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ABSTRACT 

Over time, the demand for thin film lithium ion batteries has grown due to technological 

developments that have led to the miniaturization of electronic devices which require 

smaller power sources. However, lithium ion batteries use flammable organic liquids 

as electrolytes posing a safety concern. The pursuit of solid-state electrolytes, 

characterized by enhanced safety and high ionic conductivities has gained significant 

attention. Nevertheless, ensuring the integrity between them and electrodes is crucial 

because unlike liquids, solids do not flow freely over surfaces limiting their integration 

hence poor contacts at their interfaces. For the design of thin films with good contact at 

their interface, this study employed the electrospray technique. A literature survey was 

conducted and key electrospray parameters were identified. A comprehensive design 

schedule for electrosprayed thin films with different surface morphologies was then 

developed. In addition, the cone-jet stability windows for commonly used solvents were 

experimentally determined by measuring voltage and flow rate values that sustained a 

stable cone. Thin films with porous and dense morphologies were then deposited on 

aluminium foil substrates and characterization of their surface morphologies was 

performed using scanning electron microscopy. To address the safety challenge in 

conventional electrolytes, Li6PS5Cl solid-state electrolyte material was synthesized via 

solid-state method and its structural characterization was performed using x-ray 

diffraction. A bulk solid-state lithium ion cell was fabricated by pressing a three-layered 

pellet and characterized by galvanostatic cycling. As a result, the developed schedule 

provided a systematic way of designing thin films with different surface morphologies. 

The cone-jet stability windows for 2-propanol, ethylene glycol and NMP were defined 

using minimum and maximum flow rate values. From the morphological 

characterization of the deposited thin films, the observed surface morphologies were in 

agreement with the prediction of the design schedule. Using electrospray technique, 

thin films for solid-state lithium ion batteries with good contact at their interface were 

deposited without incorporating binders. The results of the galvanostatic cycling of the 

fabricated bulk solid-state lithium ion cells indicated low discharge capacities.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

Climate change is one of the most pervasive and threatening problems across the world 

today. This has been linked to the rising concentrations of greenhouse gases (GHG) like 

carbon dioxide (CO2), methane (CH4), nitrogen dioxide (NO2), water vapour (H2O(g)) 

and ozone (O3) in the atmosphere. Usually, an accumulation of these gases leads to a 

rise in temperature at the Earth’s atmosphere and this process is known as the 

greenhouse effect. Usually, the greenhouse gases trap infrared radiation produced from 

the surface of the Earth following absorption of sunlight making the planet to heat up. 

Consequently, the changes in temperature have placed the ecosystems under stress and 

have also affected human well-being. Unfortunately, the mean global temperature has 

been increasing continuosly with industrial revolution due to the increasing 

concentrations of greenhouse gases. Among these gases carbon dioxide is the most 

abundant since it accounts for about two-thirds of the total concentration of greenhouse 

gases and most of it has been reported to be produced from the burning of fossil fuels. 

Therefore, efforts to mitigate the increasing concentrations of CO2 require urgent 

actions that can lead to rapid transition from fossil fuels to clean energy sources 

(Letcher, 2021; Rajak, 2021; Soeder, 2021; Clayton, 2020; Arroyo and Miguel, 2019; 

Houghton, 2005). 

 

Irrespective of their finite nature and their contribution to global warming and climate 

change, more than 80 % of the global energy is generated from fossil fuels. Their 

domination in the global energy system is attributed to their high energy densities. This 

has led to their continued use with increasing population, technological and economic 

growth (Dale, 2022; Welsby et al., 2021; Kopp, 2020; Kotcher et al., 2019; GOK, 2018; 

Landrigan et al., 2018; Le Quéré et al., 2018). Some of the efforts that have been put in 

reducing GHG emissions include the integration of clean energy from renewable 

sources in electricity generation and also the replacement of internal combustion 

engines with battery powered electric vehicles (Ichikawa et al., 2020; Kodama, 2015; 

Poizot & Dolhem, 2011). As a result, renewable energy had its largest increase in 2019, 
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with an installed power capacity of more than 200 gigawatts. During this time, 

emissions remained stable but the world was still far from attaining its target of being 

carbon neutral and limiting global temperature rise to 1.5 °C, as indicated in the Paris 

Agreement (REN21, 2020; UN, 2019). Nevertheless, in 2021 the world experienced a 

rebound due to the extremely rapid economic recovery after Covid-19. In this year, 

carbon dioxide emission from energy combustion and industrial processes increased by 

6 % from the recorded concentration in 2020 pushing emissions to the highest annual 

value of 36.3 gigatonnes (IEA, 2021). Such trends have made it difficult to achieve the 

sustainable development goals on affordable and clean energy and on climate action. 

Nonetheless, transitioning from fossil fuels to energy sources that are clean and 

renewable is an indispensable necessity (UN-SDG, 2022).  

 

Therefore, to match the growing energy demands as well as support the rapid 

penetration of renewable energy, sources like solar, hydropower, wind, biomass and 

geothermal can reduce the over reliance on fossil fuels by providing energy that is clean. 

Moreover, economic and policy mechanisms needed to support the penetration of 

renewable energy systems have evolved over time. For instance, the automobile 

industry is experiencing a major reform with the shift to hybrid and electric vehicles 

(Sacchi et al., 2022; Saleh et al., 2022; Zhang et al., 2022; Iclodean et al., 2017). 

Nonetheless, the renewable energy sources are intermittent due to their dependency on 

time, location and weather. This compromises the reliability, resiliency and stability of 

the generated power. With an aim of solving this problem, the integration of electrical 

energy storage systems (EESS) into the power generation process has been considered 

as a viable and promising approach. This entails converting the generated electrical 

energy to a form, like chemical energy which can be stored in EESS, and later 

converting the stored energy back to electricity when needed (Looney, 2020; Wenge et 

al., 2020; Acar, 2018; Diouf & Pode, 2015; Pei et al., 2016; Poizot & Dolhem, 2011). 

 

There are different types of electrical energy storage systems like mechanical, chemical, 

thermal and electrochemical systems and each of them presents its own limitations 

which influence its range of application. For renewable energy storage, electrochemical 

systems have gained a considerable attention over time due to their high efficiency, 

scalability and low maintenance. These systems have also shown flexibility in terms of 
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power and energy characteristics enabling them to meet different grid 

functions. Examples of such systems include batteries, super capacitors, fuel cells and 

photovoltaic devices (Al-Shaqsi et al., 2020; Hossain et al., 2020; Aneke & Wang, 

2016; Cho et al., 2015; Badwal et al., 2014; Yoo et al., 2014). Among the 

electrochemical energy storage systems, rechargeable batteries are more popular and 

they have been used in providing both stationary and portable energy storage. They 

exhibit high efficiency, sizes independent of power, operation at room temperature, 

long charge and discharge cycle life (Kelder et al., 2018; Alotto et al., 2014). As 

indicated in Fig. 1.1, there is a wide range of rechargeable batteries in the market today 

such as lithium ion (Li-ion), lead acid, nickel metal hydride (Ni-H) and nickel cadmium 

(Ni-Cd).  

 

Among the different battery systems, lead acid is the most used technology because of 

its maturity, affordability, reliability, fast response and low self-discharge rate. 

Nonetheless, a charge control method is required to protect the battery from over 

charging and over discharging leading to high maintenance costs (Banguero et al., 

2018). Consequently, lithium ion batteries have gained preference over time because 

they provide high energy density, long cycle life, low self-discharge, abuse-tolerant 

properties and low maintenance. They also show an outstanding electrochemistry 

attributed to the small ionic radius, low molecular weight and low redox potential of 

lithium (Diouf & Pode, 2015; Hossain et al., 2020; Kotobuki & Koishi, 2013; Nitta et 

al., 2015; Raijmakers et al., 2019). Lithium ion batteries have also demostrated great 

potential in the development of large scale energy storage systems and in the powering 

of electric vehicles. In addition, they have also found a wide application in portable 

electronic devices like digital cameras, laptop computers and cell phones (Liang et al., 

2019a; Banguero et al., 2018; Ayoub & Karami, 2015; NED, 2013). 

 

Lithium ion batteries can also provide reliable backup power for a nuclear power plant. 

To ensure the uninterrupted operation and safety in a nuclear power plant during the 

occurrence of a power failure, a reliable backup power system is needed. The main role 

of the backup power system is to supply power to critical electrical systems that ensure 

safety and reliability in the event of an emergency. Such systems include the emergency 

core cooling system, the containment and the shutdown system. In case of power 
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failure, a continuous supply of electricity is required in nuclear reactor to maintain 

cooling even after shut down. In the Fukushima nuclear accident that occurred in Japan 

following an earthquake, electrical systems were disrupted and there was no backup 

emergency power system. This led to inadequate cooling of the reactor and release of 

radioactive materials. In response to this, several countries reviewed their nuclear safety 

regulations by strengthening the requirement for an emergency power supply system. 

Conventionally, diesel generators have been applied as backup power systems but they 

face challenges related to maintenance, potential fuel supply disruptions and they leave 

behind a significant carbon footprint. Lithium ion battery is a promising technology due 

to its higher energy density, faster response times, reduced maintenance requirements 

and environmental friendliness (Abdussami and Gabbar, 2019; Chang and Sulley, 

2018; S. Park et al., 2018). 

 

 
Figure 1.1. Comparison of energy densities for different rechargeable batteries based 

on weight and volume. Adapted from Notohara et al. (2020) 

 

With the current technological developments, lithium ion batteries are also promising 

power sources for miniaturized electronic devices. Such devices include on-chip power 

sources, smart cards, microelectronic mechanical systems, implanted or wearable 
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medical elements like neuro-stimulators, drug delivery chips, cochlear implants, 

cardiac pace makers and smart lenses which could be used for artificial intelligence or 

health monitoring. For instance, Fig 1.2 shows a wearable photobiomodulation (PBM) 

OLED patch that induces therapeutic biological changes when molecules in body 

tissues or cells interact with light (Acha et al., 2020; Kanazawa et al., 2020; Liu et al., 

2020; Liang et al., 2019a; Lee et al., 2018). 

 

 
Figure 1.2. Wearable OLED patch worn on the face for photo protection, acne treatment 

or skin rejuvenation and on the hand for wound healing or anti-inflammatory. Adapted 

from Song et al. (2020). 

 

As shown in Fig. 1.3, such miniaturized devices require an implanted battery with small 

dimensions that are similar to those of the device. This has led to the need for evolution 

in the conventional lithium ion batteries from their standard bulk sizes to thin film 

battery systems (Ge et al., 2020; Iclodean et al., 2017; Duluard et al., 2013). The 

fabrication of thin films can be achieved by different processes which involve material 

synthesis, material deposition onto a substrate, adhesion of the material onto the 

substrate and subsequent film growth. The selected fabrication process must however 

not compromise the electrochemical properties of the designed battery. In this study, 

electrospray deposition technique in the cone-jet mode was used to design and deposit 

thin films with different surface morphologies for thin film lithium ion batteries. 
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Figure 1.3. Schematic diagram of a wearable OLED patch with a flexible thin film 

battery. Adapted from Song et al. (2020). 

 

Electrospray technique also referred to as electrohydrodynamic atomization (EHDA) 

or electrostatic spray deposition (ESD) is outstanding in the deposition of thin films due 

to its unique ability to generate droplets that are charged hence the achievement of 

higher deposition efficiency. In this process, an electric field is used to break up a liquid 

into airborne droplets. Usually, the applied electric field creates shear stress on the 

liquid’s surface leading to elongation of a jet that disintegrates into tiny charged 

droplets. The droplets repel one another due to Coulomb repulsion among them, which 

causes self-dispersion on the substrate and uniform deposition on inhomogeneous 

surfaces (Lee et al., 2007; Yoon et al., 2003; Cao and Prakash, 2002; Nishizawa et al., 

1998; Chen et al., 1995; van Zomeren et al., 1994). When performing an electrospray 

experiment, changing the flow rate and/or the applied electric field strength, leads to 

distinct electrospray modes. The electrospray modes differ in their droplet formation 

mechanism and droplet sizes. Among these modes, cone-jet is the most studied in 

production of thin layers due to its ability to generate particles that are spherical in 

shape, with a narrow size distribution and much smaller than the nozzle diameter 

(Agostinho et al., 2013; Jaworek et al., 2009) 
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In the cone-jet mode, scaling laws that define the electric current flowing through the 

liquid and the generated droplet size have been developed (Yurteri et al., 2010). These 

scaling laws show that by adjusting different parameters, droplet size and final particle 

size can be controlled easily (Scheideler & Chen, 2014). The ability to control generated 

droplet or particle sizes allows electrospray deposition technique in the cone-jet mode 

to find a wide application in different fields like nanotechnology and microelectronics 

(Jaworek & Sobczyk, 2008). Additionally, based on the liquid precursor’s chemical and 

physical properties like conductivity, surface tension, density, concentration, viscosity 

and experimental parameters such as nature of the substrate, deposition time and 

deposition temperature, the surface morphology of the deposited film can be tailored to 

suit preference (Gañán-Calvo et al., 2018; Rosell-Llompart et al., 2018; Neagu et al., 

2006). This is crucial because the final performance of a thin film is significantly 

influenced by its surface morphology  (Kelder et al., 2018). 

 

1.2 Problem statement 

Lithium ion batteries use organic liquids as electrolytes which are flammable posing a 

safety concern (Fig. 1.4). Usually, they consist of lithium hexafluorophosphate (LiPF6) 

dissolved in ethylene carbonate, dimethyl carbonate, propylene carbonate or their 

mixtures. The organic electrolytes make the batteries prone to fire accidents when 

operated under conditions that lead to mechanical, thermal or electrical abuse. Such 

abuse may be experienced in the occurrence of a short circuit, physical penetration or 

exposure to high temperatures. As a result, exothermic reactions get triggered within 

the battery resulting to a self-enhanced irreversible chain reaction. This is referred to as 

a thermal runway and it leads to uncontrollable increase in temperature and pressure 

within the battery making it to explode into flames (Tran et al., 2022; Kong et al., 2018; 

Kalhoff et al., 2015). Several incidents of lithium ion battery and explosions have been 

reported. For instance, (Saxena et al., 2018) gives a comprehensive review of numerous 

e-cigarette fire and explosion incidents. In January 2013, all Boeing 787 Dreamliners 

were grounded indefinitely due to safety concerns over the failure of lithium ion 

batteries that provide auxiliary startup power and on-board backup power during flight 

(Williard et al., 2013). Also, a Tesla electric car was reported to catch fire in 2015 as a 

result of battery failure and for a similar reason Samsung had to recall Note 7 

smartphones in 2016 (Xu et al., 2021a; Kong et al., 2018). 
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Attempts to replace the flammable organic liquid electrolytes with non-flammable 

solid-state electrolytes have not been successful. This is because unlike liquids, solids 

do not flow freely over surfaces therefore this limits integration of electrodes with the 

solid electrolyte hence poor contacts at their interfaces. Considering that charge transfer 

reactions take place at the contact interfaces, there is a need to adopt a technique that 

increases the contact areas between the battery’s solid components. Otherwise, high 

resistances are experienced creating a hindrance to the development of high-power 

solid-state batteries (Joshi et al., 2021; Moitzheim et al., 2019; Kelder et al., 2018; 

Haruta et al., 2016; Wang et al., 2015a; Tatsumisago et al., 2013). Another drawback 

is that during charging and discharging cycles, lithium ion batteries experience capacity 

fading due to the resulting volume changes caused by contraction and expansion of the 

electrodes (Gantenbein et al., 2019; Koerver et al., 2017a; Tian et al., 2017; Luntz et 

al., 2015). 

 

 
Figure 1.4. Structure of a conventional lithium ion battery on the left and a solid-state 

lithium ion battery on the right. Adapted from Lykiardopoulou (2021). 

 

Therefore, for solid-state thin film lithium ion batteries to operate optimally there is 

need for a rational design process that promotes good interfacial contact between the 

electrodes and the solid-state electrolyte. The process must also allow for the design of 

thin films with different surface morphologies to accommodate the volume changes 
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during cycling. Though promising, the studies on electrospray technique do not give a 

systematic way of designing the different surface morphologies and the cone-jet 

operational window is also not clearly defined (Marijnissen et al., 2023). 

 

1.3 Objectives 

The main objective of this study was to design a dense electrolyte film and a porous 

electrode film with a good contact at their interface for thin film lithium ion batteries 

using electrospray technique. 

 

Specific objectives 

i. To develop a design schedule for thin films with different surface morphologies. 

ii. To investigate the cone-jet operation window for commonly used electrospray 

solvents.  

iii. To design thin films with different surface morphologies. 

iv. To synthesize and characterize the selected solid-state electrolyte material. 

v. To assemble a bulk solid-state lithium ion cell. 

 

1.4 Justification 

With an aim of addressing climate change and its impacts, transitioning from fossil 

fuels to energy sources that are clean and renewable is an indispensable necessity as 

emphasized by the Sustainable Development Goal 13 on climate action. In addition, the 

adoption of renewable energy sources would ensure universal access to clean and 

affordable energy leading to the achievement of the Sustainable Development Goal 7 

which focuses on ensuring access to affordable, reliable, sustainable and modern energy 

for all. To address the intermittency of these renewable energy sources, lithium ion 

batteries are promising energy storage systems because they show high energy 

densities, long lifespan and high power densities for different applications. For instance, 

they have found a wide application in portable electronic devices like cell phones, 

laptop computers and digital cameras. Over time, lithium ion batteries have also shown 

great potential in the development of large scale energy storage systems and in the 

powering of electric vehicles (Liang et al., 2019b; Banguero et al., 2018; Ayoub and 

Karami, 2015; NED, 2013). With the current technologically developments, lithium ion 

batteries are also promising power sources for miniaturized electronic devices (Duluard 
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et al., 2013; Ge et al., 2020; Iclodean et al., 2017). However, the next generation of 

lithium ion batteries should show diminished flammability by replacing the flammable 

organic liquid electrolytes with safer materials. Among the different materials under 

investigations, solid-state or inorganic electrolyte materials are a promising area of 

research for improving the safety of lithium ion batteries. This is because they are 

nonflammable and their ionic conductivities are high matching those of the 

commercialized organic liquid electrolytes (Baniya et al., 2023; Nikodimos et al., 2023; 

Chen et al., 2021a; Wu et al., 2021a; Schwietert et al., 2020; Liang et al., 2019c; Lv et 

al., 2019; Manthiram, 2017). 

 

For the design of thin film solid-state lithium ion batteries several deposition techniques 

have been proposed. Most of these deposition techniques require high vacuum 

installations or high deposition temperatures leading to high production costs. 

However, electrospray technique is less expensive, easy to control and more efficient 

with almost all the materials being deposited on the substrate without wastage. In 

addition, electrospraying in the cone-jet mode produces spherical monodisperse 

droplets whose diameter is in the nano/micrometer range and model equations for 

droplet and particle size estimation are available. Further to this, different surface 

morphologies as illustrated in Fig. 1.5 can be achieved by altering experimental 

parameters and physicochemical properties of the precursor material (Bodnár et al., 

2018; Hong et al., 2017; Jaworek et al., 2018a; Kelder et al., 2018; Yurteri et al., 2010). 

 

 
Figure 1.5. Schematic illustration of dense (a) and porous (b) surface morphologies. 

Adapted from Jaworek et al. (2016). 
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Usually, the preferred morphologies for lithium ion battery electrodes are porous or 

hollow surfaces. Such morphologies would solve the problem of capacity fading during 

cycling since they would provide enough room for contraction and expansion. Besides, 

these would offer more reaction sites and provide improved electron transport. On the 

contrary, the electrolyte layer is required to be dense so that it can be effective in 

inhibiting short circuits (Pei et al., 2016; Dickerson, 2012; Koike & Tatsumi, 2007; 

Koike and Tatsumi, 2005; Zhang et al., 2009; Yu et al., 2006a). In order to increase the 

area of contact between the solid-state electrolyte and the electrodes, electrospraying 

technique is promising. This is because of its unique ability to generate coatings from 

charged droplets hence higher deposition efficiency can be achieved even on 

inhomogeneous surfaces. While performing electrospray experiments, determination of 

the cone-jet operational window is important since it could also guide on how to modify 

the parameters of a precursor liquid (Marijnissen et al., 2023). 

 

1.5 Scope 

The selected solid-state electrolyte material for this study was the argyrodite 

(Li6PS5Cl). The material was synthesized via solid-state synthesis method and its 

structural characterization was performed using x-ray diffraction (XRD).  Bulk lithium 

ion cells were fabricated to evaluate the performance of the synthesized electrolyte 

material. A design schedule for electrosprayed thin films was developed from literature. 

Also, cone-jet operation window for common electrospray liquids was defined 

experimentally and by deriving equations for the maximum and minimum flow rates. 

Thin films for lithium ion battery were then designed using the developed schedule. 

Surface characterization of the electrosprayed thin films was carried out using scanning 

electron microscopy (SEM). Characterization of the fabricated lithium ion cells was 

done by galvanostatic cycling.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Batteries 

Batteries are dated back in the year 1800 when Alessandro Volta, an Italian physicist, 

invented the first source of continuous current. Over the decades, they have evolved 

from non-rechargeable (primary) to rechargeable (secondary) systems which convert 

chemical energy that is stored within them into electrical energy so as to produce 

electric current that can be used to perform work. Upon draining the internal capacity 

of a primary battery, it is discarded since its electrodes undergo irreversible chemical 

changes. Such reactions render the battery unrechargeable hence disposable. Primary 

batteries are therefore commonly referred to as non-rechargeable batteries, disposable 

batteries or dry cells. Examples of such batteries include zinc carbon also known as 

Leclanché batteries, metal air depolarized batteries and alkaline zinc manganese 

dioxide. Such batteries are commonly used in flashlights, remote controls, clocks and 

portable radios. Primary batteries are also used in specialized applications like 

powering implantable cardiac pacemakers, hearing aids and computer memory back-

ups (Owens et al., 2009; Viswanathan, 2017; Hosseiny and Wessling, 2011; Kordesch 

and Taucher-Mautner, 2009). 

 

On the other hand, secondary batteries are more economical and ecofriendly since they 

can be reused after discharging. The batteries are uniquely identified according to their 

chemical compositions and each battery type shows unique characteristics like energy 

density, voltage, cycle life and self-discharge rate as indicated in Table 2.1. Among 

them, lead acid battery has the highest technical maturity and lowest cost. It also shows 

high stability and an overall efficiency of around 75 % to 85 %. However, its main 

drawbacks are short life cycle, bulky size, heavy weight, low specific energy and power, 

lead toxicity and high maintenance requirements. Using nickel oxide hydroxide and 

cadmium metal as electrodes, nickel cadmium batteries (Ni-Cd) have longer lifetimes 

and when subjected to high currents, they exhibit great capacity. However, they show 

adverse memory effects, which can lead to a significant deterioration in battery life. 

They are also more expensive and cadmium is highly toxic making them to be banned 

in several countries. Compared to lead acid batteries, Ni-Cd batteries have slightly 
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lower overall efficiencies of 60 % to 70 %. Another battery type is the nickel metal 

hydride (Ni-H) which uses nickel oxide hydroxide and a metal alloy as electrodes. It 

has a higher energy density than Ni-Cd batteries (1.5 to 2 times) and shows high power 

capability, it tolerates over charging and over discharging, it shows environmental 

compatibility and has a longer life span. However, this battery type is faced with the 

challenge of leakage and compared to lithium ion batteries, its energy density is 

relatively low. Consequently, lithium ion batteries stand out among secondary batteries 

because of their high energy efficiency in the range of 85 % to 95 %, high energy and 

power density, low rate of self-discharge, zero memory effect and relatively long cycle 

life. These properties allow them to provide high current usage and long-term operation 

as required by most electronic devices (Liang et al., 2019a; Ding et al., 2019; Acar, 

2018; Kong et al., 2018; Yu et al., 2017; Sehrawat et al., 2016; Cho et al., 2015; Deng, 

2015). 

