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NOTATIONS
B(H) -Banach algebra of bounded linear operators on a Hilbert space H.
D - Open unit disk in the complex plane.
∂D - Unit circle in the complex plane.
r(T ) - The spectral radius of T
c.n.n - Completely non normal.
c.n.u - Completely non unitary.
n.h.s - Non trivial hyperinvariant subspace.
M⊥ - Orthogonal complement of a subspace M.
M ⊕N - Direct sum of M and N.
W ∗(T ) - Unital weakly closed von Neumann algebra generated by T.
σ(T ) -Spectrum of T.
ρ(T ) -resolvent set of T.
W (T ) - Numerical range of T.
Ker(T ) - Kernel of T.
Ran(T ) - Range of T.
Lat(T ) - Invariant subspaces of T.
Red(T ) - Reducing subspaces of T.
Hyperlat(T ) - Hyperinvariant subspaces of T.
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Abstract
Direct sum decomposition of bounded linear operators gives a way of studying
complicated operators since it decomposes these operators into parts whose structures
are user friendly. It is known that some operators are not decomposable, however,
every reducible operator is decomposable. Invariant subspaces of an operator, their
classification play an explicitly central role in studying complicated operators, for
it is known that, every operator with a nontrivial invariant subspace is reducible.
Reducing subspaces are special invariant subspaces which are useful in the direct
sum decomposition. The motivations behind the study of invariant subspaces come
from the interest in the structure of an operator and from approximation theory
to a wide variety of problems in physics(quantum theory), computer science (data
mining) and chemistry(lattice theory of crystal analysis).
In this thesis, we have investigated the existence of invariant and hyperinvariant
subspace for some operators such as quasinormal,nilpotent, quasinilpotent, hyponormal,
paranormal among others. We have shown that quasinormal as well as nilpotent
operators have nontrival invariant subspace. Quasinilpotent operators have nontrivial
invariant subspaces if the operator and its adjoint satisfy Single Value Extension
Property. Conditions in which hyponormal and higher classes have nontrivial
invariant subspaces are given. We have studied the structure of lattices of some
of the operators in relation to certain equivalence classes. We have shown that self
adjoint operator T and its adjoint have equal lattices. It has also been shown a
normal operator and its adjoint have isomorphic invariant subspace lattices but fails
for quasinormal operators. It has been shown that isomorphism of hyperlattices of
operators does not imply quasisimilarity nor similarity of operators.

vii



CHAPTER 1

INTRODUCTION

1.1 Background

The invariant subspace problem asks whether every operator on a complex separable

Hilbert space has a non-trivial invariant subspace. This problem has its origin

approximately in 1950 when, (according to Aronszajn and Smith [4]), J. von

Neumann (unpublished work), proved that every compact operator on a separable

infinite dimensional complex Hilbert space has a non-trivial invariant subspace. The

invariant subspaces of an operator play a central role in operator theory. They are

a direct analogue of the eigen-vectors of a linear operator. Reducing subspaces are

useful in the direct sum decomposition of an operator. Note that, every reducing

subspace M of T ∈ B(H) is also invariant subspace of T, that is, M is T− reducing

implies M is T− invariant. The motivation behind the study of invariant subspaces

comes from the interest of the structure of operators and from approximation theory.

The knowledge of the invariant subspace lattice of an operator T gives information

about the vectors which can be approximated by linear combinations of T nx for some

x ∈ H and every positive integer n. The knowledge of the hyperinvariant subspace

of T B(H) gives information about the commutant of T,(the set of all operators S

such that TS = ST ).

1.2 Definitions and Terminologies

In what follows, capital letters H,H1, H2, K,K1, K2 denote Hilbert spaces or

subspaces of Hilbert space, and T, T1, T2, S1, S2, A,B etc denote bounded linear

operators where by an operator we mean a bounded linear transformation from

H into H. B(H1, H2) denotes the set of bounded linear operators from H1 to H2. For

1



an operator T ∈ B(H), T ∗ denotes the adjoint of T, while Ker(T ), Ran(T ), M̄ ,M⊥

stand for the kernel of T, range of T, closure of M and orthogonal complement of

a closed subspace M of H, respectively and σ(T ) denotes the spectrum of T, ‖T‖

denotes the norm of T , r(T ) the spectral radius of T, while W (T ), denotes the

numerical range of T. By 0 and I we denote the zero and identity operators on H,

respectively.

Definition 1.2.1. An operator T ∈ B(H) is said to be:

normal if T ∗T = TT ∗,

self-adjoint or Hermitian if T = T ∗,

skew-adjoint if T ∗ = −T,

an involution if T 2 = I,

a projection if T ∗ = T and T 2 = T,

unitary if T ∗T = TT ∗ = I,

symmetric if T = T ∗ = T−1, that is, T is self-adjoint unitary,

isometric if T ∗T = I,

co-isometric if TT ∗ = I

complex symmetric if there exists a conjugation S such that STS = T ∗. where by

a conjugation we mean an isometry or an involution.

a partial isometry if T = TT ∗T, that is, T ∗T is a projection,

quasi-normal if T (T ∗T ) = (T ∗T )T, that is, if T commutes with T ∗T,

nilpotent if T n = 0 for some positive integer n,

quasi-nilpotent if σ(T ) = {0},

binormal if (T ∗T )(TT ∗) = (TT ∗)(T ∗T ),

complex symmetric operator if there exists a conjugation S such that STS = T ∗.

By a conjugation we mean an isometry or antilinear involution.

A-self adjoint if T ∗ = A−1TA, where A is a self-adjoint invertible operator,

compact if for each bounded sequence {xn} in the domain H, the sequence {Txn}
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contains a subsequence converging to some limit in the range,

a scalar if it is a scalar multiple of the identity operator, that is, if T = αI where

α ∈ C

hyponormal if T ∗T ≥ TT ∗, that is, T ∗T − TT ∗ ≥ 0,

cohyponormal if its adjoint is hyponormal, that is, T is cohyponormal if TT ∗ ≥

T ∗T,

p-hyponormal if (T ∗T )p ≥ (TT ∗)p where 0 < p ≤ 1,

quasihyponormal if ||T ∗Tx|| ≤ ||TTx|| for all x in H, equivalently if T ∗(T ∗T −

TT ∗)T ≥ 0,

paranormal if ‖Tx‖2 ≤ ‖T 2x‖ , for all unit vectors x ∈ H, equivalently if

‖Tx‖ ≤ ‖T‖ ‖x‖ , for every x ∈ H,

*-paranormal if ‖T ∗x‖2 ≤ ‖T 2x‖ , for all unit vectors x ∈ H,

n-*-paranormal if ‖T ∗x‖n ≤ ‖T nx‖ , for all unit vectors x ∈ H,

totally *-paranormal if ‖(T − λI)∗x‖2 ≤ ‖(T − λI)2x‖ ‖x‖ , for all unit vectors

x ∈ H and λ ∈ C,

k-quasihyponormal if T ∗k(T ∗T − TT ∗)T k ≥ 0, for k ≥ 1 some integer and every

x ∈ H,

p-quasihyponormal if T ∗((T ∗T )p − (TT ∗)p)T ≥ 0,

(p,k)-quasihyponormal if T ∗k((T ∗T )p − (TT ∗)p)T k ≥ 0, where 0 < p < 1 and k

is a positive integer,

log-hyponormal if logT ∗T ≥ logTT∗,

dominant if for any λ ∈ C there corresponds a number Mλ such that ‖(T − λI)‖∗ x ≤

Mλ ‖(T − λI)x‖ for all x ∈ H,

algebraic if there exists a nonzero polynomial p satisfying p(T ) = 0.

Definition 1.2.2. An operator T is seminormal if it is either hyponormal or

cohyponormal, equivalently it is either T or T ∗ hyponormal.
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Remark 1.2.3. Clearly, if an operator T ∈ B(H) is both hyponormal and

cohyponormal, then T must be normal.

Note also that, every hyponormal operator is seminormal but the converse is not true

in general.

Definition 1.2.4. A partial order is a binary relation denoted by ≺ over a set X

which is reflexive, anti-symmetric and transitive.

A set with a partial order is called a partially ordered set (poset).

For x, y elements of a partially ordered set X, if x ≤ y or y ≤ x, then x and y are

comparable. Otherwise they are incomparable.

A partial order under which every pair of elements is comparable is called a total

order or linear order or linear ordering.

A totally ordered set is called a chain. A subset of a poset in which no two distinct

elements are comparable is called an antichain.

An ordered set X is called directed if for every x, y ∈ X, there is z ∈ X such that

x ≤ z and y ≤ z.

An element x ∈ X is the greatest element of the ordered set X if y ≤ x for every

y ∈ X.

An element x ∈ X is the least element of the ordered set X if x ≤ y for every y ∈ X.

An element x ∈ X is maximal in the ordered set X if there is no y in X such that

x < y. Note that the greatest element if it exists is the maximal but not conversely.

x ∈ X is minimal if there is no y ∈ X such that x > y.

x ∈ X is an upper bound of A ⊂ X if y ≤ x for every y ∈ A.

x ∈ X is a lower bound of A if x ≤ y for every y ∈ A.

Definition 1.2.5. If every two elements x, y ∈ X possess both a least upper bound

and a greatest lower bound, denoted by sup (x, y) and inf (x, y) known as supremum

and infimum of (x, y) respectively. This ordered set (X,≤) is called a lattice.
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Definition 1.2.6. Let T ∈ B(H). A subspace M of a Hilbert space H is invariant

under operator T if T (M) ⊆M, that is x ∈M implies Tx ∈M for every x ∈M.

Lat(T ) will denote the lattice of all invariant subspaces of T, that is, Lat(T ) = {M ⊆

H : T (M) ⊆M}.

A subspace M of H is said to be a reducing subspace of T ∈ B(H) if it is invariant

under both T and T ∗, equivalently, if both M and M⊥ are invariant under T.

Red(T ) will denote the lattice of all reducing subspaces of T, that is, Lat(T ) = {M ⊆

H : M ∈ Lat(T ) ∩ Lat(T ∗)}.

Remark 1.2.7. Note that, the set of all invariant subspaces for T ∈ B(H), that is,

Lat(T ) is a lattice but Red(T ) need not be a lattice.

Definition 1.2.8. If T ∈ B(H), we denote by {T}′ the commutant of T, that is,

{T}′ = {S ∈ B(H) : ST = TS}.

Definition 1.2.9. A subspace M ⊂ H is said to be nontrivial hyperinvariant

subspace (n.h.s) for a fixed operator T ∈ B(H) if 0 6= M 6= H and SM ⊆ M

for each S ∈ {T}′, that is, it is invariant under every operator commuting with T.

The lattice of all hyperinvariant subspaces of T will be denoted by HyperLat(T ).

Definition 1.2.10. The bicommutant or double commutant of T ∈ B(H) is defined

by {T}′′ = {A ∈ B(H) : AS = SA, for all S ∈ {T}′}.

Definition 1.2.11. An operator T ∈ B(H) is hyper-reducing if M reduces every

operator in the commutant of T and the collection of all subspaces hyper-reducing for

T ∈ B(H) is denoted by HyperLat(T ).

Definition 1.2.12. An operator T ∈ B(H) is a generalized scalar operator if there

exists a continuous algebra homomorphism Φ : H → K satisfying Φ(1) = I, the

identity operator on K and Φ(z) = T where z denotes the identity function on
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H, that is,the function Φ is an operator valued distribution known as the spectral

distribution of T.

Definition 1.2.13. An operator T ∈ B(H) is subscalar if it is similar to a restriction

of a generalized scalar operator to one of its closed invariant subspaces.

An arbitrary operator T ∈ B(H) has a unique polar decomposition T = U |T |,

where |T | = (T ∗T )
1
2 and U is the appropriate partial isometry satisfying KerU =

Ker|T | = KerT and KerU∗ = KerT ∗. Associated with T is the operator |T | 12U |T | 12

called the Aluthge tranform of T denoted by T̃ .

Definition 1.2.14. An operator T = U |T | in B(H) is w-hyponormal if |T̃ | ≥ |T | ≥

|T̃ ∗| where |T̃ ∗| = (T̃ ∗T̃ )
1
2

Definition 1.2.15. An operator T ∈ B(H) is a left shift on H = `2(N) if Tx = y

for all x = (x1, x2, . . .) and y = (x2, x3, . . .) while it is a right shift operator if

Tx = y where x = (x1, x2, . . .) and y = (0, x1, x2, . . .).

Definition 1.2.16. An operator T ∈ B(H) is completely non-unitary (c.n.u) if the

restriction of it to any non-zero reducing subspace is not unitary.

Remark 1.2.17. : If M is an invariant subspace for T ∈ B(H), then relative to

the decomposition H = M ⊕M⊥, T can be written as T =

 Z X

0 Y

 for operators

X : M⊥ →M and Y : M⊥ →M⊥, Z = T |M : M →M is a part of T. The operator

X = 0 if and only if M reduces T. In such a case, the operator T is decomposed into

the orthogonal direct sum of the operators Z = T |M and Y = T |M⊥: T = Z ⊕ Y.

A direct summand of an operator T is the restriction of it to a reducing subspace.

An operator is reducible if it has nontrivial reducing subspace (equivalently, if it has

a proper nonzero direct summand), otherwise it is irreducible.

In 1985, Conway and Gillespie [15] posed an interesting problem on to what

extend the operator T is determined by the lattice theoretic structure of its
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invariant subspace lattice Lat(T ). Since nothing is known about Lat(T ) for a general

operator T, one is led to consider special classes of operators, where Lat(T ) is well

described. Conway and Gillespie settled the problem for self-adjoint operators, they

characterized the isomorphism of the lattices of reducing subspaces for any two

normal operators.

Definition 1.2.18. Two lattices L1 and L2 are said to be spatially or unitarily

isomorphic if there exists a unitary operator U : L1 → L2 such that L2 = U(L1).

Definition 1.2.19. The set ρ(T ) of all complex numbers λ for which λI − T is

invertible is called the resolvent set of T, that is,

ρ(T ) = {λ ∈ C : Ker(λI − T ) = {0} and Ran(λI − T ) = H}.

The complement of the resolvent set ρ(T ) denoted by σ(T ), is called the spectrum of T.

