 Residential 0.21|0.25 0.37 0.48 0.34
5 B55 Fields Bicycle 0.13 | 0.14 0.23 0.31 0.20
6 B65 City Street 0.57 | 0.34 0.58 0.65 0.52
7 B71 Bush Bicycle 0.22 | 0.23 0.35 0.40 0.30
8 B98 Dark Room 0.22 | 0.20 0.37 0.47 0.32
9 B114 Office 1 0.06 | 0.09 0.20 0.16 0.10
10 | B132 Hilton Hotel 0.55 | 0.48 0.61 0.69 0.61

(c) NIQE Assessment

Table 4.13 gives the NIQE assessment for the enhanced results in Figure

4.29. Overall, the first iteration of the proposed method realized the best quality

scores in 7 out of 10 simulations, nearly outperforming the methods by

histogram equalization, M-Retinex, and LIME.
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Table 4.13. Comparison of NIQE scores for various methods

S/IN | Test Descriptor HE | M- LIME | Proposed | Proposed
Image Retinex iter=1 iter=2
1 B7 Man Outdoor 199 | 1.96 2.02 2.15 2.34
2 B11 Office Building | 2.90 | 2.93 2.99 2.40 2.34
3 B37 Camping 484 | 4.73 525 |4.03 5.34
4 B48 Residential 2.87 | 3.07 2.59 2.24 2.42
5 B55 Fields Bicycle 403 |4.48 4.07 3.42 3.63
6 B65 City Street 1.69 | 2.09 211 1.60 1.88
7 B71 Bush Bicycle 3.49 | 3.07 2.78 2.47 2.77
8 B98 Dark Room 256 | 281 2.27 1.91 2.18
9 Bl114 Office 1 5.19 | 4.67 3.67 3.52 3.59
10 | B132 Hilton Hotel 431 | 474 4.94 4.38 4.44

4.8. Input and Output characteristics

An exposure correction algorithm based on histogram processing and image

fusion was proposed in the previous chapter. The proposed algorithm was

evaluated using objective and subjective metrics on several backlit inputs with

varying exposure levels. This chapter discusses the input and output

characteristics of the grey-level images in terms of their illumination map,

intensity mappings, and histogram properties. For simplicity, 12 images, three

from each category within the dataset, are presented in Table 4.14 to facilitate

the discussions. The categories are represented in column (4) as follows:

LBS = low backlit sector; HBS = high backlit sector; LBH = low background

highlight; HBH = high background highlight.
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Table 4.14. Selected backlit images for input-output analysis

SIN | Test Descriptor Category | PSNR | SSIM | NIQE | NIQE
Image I/P o/P
1 B24 Cityscape LBS 191 |084 |264 |234
2 B84 Sunset Mountain LBS 18.0 | 0.67 2.82 2.50
3 B102 Dark Room Table LBS 153 0.37 2.74 2.45
4 B4 Woman Fields HBS 21.2 0.64 2.71 2.57
5 B33 Boy at Window HBS 158 |0.53 3.80 |3.44
6 B114 Office 1 HBS 134 0.16 3.07 3.52
7 | B37 Camping LBH 186 |0.60 [517 |4.03
8 B55 Fields Bicycle LBH 14.9 0.31 3.44 3.42
9 B74 Boat Night LBH 19.0 0.56 441 4.48
10 | B15 Girl Sea HBH 25.6 0.98 4.18 3.54
11 | B31 Girl 1 Field HBH 25.8 0.97 3.84 3.71
12 | B89 Restaurant 2 HBH 134 0.39 4.54 4.66

4.8.1. lllumination map comparison

Figure 4.30 compares the illumination of the backlit images in Table 4.14 to
their output images obtained by one iteration of the proposed method in sections
(4.1) to (4.4), respectively. The first image in each figure is the illumination map
of the backlit input, and the second is that of the enhancement result. The
illumination maps were calculated in MATLAB R2018a by converting the
colour profiles of intensity images in the HSV space to the one shown in Figure
4.30. In the new colour scheme, the grey value at each pixel position is coded
black, red, orange, yellow, or white based on luminance. Black represents hard
shadows, and white represents excessive highlights.

The results in Figure 4.30 shows how the backlit degradation in each input

varies with different exposure levels. Images with soft shadows such as B24,
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B84, B102, B37, and B55 have higher visibility in the F-region than those
degraded by hard shadows like images B4, B33, B14, B74, and B89. Similarly,
backlit inputs B37, B55, and B74 with low background radiance have higher
visibility in the B-region than B15, B31, and B89. The region-based histogram
specification scheme of the proposed method accounts for such variations by
mapping output intensity values based on the luminance profile in the input.

For example, when comparing the results of image B24 to that of B84, in
Figures 4.30(a) and 4.30(b), respectively, the proposed method tends to increase
exposure more in the B-region of B24 than B84 despite the two images having
soft shadows in the foreground. This is because, in the context of exposure
correction, more contrast is required in the F-region of image B24 to balance
the high radiance in the over-exposed B-region. Another example can be seen
when comparing the results of images B37 and B55 in Figures 4.30(g) and
4.30(h), respectively. In other instances, the proposed algorithm tends to reduce
the high radiance in the input to improve contrast in over-exposed sectors as

seen in Figure 4.30(j).
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(h) Image B55

(i) Image 74

(k) Image B31 (1) Image B89

Figure 4.30. Illumination maps for various inputs and outputs

4.8.2. Intensity mappings

Figures 4.31(a) to 4.31(l) display the transformation functions derived from
equation (3.1) for the set of images in Table 4.14, using the results of one
iteration of the proposed method given in sections (4.1) to (4.4), respectively.
The blue line in all figures represents the transformation function used in M; to
map the input intensity values to Target 1, whereas the orange line is used in M,

to map the input values to Target 2. As seen in Figure 4.31, the mapping
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functions for foreground and background contrast enhancement automatically

adapt to changes in the luminance profile of the backlit input as opposed to the

“one size fits all” approach used in several related works [1],[49],[50],[43],[53],

and [54].
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Figure 4.31. Mapping functions for various backlit inputs

4.8.3. Histogram properties

Figures 4.32(a) to 4.32(l) depicts the input and output histograms for the set
of images in Table 4.14, using the results of one iteration of the proposed
method given in section (4.1) to (4.4), respectively. Figure 4.32 demonstrates
how the proposed method improves contrast in the backlit inputs by shifting
pixel values away from the hard shadows. Some examples can be seen in the
outcomes of images B24, B84, B102, and B4. In other instances, like the one
shown in Figure 4.32(f), the algorithm improved contrast by expanding the
dynamic range of the image. Figure 4.32(j) is another outcome worth
mentioning. The proposed method seems to suppress the high radiance in the

input by shifting pixel values to the left side of the histogram.
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4.9. Impact of wavelet function

The proposed method uses a two-stage DWT-F process that extracts and
combines features of the input masks with the backlit input to produce the final
enhanced image. The low-pass and high-pass filters used in the decomposition
and reconstruction phases are determined by the wavelet parameter 1, , (x, ).
This section discusses the selection of wavelet function impact on the
enhancement quality of the final output image. The discussion is limited to the
Haar, Daubechies, Symlets, and Coiflets families. Four daughter wavelets from
each family—except the Haar family, which has only a single wavelet—are
arbitrarily selected to simulate the algorithm's performance in MATLAB. The
output of the experiments is evaluated qualitatively and quantitatively in

sections 4.9.1 and 4.9.2, respectively.

4.9.1. Qualitative evaluation

In Figure 4.33, two sample backlit images are enhanced by various wavelet
functions from the Daubechies (dbN), Symlets (symN), and Coiflets (coifN)
families. The four daughter wavelets selected from each family are
distinguished by their number of vanishing moment N, as shown in Figure 4.33.
Overall, the choice of wavelet function tends to have no significant difference
in the perceptual quality of the backlit inputs. This can be seen by comparing
the enhancement results of images B7 and B75 using sym4, symb, coif2 or Haar,

db5, and sym3.
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4.9.2. Quantitative evaluation

Table 4.15 shows the PSNR, SSIM, and NIQE quality assessments for the
results in Figure 4.33. The PSNR measurements are given in column (3). The
SSIM scores are provided in columns (4), and columns (5) and (6) are the NIQE
measures for the input and output images, respectively. Table 4.15 reveals that
the choice of a particular wavelet slightly impacts the PSNR and SSIM index
by £0.1 dB and +1%, respectively. In contrast, the NIQE results show multiple
variations for each experiment. For example, the outcomes of B7 show
significant improvements in the NIQE quality by the Haar, sym3, db3, db5, dbé6,
coif3, coif4, and coif5 wavelets despite them having the lowest PSNR.
Therefore, there exists a direct relationship between the choice of Wavelet

transform and the naturalness quality of the enhanced image.
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Table 4.15. Quantitative evaluation of various wavelet functions

SIN | Test Wavelet PSNR SSIM NIQE I/P | NIQE O/P
Image (dB)
Haar 23.6 0.90 2.26 1.85
sym3 23.6 0.90 2.26 1.65
sym4 23.6 0.90 2.26 2.57
symb 23.7 0.91 2.26 2.15
symo6 23.6 0.90 2.26 2.73
db3 23.6 0.90 2.26 1.65
1 B7 db4 23.7 0.91 2.26 2.20
db5 23.6 0.90 2.26 1.67
db6 23.6 0.90 2.26 1.73
coif2 23.7 0.91 2.26 2.59
coif3 23.6 0.90 2.26 1.88
coif4 23.6 0.90 2.26 1.87
coif5 23.6 0.90 2.26 1.84
Haar 24.8 0.94 4.45 451
sym3 24.9 0.94 4.45 4.52
sym4 25.0 0.94 4.45 4.90
symb 25.0 0.95 4.45 4.74
sym6 24.9 0.94 4.45 4.88
db3 24.9 0.94 4.45 4.52
2 B75 db4 25.0 0.95 4.45 4.79
db5 24.9 0.94 4.45 4.48
db6 25.0 0.94 4.45 4.49
coif2 25.0 0.95 4.45 4.79
coif3 25.0 0.94 4.45 4.65
coif4 25.0 0.94 4.45 4.90
coif5 25.0 0.94 4.45 4.86
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

In this thesis, a novel backlit image enhancement algorithm has been
proposed. The algorithm uses a region-based histogram specification scheme in
combination with the discrete wavelet transform image fusion to improve the
visual quality of a single backlit image. The performance of the algorithm was
tested on standard backlit images from Li’s database and the Exclusively Dark
dataset. Both objective and subjective image quality assessment results validate
the superior performance of the proposed method in terms of improving
perceptual quality at a low computation cost with no distortion or colour
artefacts.

The enhancement results for images with low backlit sectors demonstrate
that the proposed algorithm can correct exposure disparities between an under-
exposed foreground and a well-lit background in a picture scene with more than
(60-70) % structural similarity retained in the enhanced image.

Images with high backlit sectors were consistent with low PSNR and SSIM
index despite significant improvements in their visual perception by the
proposed method. Furthermore, the effects of shadow clipping become apparent
in the enhanced output for some test images within the high backlit sector
category. However, experimental results show that multiple iterations of the
proposed method can improve the PSNR quality up to 12 dB after the first three

iterations with no distortion or colour artefacts.
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Images from the high and low background highlight categories showed
similar outcomes in the PSNR, SSIM, and NIQE assessments to those in the
low and high backlit sector categories. The reason is that despite variations in
background luminance, the degree of under-exposure in the foreground always
constitutes either a hard or soft shadow.

The performance of the proposed method was compared to existing image
enhancement methods such as Histogram Equalization, Retinex, and Low-Light
Image Enhancement via Illumination Map Estimation. Experimental results
demonstrated the superiority of the proposed method in improving the
perceptual quality of the backlit image with no colour distortion or artefacts.
Two iterations of the proposed method significantly outperformed existing
methods in terms of PSNR, SSIM, and NIQE quality metrics.

Finally, global contrast stretching techniques were widely known to be
ineffective in solving the problem of backlit image enhancement. However, the
findings in this report demonstrate the efficacy of a histogram-based approach

when combined with image fusion.

5.2. Recommendations
The following recommendations are provided to guide the use of the

proposed method and support further research.

(1) Multiple iterations can be used to improve the performance of the
proposed algorithm in a situation where the PSNR or visual quality

of the enhanced image is perceived to be low by the observer.
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Typically, two to three iterations are sufficient to produce a better
image quality.

(i1) The wavelet parameter in the DWT fusion stages mainly contributes
to the naturalness quality of the enhanced image. High values of
NIQE alone are not a determinant for better image quality. Therefore,
an appropriate choice of wavelet function should maintain the NIQE
score of input but with high PSNR, such as symb.

(1i1)The algorithm proposed in this thesis only addresses the problem of
exposure correction in backlit images. Applying the classical unsharp
masking algorithm on the output of the second DWT fusion stage
could improve sharpness in the enhanced image.