 

To define the performance of a particular battery, capacity can be experimentally 

determined. It is the measure of the electrical charge stored in a battery expressed in 

ampere hours (Ah). Typically, it gives a clear indication of the maximum energy that 

can be drawn out of the battery due to electrochemical reactions taking place. It is 

determined by the cathode material’s mass meaning that in order to obtain high capacity 

the mass of inactive compounds in the battery should be minimized. Nonetheless, a 

battery’s capacity can change significantly from the nominal value since it is affected 

by the battery’s age, operating temperature and the charging or discharging conditions. 

For instance, if a battery is quickly discharged using a current rate that is high, then the 

maximum energy that can be drawn out of that battery is reduced and a low battery 

capacity is recorded. Alternatively, if a battery is slowly discharged using a current rate 

that is low, more energy can be drawn out of the battery and a high battery capacity is 

recorded. Also, at high temperatures the battery capacity is higher than at low 

temperatures. However, intentionally elevating battery temperature so as to increase 

battery capacity is not recommended because it decreases a battery’s lifetime (Aktaş & 

Kirçiçek, 2021; Bauomy et al., 2021; Honsberg & Bowden, 2019; Farahani, 2008; 

Kirchev, 2015). 
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Another important parameter is electromotive force which refers to the energy 

generated by the battery per coulomb of charge passing through it expressed in volts. It 

determines the energy density of the battery which is the available energy per given 

size. The higher the energy generated by the cell, the smaller the required size of the 

battery for a particular application. For instance, aqueous cells have an electromotive 

force of around 1.5 V which is the voltage at which dissociation of the water in the 

electrolyte occurs via electrolysis. Therefore, in a particular application more cells are 

connected to deliver required energy leading to large battery sizes compared to non-

aqueous cells where a smaller number of cells are connected because they give higher 

electromotive force of 3 V or more leading to higher energy densities and smaller 

battery sizes (Aktaş & Kirçiçek, 2021; Farahani, 2008; Tamilselvi et al., 2021). 

 

To evaluate the effectiveness of the transfer of electrons within a battery, coulombic 

efficiency also referred to as current efficiency or faradaic efficiency is used. Typically, 

it defines how efficiently a battery can convert energy from chemical to electrical form. 

Coulombic efficiency is obtained from the ratio of the discharge capacity (total charge 

drawn out of the battery) to the charge capacity (total charge put into the battery) over 

a full cycle. In a lithium ion battery, it is used as an indication of capacity loss per cycle. 

This helps in the prediction of the remaining battery cycle life. Coulombic efficiency 

can be affected by decomposition of the electrolyte, physical or chemical variations in 

electrode materials, ambient temperature and charge-discharge current rate (Nzereogu 

et al., 2022; Wang et al., 2021a; Wang et al., 2015; Xiao et al., 2020a; Yang et al., 

2018). 
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Table 2.1. A comparison of key characteristics for four different commonly used 

secondary batteries. Adapted from (Liang et al., 2019b). 

Characteristics Li-ion  Ni-MH  Ni-Cd  Lead acid  

In use since 1991 1990 1950 Late 1800s 

Battery voltage (V) 3.7 1.2 1.2 2.0 

Toxicity Low Low High High 

Cycle life (to 80% of the 

initial capacity) 

500-2000 1000 1500 300 

Self-discharge per month 

(%) 

< 10 30 20 5 

Volumetric energy density 

(Wh L-1) 

350 - 700 140 - 300 150 - 190 60 - 110 

Gravimetric energy 

density (Wh kg-1) 

170 - 250 60 - 120 40 - 60 30 - 50 

Overcharge tolerance Low Low Moderate High 

Operating temperature 

range 

- 20 to 60 - 20 to 60 - 40 to 60 - 20 to 60 

Fast charging time (h) 1 or less 1 - 4 1 8 - 16 

 

2.2 Lithium-ion battery 

Lithium-ion batteries show an exceptional combination of high energy and power 

density. Consequently, it is the technology of choice for electric vehicles and portable 

electronics. The lithium ion battery was invented by Akira Yoshino in the early 1980s 

with an aim of creating a small and light weight rechargeable battery for portable 

electronics (Yoshino, 2012). A decade later, in the early 1990s, the battery was 

commercialized by Sony to power a video camera. Currently, lithium ion batteries are 

applied widely in consumer electronics like digital cameras, laptops, mobile phones and 

other portable electronic devices. Other than the small devices, these batteries have also 

been used in electric tools, bicycles and automobile power supplies to meet the growing 

demand for energy and environmental conservation. To generate the needed voltage 

and capacity, several lithium ion cells are connected together in either parallel or series. 

Each cell consists of a positive electrode also known as the cathode, a negative electrode 

also known as the anode and an electrolyte in between the two electrodes which allows 
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ion transfer between them (Kelder et al., 2018; Notohara et al., 2020; Sehrawat et al., 

2016; Tomaszewska et al., 2019). Conventionally lithium ion batteries use transition 

metal oxides (TMO) like lithium cobalt oxide (LiCoO2), lithium manganese oxide 

(LiMn2O4) or lithium iron phosphate (LiFePO4) as positive electrodes and graphite as 

negative electrode (Cheng et al., 2022; Feng et al., 2018; Zuo et al., 2017; Song et al., 

2014; Nguyen et al., 2011). However, efforts to improve on the battery performance 

have led to the investigation of other materials as discussed in sections below.  

 

2.2.1 Working principle of lithium ion batteries 

During the operation of lithium ion batteries, reversible electrochemical reduction and 

oxidation reactions take place between the cathode and the anode. For a lithium ion 

battery with LiCoO2 cathode and graphite anode, the operation voltage range is 3.7 to 

4.2 V. To understand the battery chemistry, the LiCoO2 cathode material is expressed 

as LixCoO2 where 0.5 < x < 1.0 indicating the concentration range of lithium during 

operation. For instance, when the battery is fully discharged, x = 1 an electric current 

is therefore applied to charge the battery to x = 0.5. As shown in Fig. 2.1, the working 

principle of lithium ion batteries is based on charge and discharge processes whereby 

lithium ions are transferred between the cathode and the anode through the electrolyte. 

Discharge occurs when the battery is used as a source of power for electronic and 

electrical devices whereby the intensity of the discharging current depends on the power 

required by the device. During this process, the anode is oxidized and the cathode is 

reduced. Oxidation of a carbon anode causes the release of lithium ions from the carbon 

material into the electrolyte as shown in the half reaction below.  

LiC&	 ⇌ 6C + Li( + e)                                                       (Eqn. 2.1) 

The released Li+ ions are then inserted/intercalated into the cathode under Co reduction 

from Co4+ to Co3+ as shown in the half reaction below. 

CoO* + Li( + e) ⇌ LiCoO*                                (Eqn. 2.2) 

The full reaction becomes; 

LiC&	 + CoO* ⇌ 6C + 	LiCoO*                                                   (Eqn. 2.3) 

Note that, the arrows indicate left to right for discharging and right to left for charging.  

 

As observed from the above equations, the movement of ions from the anode to the 

cathode is accompanied by the release of electrons which flow in the external circuit 
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and chemical energy is converted to electrical energy. Ultimately, the discharge process 

lowers the battery voltage. During charging, an external voltage is applied to the circuit 

forcing electrons and lithium ions to flow from the positive electrode towards the 

negative electrode, in which case electrical energy is converted to chemical energy. In 

this process, oxidation takes place at the cathode and reduction at the anode. As 

mentioned earlier, the battery attains a voltage of 4.2 V when fully charged. Usually, 

low intensities of the charging current imply long charging times while high charging 

currents intensities imply short charging times. In summary, lithium ions are stored in 

the anode during the charging process and released during discharging (Theerthagiri et 

al., 2020; Raccichini et al., 2019; Trivedi et al., 2019; Da Silva et al., 2016). 

 

 
Figure 2.1. Li-ion battery working principle with a carbon anode and LiMn2O4 cathode. 

Adapted from Kelder et al. (2018).  

 

2.3 Anode materials for lithium ion batteries 

For the longest time, graphite has been used as the main negative electrode material in 

commercialized lithium ion batteries and it also serves as a universal reference when 

evaluating new materials. It is a popular commercial anode material because of its 

affordability, high conductivity, stable reversibility and long cycle life. However, 

graphite exhibits relatively low capacity which limits its feasibility in current market 

demands for high power lithium ion batteries (Zhao et al., 2022a; Andersen et al., 2021; 

Xiao et al., 2021; Zhang et al., 2021; Asenbauer et al., 2020; Moradi & Botte, 2016). 
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As a result, efforts to replace graphite with other materials that show high specific 

capacity have led to investigations of new materials. Among these materials is silicon 

which stands out because it has a high theoretical capacity (4200 mA h g−1) compared 

to that of graphite (~ 370 mA h g−1) as well as its attractive operating voltage of about 

0.4 V. Silicon is considered economical and sustainable because of its abundance in 

nature and it is environment friendly. In addition, when paired with an appropriate 

cathode material, lithium ion batteries that produce high energy densities can be 

achieved. Nonetheless, the electrochemical performance of the silicon anode is 

compromised by its significant volume changes of up to 400 %, compared to 7 % for 

graphite. This occurs during charge and discharge cycles and it leads to poor cyclability 

and anode failure. Also, after the first lithiation process, at the interface with the 

electrolyte it reacts to form a mixed layer referred to as the solid electrolyte interface 

(SEI). This process is irreversible hence it depletes valuable lithium resources from 

both the electrolyte and the anode leading to performance degradation. Therefore, a lot 

of research efforts are underway with an aim of overcoming these key failures. For 

instance, composites of silicon and carbon have been developed and they show 

improved performance. This has been attributed to the excellent properties and unique 

structural designs of carbon materials  ( Majeed et al., 2023; Houache et al., 2022; Chen 

et al., 2021b; Li et al., 2021a; Shi et al., 2021; Li et al., 2020a; Zhou et al., 2020; Cen 

et al., 2019). 

 

Another ideal anode material is lithium metal because of its high theoretical capacity 

of 3,860 mAh g−1, compared to 370 mA h g−1 for graphite. Also compared to the 

graphite anode, lithium metal leads to 50 % enhancement in energy density and 35 % 

enhancement in specific energy. It was first adopted in 1976 but was soon replaced by 

graphite because of its severe capacity fading and potential fire hazards resulting from 

growth of dendrites. During cycling, the lithium metal anode forms hair-like dendrites 

which grow unevenly through the battery electrolyte leading to short circuits that can 

cause the battery to explode into fire pausing a safety concern. Currently, lithium metal 

is considered as a promising choice for the next generation of batteries therefore a lot 

of research is underway to address the pointed-out challenges (Houache et al., 2022; 

Luo et al., 2021; Wang et al., 2021b; Hatzell et al., 2020; Wang et al., 2020a; Zhang et 

al., 2020a; Zheng et al., 2020; Li et al., 2018a; Liu et al., 2018a). Also promising are 
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alloy anodes which comprise of alloys of metallic lithium with metals or intermetallic 

compounds like aluminum, tin, magnesium, indium, silver and antimony. They show 

high theoretical capacities which are two to ten times higher than that of the graphite 

anode. For instance, theoretical capacities for indium, tin, silicon and germanium alloys 

with lithium are 1012 mAh g−1, 994 mAh g−1, 3579 mAh g−1 and 1600 mAh g−1 

respectively. Nonetheless, during charging and discharging cycles, they suffer large 

volume changes of up to 300 % leading to disintegration and loss of electrical contact 

between the alloy particles. Therefore, their commercial utilization has been hindered 

by the resulting low cycle life (Nzereogu et al., 2022; Cheng et al., 2021a; Han et al., 

2021; Lu et al., 2021; Liang et al., 2020; Li et al., 2020b). 

 

Lastly, with theoretical specific capacities ranging from 500 to 1000 mAh g−1, transition 

metal oxide anodes (TMO, M = Mn, Fe, Ni, Co, Ti, Cu etc.) are also prospective anode 

materials. Compared with graphite anodes, they don’t form dendrites hence provide 

better safety. Also, in comparison with alloy anodes, their production cost is lower. 

However, their commercial application is still immature, due to problems like poor 

conductivity, large volume expansion, voltage lag between charge and discharge, 

continuous electrolyte decomposition and low initial coulombic efficiency. However, 

it is important to note that for all these materials, numerous studies are underway to 

address the challenges encountered towards their commercialization (Chang et al., 

2022; Fang et al., 2022; Yang et al., 2022a; Li et al., 2021; Reddy et al., 2020; Cao et 

al., 2017; Wang et al., 2017). 

 

2.4 Cathode materials for lithium ion batteries 

As mentioned earlier, transition metal oxides are the most common cathode materials 

for lithium ion batteries. Among them, lithium cobalt oxide (LiCoO2) is the most 

predominant due to its relatively high theoretical specific capacity (274 mAh g-1), low 

self-discharge, high operating voltage (~ 3.9 V), high electronic conductivity at room 

temperature (10-3 S cm-1) and good cycling performance. It was first commercialized 

by Sony in early 1990s and is still used in consumer electronics. Nonetheless, its 

application is considered undesirable in some areas like powering electric vehicles (EV) 

due to its low energy density (∼150 Wh kg−1). For such applications, high energy 

densities can be achieved by using a cathode material with a combination of high 
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operating voltage (5 V) and large specific capacity (> 200 mAh g-1). Irrespective of the 

large specific capacity, cycling LiCoO2 to voltages above 4.35 V leads to structural 

instabilities that reduce its usable specific capacity to about 150 mAh g-1. Its other 

limitations include the high cost and toxicity of cobalt and poor thermal stability that 

leads to a runaway reaction when operated above 200 °C. The thermal instability leads 

to an exothermic reaction between the battery’s organic materials and the released 

oxygen causing the battery to burst into flames (Zhang et al., 2023a; Zhang et al., 2022; 

Manthiram & Goodenough, 2021; Cheng et al., 2021b; Li et al., 2021c; Kawashima et 

al., 2020; Wang et al., 2020b; Julien et al., 2019). 

 

Consequently, the ever-growing demand for advanced lithium ion batteries has led to 

the investigation of other different types of transition metals like manganese, 

aluminium, iron and nickel. With an aim of attaining higher operating voltages, these 

transition metals have been used as substitutes for cobalt in LiCoO2 and the resulting 

compounds have demonstrated promising performance. Examples of such compounds 

include lithium nickel oxide (LiNiO2) which is lower in cost than LiCoO2 due to the 

abundance of nickel and it exhibits a high energy density because of its high theoretical 

capacity (275 mAh g-1). However, its chemical and thermal stability is inferior than that 

of LiCoO2 and its structure is less ordered hindering lithiation and delithiation. In order 

to improve its stability and degree of ordering, partial substitution of nickel with cobalt 

has been considered resulting in LiNi1−xCoxO2. In addition to cobalt, manganese has 

also been used to make LiNi1−x−yMnxCoyO2 (NMC) which combines high capacity from 

nickel, low internal resistance from manganese and low costs due to less amount of 

cobalt. However, the presence of cobalt is important since it improves the material’s 

electric conductivity. Its specific capacity is between 160 and 200 mAh g-1 depending 

on the ratio of nickel, manganese and cobalt. Nevertheless, efforts to improve its 

capacity by using higher amounts of nickel have not been successful since it has 

resulted to formation of materials with poor cycling performance and reduced thermal 

stability “(Houache et al., 2022; Akhilash et al., 2021; Lipson et al., 2021; Pang et al., 

2020; Stephan, 2020; Bianchini et al., 2019; de Biasi et al., 2019;  Markevich et al., 

2018; Yoon et al., 2018). 
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Another promising cathode material is LiMn2O4 (LMO) which is less costly and safer 

compared to LiCoO2. However, it has a lower capacity (148 mAh g-1) and a short 

lifetime due to its structural instability. It also experiences severe capacity fading due 

to the dissolution of manganese ions into the electrolyte. To improve its performance, 

doping with other transition metals like iron, cobalt and nickel has been considered. For 

instance, nickel has been incorporated into the lithium manganese oxide structure to 

form LiMn1.5Ni0.5O4 (LNMO). Though with a lower specific capacity (147 mAh g-1) 

than LiCoO2, LNMO is cheaper, has got excellent thermal stability and higher operating 

voltage (4.7 V). However, it experiences severe capacity fading and it cannot achieve 

more than 200 cycles at 80 % capacity. It also suffers incompatibility with commercial 

electrolytes resulting in decomposition (Hou et al., 2023; Wang et al., 2023a; Houache 

et al., 2022; Siller et al., 2022; Zou et al., 2021; Amin et al., 2020; Madsen et al., 2019). 

 

With a theoretical capacity of 170 mAh g-1, LiFePO4 (LFP) is another broadly studied 

cathode material due to its non-toxicity and low cost. In addition, it shows excellent 

thermal stability and good cycle stability owing to its strong bonds hence stable 

structure. Its main drawbacks limiting its commercialization include poor electronic 

conductivity in the range of 10−6 to 10−10 S cm−1 and inadequate diffusion of lithium 

ions (Ahsan et al., 2021; Chen et al., 2022a; Ramasubramanian et al., 2022; Zhao et al., 

2021). Finally, with an outstanding theoretical capacity of 294 mAh g−1 which is much 

higher than that of commonly studied cathode materials, vanadium pentoxide (V2O5) 

has gained a lot of interest. In addition, it is affordable, easy to prepare, abundant and 

exhibits high energy density. Nonetheless, the material is toxic and it is also unstable 

in aqueous electrolytes leading to dissolution of vanadium (Alsherari et al., 2023; 

McNulty et al., 2023; Parekh et al., 2023; Zhang et al., 2021b; Yan et al., 2020; Du et 

al., 2019; Yao et al., 2018). 

  

2.5 Electrolyte materials for lithium ion batteries 

The electrolyte serves as the medium for ion transfer between the cathode and the anode 

making it an essential battery component. It should show high ionic conductivity, zero 

electronic conductivity, electrochemical stability, thermal stability, wide electric 

potential range between which it is chemically stable, robustness and inertness to cell 

components (Arya & Sharma, 2020; Mishra et al., 2018; Li et al., 2016). 
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Conventionally, the electrolyte in a lithium ion battery is a solution consisting of a 

lithium salt like lithium hexafluorophosphate (LiPF6) dissolved in an organic solvent. 

Usually, organic solvents like ethylene carbonate, dimethyl carbonate, propylene 

carbonate or their mixtures are used because of their higher ionic conductivities and 

practical operating temperature range. Unfortunately, lithium ion batteries are prone to 

fire accidents when operated under conditions leading to mechanical, thermal, or 

electrical abuse like in the occurrence of a short circuit, overcharging, over discharging, 

physical penetration, or exposure to high temperatures. In such conditions, exothermic 

reactions are triggered within the battery resulting to a self-enhanced chain reaction and 

uncontrollable temperature increase referred to as a thermal runway which can cause 

the battery to explode into flames. In such cases the organic electrolytes pose a safety 

concern because of their high flammability (Kalhoff et al., 2015; Kong et al., 2018; Xu 

et al., 2021a). Several incidents of lithium ion batteries and explosions have been 

reported. For instance, (Saxena et al., 2018) gives a comprehensive review of numerous 

e-cigarette fire and explosion incidents. Also, all Boeing 787 Dreamliners were 

grounded indefinitely in January 2013 due to safety concerns over the failure of lithium 

ion batteries that provide auxiliary startup power and on-board backup power during 

flight (Williard et al., 2013). In addition, a Tesla electric car was reported to catch fire 

in 2015 as a result of battery failures and for a similar reason Samsung had to recall 

Note 7 smartphones in 2016 (Kong et al., 2018; Xu et al., 2021a). Other issues 

associated with the liquid electrolyte are possible leakages and bulky battery sizes 

(Arya & Sharma, 2020; Jiang et al., 2018a; Kalhoff et al., 2015). 

 

Efforts to enhance the lithium ion battery’s safety have triggered extensive research and 

developments like the addition of fire retardants to the organic based electrolytes 

(Dalavi et al., 2010; Jiang et al., 2018a; Dunn, 2013). Nevertheless, such additives 

increase the mass of the inactive materials in the battery compromising performance. 

Alternatively, ionic liquids have been considered as substitutes for organic liquids 

because of their nonflammability and broad electrochemical window but only a few 

have been found suitable. This is because their overall viscosities are one to two orders 

of magnitude higher than liquid organic electrolytes making their ionic conductivities 

three to four orders of magnitude lower ( Kong et al., 2018; Park et al., 2010) . Solid 

electrolytes have also been investigated and among them are organic solid electrolytes, 
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which usually consist of a lithium salt and a high molecular weight polymer. 

Considering that ambient temperature conductivity is important, these materials only 

operate at temperatures above 60 °C hence not practical for many applications (Zheng 

et al., 2017a; Dalavi et al., 2010; Dias et al., 2000). Consequently, there have been 

efforts to lower these operating temperatures by adding plasticizers of lower molecular 

weight like ethylene carbonate, but this has been unsuccessful because they 

compromise the electrolyte’s mechanical and chemical properties (Rangasamy et al., 

2019). Another option that has been explored is the substitution of liquid organic 

electrolytes with solid inorganic electrolytes. In addition to their improved safety, the 

solid inorganic electrolytes offer a wider range of operating temperatures, higher energy 

densities due to their compatibility with high energy electrodes and high ionic 

conductivities which match those of the organic liquid electrolytes. However, their 

major drawback has been the poor solid electrode-electrolyte contacts (Xiao et al., 

2019a; Richards et al., 2016; Wei et al., 2015; Ito et al., 2013; Kumar et al., 2010). 

 

2.5.1 Solid-state electrolyte materials for lithium ion batteries 

For the next generation of lithium ion batteries, an electrolyte material should show 

diminished flammability, high ionic conductivity, zero electronic conductivity, 

electrochemical stability that ensures safe coupling with high voltage cathodes to 

improve the battery’s energy density, thermal stability, wide electrochemical window, 

affordability, robustness and inertness to cell components (Chen et al., 2022b; Karabelli 

et al., 2021; Arya & Sharma, 2020; Zhao et al., 2019a; Mishra et al., 2018). Solid-state 

electrolyte materials are a promising area of research for improving the performance 

and safety of lithium ion batteries. Compared to conventional organic liquid 

electrolytes, solid-state electrolytes have several advantages, like enhanced safety since 

they are less prone to leakage or combustion. Also, the resulting solid-state lithium ion 

batteries exhibit high energy densities due to their compatibility with high capacity 

electrodes. Their ionic conductivities are high matching those of the commercialized 

organic liquid electrolytes. In addition, they offer a wider range of operating 

temperatures (Baniya et al., 2023; Nikodimos et al., 2023; Xu et al., 2022; Chen et al., 

2021a; Wu et al., 2021a; Schwietert et al., 2020; Liang et al., 2019c; Lv et al., 2019; 

Zheng et al., 2018). So far, different electrolyte materials have been identified for solid-

state lithium ion batteries and they include nitrides, iodides, phosphates, oxides and 
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sulfides as shown in Fig. 2.2. Among these materials, sulfide-based lithium superionic 

conductors (thio-LISICON) have the highest lithium ion conductivity with values in the 

range of 10-2 S cm-1 at room temperature. They consist of a wide range of compositions 

with the chemical structure Li10MP2S12 where M = Si, Ge, or Sn. Studies have shown 

that chloride doping of this category of materials can greatly enhance their conductivity 

(Choi and Lee, 2019; Zhang et al., 2019). An example of the chloride-doped thio-

LISICON material is Li9.54Si1.74P1.44S11.7Cl0.3 with an electronic conductivity of 2.5×10-

2 S cm-1 as reported by (Kato et al., 2016). These materials also portray soft mechanical 

properties which are considered favorable for enhancing good contact with the 

electrodes. Nevertheless, the precursor materials used for their synthesis are very costly 

hence limiting their applications (Tao et al., 2022; Kudu et al., 2018; Bachman et al., 

2016; Ulissi et al., 2016). Following closely are the argyrodites, Li6PS5X (X is Cl, Br 

or I), whose lithium ion conductivities are in the range of 10-2 - 10-3 S cm-1 at room 

temperature. Their advantage over LISICON-like materials is that their precursors are 

affordable hence their wide application. However, being sulfur based materials the 

stability of both categories deteriorates in air causing their conductivity to decrease 

significantly. This is usually accompanied with the release of hydrogen sulfide gas as a 

result of the interaction with water molecules in the air (Kim et al., 2023; Tsukasaki et 

al., 2022; Thakur and Majumder, 2021; Yu et al., 2021; Baktash et al., 2020; Yu et al., 

2020; Zhang et al., 2020b; Zhang et al., 2020c; Kudu et al., 2018; Yubuchi et al., 2018). 