In other words, σ(T ) = C\ρ(T ) = {λ ∈ C : Ker(λI − T ) 6= {0} and Ran(λI − T ) 6=

H}, which is the set of all λ such that λI − T fails to be invertible, that is, fails to

have a bounded inverse on Ran(λI − T ) = H.

Definition 1.2.20. A scalar λ ∈ C is an eigenvalue of an operator T ∈ B(H) if

there exists a non-zero vector x ∈ H such that Tx = λx.

Definition 1.2.21. The set of all those λ ∈ C such that λI − T has no

inverse, denoted by σp(T ) is called the point spectrum of T. Equivalently, σp(T ) =

{λ ∈ C : ker(λI − T ) 6= {0}} which is the set of all eigenvalues of T.

Remark 1.2.22. Note that in finite dimensional settings, σ(T ) = σp(T ).

Definition 1.2.23. The set of all those λ ∈ C for which λI − T has a densely

defined but unbounded inverse on its image, denoted by σc(T ) is called the continuous

spectrum of T. Equivalently, σc(T ) = {λ ∈ C : ker(λI − T ) = {0} and

Ran(λI − T ) = H and Ran(λI − T ) 6= H}.
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If λI − T has an inverse that is not densely defined, then λ belongs to the residual

spectrum of T denoted by σr(T ), that is, σr(T ) = {λ ∈ C : ker(λI − T ) = {0} and

Ran(λI − T ) 6= H}.

Remark 1.2.24. The parts σp(T ), σc(T ), σr(T ) are pairwise disjoint and σ(T ) =

σp(T ) ∪ σc(T ) ∪ σr(T ). Thus, the collection σp(T ), σc(T ), σr(T ) forms a partition of

σ(T ).

Definition 1.2.25. An operator T ∈ B(H) has finite ascent if Ker(T n) =

Ker(T n+1).

Definition 1.2.26. An operator T ∈ B(H,K) is invertible if it is injective

(one-to-one) and surjective .

Definition 1.2.27. Two operators A and B are said to commute if AB = BA,

denoted by [A,B] = 0.

Definition 1.2.28. The set of all bounded linear operators T ∈ H such that T ∗T

and T ∗ + T commute is denoted by θ.

Definition 1.2.29. Two operators A ∈ B(H) and B ∈ B(K) are similar denoted

by A ≈ B if there exists an invertible operator N ∈ B(H,K) such that NA = BN

or equivalently A = N−1BN.

Definition 1.2.30. Jibril [30] Two operators A and B are said to be almost similar

(a.s) denoted by A
a.s∼ B if there exists an invertible operator N such that the following

two conditions hold:

A∗A = N−1(B∗B)N and

A∗ + A = N−1(B∗ +B)N.

Definition 1.2.31. An operator N ∈ B(H,K) is quasi-invertible or a quasi-affinity

if it is an injective operator with dense range (i.e, Ker(N) = {0}, and RanN =
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K;) equivalently Ker(N) = {0} and Ker(N∗) = {0}, thus N ∈ B(H,K) is

quasi-invertible if and only if N∗ ∈ B(H,K) is quasi-invertible.

Definition 1.2.32. An operator A ∈ B(H) is a quasi-affine transform of B ∈ B(K)

if there exists a quasi-invertible operator N ∈ B(H,K) such that NA = BN,that is

N intertwines A and B. Thus, A is a quasi-affine transform of B if there exists a

quasi-invertible operator intertwining A and B.

Definition 1.2.33. Nagy and Foias [47] Two operators A ∈ B(H) and B ∈ B(K)

are quasi-similar denoted by A ∼= B, if they are quasi-affine transforms of each

other, equivalently, if there exists quasi-invertible operators N ∈ B(H,K) and M ∈

B(K,H) such that AN = NB and MB = AM.

Definition 1.2.34. Two operators A ∈ B(H) and B ∈ B(K) are unitarily

equivalent, denoted by A ≡ B if there exists a unitary operator U ∈ B(H,K) such

that UA = BU, that is, A = U∗BU.

Remark 1.2.35. Two operators are considered the ”same” if they are unitarily

equivalent since they have the same properties of invertibility, normality and spectral

picture (norm, spectrum and spectral radius).

Definition 1.2.36. Nzimbi [51] Two operators A ∈ B(H) and B ∈ B(K) are

said to be metrically equivalent, denoted by, A
m∼ B if ‖Ax‖ = ‖Bx‖ , that is,

|< Ax,Ax >|
1
2 = |< Bx,Bx >|

1
2 for all x ∈ H, or A∗A = B∗B.

Definition 1.2.37. Two operators S, T ∈ B(H) are said to be nearly-equivalent

written S
n.e∼ T if there exists a unitary operator U such that T ∗T = US∗SU∗

Remark 1.2.38. Note that near-equivalence of operators is weaker than metric

equivalence of operators.

Note also that, S, T ∈ B(H) are nearly-equivalent if S∗S and T ∗T are unitarily

equivalent.
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Definition 1.2.39. An operator T ∈ B(H) is said to be decomposable if for every

open cover {U, V } in C there are closed T−invariant subspaces X and Y such that

H = X + Y, σ(T |X) ⊂ U and σ(T |Y ) ⊂ V .

Bishop’s property (β) [7]: An operator T ∈ B(H) has Bishop’s property

(β) provided that for every open subset U of C and for every sequence of analytic

functions fn : U → H for which (T − λI)fn(λ) converges uniformly to zero on each

compact subset of U, thus fn(λ)→ 0 as n→∞.

The surjectivity spectrum of an operator T ∈ B(H) is σsu(T ) = {λ ∈ C :

(λI − T )H 6= H}.

ET (F ) denotes the algebraic spectral subspace for a subset F in C defined as

ET (F ) = span{M ∈ Lat(T ) : σsu(T |M) ⊆ F}, which is the largest T− invariant

subspace of H for which the surjectivity spectrum of T is a subset of F.

Clearly ET (F ) = ∩λ/∈F,n∈N(λI − T )nH, where this inclusion becomes equality is for

instance, T is a normal operator on a Hilbert space H.

The analytic spectrum of T ∈ B(H) is defined as HT (F ) = {x ∈ H : σT (x) ⊆ ofF},

where σT (x) is the local spectrum of T at x defined by σT (x) = C\ρT (x), where

ρT (x) is the local resolvent set of T at the point x ∈ H, defined as the union of

all open subsets U of C for which there is an analytic function f : U → H which

satisfies (λI − T )f(λ) = x for all λ ∈ U.

Clearly, HTF is a hyperinvariant subspace of T.

Property I: A bounded linear operator T ∈ B(H) is said to have property (I)

provided that T has Bishop’s property (β) and there exists an integer p > 0 such

that for a closed subset F ⊂ C, HT (F ) = ET (F ) = ∩λ∈C\F (T − λI)pH for all closed

sets F ⊆ C, where HT (F ) denotes the analytic spectral subspace and ET (F ) denotes

the algebraic spectral subspace of T.

Decomposition property δ: An operator T ∈ B(H) is said to have the

decomposition property δ if given an arbitrary open covering {U1, U2} of C, every
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x ∈ H has a decomposition x = u1 +u2 where u1, u2 ∈ H satisfy uk = (T −λI)fk(λ)

for all λ ∈ C\Uk and some analytic function fk : C\Uk → H for k = 1, 2.

Single Value Extension Property (SVEP) [21]: An operator T ∈ B(H) has the

SVEP at λ0 ∈ C if for every open neighbourhood U of λ0, the only analytic function

f : U → H which satisfies the equation (T − λI)f(λ) = 0 is the zero function for all

λ ∈ U, that is, f ≡ 0, f is identically zero. The operator T is said to have SVEP if

it has SVEP for every λ ∈ C

Remark 1.2.40. Note that if T has Bishop’s property, then it has the single value

extension property but the converse is not true. SVEP does not imply Bishop’s

property.

It has been observed by Albrecht, Eschmeier and Neumann [1] that an operator T ∈

B(H) is decomposable if and only if it has properties (β) and (δ). Albrecht et all [1]

further showed that properties (β) and (δ) are completely dual to each other in the

sense that an operator T ∈ B(H) satisfies (β) if and only if the adjoint operator T ∗

on the dual space H∗ satisfies (δ) and the corresponding statement remains valid if

both properties are interchanged.

Invariant subspaces are important in studying the spectral properties and

canonical forms of operators. The fact that every operator on a finite dimensional

complex vector space is unitarily equivalent to an upper triangular matrix is

as a result of the existence of nontrivial invariant subspaces for operators on

finite-dimensional spaces.

It has been shown by Brown [8] that every subnormal operator has a nontrivial

invariant subspace. Brown et all [10] proved that very contraction whose spectrum

contains a unit circle has a nontrivial subspace. Hyponormal operators whose

spectrum has a nonempty interior has a nontrivial invariant subspace was proved
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by Brown [9].

The following are some basic results on invariant and hyperinvaraint subspaces.

Proposition 1.2.41. Suppose T ∈ B(H) and let M be a closed subspace of H. Then

the following statements are equivalent.

(i) T (M) ⊆M.

(ii) T (M⊥) ⊆M⊥.

(iii) [T, PM ] = 0, where PM denotes the orthogonal projection of H onto M.

Proof. (ii) ⇒ (i) T (M⊥) ⊆M⊥ implies that T (M) ⊆M, since M = (M⊥)⊥.

(i) ⇒ (iii) Suppose T ∈ B(H) such that T (M) ⊆ M and x ∈ H. Then T (PMx −

PM(Tx)) = T (PMx − PM(T (PMx + PM⊥x))) = T (PMx − PM(T (PMx))) = 0. This

shows that [T, PM ] = 0 for all T ∈ B(H). Thus [T, PM ] = 0.

(iii) ⇒ (ii): Suppose that [T, PM ] = 0 and let m ∈ M and y ∈ M⊥. Then we

have < Ty,m >=< Ty, PMm >=< PMTy,m >=< TPMy,m >= 0, and hence

T (M⊥) ⊆M⊥.

The following result shows that the kernel and range of an operator T ∈ B(H)

are invariant subspaces.

Theorem 1.2.42. If T ∈ B(H),then the following subspaces are invariant under T :

(i) Ker(T ) ∈ Lat(T ).

(ii) Ran(T ) ∈ Lat(T ).

Proof. (i) If x ∈ Ker(T ), then Tx = 0, and hence Tx ∈ Ker(T ). Thus Ker(T ) is

invariant under T.

(ii) Note that, since the operator T is bounded on a Hilbert space H, it is bounded

below and hence its range is a closed subspace of H. Thus T (Ran(T )) is contained

in Ran(T ). Let x ∈ Ran(T ), then Tx ∈ Ran(T ). Thus range T is invariant under

T.
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Theorem 1.2.43. Let T ∈ B(H) be a nonzero operator. If the operator equation

STS = TS has a nontrivial solution, then T has a nontrivial invariant subspace.

Proof. Let T ∈ B(H) and S be a nontrivial solution in B(H) to the equation STS =

TS. If TS = 0, then Ker(T ) and Ran(S) are nontrivial invariant subspaces for both

T and S. Suppose TS 6= 0, since (I−S)TS = 0 and S 6= I, we have {0} 6= Ran(TS) ⊆

Ker(I − S) 6= H so that Ker(I − S) is nontrivial. Ker(I − S) is a subspace of H

since I−S lies in B(H). Ker(I−S) is T−invariant. If x ∈ Ker(I−S), then Sx = x

so that Tx = TSx = STSx = STx, hence Tx ∈ Ker(I − S). In both cases, T has a

nontrivial invariant subspace.

Theorem 1.2.44. Let T ∈ B(H) and M be a subspace of H. Then

(a) M is T−invariant if and only if M⊥ is T ∗− invariant.

(b) M is invariant for every operator that commutes with T if and only if M⊥ is

invariant for every operator that commutes with T ∗.

Proof. (a) Let y ∈M⊥. If Tx ∈M whenever x ∈M, then

< x, T ∗y >=< Tx, y >= 0 for every x ∈ M, and therefore T ∗y⊥M which implies

that T ∗y lies in M⊥. Thus T (M) ⊆M implies T ∗(M⊥) ⊆M⊥. Conversely, since this

holds for every operator in B[H], it follows that T ∗(M⊥) ⊆M⊥ implies T (M) ⊆M.

Hence M is T−invariant if and only if M⊥ is T ∗−invariant.

(b)Let {T}′ be the commutant of T. Then L ∈ {T}′ if and only if L∗ ∈ {T ∗}′. Suppose

M is invariant for every operator that commutes with T, that is, M is L−invariant

whenever L ∈ {T}′. By part (a), M⊥is L∗−invariant whenever L∗ ∈ {T ∗}′. Thus M⊥

is invariant for every operator that commutes with T ∗. Dually, if M⊥ is invariant for

every operator that commutes with T ∗, then (M⊥)⊥ = M = M is invariant for every

operator that commutes with (T ∗)∗ = T.

Remark 1.2.45. Theorem 1.2.43 says that an operator on a Hilbert space has a

nontrivial invariant if and only if its adjoint has.
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An operator T ∈ B(H) has a nontrivial invariant(reducing) subspace if the dimension

of H is greater than 1.

Kubrusly [34] On a finite dimensional Hilbert space with dimension greater than one

every nonzero operator has an eigenvector and hence a nontrivial invariant subspace

1.3 Series of inclusions of classes of operators

It can be shown that the following inclusions of classes of operators hold:

Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ Semi-normal

Normal ⊆ Quasinormal ⊆ Hyponormal ⊆ Normaloid

Normal ⊆ Quasinormal ⊆ Hyponormal ⊆ M-hyponormal

Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ Paranormal

Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ *-Paranormal

Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ totally *-Paranormal

1.4 Statement of the problem

In this thesis, we study and investigate the invariant and hyperinvariant subspaces for

hyponormal, p-hyponormal, quasinilpotent operators and other classes of operators.

We also intend to investigate the structure of invariant, hyperinvariant and reducing

subspace lattices for some operators in some equivalence relations.
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1.4.1 Objectives of the study

The general objective of this study is to establish operators which have nontrivial

invariant and hyperinvariant subspaces.

The specific objectives of this study are:

(i) to investigate the existence of non trivial invariant subspaces for hyponormal,

p-hyponormal,paranormal, *-paranormal and quasinilpotent operators.

(ii)to investigate the existence of non trivial hyper-invariant subspaces for the same

classes of operators.