(iv)As the research aimed to develop a backlit image enhancement
method for cell phone applications, developing and prototyping the
algorithm on a PC using MATLAB offered a more flexible and
efficient environment for testing and optimizing key parameters.
Future works shall consider the practical translation of the proposed
algorithm to Android devices, by rewriting the code in Java, the
primary programming language for Android app development,
identifying or developing custom Java libraries for the DWT fusion,
and conducting performance optimizations and memory management
to ensure efficient execution. Additionally, user interface design
tailored to cell phone screens and interactions could be explored to
enable intuitive usage of the backlit image enhancement algorithm on

mobile devices.
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Region-Based Histogram and Fusion Technique for Enhancing Backlit Images for Cell Phone Applications By Shaffa Korvawu
Kokro Jr. F56/35720/2019 A thesis submitted in partial fulfilment of the degree of Master of Science in Electrical and
Electronic Engineering_in the Department of Electrical and Information Engineering_in the University of Nairobi October 2022 i
ABSTRACT Many cell phone cameras perform poorly in backlighting situations due to low dynamic range, which then leads to
the creation of low-quality pictures known as backlit images. Conventional image enhancement algorithms are not well suited
to improve the quality of backlit images. Over-saturation or a loss of contrast are typical outcomes when these methods are
applied. In this thesis, 2 novel image enhancement algorithm is presented for improving the visual perception of a single
backlit image. The algorithm uses a region-based histogram specification scheme in combination with the discrete wavelet
transform image fusion to correct exposure disparities between foreground and background scenes. Computer simulations in
MATLAB R2018a and on a dataset of 162 backlit images revealed that the proposed algorithm significantly improves the
backlit image's visual perception without distorting colours or adding artefacts. The Peak Signal-to-Noise Ratio, Structural
Similarity Index Measure, and Naturalness Image Quality Evaluator metrics objectively validated these results. The algorithm
produced PSNR values ranging from 19 dB to 30 dB for images with low backlit degradation while retaining more than (60-
70) % structural similarity to the inputs. Lower PSNR and SSIM values were consistent with severely degraded images. These
findings agreed with the outcomes of the subjective evaluations. However, multiple iterations of the proposed algorithm
increased the PSNR quality by up to 12 dB after the first three iterations. By comparison, the proposed algorithm significantly
outperformed existing image enhancement techniques such as Histogram Equalization, Multiscale Retinex, and Low-light
Image Enhancement via Illumination Map Estimation. ii CHAPTER 1 INTRODUCTION 1.1. Background Backlit images
are low-quality digital pictures produced due to backlighting, a poor lighting condition that causes significant degradation in
image quality. As shown in Figure 1.1, foreground areas (F-region) in a backlit image are frequently under-exposed, whereas
background sectors (B-region) are either well-lit or over-exposed. Traditional image enhancement algorithms are rendered
ineffective by this type of illumination. Therefore, research in this domain focuses on alternative methods that improve backlit
images while preserving their details and colours [1]. (a) (b) Figure 1.1. Examples of backlit images (a) Backlit portrait (b)
Backlit cityscape [2] 1.2. Assessment of backlighting Backlighting is a poor illumination setting that occurs when an excessive
reflection of light is incident to an image-capturing device or when the dominant light source in a picture scene lies behind
the main object(s) [1]. As seen in Figure 1.1, it creates low contrast in an image's foreground and impairs its overall quality.
Many digital cameras cannot perform well in backlighting due to their low dynamic range. An image sensor capable of
detecting extremely low and high luminance simultaneously would be required to capture high-quality pictures in such a
situation. A device of this type would have a dynamic range compared to the human visual system (HVS). Nonetheless,
professional photographers have used digital cameras' low dynamic range to convey mystery, drama, emotion, and mood.
This is known as silhouette photography, and it has grown in popularity over the last decade [3]. Figure 1.2 depicts a
silhouette image. Figure 1.2. Example of silhouette photography [3] 1.3. Problem Statement Backlighting is a commonly
encountered problem for cell phone users. It usually results in low-quality images known as backlit images. Conventional
image enhancement methods such as the well-known histogram equalization algorithm [4] or Retinex-based algorithms [5]-
[7] cannot achieve the desired enhanced effects of backlit images. Oversaturation and loss of contrast are typical outcomes
when these methods are applied. Various research investigations have been conducted in recent years to address these
challenges. The majority of these efforts have not however focused on the use of backlit image enhancement algorithms in
cell phone applications. As a result, despite recent developments in smartphone technology, there is no commercially
accepted technique for improving backlit pictures on cell phones. Alternative methods such as Auto-exposure (AE) [8] and
High Dynamic Range (HDR) imaging [9] are being used by smartphone manufacturers to handle backlighting and other types
of poor illumination situations. However, these methods have significant drawbacks that outweigh their benefits in poor
lighting situations. For instance, under backlighting, AE cannot reveal items in the foreground while simultaneously exposing
details in the background. As a result, a well-exposed foreground will cause a loss of information in the background scene
and vice-versa. Likewise, HDR, developed primarily to handle low-light situations, is susceptible to motion blur since it relies
on fusing two or more sequential images with varying exposures [9]. Furthermore, it cannot enhance low-quality
photographs after they have been acquired. Therefore, this research investigation sought to develop a more optimal
technique for enhancing backlit images, particularly on cell phones. 1.4. Objectives 1.4.1. Main objective This work aimed to
develop a new image enhancement algorithm that can be employed in cell phone applications to improve the visual quality of
backlit images. 1.4.2. Specific objectives The specific objectives were: (i) To investigate the use of histogram-based
contrast-stretching techniques for backlit image enhancement, taking into consideration their applicability to cell phones. (ii)
To develop an optimized backlit image enhancement algorithm with low-computational cost using a novel region-based
histogram specification (RBHS) scheme in combination with the discrete wavelet transform (DWT) image fusion approach. (iii)
To evaluate the performance of the work on standard backlit images captured in various backlit situations by commercially
available cell phones, based on existing image quality assessment (IQA) techniques. 1.5. Justification for the study
Smartphones have become the standard design for cell phones and other mobile devices, and they currently represent the
fastest-growing_market segment in the telecommunications industry [10]. According to Statista, global smartphone sales
increased from 680 million in 2012 to about 1.54 billion in 2019, as shown in Figure 1.3 [11]. This significant increase is
often due to the many capabilities offered within the device compared to regular mobile devices. Among these capabilities,
the camera remains one of the most important. It is a principal factor influencing consumer choice of one mobile device over
another. As the smartphone industry expands, consumers will continue to expect and demand high-quality cameras on their
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Abstract—Backlit images captured by commercial cell phones
degrade due to different exposure settings for foreground and
background illumination. This paper presents a novel exposure
correction algorithm for single backlit image enhancement using
a region-based histogram specification scheme with the discrete
wavelet transform image fusion. The classical histogram matching
algorithm is performed discriminately on two input masks
generated with identical copies of the input image. A Two-stage
DWT fusion is used to combine salient features of the enhanced
input masks with the original backlit image. Experimental results
demonstrate the superiority of the proposed method over existing
techniques in improving perceptual quality without colour
distortion or artefacts. The proposed method also achieved the
highest PSNR, SSIM, and NIQE quality on average. Furthermore,
multiple iterations of the algorithm increased the PSNR quality by
up to 12 dB after the first three iterations.

Keywords—Exposure correction, image fusion, discrete wavelet
transform, histogram matching.

L INTRODUCTION

Backlit images are low-quality digital pictures generated due
to backlighting, a poor illumination setting that occurs when an
excessive reflection of light is incident to an image-capturing
device or when the dominant light source in a picture scene
radiates behind the main objects [1]. As shown in Fig. 1, backlit
images are characterized by an under-exposed foreground and a
well-lit and/or over-exposed background. The goal of backlit
image enhancement is to remove or reduce the backlit
degradation in the under-exposed foreground, referred to as
“backlit scenes sectors”, while preserving image details and
colours [1],[2],[3]. Conventional image enhancement methods,
such as Histogram equalization [4] and retinex-based algorithms
[5-7], cannot achieve such desired enhanced effects. Over-
saturation and loss of contrast are typical outcomes when these
methods are applied.

Various techniques have been proposed in recent years.
Trongtirakul er al. [1] proposed a full piece-wise nonlinear
stretching function to improve contrast locally in dark, bright,
and well-lit regions. However, the under-enhancement of some
details in the dark sector is a shortcoming. Wang er al. [2]
employ a multi-scale fusion based on the Laplacian pyramid
decomposition. The high dependency on the choice of inputs
and the weight maps acts as a constraint, such that if incorrect
inputs and weight maps are used, the desired result cannot be
achieved [2]. Li et al. [8] proposed a Learning-based algorithm
for backlit improvement but with a high computation cost.
Hence, not suitable for cell phone applications. Other methods,

This work is supported by ArcelorMittal Liberia under the 2019 Mineral
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Figure 1. Example of backlit images (a) Backlit portrait (b) Backlit cityscape

such as Ueda et al. [9] and Guo et al. [10], can reveal details in
under-exposed areas, but they fall short of preserving the natural
hues of the backlit image.

In this paper, a novel backlit image enhancement algorithm
based on histogram matching and image fusion is proposed. The
main contributions include (i) an adaptive brightness control
(ABC) mechanism to handle the low brightness problems
caused by histogram matching; and (i1) the novelty of generating
new ground truth images at low computational cost, with edges,
textures, and colours preserved from the degraded backlit inputs.

The rest of the paper is organized as follows: Section IT
covers relevant literature used in developing the proposed
technique. Section III describes the proposed method.
Experimental results are presented and analyzed in Section IV.
Finally, the conclusion and suggestions for future works are
given in Section V.

II. THEORETICAL FRAMEWORK

In this section, theories related to the proposed method are
discussed. The presentation starts with a brief discussion on
histogram processing, histogram matching, and wavelet theory.
then the Discrete Wavelet Transform (DWT) and image fusion.
A. Histogram processing

The histogram of a digital image with grey levels [0, L — 1]
is a discrete function h(ry) that returns the relative frequency
with which each grey level occurs, as givenin (1) [11].

h(r) = ny (1)

1|Page
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where 7, is the kth grey level for k € [0,L — 1] and ny, is
the number of pixels having a grey level 1. A normalized
histogram p(3.) is obtained by dividing n;, by the total number
of pixels in the image (), as shown in (2) [11].

p(n) =% [}

Figs. 1(a) and 1(b) show the histogram of backlit images (a)
and (b), respectively. Such histograms are typical of a bimodal
distribution with peaks in the dark and bright regions [12].

B. Histogram Specification

Histogram specification, or histogram matching, isa process
used to improve contrast in an image by mapping its grey levels
to a specified histogram [9],[11]. Let I(x,y) be an input
intensity image with grey levels [0,L — 1] and pp(z;) be a
normalized target histogram. The grey-level probability p;(r;)
of I(x,y) is calculated using (2). The cumulative distribution
functions (CDFs) for p;(7;) and pp (zj) are given by (3) and (4),
respectively.

T(r) =Zop(m) ;

G(z) = opp(z) s kEOL-1)/L—-1 (4

ke{OL-1}/L-1 (3

Letting U(+) be a transformation function i.e., U(ry) = z;
the grey level r;, of the input is mapped to the desired value z;,
such that the condition T(r;,) = G(z,;,) is satisfied. Applying
U(:) to each pixel of I(x,y) yields the histogram-specified
image [11].

C. Discrete Wavelet Transform
In this section, a theory on the DWT is presented. First, the

one-dimensional DWT is introduced, followed by the two-
dimensional DWT.

1) One-Dimensional DWT

The DWT decomposes a signal f(x) into various wavelet
coefficients: approximation and detail coefficients. The one-
dimensional (1-D) DWT of the signal f(x) with length M is
obtained using (5) and (6) [11],[13].

W, (mo, k) = WE o FO)Pmoi(X) (5)

Wy (m, k) = 72 S0 £ (O Pm a(x) (©)
where @ (%) and Y (x) are the scaled and translated
versions of the scaling function ¢(x) and the wavelet Y(x),
respectively; and W,(mg, k) and Wy(mk) are the
approximation and detail coefficients, respectively. Taking the
inverse DWT from the above coefficients yields the original
signal f(x). The 1-D inverse DWT is defined by (7) [11],[13].

FG) = 25 ZH3 W (o, K) @ (%)

= =N R NGO B

where m, is an arbitrary starting scale, W, (m, k) is the
approximation coefficient, and W,J,(m, k,n) is a detal
coefficient.

2) Two-Dimensional DWT

The two-dimensional (2-D) DWT is an extension of the 1-D
DWT. Given a 2-D signal f(x, y) such as an image, the two-
dimensional DWT is calculated as follows:

Wy(o,m,m) = 2= SHIA BN f (6 )0pmn(6)  (8)

W' Gmn) = TR SR Y @y (9)
where @;, mn(x,y) is the scaled and translated version of the
2-D scaling function ¢ (x,y): P! I,m'"(x. y) for i € {H,V,D}
are the scaled and translated versions of the 2-D wavelets
xp”(x ¥), (IJV(x ¥), and ?(x, y). which measure the signal
variations in the horizontal (#), vertical (¥), and diagonal (D)
directions, respectively; while W, (jo, m,n) and Wy’ (j, m,n)
are the respective approximation and detail coefficients. The 2-
D scaling and wavelet functions are obtained from the product
of two 1-D basis functions as shown in (10) to (13) [11],[13].

o(x.y) = e(x)o(y) (10)
YY) =00 ) an
¥ (x,y) = 9)P() (12)
PP (x,y) = YY) (13)

Equation (14) produces the original signal f(x,y) by
calculating the inverse DWT of the 2-D coefficients [11],[13].

fy) = 25 Zn=6 W Go, m, )@, mn (4, ¥)

+—ﬁz‘=m>:;;,‘, S INZ Wy Gom Y () (14)

D. Image Fusion

Image fusion is the process of combining features from two
or more sources to produce a composite image [2],[14]. Various
image fusion approaches have been investigated. The most basic
methods are Maximum Selection (MaxS), Minimum Selection
(MinS), and Averaging. Pixel intensities are compared at each
spatial position in the MaxS or MinS procedure. The highest or
lowest intensity value (in the case of MinS) at said position is
then selected as the pixel value in the composite image. In the
Averaging approach, the mean is determined and used as the
resultant pixel [14]. Advanced image fusion techniques have
been developed over the years. In the following sections, two of
these techniques are presented.