   

Another category of solid-state electrolyte materials are oxides which include garnets, 

NASICONs and perovskites. These oxide materials are chemically stable in the 

atmosphere providing an alternative to sulfur-based counterparts. However, their main 

drawback is the low ionic conductivities (10-5 to 10-3 S cm-1). For garnets, their general 

chemical formula is A3B2Si3O12 whereby A is a divalent cation like Mg2+, Ca2+, Fe2+, 

or Mn2+ and B is a trivalent cation like Fe3+, Cr3+ or Al3+.  However, different doping 

strategies have been devised to synthesize lithium ion conducting garnets. For instance, 

(Murugan et al., 2007) discovered lithium lanthanum zirconium oxide (LLZO, 

Li7La3Zr2O12) and since then there has been an increasing interest in the development 

of garnet based solid-state lithium ion batteries. However, LLZO ionic conductivity 

(10-3 – 10-4 S cm-1) is lower than that of the conventional liquid electrolyte (10-2 S cm-

1). Therefore, a lot of efforts are being made to optimize the garnet’s ionic conductivity. 
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For instance, doping LLZO with elements like Ta5+, Nb5+, Te6+, W6+, Ti4+, Al3+ and 

Ga3+ has been reported (Dong et al., 2022; Liu et al., 2022; Qin et al., 2022; Gonzalez 

et al., 2021; Kim et al., 2020; Wang et al., 2020c; Zhao et al., 2019b; Duan et al., 2018; 

Liu et al., 2018b). 

 

NASICON is an acronym for sodium super ion conductors. They are crystalline solids 

with a general formula A1B2(PO4)3 where A is a monovalent cation like Na or Li and 

B is either a single or a combination of tri, tetra and pentavalent ions like Ge, Si, Ti or 

Zr. Examples of these materials include LiTi2(PO4)3, Li1+xAlxTi2−x(PO4)3 (LATP), 

LiGe2(PO4)3 (LGP) and Li1+xAlxGe2−x(PO4)3 (LAGP). They have a rigid crystal 

framework which provides stability, but also have mobile ions that can move through 

the structure allowing for efficient ion transport (Tao et al., 2022; Yang et al., 2021; 

Hou et al., 2020; Nikodimos et al., 2020; DeWees & Wang, 2019; Xiao et al., 2019b; 

El-Shinawi et al., 2018; Meesala et al., 2018). Perovskite-type materials (ABO3 where 

A = Ca, Sr, La; B = Al, Ti) have also attracted extensive attention. Numerous studies 

have reported different ionic conductivities in perovskite materials through the 

replacement of A and B sites with different ions. Examples of such materials are lithium 

lanthanum titanate electrolytes which can be expressed as Li3xLa(2/3)−xTiO3 (LLTO) 

with the value of x ranging from 0.04 to 0.16 (Chandra et al., 2022; Lu & Li, 2021; Yan 

et al., 2021; Salami et al., 2019; Hu et al., 2018; Li et al., 2018b). 

 

With high lithium ion conductivity (10-3 S cm-1) at ambient temperatures lithium 

nitrides show attractive properties for applications as solid-state electrolyte materials. 

However, their decomposition potential is too low (0.445 V) making them chemically 

unstable for practical applications (Chandran and Heitjans, 2016; Weppner, 2009; 

Gregory, 2008). For lithium hydrides and lithium halides, they are chemically stable 

and have been reported to show good compatibility with lithium electrodes. Their ionic 

conductivities are in the range of 10–3 to 10–4 S cm-1 in high temperatures but at low 

temperatures, the ionic conductivities are compromised to about 10–8 S cm-1 or lower 

rendering them unsuitable for practical applications (Wang et al., 2022; Gulino et al., 

2021; Wang et al., 2021c; Gulino et al., 2020). 
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Figure 2.2. Different solid-state electrolyte materials and their ionic conductivities at 

room temperature. The dotted line at the top indicates the typical lithium ion 

conductivity for liquid electrolytes like 1 M LiPF6 in a mixed solvent of ethylene 

carbonate and dimethyl carbonate. Adapted from Bachman et al. (2016). 

 

2.6 Thin film deposition techniques 

A thin film is a layer that is usually deposited on a selected substrate with a thickness 

typically in the order of nanometers to micrometers range. Thin films can be made from 

a wide variety of materials like polymers, metals and semiconductors. Compared to 

their bulk counterparts, thin films exhibit unique properties like increased reactivity, 

improved mechanical strength, enhanced optical and electrical properties. This is 

attributed to their small thicknesses and large surface areas. Commonly, they are used 

in a wide range of applications like in the manufacture of microelectronic devices, 

batteries, computer chips, solar cells and sensors. In addition, thin film coatings are 

used as protective coatings to improve durability and corrosion resistance of surfaces.  

 

Among the different applications, thin film batteries are already a commercial reality 

with printed zinc manganese batteries being prevalent due to their safety, affodability 
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and ease to print. Nonetheless, these batteries are non-rechargeable and can only be 

used in single-use applications. The need for alternative rechargeable thin film batteries 

has led to research developments in printed nickel metal hydride and zinc air thin film 

batteries. Though lithium ion batteries would be a favourable choice because of their 

higher energy densities and longer cycle lifes, the battery materials are not easy to print 

(Clement et al., 2022; Hilder et al., 2009; Huebner and Krebs, 2015). Therefore, to 

satisfy the demand for high energy density thin film batteries, different deposition 

techniques for lithium ion batteries have been studied as outlined below. 

 

2.6.1 Physical and chemical vapour deposition methods 

Conventionally, the deposition of thin film lithium ion batteries is performed by either 

physical vapour deposition methods (PVD) or chemical vapour deposition (CVD) 

methods. Examples of these methods include radio frequency sputtering, magnetron 

sputtering, pulsed laser deposition (PLD), spray pyrolysis, atomic layer deposition 

(ALD), thermal evaporation, sol-gel spin coating and electron beam evaporation. These 

processes involve synthesis of the deposition species, deposition of the synthesized 

species onto a substrate, adhesion of the species onto the substrate and subsequent film 

growth (Karimi et al., 2023; Wu et al., 2023; Fenech & Sharma, 2020; Julien and 

Mauger, 2019 Moitzheim et al., 2019).  

 

For physical vapour deposition, it involves a physical discharge of atoms or molecules 

followed by their condensation and nucleation on a substrate in a controlled atmosphere 

consisting of low gas pressure in a vacuum. First the coating material in solid form is 

vaporized by a physical process that is either thermal or athermal (Fig. 2.3). The thermal 

PVD process typically consists of the following steps: 

I. Chamber preparation: The chamber is cleaned and pumped down to a low-

pressure environment to eliminate any impurities or gases that could interfere 

with the deposition process. 

II. Material vaporization: The material to be deposited is heated in the chamber to 

achieve vaporization. It can be a compound, pure metal or alloy. 

III. Vapor deposition: As the target material is heated, it evaporates to form a vapour 

cloud within the chamber. This vapour consisting of atoms or molecules travels 

in straight lines colliding with other gas atoms or molecules present in the 
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chamber. The collision process leads to condensation and deposition of the 

vapour onto a substrate. 

IV. Substrate deposition: The substrate is carefully prepared and positioned within 

the chamber. The substrate material and geometry depend on the specific 

application and desired properties of the thin film. It can be a solid object like a 

wafer, a glass slide, or a metal component. 

V. Film growth: The vaporized material condenses on the substrate surface to form 

a thin film. The deposition parameters such as deposition rate, temperature and 

pressure are carefully controlled to achieve the desired film properties.  

 

In athermal process, deposition occurs without significantly raising the temperature of 

the substrate or the vaporized material. This can be achieved using different processes 

like sputtering which involves the bombardment of a solid target material with high-

energy ions. The ions dislodge atoms or molecules from the target surface, which then 

deposit onto the substrate to form a thin film. The energy transferred from the ions to 

the substrate during sputtering is generally low, resulting in minimal heating (Butt, 

2022; Tarek et al., 2022; Prabakaran & Rajan, 2021; Abegunde et al., 2019; Baptista et 

al., 2018)”.  

 

 
Figure 2.3. Schematic diagram of a) athermal and b) thermal PVD processes. Adapted 

from Baptista et al. (2018). 

 

On the other hand, chemical vapour deposition is a technique where a solid or liquid 

material is converted into vapour after which the volatile precursor undergoes some 

chemical reaction on the substrate to produce the desired deposit. This normally 
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happens in a heated chamber under vacuum (Fig. 2.4). The chemical reactions can be 

initiated by heat resulting in thermal CVD, high frequency radiation like UV resulting 

in photo-assisted CVD or electric energy resulting in plasma-enhanced CVD. The 

chemical reactions are also controlled by different factors like the reactor configuration, 

reactor pressure, gas feedstock, gas partial pressures, gas ratios, deposition time and 

temperature. Chemical vapour deposition is widely used in industries especially in the 

deposition of refractory materials (nonmetallic materials that can withstand extremely 

high temperatures). For instance, it is applied on turbine blades to greatly increase their 

wear and thermal shock resistances Sun et al., 2021; Behera et al., 2020; Saeed et al., 

2020; Morosanu, 2016). CVD processes have also been widely used in the deposition 

of thin films for lithium ion batteries (Chen et al., 2017; Loho et al., 2017; Tian et al., 

2015; Wang and Yushin, 2015; Xie et al., 2015). 

 

 
Figure 2.4. Schematic diagram thermal CVD setup. Adapted from Zhang et al. (2016). 

 

2.6.2 Electrospray Technique  

Electrospray is another deposition technique in which a liquid jet is broken up into 

droplets in the presence of electrical forces. There are different electrospray modes 

which can be achieved by changing the flow rate and/or the applied electric field 

strength. The main differences in these modes are in their droplet formation mechanism 

and droplet sizes.  Usually, a precursor liquid is pumped through a nozzle at a low flow 

rate such that dripping is achieved with no applied electric field. By applying an electric 

field between the nozzle and the counter electrode other modes can be achieved as the 

electric field is increased instantaneously. Examples of different electrospray modes are 
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shown in Fig. 2.5 and they include dripping, intermittent cone-jet, spindle, cone-jet and 

multiple jet modes (Agostinho et al., 2018; Verdoold et al., 2014; Yurteri et al., 2010).  

 

 
Figure 2.5. Examples of electrospray modes. A. Dripping, B. Intermittent cone-jet, C. 

Cone-jet, varicose breakup, D. Cone-jet, whipping breakup and E. Multiple-jet. 

Adapted from Verdoold et al. (2014) and Yurteri et al. (2010). 

 

Normally, the cone-jet mode is of interest because of its stability and capability to 

generate spherical monodisperse droplets which are smaller than the nozzle diameter 

(Joshi et al., 2021). As mentioned, the precursor solution is pumped through a nozzle 

with an electrical voltage applied between the nozzle and a ground electrode which are 

not far apart (Fig. 2.6).  

 
Figure 2.6. Schematic illustration of an electrospray setup. Adapted from Li et al. 
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(2011). 

 

The resulting electric field creates a charge on the meniscus of the liquid in the nozzle. 

Owing to the electric field and the surface charge, the liquid meniscus experiences an 

electric stress. This electric stress can overcome surface tension and shape the meniscus 

into a cone, referred to as the Taylor cone, depending on the strength of the electric 

field and the liquid flow rate (Taylor, 1964). Charge carriers in the liquid consisting of 

ions are then accelerated towards the cone’s apex and they collide with the surrounding 

liquid molecules causing them to also accelerate. Consequently, a thin liquid jet 

emerges from the cone’s apex which breaks up into highly charged droplets.  

 

Typically, in an electrospray experiment charged droplets are generated and directed 

towards a counter electrode, which can be a selected substrate.  Upon evaporation of 

the solvent in the generated droplets, particles are formed. To estimate the sizes of these 

particles in cone-jet mode, different authors have derived scaling laws. As it will be 

seen, the electric current flowing through the liquid is a very important parameter in 

estimating droplet and particle sizes (Yurteri et al., 2010). In the determination of the 

jet’s electric current, Gañán-Calvo et al. (1997) presented two distinct profiles, namely 

flat and non-flat profiles. According to them, liquids with high viscosity and high 

conductivity have a flat radial profile of the axial liquid velocity in the jet while liquids 

with low conductivity and low viscosity have a non-flat velocity profile in the jet. To 

differentiate between these two categories of liquids, the same authors developed a 

dimensionless number (Equation 2.4) later referred to as the viscosity number (VN) by 

Hartman (1998). 

𝑉𝑁 = ( +!,"#

-!.#/
)0/2                                                                      (Eqn. 2.4) 

where, γ is surface tension of the precursor liquid (N m-1), ε3 is electric permittivity of 

a vacuum (C2 N-1 m-2), μ is absolute viscosity of the precursor liquid (Pa s), K is 

conductivity of the precursor liquid (S m-1) and Q is flow rate of the precursor liquid 

(m3 s-1). For precursor liquids with high viscosity and/or high conductivity the VN is 

relatively low. In practice, a flat radial velocity profile is assumed for viscosity numbers 

less than or equal to one, while a non-flat radial velocity profile is assumed for viscosity 

numbers greater than one. For a jet with a flat radial profile, Hartman et al. (1999) 

derived the equation for electric current as shown in Equation 2.5. 
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𝐼∗ = 𝑏(𝛾𝐾𝑄)3.6                                                                      (Eqn. 2.5) 

For liquids with a non-flat radial profile Hartman (1998) derived a formula to calculate 

the electric current which was later rewritten by Yurteri et al. (2010) in the form of 

Equation 2.6. 

𝐼 = 0.41𝐼∗ + 3.*78∗#

9%,'()./
(𝐴𝑟:3.70* + 𝐵)                                               (Eqn. 2.6) 

where, I* is jet current for a flat radial profile of axial liquid velocity, b = 2.17, γ is 

surface tension of the precursor liquid (N m-1), K is conductivity of the precursor liquid 

(S m-1), Q is flow rate of the precursor liquid (m3 s-1), Ez,max, rj0.41, A and B are all 

functions of known parameters. Later, Yurteri et al. (2010) combined Equations 2.5 and 

2.6 in the form of a ratio as a function of viscosity number leading to Eqn 2.7. 

𝐼 𝐼∗⁄ = (1 − 0.1 ∗ 𝑉𝑁3.76))0                                                     (Eqn. 2.7) 

where, I is jet current for a non-flat radial profile of the axial velocity, I* is jet current 

for a flat radial profile of the axial velocity and VN is the viscosity number. 

 

Having calculated the jet’s electric current, the mechanism by which droplets form 

during jet breakup is also important and must be considered when determining droplet 

sizes. This mechanism depends on the ratio of the electric normal stress to the surface 

tension stress on the liquid’s surface. A low stress ratio (< 0.3) results in varicose 

breakup while a high stress ratio results in whipping breakup. In the former, main 

droplets of similar size are obtained, but in some cases, satellite or secondary droplets 

may also form, resulting in a bimodal size distribution. On the contrary, whipping 

breakup leads to a broad size distribution of the main droplets (Yurteri et al., 2010). For 

both mechanisms, Hartman et al. (2000) derived scaling laws for the main droplet size 

as shown below. 

𝑑;,=>?@ABCD = 𝑐;(
E,*/+

8#
)0/&                                               (Eqn. 2.8) 

Later, Yurteri et al. (2010) demonstrated that if the radial profile of the axial fluid 

velocity in the jet is flat, then the current scales according to Equation 2.5 and Equation 

2.8 leads to Equation 2.9.  

𝑑;,=>?@ABCD =
A,
F-/!

(E,*/
!

+.
)0/&                                       (Eqn. 2.9) 

where 𝑑;,=>?@ABCD is droplet diameter in varicose breakup regime, 𝑐; is approximately 

2, ρ is precursor liquid density (kg m-3), ε3 is electric permittivity of a vacuum (C2 N-1 

m-2), Q is flow rate of the precursor liquid (m3 s-1), I is the jet’s electric current, γ is 
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surface tension of the precursor liquid (N m-1) and K is conductivity of the precursor 

liquid (S m-1). By approximating the values of b and 𝑐; to 2, which gives only a small 

deviation, Yurteri et al. (2010) obtained Equation 2.10. 

𝑑;,=>?@ABCD = (0&E,*/
!

+.
)0/&                                              (Eqn. 2.10) 

and in the whipping breakup regime, they obtained the droplet diameter from Equation 

2.11. 

𝑑;,GH@II@JK = (0.8 *LL,*+/
#

8#
)0/2                                                                   (Eqn. 2.11) 

where 𝑑;,GH@II@JK is droplet diameter in whipping breakup regime, γ is surface tension 

(N m-1), Q is liquid flow rate (m3 s-1) and I is jet’s electric current. To calculate the 

droplet size, both Equation 2.10 and Equation 2.11 are used and the smallest value 

obtained is assumed to be the correct value.  

 

Having determined the size of the main droplets using Equation 2.10 or Equation 2.11, 

particle size can be estimated from the main droplet size as shown in Equation 2.12 

(Yurteri et al., 2010). 

𝑑I = E𝑓
E,/"0123
E0(/34512

! 𝑑;?BIMDN2                                                   (Eqn. 2.12) 

where 𝑑I is particle diameter, 𝑓 is mass fraction of the dissolved material, 𝜌;?BIMDN is 

liquid density, 𝜌I>?N@AMD is final particle density and 𝑑;?BIMDN	is the droplet diameter. 

However, this is only true for non-porous and non-hollow particles.  

 

2.6.2.1 The cone-jet window  

It is important to note that a stable cone-jet can only be achieved if electrospray is 

carried out in a limited voltage and flow rate window. The first quantitative description 

of this stability window was provided by Cloupeau and Prunet-Foch (1989). For 

selected liquid properties, this window is defined by a minimum flow rate (𝑄O@J) and 

a maximum flow rate (𝑄O>P). The former is the lowest flow rate at which a certain 

liquid can be electrosprayed in the cone-jet mode, while the latter is the flow rate 

beyond which the cone-jet becomes unsteady (Hartman, 1998). Due to the wide variety 

of complex issues around the maximum flow rate, there is no formula available to 

define it (Gañán-Calvo et al., 2018). However, several authors have reported on 𝑄O@J 

and different formulas have been proposed (Gañán-Calvo et al., 1997; Rosell-Llompart 
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and Fernández de la Mora, 1994; Gañan-Calvo, 1994)”. Nonetheless, the proposed 

formulas did not work for Chen and Pui (1997) and they reported significant deviations. 

In his work, Hartman (1998) suggested that the minimum flow rate is given by Equation 

2.13. 

𝑄O@J~𝑄3 =	
,"+
E.

                                                                                 (Eqn. 2.13) 

where 𝜀B is electric permittivity of a vacuum, γ is surface tension of the liquid, 𝜌 is 

liquid density and K is liquid conductivity. In a different study, Gañán-Calvo et al. 

(2013) developed two different scaling laws for 𝑄O@J after studying the forces 

influencing the stability of liquid ejection in the cone-jet mode. In cases where viscosity 

force was responsible for cone-jet instabilities, the minimum flow rate was calculated 

using Equation 2.14, while in cases where polarization force was responsible for cone-

jet instabilities Equation 2.15 was used. 

 𝑄O@J,=@CABC@NQ = 𝑄B𝛿-)0                                                              (Eqn. 2.14) 

𝑄O@J,IBM>?@R>N@BJ = 𝑄B𝛽                                                              (Eqn. 2.15) 

where 𝑄3 =	
,"+
E.

, as shown in Equation 2.13, 𝛿- is electrohydrodynamic Reynolds 

number, β = 𝜀@ 𝜀BL ,  𝜀@ is electrical permittivity and 𝜀B is electric permittivity of a vacuum 

(C2 N-1 m-2).	Later, (Scheideler & Chen, 2014)  adapted the 𝑄O@J equation as proposed 

by Rosell-Llompart & Fernández de la Mora, (1994) for liquids with low viscosity 

(Equation 2.16). In addition, they also derived an expression for high viscosity liquids 

(Equation 2.17).	

𝑄O@J,MBG	=@CABC@NQ~
,+
.E

                             (Eqn. 2.16) 

𝑄O@J,H@KH	=@CABC@NQ~
+S#

-
                                                      (Eqn. 2.17) 

In these equations 𝑄O@J is minimum flow rate (m3 s-1), 𝜀 is liquid permittivity, 𝜀3 is 

electric permittivity of a vacuum (C2 N-1 m-2),  𝛾 is liquid surface tension (N m-1), 𝐾 is 

liquid electrical conductivity (S m-1), 𝜌 is liquid density (kg m-3), D is outer nozzle 

diameter (m) and 𝜇 is liquid viscosity (Pa s). Note that Equation 2.16 by Scheideler & 

Chen (2014) is almost similar to Equation 2.13 by Hartman (1998). In another study, 

Gamero-Castaño & Magnani (2019) gave an extensive overview of 𝑄O@J and they 

concluded that minimum flow rate is a function of both the dielectric constant of the 

liquid (ε) and its Reynolds number (𝑅D).  

𝑅D = (E,"+
#

-!.
)0 2⁄                                                                     (Eqn. 2.18) 
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where 𝜌 is liquid density (kg m-3), 𝜀3 is electric permittivity of a vacuum (C2 N-1 m-2), 

𝛾 is liquid surface tension (N m-1),	𝜇 is liquid viscosity (Pa s) and 𝐾 is liquid electrical 

conductivity (S m-1). 

 

On the contrary, these studies did not develop a formula that can be used to define the 

maximum flow rate (𝑄O>P). This was attributed to the wide variety of complex issues 

around it (Castillo et al., 2018; Gañán-Calvo et al., 2018). Nonetheless, the effects of 

different parameters on 𝑄O>P	have been studied. For instance, Tang and Gomez (1996) 

reported that the maximum liquid flow rate for the cone-jet decreases significantly with 

increasing diameter of the capillary. The dependency of 𝑄O>P on the nozzle diameter 

was also observed by Cloupeau and Prunet-Foch (1989). For a capillary of 0.5 mm a 

𝑄O>P of about 0.3 mm3 s-1 was observed while for a finer capillary 𝑄O>P	was at least 

four times higher. According to Chen and Pui (1997), different factors can affect the 

operation window and they include the configuration of the set-up, physical properties 

of the liquid, wettability of the capillary and surrounding atmosphere. Also, Rosell-

Llompart & Fernández de la Mora (1994) stated that unlike 𝑄O@J, 𝑄O>P	is not 

independent of electrostatic parameters and cannot be determined at the meniscus, since 

it also depends also on the dynamics of the spray. 

 

2.7 Key electrospray parameters and their effects on surface morphology 

Based on the different properties of the precursor liquid and experimental parameters, 

different surface morphologies can be attained on the deposited film as highlighted in 

different studies 

.  

2.7.1 Substrate Temperature 

Essentially, when depositing films by electrospraying, charged droplets are produced 

from a precursor liquid and they are directed at a substrate of choice. A solid layer is 

then formed after the solvent has evaporated, and this process can be accelerated by 

heating the substrate. Usually, the substrate temperature is set to be above or below the 

solvent boiling point. Consequently, different surface morphologies can be achieved 

depending on the choice of solvent and substrate temperature (Perednis et al., 2005). 

While keeping other parameters constant heating the substrate to a temperature above 
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the solvent boiling point, results in a dense layer. This is because the high temperature 

leads to evaporation of a big percentage of the solvent from the droplet surface. 