(iii) to investigate the structure of invariant, hyperinvariant and reducing subspace

lattices of some operators in some equivalence relations.

1.4.2 Significance of the study

The significance of existence of nontrivial invariant subspaces extends beyond its

abstract mathematical formulation. Existence of nontrivial invariant subspaces

have profound implication for a wide range of mathematical area such as operator

theory, functional analysis and linear algebra. In addition, applications in signal

processing, quantum mechanics and Control theory depend greatly on understanding

the existence and properties of invariant subspaces.

The study of invariant subspaces has profound connections to spectral theory. The

spectral properties of an operator are closely related to the existence and structure

of invariant subspaces. For instance, operators with rich spectral behavior tend

to have more nontrivial invariant subspaces. Spectral theory provides powerful

tools for understanding the structure of operators and characterizing their invariant

subspaces.

Quantum mechanics is a fundamental theory that describes the behavior of particles

at the atomic and subatomic level. Quantities such as position, momentum,
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energy are represented by linear operators known as observables acting on vector

space referred to Hilbert space. The concept of invariant subspaces applies when

studying the properties of observables and time-revolution operators. The presence

of invariant subspaces corresponds to conserved quantities in quantum systems. The

conserved quantities are associated with physical quantities that do not change

overtime such as total angular momentum of total energy. The existence of invariant

subspaces under the action of the angular momentum operator corresponds to the

conservation of angular momentum. This helps in understanding the behavior of

particles with rotational symmetry such as atoms and molecules. The concept of

spin which is a fundamental property of particles arises from study of invariant

subspaces. Spin is an intrinsic form of angular momentum possessed by particles.

The existence of invariant subspaces associated with the spin operator leads to the

quantization of spin values and the prediction of spin related phenomena such as

the Stern-Gerlach experiment. In control theory, invariant subspaces are vital in

analyzing the controllability and observability of dynamical systems. Controllability

deals with the ability to steer a system from one state to another using control inputs.

The existence of invariant subspaces indicates that certain states can not be reached

from the given initial conditions as they a confined to these invariant subspaces.

The absence of invariant subspaces guarantees that the system is fully controllable

enabling one to maneuver the system to any desired state through appropriate control

inputs. Observability in control theory deals with the ability to estimate the internal

states of a system based on the available measurement outputs. The existence of

invariant subspaces for the adjoint of the system operator implies that certain states

cannot be uniquely determined from the available measurements while absence of

nontrivial invariant subspaces quarantees that the system is fully observable hence

one can estimate all the states using available measurement outputs. Lattices are
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applicable in computer science as they are algorithmic tools to solving problems in

crytography and cryptanalysis.
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CHAPTER 2

LITERATURE REVIEW

Direct sum decomposition, T = T1⊕T2, of an operator T acting on an Hilbert space

H, follows from the well known fact that, properties satisfied by the direct summands,

that is, T1 and T2, are always the same properties satisfied by the direct sum, that is,

T . Thus, studying the behaviour of T gets relaxed to studying the behaviour of the

parts T1 and T2, since these parts are known to have a simpler structure than ’their

mother operator’, T . Unfortunately, for any T to be guaranteed of such a direct

sum decomposition, there must exists atleast one non-trivial reducing subspace in

H, for T . From the invariant problem for linear operators, (that is, the question

of coming up with a non-trivial invariant subspace for every operator on H), one

expects to encounter some operators on H, (especially, when the dimension of H is

neither 1 nor finite), which cant be expressed as direct sum decompositions. Diagonal

or equivalently, diagonalizable operators are easy to study since they have simple

structures. Linear operators which are not diagonalizable, might atleast be expressed

as direct sum decompositions of probably diagonalizable operators. Unfortunately,

linear operators acting on Hilbert spaces are neither diagonalizable, nor reducible

in general. However, every normal operator is either diagonalizable or similar to a

known diagonalizable operator. On the other edge, every reducible operator can be

expressed as a direct sum decomposition of a normal and a completely non-normal

operator. Generally, n-Power normal, n-power quasinormal and w-hyponormal

operators are not only non-normal, but also irreducible.

The question on whether every operator has a non trivial invariant and hyperinvariant

subspaces has its origin approximately in 1935 when according to Aronszajn and

Smith [4], J. von Neumann(unpublished) in 1950 proved that every compact operator
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T on a Hilbert space has a non trivial invariant and hyperinveraint subspaces, that

is, closed subspaces for all operators S such that ST = TS. As a consequence of the

spectral theorem, all normal operators have nontrivial invariant and hyperinvariant

subspaces unless they are equal to the scalar operator since the scalar operator

commutes with all operators.

Aronszajn and Smith proved in [4] that every compact operator on a Hilbert space

has a nontrivial invaraint and hyperinvariant subspace. Later in 1966, Bernstein and

Robinson [6] proved that a polynomially compact operator p(T ) on a Hilbert space

has an invariant subspace. Halmos [27] in 1966, gave a shorter proof of the same

result by a similar method avoiding the nonstandard analysis.

In 1973, Lomonosov [39] proved that every operator T commuting with a nonzero

compact operator has nontrivial invariant and hyperinvariant subspaces unless it

is a scalar multiple of the identity operator. More generally, if T commutes with

an operator S and S commutes with a nonzero compact operator, then T has a

nontrivial invariant subspace. In 1968, Arveson and Feldman [5] proved that given a

Hilbert space H and T ∈ B(H), satisfying ‖TPn − PnTPn‖ → 0 for some sequence

(Pn) of orthogonal projection operators which converge strongly to the identity

operator (such operators are called quasitriangular) and assuming that the norm

closed algebra generated by T and I contains a non-zero compact operator, then T

has a non trivial invariant subspace.

Hoover [29] in 1972 studied hyperinvariant subspaces and proved the result that if S

and T are quasisimilar operators acting on the Hilbert spaces H and K, respectively,

and if S has a hyperinvariant subspace, then so does T. If in addition,if S is normal,

then the lattice of hyperinvariant subspaces for T contains a sub-lattice which is

lattice isomorphic to the lattice of spectral projection for S.

In 1973, Pearcy and Salinas [53] proved that if T ∈ B(H) is a quasitriangular

operator and R(T ) (the norm closure of the rational functions of T ) contains a
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non-zero compact operator, then there exists a non-trivial subspace invariant under

all operators in R(T ).

In 1950, Halmos asked whether every subnormal operator has a nontrivial invariant

subspace. The problem was solved by Scott Brown [8] in 1978 where he proved that

every subnormal operator on a Hilbert space H has a nontrivial invariant subspace,

equivalently, if M is an infinite dimensional invariant subspace for a normal operator

N, then M contains a proper subspace other that {0} which is N−invariant. Brown

[9] extended this result to hyponormal operators with thick spectra in 1987 . Brown

[9] showed that if T is a hyponormal operator on H such that σ(T ) has a non-empty

interior, then T has a non-trivial invariant subspace, that is, every hyponormal

operator whose spectrum has nonempty interior has a nontrivial invariant subspace.

It is not known whether every hyponormal operator has nontrivial invariant subspace.

This study will focus on the class of hyponormal operator among other classes.

Results for hyperinvariance have been studied by C. S. Kubrusly [34] in 1997 and has

shown that similarity preserves nontrivial invariant subspaces while quasisimilarity

preserves hyperinvariant subspaces.In 1984, Putinar [55] proved that hyponormal

operators satisfy the Bishop’s property. In 1984, C. J. Read [57] proved that there

exists quasi-nilpotent operators (and hence decomposable) on Banach spaces without

nontrivial closed invariant subspaces. Herrero [28] in 1977, proved that the structure

of the hyperlattice of an operator is not preserved under quasisimilarity. In 1988,

Brown et al [10] proved that every contraction operator on a Hilbert space with

spectrum containing the unit circle has a nontrivial invariant subspace. Prunaru

[54] in 1997,proved that, a bounded operator T on a Hilbert space H such that

p(T )∗p(T )−p(T )p(T )∗ ≥ 0 for every polynomial p has a nontrivial invariant subspace.

In 2004, Ambrozie and Muller [2] proved that every polynomially bounded operator

T on a Hilbert space such that the spectrum of T contains the unit circle has a

nontrivial invariant closed subspace. Gamal [24] in 2004, proved that the lattices of
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invariant subspaces remain isomorphic under quasiaffine transforms. In 2005, Liu

[38] proved that the converse proposition of the famous Lomonosov Theorem is true,

and obtained some new necessary and sufficient condition for the invariant closed

subspace problem. In 2007, Foias et al [23] showed that a the class of subnormal

operators has a nontrivial hyperinavriant subspace. Nzimbi [49] in 2018 showed that

the hyperlattice of a unitary operator is equal to its reducing subspaces. Rashid [56]

in 2019 showed that if T ∈ B(H) is w-hyponormal and has decomposition property

δ, then T has a non trivial invariant closed linear subspace. In the same paper it has

also been shown that such an operator with rich spectrum has a nontrivial invariant

subspace.

The invariant subspace problem can as well be solved by investigating the structure

of the spectrum of an operator in question since it is shown by Kaplansky, [31] in

1953 that the spectral space of any class of operators includes properly, the spectral

space of all operators from its sub classes. Dunford, [20] in 1954 showed that the

spectrum of a self-adjoint operator lies along the real line, that of a unitary lies on

the unit circle, that of a projection consists of the points 0 and 1, and that of a

normal operator can be any compact set in the complex plane. Thus knowledge of

the location of spectrum of an operator can show whether the operator has nontrivial

invariant subspace or not. The spectrum of higher classes of operators is not trivial

but once some conditions are imposed it can shed light about the spectrum. Derming

and Juk [16] showed that if an operator is similar to its adjoint such that the zero

is not in the numerical range of the intertwining operator, then the spectrum of this

operator is contained in the real line.

The set of all bounded linear operators T on H such that T ∗T and T ∗+T commute is

denoted by θ. The operators in class θ have properties similar to those of hyponormal

operators. It was conjectured that every operator in class θ is subnormal. Campbell
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[13] showed that there is a nonhyponormal operator in class θ which means that this

class of operators are different from the class of hyponormal and that of subnormal

operators. However, if an operator in the class θ is hyponormal, then it is subnormal

[11]. In this thesis we investigate a subclass of class θ which consists of operators

T such that the spectrum of T, σ(T ) does not intersect with the real line, that is,

σ(T )∩R 6= φ. The complete structure of these operators is developed in [ Campbell

and Gellar [12]]. Stampfli [60] proved that an operator T whose spectrum is a

k − spectral set, that is, ‖f(T )‖ ≤ k ‖f‖σ(T ) for every rational function f with

pole off σ(T ) has a nontrivial invariant subspace. Brown extended the result of

subnormal to hyponormal operators with thick spectra in 1987. He showed that if T

is a hyponormal operator on H such that σ(T ) has a non-empty interior, then T has

a non-trivial invariant subspace. In 1990, Eschmeier and Prunaru [22] showed that

if an operator on a Banach space satisfies Bishop’s property and has an open set V

whose intersection with the spectrum is dominating for V has a nontrivial invariant

subspace. Kim [33], proved that every operator in the class θ whose outer boundary

of its spectrum is the outer boundary of a Caratheodory domain has a nontrivial

invariant subspace. He went ahead and gave a condition on spectra of operators in

the class θ which give information about invariant subspaces.

2.1 Knowledge Gap

From the extant literature, it has been shown that normal and subnormal operators

have nontrivial invariant subspaces. We extend this study to the class of quasinormal

operators, nilpotent operators, quasinilpotent operators, hyponormal operators,

p-hyponormal operators, paranormal operators on whether these operators have

nontrivial invariant and hyperinvariant subspaces. Invariant and hyperinvariant

subspace lattices of some of these operators is investigated. The structure of these

subspace lattices for these operators in some equivalence relations is also examined.
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CHAPTER 3

INVARIANT AND HYPERINVARIANT

SUBSPACES OF SOME OPERATORS

In this chapter we investigate operators which have nontrivial invariant and

hyperinvariant subspaces. Recall that a subspace M of a Hilbert space H is an

invariant subspace for an operator T ∈ B(H) if T (M) ⊆M. If T ∈ B(H), we denote

by {T}′ the commutant of T, that is, {T}′ = {S ∈ B(H) : ST = TS}. A subspace

M ⊂ H is said to be nontrivial hyperinvariant subspace (n.h.s) for a fixed operator

T ∈ B(H) if 0 6= M 6= H and SM ⊆ M for each S ∈ {T}′, that is, it is invariant

under every operator commuting with T. It has been shown by Neumann, [48] that

normal operators have nontrivial invariant subspaces. This result was extended

to the class of subnormal operators by Brown [8]. We will extend this study to

quasinormal, hyponormal, quasinilpotent and paranormal operators among others

classes of operators.

3.1 On invariant subspaces of quasinormal operators

Recall that an operator T is quasinormal if T and T ∗T commute, that is, if

(T ∗T − TT ∗)T = 0. Note that every normal operator is quasinormal and so is every

isometry.

We show that, every quasinormal operator T ∈ B(H) has a nontrivial invariant

subspace. First we need the following results:

Proposition 3.1.1. Kubrusly, [34] Let T and L be nonzero operators on a Hilbert

space H. If LT = 0, then Ker(L) and Ran(T ) are nontrivial invariant subspaces for

both T and L.
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This leads to the following corollary.

Corollary 3.1.2. Every nilpotent operator has a nontrivial invariant subspace.

Proof. Recall that, an operator is nilpotent if T n = 0. Thus T n = T (T n−1) which

can be written as a product of two operators and thus by Proposition 3.1.1, Ker(T )

and Ran(T n−1) are nontrivial invariant subspaces.

The following is an example of a nilpotent operator. We show that Ker(T ) and

Ran(T 2) are nontrivial invariant subspaces of T.

Example 3.1.3. Let T =


0 1 0

0 0 1

0 0 0

 . Then T 3 = 0. Thus T is a nilpotent operator.

T 3 = T 2T, where T 2 =


0 0 1

0 0 0

0 0 0

 . Ker(T ) =

〈
1

0

0


〉

= Ran(T 2) is a nontrivial

invariant subspaces of T since T =


0 1 0

0 0 1

0 0 0




1

0

0

 =


0

0

0

 ∈ span


1

0

0


Remark 3.1.4. Note that, if an operator T ∈ B(H) and its adjoint T ∗ satisfy the

Single Value Extension Property (SVEP), then T is decomposable and has nontrivial

invariant subspaces.