1) Laplacian Pyramid-based image fusion

Image pyramids are data structures used for processing
digital pictures at various spatial scales [15]. Two of the most
often utilized pyramids are the Gaussian and Laplacian [2],[14].
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The low memory requirement of the Laplacian pyramid is more
beneficial in many image processing applications.

Fig. 2 shows the block diagram of an image fusion process
based on the Laplacian pyramid. The procedure begins with a
pyramid decomposition of each input image, then a selection or
averaging process to blend multi-scale characteristics at each
corresponding pyramid level, and finally, an inverse pyramid
transformation to reconstruct the composite image from the
fused pyramid. A similar principle is used in the discrete wavelet
transform approach presented in the next section.

Figure 2. Image Fusion based on Laplacian Pyramid [14]

2) Discrete wavelet transform-based image fitsion

The discrete wavelet transform has become an effective tool
in the multiresolution analysis and processing of digital images
[16]. The DWT, as described in Section II.C, decomposes an
input signal into wavelet coefficients. Hence, image fusion using
the DWT constitutes combining wavelet coefficients extracted
from multiple sources to create a composite image [13],[16].

Fig. 3 shows a 2-D DWT image fusion process with one
level. The process begins with the decomposition of each input
image into four sub-bands: low-low (LL), high-low (HL), low-
high (LH), and high-high (HH). The LL sub-band is an
approximation image generated by (8). The HL, LH, and HH
sub-bands represent salient features such as edges or lines
obtained by (9) from the horizontal, vertical, and diagonal
directions, respectively. The composite coefficients are then
produced by applying a fusion rule to the wavelet coefficients at
the same level and representation via selection or averaging. The
final fused image is obtained by calculating the inverse DWT of
the composite image, given by (14).

Coellicients A
pwr| 1L | HL
Image A Faxd Coeflcients
LK HH -
e — i LL | HL |owr|  puse
i
Rule w4 | s Imege
L | HL
Inage B
LH | HE

Figure 3. Single-level 2-D DWT Image Fusion [14]

III.  PROPOSED METHOD

Backlit image enhancement can be limited to the problem of
balancing exposure disparities between foreground (F-region)
and background (B-region) scenes. This concept is established
on the assertion that the F-region is darker than the B-region
because of relatively shorter exposure times, defined as the
amount of time a camera’s sensor is exposed to light [17]. The

Input Backlit Image

¥

Canvert RGB to HSV and Decouple V-Channel
Create Input Masks (; and M (see Section IILA)

!

Generate Target Histograms Tary(z) and Tary(z)
(see Section 111.B)

1

Enhance F- and B- regions using Region-based Histogram
Specification (see Section I1.C)

| Apply Adaptive Brightness Control on M; and M, |

(see Section 111.D)

'

Recouple HSV' Channels in M; and M,
Convert HSV to RGB

!

Fuse F- and B- Masks with Backlit Input via DWT Fusion
(see Section 1IL.E)

!

Enhanced Image

Figure 4. Block Diagram of Proposed Method

proposed method uses a region-based histogram specification
scheme combined with the discrete wavelet transform (DWT)
image fusion to resolve exposure disparities in a single backlit
image and improve the overall perceptual quality. Fig. 4
describes the proposed procedure. The key steps are: (i) Pre-
processing the input image; (ii) Generation of target histograms;
(ii1) Enhancement of F- and B- regions; (iv) Adaptive brightness
control; and (v) Fusion of input masks with the backlit input
image.
A. Pre-processing of input image

Various colour models have been developed for processing
and storing digital pictures. In this paper, the HSV (Hue,
Saturation, Value) colour model is employed since it allows the
luminance component of an image to be processed without
distorting the colour information. In Fig. 4, the proposed
procedure begins with an RGB to HSV transformation [18] on
the backlit input /(r, g, b). Letting I’(h, s, v) be the resultant
image, two input masks, M, and M,, are created with identical
copies of the intensity image /’,,.
B. Generation of target histograms

Histogram specification, in its generic form, involves
modifying input intensity values to match a target histogram
derived from a mathematical model or a typical image [11]. By
using a two-mask approach, the proposed procedure requires
two unique target histograms, Tary (z) and T'ar,(Zz), to improve
contrast in the under-exposed F-region and reduce over-
exposure in the B-region, respectively. The choice of the target
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Figure 5. Target Histograms (a) Target 1 (b) Target 2

can affect the enhancement results after Histogram Specification
is performed. Therefore, generating appropriate target histograms
is a crucial step.

The target histograms in Fig. 5 are derived from the
luminance component of two sample images. Target 1 is
obtained from a well-lit, high-contrast image. Therefore, no
peaks in the dark and light tones of the histogram. Target 2 is a
high-contrast image captured in a relatively low-light situation,
thus having peaks in the dark tones but none in the lightest tones.
Such selection for Target 1 improves details in the under-
exposed F-region at the expense of lowering contrast in well-lit
areas, while Target 2 red high radi in the over-exposed
sectors of the B-region but exaggerates underexposure in the F-
region.

C. Enhancement of F- and B- regions

Given the input masks, M; and M,, and the target
histograms, Tar;(z) and Tar,(z), the region-based histogram
specification (RBHS) scheme in Fig. 6 is employed using (15).

G(x,y) = HS{I',(x, ), Tary(2)} s

where Gy (x, y) is the histogram-specified image of the input
mask My, obtained by the target Tary (), for k € {1,2}.

Y
Specify Histogram Enhanced
Input ™ inM; Image Gy
Intensity |
Image
Specify Histogram Enhanced
T ™ inM, ™ ImagcGy
x

Figure 6. Region-based Histogram Specification scheme

Fig. 7 shows the effects of (15) on a sample backlit image.
Fig. 7(a) is the intensity image of the backlit input. Fig. 7(b) and
7(c) are the enhanced output of M; and M,, respectively. Details
in the F-region of M; can be seen with more clarity, while high
radiance is reduced in the B-region of M,. The histograms of

Histogram

Grey Level

Grey Level
() ) ©

Grey Level

Figure 7. RBHS on sample backlit image (a) Intensity image (b) M, output
(c) M; output

Figs. 7(b) and 7(c) show that the pixel intensities in the light
tones of M, and M, are shifted to darker shades of grey. This
property can create low brightness in the final enhancement
stage. A brigh control hanism is used to offset this
effect.

D. Adaptive brightness control

Adaptive brightness control (ABC) is a term often associated
with the automatic adjustment of a display panel’s brightness
level based on the ambient light environment [19]. This method
is primarily employed in smartphones, tablets, and digital
television systems as an energy-saving feature [19],[20]. By
contrast, ABC is defined in this paper as a method of
automatically p ing for low brigh in the input
masks after RBHS is performed. Although the nomenclatures
are the same, the difference rest within the methods and
applications. Fig. 8 describes the proposed ABC procedure.

1) Brightness threshold

Brightness has been defined by Wyszecki et al. [21] as “an
attribute of a visual sensation according to which a given visual
stimulus appears to be more or less intense; or, according to
which the area in which the visual stimulus is presented appears
to emit more or less light”. Therefore, the perception of
brightness to a human viewer is subjective. Currently, there is
no conventional method for measuring brightness despite the
various methods proposed [22],[23],[24].

H

To cc for low bri in the input masks, first, a
threshold value 7' is determined at a point of perceived
brightness in the input. Given in (16), a pixel with an intensity
value greater than 7 is considered a bright element, denoted as
&P. ie., it contributes primarily to the lightness of the image.

p (L if(L—1)2L(xy)>T
L "

where I;,(x,y) is an input intensity value and L = 2" is the
maximum grey level of the input determined by its bit-depth (n).
For an 8-bit image, L = 256. The threshold T is dependent on
the bit-depth of the input. Therefore, the value of 7' must
correlate with the range of grey levels in I;,.

Various threshold values such as Otsu’s [22] and
Trongtirakul's [1], provide a basis for image segmentation but
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Figure 8. Adaptive brightness control (ABC)

are not suitable for the nature of brightness compensation since
they extend to a broader range of grey levels beyond the lightest
tones. Therefore, a simple but intuitive approach is adopted in
this paper.

In digital imagery, the luminous scale in a histogram
estimates the amount of perceived brightness in each pixel as a
percentage [25]. Hence, in a normalized histogram ranging from
0 (black) to 1 (white), 0% brightness is black, and 100%
brightness is white. The shadow region constitutes about 25%
and beyond 75% approximately is the highlight region in which
high-intensity values localize [25]. The value of T can thus be
obtained by experimenting with various brightness levels in the
range [ 75%—100%]. Some examples are shown in Fig. 9.

After performing 20 experiments with different values, the
threshold 7 was set at 94% brightness, i.e., hsv(0°,0%, 94%)
in the HSV model and rgh(240,240,240) in the RGB space.
Pixels with grey levels greater than 7=240 are considered bright
elements.

2) Adaptation Factor
Equation (17) calculates the adaption factor o using the sum
of bright elements # and the total number of pixels N in the input.

=N _ _
RO

[N

a

a7
n =Yt H,(n >T) (18)

where H,, is the histogram of I}); 7, is an input intensity in
the range [0,L — 1]; and 7 is a threshold. Table I shows the

T=81%,0=068

——

I=75%,a=099 T=87%,0=033

o

I=90%,a=021

T=94% a=0.07 I=96%,a=004

Figure 9. Some selected values for brightness threshold
values of a for some selected backlit images which are shown in

Figs. 12 and 14. Images with many pixels in bins H, (1, > T)
are observed to have a high adaptation factor.

TABLEL ADAPTATION FACTORS FOR VARIOUS INPUT
No. Test Image Description Size a
01 Backlit 1 Man window 448x296 03192
' 02 ' Backlit 6 [ Boy outdoor ' 480x316 ' 00673
03 Backlit 17 Road signboard 694x460 0.0588
04 ' Backlit 40 [ Bi-cycle woods . 640x480 ' 0.0001
05 Backlit 77 Darkroom 1024x586 = 0.0043

3) Brightness Compensation

In an input mask, brightness compensation is performed by
shifting pixel intensity values to the right (highlight region) of
the histogram using the adaptation factor a, as given in (19).

Gi(oy) = a+ X, X7 G (o y). fork =12 (19)

where G, (x, y) is the histogram-specified image of an input
mask My, and Gi.(x, ) is the ABC output image that is coupled
with the hue and saturation channels of the backlit input. The
HSV to RGB transformation [18] is performed on Gy.(h,s,v) to
obtain the enhanced RGB colour image for M,,.

4) Alpha-clipping

Backlit images with high a values are frequently associated
with excessive brightness compensation in the M, input mask.
The ABC process incorporates the concept of alpha-clipping to
address this problem. Letting a;;); denote a limit parameter, all
values of @ > ayyy are clipped, as shown in Fig. 8. The
parameter a;y is set to 0.23 based on the perceived quality of
the output image. Moreover, excessive brightness compensation
tends to occur for @ values greater than 0.23, as shown in Fig. 9.

5) Fusion of F- and B- masks with input

Image fusion technology is based on the idea of combining
the best features of two or more sources to produce one
composite image [2],[14]. Various fusion methods have been
explored [14]. In this paper, the DWT approach is employed. Its
performance in minimizing colour distortion is a significant
advantage [26].
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a) Single-stage DWT fision
Fig. 10 depicts a straightforward DWT fusion process that
takes three inputs, /;, I,, and ¥ (x, ¥). The inputs I, and I, are
the RGB images to be fused and Y(x, y) denote a wavelet type.
To fuse two RGB inputs, first the 2-D wavelet decomposition of
each input channel z' is obtained using (8) and (9). Equation
(20) further describes this procedure.

[cAw cHy, ¢V, cDy )t = DWT{L (z). ¥ (x,y)} (20)

where cAy is the approximation coefficient matrix; cHj,,
cVy. and cDy,, are the horizontal, vertical, and diagonal detail
coefficient matrices, respectively. The variable k € {1, 2} and
i € {R, G, B}. After obtaining the coefficient matrices, the mean
X= ZNE is calculated for each I; and I, channel pair as shown in
Fig. 10. Next, the image reconstruction for channel i is done by
calculating the inverse discrete wavelet transform using (21).
6! = IDWT{X', Y (x,y)} (21)
where X' is the mean vector of the coefficient matrices
[cA, cH, ¢V, cD]%; (x,y) denotes the wavelet type; and the
output 8 is a greyscale image. Finally, the fused image 6 is
obtained by coupling the RGB channels (6%, 8¢, 5).

b) Optimization of DWT fiision
The algorithm in Fig. 10 uses a nested for loop to calculate
the mean feature vector X*. As a result, the time complexity of
the proposed method increases significantly by 0(n?) for a
given input. Equations (22) to (25) employ a vectorized
approach to obtain the mean vector X' « [cA,cH, cV, cD]'.

cAl = (cA; + cAy) /2 22)
cH! = (cH, + cH,)'./2 (23)
cVi=(cW +cVy)l./2 (24)
eD! = (cDy + ¢D,)i./2 (25)

where [cAy, cHy, cVy, L'D,,]" are the coefficient matrices
obtained from (20) for k € {1,2}andi € {R,G,B}.