Consequently, the droplet size reduces but its overall electric charge remains constant 

and the Rayleigh limit is exceeded causing it to explode into many smaller droplets 

(Rahmanpour and Ebrahimi, 2017). The smaller droplets drift towards the substrate 

under electrostatic forces and they are expected to dry up into even smaller particles 

leading to a dense layer. Conversely, at relatively high flow rates the produced droplets 

are relatively big (Jo et al., 2014; Varga et al., 2010). According to Vercoulen (1995) 

such droplets are less likely to achieve Rayleigh break up and they dry up on the 

substrate to form relatively big particles that lead to a porous layer.  At substrate 

temperatures ranging from 170 to 230 °C, Wang et al. (2009) observed a decrease in 

pore size with increasing substrate temperature. They prepared porous reticular Fe2O3 

films using a 0.005 M precursor in a mixed solvent of 1, 2-propylene glycol and ethanol 

(boiling points of 188.2 °C and 78 °C respectively) at a flow rate of 2.4 mL h-1.  

 

2.7.2 Type of Solvent 

While keeping other parameters constant, different surface morphologies can also be 

achieved with different solvents. For instance, Duong et al. (2013) studied six different 

alcohols and for the different solvents, they obtained different particle morphologies 

ranging from smooth spherical particles to collapsed shell morphology. They attributed 

the difference in particle morphologies to the fact that different solvents evaporate at 

different rates varying the droplet sizes. Larger droplets resulted in collapsed particles 

because of the increased mechanical instabilities. The effect of different solvents on 

film morphology was also reported by Lafont et al. (2012) who obtained a more porous 

film with 1-propanol than with ethanol (boiling points of 97 °C and 78 °C respectively) 

after electrospraying respective 0.1 M LiNi0.5Mn1.5O4 precursors at a flow rate of 1 mL 

h-1 and a substrate temperature of 350 °C.  

 

2.7.3 Concentration 

According to Gürbüz et al. (2016), an increase in concentration leads to an increase in 

the thickness of the film and this affects morphology. In their study, they electrosprayed 

SnO2 precursor in ethanol (boiling point of 78 °C) at a substrate temperature of 250 °C 

for 1 h. Precursor concentrations were changed from 0.05 M to 0.2 M but flow rate was 
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kept constant at 7.2 mL h−1. A crack free film was obtained from the 0.05 M precursor 

while a cracked film was obtained after increasing the concentration to 0.2 M. At high 

concentration, cracking was attributed to the non-uniform drying rate between the top 

and bottom layers of the thick film. Also, Bailly et al. (2012) reported a cracked film 

after electrospraying 0.1 M YSZ precursor in a mixed solvent of ethanol and butyl 

carbitol (boiling points of 78 °C and 231 °C respectively) at a substrate temperature of 

400 °C and a flow rate of 0.5 mL h-1 for 1 h. In another study, Joshi et al. (2013) reported 

a dense film from a low concentration (0.05 M) SnCl4.5H2O precursor in propylene 

glycol (boiling point of 188.2 °C) at a flow rate of 0.04 mL h-1 and a substrate 

temperature of 70 °C for 1 h.  

 

2.7.4 Flow rate  

It has also to be noted that among other parameters, flow rate controls the droplet size 

hence the final particle size. However, flow rate is not an absolute parameter since it is 

influenced by other factors as shown in Equation 2.13. Among these factors, 

conductivity is the most prominent and its variation can lead to a wide range of droplet 

sizes. Unfortunately, most of these parameters are not given by the authors of the 

literature cited here. Nonetheless, if the range of conductivity values is not too big it 

does not tremendously influence the droplet diameter. This is because in the equation 

for droplet size, the conductivity appears as a power of 1 6L  or 1 3L . On the contrary, if 

the range of conductivities is big the effect on droplet size is significant (Joshi et al., 

2013). It is also important to know which flow rates can achieve the cone-jet mode. 

This is defined by a minimum and a maximum flow rate values and they form an 

operational window. At a constant conductivity, low flow rate produces relatively small 

droplets hence small particles while high flow rate produces relatively big droplets that 

dry up into big particles. From the works of Kavadiya et al. (2017), electrospraying 

CH3NH3PbI3 perovskite precursor (14 mg mL-1) in isopropyl alcohol (boiling point of 

82.5 °C) at flow rates of 0.03, 0.06, 0.09, 0.12 and 0.15 mL h-1 at room temperature led 

to droplets of diameters 505.88, 635.9, 726.94, 799.33 and 860.41 nm respectively and 

their reported evaporation times were 17.84, 28.22, 36.90, 44.64 and 51.73 μs 

respectively. The measured particle sizes were 75.36, 77.00, 109.23, 116.31 and 113.43 

nm respectively. Smaller particle sizes were achieved at lower flow rates and they led 
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to the production of smooth uniform films. However, as flow rate increased (above 0.06 

mL h-1) larger particles were obtained leading to increased film roughness.  

 

According to (Hong et al., 2017), small droplets have a high rate of solvent evaporation 

leading to a particulate rough film while big droplets have a low rate of solvent 

evaporation leading to an uneven film with pinholes. Therefore, an intermediate droplet 

size is required in order to obtain a uniform dense film. They achieved this by 

electrospraying 30 % wt MAPbI3 perovskite liquid precursor in dimethyl sulfoxide 

(boiling point of 189 °C) at a flow rate of 0.05 mL h−1 and a substrate temperature of 

65 °C for 2 min. Different morphological effects based on flow rate were also 

demonstrated by Ma and Qin (2005) during the electrospray of 0.02 M LiFePO4 

precursor solution in a mixed solvent of ethanol, glycol and butyl carbitol (boiling 

points of 78 °C, 197 °C and 231 °C respectively) at a substrate temperature of 120 °C. 

At a flow rate of 0.5 mL h−1, the generated particles were big (> 400 nm) and they 

aggregated to form a porous morphology. On the contrary, at a flow rate of 0.05 mL h−1 

the generated particles were smaller (< 100 nm) and they formed a uniform dense film. 

Also, Yu et al. (2006b) reported a porous film with aggregated particles at a flow rate 

of 4 mL h-1 using 0.02 M LiCoO2 precursor in a mixed solvent of ethanol and glycol 

(boiling points of 78 °C and 197 °C respectively) at a substrate temperature of 350 °C 

deposited for 50 min. 

 

2.7.5 Deposition time 

Deposition time is also a very important parameter not only in determining the layer 

thickness but also the surface morphology. (Joshi et al., 2021) mentioned that by 

increasing the deposition time, morphology of the film can change from dense to 

porous. In a short deposition time, the film is thin and the droplets get into direct contact 

with the heated substrate. With increasing time, the film thickens and the substrate 

surface is completely covered causing consecutive landing droplets to experience 

varying contact angles that alter the surface morphology.  The effects of deposition time 

on surface morphology were investigated by Gürbüz et al. (2016), who deposited 0.05 

M SnO2 film from an ethanol precursor (boiling point of 78 °C) at a substrate 

temperature of 250 °C and a flow rate of 7.2 mL h−1 for various time intervals. At 20 

min, they observed that the substrate was sparsely covered because of the small number 
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of liquid droplets. At 60 min, a lot of droplets had been deposited on the substrate 

covering the whole surface and it led to a homogenous porous film.  After 

electrospraying a 0.1 M YSZ precursor in a mixed solvent of ethanol and butyl carbitol 

(boiling points of 78 °C and 231 °C respectively) at a substrate temperature of 400 °C 

and a flow rate of 0.5 mL h-1, Neagu et al. (2006) reported a dense coating at 1 h and 

rough coatings at 4 and 12 h. They attributed the surface roughness to preferential 

landing of the droplets that occurred at longer deposition periods. For (Maršálek et al., 

2015), they prepared manganese oxide layers from a 0.02 M precursor in a mixed 

solvent of ethanol and water (boiling points of 78 °C and 100 °C respectively) at a flow 

rate of 1 mL h-1 and a substrate temperature of 200 °C. Deposition times between 10 

and 30 min yielded relatively compact and thin layers while longer periods led to 

formation of agglomerates. In the study by Joshi et al. (2015), they obtained porous 

films using 0.1 M Bi2WO6 precursor in propylene glycol (boiling point of 188.2 °C) 

deposited at a substrate temperature of 120 °C and a flow rate of 0.04 mL h−1 for 80 

min. They reported increased film porosity with deposition time. In another study, Joshi 

et al. (2012) obtained a dense film using 0.3 M ZnO precursor solutions in propylene 

glycol (boiling point of 188.2 °C) at a flow rate of 0.075 mL h−1 and a substrate 

temperature of 200 °C for 30 min. At short deposition times (10, 20, 40 and 60 min), 

Yoon et al. (2016) obtained uniform compact films from WO3 precursor in mixed 

solvent of polyethylene and ethanol (boiling points of 200 °C and 78 °C respectively) 

at a substrate temperature of 80 °C and a flow rate of 0.08 mL h-1.  In other studies, 

long deposition time led to a porous reticular morphology. As indicated by Koike and 

Tatsumi (2007, 2005), droplets spread gradually on the substrate surface and the 

temperature at the surface of the droplet is higher than at its center. Therefore, the 

solvent at the droplet surface evaporates faster than at its center. This process leads to 

ring-shaped nucleation and precipitation that forms a reticular morphology on the 

substrate. An example is Ma et al. (2014) who electrosprayed 0.1 M MnO precursor in 

1,2-dihydroxypropane (boiling point of 188.2 °C) at a substrate temperature of 240 °C 

and a flow rate of 1.5 mL h-1 for 3 h. Another example is Yuan et al. (2017a) using 2 

mM CoMn2O4 precursor in a mixture of ethanol and 1,2-propanediol (boiling points of 

78 °C and 188.2 °C respectively) at a substrate temperature of 250 °C and a flow rate 

of 2 mL h-1 for 4 h. Also, Yuan et al. (2017b) using 0.01 M Mn2O3 precursor in 1,2-

propanediol (boiling point of 188.2 °C) at a substrate temperature of 200 °C and a flow 



 
 

40 

rate of 2 mL h-1 for 3 h. The porosity of the film was observed to increase with 

deposition time as demonstrated by (Wang et al., 2011) who used a 0.03 M V2O5 

precursor in a solvent mixture of water, ethanol and 1, 2 propylene glycol (boiling 

points of 100 °C, 78 °C and 188.2 °C) at a flow rate of 72 mL h−1 and a substrate 

temperature of 260 °C for deposition times ranging from 4 – 12 h. 

 

2.8 Applications of ESD in energy production, storage and conversion devices  

Electrostatic spray deposition is a powerful technique in the deposition of materials 

taking into account that the particle sizes, their monodispersity and uniform distribution 

on a surface defines the quality of a thin film. For example, with an aim of depositing 

Co3O4 thin films on a glass substrate, the impact of an electric field during deposition 

process was confirmed by Abbas et al. (2017). From their findings, the film produced 

without an electric field showed defects on the surface like pin holes, cracks and crystal 

flakes while the film deposited in the presence of an electric field had a smoother, more 

uniform appearance with well-formed grains. Therefore, electrospray technique stands 

out compared to other methods for thin film deposition (Shui et al., 2004). This section 

highlights different areas where this novel technique has been applied to enhance the 

overall performance of materials for energy devices, such as lithium ion batteries, solar 

cells, capacitors and light emitting diodes. 

 

2.8.1 ESD for the fabrication of solar cells 

Solar cells, also known as photovoltaic (PV) cells, are devices that convert sunlight 

directly to electricity through a process called the photovoltaic effect. This occurs when 

photons from the sun strike the surface of a solar cell and they get absorbed by a 

semiconductor material. Consequently, electrons are released and they can be harnessed 

to generate an electric current. First generation solar cells are made from silicon and 

their efficiencies range from 12 % to 18 %. With an aim of achieving higher efficiencies 

and lowering costs, different materials have been investigated and they range from 

organics to inorganic semiconductors and from crystalline wafers to amorphous 

structures (Fegade and Jethave, 2021; Ciambelli et al., 2020; Nwaigwe et al., 2019). 

Consequently, second generation solar cells have been developed and they are 

considered to be more economical though with lower efficiencies (4 % to 11 %). Unlike 
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traditional silicon-based solar cells, which are made of thick, rigid wafers, the second-

generation solar cells are made from thin films. As a result, they are flexible, 

lightweight and can be made into a variety of shapes and sizes. They are usually made 

using materials like perovskites, cadmium telluride (CdTe), amorphous silicon (a-Si) 

and copper indium gallium selenide (CIGS). Usually, they are fabricated by depositing 

thin layers of photovoltaic materials on selected substrates. Their applications include 

areas where weight and flexibility are important, like in portable devices or in building-

integrated photovoltaics (BIPV) (Mughal et al., 2018; Bagher et al., 2015; Sharma et 

al., 2015; El Chaar et al., 2011). 

 

As shown in Fig. 2.7, the second-generation solar cells consist of several layers made 

from different materials. These layers comprise of the energy absorber, the 

buffer/window layer, electrically conductive layer and the substrate. The buffer or 

window layer (e.g cadmium sulfide, CdS, in the case of CIGS solar cells) aids in 

electrical transitions between the energy absorber and the electrically conductive layer. 

For the substrate, glass or a flexible polymer material is used. 

 

 
Figure 2.7. Schematic illustration of a CIGS solar cell. Adapted from Kelder et al. 

(2018). 

 

Conventionally, the layers were deposited using physical or chemical vapour deposition 

techniques like spin coating, electrodeposition, screen printing, doctor blading, paste 

coating, precursor printing, and spray pyrolysis. Unfotunately, several drawbacks have 
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been reported on these methods like precursor material wastage, formation of non 

homogeneous surfaces, incomplete conversion of the precursor materials leading to 

formation of poor-quality films (Kelder et al., 2018). To achieve higher deposition 

efficiencies, electrospray deposition technique provides an effective method for 

fabrication of solar cells with desired surface morphologies and enhanced 

performances. Since the surface morphology of the active layers determines the 

performance of the solar cell in terms of light absorption and electronic transfer, 

homogeneous flat layers are required. In addition, smooth surface morphologies are 

desired to ensure efficient charge transport and optimal light absorption. However, 

certain types of textured surfaces can also be advantageous in enhancing the trapping 

of light and increasing the effective surface area of the device (Xu et al., 2020s; Zhao 

and Deng, 2020; Jiang, 2019; Jiang et al., 2018c; Fukuda et al., 2017).  

 

For instance, during the fabrication of a perovskite solar cell, Chandrasekhar et al. 

(2016) observed a large variation between a film fabricated with an electric field and 

that fabricated without an electric field in terms of surface morphology and coverage 

(Fig. 2.8). For both films, the reported efficiencies were 11 % and 7.4 % respectively. 

The enhanced efficiency for the film deposited in the presence of an applied voltage 

was attributed to the formation of a more uniform and dense film with large perovskite 

crystals leading to efficient electron transfer.  

 

 
Figure 2.8. Spray deposition process of perovskite films with and without an applied 

electric field. Adapted from Chandrasekhar et al. (2016). 
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2.8.2 ESD for the fabrication of supercapacitors  

Electric double layer capacitors which are also called ultracapacitors, electrochemical 

capacitors or supercapacitors are energy storage devices. Due to their high-power 

density, long life cycle and high-rate capacity, they have gained a lot of attention as 

potential power sources for the future smart energy era. Typically, their power and 

energy densities are in between those of dielectric capacitors and batteries. Though with 

lower energy density than batteries, supercapacitors can offer more rapid charge and 

discharge rates. Their energy storage phenomenon is based on the interactions between 

polarized electrodes and ions. This leads to accumulation of ions close to the electrode’s 

surface forming an electric double layer (EDL). This layer is thin and it consists of ions 

that counterbalance the charge of the electrode (Fig. 2.9). Generally, ultracapacitors 

play an important role in the development of new technologies like energy storage 

applications in smart grids and also in portable devices (Simon and Gogotsi, 2020; Fic 

et al., 2018; Hu et al., 2015).  

 

 
Figure 2.9. Schematic illustration of an electric double layer capacitor. Adapted from 

Fic et al. (2018). 

 

With an aim of increasing their efficiency in different applications, investigations are 

underway on how to increase their energy density. Among the different strategies 

explored, improving the electrodes’ performance seems promising. Usually, this 

performance enhancement is dependent on the surface area of the electrode material. 

Therefore, to increase the electrodes’ surface area, porous structures are preferred and 

the smaller the pore size the larger the specific surface area (Choi and Yoon, 2015; 

Chen et al., 2013; Vu et al., 2013). Typically, the electrodes are made of carbon because 
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of its well-developed porosity, adequate pore size distribution and tunable surface 

chemistry. However, the carbon electrodes undergo degradation under high voltage. 

 

Therefore, different electrode materials are under investigation and a combination of 

graphene and metal oxides has shown great potential. The composite electrodes have 

been reported to show excellent electrochemical stability, improved electrical 

conductivity and large specific surface area. Conventionally, the electrodes are 

fabricated by slurry casting method whereby the active materials are simply piled up 

on top of a metallic foil or foam. Unfortunately, this fabrication method gives rise to 

nonuniform layers with agglomerates leading to sluggish transport of electrons and ions 

which compromises the performance of the device (Habeeb and Al-Asadi, 2023; Li et 

al., 2023; Zhang et al., 2023b; Qi et al., 2022; Xu et al., 2020b). For the fabrication of 

uniform porous three-dimensional network electrodes, ESD can be adopted and 

enhanced performance has been reported in different studies (Chavhan et al., 2020; 

Chavhan and Ganguly, 2019; Cui et al., 2019; Maršálek et al., 2015). 

 

2.8.3 ESD for the fabrication of thin film lithium ion batteries 

Over time, the demand for thin film lithium ion batteries has grown due to technological 

developments that have led to the miniaturization of electronic devices. Such 

applications include implanted medical elements, on-chip power sources, smart cards 

and microelectronic mechanical systems. Also, in the medical field there is a growing 

potential in wearable electronics like cardiac pace makers or smart lenses which could 

be used for artificial intelligence or health monitoring (Kanazawa et al., 2020; Liu et 

al., 2020; Lee et al., 2018). To fabricate a thin film battery, the electrodes and the 

electrolyte materials should be deposited sequentially to form a multilayer structure as 

shown in Fig.2.10.  
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Figure 2.10. Schematic illustration of a thin film battery. Adapted from Garcia-Tamayo 

(2014). 

 

The world’s first thin film lithium ion battery was made in 1983 using vapour 

deposition technique. It consisted of titanium disulfide (TiS2) cathode material, 

Li3.6Si0.6P0.4O4 solid electrolyte and lithium metal anode. The resulting cell was found 

feasible as a small source of power for electronic devices that require low current 

(Kanehori et al., 1983). Currently, different battery materials and deposition techniques 

are being investigated for the fabrication of thin film lithium ion batteries with enhanced 

performance (Egbuhuzor et al., 2023; Wu et al., 2023Moitzheim et al., 2019; Matsuda 

et al., 2018). Considering that charge transfer takes place on the electrodes, surface 

morphology of the deposited thin films is of utmost importance. Different studies have 

investigated the effect of surface morphology on the performance of electrode films. 

They have reported that porous films show significantly higher performance than 

compact films and that such morphologies can be obtained using electrospray technique 

(Wang et al., 2020d; Bezza et al., 2019; Dhanabalan et al., 2017; Yuan et al., 2017a; 

Yuan et al., 2017c). 

  

2.8.4 ESD for the fabrication of Light Emitting Diode (LEDs)  

A light emitting diode is a semiconductor device which emits light when current flows 

through it. Compared to incandescent light sources, LEDs have several advantages like 

smaller size, longer lifetime, lower power consumption, improved efficiency, reliability 

and physical robustness. In addition, they are deemed friendly to the environmental 

since they consist of less toxic materials. Nonetheless, LEDs have efficiencies of 

around 20 % since a significant amount of energy is converted into heat at the junctions 
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of the LED modules (Fakharuddin et al., 2022; Ren et al., 2021; Kneissl et al., 2019; 

Vannacci et al., 2019). Apart from reducing the emission efficiency the produced heat 

also shortens the lifetime of LEDs. Thermal control is thus a crucial tactic to address 

these drawbacks. One of the solutions provided is to create a junction between the LED 

and metal printed circuit board. This is achieved by forming an isolation layer with 

extremely low thermal conductivity. The isolation layer provides a large thermal 

resistance that makes the generated heat to be transferred rapidly to a heat sink 

improving the performance of the device (Su and Huang, 2020; Xu et al., 2020c; Ci et 

al., 2019; Jean et al., 2016; Shen et al., 2015)”. 

 

Recently, studies have focused on fabrication of low-cost light emitting diodes that are 

flexible. Consequently, thin film organic light emitting diodes (OLEDs) have attracted 

enormous interest, because of their light weight and flexibility. The common deposition 

techniques for these thin films are vacuum deposition and casting. However, fabrication 

of the required multi-layered structure is complicated and the processes use harsh 

solvents which cause dissolution at the interfaces of different layers. Consequently, 

ESD has been explored as an interesting alternative with great potential in depositing 

multi layers with different morphologies (Bu et al., 2021; Song et al., 2020; Umbach et 

al., 2020).  

 

2.8.5 ESD for the deposition of Quantum dots  

Quantum dots (QDs) or semiconductor nanocrystals are a type of nanomaterials with 

quantum confinement effects. This means that they tightly confine electrons or 

electron-hole pairs (excitons) in all their three dimensions. Their sizes range from 2 to 

10 nm and they exhibit optical and electronic properties (optoelectronic) depending on 

their size, shape and composition. For instance, when excited those of comparatively 

smaller size (lesser than 5 nm) emit shorter wavelengths in the energy range of green 

or blue light while larger ones emit longer wavelengths in the energy range of red or 

orange light. Usually, the electronic properties of quantum dots are intermediate to 

those of isolated molecules and bulk semiconductors. This class of nanomaterials is 

considered attractive due to unique properties like superior photostability and size-

dependent optical properties. Therefore, they find applications in different fields like 

LEDs, laser diodes, solar cells, transistors, quantum computing and medical imaging 
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(Triana et al., 2023; Zia et al., 2022; Maxwell et al., 2020; Lian et al., 2019; Jha, 2018; 

Pawar et al., 2018; Kumar et al., 2018)“. 

 

To effectively integrate quantum dots in the devices mentioned above, they must be 

precisely and accurately deposited in a pattern on predetermined locations. 

Conventional deposition techniques like spin coating have been used but they give rise 

to excessive wastage of materials and they also show little control on the patterns of the 

deposited film. Therefore, ESD can be used to deposit quantum dots whereby the size 

of particles and morphology can be systematically controlled (Li et al., 2022; Nguyen 

and Choi, 2020; Nguyen et al., 2018; Li et al., 2017).   

 

 
Figure 2.11. Schematic illustration of a basic QD-LED. Adapted from Ugarte et al., 

(2012). 

 

2.9 Instrumentation  

2.9.1 Scanning Electron Microscopy (SEM) 

SEM is a non-destructive approach to surface analysis at nano scale and it is considered 

to be relatively inexpensive and rapid. It is therefore one of the most versatile 

techniques used for the characterization of surface morphologies in thin films. The 

technique requires the specimen under test to be electrically conductive, dry and clean. 

For non-conductive samples, a thin conductive coating like gold is applied to avoid the 
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build-up of static charges (de Haan et al., 2019; Rydz et al., 2019). As shown in Fig. 

2.11, a suitable source, like a field emission gun or a tungsten filament, is used to 

generate a beam of electrons. The produced electrons are finely focused into a beam 

and accelerated through a high voltage. To control the path of the produced electrons a 

set of electromagnetic lenses is used because electrons cannot pass through normal 

glass lenses. These lenses are in the form of coils of wires upon which a magnetic field 

is created by applying current on them. The electromagnetic lenses comprise of a 

condenser lens and an objective lens. The former defines the size of the electron beam 

thus determining the resolution and the latter focuses the beam onto the sample surface. 

Scanning coils are also incorporated to deflect the electron beam along the x and y axis 

producing a raster scan over the sample surface (Vernon-Parry, 2000).  