We give an alternative proof to show that nilpotent operators have nontrivial

invariant subspaces.

We first need the following result:

Theorem 3.1.5. Nzimbi and Luketero [50] Let H and K be Hilbert spaces. If A ∈

B(H) has the SVEP at λ0 ∈ C and B ∈ B(K) is a quasiaffine transform of A, then

B has the SVEP at λ0.
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Remark 3.1.6. Theorem 3.1.5 shows that SVEP is stable under quasiaffine

transformation.

This leads to the following result:

Theorem 3.1.7. Let H and K be Hilbert spaces. Suppose A ∈ B(H) and B ∈ B(H)

are quasisimilar. Then A has SVEP at λ0 if and only if B has SVEP at λ0.

Proof. Suppose that X ∈ B(H,K) is a quasiaffinity such that AX = XB, let f :

U → K be an analytic function defined on an open neighbourhood U of λ0 such that

(λI −B) f (λ) = 0 for all λ ∈ U. Then X (λI −B) f (λ) = (λI − A)Xf (λ) = 0.

Using the SVEP of A at λ0, we conclude f(λ) = 0 for all λ ∈ U. Thus B has the

SVEP. Conversely let Y ∈ B(K,H) be a quasiaffinity such that Y A = BY, let

g : U → H be an analytic function defined on an open neighbourhood U of µ0 such

that (µI − A) f (µ) = 0 for all µ ∈ U. Then Y (µI − A) g (µ) = (µI − A)Y g (µ) = 0.

Using the SVEP of B at µ0, we conclude g(µ) = 0 for all µ ∈ U. Thus A has the

SVEP.

Remark 3.1.8. From Theorem 3.1.7 we notice that, SVEP is stable under quasimilarity.

Theorem 3.1.9. Apostol, [3] Let T ∈ B(H). If T is a nilpotent operator, then T

and T ∗ are quasisimilar.

We deduce the following result.

Theorem 3.1.10. Let T ∈ B(H). If T is a nilpotent operator, the T ∗ has SVEP.

Proof. Since T is nilpotent implies that T has SVEP. Also T and T ∗ are quasisimilar

by Theorem 3.1.9, we conclude T ∗ has SVEP by Theorem 3.1.7.

Theorem 3.1.11. Let T ∈ B(H) be a nilpotent operator, then T has nontrivial

invariant subspace.
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Proof. The proof follows from the fact that an operator T is decomposable if it

satisfies the SVEP as well as its adjoint T ∗. By Theorem 3.1.10, we notice that a

nilpotent operator T and its adjoint T ∗ satisfy the SVEP and thus is decomposable

and hence has nontrivial invariant subspace by Remark 3.1.4.

Example 3.1.12. Let T =


0 1 0

0 0 1

0 0 0

 . Then T 3 = 0. Thus T is a nilpotent

operator. T ∗ =


0 0 0

1 0 0

0 1 0

 where the quasiaffinities are X =


0 1 0

1 0 0

0 0 0

 and

Y =


0 0 0

0 0 1

0 1 0

 , that is, XT ∗ = TX and T ∗Y = Y T , hence T and T ∗ are

quasimilar. Note that M = span

〈
1

0

0


〉

is a nontrivial invariant subspaces of T,

and T ∗ since T =


0 1 0

0 0 1

0 0 0




1

0

0

 =


0

0

0

 ∈ span


1

0

0

 and T ∗ =


0 0 0

1 0 0

0 1 0




1

0

0

 =


0

0

0

 ∈ span


1

0

0


We extend this result to the class of quasinilpotent operators. Note that every

nilpotent operator is quasinilpotent.

Corollary 3.1.13. Let T ∈ B(H) be quasinilpotent, If T and T ∗ have SVEP, Then

T has nontrivial invariant subspaces.
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Proof. The proof follows from the fact that an operator T is decomposable if it

has the SVEP together its adjoint T ∗. Thus T has nontrivial invariant subspace by

Remark 3.1.4.

The following result by Neumann, [48] shows that quasinormal operators have

nontrivial invariant subspaces. We need the following result.

Theorem 3.1.14. Neumann, [48] Normal operators have nontrivial invariant

subspaces.

We show that quasinormal operators have nontrivial invariant subspaces.

Corollary 3.1.15. If T ∈ B(H) is quasinormal, then it has a nontrivial invariant

subspace.

Proof. If T is quasinormal, then (T ∗T − TT ∗)T = 0. If T 6= 0 is quasinormal, then

either T ∗T − TT ∗ = 0 or T ∗T − TT ∗ 6= 0. If T ∗T − TT ∗ = 0 then T is a normal

operator and hence by Theorem 3.1.14 T has a nontrivial invariant subspace. If

T 6= 0 and T ∗T − TT ∗ 6= 0 but (T ∗T − TT ∗)T = 0 then using Proposition 3.1.1,

then Ker(T ∗T − TT ∗) and Ran(T ) are both nontrivial T− invariant subspaces.

Remark 3.1.16. Every quasinormal operator in particular, every isometry has a

nontrivial invariant subspace.

Example 3.1.17. Let T =


0 1 0

i 0 0

0 0 0

 , then T ∗ =


0 −i 0

1 0 0

0 0 0

 . Thus T (T ∗T ) =


0 1 0

i 0 0

0 0 0

 = (T ∗T )T. Hence T is quasinormal and M = span


0

0

1

 is a nontrivial

invariant subspace of T since and TM =


0 1 0

i 0 0

0 0 0




0

0

1

 =


0

0

0

 ∈ span


0

0

1

 = M
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Example 3.1.18. Define T : `2(N) → `2(N) by T (x) = T (x1, x2, x3, . . .) =

(0, x1, x2, x3, . . .) for x = (x1, x2, x3, . . .) ∈ `2(N). Then T ∗(x) = T ∗(x1, x2, x3, . . .) =

(x2, x3, . . .) and T ∗T (x) = T ∗(0, x1, x2, x3, . . .) = (x1, x2, x3, . . .) = x Thus T ∗T = I

hence T is an isometry. Using Remark 3.1.16 we conclude T has nontrivial invariant

subspaces.

3.2 Invariant Subspaces of Hyponormal and other

classes of Operators in Hilbert Space

The class of hyponormal operators contains that class of subnormal operators. Thus

if T ∈ B(H) is subnormal then T is hyponormal but hyponormal operators are

not necessarily subnormal. Thus subnormality is stronger than hyponormality. The

following result by Brown [8], shows that every subnormal operator has a nontrivial

invariant subspace.

Proposition 3.2.1. Brown, [8] Every subnormal operator has a non-trivial invariant

subspace.

In this section we extend our study to the class of hyponormal operators and

other classes of operators. We first show that hyponormal operators satisfy SVEP.

We first need the following result.

Proposition 3.2.2. Let T ∈ B(H). Then the following hold:

(i) Tx = λx implies T ∗x = λx.

(ii) if Tx = λx and Ty = µy for λ 6= µ then 〈x, y〉 = 0.

Proof. The first property holds since T − λI is also hyponormal. For λ 6= µ we have

λ〈x, y〉 = 〈λx, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉. Since λ 6= µ then

〈x, y〉 = 0.

The following result shows that hyponormal operators satisfy the single value

extension property (SVEP).
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Theorem 3.2.3. Let T ∈ B(H) be a hyponormal operator, Then T satisfies single

value extension property.

Proof. Let f be a vector valued analytic function such that (T − λI)f(λ) = 0 for

every λ ∈ C.

Then Tf(λ) = λf(λ) for every λ ∈ C.

Fix λ ∈ C, then for every µ 6= λ ∈ C we have by property (ii) of Proposition 3.2.2

〈f(λ), f(µ)〉 = 0.

By Pythagorean Theorem if follows that

‖f(λ)− f(µ)‖2 = ‖f(λ)‖2 + ‖f(µ)‖2. Letting µ −→ λ gives f(λ) = 0. Therefore f

is identically zero since λ is an arbitrary element in C.

Remark 3.2.4. The unilateral forward shift operator on `2(N) is hyponormal hence

satitisfies SVEP. Its adjoint the unilateral backward shift operator is cohyponormal

and does not satisfy SVEP since it is not decomposible by Lange [35]. We have seen

that for an operator to be decomposable, the it should satisfy SVEP together with

its adjoint. This shows that generally hyponormal operators do not have nontrivial

invariant subspace since there exists adjoints of hyponormal operators which do not

satisfy SVEP.

Thus we will investigate conditions in which hyponormal, p-hyponormal,log-hyponormal,

p-quasihyponormal and other classes of operators have nontrivial invariant subspaces.

Since normal operators have nontrivial invariant subspaces, we investigate conditions

in which these operators are normal. We first need the following result: Recall that,

an operator Y ∈ B[H,K] intertwines T ∈ B[H] to L ∈ B[K] if Y T = LY. In this

case we say that T is intertwined to L.

Remark 3.2.5. T is a quasiaffine transform of L if there exists quasi invertible

operator intertwining T to L. T is said to be densely intertwined to L if there exists an

operator with dense range intertwining T to L. In the next result we show a sufficient
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condition for transferring nontrivial invariant subspaces from L to T whenever T is

densely intertwined to L.

Lemma 3.2.6. [34] Let T ∈ B[H], L ∈ B[K] and Y ∈ B[H,K] be such that Y T =

LY. Suppose M ⊂ K is a nontrivial invariant subspace for L. If Ran(Y ) = K and

Ran(Y ) ∩M 6= {0}, then the inverse image of M under Y, that is, Y −1(M), is a

nontrivial invariant subspace for T.

Corollary 3.2.7. If the intertwining operator is surjective, that is Y T = LY and

Ran(Y ) = K then Y −1(M) is a nontrivial invariant subspace for T whenever M is

a nontrivial invariant subspace for L.

Theorem 3.2.8. Similarity of operators preserves non-trivial invariant subspaces.

Proof. Suppose T and S are similar. Then there exists an invertible operator Y ∈

B(H) such that T = Y −1SY. If M is a non-trivial invariant subspace for T , then

SYM = Y TM ⊂ YM. Since M is non-trivial and Y is invertible, then YM is a

non-trivial invariant subspace for S. Thus M is T− invariant if and only if M is S−

invariant.

This leads to the following result.

Corollary 3.2.9. If two operators are similar and if one of them has a nontrivial

invariant subspace, then so has the other.

The following results hold since similarity preserves nontrivial invariant subspaces.

Theorem 3.2.10. Stampfli, [59] Let T be a hyponormal operator. If T is similar to

a normal operator, then T is normal.

Using Theorem 3.2.10 we deduce the following result.

Corollary 3.2.11. Let T be a hyponormal operator. If T is similar to a normal

operator, then T has a nontrivial invariant subspace.
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Proof. Theorem 3.2.10 shows that if a hyponormal operator T is similar to a normal

operator then T is normal. The rest of the proof follows from Theorem 3.1.14 which

shows that every normal operator has a nontrivial invariant subspace.

Theorem 3.2.10 was extended by Duggal,[17] to the class of p-hyponormal

operators as follows.

Lemma 3.2.12. Duggal, [ [17], Proposition 4 ] Let T1 be a p-hyponormal operator

and T2 be normal. If there exists an operator Y with dense range such that, T1Y =

Y T2, then T1 is normal .

Using Lemma 3.2.12 we deduce the following result.

Corollary 3.2.13. Let T1 be a p-hyponormal operator and T2 be normal. If there

exists an operator Y with dense range such that, T1Y = Y T2, then T1 is normal and

hence T1 has a non-trivial invariant subspace.

Proof. Lemma 3.2.12 shows that if there exists an operator with dense range

intertwining a p-hyponormal operator to a normal operator, then the p-hyponormal

operator is normal hence has nontrivial invariant subspace since normal operators

have nontrivial invariant subspaces by Theorem 3.1.14.

Masuo, [41] extended Lemma 3.2.12 to the class of log-hyponormal operators and

gave the following result:

Lemma 3.2.14. Masuo,[[41], Theorem 1.5] Let T1 be a log-hyponormal operator and

T2 be normal. If there exists an operator Y with dense range such that, T1Y = Y T2,

then T1 is normal and hence T1 has a non-trivial invariant subspace.

Using Lemma 3.2.14 we deduce the following result.

Corollary 3.2.15. Let T1 be a log-hyponormal operator and T2 be normal. If there

exists an operator Y with dense range such that, T1Y = Y T2, then T1 has a non-trivial

invariant subspace.
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Proof. The proof follows from Corollary 3.2.13.

Duggal, [18] extended Lemma 3.2.14 to the class of p-quasihyponormal operators

as follows:

Lemma 3.2.16. Duggal, [[18], Lemma 2.4] Let T1 be an invertible p-quasihyponormal

operator and T2 be normal. If there exists an operator Y with dense range such that,

T1Y = Y T2, then T1 is normal.

Lemma 3.2.16 leads to the following result.

Corollary 3.2.17. Let T1 be an invertible p-quasihyponormal operator and T2 be

normal. If there exists an operator Y with dense range such that, T1Y = Y T2, then

T1 has a non-trivial invariant subspace.

Proof. The proof follows from Corollary 3.2.13.

Duggal, [17] extended Lemma 3.2.16 to the class of w-hyponormal operators as

follows:

Lemma 3.2.18. Duggal, [[17], Lemma 2.5] Let T1 be a w-hyponormal operator and

T2 be normal. If there exists an operator Y with dense range such that, T1Y = Y T2,

then T1 is normal and hence T1 has a non-trivial invariant subspace.

Corollary 3.2.19. Let T1 be a w-hyponormal operator and T2 be normal. If there

exists an operator Y with dense range such that, T1Y = Y T2, then T1 has a non-trivial

invariant subspace.

Proof. The proof follows from Corollary 3.2.13.

Proposition 3.2.20. Sheth, [58] If T ∗ ∈ B(H) is a hyponormal operator and

S−1TS = T ∗ for an operator S, where 0 /∈ W (S), then T is self-adjoint.

We deduce the following result from Proposition 3.2.20.
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Corollary 3.2.21. If T ∗ ∈ B(H) is a hyponormal operator and S−1TS = T ∗ for an

operator S, where 0 /∈ W (S), then T has nontrivial invariant subspace.