¢) Two-stage RBHF fiision process
The proposed method uses a two-stage DWT fusion process
as shown in Fig. 11. Salient features of the enhanced input
masks, G; and G;, are combined in the first stage, yielding the
fused image F; (x, y). The final enhanced colour image F, (x, y)
is created by combining F; (x,y) with the backlit input /(x, y).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Various experiments were conducted on a dataset of 100
backlit images with an 8-bit resolution. Of these images, 24
samples were selected from Li’s database [27], which contains
38 standard backlit photos used in similar research, and 76 were
obtained from the Exclusively Dark (ExDark) database [28],
which comprised 7,363 low-quality images captured in poor
lighting settings. Due to space limitations, only a few selected

% Pseudo code for a single-stage DWT fusion

Input:I; = (R, x%,x%); I = (3R,y%,¥%);
Wavelet-type: 1(x,y):
Result: 6(rgh);

for each Input k € {1, I}
for each channel z* of I.:
get the DWT {1 ('), ¥ (x. y)}:
output— [cAy, cHy, Vi, cDi]';
end,
end,

for each channeli € {R, G, B} parof I, - I,
get the mean X* «— [cA,cH, cV, cD]%;
cA' = X(cAr cAr);
cH' = X(cHy, cHy);
V' =X(cW, Vy);
D! = X(cDy,cDy);
calculate 8 = IDWT{X',(x,y)};
end;
Result: set 6 = (6%,69,67).

Figure 10. Single-stage DWT fusion

S DWT Fusion DWT Fusion Enhanced
"g“,(;“') F» MyandM, [ Frandlxy) 9 iwage
tat (Stage 1) (Stage 2) Fixy)
t f
Tnput mask Backlit Input
Gy(x.y) I(xy)

Figure 11. Two-stage RBHF fusion process

images from the dataset are used to demonstrate the
effectiveness of the proposed method. The full results are
available at https://github.com/shaffakjr/backlit-research-rbhf
for interested readers. All simulations were performed in
MATLAB R2018a on a PC with 32GB RAM and a 2.60GHz
Intel Core i7 processor. The parameters of the ABC fusion
stages were set as follows: T = 240: ajy = 023 ; and
Y(x,y) = symsS.

A. Performance evaluation of the proposed method

Fig. 12 displays the performance of the proposed method on
five different backlit inputs: B1, B6, B17, B77, and B20. The
original images are shown in Fig. 12(a), and the enhanced results
are displayed in Fig. 12(b). Overall, the results show significant
improvements in the visual quality of the backlit inputs without
any noticeable distortion or artefacts. Furthermore, the outcomes
of images B1, B6, and B20 demonstrate that the proposed
algorithm can effectively expose the degraded backlit sectors.

B. Quality assessment

Three objective metrics are used to validate the performance
of the proposed method. They include the PSNR, SSIM, and
NIQE [32]. The PSNR and SSIM are well-known full-reference
image quality metrics. The former is used to calculate the peak
signal-to-noise ratio between the backlit input and enhanced
output, while the latter measures structural similarity. The
greater the PSNR value, or an SSIM score close to 1, the better
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Figure 12. Enhancement results for some selected backlit images (a) Original
(b) Enhanced

the image quality. The NIQE is a no-reference image quality
metric that calculates the naturalness of an image using only
observable deviations from statistical regularities identified in
natural photographs. It requires no ftraining or exposure to
distorted images [29]. Given in (26), the NIQE is defined as a
simple distance metric between the model statistics and the
distorted image statistics [29].

D(Vy,Va 51, 52) = J((V;—V:)'( o) -w)

(26)

where V;, V5, and Z;, %, represent the mean vectors and
covariance matrices of a natural Multivariate Gaussian (MVG)
model and the MVG model of the distorted image, respectively.
Several studies, including Wang et al. [2] and Ueda et al. [9],
have adopted the NIQE quality metric, with low values
indicating high picture quality.

Table II gives the objective quality scores for the simulations
in Fig. 12. The PSNR and SSIM index are given in columns (5)
and (6), respectively. followed by the NIQE score for the backlit
input in column (7) and the enhanced output in column (8). The
proposed method achieved high PSNR—19 to 25dB—for many
images in the dataset. Some examples are seen in the outcomes
of images B1, B6, and B17. However, low PSNR values were
consistent with images of high backlit degradation like B77.

The SSIM results in Table II show that the proposed method
achieves high structural similarity with the backlit inputs,
ranging from 0.6 to 0.9. However, low SSIM scores below 0.5
were also frequent with highly degraded images. Nevertheless,
since the nature of the problem is backlit enhancement, this is
expected as more salient features are revealed in the enhanced
images.

In terms of NIQE, the proposed method tends to improve or
preserve the natural quality of the backlit inputs. Some examples
can be seen in the outcomes of images B1, B6, B17, and B20.
The lowest NIQE quality was realized by image B77.

C. Multiple RBHF process to improve enhancement quality

As seen in Table II, the proposed method can produce low
PSNR values for some backlit inputs even when high perceptual
quality is achieved. To improve such outcomes, establishing the
proposed method as an iterative process can increase the
enhancement quality of the backlit input, thereby improving the
PSNR. In theory, this is a valid approach since the proposed

TABLEI OBJECTIVE ASSESSMENTS OF THE PROPOSED METHOD FOR SELECTED BACKLIT INPUTS
No. Test Image Description Size PSNR (dB) SSIM NIQE I'P NIQE O
01 Backlit 1 Man window 448x296 20.7 081 338 320
02 ' Backlit 6 Boy outdoor ‘ 480x316 237 091 226 215
03 . Backlit 17 [ Road signboard . 694x460 ‘ 205 » 0.69 » 295 » 241
04 Backlit 20 Office building 360x480 19.0 0.72 263 240
05 » Backlit 77 Darkroom ‘ 1024x586 | 153 047 169 191
Average 198 0.72 258 242
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method has shown properties of preserving details and colour in
the enhanced output.

Fig. 13 depicts the proposed multiple region-based
histogram and fusion (RBHF) process. The overall process is
determined by the number of iterations given by the parameter
Iter. Avalue of 1, i.e., Iter = 1, yields the outcomes of a single
RBHEF process. The outcomes of 2 < [ter < oo are presented in
the following sections.

Proposed
n‘“"{“ Method Output Enhanced
acklit RBHF) Faxy) I
o t Axy mage
sl ‘

Figure 13. Proposed Multiple RBHF process

1) Performance of multiple RBHF process

Fig. 14 shows the results for multiple iterations of the
proposed method on selected backlit inputs: B6, B77, B40, B20,
and B21. The original images are shown in the first column. The
enhanced image after each iteration is given in subsequent
columns. Furthermore, the enhanced image FZ["](X, y) of the
previous iteration [n] is used as the input for the next [n + 1]
iteration to obtain the enhanced image Fz["“](x, ¥). Except for
the first iteration n = 0 where the input is the degraded backlit
image. Finally, the experimental value of iter was setto 5. After
5 iterations, there is no apparent difference between the input
and the enhanced images as given by the SSIM index. The
outcomes of each iteration are shown in Figs. 14(b)-(f),
respectively.

The results in Fig. 14 show significant improvements in the
perceptual quality of the backlit inputs. With each iteration, the
proposed method increased exposure both in the F- and B-
regions while details and colours were retained. However,
intensity saturation is observed in the B-region of image B21,
particularly after the third iteration. This effect uniquely occurs
when the exposure levels become higher than what is required
to properly reveal the entire picture scene.

Figure 14. Performance of multiple RBHF on selected backlit images (a) Backlit input (b) iter =1 (c) iter =2 (d) iter =3 (e) iter =4 () iter =5
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Figure 15. Quality assessments of multiple RBHF (a) PSNR (b) SSIM Evaluation 1 (c) SSIM Evaluation 2 (d) NIQE

2) Objective assessment

The PSNR, SSIM, and NIQE quality metrics are used to
evaluate the performance of the multiple RBHF process in Fig.
14. The PSNR evaluation is given in Fig. 15(a). For each
iteration, FZ["] (x,y) is the new ground truth image compared to
E"*(x, y). In Fig. 15(a), the proposed method realized up to
a 6dB increase in PSNR per iteration. Furthermore, the graph
suggests that further improvements in the PSNR quality could
be achieved after the 5™ iteration.

Fig. 15(b) gives the SSIM assessment, and Fz["](x, y) is the
new ground truth image compared to le"“] (x,y). Significant
improvements in the SSIM quality can be seen in the first three
iterations. However, after the third iteration, the SSIM values
tend to converge at the absolute similarity.

Fig. 15(c) compares the structural similarity between the
backlit input /(x, y) and the enhanced image Fz[" (x,y)forn €
{0, ..,4}. The overall results show a decrease in the SSIM values
with about a 10% reduction after the second iteration. Since the
ground truth image is the degraded input and the problem
domain is backlit enhancement, the SSIM values are expected to
decrease as the enk quality i . However, more
than (60-80)% similarity is achieved by the proposed method for

images B6, B21, and B20 whereas (20-40)% for B40 and B77,
for the 5 iterations displayed.

Fig. 15(d) depicts varying changes in the NIQE values after
each iteration. Within five iterations, the proposed method
realized a slight decrease in the NIQE values for the backlit
inputs. Some examples can be seen in the outcomes of images
B21, B6. and B77. However, the method's overall performance
yielded desirable results in terms of preserving the natural
quality of the backlit inputs.

3) Subjective assessment

A subjective test was conducted to further evaluate the
results in Fig. 14. Using the International Tel ications
Union's image quality assessment framework [33], 16 non-
experts in digital image processing were asked to judge the
enhancement results for each iteration and then choose the
outcome with the best picture quality. The test subjects included
twelve residents from the Plainsview ity in South B and
four students from the Railways Training Institute, Nairobi,
Kenya. Table IIT gives the results of their assessments.

Table IIT shows that two iterations of the proposed method
are often sufficient to produce a higher image quality. However,
in some cases, as seen in the outcome of image B21, one
iteration was deemed sufficient.
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TABLE IIL SUBJECTIVE EVALUATION OF MULTIPLE RBHF

Output Image Quality by Number of Test Subjects
No. Image by

Iteration B6 B77 B40 B21 B20
01 Iterl 2 3 4 11 3;
02 . Iter2 ‘ 7 7 ‘ 6 . 3 8
03 . Iter3 ‘ 1 ‘ 3 ‘ 6 2 1
04 . Tter 4 ‘ 4 ‘ 3 ‘ 0 0 3
05 ' Iter 5 ‘ 2 0 . 0 . 0 1

D. Computational time analysis for multiple RBHF

Table IV depicts the average execution time for each
simulation of the multiple RBHF process based on the backlit

E. Comparative analysis with existing methods

In this section, the performance of the proposed method is
compared to Histogram Equalization (HE) [4], Retinex [7], and
LIME [10]. Various simulations were conducted on a dataset of
100 backlit images with an 8-bit resolution. Seven images are
provided for comparative analysis due to space limitations.

1) Subjective comparison

Fig. 16 compares the results of the proposed method to
existing image enhancement techniques. The backlit images are
shown in Fig. 16(a) and the enhanced results of Histogram
Equalization, Retinex, and LIME are shown in Figs 16(b)-(d),
respectively. Figs 12(e) and 12(f) give the outcomes of two
iterations of the proposed method.

Overall, the results of the proposed method show significant
improvement in the backlit inputs without problems of under- or
over-enh as with existing approaches. For instance,

inputs in Fig. 14. The time CTBO represents the computation
time before the DWT fusion optimization, and CTAO is the time
measurement after optimization. The computation time given by
CTBO increased significantly with the input's size. For example,
the average time for low-resolution images such as B6 and B20
was less than 2 seconds per iteration, whereas higher-resolution
images like B77 yielded about 7 seconds. The DWT fusion
optimization significantly improved the time complexity of the
proposed algorithm when comparing the results of CTBO and
CTAO in Table IV. As shown in column (5), the average time
for all simulations was less than 0.65 seconds per iteration.

TABLEIV. AVERAGE EXECUTION TIME PER ITERATION

No. Test Image | Size | Tclll_n;(;s) | g:::és)
01 Backlit 6 480x316 1.78 0.12
02 Backlit 20 360x480 183 013
03 ' Backlit 21 A 600x400 ‘ 2.64 A 0.17
‘ 04 . Backlit 40 [ 640x480 . 3.61 [ 0.28
05 ' Backlit 77 [ 1024x586 [ 7.16 | 0.62

Histogram Equalization tends to improve visibility in the dark
F-region of the backlit input but at the expense of distorting or
washing-out colours, as seen in images B6, B3, and B23 of Fig.
16(b). Retinex, in Fig. 16(c), creates an unnatural effect in the
enhanced image with distortion features similar to Histogram
Equalization. In contrast, LIME tends to over-enhanced details
in the backlit image while oversaturating colours, as shown in
Fig. 16(d) images B6 and B21.