 

The electron beam then interacts with the sample in an elastic or inelastic manner. For 

elastic scattering, the incident electron beam gets deflected by the specimen’s atomic 

nucleus or outer shell electrons of similar energy. During this process there is negligible 

energy loss and incident electrons are scattered through a wide angle. If the angle is 

more than 90°, such electrons are called backscattered electrons (BSE). On the other 

hand, during inelastic scattering the incident electron beam transfers a substantial 

amount of energy to the specimen atoms. The transferred energy depends on whether 

the electrons of the specimen have been excited singly or collectively and also on the 

binding energy of the electrons. In the event of ionization of the specimen atoms, 

secondary electrons (SE) are produced. They usually escape from the specimen with 

low energies that are less than 50 eV. Conventionally, a scanning electron microscope 

is operated under vacuum conditions to eliminate any interactions between the electrons 

and air or particles in air (Shah et al., 2019; Titus et al., 2019; Goldstein et al., 2018). 

 

For the detection of BSE, solid state detectors are commonly used while scintillation 

detectors are used for SE. In the case of solid-state detection, a solid-state material like 

silicon or germanium crystal is used as the detecting medium. Upon interacting with 

the BSE, electron-hole pairs are produced within the crystal. These are the information 

carriers and their number depends on the energy of BSE. The migration of these charge 

carriers under an applied voltage generates an electric current. For the scintillation 

detector, it contains a material (scintillator) which interacts with the low energy SE to 
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produce light. The light is then collected in a photomultiplier tube for amplification. 

The resulting beam of electrons is then converted to an electric signal. The created 

electric signals then form images which are displayed on a computer screen (Faisal, 

2021; Mohammed & Abdullah, 2018). Primarily, secondary electrons give 

topographical information about the sample by providing images with a high spatial 

resolution. This is because they escape from a very shallow, near-surface layer of the 

specimen. On the contrary, backscattered electrons are not as many as secondary 

electrons and they reemerge from the specimen with much higher energies. They also 

originate from deeper in the specimen producing images with slightly less resolution 

compared to secondary electrons. Mostly, they provide information about the 

composition of the specimen whereby elements with high atomic mass show brighter 

contrast (Vladár and Hodoroaba, 2020; Shah et al., 2019; Akhtar et al., 2018; Cardott 

and Curtis, 2018; Ul-Hamid, 2018). 

 

 
Figure 2.12. Schematic diagram of a scanning electron microscope. Adapted from Shah 

et al. (2019). 
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2.9.2 X-Ray Diffraction (XRD)  

XRD is a rapid, non-destructive analytical technique that is used for characterization of 

crystalline materials. X-ray diffraction takes place in crystalline solids because their 

atomic spacing is in the range of 1 Å (10–10 m) which is similar to the wavelengths of 

x-rays. As shown in Fig. 2.12, an x-ray diffractometer consists of a source of x-ray 

radiation (x-ray tube), a sample stage and an x-ray detector. In the x-ray tube, there is a 

cathode, usually made of tungsten filament, which is heated to generate electrons via 

thermionic emission. The produced electrons are then accelerated towards a metal 

anode using a voltage in the range of 10 kV to 60 kV that is applied across the hot 

filament (cathode). On the metal anode, the accelerated electrons remove an inner 

electron from the anode material via photoelectric effect and with an effort to fill the 

created vacancy, electronic transitions from outer shells to the inner shell take place. 

As a result of this transition, characteristic x-rays are emitted whose energy and 

wavelength are defined by the difference in the energy levels of the electrons involved 

in the transition and the anode material. Examples of possible anode materials include 

copper, cobalt, chromium and molybdenum. In the case of a copper anode which is 

commonly used in XRD, Cu Kα1, Cu Kα2 and Cu Kβ are produced but a monochromator 

only allows the Kα1 to pass. Therefore, the energy of the emitted radiation is given by 

the energy difference between L3 subshell (0.94 keV) and K subshell (8.98 keV) which 

amounts to 8.04 keV. This energy corresponds to a monochromatic beam with a 

wavelength of 0.1541 nm. Collimated beams of the produced radiation are then directed 

to a sample. For x-rays with wavelengths that are similar to the spacing between planes 

in a crystal structure (1 Å/10-10 m), the crystal lattice of the sample functions like a 

three-dimensional diffraction grating (Ali et al., 2022; Khan et al., 2020; Epp, 2016; 

Bunaciu et al., 2015).  
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Figure 2.13. Main parts of an x-ray diffractometer. Adapted from Perkins (2022). 

 

The geometry of an x-ray diffractometer is such that the sample rotates at an angle θ in 

the path of the collimated x-ray beam while the x-ray detector which is mounted on an 

arm to collect the diffracted x-rays rotates at an angle of 2θ. To enable this rotation, the 

sample holder and the detector are coupled to a goniometer (an instrument that allows 

rotation in precise angular positions). During analysis, the rotating sample interacts with 

x-rays which are produced in an x-ray tube and the intensity of the reflected x-rays is 

recorded by the rotating detector. Upon interacting with the sample, the x-rays can show 

either constructive interference or destructive interference. For constructive 

interference, the diffracted x-rays are in phase meaning that their wave peaks coincide. 

As a result, their wave energies add up increasing the x-ray amplitude. Conversely, for 

destructive interference the diffracted x-rays are out of phase meaning that they cancel 

out. In practical cases, the diffracted x-rays are partially in phase and partially out of 

phase. Among the two, constructive interference is of greatest importance and it is 

achieved when Bragg’s law is obeyed (Equation 2.19). Considering that diffracted x-

rays behave like they are reflected from planes within a crystalline material, Bragg’s 

law considers two parallel planes of atoms which are separated by a distance d as shown 

in Fig. 2.13. When an x-ray beam is incident onto the crystalline sample with an angle 

of incidence θ, it gets reflected at the same angle θ. If the interplanar distance, d, is 

equal to a whole number, n, of wavelength, a constructive interference occurs. 
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Consequently, a diffraction pattern is observed on the computer monitor. As shown 

below, Bragg’s law illustrates the relationship between the x-ray radiation wavelength, 

the crystalline sample’s interplanar spacing and the diffraction angle. 

nλ=2dsinθ                                      (Eqn. 2.19) 

where n is an integer (1, 2, 3, 4,…), λ is the beam wavelength, d is the spacing between 

the planes and θ is the angle of incidence. Using Bragg’s law, the interplanar spacing 

(d) can be calculated. This allows for phase identification since each crystalline 

compound has got a set of unique d-spacings (Perkins, 2022; Ameh, 2019; Titus et al., 

2019)“.   

 
Figure 2.14. Schematic representation used for Bragg's law. The diffracted x-rays show 

constructive interference when the distance between the two planes is an integer 

multiple of the wavelength. Adapted from Darrell et al. (2016).  

 

The main objective in an XRD analysis is usually to identify the crystal phases present 

in a sample using a search and match procedure. This is performed by comparing the 

obtained pattern from the material under test with an existing database found in the x-

ray powder diffraction file that is compiled by the International Centre for Diffraction 

(Perkins, 2022). In addition, the obtained diffraction pattern can give information on 

phase composition, crystallite size, lattice, strain and crystallographic orientation as 

shown in Fig. 2.20. In case of multiple phases within a sample, areas under the peak 

can be calculated to get the quantity of each phase. 
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Figure 2.15. Illustration of a diffraction pattern. Adapted from Sharma et al. (2012).
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CHAPTER THREE 

METHODOLOGY 

3.1 Development of the design schedule    

A systematic schedule for the design of thin films with different surface morphologies 

using electrospray technique was developed from literature. It was based on the key 

parameters that affect electrospray and they include, precursor concentration, flow rate, 

substrate temperature and deposition time, as discussed in chapter 4. 

 

3.2 Equipment and chemicals  

The equipment and chemicals used for this study comprised of; 
 
3.2.1 Equipment 

The following equiments were used; 

PANalytical X’Pert Pro X-ray diffractometer, JEOL JSM-6010LA Scanning electron 

microscope, Series 4000 Maccor battery tester, Glove box, Electrospray chamber, 

Fume hood, Analytical balance, Planetary ball mill, a pellet press, FUG HCN14-12500 

high voltage power supply, KD Scientific 100 syringe pump, Optimum® general 

purpose stainless steel dispense tips (nozzles) and Watson-Marlow chemically-resistant 

hose. 

3.2.2 Chemicals 

Analytical reagent grade chemicals were used to synthesize the solid-state electrolyte 

material and to prepare precursors for thin films. All glassware was cleaned and rinsed 

with double distilled water. 

 

3.3 Determination of the cone-jet window 

To determine the stability window for cone-jet electrospray mode using different 

liquids, experiments were performed. The three different liquids used were 2-propanol, 

N-Methyl-2-pyrrolidone (NMP) and Ethylene Glycol. Their properties were 

determined and these included conductivity, density, surface tension, viscosity and 
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relative permittivity. The starting flow rate for each liquid was also calculated. The 

viscosity numbers (VN) were also calculated to verify whether the liquid profile was 

flat or non-flat. The pump was then set to the calculated flow rate and voltage was 

applied. For each liquid, electrospray experiments were carried by increasing the 

voltage slowly starting from zero until a stable cone-jet was observed. The voltage 

values between which the stable cone was observed were recorded as voltage one (V1) 

and voltage two (V2) and later used to plot the stability window. 

 

3.4 Synthesis and characterization of the Li6PS5Cl (argyrodite) solid-state 

electrolyte material 

To synthesize the Li6PS5Cl solid-state electrolyte material, the solid-state sintering 

method was used. Later the synthesized material was characterized using the x-ray 

diffraction (XRD) technique to confirm a pure crystalline structure with no impurities. 

 

3.4.1 Synthesis of Li6PS5Cl electrolyte material 

Stoichiometric quantities of lithium sulfide (Li2S, 99.98 %, Sigma Aldrich), phosphorus 

sulfide (P2S5, 99 %, Sigma Aldrich) and lithium chloride (LiCl, 99.0 %, Sigma Aldrich) 

crystalline powders were used as the starting materials. The reagents were weighed in 

a glove box and put in a ball milling stainless jar with zirconia balls. Since the sulfur-

based electrolyte material gets oxidized in oxygen, the glove box was filled with argon 

gas to provided an inert atmosphere, free from moisture and oxygen. The different 

powders were then mixed to homogeneity by mechanical milling process at a speed of 

550 rotations per minute for 16 h. In a glove box filled with argon, the resulting 

homogenous powder was transferred and sealed into a quartz tube. The sealed tube 

containing the homogeneous mixture was annealed at a temperature of 550 °C in a 

furnace for 5 h. This process provided enough energy to break the bonds in the unit 

cells of the reactants. This induced diffusion of ions through their crystals allowing 

them to find new positions and form the new Li6PS5Cl argyrodite compound.  

 

3.4.2 Characterization of Li6PS5Cl electrolyte material 

Using x-ray diffraction, the prepared Li6PS5Cl compound was analysed to determine 

the crystalline phase present. To prevent reaction of the sulfur-based sample with 
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oxygen and atmospheric moisture, the synthesized powder was put in an airtight XRD 

sample holder in a glove box filled with argon. The sample was then placed in the XRD 

instrument where a powder diffraction pattern was obtained. The radiation source used 

was the K-α line of copper at 1.5406 Å whereby the x-ray generator was operated at 45 

kV and 40 mA. An XRD pattern was then collected and fitting was performed using 

GSAS-II software for identification of the crystal phase (Toby & Von Dreele, 2013). 

 

3.5 Assembly and characterization of a bulk solid-state lithium ion cell 

To analyse the electrochemical performance of the synthesized solid-state electrolyte 

material (Li6PS5Cl) prior to the design of a thin film cell, a standard laboratory scale 

lithium ion cell was fabricated and characterized as explained below.  

 

3.5.1 Assembly of the bulk solid-state lithium ion cell 

The bulk solid-state lithium ion cell was assembled by pressing the respective 

components (cathode, electrolyte and anode) into a three-layer pellet using a hydraulic 

press. The selected materials were; commercially acquired LiNi1/3Mn1/3Co1/3O2 

(lithium nickel manganese cobalt oxide, NMC111) for the cathode, the synthesized 

solid-state electrolyte material (Li6PS5Cl) and commercially acquired indium foil for 

the anode. The assembly process comprised of several steps as highlighted below. 

1. For the cathode, LiNi1/3Mn1/3Co1/3O2 cathode material, Li6PS5Cl solid-state 

electrolyte and electron conductive carbon (TIMCAL, super P) were mixed to 

homogeneity in the ratio 45: 45: 10 by mechanical milling process at a speed of 110 

rotations per minute for 1 h to form a composite cathode. 

2. The electrolyte pellet was then pressed with a hydraulic press using 160 mg of 

Li6PS5Cl material at a pressure of 6 MPa for 20 s.  

3. This was followed by uniformly spreading 12 mg of the cathode mixture prepared 

in step (1) on top of the pressed electrolyte material and pressing the combination 

at 8 MPa for 20 s to form a two-layer pellet.   

4. For the third layer of the pellet, a commercially acquired indium foil (anode 

material) was cut into a diameter of 7 mm and placed on top of the uncovered 

surface of the electrolyte layer. This was then pressed at 2 MPa for 20 s to form a 

three-layer pellet.   

5. The process was repeated for a second cell.  
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3.5.2 Characterization of the bulk solid-state lithium ion cell 

The assembled cells were charged and discharged (cycled) at room temperature using 

the Maccor battery tester. This was done by applying a constant current to the cell under 

test and recording its voltage response. From the data, plots of voltage versus capacity 

were obtained.  

 

3.6 Design and characterization of thin films with different surface morphologies 

The design of a thin film solid-state lithium ion cell was done by electrospraying. Using 

selected chemical reagents and following the developed design schedule in section 3.1, 

thin films with porous surface morphologies that can be used for electrodes and dense 

thin films that can be used for the electrolyte were designed. Characterization of their 

surface morphologies was then performed using scanning electron microscopy. 

 

3.6.1 Electrospray deposition of thin films 

The experiments were carried out using the electrospray set up shown in Fig. 3.1. It 

consists of a heated substrate holder, a nozzle, a high voltage power supply connected 

to the nozzle, a syringe pump where a precursor solution contained in a syringe is fed 

in a controlled flow rate via a chemically-resistant hose to the nozzle and a temperature 

controller connected to the substrate holder. The nozzle is held on a movable table 

which allows the adjustment of nozzle to substrate distance. The LiNi0.5Mn1.5O4 

(lithium nickel manganese oxide, LNMO) precursor solutions were prepared by 

dissolving stoichiometric amounts of reagent grade LiNO3 (lithium nitrate), 

Mn(NO3)2·4H2O (manganese nitrate tetrahydrate) and Ni(NO3)2·6H2O (nickel nitrate 

hexahydrate) in 2-propanol or ethylene glycol. The LiCl (lithium chloride) precursor 

solutions were prepared by dissolving reagent grade lithium chloride in dimethyl 

sulfoxide ((CH3)2SO, DMSO). The properties of the prepared precursor solutions which 

included conductivity, density, surface tension and viscosity, were determined and they 

were used to calculate respective droplet sizes.  
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Figure 3.1. Schematic representation of the electrospray setup used for deposition of 

thin films. 

 

The liquids were then pumped through a syringe to the nozzle at a selected flow rate, 

one at a time as identified with different experiments. For each experiment, the 

precursor was sprayed through a metallic nozzle of 1.54 mm internal diameter in the 

presence of an applied electric field. This field was created by applying a high voltage 

on the metallic nozzle which was adjusted for each experiment to yield a steady cone-

jet. The steady state was ascertained when the liquid meniscus on the nozzle acquired 

the shape of a cone that did not relax back to a normal droplet shape. After spraying for 

a selected duration ranging from 1 to 7 h, a thin film was deposited on an aluminium 

foil substrate heated at a selected temperature ranging from 100 to 350 °C to evaporate 

the solvents (the boiling points were 82.5 °C for 2-propanol, 197.3 °C for ethylene 

glycol and 189 °C for DMSO). For the different experiments, the respective 

electrosptray parameters are shown in Table 3.1.  
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Table 3.1. Electrospray parameters for different experiments. 

No. Precursor 

solution 

nozzle to substrate 

distance (cm) 

Flow rate 

(mL h-1) 

Duration 

(h) 

Substrate 

temperature (°C) 

a 

0.04 M 

LNMO in 2-

propanol 

3 2 2 100 

b 

0.04 M 

LNMO in 2-

propanol 

3 2 2 350 

c 
0.1 M LNMO 

in 2-propanol 
3 1 2 200 

d 
0.3 M LNMO 

in 2-propanol  
3 0.5  3  200  

e 

1 M LNMO 

precursor in 

2-propanol 

3 2 3 100 

f 

0.5 M LNMO 

in 2-propanol 

and ethylene 

glycol (1:1) 

3 2 1 200 

g 
0.05 M LiCl 

in DMSO  
3 0.4 1 200 

h 
1 M LiCl in 

DMSO 
2 0.4 7 200 

 

3.6.2 Characterization of thin film surface morphology 

For each experiment, the electrosprayed thin film sample was trimmed using a sharp 

pair of scissors to a size that would fit well on the sample holder. The trimmed sample 

was then mounted on a sample holder using a double sided sticky conductive tape 

whose purpose was to hold the sample in place as well as increase conductivity and 

eliminate buildup of charge. The sample holder with the sample was then placed 

appropriately on the instrument’s sample stage ready for analysis. During analysis, a 

beam of electrons is generated from the electron gun via thermionic emission by a 
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tungsten filament (tungsten is preferred due to its high melting point of 3422 °C). To 

accelerate the beam of produced electrons towards the mounted specimen, voltages in 

the range of 5 to 15 kV were applied on the electron gun. Considering that the spot size 

of the produced electron beam was too large to generate a sharp image, condenser and 

objective lenses were automatically applied to compress the electron beam spot size. 

The resulting focused electron beam was then directed on the sample for interaction to 

take place which was achieved by raster scanning over the sample surface. 

Consequently, secondary electrons and backscattered electrons were emitted from the 

sample and they were detected by respective detectors. The obtained signals were used 

for image formation which was observed on the computer monitor. The produced image 

magnification, intensity and brightness could be adjusted until a reasonable clear image 

was obtained. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1. Development of the design schedule    

A design schedule was developed from literature. It provides a systematic way of 

obtaining specific surface morphologies by altering different electrospray parameters. 

As discussed later, earlier studies only point out on how different parameters affect 

morphology but they do not give a systematic way of designing the desired surface 

morphologies. Their outcomes are usually based on a trial-and-error method. 

 

Table 4.1. A design schedule for electrosprayed thin films with different surface 

morphologies.  

Experimental/precursor liquid parameters Film 

morphology 

References 

High 

Concentration 

(³ 0.1M)  

 

High 

Flow 

rate 

 

High substrate 

temperature   

Long 

deposition 

time 

Porous with 

agglomerates 

(Perednis et 

al., 2005) 

Short 

deposition 

time* 

Porous 

cracked film 

(Bailly et 

al., 2012; 

Gürbüz et 

al., 2016) 

Low substrate 

temperature 

Long 

deposition 

time  

Porous 

reticular  

(Ma et al., 

2014) 

Short 

deposition 

time  

Dense 

particulate 

(Joshi et al., 

2012; 

Perednis et 

al., 2005; 

Varga et 

al., 2010) 
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Low 

Flow 

rate 

 

High substrate 

temperature  

Long 

deposition 

time  

Porous with 

agglomerates  

(Lafont et 

al., 2012; 

Neagu et 

al., 2006) 

Short 

deposition 

time  

Dense 

particulate 

(Bailly et 

al., 2012; 

Neagu et 

al., 2006) 

Low substrate 

temperature  

Long 

deposition 

time 

Porous with  

agglomerates 

(Joshi et al., 

2015) 

Short 

deposition 

time  

Dense 

particulate 

(Yoon et 

al., 2016) 

Low 

Concentration 

(< 0.1M)  

 

High 

Flow 

rate  

High substrate 

temperature  

 

Long 

deposition 

time  

Porous 

reticular  

 

(Wang et 

al., 2011; 

Yuan et al., 

2017b) 

Short 

deposition 

time  

Porous 

broccoli-like 

agglomerates 

(Gürbüz et 

al., 2016; 

Varga et 

al., 2010; 

Yu et al., 

2006b) 

Low substrate 

temperature 

Long 

deposition 

time  

Porous  

reticular 

(Wang et 

al., 2009; 

Wang et 

al., 2011; 

Yuan et al., 

2017a) 

Short 

deposition 

time  

Porous 

particulate 

(Hong et 

al., 2017; 

Jo et al., 
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2014; 

Kavadiya 

et al., 

2017; Ma 

& Qin, 

2005) 

Low 

Flow 

rate  

High substrate 

temperature  

 

Long 

deposition 

time  

Porous with 

agglomerate 

(Maršálek 

et al., 

2015) 

Short 

deposition 

time  

Dense 

particulate 

(Maršálek 

et al., 

2015) 

Low substrate 

temperature  

Long 

deposition 

time  

Porous 

reticular  

 

(Koike and 

Tatsumi, 

2007, 

2005) 

Short 

deposition 

time  

Dense 

particulate 

(Hong et 

al., 2017; 

Joshi et al., 

2013; 

Kavadiya 

et al., 

2017; Ma 

& Qin, 

2005) 

 

As highlighted in the developed design schedule, key parameters in designing thin films 

with different surface morphologies using electrospray technique include precursor 

concentration, flow rate, substrate temperature and deposition time. The effects of these 

parameters on the surface morphology have been highlighted several studies. For 

instance, an increase in concentration leads to an increase in the thickness of the film 

and this affects morphology. In their study, Gürbüz et al. (2016) reported a dense film 
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from a 0.05 M precursor. A cracked film was observed after increasing the 

concentration to 0.2 M and this was attributed the film’s non-uniform drying.  

Among other parameters, it has to be noted that flow rate controls the droplet size hence 

the final particle size. However, flow rate is not an absolute parameter since it is 

influenced by other factors as shown in Equation 4.1 (Hartman, 1998).  

𝑄3 =	
,"+
E.

                                                                                  (Eqn. 4.1) 

where 𝜀B is electric permittivity of a vacuum, γ is surface tension of the liquid, 𝜌 is 

liquid density and K is liquid conductivity. Among these factors, conductivity is the 

most prominent and its variation can lead to a wide range of droplet sizes. 

Unfortunately, most of these parameters are not given by the authors of the literature 

cited here. Nonetheless, if the range of conductivity values is not too big it does not 

tremendously influence the droplet diameter. This is because in the equation for droplet 

size, the conductivity appears as a power of 1 6L  or 1 3L  as shown in Equations 4.2 and 

4.3. 

𝑑;,=>?@ABCD = (0&E,*/
!

+.
)0/&                                                         (Eqn. 4.2) 

𝑑;,GH@II@JK = (0.8 *LL,*+/
#

8#
)0/2                                                                     (Eqn. 4.3) 

where 𝑑;,=>?@ABCD is droplet diameter in varicose breakup regime, ρ is precursor liquid 

density (kg m-3), ε3 is electric permittivity of a vacuum (C2 N-1 m-2), Q is flow rate of 

the precursor liquid (m3 s-1), γ is surface tension of the precursor liquid (N m-1), K is 

conductivity of the precursor liquid (S m-1), 𝑑;,GH@II@JK is droplet diameter in whipping 

breakup regime and I is jet’s electric current (Yurteri et al., 2010). On the contrary, if 

the range of conductivities is big the effect on droplet size is significant (Joshi et al., 

2013). It is also important to know which flow rates can achieve the cone-jet mode. 

This is defined by minimum and a maximum flow rate values and they form an 

operational window. When all other parameters are held constant, low flow rate 

produces relatively small droplets hence small particles while high flow rate produces 

relatively big droplets that dry up into big particles (Kavadiya et al., 2017; Hong et al., 

2017).  