Proof. From Proposition 3.2.20 we conclude that T is normal, since every self-adjoint

operator is normal hence has nontrivial invariant subspaces by Theorem 3.1.14.

Remark 3.2.22. Corollary 3.2.21 shows that a hyponormal operator which is similar

to its adjoint is normal and hence has a nontrivial invariant subspace.

Proposition 3.2.20 was extended to the class of p-hyponormal operators by Hyoun

Kim, [32] as follows.

Proposition 3.2.23. Kim, [32] If T or T ∗ is p-hyponormal, and S is an operator

for which 0 /∈ W (S) and ST = T ∗S, then T is self-adjoint.

We deduce the following result from Proposition 3.2.23.

Corollary 3.2.24. If T or T ∗ is p-hyponormal, and S is an operator for which

0 /∈ W (S) and ST = T ∗S, then T has a nontrivial invariant subspace.

Proof. Proof follows from Corollary 3.2.21 and the fact that every self-adjoint

operator is normal.

Note that for self-adjoint operators their spectrum lies on the real line. The

location of spectrum from higher classes is not trivial. The following result sheds

more light on the spectrum of a hyponormal or p-hyponormal after imposing some

extra condition.

Lemma 3.2.25. Derming, [16] If T is a hyponormal or a p-hyponormal operator

and T = ST ∗S−1 for any operator S, where 0 /∈ W (S), σ(T ) ⊂ R.

This result was generalized for any operator T ∈ B(H) by Xia, [61] as follows.

Lemma 3.2.26. Derming, [16] If T ∈ B(H) be any operator such that T = ST ∗S−1

for any operator S, where 0 /∈ W (S), σ(T ) ⊂ R.
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This leads to the following corollary.

Corollary 3.2.27. If T ∈ B(H) be any operator such that T = ST ∗S−1 for any

operator S, where 0 /∈ W (S), σ(T ) ⊂ R and hence T has nontrivial invariant

subspace.

Remark 3.2.28. Note that Lemma 3.2.26 holds for all operators whose spectrum

lies on the real line. Corollary 3.2.27, in other words states that if an operator is

similar to its adjoint, then it has nontrivial invariant subspace.

The following results hold since unitarily equivalence implies similarity and

similarity preserves nontrivial invariant subspace.

Lemma 3.2.29. Herrero, [ [28], Corollary 7] Let T, S ∈ B(H) be p-hyponormal

operator. If TX = XS, where X ∈ B(H) is injective with dense range, then T is

normal unitarily equivalent to S..

This result was extended to the class of k−quasihyponormal operators by Garcia,

[25] as follows.

Theorem 3.2.30. Garcia, [25] If T ∈ B(H) is k−quasihyponormal operator and

S ∈ B(H) is normal operator for which TY = Y S where Y ∈ B(H) is injective with

dense range, then T is a normal operator unitarily equivalent to S. .

Theorem 3.2.30 leads to the following result.

Corollary 3.2.31. If T ∈ B(H) is k−quasihyponormal operator and S ∈ B(H) is

normal operator for which TY = Y S where Y ∈ B(H) is injective with dense range,

then T is a normal operator unitarily equivalent to S and hence T has a non-trivial

invariant subspace.

An operators is decomposable if and only if it has decomposition property δ and

Bishop’s property β. This leads to the following result.
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Theorem 3.2.32. Albrecht, [1] Let T ∈ B(H) be a bounded linear operator on

a Hilbert space H of dimension greater than 1. If T ∈ B(H) has property (β) and

decomposition property (δ), then T has a non-trivial invariant closed linear subspace.

Laursen, [[37],Proposition 1.5.11] proved that Theorem 3.2.32 holds for subscalar

operators and came up with the following result.

Corollary 3.2.33. Every subscalar operator with property (δ) on a Hilbert space of

dimension greater than 1 has a non-trivial invariant closed linear subspace.

Remark 3.2.34. Corollary 3.2.33 applies to all k-quasihyponormal operators,

isometries, M-hyponormal, w-hyponormal, log-hyponormal or hyponormal operators

with property (δ) since these operators are subscalar and satisfy SVEP.

Putinar, [55] proved every hyponormal operator satisfies property β in the form

of a corollary.

Corollary 3.2.35. Putinar, [55] Every hyponormal operator has property (β) .

Note that Bishop’s property implies SVEP but the converse is not true. This

leads to the following result.

Corollary 3.2.36. Every hyponormal operator with property (δ) on a Hilbert space

of dimension greater that 1 has a nontrivial invariant closed linear subspace.

Proof. Corollary 3.2.35 shows that T has property (β) . Suppose that T ∈ B(H) has

both property (β) and decomposition property (δ) on a Hilbert space H of dimension

greater than 1. Then T is decomposable. We show that if σ(T ) contains at least

two points, then T has a non-trivial invariant closed linear subspace. Since T is

decomposable, it follows that T has a nontrivial invariant closed linear subspace.

It remains to consider the case of operator T ∈ B(H) such that H is at least

two-dimensional and σ(T ) is a singleton. It follows that T = λI + N for some
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λ ∈ C and some nilpotent operator N ∈ B(H). Let p ∈ Z be the smallest integer

for which Np = 0, and choose an x ∈ H for which Np−1x 6= 0. The linear subspace

generated by Np−1x is a one-dimensional T−invariant linear subspace of H.

This result can be extended to the class of paranormal, *-paranormal and totally

*-paranormal operators as follows.

Rashid in 2019 [56] showed that a paranormal operator satisfies Bishop’s property.

This leads to the following result:

Corollary 3.2.37. Muteti, [43] Every paranormal operator with property (δ) on a

Hilbert space of dimension greater that 1 has a nontrivial invariant closed linear

subspace.

Proof. Proof follows from Corollary 3.2.36 since paranormal operator satisfy (β) as

shown by Rashid [56] in 2019.

Proposition 3.2.38. Duggal, [19] *-paranormal operators satisfy property (β).

This leads to the following results.

Corollary 3.2.39. Every *-paranormal operator with property (δ) on a Hilbert space

of dimension greater that 1 has a nontrivial invariant closed linear subspace.

Proof. Proof follows from Corollary 3.2.36 since *-paranormal operators satisfy

property (β) from Proposition 3.2.38.

Recall that an operator T ∈ B(H) has finite ascent if Ker(T n) = Ker(T n+1).

Proposition 3.2.40. Laursen, [36] Any operator T with finite ascent has SVEP.

Lemma 3.2.41. If T is totally *-paranormal, then ker(T ) = ker(T 2).

Remark 3.2.42. Lemma 3.2.42 shows that an operator T which is totally *-paranormal

has finite ascent and hence satisfies SVEP which leads to the following result.
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Proposition 3.2.43. Every totally *-paranormal operator has SVEP.

Proof. The proof follows from Lemma 3.2.42 since ker(T ) = ker(T 2) implies that

the operator T has finite ascent. The rest of the proof follows from Proposition

3.2.40.

This leads to the following result.

Corollary 3.2.44. Every totally *- paranormal operator with property (δ) on a

Hilbert space of dimension greater that 1 has a nontrivial invariant closed linear

subspace.

Proof. Proposition 3.2.43 shows that a totally *- paranormal operator T satisfies

SVEP and the decomposition property ensure its adjoint operator T ∗ has SVEP

hence the operator T is decomposable. The rest of the proof follows from the fact

decomposable operators have nontrivial invariant subspaces.

Remark 3.2.45. An operator is decomposable if it has both the Bishop’s property

(β) (or Dunford’s property(C)) and decomposition property (δ). A decomposable

operator has nontrivial invariant subspaces and vice versa.

The following result gives a condition in which a hyponormal operator is normal.

Recall that, an operator T ∈ B(H) is a complex symmetric operator if there exists

a conjugation S such that STS = T ∗ where by a conjugation we mean an isometry

or an involution.

Theorem 3.2.46. Muteti, [46] An operator T ∈ B(H) which is both hyponormal

and complex symmetric is normal.

Proof. Let T be a hyponormal operator ,‖Tx‖ ≥ ‖T ∗x‖ for all x ∈ H. Since T is

complex symmetric, there is a conjugation S so that T = ST ∗S, that is ST = T ∗S.
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Thus

‖Tx‖ = ‖ST ∗Sx‖ = ‖T ∗Sx‖ ≤ ‖TSx‖ = ‖ST ∗x‖ = ‖T ∗x‖ .

Thus ‖Tx‖ = ‖T ∗x‖ . Hence T is normal.

The following result shows that a hyponormal operator has invariant subspaces

if it is complex symmetric.

Theorem 3.2.47. Let T ∈ B(H) be a hyponormal operator which is complex

symmetric. Then T has an invariant subspace.

Proof. From Theorem 3.2.46, we observe that T is normal. Using Theorem 3.1.14

we get the required result.

Theorem 3.2.48. If T 2 is normal, then T is both binormal and complex symmetric.

Proof. It T 2 is normal, then T is binormal by[[14], Theorem 1] and complex

symmetric by [[26], Corollary 3].

In [11], Campbell remarks that a hyponormal operator is normal if and only if

its square is normal. We relax that hypothesis from normality to paranormality.

Lemma 3.2.49 ([11], Theorem 4). A binormal operator is hyponormal if and only

if it is paranormal.

Lemma 3.2.50. Muteti, [46] A binormal, complex symmetric operator T is normal

if and only if it is paranormal.

Proof. If T is paranormal and binormal, it is hyponormal by Lemma 3.2.48.

If T is hyponormal and complex symmetric, it is normal by Theorem 3.2.46.
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Theorem 3.2.51. Muteti, [46] A paranormal operator T is normal if and only if T 2

is normal.

Proof. Suppose T 2 is normal, by Theorem 3.2.48, T is binormal and complex

symmetric. Since T is paranormal, it is hyponormal by Lemma 3.2.49. Then T

is normal by Lemma 3.2.50.

Proposition 3.2.52. Muteti, [46] A paranormal operator T has a nontrivial

invariant subspace if its square is normal.

Proof. By Theorem 3.2.51 T is normal and the rest of the proof follows from Theorem

3.1.14.

3.3 On Invariant Subspaces of Class θ operators

Let K be a compact subset of C. The polynomially convex hull ηK of K is defined

as ηK = {λ ∈ C : |p(λ)| ≤ ‖p‖K} for all polynomial p.

The outer boundary of K means the boundary of the polynomially convex hull

ηK of K. In what follows,C(K) denotes the Banach algebra consisting of all

continuous functions on K with the supremum norm, P (K) the uniform closure

of all polynomials in C(K) and R(K) the uniform closure of all rational functions

with poles off K in C(K). A caratheodory domain is an open connected subset of C

whose boundary coincide with its outer boundary.

Corollary 3.3.1. Every operator T in the class θ has Bishop’s property (β).

Using the Corollary 3.3.1 and Brown’s result [[9], Theorem 3] we have:

Theorem 3.3.2. Let T be in class θ. If the spectrum of T satisfies σr(T ) 6= σc(T ),

Then T has a nontrivial invariant subspace.

Proof. For a compact set K in C, if the set K ∩ G is not dominating in G for any

nonempty open set G, then R(K) = C(K) [[9], Theorem 3]. Hence there exists
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an open set V such that V ∩ σ(T ) is dominating for V. By Corollary 3.3.1, T has

Bishop’s property (β). Therefore T has a nontrivial invariant subspace.

Proposition 3.3.3. Let T be an operator in class θ.

(a) If the outer boundary of the spectrum of T, σ(T ), is a convex Jordan curve, that

is, it is the boundary of a convex set and a Jordan curve, then the polynomially

convex hull ησ(T ) of the spectrum of T is a k−spectral set for T.

(b) If the spectrum of T does not meet the real line, that is, σ(T )
⋂
R = φ, then it is

k−spectral set for T.

Theorem 3.3.4. Let T be in class θ satisfying σ(T )
⋂

R = Φ. If P (σ(T )) =

C(σ(T )), then T is reductive.

Proof. Since the spectrum of T is a k−spectral set by Proposition 2.2, we can find

a bounded homomorphism ρ : P (σ(T )) → B(H) defined by ρ(f) = f(T ) such that

‖ρ(f)‖ = ‖f(T )‖ ≤ k ‖f‖σ(T ) . Since P (σ(T )) = C(σ(T )), the homomorphism is

defined on C(σ(T )), that is,

ρ : C(T )→ B(H)

for all f ∈ C(σ(T )). Since ρ is unital, that is, ρ(1) = 1, ρ is positive, that is, for a

positive function f in σc(T ), ρ(f) is a positive operator [ Paulsen [52], Proposition

2.11] and so it is completely positive [Paulsen [52], Theorem 3.11] which means that

ρ is completely bounded. Hence ρ is similar to a *-homomorphism from [Paulsen

[52], Corollaries 9.2 and 9.12], that is, there exists a *-homomorphism Φ and an

invertible operator S such that ρ(f) = SΦ(f)S−1 for all f ∈ C(σ(T )).

For z ∈ C(σ(T )),Φ(z)Φ(z)∗ = Φ(z)Φ(z̄) = Φ(zz̄) = Φ(z̄)Φ(z) = Φ(z)∗Φ(z).

So Φ(z) is a normal operator. This means that T = ρ(z) is similar to a normal

operator. Since every operator in class θ which is similar to a normal operator is

normal [Mecheri [42], Proposition 4.1], it follows that T is normal.

Let T be an invariant subspace for T, since z̄ is in C(σ(T )), there exists a sequence
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{pn} of polynomials such that pn(z)→ z̄ uniformly on σ(T ).

Thus ‖pn(T )− T ∗‖ = ‖ρ(pn)− ρ(z̄)‖ = ‖ρ(pn − z̄)‖ ≤ k ‖pn − z̄‖σ(T ) → 0. Thus M

is invariant for T ∗, since M is an invariant subspace of pn(T ) for each n. Hence T is

reductive.

It is known that if T is in the operator class θ and σ(T ) is a subset of a vertical

line, then T is normal [ Campbell et all [12], Proposition 4] We extend this result

for the case the spectrum of T does not meet the real line, that is, σ(T )
⋂

R = φ as

follows:

Corollary 3.3.5. Let T be an operator in the class θ satisfying σ(T )
⋂
R = φ. If

R(σ(T )) = C(σ(T )), then T is a normal operator.