Compared to the existing methods, the proposed method has
a superior performance in terms of visual quality. The main
reason for this is that it increased contrast in the under-exposed
F-region and adjusted exposure disparities in the overall image
while suppressing colour artefacts, giving the enhanced image a
more realistic appearance.

2) Objective comparison

Table V gives the average quality measurements for various
methods on 100 backlit images. The PSNR results are shown in
column (3) followed by the SSIM and NIQE scores in columns
(4) and (5), respectively. On average, the proposed method
outperformed existing methods in all quality metrics. As shown
in Table V., the second iteration of the proposed method

Figure 16. Enhancement comparison of various methods (a) Backlit input (b) HE [4] (c) M-Retmex [7] (d) LIME [10] (e) Proposed method iter=1 () Proposed

method tter=2
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Figure 16 (¢
Proposed method iter=2

achieved the highest quality scores in both PSNR and SSIM
while the first iteration attained the best NIQE quality.

TABLEV.  AVERAGEQUALITY SCORES FOR VARIOUS METHOD ON
100 BACKLIT IMAGES
. PSNR NIQE
| Mo Method | @m |ssnrop
Histogram
O | Equbmtongy) | 116 |oa |36
02 | MRetinex[7] 92 042 3386
03 | LIME[10] 157 0.52 373
04 | ProposedMethod | g, 0.61 319
iter =1 | |
05 | ProposedMethod | ,,, 094 352
| Iter =2

V.  CONCLUSION

In this paper, a novel technique for single backlit image
enhancement is presented. The proposed technique combined a
global contrast stretching scheme based on histogram matching
with the DWT image fusion to improve the visual perception of
a single backlit image. The proposed algorithm was tested on
standard backlit images from the Li’s and ExDark databases.
Both objective and subjective image quality metrics were used
to validate the performance of the algorithm.

®

of vanous methods (a) Backlit input (b) HE [4] (c) M-Retinex [7] (d) LIME [10] (¢) Proposed method iter=1 (f)

A multiple RBHF process was presented to improve the
performance of the proposed algorithm. For five iterations, both
qualitative and quantitative evaluations showed the absolute
quality of the RBHF method. In most situations, one to two
iterations were observed to be sufficient in achieving the desired
enhanced effects.

A comparative investigation using standard backlit images
from Li’s and ExDark databases was conducted to compare the
performance of the proposed technique to existing enhancement
methods such as Histogram Equalization, Retinex, and Low-
light image enhancement via Illumination Map Estimation.
Experimental results demonstrated the superiority of the
proposed method in improving contrast in the dark foreground
while preserving details and colours in the overall image.

Future work shall focus on adopting an unsharp masking
algorithm to improve the sharpness of the enhanced images as
well as developing a mathematical model to generate optimal
target histograms.
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Abstract— The enhancement of low-light images is a critical
area of research in computer vision and image processing. It is
essential for many applications, including surveillance, medical
imaging, and astronomy. Existing image enhancement methods,
however, often exhibit colour distortions, over-saturation, and
other abnormalities that lead to a drastic reduction in the low-
light image fidelity. In this paper, we propose a novel image
enhancement algorithm that effectively addresses these
challenges. Our approach leverages histogram matching and
image fusion techniques to improve the perceptual quality of the
low-light image. We employ a region-based histogram matching
scheme to enhance contrast in the foreground and background
scenes distinctly. An adaptive brightness control mechanism
adjusts the overall brightness to ensure that details enhanced in
dark areas are perceptible. We combined salient features from
the foreground and background scenes with the original low-
light image via a two-stage discrete wavelet transform fusion.
Finally, we employ the classical unsharp masking algorithm to
sharpen details in the resulting image. Computer simulations on
a benchmark dataset show the efficacy of our method in both
objective quality and subjective visual inspection. Compared to
existing approaches, our method achieved high PSNR and SSIM
quality, demonstrating the potential of our algorithm for low-
light image enhancement applications.

Keywords— Histogram matching, image fusion, discrete
wavelet transform, low light image enhancement

I. INTRODUCTION

Low-light images are digital pictures captured in low-
lighting conditions such as at night, dusk, dawn, indoor
settings with dim light, etc. These images often have higher
noise levels and poor visibility in the foreground and
background scenes which can reduce the effectiveness of
computer vision algorithms like object detection [1] and
recognition [2]. Over the years, various techniques have been
proposed to improve the visual quality of low-light images.
Some of these methods are based on conventional image
processing techniques, including histogram equalization [3],
contrast stretching [4][5], and Retinex theory [6]-[8].
Histogram-based techniques improve the perceptual quality of
low-light images by redistributing pixel intensity values in
bright and dark regions to create a more balanced histogram,
while contrast stretching alters the image contrast range to
differentiate its features. Retinex algorithms, on the other
hand, operate on the notion that an image can be split into
reflection and illumination components and seek to separate
them to improve its visual quality [7]. Despite the
effectiveness of these algorithms in enhancing the visibility of
low-light images, they often result in over-saturation, colour
distortion, or loss of contrast in well-lit areas [4][9].

To address these limitations, researchers have investigated
several deep learning techniques with convolutional neural
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networks (CNNis) to conduct intrinsic mappings between the
low-light input and the enhanced image [10]-[11]. Deep
learning  techniq have  demc d remarkable
performance in reducing noise and improving the perceptual
quality of low-light pictures. However, they may not be
appropriate for real-time applications due to their high
computational cost. Additionally, deep neural networks
require large training datasets and may not generalize well to
images with different characteristics or from other domains
[12].

The guided image filtering (GIF) and the dark channel
prior (DCP) approaches are alternative methods to traditional
image processing and deep learning techniques. The GIF and
DCP techniques can be effective in many low-light situations.
However, GIF methods can lead to colour distortions and they
perform poorly in very dark scenes [13][14]. On the other
hand, DCP methods heavily focus on outdoor settings where
the light distribution is impacted by atmospheric scattering
which creates a prominent dark channel in the low-light input
[15][16]. Frequently, this limits the performance of DCP
techniques in situations where the lighting conditions are
controlled, such as in indoor settings [16].

In this paper, we proposed a novel and flexible low-light
image enhancement algorithm that focuses on correcting the
exposure disparities between well-lit and under- or over-
exposed parts in the image. To achieve this, we employ a
region-based histogram specification scheme for stretching
contrast globally in foreground and background scenes, a two-
stage discrete wavelet transform (DWT) fusion to combine
salient features of the contrast-stretched images with the low-
light input, and the classical unsharp masking algorithm to
further improve contrast.

The rest of the paper is organized as follows: Section II
covers relevant literature utilised in the development of the
proposed method. In Section III, the proposed algorithm is
presented. Section I'V then discusses the experimental results
and Section V highlights the conclusion and future study.

II. THEORETICAL FRAMEWORK

A. Histogram Matching

Histogram is a powerful tool for analysing the visual
characteristics of images, such as contrast, brightness, and
dynamic range. As given in (1), it is a discrete function that
counts the number of pixels having a particular grey value in
the range [0,L — 1] [17].

h(r) =n, , fork €[0,L—1] (1)

where 7y, is the kth grey level, ny is the number of pixels

having a grey level 73, and L = 2" is the maximum grey level
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Fig. 1. Single-level 2-D Discrete Wavelet Transform Image Fusion

determined by the image bit depth (n). Described in (2), is a
normalized histogram p(r;) obtained by dividing n; by the
total number of pixels in the image (N) [17].

n

3
N

The histogram matching technique is used to modify the
pixel distribution of an input image /(x, y) to match a desired
histogram pp(z;), usually obtained from a mathematical
model or a sample image [17][18]. To perform the classical
histogram matching, first, we compute the cumulative
distribution function (CDF) of the input, T'(73.), and the CDF
of the target histogram, G(z;), as given in (3) and (4),
respectively.

p(n) = @

k
T(n) = Zﬂp,(ri) ; ke{0o,L—1}/L—-1 6)

k
G(z) = Z opp(z,») ;kefo,L—1}/L-1 (]
j=

where p;(1;) and pp(z;) are the normalized input and
target histograms. Next, letting U(-) be a transformation
function such that U(r,) = z;, we can map the grey level r;,
to the desired value z;, to satisfy the condition T'(r3,) = G(2).
Finally, applying U(*) to every pixel in /(x, y) will yield the
histogram-specified image [17].

B. Discrete Wavelet Transform

The DWT is a mathematical technique widely used in
image processing applications for compression, feature
extraction, or denoising. Using a set of wavelet functions, the
DWT decomposes an image signal at the first level into four
frequency sub-bands, namely the Low-Low (LL), Low-High
(LH), High-Low (HL). and High-High (HH). Each of these
sub-bands contains different frequency components of the
nput [19].

The LL or approximation sub-band is the low-frequency
component obtained by applying a low-pass filter across the
input. The LH and HL sub-bands represent the high-frequency
details extracted from filtering the signal in the horizontal and
vertical directions, respectively. The difference between the
LH and HL sub-bands is their method of filtering. For
example, features within the LH sub-band are obtained by
applying a low-pass filter to the rows of the signal and then a
high-pass filter across the columns. The opposite is true for
the HL sub-band. Lastly, the HH or diagonal detail sub-band
contains high-frequency information in both the horizontal
and vertical directions of the image. It uses a high-pass filter
across both the rows and columns of the signal [19].

C. DWT Image Fusion

Image fusion is a technique used to form a composite
image by combining several image sources using a fusion rule
such as averaging, maximum selection, or minimum selection
The goal of image fusion in any application is to produce a
final image with a higher perceptual quality than each source
[20].

The DWT approach to image fusion involves combining
DWT coefficients at corresponding levels and sub-bands to
form a composite image. This method has widely been
employed in medical imaging, surveillance, and remote
sensing applications [20]. Illustrated in Fig. 1 is a single-level
2-D DWT fusion used to blend two grey-image sources
denoted ‘A’ and ‘B’. The procedure begins with a 2-D
decomposition of the inputs. Next, a fusion rule such as
averaging, is applied to each coefficient pair at the same level
to obtain the fused coefficients. The final fused image is
obtained by computing the inverse DWT of the fused
coefficients.

D. Unsharp Mask Filtering
Unsharp mask filtering is a widely used technique in
image processing for sharpening details and edges. The
procedure involves subtracting a blurred version of an image
from itself, as described in (5) [17].
fGey) =f(xy) - f(x,y) %)
where f(x, y) is the original image, f,(x,y) and f; (x, y)
are blurred and sharpened versions, respectively.

III. PROPOSED METHOD

In this section, we present our proposed method for
enhancing low-light images. The proposed algorithm can be
summarized in three steps:

(1) Contrast enhancement
(ii) Feature extraction and reconstruction
(iii) Unsharp masking

The first step is to make the low-light image more
perceptible by improving contrast in the under- and over-
exposed scenes while balancing the overall exposure levels in
the image. To do this, we create two identical copies of the
input and enhance them using a region-based histogram
specification scheme (RBHS) based on the classical histogram
matching algorithm discussed in section IL A. The second step
involves extracting relevant features from the enhanced
images and using them to reconstruct a high-quality
representation of the scene. In the final step, we apply an

148



Algorithm 1: The Proposed Method
1. Inputlow-light image I(R, G, B).
2. Convert I(R,G,B) to I(H,S,V) using the RGB-to-HSV
transformation [21]
3. Separate the /(V) channel and create input masks M, and
M, with identical copies of I(V').
Generate target histograms Tary (z) and Tar,(2)
Enhance M; and M, using RBHS.
Apply Adaptive Brightness Control on M and M,
. Recouple I(H) and I(S) with I(V") of M and M,.
Convert I(H,S,V") to I'(R,G,B) using the HSV-to-RGB
transformation [21] for each M=y 5.
9. Fuse the enhanced output of M; and M, with the low-light
image I(R, G, B)
10. End

RIS

Fig. 2. Pseudo code of the Proposed Method

unsharp mask filter to improve the details and edges in the
reconstructed image.

A. Region-Based Histogram Specification

Given an input I(R, G, B), we first perform an RGB-to-
HSV transformation [21] to separate the intensity component
I(V) from the hue and saturation channels I(H) and I(S),
respectively. This allows us to modify the intensity
component of the input without affecting its colour profile.
Next, we generate two input masks, M; and M,, with identical
copies of the intensity image I(V) and enhance them using
(6).

G(x,y) = HS{I,(x,y), Tan(2)} (©6)

where G, (x,y) is the histogram-specified image of M,
obtained by the target histogram T'ary(z) for k € {1,2}. The
function HS{+} denotes a histogram-matching process.

The target histograms, Tar,(z) and Tar,(z), play an
important role in the RBHS scheme, as they dictate the desired
distribution of grey level in each input mask. Our objective is
for Target 1 to improve contrast in the under-exposed regions
of M,, while Target 2 aims at reducing high radiance in the
over-exposed sectors of M,. For such purpose, the shape of
these histograms must be carefully selected to reflect the
desired changes in the contrast and brightness of the image.

To guide the selection of Tary(z) and Tar,(z), we
propose the following framework: The contour of Tar;(z)
should represent a well-lit high-contrast image with no peak
in the shadow and highlight tonal ranges. In contrast, the shape
of Tar,(z) should be the histogram of a high-contrast image
captured in a relatively low-light situation, thus having peaks
in the dark tones but none in the brightest tones. Such selection
of Tar, (z) and Tar,(z) are displayed in Fig. 3.