 

Also, different surface morphologies can be achieved depending on the choice of 

solvent and substrate temperature (Perednis et al., 2005). Essentially, when making 

films by electrospraying, charged droplets are produced from a precursor liquid and 
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they are directed at a substrate of choice. A solid layer is then formed after the solvent 

has evaporated, and this process can be accelerated by heating the substrate. Usually, 

the substrate temperature is set to be above or below the solvent boiling point. While 

keeping other parameters constant heating the substrate to a temperature above the 

solvent boiling point, results in a dense layer. This is because the high temperature leads 

to evaporation of a big percentage of the solvent from the droplet surface. 

Consequently, the droplet size reduces but its overall electric charge remains constant 

and the Rayleigh limit is exceeded causing it to explode into many smaller droplets 

(Rahmanpour & Ebrahimi, 2017). The smaller droplets drift towards the substrate under 

electrostatic forces and they are expected to dry up into even smaller particles leading 

to a dense layer. Conversely, at relatively high flow rates the produced droplets are 

relatively big (Jo et al., 2014; Varga et al., 2010). According to Vercoulen (1995) such 

droplets are less likely to achieve Rayleigh break up and they dry up on the substrate to 

form relatively big particles that lead to a porous layer.   

 

Deposition time is another very important parameter not only in determining the layer 

thickness but also the surface morphology. By increasing the deposition time, 

morphology of the film can change from dense to porous (Joshi et al., 2021). In a short 

deposition time, the film is thin and the droplets are sparsely distributed on the 

substrate. With increasing time, the film thickens and the substrate surface is 

completely covered causing consecutive landing droplets to experience varying contact 

angles that may alter the surface morphology.  

  

4.2. Determination of the cone-jet window 

The determined liquid properties for the three selected liquids are shown in Table 4.2.  
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Table 4.2. Properties of three different liquids whose cone-jet operation window was 

experimentally determined. 

Physical 

parameters 

Experiment 

1 

Experiment 2 Experiment 3 

Solvent 2-Propanol N-Methyl-2-

pyrrolidone 

(NMP) 

Ethylene Glycol 

Boiling point (°C) 82.5 202 197.3 

Conductivity (K) 

S m-1 

0.0003  0.0011  0.0003 

Density (ρ) kg m-3 785  1027 1113 

Surface tension 

(γ) N m-1 

0.0217  0.0418 0.0473 

viscosity (µ) Pa s 0.00238 0.00165 0.0161 

Relative 

permittivity 

19.26 33 37 

 

As indicated in Table 4.3, results of the calculated minimum (Qmin) and maximum 

(Qmax) flow rate values were obtained using the formulas derived by Marijnissen et al. 

(2023) while viscosity number was calculated using the formula derived by Yurteri et 

al. (2020). 
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Table 4.3. Calculated flow rate values for 2-propanol, NMP and ethylene glycol and 

their respective viscosity numbers. 

 

The calculation of the flow rate values was critical in selecting an appropriate syringe 

size that would accommodate the required flow rate range for each liquid. The obtained 

viscosity numbers (VN) were less than unity (1) for all liquids confirming a flat profile 

(Yurteri et al., 2010). 

 

From the experiments, it was observed that a steady cone could only be attained within 

a given range of the applied voltage. Starting with the lowest possible flow rate as 

determined by the pump, the voltage range within which a stable cone was observed 

using the naked eye was recorded. Just as it is reported in literature, a steady cone-jet 

could only be attained within a given range of the applied voltage for every selected 

flow rate (Gañán-Calvo et al., 2018; Hartman, 1998; Cloupeau & Prunet-Foch, 1989). 

Before attaining the lower voltage limit (V1), a pulsating cone was observed. Upon 

attaining V1, the cone became stable until a certain upper voltage limit (V2) was 

exceeded. Beyond V2, the cone became unstable and it split into multiple jets. The 

recorded values for voltage values V1 and V2 are shown in Table 4.4.  

 

 

 

 

 

 

Equations 2-

propanol 

NMP Ethylene 

Glycol 

𝑄!"#(VM>N	I?BV@MD) 		= 6.1	𝑄3 , nl	s)0         (Eqn. 4.4) 5.0 2.0 7.6 

𝑄3 = XₒY
Z[

 , nl	s)0                                      (Eqn. 4.5) 0.815 0.328 1.25 

𝑉𝑁 = ( +!,"#

-!.#/789 		
)0/2                             (Eqn. 4.6) 0.5 0.8  0.1 

𝑄O>P(VM>N	I?BV@MD) 		= 460.1	𝑄B , nl	s)0   (Eqn. 4.7) 375 151 575 

𝑉𝑁 = ( +!,"#

-!.#/7;< 		
)0/2                             (Eqn. 4.8) 0.1 0.2 0.03 
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Table 4.4. Experimentally determined flow rate and voltage values defining the cone-

jet window for each precursor liquid used. 

Precursor liquid Flow 

rate 
Experiment 1 Experiment 2 Average 

 
(nl s-1) 

V1 

(kV) 
V2 

(kV) 
V1 

(kV) 
V2 

(kV) V1 (kV) V2 (kV) 
2-propanol 5.56 4.2 4.5 4.2 4.45 4.2 4.475 

13.89 4.25 4.8 4.25 4.75 4.25 4.775 
22.22 4.3 5.1 4.35 5.15 4.325 5.125 
27.78 4.35 5.15 4.4 5.3 4.375 5.225 
55.56 4.55 5.75 4.6 5.8 4.575 5.775 
138.89 5.2 6.1 5.1 6.2 5.15 6.15 
194.45 5.6 6.25 5.5 6.3 5.55 6.275 
277.78 6.1 6.45 6.0 6.45 6.05 6.45 
361.11 6.4 6.5 6.35 6.45 6.375 6.475 
416.67 6.4 6.4 6.35 6.35 6.375 6.375 

NMP 27.78 8 8.9 8 8.8 8 8.85 
55.56 8.2 8.9 8.2 8.9 8.2 8.9 
83.33 8.4 8.95 8.4 8.95 8.4 8.95 
111.11 8.7 8.95 8.7 8.95 8.7 8.95 
138.89 9 9 9 9 9 9 

Ethylene glycol 5.56 6.5 6.7 6.9 7.1 6.7 6.9 
8.33 6.5 6.8 6.9 7.4 6.7 7.1 
11.11 6.7 7 6.9 7.4 6.8 7.2 
13.89 6.8 7 6.9 7.4 6.9 7.2 
27.78 6.9 7.6 6.9 7.6 6.9 7.6 
55.56 6.8 7.7 6.8 7.7 6.8 7.7 
83.33 6.8 8.3 6.8 7.7 6.8 8 
111.11 6.8 8.3 6.8 7.7 6.8 8 
138.89 6.8 8.4 6.8 7.8 6.8 8.1 
277.78 7 8.4 7 7.8 7 8.1 
416.67 7.4 8.5 7.4 7.9 7.4 8.2 
555.56 8.4 8.5 8.4 8.5 8.4 8.5 
583.34 8.4 8.4 8.4 8.4 8.4 8.4 
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For each liquid, the experiment was performed in duplicate, and the average values 

used to plot a curve of voltage versus flow rate as shown below, which defined the 

cone-jet stability window. The lowest measured flow rate values on the left side of the 

curve gave experimental values for the minimum flow rates of 2-propanol and ethylene 

glycol while the highest measured flow rate values on the right side of the curves gave 

experimental maximum flow rates values for the three liquids. Unfortunately, for NMP 

the lowest flow rate value or a value close to it could not be measured with the available 

pump. On the plots, voltage 1 (V1) is presented as series 1 in blue while voltage 2 (V2) 

is presented as series 2 in red. 

 

 
Figure 4.1. Voltage-flow rate curve used for the determination of the cone-jet window 

for 2-propanol.  
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Figure 4.2. Voltage-flow rate curve used for the determination of the cone-jet window 

for ethylene glycol. 

 

 
Figure 4.3. Voltage-flow rate curve used for the determination of the cone-jet window 

for NMP. 
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7.6 nl s-1, Qmin_measured = 5.6 nl s-1, Qmax_calculated = 575 nl s-1 and Qmax_measured = 583.3 nl 

s-1.  

 

4.3 XRD characterization of the synthesized argyrodite (Li6PS5Cl) electrolyte 

material. 

Fig. 4.4 shows the XRD pattern of Li6PS5Cl solid-state electrolyte material. The peaks 

on the diffraction pattern were obtained from the constructive interference of x-rays 

scattered by crystal planes within the Li6PS5Cl crystalline material. The respective 

crystal planes are indicated on the pattern. In the pattern, the red line is the background. 

The dark blue peaks show the observed pattern after analysing Li6PS5Cl crystalline 

material. The green peaks show the obtained pattern after fitting the standard 

parameters for Li6PS5Cl material. The light blue plot at the bottom shows the difference 

between the measured and fitted patterns. The crystal structure of the material was 

identified to be a cubic crystalline structure in the space group F-43m with unit cell 

parameters of 9.85 Å. These results were in good agreement with findings from other 

studies in literature and it indicated the successful synthesis of pure Li6PS5Cl electrolyte 

material (Boulineau et al., 2012; Rajagopal et al., 2022; Randrema et al., 2021; C. Yu 

et al., 2018; C. Zhao et al., 2022).  

 

 
Figure 4.4. The XRD pattern of Li6PS5Cl solid-state electrolyte material that has been 

refined using GSAS-II software.  
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4.4 Assembly of the bulk solid-state lithium ion cell 

A composite cathode was used as described earlier in the methodology instead of using 

the selected cathode material in its pure form (LiNi1/3Mn1/3Co1/3O2). This was achieved 

by integrating the synthesized solid electrolyte (Li6PS5Cl) and carbon. The composite 

cathode would enhance intimacy between the electrolyte and the cathode layers 

reducing resistance at their interface. Also, it would improve transport kinetics within 

the battery by simultaneously providing electronic and ionic conduction paths between 

the cathode and the solid-state electrolyte material (Zeng et al., 2023; Giraldo et al., 

2021; Sakuda, 2018; Noh et al., 2018).  

 
4.5 Characterization of the fabricated bulk solid-state lithium ion cell 

Discharge cuves were obtained after cycing the cells. It was expected that initially a 

voltage would drop due to the battery's internal resistance and chemical reactions with 

flow of current. The voltage would then stabilize and remain relatively constant for a 

while forming a plateau. With continued discharge, the voltage would start to decline 

again which would be more rapid near the end of the discharge cycle. Fig. 4.5 shows 

five discharge curves of the bulk solid-state cell galvanostatically cycled at a 

charge/discharge rate of 0.05 C between 1 and 3.7 V potential range. The observed 

voltage plateau was 1.5 V. Schwietert et al., 2020 reported a voltage plateau of 1.2 V. 

The recorded initial discharge capacity was 32.6 mAh g−1. From literature, the 

accessible capacity for NMC111 (LiNi1/3Co1/3Mn1/3O2) cathode material is between 

150 and 160 mAh g−1 (Rosero-Navarro et al., 2019; Jung et al., 2017; Wu et al., 2017; 

Zheng, et al., 2017b Seidlmayer et al., 2016; Buchberger et al., 2015; Noh et al., 2013). 

The measured low discharge capacity could have been caused by poor solid-solid 

contacts between the electrodes and the electrolyte which limits lithium ion transfer 

(Giraldo et al., 2021; Noh et al., 2018). In a more recent study by (Tron et al., 2023) 

they reported that poor solid-solid contacts in solid-state lithium ion batteries were 

caused by large particle sizes of the cathode materials. Though they did not mention the 

actual values of the particle sizes, they compared two NMC (LiNi0.8Mn0.1Co0.1O2) 

cathode materials of different particle sizes and reported a higher discharge capacity 

(161 mAh g−1) for the material with small particle size and a lower discharge capacity 

(93 mAh g−1) for the material with big particle size for the first cycle.  Therefore, small 
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particle sizes in the nano range would enhance intimacy between the cathode and the 

electrolyte leading to excellent battery performance (Bielefeld et al., 2019; Strauss et 

al., 2018; Phuc et al., 2017; Julien et al., 2016).   

 

 
Figure 4.5. The first five charge-discharge curves of the fabricated bulk solid-state 

lithium ion cell cycled at a cut-off voltage of 3.7 V. 

 

Another factor that might have contributed to the low discharge capacity is 

inhomogeneity in the cathode mixture. This can be solved by preparing a homogeneous 

cathode mixture using a solution-based method instead of mixing the solid precursors 

by mechanical milling. For instance, Matsuda et al. (2018) reported a lower initial 

discharge capacity of 27 mAh g−1 for the cathode mixture prepared by hand mixing the 

dry/solid precursors and a higher initial discharge capacity of 90 mAh g−1 was obtained 

for the cathode mixture prepared from a solution-based precursor. Also in their study, 

Rosero-Navarro et al. (2018) demonstrated that a solution-based method was more 

effective in promoting a good interface between the Li6PS5Cl electrolyte and the 

NMC111 cathode material. They reported initial discharge capacities of 92 and 160 

mAh g−1 for cathode mixtures prepared by mechanical milling of precursor powders 

and solution-based methods respectively. In a similar study, Calpa et al. (2019) using 

NCM111 cathode material and sulfide solid electrolyte (Li7P3S11) prepared by liquid 
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phase and mechanical milling methods, reported initial discharge capacities of 154 mA 

h g-1 and 46 mA h g-1 respectively. According to Rosero-Navarro et al. (2018), the 

particle size of Li6PS5Cl particles synthesized from a solution-based method was more 

than ten times smaller compared with the particle size synthesized by mechanical 

milling method. 

 

In addition, as much as the introduction of the solid-state electrolyte in the cathode 

material is critical as discussed in section 4.4, it can also compromise the energy density 

of the resulting battery. This is because the solid-state electrolyte material has got 

negligible contribution to the discharged capacity. Therefore, it should only be present 

in a very low amount in the cathode mixture, just enough to create the required ion 

conductivity. Consequently, a balance has to be established between lithium ion 

conduction and energy density. With 10 % of the solid-state electrolyte in the composite 

cathode, Rosero-Navarro et al. (2018) reported an initial discharge capacity of 120 mA 

h g-1 from a cell with NMC111 cathode material, Li6PS5Cl electrolyte and indium foil 

anode. Also, chemical interactions between oxide cathode materials like 

LiNi1/3Mn1/3Co1/3O2 and sulfide solid-state electrolytes like Li6PS5Cl, which have been 

used in this study, could have led to the formation of a high internal resistance limiting 

the electrochemical performance of the fabricated battery (Deng et al., 2021; Wu et al., 

2021b; Okuno et al., 2020; Xiao et al., 2019a; Koerver et al., 2017a). 

 

From the discharge curves in Fig. 4.5, it is also evident that that discharge capacity 

decreased with cycling. The capacity loss demonstrated can be attributed to irreversible 

parasitic processes such as electrolyte decomposition. From previous studies, 

decomposition of the solid-state electrolyte leads to formation of insulating products at 

the interface which retard the mobility of lithium ions leading to a large interfacial 

charge transfer resistance during cycling (Auvergniot et al., 2017; Koerver, Walther, et 

al., 2017b). Surprisingly, the presence of carbon in the cathode mixture, like in this 

study, has also been reported to aggravate the electrochemical decomposition of solid-

state electrolytes. Another challenge could be the volumetric change associated with 

the insertion and extraction of lithium ions in the electrodes especially in the indium 

anode. This strains the interface with the solid-state electrolyte and could lead to 
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mechanical failure of the cell (Tron et al., 2023; Ates et al., 2019; Yoon et al., 2018b; 

Zhang et al., 2017).  

 

During the charging process, lithium ions are removed/deintercalated from the cathode 

material and inserted/intercalated into the anode material. On the contrary, when 

discharging, the process works in reverse whereby the anode releases lithium ions after 

losing electrons. The released lithium ions then pass through the electrolyte and they 

intercalate into the cathode. When the cathode material takes up more lithium during 

discharge than what had been delithiated during the previous charge then the coulombic 

efficiency is greater than 100 %. From Table 4.5, the charge capacity of the bulk cell is 

higher than the discharge capacity leading to a coulombic efficiency of 77.6 %. For a 

similar cell, coulombic efficiencies ranging from 75 to 90 % were reported (Dao et al., 

2020). A low coulombic effiency (less than 100 %) means that not all of the lithium 

ions were released from the positive electrode during charging returned to the positive 

electrode during discharging. This could be caused by irreversible reactions of the 

cathode material with the electrolyte material at the interface leading to formation of a 

solid electrolyte interface (SEI) layer. A loss of cathode material could also be due to 

irreversible structural changes. Alternatively, the capacity loss could be due to slow 

lithium intercalation kinetics (Zhou et al., 2019; Kasnatscheew et al., 2016).  

 

Table 4.5. A summary of charge and discharge capacities with the respective coulombic 

efficiencies for the first bulk solid-state cell. 

Cycle no. “Charge 

capacity  

(mAh g−1)” 

“Discharge 

capacity  

(mAh g−1)” 

“Coulombic 

efficiency 

(%)” 

1 42.0 32.6 77.6 

2 34.7 31.7 91.4 

3 32.8 30.2 92.1 

4 31.1 28.8 92.6 

5 29.2 27.2 93.2 

 

With an aim of achieving higher discharge capacities, a second bulk cell was 

galvanostatically cycled at a higher cut-off voltage at the same charge/discharge rate of 



 
 

76 

0.05 C between 1 and 4.3 V potential range as shown in Fig. 4.6. The initial discharge 

capacity recorded was 64 mAh g−1 which was twice the achieved capacity at a lower 

cut-off voltage of 3.7 V. The higher discharged capacity means that more lithium can 

be extracted/intercalated with a higher cutoff voltage. A similar observation was made 

by Zuo et al. (2021) who used NCM622 (LiNi0.6Mn0.2Co0.2O2) cathode material with a 

theoretical capacity of 277 mAh g−1. They reported cut-off dependant capacities of 

169 mAh g−1 at 3.6 V, 182 mAh g−1 at 3.7 V, 192 mAh g−1 at 3.8 V and 200 mAh g−1 at 

3.9 V. 

 

 
Figure 4.6. The first five charge-discharge curves of the bulk solid-state lithium ion cell 

cycled at a cut-off voltage of 4.3 V.  

 

Unlike in the first cell, Table 4.6 shows that charge and discharge capacities increased 

with cycling in the second cell. The highest discharge capacity of 115 mA h g-1 was 

recorded at the 16th cycle. However, after this cycle the capacity started fading up to 

13.6 mA h g-1 for the 50th cycle. The irregularities in the coulombic efficiencies and 

capacity fading were a clear indication of electrochemical instabilities. Therefore, the 

high cut-off voltage aggravated material degradation impeding performance of the cell.  
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Table 4.6 A summary of charge and discharge capacities with the respective coulombic 

efficiencies for the second bulk solid-state cell. 

Cycle no. “Charge 

capacity  

(mAh g−1)” 

“Discharge 

capacity  

(mAh g−1)” 

“Coulombic 

efficiency 

(%)” 

1 72.9 64.3 88.2 

2 70.1 67.4 96.1 

3 71. 6 68.6 95.8 

4 72.0 68.7 95.7 

5 72.8 69.0 94.7 

6 71.0 68.0 95.8 

7 71.4 67.5 94.5 

8 70.4 66.8 94.9 

9 68.1 64.0 94.0 

10 71.8 68.2 95.0 

11 66.4 62.8 94.6 

12 84.8 82.2 97.0 

13 89.6 84.4 94.1 

14 95.3 90.4 94.8 

15 110.1 102.9 93.4 

16 123.6 115.3 93.3 

17 118.0 106.3 90.1 

18 94.7 88.2 93.2 

19 89. 7 83.3 92.9 

20 91.6 86.5 94.4 

21 89.1 84.6 95.0 

22 83.8 80.1 95.5 

23 115.6 77.3 66.9 

24 81.0 75.5 93.2 

25 78.3 76.2 97.4 

26 81.7 75.9 92.9 

27 75.7 70.9 93.7 
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28 73.1 70.6 96.7 

29 73.8 69.1 93.6 

30 67.2 64.5 96.0 

31 66.3 61.0 92.1 

32 61.4 59.9 97.6 

33 64.0 58.6 91.5 

34 58.8 56.2 95.7 

35 56.2 51.0 90.8 

36 53.5 51.3 96.0 

37 50.3 47.2 93.7 

38 47.5 46.2 97.2 

39 48.1 40.3 83.8 

40 41.1 40.8 99.4 

41 41.3 39.2 95.0 

42 40.3 35.2 87.4 

43 33.8 30.4 89.8 

44 30.2 29.9 99.1 

45  34.1 34.7 101.8 

46 33.2 26.6 80.0 

47 26.6 23.0 86.6 

48 22.1 19.4 87.5 

49 20.5 23.3 113.8 

50 27.0 13.6 50 

 

4.6 Design and characterization of electrosprayed thin films 

For the different electrospray deposition experiments, the determined values for liquid 

properties are shown in Table 4.7. Surface tension values were obtained from the 

dripping method described by Gianino (2006). Density values were acquired by 

determining the mass of the liquid and dividing it by its volume (IOP, 2007). 

Conductivity was obtained from a conductivity meter. Viscosity values were obtained 

from a simple viscometer (Daignault et al., 1990). From these parameters, expected 

droplet sizes were estimated as described by Yurteri et al., 2010.  
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Table 4.7 Properties of the precursor liquids and respective calculated droplet sizes. 

No. Precursor 

solution 

Surface 

tension 

(N m-1) 

Density 

(g cm-3) 

Conductivity 

(S m-1) 

Viscosity 

(Pa s) 

Flow rate 

(ml h-1) 

Droplet 

size (µm) 

1 

0.04 M 

LNMO in 

2-propanol 

0.023 778 0.0268 0.002 2 2.08 

2 

0.1 M 

LNMO in 

2-propanol 

0.022 795 0.0595 0.002 1 1.26 

3 

0.3 M 

LNMO in 

2-propanol  

0.022 879  0.1501 0.002 0.5 0.74 

4 

1 M 

LNMO 

precursor 

in 2-

propanol 

0.020 1119.3 0.1775 0.003 2 1.11 

5 

0.5 M 

LNMO in 

2-propanol 

and 

ethylene 

glycol 

(1:1) 

0.028 946 0.1426 0.005 2 1.19 

6 

0.05 M 

LiCl in 

DMSO  

0.044 1010 0.1252 0.002 0.4 0.73 

7 
1 M LiCl 

in DMSO 
0.044 1136.2 0.6711 0.005 0.4 0.42 

 

Just like in the case of Kavadiya et al. (2017), large flow rate values yielded bigger 

droplets. Different surface morphologies were then deposited and characterized using 
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SEM. As shown in Fig. 4.7, a thin film was deposited from a 0.1 M LNMO precursor 

solution in 2-propanol (boiling point of 82.5 °C) at a flow rate of 1 mL h-1 for a duration 

of 3 h on an aluminium substrate that was heated at 200 °C. The obtained surface 

morphology was in agreement with the prediction of the design schedule (Table 4.1) 

since a porous morphology with agglomerates was achieved after electrospraying a high 

concentration precursor solution at a high flow rate on a substrate that is heated at a 

high temperature for long spray duration. In their stidy, Perednis et al. (2005) reported 

a similar morphology using a 0.1 M yttria-stabilized zirconia precursor solution in a 

solvent mixture of ethanol and 1-methoxy-2-propanol (boiling point range of 78 - 120 

°C) sprayed at a flow rate of 5.6 mL h-1 for a spray duration of 5 h on a substrate that 

was heated at a temperature of 260 °C.  

 

 
Figure 4.7. SEM image of a thin film generated by electrospraying 0.1 M LNMO 

precursor in 2-propanol at a flow rate of 1 mL h-1 and a substrate temperature of 200 

°C for 3 h.  