Theorem 3.3.6. Let T be an operator in the class θ satisfying σ(T )
⋂
R = φ. If

R(σ(T )) = C(σ(T )), then T has an invariant subspace.

Proof. Muteti [45] By Corollary 3.3.5 , T is normal and combining with Theorem

3.1.14, then T has nontrivial invariant subspaces since normal operators have

nontrivial invariant subspaces.

3.4 Hyperinvariant Subspaces of Some Operators

In this section we investigate operators which have nontrivial hyperinvariant

subspaces. The knowledge of hyperinvariant subspaces of an operator T gives

information on the operators which commute with T , that is, the set of all the

operators S such that TS = ST. The commutant of an operator T is useful since

it contains all quasiaffine transforms of an operator and its very nature reveals

information about operators quasisimilar, similar or unitarily equivalent to T.

Theorem 3.4.1. Kubrusly, [34] Let T ∈ B(H). Then

(a) Ker(T ) and Ran(T ) are hyperinvariant subspaces for T.
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(b)If dimension of H is greater that 1 and T has no nontrivial invariant subspace,

then Ker(T ) = {0} and Ran(T ) = H.

Remark 3.4.2. A linear transformation between linear spaces, say T : X → Y is

injective if and only if Ker(T ) = {0}. Thus by Theorem 3.4.1 part(b) means that if

an operator has a nontrivial subspace, then it is quasiinvertible.

Theorem 3.4.1 part (a) and Proposition 3.1.1 ensure that, if the product of two

nonzero operators are null, then both have nontrivial hyperinvariant subspaces.

Proposition 3.4.3. Let H be a Hilbert space of dimension greater than 1. Then we

have the following assertions.

(i) a nonzero nilpotent operator on H has a nontrivial hyperinvariant subspace.

(ii) every nonscalar algebraic operator on H has a nontrivial hyperinvariant subspace.

Proof. (i)Ker(T ) is a hyperinvariant subspace for T using Theorem 3.4.1 part (a).

If T is nonzero and nilpotent, then T n = 0 and T n+1 = TT n = 0 for some positive

integer n so that Ker(T ) is nontrivial.

(ii) If T is an algebraic operator, then there exists a minimal polynomial p such

that p(T ) = 0. If T is nonscalar, then the degree of p is greater than 1. Thus

p(T ) = (λI − T )q(T ) = 0 for some scalar λ and for some polynomial q. Since

(λI − T ) 6= 0 because T is nonscalar and q(T ) 6= 0 because p is minimal. By

Theorem 3.4.1(a), Ker(λI − T ) is a nontrivial invariant subspace for every operator

that commutes with λI − T, and hence for every operator that commute with T.

Hence, Ker(λI − T ) is a nontrivial hyperinvariant subspace for T.

Remark 3.4.4. Proposition 3.4.3 (ii) ensures that every operator in the commutant

of a nonscalar algebraic operator has a nontrivial hyperinvariant subspace, that is,

if an operator has no nontrivial hyperinvariant subspace, then there is no nonscalar

algebraic operator in its commutant.
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Corollary 3.4.5. Every non-scalar normal operator has a non-trivial hyperinvariant

subspace.

Lemma 3.4.6. Kubrusly, [34] Let T ∈ B[H], L ∈ B[K], X ∈ B[H,K] and

Y ∈ B[K,H] be such that XT = LX and Y L = TY. Suppose M is a nontrivial

hyperinvariant subspace of L. If R(X) = K and N(Y )∩M = {0}, then Y (M) 6= {0}

and for each nonzero x in Y (M), Tx is a nontrivial hyperinvariant subspace for T.

Remark 3.4.7. Kubrusly, [34] If XT = LX and Y L = TY with R(X) = K and

N(Y ) = {0}, that is T and T ∗is densely intertwined to L and L∗, then there exists

a x ∈ Y (M) such that Tx is a nontrivial hyperinvariant subspace for T whenever M

is a nontrivial hyperinvariant subspace for L.

This leads to the following corollary.

Corollary 3.4.8. If two operators are quasisimilar and if one of them has a

nontrivial hyperinvariant subspace, then so has the other.

Remark 3.4.9. Corollary 3.4.8 ensures that an operator quasisimilar to a nonscalar

normal operator has a nontrivial invariant subspace.

The following result shows that similarity implies quasisimilarity. This is brought

by the fact that invertible operators are quasiinvertible. Note that the converse is

not true.

Proposition 3.4.10. If T, S ∈ B(H) are similar operators, then they are quasisimilar.

Proof. Suppose S, T ∈ B(H) are similar, then there exists an invertible( quasi-invertible)

operator Y ∈ B(H,K) such that Y T = Y S. Thus Y −1S = TY −1, where Y −1 ∈

B(K,H). Hence T and S are quasisimilar.

From Proposition 3.4.10 we deduce the following corollaries.
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Corollary 3.4.11. Let T be a hyponormal operator. If T is similar to a normal

operator, then T has a nontrivial hyper-invariant subspace.

Proof. The proof follows from Proposition 3.4.10.

Corollary 3.4.12. Let T1 be a p-hyponormal operator and T2 be normal. If there

exists a bijective operator Y such that, T1Y = Y T2, then T1 has a non-trivial

hyper-invariant subspace.

Proof. The proof follows from Proposition 3.4.10 since bijective operators are

invertible.

Corollary 3.4.13. Let T1 be a log-hyponormal operator and T2 be normal. If there

exists a bijective operator Y such that, T1Y = Y T2, then T1 has a non-trivial

hyper-invariant subspace.

Proof. The proof follows from Proposition 3.4.10 since bijective operators are

invertible.

Corollary 3.4.14. Let T1 be an invertible p-quasihyponormal operator and T2 be

normal. If there exists a bijective operator Y such that, T1Y = Y T2, then T1 has a

non-trivial hyper-invariant subspace.

Proof. The proof follows from Proposition 3.4.10 since bijective operators are

invertible.

Corollary 3.4.15. Let T1 be a w-hyponormal operator and T2 be normal. If there

exists aIf there exists a bijective operator Y such that, T1Y = Y T2, then T1 has a

non-trivial hyper-invariant subspace.

Proof. The proof follows from Proposition 3.4.10 since bijective operators are

invertible.
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CHAPTER 4

OPERATOR EQUIVALENCES AND

SUBSPACE LATTICES

Recall that Lat(T ), Hyperlat(T ), or Red(T ) refers to the subspace lattice of all

invariant, hyperinvariant and reducing subspaces of T, respectively. In this chapter

we investigate the invariant and hyperinvariant lattices of some operators. The

structure of invariant and hyperinvariant subspace lattices for operators in some

equivalence relations is also examined.

4.1 Lattices of some operators

Proposition 4.1.1. Muteti,[44] Let T, S ∈ B(H) and M be a nontrivial invariant

subspace for both T and S. Then M is TS−invariant.

Proof. If M is invariant for both T and S, then we have T (M) ⊆M and S(M) ⊆M.

Thus we have TSM = T (SM) ⊆ T (M) ⊆M. Therefore M is TS− invariant.

Proposition 4.1.2. Muteti, [44] Let T, S ∈ B(H) and M be a nontrivial invariant

subspace for both T and S. Then M is ST−invariant.

Proof. If M is invariant for both T and S, then we have T (M) ⊆M and S(M) ⊆M.

Thus we have STM = S(TM) ⊆ S(M) ⊆M. Therefore M is ST− invariant.

Question 4.1.1. Muteti, [44] If M is TS−invariant, is it true that M is

T−invariant or S−invariant?

We answer this question with the following example.
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Example 4.1.3. Let TS =

 1 0

0 0

 . We observe that Lat(TS) =

{0},
〈1

0

〉
,R2

 .

However TS can be written, not uniquely, as the product of T =

 0 1

1 0

 and

S =

 0 0

1 0

 . We notice that, M =

〈1

0

〉
is invariant for TS but it is not

invariant for T and S.

This leads to the following remark:

Remark 4.1.4. Muteti, [44] Let M and T, S ∈ B(H). If M is TS−invariant, then

M is not necessarily T− or S− invariant.

However if T commutes with S, such that, M is TS−invariant and either M is

T−invariant or S−invariant then M is invariant under both T and S. This leads to

the following result.

Proposition 4.1.5. Let T, S ∈ B(H) such that T and S commute and M ⊆ H is

invariant under T . If TS is M-invariant then M is S-invariant.

Proof. Since M is TS-invariant and and S and T commute the M is ST -invariant,

that is, (TS)M = (ST )M ⊆M.

Since M is T -invariant, then (TS)M = (ST )M = S(TM) = SM ⊆ M. Thus M is

S-invariant.

The following results show that taking powers of an operator T preserves

invariance and reducing subspaces.

Theorem 4.1.6. Let T ∈ B(H) and M ⊆ H. The following statements are true for

any integer n > 1.

(i) If M ∈ Lat(T ) then M ∈ Lat(T n).

(ii)If M ∈ Red(T ) then M ∈ Red(T n).
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Proof. The proof of (i) and (ii) follows by mathematical induction on n ∈ N. In

the proof of (ii), we use the fact that M ∈ Red(T ) implies that TM ⊆ M and

T ∗M ⊆M.

Example 4.1.7. Let T =

 1 1

0 0

 . Clearly, M =

〈1

0

〉
is T -invariant. It

is easy to check that T n =

 1 1

0 0

 for all n ≥ 2 and M =

〈1

0

〉
is also

T n-invariant.

Also T ∗ =

 1 0

1 0

 . N =

〈0

1

〉
is T ∗-invariant. (T ∗)n =

 1 0

1 0

 for all n ≥ 2

and N =

〈0

1

〉
is (T ∗)n-invariant.

Remark 4.1.8. Note that Lat(T ) need not be isomorphic to Lat(T n) as shown by

the following example.

Example 4.1.9. Let T =

 0 0

1 0

 . Then T n =

 0 0

0 0

 for all n ≥ 2 and

Lat(T ) = {{0},

〈0

1

〉
,R2} and Lat(T n) = {{0},

〈1

0

〉
,

〈0

1

〉
,R2}.

The following are the Hasse diagrams for Lat(T ) and Lat(T n), respectively.

Figure 4.1: Lat(T ) and Lat(T n) respectively

Theorem 4.1.10. Let T ∈ B(H) and M ⊆ H. If M ∈ Hyperlat(T ) then M ∈

Hyperlat(T n) for any integer n > 1.
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Proof. We need to prove that M ∈ Lat(S) where S ∈ {T}′ implies that M ∈

Lat(Sn), where Sn ∈ {T n}′.

By Theorem 4.1.6 (i), if M ∈ Lat(S) then M ∈ Lat(Sn), where Sn ∈ {T n}′. By

mathematical induction on n ∈ N, if S ∈ {T}′ then Sn ∈ {T}′, T n ∈ {S}′ and

Sn ∈ {T n}′. Thus if M ∈ Hyperlat(T ) then M ∈ Hyperlat(T n).

Example 4.1.11. Let T =

 1 1

0 0

 . Let S ∈ {T}′, then S =

 a+ d a

0 d

 , a, d ∈ R.

Thus M =

〈1

0

〉
is S-invariant. Sn =

 (a+ d)n (a+ d)n − dn

0 dn

 for all n ≥ 2

and M =

〈
1

0

〉
is also Sn-invariant.

We investigate the lattices of self-adjoint operators. Recall that an operator is

self-adjoint if T = T ∗.

Corollary 4.1.12. Let T be a self-adjoint operator, then Lat(T ) = Lat(T ∗).

Proof. The proof follows from the definition.

Example 4.1.13. Let T =

 1 0

0 1

 Then T = T ∗ and Lat(T ) =

{0},
〈1

0

〉
,

〈0

1

〉
,R2

 =

Lat(T ∗)

Let M =

〈1

0

〉
and N =

〈0

1

〉
. The Hasse diagrams of Lat(T ) and

Lat(T ∗) are as follows.

We show that the hyperlaticces of a self adjoint operator are the same. We first

need the following result.

Corollary 4.1.14. Longstaff [40] Let T, S ∈ B(H). If Lat(T ) = Lat(S), then

Hyperlat(T ) = Hyperlat(S).
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Figure 4.2: Lat(T ) and Lat(T ∗), respectively

Corollary 4.1.14 can be strengthened as follows.

Corollary 4.1.15. Let T ∈ B(H) be self-adjoint. Then Hyperlat(T ) = Hyperlat(T ∗).

Proof. We have Lat(T ) = Lat(T ∗) from Corollary 4.1.1. The rest of the proof follows

from Corollary 4.1.14.

Example 4.1.16. The commutant of operators T and T ∗ in Example 4.1.1 is the

matrix {T}′ =

 a b

b a

 : a, b ∈ R = {T ∗}′. Note that S =

 a 0

0 a

 : a ∈ R ∈ {T}′

and hence Hyperlat(T ) =

{0},
〈1

0

〉
,

〈0

1

〉
,R2

 = Hyperlat(T ∗). The

Hasse diagrams for Hyperlat(T ) and Hyperlat(T ∗) are similar to Figure 4.2.

Corollary 4.1.17. Let T ∈ B(H) be self-adjoint. If M ⊆ H is such that TM = M,

then M reduces T.

Proof. If TM = M, then T ∗M = TM = M. Thus M invariant under both T and

T ∗, hence M reduces T.

Corollary 4.1.18. Let T ∈ B(H) be self-adjoint. If M ⊆ H is such that TM = M,

then Red(T ) = Lat(T ).

Proof. This follows from Corollary 4.1.4 and the fact that Red(T ) ⊆ Lat(T ), for any

operator.
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Example 4.1.19. Let T =

 1 3

0 1

 . The Lat(T ) =

{0},
〈1

0

〉
,R2

 . The

adjoint of operator T is T ∗ =

 1 0

3 1

 and Lat(T ∗) =

{0},
〈o

1

〉
,R2

 . Thus

Red(T ) = {{0},R2} which shows Red(T ) ⊆ Lat(T ).

The following result shows that for self-adjoint operators the lattice of T is equal

to its reducing subspaces.

Corollary 4.1.20. Let T ∈ B(H) be self-adjoint. Then Red(T ) = Lat(T ).

Proof. Red(T ) = {M ⊆ H : TM ⊆M,T ∗M ⊆M}

= M ⊆ H : M ∈ Lat(T )
⋂
Lat(T ∗)

= Lat(T ).