B. Intensity Mappings

‘We note that the mappings of intensity values between the
input I,(x,y) and the histogram-specified images
Gy=12(x,y) in (6) are based on generalization. This means
that G, (x,y) will always approximate Tar,(z) rather than
achieving an exact match as proposed in [22]. Such flexibility
enables our method to handle a wider range of low-lighting
scenarios without requiring significant structural changes.

Target 1 Target 2
e S
g | £~
i 3 -
g g
o e
oeylev “Grey Level
(a) (b)

Fig. 3. RBHS Target Histograms generated from sample images (a)
Target 1 (b) Target 2

C. Brightness Control and Localization

Low brightness in G, (x,y) is a commonly encountered
problem when I,(x,y) contains a bimodal intensity
distribution. To address this, we propose an adaptive
brightness control mechanism which shifts pixel values in
Gr(x,y) to the right of the histogram based on the local
brightness profile in I, (x, y). By doing so, we can ensure that
the brightness of G, (x,y) is better aligned with that of the
input.

Fig. 4 illustrates the proposed Adaptive Brightness Control
procedure. To begin, we first obtain the histogram of ,,(x, y)
using (1), then compute the total number of pixels (V) and the
total number of pixels greater than a certain threshold, (n).
Together, these parameters determine the adaptation factor a
used to control the amount of brightness compensation, as
given in (7).

x Y
L(oy) =a+ ) ) Glny) fork=12

i=1j=i

(@]

where Gy (x,y) is the histogram-specified image of M,
and I}, (x, y) is the Adaptive Brightness Control output that is
coupled with the low-light input’s I(H) and I(S) channels.
The parameter a adapts to the input subjective brightness, as
defined in (8).
=

L-1

n= ZH,,(r,, >T)
k=0

where H,, is the histogram of I,(x,y): 7 is an input
intensity in the range [0,L —1]: and T is a “subjective”
brightness threshold. This threshold is localized within the
highlight region of the histogram which is mostly affected

a

@®)

©

2: The Proposed Adaptive hi Control
Get the histogram of I, (x, ).

Compute the total number of pixels (N).

Compute total number of pixels > T.

Compute a.

Ifa > ayu, seta = ayy.

. Apply brightness compensation.

End

Bowon ey

w o w

Fig. 4. Pseudo code for the proposed Adaptive Brightness Control
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when grey levels in G (x,y) are stretched. We defined the
value of T based on the objective and subjective criteria
discussed in section IV.A.

D. Feature extraction and reconstruction

The proposed method relies on enhancing contrast
globally in M; and M, to improve exposure in specific parts
of the image. This technique improves visibility discretely in
dark and bright regions of the low-light image, however, it can
also lead to over- or under-enhancement in well-lit areas. To
address this, we employed a two-stage DWT fusion process to
combine salient features of M, and M, with the original low-
light image (x, y).

In the first stage, the RGB images I, (x,y) and I;,,(x,y)
are fused to produce Fi(x,y), then F{(x,y) and I(x,y) are
combined in the second stage to obtain F;(x, y). Averaging is
the fusion rule employed in each stage and the average DWT
coefficients are taken at corresponding sub-bands.

Mathematically, we can model a single-stage DWT fusion
using (10).

[cAy, cHy, Vi, €D ]' = DWT{I, (z), 1 (x, )} 10)

where [}, _, , is an RGB image of the input mask M zt,
fori € {R,G, B}, represents a colour channel; Y(x,y) is a 2-
D wavelet: cA,, is the approximated feature matrix; and cHy,,
cVy.. and cD,, are the detail matrices in the horizontal, vertical,
and diagonal directions, respectively.

From (10), the average feature X = %‘ for each input-
channel pair, I}, and I}, is computed as follows:

cAl = X(cA,,cAy)’;
cH' = X(cH,,cH,)};
cVi= X(cWy,cVh)f;
cD' = X(cD,, cD,)};

an

Letting X' = [cA, cH, ¢V, cD]' represent the mean feature
vector, we reconstruct the fused image by computing the
inverse DWT, as given in (12).

Y' = IDWT{X', (x, )} (12)

where (x,y) is the 2-D wavelet employed in (17) and Y*
is a greyscale image. Coupling the RGB channels
(YR, Y€, Y?), yield the final fused image Y'(x, y).

E. DWT-F Optimization

The computational complexity of the DWT fusion can be
improved programmatically by adopting a vectorized
approach in computing the mean feature vector X?. Rather
than using a nested for loop, we perform matrix operations on
each input-channel pair, as shown in (13)~(16). This reduced
the total number of multiplications and additions required for
computation.

cAl = (cA, + cAy)'/2 13)
cH' = (cH, + cH,)'/2 (14)
oVi=(cVy +cVy)i/2 (15)
cD! = (cD; + ¢D,)!/2 (16)

F. Unsharp Masking

The output image Y (x, y) is often blurry as a result of the
DWT fusion. To address this, we employed the classical
unsharp masking algorithm introduced in section 2.4. We let
n be a sharpening factor that determines the degree of
sharpness in Y'(x, y) and obtained the final enhanced image
using (17).

Y'(x,y) = USM{Y(x,y),n} an

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We conducted various experiments to assess the
performance of our proposed method using standard low-light
images from the Night-time Photo Enhancement (NPE)
dataset [23]. The NPE dataset consists of 74 low-quality
photos captured in different low-light settings. We utilized
three metrics, Peak-Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [24], and Natural Image Quality
Evaluator (NIQE) [24], to objectively evaluate our results.
The PSNR measures the noise level in an image by comparing
it to its original representation, while SSIM computes the
structural similarity between the original and enhanced
images. The NIQE metric estimates naturalness quality by
analysing statistical properties observed in natural images. A
lower NIQE score indicates better image quality, while higher
PSNR or SSIM scores represent better image quality [24][25].

Computer simulations were performed in MATLAB
R2018a on a PC with 32GB RAM and a 2.60GHz Intel Core
17 processor. In all simulations, we used the Target histograms
givenin Fig. 3 and set the parameters n and y(x, y) t00.5 and
'sym5’, respectively, to ensure consistency.

A. Brightness Thresholding and o-clipping

The threshold T in the Adaptive Brightness Control
procedure plays a crucial role in computing a. In this section,
we investigated various techniques to obtain a desirable value
of T. First, we explored popular thresholding methods such as
the methods proposed by Otsu [26] and Trongtirakul [4].
These methods are widely used for image segmentation, but
they proved inadequate for addressing the specific problem of
brightness compensation, as they extend to a broader range of
grey levels beyond the highlight region of the histogram.
Therefore, we performed a simple procedure to obtain a
suitable threshold.

We considered the intensity level of each pixel to be
between 0% (dark) and 100% (highly radiant) and set the
initial threshold T}, ;. to 76%, a minimum point of perceived
brightness, which is located within the histogram highlight
region. Next, we enhance the image using our proposed
method and evaluated the results using the PSNR, SSIM, and
NIQE metrics. We then vary the threshold value up to 100%,
with a step size of 3, and repeated the enhancement procedure
for each value. It is important to note that the grey value of 7'
is dependent on the bit-depth (1) of the input and can be
computed by multiplying the maximum grey level L = 2™ in
the image by the desired threshold T,, as given in (18).

T = floor[(L)(T 4es/100)] (18)

Fig. 5 compares the performance of various threshold
values on asample low-light image. In Fig. 5, colour distortion
and loss of details can be seen for values of T < 88%.
Furthermore, under-exposure tends to persist in the
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Fig. 5. Performance of the proposed method at different values of T

foreground of the enhanced image for values beyond 94%,
seen in Fig. 5(h).

The outcomes of the PSNR, SSIM, and NIQE assessments
of Fig. 5 are provided in Table I. Table I shows that increasing
the value of T from 76% to 98% improved the PSNR from
15dB to 25dB, which also led to a gradual increase in the
SSIM index from 0.69 to 0.9. Significant changes, however,
were not observed in the NIQE assessment as the threshold
varied. This could imply that the NIQE metric is not as
sensitive to changes in the Adaptive Brightness Control
procedure as the PSNR and SSIM.

Given the results in Table I, we observed that a high
brightness compensation, which is associated with a lower
value of ', can result in an increased amount of noise in the
enhanced image, affecting the structural similarity between
the input and enhanced image. Therefore, to obtain the optimal
brightness compensation threshold, we compared the
outcomes of T and @. We found that values of a(< 0.5) yield
better PSNR and SSIM quality, with less artefact generation
as seen in Fig. 5. On the other hand, values of 7 > 94% do
not improve the image perceptual quality, leaving parts of the
image under-exposed. Based on these findings, we desired T
at 94% brightness and applied a ceiling for @, denoted
ayy = 0.23.

TABLEIL PERFORMANCEEVALUATION FOR VARIOUS
THRESHOLDS

T a PSNR(dB) | SSIM | NIQE
76% 101 121 069 ‘ 229
82% 079 130 070 | 200
88% 0.53 156 075 ‘ 202
94% 026 217 0ss | 215
98% 0.09 250 090 ‘ 222

B. Evaluation of Night-time Photo Enhancement Dataset

In this section, we evaluated and compared the
performance of the proposed method against existing image
enhancement methods such as Histogram Equalization [3],
Retinex [7], and Low-light Image Enhancement via
Illumination Map Estimation (LIME) [8]. Our simulations
were based on the NPE dataset. Due to space limitations, only
selected results are presented here for analysis. Interested

readers can obtain the full data at https://github.com/shaffakjr/
low-light-enhancement.

Fig. 6 shows the result of the various method on selected
images from the NPE dataset. In each column, the topmost
image is the original low-light image, followed by the
enhanced results from Histogram Equalization, Retinex, and
LIME. The outcomes from our proposed method are displayed
at the bottom. Visually, our proposed technique presents
several advantages over the existing methods. Our method
performs superior to Histogram Equalization and Retinex in
persevering the original hues of the low-light image, as
demonstrated in Fig. 6(b) to 6(e), and 6(h). Furthermore, our
approach outperforms LIME for images degraded by haze,
such as Fig. 6(b). In some instances, LIME tend to over-
enhance details and saturate colours. This is evident in the
results of Fig. 6(d) and 6(h).

The proposed technique, however, has some limitations.
For example, in Figs. 6(a) and 6(g), our technique yields
slightly darker images. Also, in some cases, our method does
not remove image noise as effectively as LIME. This can be
observed in the results of Fig. 6(g). Another limitation is the
occurrence of highlight and shadow clipping. They often lead
to overexposed or underexposed regions with no discernible
information. When shadows or highlights in the source image
are clipped, the effects seen in Fig. 6(f) tend to occur.

In Table II, the average PSNR, SSIM, and NIQE scores
for various techniques on the NPE dataset are compared.
According to the results in Table II, our method achieved the
second-best quality in the NIQE metric but outperform
existing methods in terms of the average PSNR and SSIM
indices. This implies that our method can produce enhanced
images with higher structural similarity and less noise
compared to other methods.

TABLEI. AVERAGE IQA SCORES FOR VARIOUS METHOD ON NPE
Method PSNR (dB) SSIM NIQE
HE 3] 136 057 337

Retinex [7) 106 052 365
LIME [8] 167 065 373
i‘;’f‘::‘: 199 074 355

V. CONCLUSION

In this paper, we have proposed a novel technique for low-
light image enhancement using histogram matching and
image fusion. Experimental results on the NPE dataset
demonstrate the superiority of our method over existing
techniques in improving perceptual quality while preserving
image details and colours. The results also prove the
effectiveness of our method in producing images with high
PSNR quality.

Future work will focus on developing a mathematical
model to generate optimal target histograms and a denoising
algorithm for noise reduction in extremely low-light
situations.
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Brief Description
Describe the invention in general terms: What does it do? How does it do it?

Backlit images are low-quality digital pictures generated due to backlighting, a poor illumination setting that occurs when an
excessive reflection of light is incident to an image capturing device or when the dominant light source in a picture scene
radiates behind the main objects. The region-based histogram and fusion (RBHF) algorithm improve the perceptual quality of
a single backlitimage captured on a cell phone using a region-based histogram specification scheme with the discrete wavelet
transform (DWT) image fusion. The region-based histogram specification scheme employs two unique target histograms,
denoted Target 1 and Target 2, to correct exposure disparities between the foreground and background picture scenes.
Following this process, the DWT fusion combines salient features of the histogram-specified images with the original input to
produce the final enhanced image.

Details of the invention/Innovation:

What parts (steps, if a process) make up the invention, inits best (preferred) form? What does each contribute to the invention?
Displayed in Figure 1 is the system architecture for the novel region-based histogram and fusion (RBHF) algorithm. The
procedure begins with an RGB to HSV transformation of the input image. Such colour space conversion is done to separate
the input's luminance component (V) from the Hue (H) and Saturation (S) channels. Next, two input masks, M1 and M2, are
created with identical copies of the luminance component. The input masks M1 and M2 are the foreground (F) and background
(B) masks, respectively. i.e., M1 contains the backlit foreground information to be processed, whereas M2, the well-lit and/or
over-exposed background details. Histogram specification is performed discriminately on each input mask using the target

histograms Target 1 and Target 2. This scheme is referred to as region-based histogram specification. A centric part of the
region-based histogram specification process is the selection method for the target histograms.