 

Also Fig. 4.8 shows a porous thin film with agglomerates that was obtained when a 0.3 

M LNMO precursor in 2-propanol (boiling point of 82.5 °C) was electrosprayed at a 

flow rate of 0.5 mL h-1 for 3 h on an aluminium substrate heated at a temperature of 

200 °C. The film’s surface morphology was in agreement with the prediction of the 

design schedule when a high concentration precursor solution is electrosprayed at a low 

flow rate on a substrate heated at a high temperature for long spray duration. After 

electrospraying a 0.1 M YSZ precursor solution in a mixed solvent of ethanol and butyl 
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carbitol (boiling point range of 78 to 231 °C) at a flow rate of 0.5 mL h-1 and a substrate 

temperature of 400 °C. Neagu et al. (2006) reported similar morphologies at 4 and 12 

h. Also, Lafont et al., (2012) reported a similar morphology with 1-propanol (boiling 

points of 97 °C) after electrospraying 0.1 M LiNi0.5Mn1.5O4 precursor solution at a flow 

rate of 1 mL h-1 and a substrate temperature of 350 °C for 2 h.  

 

 
Figure 4.8. SEM image of thin film generated by electrospray of 0.3 M LNMO 

precursor in 2-propanol at a flow rate of 0.5 mL h-1 and a substrate temperature of 200 

°C for 3 h. 

 

As shown in Fig. 4.9, another porous film with agglomerates was obtained when a 1 M 

LiCl precursor solution in DMSO (boiling point of 189 °C) was electrosprayed at a flow 

rate of 0.4 mL h-1 for 7 h on a substrate that was heated at 200 °C. The surface 

morphology was in agreement with the prediction of the design schedule after 

electrospraying a high concentration precursor solution at a low flow rate on a substrate 

that is heated at a low temperature for a long duration. Using 0.1 M Bi2WO6 precursor 

in propylene glycol (boiling point of 188.2 °C), Joshi et al. (2015) deposited a thin film 

with a similar morphology at a flow rate of 0.04 mL h−1 for 80 min on a heated substrate 

at a temperature of 120 °C. They also observed that film porosity increased with 

deposition time. 
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Figure 4.9. SEM image of thin film generated by electrospray of 1 M LiCl precursor in 

DMSO (boiling point of 189 °C) at a flow rate of 0.4 mL h-1 and a substrate temperature 

of 200 °C for 7 h. 

 

For the formation of the porous morphology with agglomerates, the generated droplets 

arrive on the substrate when completely dry forming a particulate layer. Subsequent 

droplets then experience resistance during charge transfer to the substrate. 

Consequently, preferential landing occurs in regions where the droplets manage to 

discharge. The droplets adhere on those positions and they dry up to form agglomerates. 

 

In Fig. 4.10 a thin film with a porous reticular (mesh-like pattern) was obtained when a 

1 M LNMO precursor solution in 2-propanol (boiling point of 82.5 °C) was sprayed at 

a flow rate of 2 mL h-1 for 3 h on a substrate heated at 100 °C. The film’s surface 

morphology was in agreement with the prediction of the design schedule after 

electrospraying a high concentration precursor solution at a high flow rate on a substrate 

that is heated at a low temperature for long spray duration. A similar morphology was 

reported by Ma et al. (2014) who electrosprayed 0.1 M MnO precursor in 1,2-

dihydroxypropane (boiling point of 188.2 °C) at a substrate temperature of 240 °C and 

a flow rate of 1.5 mL h-1 for 3 h. 
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Figure 4.10. SEM image of a thin film generated by electrospraying 1 M LNMO 

precursor in 2-propanol at a flow rate of 2 mL h-1 and a substrate temperature of 100 

°C for 3 h. 

 
Also Fig. 4.11 and Fig. 4.12 show thin films obtained when 0.04 M LNMO precursor 

solutions in 2-propanol (boiling point of 82.5 °C) was electrosprayed at a flow rate of 

2 mL h-1 for 2 h on an aluminium foil substrate heated to a temperature of 350 °C and 

100 °C respectively. The films’ surface morphologies were in agreement with the 

predictions of the design schedule after electrospraying a low concentration precursor 

solution at a high flow rate for long spray duration on a substrate that is heated at a high 

temperature (Fig. 4.11) or a low temperature (Fig. 4.12). Yuan et al. (2017b) reported 

a porous reticular film using 0.01 M CoMn2O4 precursor in 1,2-propanediol (boiling 

point of 188.2 °C) electrosprayed at a substrate temperature of 200 °C and a flow rate 

of 2 mL h-1 for 3 h. Also, Wang et al. (2011) electrosprayed a 0.03 M V2O5 precursor 

in a solvent mixture of water, ethanol and 1,2 propylene glycol (boiling point range of 

100 to 188.2 °C) at a flow rate of 72 mL h−1 and a substrate temperature of 260 °C. For 

deposition times ranging from 4 to 12 h, the porosity of the film was observed to 

increase with deposition time. 
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Figure 4.11. SEM image of a thin film generated by electrospray using 0.04 M LNMO 

precursor in 2-propanol at a flow rate of 2 mL h-1 and a substrate temperature of 350 

°C for 2 h.  

 

 
Figure 4.12. SEM image of a thin film generated by electrospray using 0.04 M LNMO 

precursor in 2-propanol at a flow rate of 2 mL h-1 and a substrate temperature of 100 

°C for 2 h.. 

 
In the formation of the porous reticular morphology, the droplets spread gradually on 

the substrate surface. The temperature at the droplet edge is usually higher than at its 

centre. Therefore, the solvent at the droplet edge evaporates faster than at its centre. 

This process leads to ring-shaped nucleation and precipitation that forms a reticular 

morphology on the substrate. Comparing Figs. 4.11 and 4.12, it is clear that the film 
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becomes more compact with an increase in substrate temperature. This was also 

reported by Wang et al., (2009) who prepared porous reticular Fe2O3 films using a 0.005 

M precursor in a mixed solvent of 1, 2-propylene glycol and ethanol (boiling points of 

188.2 °C and 78 °C respectively) at a flow rate of 2.4 mL h-1. At substrate temperatures 

ranging from 170 to 230 °C, they observed a decrease in pore size with increasing 

substrate temperature.  

 

Dense surface morphologies were also observed.  In Fig. 4.13, a thin dense particulate 

film was obtained when a 0.5 M LNMO precursor solution in a solvent mixture of 2-

propanol and ethylene glycol (boiling point range of 82.5 – 197.3 °C) was 

electrosprayed at a flow rate of 2 mL h-1 for 1 h on an aluminium substrate at 200 °C. 

The film’s surface morphology was in agreement with the prediction of the design 

schedule after electrospraying a high concentration precursor solution at a high flow 

rate on a substrate that is heated to a low temperature for a short duration. Joshi et al. 

(2012) obtained a similar morphology using 0.3 M ZnO precursor solutions in 

propylene glycol (boiling point of 188.2 °C) at a flow rate of 75 µL h−1 and a substrate 

temperature of 200 °C for 30 min. In such cases, the generated droplets experienced a 

lower rate of solvent evaporation allowing them to spread on the substrate and establish 

close contact among themselves to form a dense layer. 

 

 
Figure 4.13. SEM image of thin film generated by electrospray of 0.5 M LNMO 

precursor in 2-propanol and ethylene glycol at a flow rate of 2 mL h-1 and a substrate 

temperature of 200 °C for 1 h. 
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Also in Fig. 4.14 another dense thin film was obtained when a 0.05 M LiCl precursor 

solution in DMSO (boiling point of 189 °C) was electrosprayed at a flow rate of 0.4 

mL h-1 for 1 h on an aluminium foil substrate heated to a temperature of 200 °C. The 

film’s surface morphology was in agreement with the prediction of the design schedule 

since it showed a dense particulate film obtained when a low concentration precursor 

solution is electrosprayed at a low flow rate on a substrate at a low temperature for a 

short time. Ma and Qin (2005) electrosprayed 0.02 M LiFePO4 precursor solution in a 

mixed solvent of ethanol, glycol and butyl carbitol (boiling point range of 78 to 231 °C) 

at a substrate temperature of 120 °C. At a flow rate of 0.05 mL h−1 the generated 

particles were smaller (< 100 nm) and they dried to formed a uniform dense film. In 

another study, Joshi et al. (2013) reported a dense film from a 0.05 M SnCl4.5H2O 

precursor in propylene glycol (boiling point of 188.2 °C) at a flow rate of 0.04 mL h-1 

and a substrate temperature of 70 °C for 1 h. Similar observations were made by 

Kavadiya et al. (2017) who electrosprayed methylammonium lead iodide perovskite 

precursor (14 mg mL-1) in isopropyl alcohol (boiling point of 82.5 °C) at different flow 

rates ranging from 0.03 to 0.15 mL h-1 at room temperature. It was evident that the 

resulting droplet diameters increased with flow rate and they ranged from 505.88 to 

860.41 nm respectively. The droplet evaporation times also increased with droplet sizes 

and they ranged from 17.84 to 51.73 μs respectively. Upon drying, the resulting particle 

sizes ranged from 75.36 to 113.43 nm respectively. It was reported that smaller particles 

were achieved at lower flow rates and they led to the production of smooth uniform 

films. It is therefore evident that small droplets dry up into even smaller particles 

leading to formation of a dense layer. This is further supported by the works of Hong 

et al. (2017) who electrosprayed 30 % wt methylammonium lead iodide perovskite 

liquid precursor in DMSO (boiling point of 189 °C) at a flow rate of 0.05 mL h−1 and a 

substrate temperature of 65 °C for 2 min.  
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Figure 4.14. SEM image of thin film generated by electrospray of 0.05 M LiCl 

precursor in DMSO at a flow rate of 0.4 mL h-1 and a substrate temperature of 200 °C 

for 1 h. 

 
Therefore, different porous and dense surface morphologies can be achieved using 

electrospray technique for different applications. In the context of electrode materials 

for solid-state lithium ion batteries, several studies have shown that a porous 

morphology is preferred for the electrodes when it comes to mitigating mechanical 

failure, electrical disconnection and capacity. These negative effects are usually caused 

by volume change of electrode materials during discharge and charge cycles. Though a 

comparison on the performance of the different porous morphologies has not yet been 

done, a lot of studies have emphasized on the effectiveness of a reticular porous 

morphology. In addition, this morphology has been highlighted for promoting lithium 

ion intercalation and increasing the overall surface area of contact at the interface with 

the electrolyte leading to superior electrochemical performance of the battery (Liu et 

al., 2019; Luo et al., 2017; Chen, et al., 2016b; Zhu et al., 2015a). On the contrary, a 

compact layer has been recommended for the electrolyte to enhance lithium ion 

conductivity and inhibit short circuiting. Usually, short circuiting occurs due to the 

formation of lithium dendrites on the anode over long time cycling. These dendrites are 

like protruding needles which cause the electrodes to come into direct contact inducing 

short circuit which leads to battery failure. Therefore, developing a very compact 

electrolyte layer is a critical approach in reducing space for lithium dendrite penetration 

(Jiang et al., 2018b; Liu et al., 2017; Tian et al., 2017; Zhang et al., 2014)”.  
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Fig. 4.15 shows a cross section SEM image of two layers deposited sequentially using 

0.5 M LNMO precursor in 2-propanol and ethylene glycol (1:1). Bottom dense layer 

was electrosprayed at a flow rate of 2 mL h-1 and a substrate temperature of 200 °C for 

1 h. Top porous layer was electrosprayed at a flow rate of 0.5 mL h-1 and a substrate 

temperature of 200 °C for 3 h. The layers were deposited to mimic a dense electrolyte 

layer and a porous electrode layer in contact with each other for a thin fim lithium ion 

battery. The observed surface morphologies were in agreement with the predictions of 

the design schedule. A dense layer on the left side was achieved when a high 

concentration precursor solution was sprayed at a high flow rate on a substrate at a low 

temperature for a short time. On the right side, a porous layer was deposited using a 

high concentration precursor solution sprayed at a low flow rate and low temperature 

for a long time. 

 

 
Figure 4.15. Cross section SEM image of two layers deposited sequentially using 0.5 

M LNMO precursor in 2-propanol and ethylene glycol (1:1). Bottom dense layer was 

electrosprayed at a flow rate of 2 mL h-1 and a substrate temperature of 200 °C for 1 h. 

Top layer was electrosprayed at a flow rate of 0.5 mL h-1 and a substrate temperature 

of 200 °C for 3 h. 

 

Ultimately, electrostatic spray deposition technique is promising in the layer-by-layer 

deposition of thin film lithium ion batteries without incorporating binders. This is 

critical in reducing the mass of inactive compounds in the battery. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Electrospray is a technique where an electrical force causes a liquid jet to fragment into 

droplets. It is outstanding because of the achieved high deposition efficiency and ability 

to produce thin films of different surface morphologies. The technique can be applied 

in the deposition of thin films for nano and micro electronics where performance of the 

deposited layers is determined by their morphologies.  

 

In this study, a literature survey was conducted and key electrospray parameters were 

identified. A systematic design schedule for electrosprayed thin films with different 

surface morphologies was then developed. The schedule provided a systematic way of 

designing thin films with different surface morphologies and in contrast to the 

commonly used trial-and-error method, the schedule saved on time and reagents.  

 

Considering that literature does not give general applicable formulas for minimum and 

maximum flow rates, the cone-jet windows for three commonly used solvents (2-

propanol, ethylene glycol and NMP) were experimentally determined. 

 

Following the design of thin films for li-ion batteries, electrospray experiments were 

performed and thin films with varying morphologies were deposited by controlling 

precursor concentration, precursor flow rate, substrate temperature and deposition time. 

Characterization of the surface morphologies was performed using scanning electron 

microscopy. The obtained results showed that surface morphologies of the deposited 

thin films agreed with the predictions of the developed design schedule. A good 

interfacial contact was also achieved between two layers deposited on each other 

without incorporating binders.  

 

For the bulk solid-state li-ion cells, Li6PS5Cl argyrodite electrolyte material was 

synthesized via solid-state sintering method and its cubic argyrodite crystalline 

structure confirmed using x-ray diffraction technique. Two bulk solid-state lithium ion 

cells were fabricated by pressing three-layer pellets comprising of the cathode mixture, 
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the electrolyte and the anode. Upon cycling, the bulk cells were found to be 

electrochemically unstable leading to low discharge capacities. This was attributed to 

inhomogeneity in the cathode mixture and poor interfacial contacts in the bulk cell.  

 

5.2 Recommendations 

1. The developed schedule should be adopted in the design of thin films for 

nano/micro electronics where performance of the deposited layers is determined by 

their surface morphologies. 

2. Refinement of the cone-jet stability window should be done to provide accurate 

mathematical models. 

3. Electrospray technique is recommended in the deposition of thin films with 

different surface morphologies and good interfacial contacts.  

4. A solution-based method should be adopted for the preparation of the composite 

cathode to improve on homogeneity. 

5. Weight ratios in the composite cathode should be optimized for enhanced 

electrochemical performance. 
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A B S T R A C T

Electrohydrodynamic atomization (EHDA) or electrospraying stands out in thin film deposition
because of its unique ability to form charged droplets, initiating higher deposition efficiencies in
electrostatic spray deposition. Considering that the quality of a thin film depends on the particle
sizes, their monodispersity and uniform distribution on the surface, electrospray is a powerful
tool in materials synthesis. Therefore, this review looks at different areas where this novel
technique has been used to improve on the overall performance of materials for energy devices,
such as solar cells, photoelectrochemical cells, rechargeable batteries and beyond, capacitors,
and (O)LEDs, including quantum dots.

1. Introduction

Electrohydrodynamic atomization (EHDA) or electrospraying stands out in thin film deposition because of its unique ability to
form charged droplets hence higher deposition efficiency, i.e. electrostatic spray deposition (ESD), which term will be used further
throughout this chapter. It involves disintegration of a liquid into airborne droplets by applying an electric field which causes shear
stress on the liquid surface leading to elongation of a jet that breaks up into small charged droplets. Due to the mutual Coulomb
repulsion among the droplets, there is self-dispersion on the substrate hence no agglomeration resulting in uniform deposition on
inhomogeneous surfaces (Lee, Cho, Oh, & Shin, 2007; Yoon, Chung, Oh, & Kim, 2003; Cao & Prakash, 2002; Nishizawa et al., 1998;
Chen, Buysman, Kelder, & Schoonman, 1995; van Zomeren et al., 1994). For instance, with an aim of synthesizing Co3O4 thin films on
a glass substrate, Abbas, Slewa, Khizir, and Kakil (2017) confirmed the effect of an electric field during deposition. From their results,
the film deposited with no electric field showed flaws like crystal flakes, pin holes and many cracks on the surface while the film
grown under an electric field appeared smoother and more homogeneous with well-formed grains. With these observations,
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electrospray seems therefore advantageous to other thin film deposition techniques (Shui et al., 2004).
During an electrospray experiment, altering the applied electric field strength and/or the flow rate (the liquid kinetic energy)

results in different electrospray modes. These modes differ in their droplet sizes and droplet formation mechanism. Among them, the
cone-jet mode is the most studied one in thin layer production because of its ability to produce spherical particles, much smaller than
the nozzle diameter, with a narrow size distribution (Agostinho, 2013; Jaworek, Sobczyk, Krupa, Lackowski, & Czech, 2009). For the
cone jet mode, scaling laws, for the electric current through the liquid and the droplet size, have been developed (Yurteri et al., 2010).
The scaling laws depict that droplet sizes and final particle sizes can be easily controlled by adjusting different parameters, if we are
indeed in the cone-jet domain with respect to flow rate and applied potential (Scheideler & Chen, 2014). With the advances in
technology, this allows electrospray in the cone jet mode to find a wide application in different areas like microelectronics and
nanotechnology (Jaworek & Sobczyk, 2008). Also depending on the physical and chemical properties of the liquid precursor such as
density, surface tension, conductivity, concentration and viscosity, and experimental parameters like deposition temperature, de-
position time, nature of the substrate, the surface morphology can be tailored (designed) to suit the preference (Neagu, Djurado,
Ortega, & Pagnier, 2006). These parameters are discussed in great detail in another section of this special issue (Ganan-Calvo, Lopez-
Herrera, Herrada, Ramos, & Montanero, 2018; Rosell-Llompart, Grifoll, & Loscertales, 2018). Obviously, the morphology of the
deposited layer plays a crucial role in the final performance, e.g. for solar cells usually homogeneous flat layers are required while for
ionic and electronic transfer from and out one layer to the other, rough layers are concerned in for instance battery electrodes.

Considering that the quality of a thin film depends on the particle sizes, their monodispersity and uniform distribution on the
surface, electrospray is a powerful tool in material synthesis. The deposition parameters are extensively discussed in another part of
this special issue (Bodnár, Grifoll, & Rosell-Llompart, 2018; Jaworek, Sobczyk, & Krupa, 2018)

Therefore, this review looks at different areas where the novel technique has been used to improve on the overall performance of
materials for energy devices, which started with the paper of van Zomeren, Kelder, Marijnissen, and Schoonman (1994) for Li-ion
batteries, and since then, more than 150 papers appeared on this subject. This amount is almost equal to the number of papers that
arose on other energy device subjects discussed here, such as solar cells, photoelectrochemical cells, (O)LEDS including quantum
dots, capacitors, and fuel cells. This last topic however, is described in another section of this special issue. (Castillo, Martin,
Rodriguez-Perez, Higuera, & Garcia-Ybarra, 2018)

2. ESD for energy production (solar cells and photo-electrochemical cells)

2.1. Solar cells

In solar cells, surfaces are often deciding the performance of the device in terms of light absorption and electronic behaviour.
Hence, thin film fabrication methods are of utmost importance for achieving optimal operation of the solar cell. For the Si-based and
GaAs solar cells these depositions are typically based on vacuum methods and or oxygen- and moisture-free environments (sput-
tering, (PE)CVD, and (co-)evaporation). In contrast, potential future type solar cells like Copper Indium Sulfides/Selenides (CIS),
perovskites (Fig. 1) and organic-type solar cells may use non-vacuum methods such as spin-coating, electro-deposition, screen-
printing, doctor-blading, paste-coating, precursor-printing, and spray pyrolysis. (Abernathy, Bates, Anani, Haba, & Smestad, 1984;
Eberspacher, Fredric, Pauls, & Serra, 2001; Mooney & Radding, 1982; Panthani et al., 2008; Roncallo, Painter, Cousins, Lane, &
Rogers, 2008; Shay, Wagner, & Kasper, 1975; Yoon et al., 2012).

Each of these methods has its pros and cons in terms of processing, chemistry, and final performance. For instance, spray pyrolysis
was used by Mitzi, Kosbar, Murray, Copel, and Afzali (2004); Mitzi, Copel, and Murray (2006); Mitzi et al., (2008, 2009) and Milliron,
Mitzi, Copel, and Murray (2006) who deposited a Cu-In-Ga-Se (CIGS) layer, giving a solar cell power conversion efficiency of 10.3%.
One of their precursors was hydrazine, and due to its reactivity and toxicity, it limits its widespread use. Ahn et al. (2010) coated a
substrate with a Cu(NO)2 and InCl3 solution by using a doctor-blade method, but the efficiency was as low as 2%. In the following
sections, an overview is given to address the issues in more detail by using ESD for fabrication of potential future solar cells based on

Fig. 1. CIS solar cell (left) and Perovskite solar cell (right).
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CIS's, perovskites and organic materials. This paragraph also includes photo-electrochemical cells.

2.1.1. CIS-type solar cells
Table 1 (Yoon et al., 2012) summarises previous spraying studies for CIS based solar cells. These CIS-based solar cells are

attractive because of:

– favourable optical and electrical properties: band gap tuneable from 1 to 2.4 eV by selection of the Ga to S ratio.
– high photon absorption coefficients.
– high power-conversion efficiencies compared to other systems.

Nevertheless, implementation of CIS-based solar cells is still hampered by high manufacturing costs as a result of the processing
method via the earlier mentioned conventional vacuum deposition methods. Hence, non-vacuum-based deposition techniques would
significantly reduce costs and may thus accelerate market penetration.

Production of ESD CIS solar cells was shown with an initial low conversion efficiency (Yoon et al., 2012). Optimized precursor
flow rates, which varied with the thermo-electrical properties of the dissolving solvents, were discussed. The effect of substrate
temperature on the thin precursor films was also examined and are shown in Fig. 2. These precursor films then were selenized,
performed in a vacuum evaporator equipped with a Knudsen-type effusion cell, at typically 530 °C for 30min, under a Se flux
regulated by the effusion cell temperature.

The deposition operating conditions that yielded the most uniform layer was used to produce cells for the necessary post-sele-
nization process. The cells were then further covered with CdS and ZnO layers on top of the CuInSe layer. Light-illuminated current-
density voltage (J-V) curves demonstrate a power conversion efficiency of η=1.75% ± 0.09 with an open-circuit voltage of VOC

=0.23 V, a short-circuit current density of JSC = 21.72mA/cm2, and a fill factor FF=0.34 (Fig. 3) Room for improving the cell
conversion efficiency by reducing or removing the carbon layer originating from our highly viscous solvents, was to be expected, as
shown below.

The morphologies of the carbon- and oxygen-free Cu(InGa)(SSe)2 (CIGSSe) absorber thin films prepared by ESD are shown in the

Table 1
Previous studies on CuInSe2 solar cells produced by spraying solution-based precursors (Yoon et al., 2012).

Solvent Substrate Deposition temperature Conversion efficiency Reference

Ethanol/deionized water Pyrex 180–200 °C (< 300 °C) N.A. Bougnot, Duchemin, and Savelli (1986)
Ethanol Stainless steel 300–360 °C N.A. Shirakata, Murakami, Kariya, and Isomura (1996)
Water, ethanol Pyrex, quatrz 350–550 °C 2% Tomar and Garcia (1982)
1,2-propanediol Glass 300 °C 3.15% Raja-Ram et al. (1986)

Fig. 2. Left panel: Morphologies of Cu-In films from propylene glycol solvent deposited at 100 °C (a), and 200 °C (b). Left and right images are top
and side views, respectively. Right panel: (a) Top and (b) side views of a CIS thin film with selenium doping. Reprinted with permission from Yoon
et al., 2012.
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left panel of Fig. 4 (Yoon et al., 2014). Similarly a polycrystalline chalcopyrite CIGSSe absorber with a large-faceted flat-grained
morphology was prepared after sulfurization and selenization and is presented in the right panel of Fig. 4.