Recall that T ∈ B(H) is reductive if every invariant subspace of T reduces T,

that is, Lat(T ) ⊆ Red(T ).

Theorem 4.1.21. An operator T ∈ B(H) is reductive if and only if Lat(T ) =

Red(T ).

Proof. Suppose T is reductive, then Lat(T ) ⊆ Red(T ). Since Red(T ) ⊆ Lat(T ) thus

Red(T ) = Lat(T ).

Conversely, suppose Lat(T ) = Red(T ). Then Lat(T ) ⊆ Red(T ) and Red(T ) ⊆

Lat(T ). By the first conclusion, Lat(T ) ⊆ Red(T ), that is, every invariant subspace

of T is T− reducing hence T is reductive.

Remark 4.1.22. Corollary 4.1.22 shows that for a self-adjoint operator, Red(T ) =

Lat(T ), hence self-adjoint operators are reductive by Theorem 4.1.21.

We show that for any self adjoint operator the HyperRed(T ) = Hyperlat(T ). We

first need the following results. Recall, that T is hyper-reducing if M reduces every
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operator in the commutant of T and the collection of all subspaces hyper-reducing

for T ∈ B(H).

Theorem 4.1.23. Let T ∈ B(H). Then HyperRed(T ) = Lat({T}′)
⋂
Lat({T ∗}′).

Proof. HyperRed(T ) = {M ⊆ H : M ∈ Red({T}′)}

{M ⊆ H : SM ⊆M,S∗M ⊆M,S ∈ {T}′}

= {M ⊆ H : M ∈ Lat(S)
⋂
Lat(S∗), S ∈ {T}′}

= {M ⊆ H : M ∈ Lat({T}′)
⋂
Lat({T ∗})′}

= Lat({T}′)
⋂
Lat({T ∗}′).

Theorem 4.1.24. Let T ∈ B(H). Then HyperRed(T ) = Hyperlat(T )
⋂
Hyperlat(T ∗).

Proof. The proof follows from Theorem 4.1.23 and the fact that Lat({T}′) =

Hyperlat(T ) and Lat({T ∗}′) = Hyperlat(T ∗), for any operator T ∈ B(H).

Corollary 4.1.25. Let T ∈ B(H) be self-adjoint. Then HyperRed(T ) =

Hyperlat(T ).

Proof. The proof follows from Theorem 4.1.24 and self-adjointness of operator T.

Remark 4.1.26. Note that self-adjoint operators are normal but the converse is not

true.

Example 4.1.27. Let T =

 2i 0

0 2i

 then T ∗ =

 −2i 0

0 −2i

 .
T ∗T =

 4 0

0 4

 = TT ∗. Hence T is normal but not self-adjoint since T 6= T ∗.

We have seen that for self-adjoint operators Lat(T ) = Lat(T ∗) andHyperlat(T ) =

Hyperlat(T ∗). We extend this study to the class of normal operators.

Corollary 4.1.28. Let T ∈ B(H) be a normal operator. Then Lat(T ) = Lat(T ∗).
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Proof. Suppose M is T ∗T -invariant. Since T and T ∗ commute then M is

TT ∗-invariant, that is, (TT ∗)M = (T ∗T )M ⊆ M. Thus (TT ∗)M ⊆ M hence M

is TT ∗−invariant.

Let M be T -invariant, then (TT ∗)M = (T ∗T )M = T ∗(TM) = T ∗M ⊆ M. Thus

M is T ∗-invariant. Conversely, let M be T ∗-invariant, then (T ∗T )M = (TT ∗)M =

T (T ∗M) = TM ⊆M. Thus M is T -invariant. Hence Lat(T ) = Lat(T ∗).

Example 4.1.29. From Example 4.17, T =

 2i 0

0 2i

 and T ∗ =

 −2i 0

0 −2i

 .
The lattices are Lat(T ) =

{0},
〈

1

0

〉
,

〈
0

1

〉
,C2

 = Lat(T ∗).

Corollary 4.1.30. Let T ∈ B(H) be normal operator. Then Hyperlat(T ) =

Hyperlat(T ∗).

Proof. The proof follows from Corollary 4.1.28 which shows that Lat(T ) = Lat(T ∗).

The rest of the proof follows from Corollary 4.1.14.

Remark 4.1.31. Self-adjoint operator are normal. Corollary 4.1.30 can be used to

show that, Hyperlat(T ) = Hyperlat(T ∗) for any self-adjoint operator.

Since normal operators are quasinormal, we investigate if Lat(T ) ≡ Lat(T ∗) for

quasinormal operators. Consider the following example.

Example 4.1.32. Let T =


0 1 0

i 0 0

0 0 0

 , then T ∗ =


0 −i 0

1 0 0

0 0 0

 . Clearly,

T (T ∗T ) =


0 1 0

i 0 0

0 0 0

 = (T ∗T )T. Hence T is quasinormal Lat(T ) = {{0},

〈
0

0

1


〉
,C3} =

Lat(T ∗). Hence Lat(T ) = Lat(T ∗).
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The Hasse diagram of Lat(T ) and Lat(T ∗) is as follows where H = C3 and

M =

〈
0

0

1


〉
.

Figure 4.3: Lat(T ) and Lat(T ∗), respectively

Question 4.1.2. If T and T ∗ are quasinormal, is T a normal operator?

Consider the operator T in Example 4.1.32. Notice that,T commutes with T ∗T

and T ∗ commutes with TT ∗ since T ∗(TT ∗) =


0 −i 0

1 0 0

0 0 0

 = (TT ∗)T ∗. We also

notice that T is normal since T ∗T =


1 0 0

0 1 0

0 0 0

 = TT ∗. Thus if T and T ∗ are

quasinormal, then T is normal. This leads to the following result.

Corollary 4.1.33. Let T and T ∗ be quasinormal operators, then Lat(T ) ≡ Lat(T ∗).

Remark 4.1.34. Note that the adjoint of a quasinormal operator is not always

quasinormal as shown below.

Example 4.1.35. Define T : `2(N) → `2(N) by T (x) = T (x1, x2, x3, . . .) =

(0, x1, x2, x3, . . .) for x = (x1, x2, x3, . . .) ∈ `2(N). Then T ∗(x) = T ∗(x1, x2, x3, . . .) =

(x2, x3, . . .) and T ∗T (x) = T ∗(0, x1, x2, x3, . . .) = (x1, x2, x3, . . .) = x Thus T ∗T = I.

T commutes with T ∗T since T ∗T = I but T ∗ does not commute with the projection

TT ∗.
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We look at the lattice of the forward unilateral shift operator together with its

adjoint. The matrix representation of the operators T ∗ is

T ∗ =



0 1 0 · · ·

0 0 1 · · ·
...

...
...

. . .

0 0 0 · · ·


(4.1)

and the matrix representation T is

T =



0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·
...

...
...

...
. . .

0 0 0 0 · · ·


(4.2)

Lat(T ∗) =


{0}, span



1

0

0

...


, `2(N)


and Lat(T ) = {{0}, `2(N)} . Let H = `2(N)

and M = span



1

0

0

...


.

The Hasse diagrams of Lat(T ∗) and Lat(T ) are as follows.

Thus for quasinormal operators, Lat(T ) 6≡ Lat(T ∗), in general. This result

applies for hyponormal,p-hyponormal, paranormal operators among others.
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Figure 4.4: Lat(T ∗) and Lat(T ), respectively

4.2 Lattices of unitarily equivalent operators

Recall that two operators T, S ∈ B(H) are said to be unitarily equivalent if there

exists a unitary operator U ∈ B(H) such that UT = SU or equivalently T = U∗SU.

Theorem 4.2.1. Let T ∈ B(H) be a normal operator. Then Lat(T ) = Lat(T ∗).

Theorem 4.2.2. Let T ∈ B(H) be normal and suppose S ∈ B(H) is unitarily

equivalent to T, then S is normal.

Proof. Suppose S is unitarily equivalent to T, there exists a unitary operator U ∈

B(H) such that S = U∗TU . Taking adjoints on both sides, we have S∗ = U∗T ∗U .

Thus

S∗S = (U∗T ∗U)(U∗TU)

= U∗T ∗TU

= U∗TT ∗U

= SU∗T ∗U

= SU∗US∗

= SS∗

Hence S is normal.

Remark 4.2.3. Theorem 4.2.2 shows that unitary equivalence preserves normality.
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This leads to the following result.

Theorem 4.2.4. Two normal operators that are similar are unitarily equivalent.

Theorem 4.2.4 can be strengthened as follows.

Proposition 4.2.5. Let T, S ∈ B(H) be normal operators, then S is unitarily

equivalent to T if and only if S is similar to T.

Corollary 4.2.6. Let T, S ∈ B(H) be normal operators that are unitarily equivalent,

then Lat(T ) ≡ Lat(S).

Proof. Proof follows from Proposition 4.2.5 and the fact that similar normal

operators have isomorphic lattices.

Corollary 4.2.7. Let T, S ∈ B(H) be unitarily equivalent projections, then

Lat(T ) = Lat(S).

Example 4.2.8. Let P =

 1 0

0 0

 and Q =

 0 0

0 1

 . A simple computation

shows that P 2 = P and Q2 = Q and P ∗ = P,Q∗ = Q hence P and

Q are projections unitarily equivalent where U =

 0 1

1 0

 . Thus Lat(P ) =

{0},
〈

1

0

〉
,

〈
0

1

〉
,R2

 = Lat(Q). Thus Lat(P ) is equal Lat(Q).

4.3 Lattices of similar operators

In this section we investigate lattices of operators under the similarity equivalence

relation on B(H). We will also give conditions when operators which are similar

have isomorphic lattices. Recall that, two operators A ∈ B(H) and B ∈ B(K) are

similar denoted by A ≈ B if there exists an invertible operator N ∈ B(H,K) such

that NA = BN or equivalently A = N−1BN and two operators A ∈ B(H) and
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B ∈ B(K) are quasi-similar denoted by A ∼= B, if they are quasi-affine transforms of

each other, equivalently, if there exists quasi-invertible operators N ∈ B(H,K) and

M ∈ B(K,H) such that AN = NB and MB = AM. We show that if two operators

are similar, then their lattices are not isomorphic in general.

Example 4.3.1. Consider the following operators T and S in R2.

T =

 0 1

0 0

 and S =

 1 1

−1 −1

 . A simple computation shows that T

and S are similar under the invertible operator N =

 2 1

1 1

 . Lat(T ) =

{0},
〈1

0

〉
,R2

 and Lat(S) = {{0},R2} . Thus Lat(T ) is not isomorphic to

Lat(S).

Let M =

〈1

0

〉
. The Hasse diagrams for Lat(T ) and Lat(S) are as shown below.

Figure 4.5: Lat(T ) and Lat(S)

Remark 4.3.2. Let T, S ∈ B(H). If T and S are similar, then Lat(T ) is not

necessarily isomorphic to Lat(S).

Question 4.3.1. When does similarity preserve the structure of the lattices of

operators?

We answer Question 4.3.1 using the following example.
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Example 4.3.3. Consider T =

 1 0

1 0

 and S =

 0 0

1 1

 . A simple computation

shows that T and S are similar under the invertible operator N =

 1 −1

−3 1

 .
Lat(T ) =

{0},
〈0

1

〉
,R2

 and Lat(S) =

{0},
〈0

1

〉
,R2

 . Thus Lat(T ) =

Lat(S).

The commutant of T and S are {T}′ =

 a 0

a− d d

 : a, d ∈ R and

{S}′ =

 a 0

d− a d

 : a, d ∈ R respectively. Lat{T}′ =

{0},
〈0

1

〉
,R2

 and

Lat{S}′ =

{0},
〈0

1

〉
,R2

 . Thus Lat{T}′ = Lat{S}′. Note that the operators

T and S satisfy the property that T 2 = T and S2 = S.

Corollary 4.3.4. Let T, S ∈ B(H) be similar normal operators, then Lat(T ) =

Lat(S).

Corollary 4.2.1 can be strengthened as follows.

Corollary 4.3.5. Let P,Q ∈ B(H) be similar projections, then Lat(P ) = Lat(Q).

We show that the hyperlattices of similar normal operators are isomorphic. We

first need the following result.

Corollary 4.3.6. Let T, S ∈ B(H) be similar normal operators. Then Hyperlat(T ) =

Hyperlat(S).

Proof. By Corollary 4.3.4 Lat(T ) = Lat(S) . The rest of the proof follows from

Corollary 4.1.14.
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Example 4.3.7. Let T =

 1 −1

0 1

 and S =

 1 1

0 1

 . A simple computation

shows that T and S are similar under the invertible operator N =

 1 0

0 −1

 .
Also T and S are normal operators since T ∗T = TT ∗ and S∗S = SS∗. Lat(T ) ={0},

〈1

0

〉
,R2

 = Lat(S). The commutant of T is {T}′ =

 a b

0 a

 : a, b ∈

R = {S}′. Hyperlat(T ) =

{0},
〈1

0

〉
,R2

 = Hyperlat(S).

Corollary 4.2.4 can be relaxed as follows.

Corollary 4.3.8. Let P,Q ∈ B(H) be similar projections, then Hyperlat(P ) =

Hyperlat(Q).

Proof. Proof follows from Corollary 4.3.6.

The following example shows the hyperlattices of two operators which are

isomorphic but the operators are neither similar nor quasisimilar.

Example 4.3.9. Let T =

 a 0

0 −a

 and S =

 0 x

y 0

 .
Lat(T ) =

{0},
〈1

0

〉
,

〈0

1

〉
,R2

 and Lat(S) = {{0},R2} . Thus Lat(T ) 6=

Lat(S).

Note that {T}′ = {X : X =

 α 0

0 β

 , α, β ∈ R} and {S} = {Y : Y =

 α 0

0 α

 , α ∈ R}.
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Thus Hyperlat(T ) =

{0},
〈1

0

〉
,

〈0

1

〉
,R2

 = Hyperlat(S).

Thus their hyperinvariant subspaces are isomorphic.

Remark 4.3.10. Let T, S ∈ B(H). If HyperLat(T ) ≡ HyperLat(S), then lat(T ) is

not necessarily isomorphic to Lat(S).

Note that T and S in Example 4.3.9 are anticommutative operators which are

not quasisimilar. Thus isomorphism of hyperlattice does not in general imply

quasi-similarity nor similarity of operators.