Target 1
Histogram

Couple
Tnput Mask M ° ABC H asvBos }—l
HS
DWT Fusion 1 DWT Fusion 2 Eshanced Image
HS

Couple
Input Mask M, }—?_-{ ABC H Gl }—r
Target2
Histogram

Figure 1. System architecture of the RBHF algorithm

RGB-HSV
Decovple

Following the region-based histogram specification scheme, an adaptative brightness control (ABC) procedure is applied to
the histogram-specified images of M1 and M2. The ABC procedure ensures a desired brightness level in the final output
image. The enhanced luminance components (V') from the two ABC processes are coupled with the input’s original hue and
saturation channels. An HSV' to RGB transformation is performed to generate the new colour images. Next, a two-stage DWT
image fusion is employed to combine the best features of the input masks with the original backlit image to yield the final
enhanced image. Figure 2 displays the results of the RBHF algorithm on some selected images from Li (2021) database and
the Exclusively dark dataset.
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Figure 2. Enhancement results for some selected backlit images

The details of some major processes and their configurations are provided below:
1. Generation of target histograms

The selection of Targets 1 and 2 play an important role in the RBHF algorithm. Target 1 is used to improve details in the
under-exposed foreground of the backlit image while Target 2 suppress high radiance in the over-exposed background
sectors. Therefore, Target 1 must represent a well-lit, high-contrast image with no peaks in the dark and light tones of the
histogram, whereas Target 2 be a relatively low-light and high-contrast image with peaks in the dark tones but none in the
lightest tones, i.e., grey levels beyond 240 for 8-bit images. Examples of such target histograms are provided in Figure 3.

Target 1 Target 2
[ [
3, 3
g 8
w g e
Grey Level Grey Level
(a) ()

Figure 3. Sample Target histograms (a) Target 1 (b) Target 2
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2. Region-based Histogram Specification

Given the selection of target histograms, the enhancement of each input mask is performed as illustrated in Figure 4.

Target 1
Specify Histogram Enhanced
Input in M, Image G,
Intensity
Image
Specify Histogram Enhanced
[ r’ in M, Image G,
Target 2

Figure 4. Region-based histogram specification (RBHS)
3. Adaptive brightness control

The term “adaptive brightness control” or “automatic brightness control” is often associated with the automatic adjustment of
a display panel's brightness level based on the ambient light environment. This method is used mostly as an energy-saving
feature in smartphones, tablets, and digital television systems. On the contrary, adaptive brightness control (ABC) is defined
in this work as a method of automatically compensating for low brightness in the input masks after RBHS is performed. Though
the nomenclatures are the same, the differences rest within the methods and applications. Figure 5 describes the ABC
procedure.

Step (i): Given an input intensity image, compute the histogram properties.

Step (ii): Get (N), the total number of pixels in the image.

Step (iii):  Get (n), the total number of pixels greater than the threshold T=240, for 8-bit images.
(iv):  Calculate the coefficienta =[N/ (N —n)] -1, referred to as the adaptation factor.

Step (v):  Fora>0.23,setato0.23.

Step (vi):  Compensate brightness in the input by increasing each pixel value by a.

4. Discrete wavelet transform Fusion
Each DWT fusion stage uses a 2-D wavelet function for decomposing the input image and reconstructing the final fused
image. The choice of wavelet function has limited impact on the enhancement quality of the algorithm. However, wavelets

from the Symlets family, precisely ‘sym5’, are recommended as they tend to produce desired outcomes. Furthermore, an
averaging method is used to combined salient features at each stage.

Which parts are new to this invention (in form or usage), which are old (conventional, used in the expected way)?

New to this invention / innovation:

1. The framework for generating optimal target histograms for backlitimage enhancements.
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2. Anadaptive brightness control mechanism to handle the low-brightness problems caused by histogram specification.
3. The combination of a region-based histogram specification scheme and the discrete wavelet transforms image fusion
for digital image enhancement.

Conventional and used in the expected way:

1. The two histogram specification processes used by the RBHF algorithm to match the input histogram with the target
histograms are conventional and are based on generalization.

2. The discrete wavelet transforms used in the DWT-Fusion for decomposing the input image and reconstructing the
final fused image are conventional.

In order to be patentable, an invention must be NEW, HAVE AN INVENTIVE STEP (NOT OBVIOUS to one skilled in
the art, based upon everything that was available at the time of the invention), USEFUL OR IS A NEW USE.

Alternatives:
You have described the best way to build (perform) your invention. Now consider the alternatives under.
e Structural Alternatives:

1. Multiple RBHF process

Multiple iterations of the RBHF algorithm can be performed on a single backlit image to improve the enhancement quality.
This entails establishing the RBHF procedure as an iterative process described in Figure 5. The value of Iter determines the
number of iterations. An /ter of 1 will yield the outcomes of a single RBHF process. Note that for Iter > 1, the value of n
decreases after each iteration.

Input I
Backlit Ba nced
: image
image

Input
N“‘“‘xr Of
iterations (Iter)

Figure 5. Multiple RBHF process to improve enhancement quality

2. Vectorized computing

The use of nested for loops in the ‘mean’ computation of the DWT fusion process significantly increases the algorithm’s
computation time for high-resolution images. A vectorized computational approach is recommended for averaging salient
features in the DWT Fusion stages. This implies that, each corresponding pair of feature-coefficient matrices will be added
then divided by 2. This procedure significantly reduces the algorithm’s time complexity by 95%, approximately.
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3. Unsharp Masking

The primary objective of the RBHF algorithm is to correct exposure disparities between an under-exposed foreground and a
well-lit or over-exposed background. To improve sharpness in the enhanced output images, the classical unsharp masking
algorithm can be applied to the output stage of the RBHF process, as shown in Figure 6. Note that for /ter > 1, the value of n
decreases after each iteration.

Proposed
BL::) I:’]‘: + Method Unslx.up E|Mced
(RBHF) Masking image
image
Input
Number of Do for n=Iter-1
(Iter)

Figure 6. RBHF algorithm with unsharp masking

Figure 7 shows some selected results of the RBHF algorithm with the classical unsharp masking.

Figure 7. Enhancement results using unsharp masking
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e Alternate Use: Can your invention be used for anything other than its preferred use?

The RBHF algorithm can be used to enhance images degraded by low lighting conditions. These images are generally referred
to as low-light images. Figure 8 shows the performance of the algorithm on some selected low-light images.

|
-
Figure 8. Enhancement results for some selected low-light images

Limitations: When will the invention not work?

The RBHF algorithm performs poorly on images affected by shadow clipping or highlight clipping. Shadow and highlight
clippings occur in an image when the information being recorded exceeds the dynamic range of the image capturing device.
They frequently result in a loss of detail in the captured image. The RBHF algorithm cannot recover lost information. Figure 9
shows some examples of this phenomena.

Figure 9. Performance of the algorithm on shadow-clipped images

State of the Art:

e What was already in existence (whether patented or not) before the invention? How is the function of the invention
being done today?
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Histogram equalization and Retinex-based algorithms are conventional image enhancement methods. They however perform
poorly on backlitimages. Over-saturation or a loss of contrast are typical outcomes when these methods are applied. Various
techniques have been proposed in recent years. They include:

(i) Single backlitimage enhancement proposed by T. Trongtirakul, W. Chiracharit and S. Agaian (2020)

(i) A fusion-based method for single backlitimage enhancement by Q. Wang, X. Fu, X.-P. Zhang, and X. Ding (2016)

(iii) Learning-based restoration of backlit images by Z. Li and X. Wu (2018)

(iv) Histogram specification-based image enhancement for backlitimage Y. Ueda, D. Moriyama, T. Koga and N. Suetake
(2020)

(v) Low-lightimage enhancement via illumination map estimation X. Guo, Y. Li, and H. Ling (2017)

(vi) Backlitimages enhancement using global tone mappings and image fusion A. Buades, J.-L. Lisani, A. B. Petro, and
C. Sbert (2020)

(vii) Low-light image enhancement via pair of complementary gamma functions by fusion C. Li, S. Tang, J. Yan and T.
Zhou (2020)

(viii) Adaptively partitioned block-based contrast enhancement and its application to low light-level video surveillance by
S. Lee, N. Kim, and J. Paik (2015)

Due to enhancement flaws and expensive computation, many of these methods cannot be applied directly in cell phone
applications. As a result, there is no conventional method for enhancing backlit images on cell phones. Alternative methods
have been adopted by smartphone manufacturers. They include Auto-exposure (AE) and High Dynamic Range (HDR)
imaging. These methods are being used by smartphone manufacturers such as Apple, Samsung, and Google to handle
backlighting and other types of poor illumination situations. However, these methods have significant drawbacks that outweigh
their benefits in poor lighting situations. For instance, under backlighting, AE cannot reveal items in the foreground while
simultaneously exposing details in the background. As a result, a well-exposed foreground will cause a loss of information in
the background scene and vice-versa. Likewise, HDR, developed primarily to handle low-light situations, is susceptible to
motion blur since it relies on fusing two or more sequential images with varying exposures. Furthermore, it cannot enhance
low-quality photographs after they have been acquired.

e What is the closest device (or process or use) you are aware of to your invention?

Y. Ueda, D. Moriyama, T. Koga and N. Suetake (2020) proposed a “straightforward” histogram specification-based technique
to enhance backlit images [9]. In this approach, foreground-background segmentation is first performed using a linear
discriminant analysis (LDA) threshold, which is then used to obtain the triangular target histogram. The goal was to convert
the intensity of the backlit image via histogram specification. However, the conversion between the foreground and
background scenes was observed to be unbalanced. Therefore, they employed two modified target histograms, Target 1 and
Target 2. Target 1 was obtained by equalizing the ratio of background and foreground regions with the area ratio of the input
image, while Target 2 was obtained by making the foreground region the same shape as the input image histogram. To
produce an enhanced backlit image with hue and saturation preserved, the algorithm looks for a point on a constant-hue
plane in an RGB colour space.

The method proposed by Ueda et al. (2020) has several limitations. The use of thresholding for segmentation is one of the
drawbacks. Thresholding techniques have proven effective in a variety of applications, but they do not account for spatial
interactions between pixels and are vulnerable to unintended and uncontrolled changes in the light field in general.
Furthermore, the target histograms used produce washed-out and unnatural hues. To minimize noise and prevent colour
artefacts in the enhanced image, more processing is required. Lastly, the method increases details in both the foreground
and the background without distinction. As a result, the well-exposed regions of the image are further exaggerated.

o Isthere something that performs the same function in a different way?
* |sthere any combination of existing devices (or processes) which would be similar to your invention?
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The combination of histogram processing and image fusion would be similar to the RBHF procedure.

* How does your invention perform its function different from, or better than, these prior devices (or processes)? How
are they similar?

The RBHF technique combined a global contrast stretching scheme with the DWT image fusion to improve the visual
perception of a single backlitimage. The algorithm results in no colour distortion or artefacts as seen in prior devices. Multiple
iterations of the RBHF algorithm can be employed to further improve the enhancement quality of the backlit inputs. This is not
common with prior methods. In most situations, two to three iterations are sufficient to produce a significantly higher image
quality. The mapping functions for foreground and background contrast enhancement automatically adapt to changes in the
luminance profile of the backlit input. The mappings are based on generalization. This flexibility permits the proposed method
to be employed in other types of poor illumination situations, such as low lighting.

Date of invention:

"Invention" means a combination of conception (coming up with the idea of the invention) and reduction it to practice (building
it, or applying for a patent).

e Whendid you first begin to work on the invention?

February 2021: Research proposal for the degree of Master of Science in Electrical and Electronic Engineering in the
department of Electrical and Information Engineering in the University of Nairobi.

August 2021: Final Research proposal for the degree of Master of Science in Electrical and Electronic Engineering in the
department of Electrical and Information Engineering in the University of Nairobi.

e Reduction to Practice: Has the invention been built? If so, when?
Yes. The invention has been built.
Software prototype version 1 completed on August 23, 2022. Figure 10 shows a screenshot of the GUI.

Software prototype version 2 (final) completed on September 10, 2022. Figure 11 shows a screenshot of the GUI.
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Prior Filings: Have you filed a Disclosure Document or Provisional Patent Application on this invention, or has there been
an application for patent in the Kenya or elsewhere? No.

Type of Filing: N/A
Date of Filing: N/A

Serial Number: N/A
Where filed: N/A

Third Party Rights
e Other Inventors: Is there anyone else who contributed to the conception or reduction to practice of the
invention, in more than a purely mechanical way? No
* Rights in Others: Are you under any obligation to assign any rights in the invention to others? No

Was the invention developed in the course of your study or employment, or using any facilities belonging to the
University of Nairobi? Yes

Any additional notes or comments?

Be sure to sign and date the form, and have it witnessed by someone who is not an inventor.

Signed:
Dated: p4/2%/ %2022
Read, witnessed and understood: M

Date: /] 7/23/1 022

11
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Ab5. Patent Publication

Journal Name: Kenya Industrial Property Institute, Journal of Patents,
Industrial Designs, Utility Models and Trademarks
Date Published: May 31, 2023

KENYA INDUSTRIAL PROPERTY INSTITUTE

SuoEn

INDUSTRIAL PROPERTY JOURNAL

(Journal of Patents, Industrial Designs, Utility Models and Trade marks)

No. 2023/05

31 May, 2023

Published Monthly
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4.0 Utility Model Applications Published under Section 42 and

Regulation 35

4.1 National Application

(21) Application no.: KE/U/2022/1975 (22) Filing Date: 11/11/2022

(30) Priority:

(51) Int.CL.

(54) Title: REGION BASED HISTOGRAM AND FUSION TECHNIQUE FOR ENHANCING
BACKLIT IMAGES FOR CELL PHONE APPLICATIONS

(72) Inventors: SHAFFA KORVAWU

(73) Applicant(s): UNIVERSITY OF NAIROBI, Kenya, c/o INTELLECTUAL PROPERTY
MANAGEMENT OFFICE, P. 0. BOX 30197-00100, NAIROBI, Kenya

(74) Agent:

(57) The invention discloses a region-based histogram and fusion algorithm which
improves the perceptual

quality of a backlit image captured on a cell phone using a region-based histogram
specification scheme with the discrete wavelet transform image fusion. The region- based
histogram specification scheme employs two unique target histograms to correct
exposure disparities between the foreground and background picture scenes. The discrete
wavelet transform fusion combines salient features of the histogram-specified images

with the original input to produce the final enhanced image.

14
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A6. Patent Certificate

)
=
=
B

Kenya Industrial Property Institute

The Industrial Property Act, 2001

CERTIFICATE

OF REGISTRATION OF UTILITY MODEL

It is hereby certified that a utility model with utility model number
436 has been registered in the name UNIVERSITY OF NAIROBI of c/o
INTELLECTUAL PROPERTY MANAGEMENT OFFICE, P. O. BOX 30197-
00100, NAIROBI, Kenya in respect of an invention disclosed in an
application number KE/U/2022/1975 having a date of filing of
11/11/2022 and priority date of being an invention titled REGION
BASED HISTOGRAM AND FUSION TECHNIQUE FOR ENHANCING
BACKLIT IMAGES FOR CELL PHONE APPLICATIONS.

Dated at Nairobi this 13th day of June, 2023.

...... i 50 St & |
Ag. Managing Director
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(11) Utility model Number: 436

(19 n n n (24) Registration date: 13/06/2023

Keaya Indeadrial Progerty bratnut

(12) UTILITY MODEL

(21) Application Number: (73) Owner:
2022/1975 UNIVERSITY OF NAIROBI of c/o
INTELLECTUAL PROPERTY MANAGEMENT
(22) Filing Date: OFFICE, P. O. BOX 30197-00100, NAIROBI,
11/11/2022 Kenya ;

(72) Inventor:
SHAFFA KORVAWU KORKO JR.; ELIJAH
MWANGI and GEORGE KAMUCHA

(74) Agent/address for correspondence:
UNIVERSITY OF NAIROBI, c/o INTELLECTUAL
PROPERTY MANAGEMENT OFFICE, P. 0. BOX
30197-00100, NAIROBI, KENYA

(51) Int.Cl.2018.01: G 09G 3/34

(54) Title: REGION BASED HISTOGRAM AND FUSION TECHNIQUE FOR ENHANCING
BACKLIT IMAGES FOR CELL PHONE APPLICATIONS

(57) Abstract: The invention discloses a region-based histogram and fusion
algorithm which improves the perceptual quality of a backlit image captured
on a cell phone using a region-based histogram specification scheme with
the discrete wavelet transform image fusion. The region-based histogram
specification scheme employs two unique
target histograms to correct exposure disparities between the foreground
and background picture scenes. The discrete wavelet transform fusion
combines salient features of the histogram-specified images with the original
input to produce the final enhanced image.
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AT7. Enhancement of low-light images

The proposed algorithm is flexible and robust. It can be used to enhance
images affected by low lighting. Figure A.1 depicts the results of one iteration
of the proposed method on some selected low-light images from the ExDark

dataset [59].

Figure A.1. Enhancement results for some selected low-light images
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A8. RBHF with unsharp masking
The classical unsharp masking algorithm can be used to sharpen the
enhanced images produced by the proposed technique. Figure A.2 provides the

results for some selected backlit images.

Figure A.2. Result of the proposed method with unsharp masking
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A9. MATLAB codes

function

rbhf enhances a single backlit or low-light image
Using region-based histogram specification & fusion
Developed By Shaffa K. Kokro Jr., 16th October 2021
MSc. research supervised by Prof. Elijah Mwangi

And Dr. George Kamucha

Department of Electrical & Information Engineering
University of Nairobi

RBHF corrects exposure disparities in an input
Results in no colour distortion or artefacts

o° o° o© o o o° o

o° oo

[outputImage,alpha ]=rbhf (inputImage,TarlHist, ...
Tar2Hist,wType)

I=inputlImage;

wavelet type=wType; % data type ‘char’
Tarl v hist=TarlHist; % Target 1 histogram
Tar2 v_hist=Tar2Hist; % Target 2 histogram

%% Pre-processing

I hsv = rgb2hsv(I); % RGB to HSV conversion
[I h,I s,I v]=decouple hsv (I hsv); % Decouple channels
[alpha ,beta ]=adapt coeff (I v); % Adaptation factors

% beta 1s for experimental purposes.

o©°

% Enhance Foreground Mask

I fmask v = I v; % Input intensity image

% Match histogram

F mask en = histeq(I fmask v,Tarl v hist);
% Brighten F-mask

bright F mask en=brighten img(F mask en,alpha );

% New HSV image

new F hsv = cat(3,I h,I s,bright F mask en);

new Fmask im2uint8 (hsv2rgb(new F hsv)); % HSV to RGB
Note: I v can also be passed directly to histeqg()

I fmask v is only used for convenience

o° o©
Il

o\

% Enhance Background Mask

I bmask v = I v; % Input intensity image

% Match histogram

B mask en = histeqg(I bmask v,Tar2 v hist);

% Brighten B-mask

bright B mask en=brighten img (B mask en,alpha );

% New HSV image

new B hsv = cat(3,I h,I s,bright B mask en);

new Bmask = im2uint8 (hsv2rgb(new B hsv)); % HSV to RGB
% Note: I v can also be passed directly to histeq()
% I bmask v is only used for convenience
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%% Fuse Enhanced F & B Masks with input image, RGB
fusedimagel=fusemasks (new_ Fmask,new Bmask, ...
wavelet type); 5 stage 1

fusedimage2=fusemasks (fusedimagel, I, ...

wavelet type); % stage 2

outputImage=fusedimage?2; % Enhanced Image

end

function [a,b]=adapt coeff (I v)
Generate coefficients for ABC
I v is an intensity image
a = alpha; b = beta
beta is experimental
~ v _hist=imhist(I v); % Calculate histogram
N=sum(I v _hist); % Total number of pixels in I v
n=sum(I v hist (240:256)); % sum of bright elements
val=(N/(N-n))-1; % adaptation factor
if val > 0.23
a=0.23; % alpha clipping
b=0.23; % beta clipping

o° o° o0 o°

H

else
a=val; % set alpha value
b=val; % set beta wvalue
end
end

function out=brighten img(image,val)
Apply brightness compensation
image = input image
val = adaptation factor
out=image; % output image
[x,y]=size(image); % get input size
for i=1:1:x
for j=1l:1:y
out (i,Jj)=image (i, j)+val; % increase brightness
end

o° o

o°

end
end

function fusedimage=fusemasks (Fmask,Bmask,wtype)

% Fuse two inputs given a wavelet function wtype

% Developed with support from Dr. A. K. Verma

% Check if F & B have similar resolution

[row,col]=size (Fmask(:,:,1));

if ~isequal (size (Fmask), size (Bmask))
Bmask=imresize (Bmask, [row,col]); % resize B

End
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% Decompose RGB channels

% fuse each colour channel pair

fusedR=imgfusion (Fmask(:,:,1),Bmask(:,:,1),wtype); sRed
fusedG=imgfusion (Fmask(:,:,2),Bmask(:,:,2),wtype);%sBlue
fusedB=imgfusion (Fmask(:, :,3),Bmask(:,:,3),wtype) ; $Green
% Couple Fused RGB channels
fusedimage=uint8 (cat (3, fusedR, fusedG, fusedB) ); %fused
end

function outimage=imgfusion (Iml, Im2,wtype)

Function compute the 2-D scaling and

wavelet coefficients

Iml, Im2, and outimage are greyscale images
cAl,cH1,cVl,cDl]=dwt2 (double (Iml),wtype, 'per'); % DWT
cA2,cH2,cV2,cD2]=dwt2 (double (Im2) ,wtype, 'per'); % DWT
Calculate the mean of each coefficient pairs

% This step uses vectorized computation
cA=(cAl+cA2)./2; approximation coefficient
cH=(cH1+cH2) ./2; horizontal coefficient
cV=(cV1+cV2)./2; vertical coefficient
cD=(cD1+cD2) ./2; diagonal coefficient
outimage=idwt2 (cA,cH,cV,cD,wtype, 'per'); % inverse DWT
end

o°

o

o — — 0P

o° o o°

o°

o©°

Multiple RBHF configuration

Perform multiple iterations of the RBHF Function
This improves enhancement quality

iter defines number of iterations

Program Parameters
Tarl = imread('image 3.jpg'); % Target 1 Image
Tarl hsv = rgb2hsv(Tarl); % RGB to HSV

[Tarl h,Tarl s,Tarl v]=decouple hsv(Tarl hsv);
Tarl v _hist = imhist(Tarl v); % Tar 1 histogram
Tar2 = imread('image 3.jpg'); % Target 2 Image
Tar2 hsv = rgb2hsv(Tar2); % RGB to HSV

[Tar2 h,Tar2 s,Tar2 v]=decouple hsv(Tar2 hsv);
Tar2 v_hist = imhist(Tar2 v); % Tar 2 histogram

o

wavetype='sym5'; % default wavelet function

images=cell (1l,1); % output container
v=1; % counter

o o° o°

o
o°

%% Read input

I original = imread('filename.jpg'); % Input
I= I original; % value in I is dynamic

iter; % The user defines iteration value

images(1l,1)={I}; % store input image
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%% Enhance input image with RBHF
if iter ==
[outputImage]=rbhf (I,Tarl v hist,...
Tar2 v _hist,wavelet type);
else
for r=l:iter
% perform multiple RBHF
[outputImage]=rbhf (I, Tarl v hist,...
Tar2 v _hist,wavelet type);
% store output image
images (v+1l,1)={outputImage};

o

iter=iter+l; % update iter

o)

v=v+l; % update counter
I=outputImage; % Update input image
end

end
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A10. Software prototype

This section presents a windows-based prototype for the proposed method.
The prototype was developed using the MATLAB R2018a framework.
Therefore, to operate, it must be installed with the MATLAB R2018a Runtime
which is included in the software package. Alternatively, the user can download
and install the Windows Runtime version from the MathWorks website using

the link: http://www.mathworks.com/products/compiler/mcr/index.html

Figure A.3. displays a snapshot of the graphical user interface (GUI).
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Figure A.3. GUI of the proposed RBHF prototype

The basic controls are discussed as follows:
1. Selection for the mode of operation
The ‘select mode’ defines the mode of operation for the proposed algorithm.

If set to “single RBHF”, the algorithm performs one iteration of the RBHF
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process. Otherwise, multiple RBHF processes are performed on the input image
based on the number of iterations given by ‘No. of iter’.

2. Set number of iterations

The number of RBHF iterations is set by the ‘No. of Iter’ dropdown button.
For simplicity, the maximum value is set at five. In the multiple RBHF modes,
the number of iterations is set to 2 by default.

3. Load input

The ‘Load Input’ button is used to load an image into the software. When
click, it opens a window that allows users to select an image file from their local
directory. All input images must be RGB. There is no method employed to
process input images of different colour spaces.

4. Enhance input

Given an input image, the ‘Enhance’ button initiates an instance of the RBHF
algorithm based on the configurations provided. After the enhancement is
completed, results are automatically displayed in the table and figures.

5. Save output image

The ‘save’ control button allows the user to save the enhanced image on their
local directory. Users can choose which directory to save the output file as well
as define its name and format.

6. Setoutput format

The ‘o/p Format’ dropdown allows users to choose between two types of
image formats: JPEG and PNG. The JPEG format will lead to a smaller file size
as compared to PNG, however at the expense of lowering quality due to lossy

compression.
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7. Clear enhancement data

To clear tables and figures, the ‘Clear’ button is used. This allows users to
begin a new instance of the algorithm without the clustering of data, particularly
in the performance table. Figures do not need to be clear after every instance.
This process is handled by the algorithm during the next instance. Lastly,
‘Clear’ does not affect the input data and the default parameters.

8. Compare output images

The comparing of output images is a control feature initiated by ‘Comp.’.
This feature allows users to view the output image for each iteration. This is
particularly useful in cases where a user wants to identify the best picture quality
for a higher number of iterations.

Finally, a snapshot of the installation process is given in Figure A.4.

&l e 2 0 5 B
Connection Settings

Region_based_Histogram_Fusion 1.0
The RBHF algorithm enhances a single backlit image using a region-based histogram specification
scheme with the discrete wavelet transform.

Developed by Shaffa K. Kokro Jr. under the supervision of Prof. Elijah Mwangi and Dr. George
Kamucha, department of Electrical and Information Engineering, University of Nairobi. This project is
based on our MSc. research titled "A Region-based Histogram and Fusion Technique for enhancing
backlit images in cell phone applications,” sponsored by ArcelorMittal through the MDA agreement
between the Government of Liberia. Visit the university website to read the paper.

Shaffa K. Kokro Jr.
shaffakokro@gmail.com

Cancel

Figure A.4. Snapshot of prototype installation in Windows
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