Theorem 4.3.11. Let T, S ∈ B(H) such that T is similar to S, then S∗ and T ∗ are

similar.

Remark 4.3.12. Note that similarity does not preserve the lattice of operators and

so is their adjoints.

Example 4.3.13. Using Example 4.2.1, we have T ∗ =

 0 0

1 0

 and S∗ =

 −1 −1

1 1

 . Lat(T ) =

{0},
〈0

1

〉
,R2

 and Lat(S) = {{0},R2} . Thus

Lat(T ∗) is not isomorphic to Lat(S∗).

Let M =

〈0

1

〉
. The Hasse diagrams for Lat(T ∗) and Lat(S∗) are as shown

below.

Figure 4.6: Lat(T ∗) and Lat(S∗)
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Remark 4.3.14. Note that Lat(T ) ≡ Lat(T ∗) and Lat(S) ≡ Lat(S∗).

Corollary 4.3.15. Let T, S ∈ B(H) be similar normal operators, then Lat(T ∗) ≡

Lat(S∗).

Proof. The proof follows from corollary 4.3.14 and Theorem 4.3.11.

Corollary 4.3.15 can be strengthened as follows.

Corollary 4.3.16. Let P,Q ∈ B(H) be similar projections. Then Lat(P ) ≡ Lat(Q).

4.4 Lattices of almost similar operators

Recall that two operators T and S are said to be almost similar if there exists

an invertible operator N ∈ B(H) such that T ∗T = N−1(S∗S)N and T ∗ + T =

N−1(S∗ + S)N. The following result shows that similarity implies almost similarity.

Proposition 4.4.1. [30] If T, S ∈ B(H) such that T and S are unitarily equivalent,

then T
a.s∼ S.

We seek to find out when almost similarity implies similarity. We first need the

following result.

Proposition 4.4.2. [30] If T, S ∈ B(H) such that T
a.s∼ S and S is hermitian, then

T is hermitian.

Theorem 4.4.3. If T, S ∈ B(H) such that T
a.s∼ S and if T is hermitian, then T is

similar to S.

Proof. Suppose T
a.s∼ S. There exists an invertible operator N such that T ∗T =

N−1(S∗S)N and T ∗+T = N−1(S∗+S)N. Since T is hermitian, by Proposition 4.4.2

S is hermitian. Thus T 2 = N−1(S2)N and 2T = N−1(2S)N. This implies T and S

are similar.
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Remark 4.4.4. We note that both operators T and S are hermitian and hence

normal operators. Theorem 4.4.3 can be extended to similarity as follows.

Corollary 4.4.5. Let T, S ∈ B(H) be normal operators such that T
a.s∼ S then T is

similar to S.

Proof. The proof follows from Theorem 4.4.3.

Corollary 4.4.6. Let T, S ∈ B(H) be normal operators such that T
a.s∼ S then

Lat(T ) = Lat(S).

Proof. Proof follows from Corollary 4.4.5 which shows that almost similar operators

are similar and and since similar normal operators have equal lattices, then the result

follow Corollary 4.3.4.

Theorem 4.4.7. [30] If T ∈ B(H) is normal, then T
a.s∼ T ∗.

This leads to the following result. We investigate when projections which are

almost similar have isomorphic lattices. We first need the following result.

Theorem 4.4.8. Let P and Q be orthogonal projections on a Hilbert space H. Then

the following statements are equivalent.

(i) P and Q are almost similar.

(ii) P and Q are similar.

(iii) P and Q are unitarily equivalent.

Proof. (i)⇒ (ii) Since P and Q are almost similar, there exist an invertible operator

N such that P ∗P = N−1(Q∗Q)N and P ∗ + P = N−1(Q∗ + Q)N. Since P is Q

are orthogonal projections, by their idempotent and self-adjoint properties, we have

P 2 = N−1(Q2)N and 2P = N−1(Q)N. This implies P and Q are similar.

(ii) ⇒ (iii) follows from the fact that self adjoint operators are normal and similar

normal operators are unitarily equivalent.
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(iii) ⇒(i) Suppose P and Q are unitarily equivalent. Then there exists a unitary

operator U ∈ B(H) such that P = U∗QP. Taking adjoints on both sides we obtain

P ∗ = UQ∗P ∗.

Thus P ∗P = U∗Q∗UU∗QU = U∗Q∗QU = U−1Q∗QU and P ∗ + P = U∗Q∗U +

U∗QU = U∗(Q∗ +Q)U = U−1(Q∗ +Q)U. Hence P
a.s∼ Q.

Corollary 4.4.9. Let P and Q be almost similar projections, then Lat(P ) = Lat(Q).

Proof. The proof follows from Theorem 4.4.8.

Corollary 4.4.9 can be strengthened as follows.

Corollary 4.4.10. Let P and Q be almost similar projections, then HyperLat(P ) =

HyperLat(Q).

4.5 Lattices of metrically equivalent operators

In this section we give conditions under which two metrically equivalent operators

have isomorphic lattices. Recall that operators T, S ∈ B(H) are metrically equivalent

if T ∗T = S∗S.

Theorem 4.5.1. [49] Let S, T ∈ B(H). If S and T are unitarily equivalent, then

they are metrically equivalent.

The converse of Theorem 4.5.1 is not generally true as illustrated by the following

example.

Example 4.5.2. Let T =

 1 1

1 1

 , and S =

 −1 −1

−1 −1

 T and S are metrically

equivalent but not unitarily equivalent. Note that, Lat(T ) = {{0},C2} = Lat(S).

The following result shows when metric equivalence implies unitary equivalence.

Theorem 4.5.3. Let T and S be metrically equivalent projections, then T and S

are unitarily equivalent.
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Proof. Since T is metrically equivalent to S, there exists a unitary operator such

that T = USU∗ by Nzimbi e tal [51]. Since T and S are projections, we have that

T = T 2 = T ∗T = S∗S = USS∗U∗ = US2U∗ = USU∗. This shows that T and S are

unitarily equivalent.

The following result shows when positive operators are metrically equivalent.

Proposition 4.5.4. Let T, S ∈ B(H) be positive operators, then T and S are

metrically equivalent if and only if T = S.

Note that, orthogonal projections are positive. Proposition 4.5.1 can be relaxed

as follows.

Corollary 4.5.5. Two orthogonal projections Q and P in B(H) are metrically

equivalent if and only if P = Q.

Proof. Let P and Q be metrically equivalent. Then P ∗P = Q∗Q. Since orthogonal

projections are self-adjoint, then we have P 2 = Q2 hence P = Q.

Conversely, let P = Q. By the idempotent property, P 2 = Q2 and by the self-adjoint

property, P ∗P = Q∗Q hence P and Q are metrically equivalent.

This leads to the following result.

Corollary 4.5.6. Let P,Q ∈ B(H) be metrically equivalent orthogonal projections,

then Lat(P ) = Lat(Q).

Corollary 4.5.6 can be strengthened as follows.

Corollary 4.5.7. Let P,Q ∈ B(H) be metrically equivalent projections, then

Hyperlat(P ) = Hyperlat(Q).

Example 4.5.8. Let P =

 1 0

0 0

 and Q =

 0 0

0 1

 . A simple computation

shows that P 2 = P,Q2 = Q and P ∗ = P,Q∗ = Q hence P and Q are projections
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which are metrically equivalent where Lat(P ) =

{0},
〈

1

0

〉
,

〈
0

1

〉
,R2

 = Lat(Q).

Thus Lat(P ) is equal Lat(Q).

Note that {P}′ = {Q}′ =

 a 0

0 d

 : a, d ∈ R} and so HyperLat(P ) =

{0},
〈

1

0

〉
,

〈
0

1

〉
,R2

 = HyperLat(Q).
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this thesis we have made key contributions about operators with nontrivial

invariant and hyperinvariant subspaces. We have extended results on some classes

of operators to higher classes of operators.

In chapter three we have shown that nilpotent operators have nontrivial invariant

subspaces using Proposition 3.1.1 which shows that if the product of two operators,

say, AB = 0, then Ker(A) and Ran(B) are nontrivial invariant subspaces. Note

that an operator T is nilpotent if T n = 0 and so T n can be written as a product of

two operators T n = T (T n). An example on the same is given as shown by Example

3.1.1. An alternative proof is also given using SVEP. It is known that if an operator

T and its adjoint (T ∗) satisfy the SVEP, then T is decomposable and decomposable

operators have nontrivial invariant subspaces. A nilpotent operator T satisfies SVEP

and so is its adjoint since T is quasisimilar to its adjoint and quasisimilarity preserves

SVEP. Thus a nilpotent operator is decomposable as shown in Theorem 3.1.11 and

hence has notrivial invariant subspaces. This result is extended to the class of

quasinilpotent operator as shown by Corollary 3.1.13. The class of quasinormal

operators have been studied and it has been shown that quasinormal operators

have nontrivial invariant subspaces as shown in Corollary 3.1.15. An example

of the unilateral forward shift operator which is an isometry is shown to have

nontrivial invariant subspaces in Example 3.1.16. This is as a result of the fact that

every isometry is quasinormal and quasinormal operators have nontrivial invariant

subspace.
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This study has been extended to the class of hyponormal operators where it is

shown that, hyponormal operators do not in general have nontrivial invariant

subspaces. Conditions in which hyponormal and higher classes of operators have

nontrivial invariant subspaces are given. Since similarity preserves nontrivial

invariant subspaces, Corolllary 3.2.11 shows that a hyponormal operator which is

similar to a normal operator has nontrivial invariant subspace. This result has

been extended to the class of p-hyponormal,log-hyponormal, p-quasihyponormal,

w-hyponormal operators where its is shown that if there exist an operator with

dense range intertwining these operators to a normal operator, then they have

nontrivial invariant subspace as shown by Corollaries 3.2.13, 3.2,15, 3.2.17 and

3.2.19, respectively. It is also shown that every operator whose spectrum lies on

the real line has nontrivial invariant subspace as shown by Corollary 3.2.27. Since

hyponormal operators satisfy the Bishop’s property, it is shown that hyponormal

operators satisfying decomposition property (δ) have nontrivial invariant subspaces

in Corollary 3.2.36. This result has been extended to paranormal, *-paranormal

and totally *- paranormal operators as shown in corollaries 3.2.37, 3.2.39 and 3.2.44.

Theorem 3.2.47 shows that a hyponormal operator which is complex symmetric has

nontrivial invariant subspace. Since similar operators are as well quasisimilar and

quasimilarity preserves nontrivial hyperinvariant subspaces, Corollary 3.4.11 shows

hyponormal operators have nontrivial hyperinvariant subspaces. In chapter four,

lattices of some operator have been investigated. It has been shown that, if M is

an invariant subspace for operators T and S then it is invariant for the product of

these operators, that is, M is TS− and ST -invariant as shown by Propositions 4.1.1

and 4.1.2 but the converse is not true in general. This has been illustrated using

Example 4.1.3. However, if M is TS− or ST− invariant such that the operators

commute and M is either T− or S− invariant then M is invariant under both T

and S as shown by Proposition 4.1.5. It is also shown in Theorem 4.1.6 that, if M is
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T−invariant then M is T n− invariant however Lat(T ) 6≡ Lat(T n). This is illustrated

in Example 4.1.9.

The lattices of self-adjoint operators has been studied. Corollaries 4.1.12 and 4.1.15

show that for a self-adjoint operator T, Lat(T ) = Lat(T ∗) and Hyperlat(T ) =

Hyperlat(T ∗), repectively. It is also shown by Corollary 4.1.18 that, reducing

subspaces of a self-adjoint operator T is equal to the invariant subspaces of T,

that is, Red(T ) = Lat(T ). An operator T ∈ B(H) is reductive if and only if

Lat(T ) = Red(T ). Since this property holds for self-adjoint operators, then self

adjoint operators are reductive. It has also been shown that in Corollary 4.1.25 that,

hyperreducing subspaces and hyperinvariant subspaces are the same. The study has

been extended to the class of normal operator where it is shown that for a normal

operator T, invariant subspaces of T are the same as that its adjoint(T ∗) and so is

their hyperinvariant subspaces from Corollaries 4.1.28 and 4.1.30, respectively. The

study has been extended to the class of quasinormal operators. It has been shown

that the lattice of a quasinormal operator are isomorphic if both the operator and its

adjoint are quasinormal. This results from the fact that if an operator and its adjoint

are quasinormal then the operator is normal and normal operators have isomorphic

lattices. An example to show that the adjoint of a quasinormal operator is not always

quasinormal is given in Example 4.1.35. The lattices of this operator and its adjoint

is studied and it is shown that their lattices are not isomorphic.

The lattices of operators and equivalence relation have been investigated. It is

shown in Example 4.3.1 that similarity equivalence does not preserve the structure

of lattices. However similar normal operators or projections have isomorphic lattices

hyperinvariant lattices. The result hold for operators which are unitarily equivalent,

almost similar operators as well as for metrically equivalent operators. An example

of operators with isomorphic hyperinvariant lattices is given where the lattices are
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not isomorphic. However the operators do not satisfy any of the stated equivalence

relations as shown in Example 4.3.9.

5.2 Recommendation

In our research, we were able to show that quasinormal operators, nilpotent operators

have nontrivial invariant subspaces. It is also shown the a quasinilpotent operator has

nontrivial invariant subspaces if it satisfies SVEP together with its adjoint. It is not

known if all quasinilpotent operators satisfy SVEP. This is an area one can consider to

study in the future. We have seen that hyponormal operators do not have nontrivial

invariant subspaces in general. This result holds for p-hyponormal, w-hyponormal,

paranormaln operators among others. We have shown that if an operator is similar

to a normal operator then it has nontrivial invariant subspaces. Also operators

whose spectrum lies in the real line have nontrivial invariant subspaces. Operators

satisfying Bishop’s property and decomposition property have nontrivial invariant

subspaces. Thus other conditions in which these operators have nontrivial invariant

subspaces can as well be considered as an area of study.

It is shown that similarity equivalence does not preserve the structure of lattices.

However similar normal operators or projections have isomorphic lattices hyperinvariant

lattices. The result hold for operators which are unitarily equivalent, almost

similar operators as well as for metrically equivalent operators. This study can be

extended to other equivalence relations such as unitary quasi-equivalent of operators.

Conditions under which these equivalence relations have isomorphic hyperlattices can

as well be investigated.
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