A solar cell with a 4.63% conversion efficiency was produced with VOC =410mV, JSC = 21mA/cm2, and FF = 0.5337 for an
active area of 0.46 cm2 (Fig. 5).

Also, electrospun nanofibers were used to construct a 3D CuInS2 solar cell with enhanced surface area on a ESD CuInS2 layer (see
Fig. 6) (Yoon et al., 2015). The electrospun CuInS film was annealed to crystalize the film, which was then sulfurized in a H2S/N2

environment to remove oxides. Both XRD and Raman characterization confirmed the formation of CuInS2. SEM images (Fig. 6)
revealed a 3D web-like, fibrous structure of the film. AFM data showed that the surface area had nearly doubled after incorporating
the 3D nanostructure. The solar cell has a standard Mo/CIS/CdS/i-ZnO/n-ZnO/Al structure.

Finally, the fabricated CIS nanofiber cell had a VOC =0.21 V, JSC =9.07mA/cm2, FF=35.64% (Fig. 7), and a conversion
efficiency of 0.66% with an active area of 0.44 cm2. The low efficiency was attributed to a limitation in the TCO sputtering process,
which did not yield a complete penetration of the transparent conductive oxide (TCO) materials into the open pores between CIS/CdS
fibers, which may eventually be improved by using metal nanowires together with indium tin oxide (ITO) nanoparticles.

A low cost, scalable electrostatic spray assisted vapour deposition (ESAVD) method using DMSO as solvents was employed to
deposit Copper-Zinc-Tin-Sulfide (CZTS) absorbers (Altamura, Wang, & Choy, 2015). In order to further improve the efficiency, an
ultrathin ZnO intermediate layer was deposited between CZTSSe and Mo to minimize absorber decomposition at the back contact
surface. The thin ZnO layer no longer existed after treatment with selenium (SEM images in Fig. 8) because Zn was incorporated into
the CZTSSe absorber and O was replaced by Se (Sample I).

The reaction between ZnO and Se vapour reduced the thickness of high resistance Mo(S,Se) layer formed during selenization. For
another sample (Sample II) with a thin ZnO intermediate layer, the Zn/Sn ratio after selenization was lower than the reference
sample. It was concluded that preventing decomposition of CZTSe in the vicinity of the Mo back contact allows a reduction of the loss
of Sn during the annealing, which suggests the existence of a relationship between the loss of Sn and the formation of secondary
phases at the back region of the absorbers. Comparison between Raman spectrum of Sample I and Sample II proved that a thin ZnO
layer successfully reduced the decomposition of CZTSSe at the back contact surface. The improvement of the CZTSSe|Mo interface
due to the intermediate layer was also reflected in the quality of the derived photovoltaic devices leading to an improved efficiency
for ESAVD-deposited kesterite of 4.03% with ESD.

Fig. 3. I–V characteristics of the CIS solar cell on a molybdenum-coated substrate (Redrawn from Yoon et al., 2012).

Fig. 4. Left panel: Top-view (top row) and cross-sectional (bottom row) SEM images of the (a) as-deposited CuInGa film, (b) sulfurized Cu(InGa)S2
film, and (c) selenized Cu(InGa)(SSe)2 film; Right panel: Top-view SEM images showing the effect of the airannealing temperature on the surface
morphology and grain size of the as-deposited film (before sulfurization). Reprinted with permission from Yoon et al., 2014).
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2.1.2. Perovskite-based solar cells (PSCs)
Within the last years, perovskites have made enormous progress as solar cell materials, with a power conversion efficiency

reaching up to 17%, (Jeon et al., 2015, 2014; Lee, Seol, Cho, & Park, 2014; Jeon et al., 2014a; Nie et al., 2015), or higher when based
on a planar architecture containing mixed halide perovskite (CH3NH3PbI3-xClx) materials (Zhou et al., 2014), and beyond that
(http://www.nrel.gov/ncpv/images/efficiency_chart.jpg). Hence, PSCs are becoming highly interesting next generation solar cell
devices for converting solar energy. Unfortunately, PSCs show severe problems with respect to incorporated defects leading to a
hysteresis in the I–V characteristics (Nie et al., 2015). Thus, improving the perovskite film surface coverage is an important field,
where the process plays a crucial role. Several techniques were reported to obtain large crystals with uniform perovskite films, via
solution methods, (Burschka et al., 2013; Docampo et al., 2014; Jeon et al., 2014b) thermal evaporation, (Liu, Johnston, & Snaith,
2013) and spray coating (Barrows et al., 2014; Ramesh et al., 2015), including either a one-step solution or a two-step sequential
deposition technique to obtain uniform, and dense perovskite films (Jeon et al., 2014a; Nie et al., 2015). A modified two-step
sequential deposition method (solution–vapour) was used by initially spin coating followed by vapour deposition (Hu et al., 2014;
Xiao et al., 2014). Unfortunately, these methods reveal serious disadvantages:

Fig. 5. (a) External quantum efficiency, (b) estimation of the band gap, and (c) I-V characteristics of the CIGSSe solar cell on a molybdenum-coated
substrate. (Redrawn from Yoon et al., 2014).

Fig. 6. Fabrication of 3D nanostructured CIS (left), and SEM image of annealed (a and b) and sulfurized (c and d) 3D nanostructured CIS absorber
layer. Reprinted with permission from Yoon et al., 2015.

Fig. 7. I–V characteristics of the CIS solar cell on a Mo-coated substrate. (Redrawn from Yoon et al., 2015).
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– waste of precursor materials.
– formation of island like perovskite structures creating reduced surface coverage with pinholes.
– incomplete conversion of the precursor leads to formation of poor quality perovskite films.

In order to make perovskites more attractive for market implementation, control of the deposition is important. Usually, spray
methods lead to small grain size and thus pin hole formation, but also to incorporation of impurities (Krishna, Dutta, & Paulson,
2003). Hence, in order to achieve enhanced electronic properties, the morphology and crystallinity of the perovskite films need to be
improved. It is however stressed that the method used was performed with voltages that does not allow actual electrospraying, but
uses merely a high voltage as assistance to the standard spraying (Fig. 9) (Chandrasekhar, Kumar, Swami, Dutta, & Komarala, 2016).
Nevertheless, deposition may be expected with full electrospraying as well.

2.1.3. Organic solar cells
In Organic Photovoltaic (OPV) devices typically photogenerated excitons are dissociated by the photovoltaic energy gap, and then

the charges are separated by the built-in potential created the electrodes. In order to do so, the electrode layers need to be well-
adjusted so as to make sharp interfaces at the p-n junction. The processing allows similar critical issues as required for the deposition
of (O)LEDS, and thus will be discussed there. Most recently, ESD has been used to fabricate OPV layers of P3HT:PCBM active layers
with bulk heterojunction (Fukuda et al., 2011, 2012; Kim et al., 2010a, 2010b; Kim, Kim, Lee, & Lee, 2012a; Kim et al., 2012b; Park
et al., 2011) and multi-layer structures (Ali et al., 2012), but also as to deposit poly(3,4-ethylenedioxythiophene): polystyrene sul-
fonate (PEDOT:PSS) as hole transport layer (Kim et al., 2012a, 2012b) or as an electrode (Kim et al., 2012a, 2012b). An active layer of
P3HT:PC61BM led to a PCE of ~3.00% using acetic acid as additive in ESD, which is comparable to that of the OPV device fabricated
by spin coating (Zhao et al., 2014). A molecular ordered uniform P3HT:PCBM thin film with the high crystallinity deposited by ESD
showed a PCE of 2.0% (Fukuda et al., 2016). Ordered PTB7-Th:PC71 BM polymers with specific sizes were fabricated via ESD to form
thin films. By optimizing solvent evaporation and thickness of the layers, a power conversion efficiency (PCE) of 8.6% was obtained.
Very recently ESD was applied to fabricate a multilayered (three-component) device structure (Fukuda, Toda, Takahira, Kuzuhara, &
Yoshimoto, 2017).

Fig. 8. Top-view and cross-section SEM images of CZTSSe after selenium treatment for Sample I (a, c) and Sample II (b, d). Reprinted with
permission from Altamura et al., 2015.

E.M. Kelder et al. Journal of Aerosol Science 125 (2018) 119–147

124



2.2. Photoelectrochemical cells

Photoelectrochemical cells (PECs) are solar cells that provide electricity to typically produce hydrogen via electrolysis of water,
i.e. water splitting (Fig. 10).

The active electrode is often a modified TiO2 layer. Dye-sensitized solar cells prepared by ESD immersed in aqueous solution
(Fujimoto, Kado, Takashima, Kaneto, & Hayase, 2006), with a I3- electrolyte, showed higher Jsc than those prepared by conventional
coating methods, which was assigned to the presence of a better ionic path in the TiO2, due to the specifically formed morphology.
The results are shown in Fig. 11.

ESD was also used to deposit CdSe QDs onto nanostructured TiO2 films to form a photovoltaic cell electrode (Li, Jiao, Xie, & Li,
2015). Compared to conventional processes like dip coating with linker-containing molecules or chemical bath deposition, ESD has
shown uniform deposition of QDs as mentioned earlier, and here it is used to cover a nanostructured TiO2 surface without linker-
molecules. ESD allows preserving the physical and the optical properties of the QDs. To optimise the final energy conversion effi-
ciency for the photolysis of water, various different concentrations and deposition times were employed. The as-deposited films were
annealed later on, to ensure binding between the QDs and the TiO2 surface. Despite that a small number of deposited QDs limit the
number of absorbed photons, multiple layers of QDs cause more defects and trap sites enhancing electron-hole recombination as-
cribed to inhibition of the transportation of photo-generated electrons into TiO2.

Beside the standard TiO2 material, Nanostructured spinel zinc ferrite (ZnFe2O4) thin films were prepared on transparent con-
ductive substrates via ESD at 400 °C, followed by annealing (Wang et al., 2017). The ZnFe2O4-film thickness played an important role
in the PEC performance, where porous thin films with an enlarged interfacial area between ZnFe2O4 and the electrolyte were
obtained, which led to an increased discharge potential, due to an increased number of active sites giving an enhanced photocurrent
of 53 μA/cm2 at 1.23 V versus RHE.

Fig. 9. Scheme of the spray deposition process of perovskite films with (2 kV) and without electric field, together with the corresponding film
surface morphologies. Reprinted with permission from Chandrasekhar et al., 2016.

Fig. 10. Photo-electrochemical cell.

E.M. Kelder et al. Journal of Aerosol Science 125 (2018) 119–147

125



3. ESD for energy storage (batteries and capacitors)

3.1. Lithium ion batteries (LIBs)

Today, Li-ion batteries are the major rechargeable electricity carriers for consumer electronics and also electric vehicles, and
might be in the near and/or long future. In Fig. 12 a scheme of the working principles of a Li-ion battery is presented.

Both electrode materials, positive and negative, can be and were synthesized using ESD. For the positive electrode layered
structures (LiMO2, with M any combination of transition metal ions), spinels (LiM2O4, with M any combination of transition metal
ions), and olivines (LiMPO4, with M typically a combination of iron and cobalt ions) were identified. For the negative electrode all
sorts of transition metal oxides are being tested as well as many metals and alloys. Both have been made via ESD, either via
composites with spraying the actual powder, or via a chemical deposition reaction during spraying. The performances of the ma-
terials are typically measured on flat coatings, so as to reduce the influence of the interface between the electrode and electrolyte, as
well as to accurately measure the surface area of the interface. Here an overview is given of several materials with respect to surface
morphology and composition for positive electrodes. With respect to negative electrode materials synthesized by the ESD, an
thorough review was written by Li and Wang (2013). The attention there was focused on three different anode categories: (1)
insertion anodes, such as graphite, Li4Ti5O12 and TiO2, etc.; (2) alloying–de-alloying anodes, such as Sn and SnO2, etc.; and (3)
conversion reaction anodes, such as NiO, Fe2O3, Co3O4, CoO, and Cu2O. Hence, this part will not be further discussed here.

ESD was employed to fabricate various morphologies of cathode materials for Li-ion batteries as reported by Chen et al. (1996a,
b). Since then, many other cathode materials having several different morphologies (Sun et al., 2013) have been formed and de-
scribed in the literature. It is stressed that in order to characterize various materials properties, flat surfaces are often used. These
properties comprise structural information (XRD, IR-RAMAN, etc) and electrochemical information (e.g. diffusion coefficients, ionic
and electronic conductivities) (Nishizawa et al., 1998; Dokko et al., 2004; Mohamedi et al., 2002a, b, c; Chung et al., 2004; Shu et al.,
2003; Chung et al., 2005).

Since charge transfer of either electrons or ions is an important issues for electrodes in devices, the morphology of it, is of utmost
importance, because it will reflect the exchange area of these charge carriers. Here a short overview of the electrode performance will
be given on the basis of flat, rough (porous), and reticular structures, also with respect to their composition. Since there are so many
different process parameters to vary in order to obtain a certain layer, it is too difficult to make a well-justified comparison, also in the
light of the length of the paper. Nevertheless, several results are given so as to show the actual importance of the various

Fig. 11. (a) I-V curves for dye-sensitized solar cells fabricated with conventional coating (COAT) and ESD. EL-AN and EL-IL stands for acetonitrile
(AN) and ionic liquid (IL) electrolyte (EL), respectively. All film thicknesses were 9 µm. (b) Limiting current measurement for cells with a TiO2 layer
prepared by conventional coating and ESD. Redrawn from Fujimoto et al. (2006).

Fig. 12. Li-ion battery principles with a LiMn2O4 cathode and carbon anode as an example.
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morphologies on cathode performance.
For the layered structures LiMO2, LiCoO2 has been taken as a positive electrode material example (Koike & Tatsumi, 2007; Yoon

et al., 2001). It is clear from Fig. 13 and Fig. 14 that the capacity of the most porous structure is significantly higher than the non-
porous structure. The power performance of those layers are also found to be higher than the non-reticular ones. This is a phe-
nomenon that has been observed for most of the reticular structures compared to the flat or other rough and porous structures.

In order to further improve the performance of the films, the materials were coated (Hu et al., 2008) or modified with an
indifferent additive such as nano-particles of silica (Fig. 15) (Yu, Shui, Jin, & Chen, 2006). With the latter, an improved performance
is clearly observed.

Obviously, the layered structures can be further improved by stabilising the structures by replacing certain amounts of cobalt by
other transition metal ions or aluminium. For example, Li(Ni,Co,Ti)O2 compounds was prepared by ESD with a combinatorial method
(Fig. 16) (Fujimoto, Ikezawa, & Ito, 2011; Fujimoto, Onoda, & Ito, 2007a, 2007b).

The charge–discharge characteristics of the Li(Ni,Co,Ti)O2 powder were recorded in a voltage range from 4.2 to 2.8 V at 1 C and
those were found to retain their capacity better than pure LiCoO2 at the same C-rate (Fig. 17).(Fujimoto et al., 2011)

Despite the great performance of the reticular structures for a 3D solid state battery a dense flat coating on a high aspect ratio
surface is important for fast electronic charge transfer, which may be problematic for the reticular structures as the contact area with
the current collector is minimal. The advantage of ESD in that respect is that the it is possible to coat surfaces with aspect ratios of 10,
as shown in Fig. 18 with LiNi0.5Mn1.5O4 electrode material. (Lafont, Anastasopol, Garcia-Tamayo, & Kelder, 2012). It is stressed that
in Fig. 18d, the cross-section was taken along the red line of Fig. 18c.

The LiFePO4 olivine cathode materials are of interest today, but not much has been reported on ESD for these materials, most
likely because the production of the material itself usually occurs under certain strict atmospheres, which makes it difficult to deposit
these layers in one step. Nevertheless, its counterpart, LiCoPO4 (Yu et al., 2006) was fabricated where the impurities Li3PO4 and
Li3PO4 work as protective coating and electronic enhancer, respectively (Fig. 19) (Shui, Yu, Yang, & Chen, 2006).

Another advantage of ESD is to form composite layers. Several papers reported on improving the electrode performance by
depositing composite electrodes either anodes or cathodes (García-Tamayo et al., 2011; Cho, Hwang, Kim, Bae, & Yoon, 2016; Wu
et al., 2015a; Wu et al., 2015b; Dhanabalan, Li, Agrawal, Chen, & Wang, 2013; Damien, Anjusree, Sreekumaran Nair, & Shaijumon,
2016). These improvements are then explained by an increase in the electronic and ionic migration processes induced by the

Fig. 13. (a) SEM of LiCoO2 film annealed at 600 C and (b) Cycle performance. Reprinted with permission from Yoon et al., 2001.

Fig. 14. (a) SEM images of surface morphologies of LiCoO2 films prepared by ESD after heat treated at 650 °C for 2 h, (b) cycle performance and (c)
rate performance. Reprinted with permission from Koike & Tatsumi (2007).
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Fig. 15. Left panel: scanning electron microscopy pictures of a LiCoO2 thin film (a and c) and a LiCoO2–15wt% SiO2 thin film (b and d). (69). Right
panel: capacity and cycle performance as a function of silica content. Reprinted with permission from Yu et al. (2006).

Fig. 16. Scheme of the so-called M-ist Combi system based on an electrostatic atomization method. Reprinted with permission from Fujimoto et al.
(2007a, 2007b).
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interfaces created between the electrode material and the additive (Fig. 20).

3.2. Beyond Li-ion batteries

3.2.1. Na-ion batteries
The high energy density of batteries and the high power density of supercapacitors are combined in a self-supported inter-

penetrating 3D tricontinuous Na3V2(PO4)3-rGO-CNT cathode made via ESD, where the cathode is directly deposited on the current
collectors without any conductive additives or binders (Zhu, Kopold, van Aken, Maier, & Yu, 2016). The Na3V2(PO4)3-rGO-CNT
material used as an anode as well as a cathode shows outstanding rate capability and long cycling stability (Fig. 21). At a current
density of 100 C, the sodium cathode can still deliver a specific capacity of 82 mAh/g (~70% theoretical capacity), which is almost as
high as observed for supercapacitors but with a much higher energy density. It also shows an outstanding cycling stability, as at a
current density of 10 C, the capacity still maintains 96% of its initial capacity, even after 2000 cycles.

A freestanding alluaudite Na2+2xFe2-x(SO4)3 @porous carbon-nanofiber (PCNF) hybrid film is fabricated by combining electro-
spinning and ESD (Yu et al., 2016). The obtained highly porous graphitic-like carbon-nanofibers intimitaly enveloppes the sulfate
nanoparticles, resulting in a hybrid sulfate@PCNF network. This conductive network shows a very flexible and stable architecture,
where the freestanding film demonstrates fast electron/ion transport and superior cycling stability, capable of high rate ultralong-

Fig. 17. Charge–discharge curves of LiNi0.4Co0.6-xTixO2 electrodes: (a) x= 0, (b) x=0.1 and (c) x= 0.2. Reprinted with permission from Fujimoto
et al. (2011).

Fig. 18. SEM images of Si wafer showing 3D architecture (a) before and (b, c) after film deposition. (d) Cross section along the red dotted line of c)
showing the film thickness. Reprinted with permission from Lafont et al. (2012).
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term cycling. It retains more than 95% of its initial capacity even after 500 cycles at rates up to 40 C (Fig. 22).

3.2.2. Li-sulfur batteries
Ultrathin multifunctional coatings (~100 nm) on cathodes for a Li-S batteries which will effectively block polysulfide shuttling

has been fabricated by ESD (Niu et al., 2016). This layer warrents fast ion diffusion without adding too much to the volume or weight,
and prevents sufficient blocking of polysulfides to arrive at the counter electrode so as to avoids shorts (Fig. 23).

Black Pearl 2000 was uniformly dispersed in mixtures of water and ethanol (1:1 (V/V)) via sonication, to which PEDOT:PSS was
added (Niu et al., 2016). This suspension was thus sprayed at 10mL/h with a nozzle (20 gauge size) at 21 kV with a substrate to
nozzle distance of 5 cm for 5min to form a uniform MPBL coating (Fig. 24). The multifunctional polysulfide blocking layer (MPBL)
exhibits a good cycling performance with only 0.042% capacity decay per cycle at 1 C for 1000 cycles and an excellent rate per-
formance with a high capacity of 615mAh/g at 3 C.

Fig. 19. SEM images of ESD syntheszsed Li1.0CoPO4’’ (a) and Li1.8CoPO4 (b) films. The arrows in (b) indicate the uncovered areas. Reprinted with
permission from Shui et al. (2006).

Fig. 20. SEM (a) and TEM, (b) images of nanostructure ZnO/rGO composite films; HRTEM of rGO, (c) from light area and ZnO, (d) from dark area;
and XRD pattern, (e) of ZnO/rGO deposited on copper substrates by ESD. Reprinted with permission from Wu et al. (2015b).
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3.3. Capacitors

Electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, gained enormous interest as potential power
source for the future smart energy era, due to their high power density, long life cycle, and high rate capacity (Largeot et al., 2008;
Pognon, Brousse, Demarconnay, & Belanger, 2011). In order to achieve that a higher energy density without influencing other
electrochemical properties is required. Among the electrode materials, metal oxides provide higher energy densities than conven-
tional carbon materials and showed improved electrochemical stability over polymer materials. This carbon based material for micro-
capacitors, however, showed interesting performance made via ESD. On the other hand, the low electrical conductivity of oxides has
significantly influenced their performance (Lee et al., 2005a; Lee, Cuomo, Cho, & Keusseyan, 2005b; Wang, Casalongue, Liang, & Dai,
2010; Wu, Li, & Lin, 2011). A combination of both, such as graphene metal oxide composites has shown great potential for appli-
cation in ECs due to their improved electrical conductivity, large specific surface area and excellent electrochemical stability (Mao
et al., 2012; Qu et al., 2012; Zangmeister, 2010; Zhang et al., 2010). The challenge is thus to form these graphene-based materials as
restacking during the preparation process is an issue: the strong π-π interactions in graphene oxide (GO) usually results in irreversible

Fig. 21. a) Scheme of a symmetric full sodium battery using interpenetrating 3D tricontinuous NVP:rGO-CNT as both positive and negative elec-
trodes. b) Galvanostatic charging–discharging profiles for the first three cycles at 10 C. c) Cycling performance and Coulombic efficiency for 100
cycles at 10 C. d) Discharge energy density and energy efficiency at 10 C versus cycle numbers. Reprinted with permission from Zhu et al. (2016).

Fig. 22. (a) Galvanostatic charge/discharge curves of the hybrid nanofibers at various rates: 0.03 C, 3 C, 10 C and 30 C. (b) Comparison of discharge
capacities at different current densities for the hybrid nanofibers with various carbon contents. (c) High-rate and long-term cycling properties of the
hybrid nanofiber. Reprinted with permission from Yu et al. (2016).
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Fig. 23. Scheme of the electrode configurations for (a) a conventional uncoated cathode and (b) a MPBL-coated cathode for Li-S battery. (c) Scheme
of the procedure for fabricating a MPBL-coated electrode. Reprinted with permission from Niu et al. (2016).

Fig. 24. (a, b) SEM images of uncoated hybrid nitrogen-doped porous carbon sheet (NPCS-S) cathode. (c, d) Surface and cross-section SEM images of
the MPBL-coated NPCS-S cathode. Reprinted with permission from Niu et al. (2016).
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precipitated agglomerates forming its reduced form (rGO). The agglomeration usually decreases the active surface area and thus
prevents the access of electrolyte ions into graphene sheets, deteriorating the final performance (Mao et al., 2012; Zhang et al., 2010).
This problem might be circumvented by applying ESD. In the following part, carbon-based electrode materials, manganese oxide,
ruthenium oxide, titanium-vanadium oxides, nickel oxide, and vanadium oxide composite electrodes made via ESD are summarised.

3.3.1. Carbon electrode materials for capacitors
Binder-free reduced graphene oxide (rGO)/carbon nanotube (CNT) hybrid thin film electrode were made using one-step ESD

(Youn et al., 2014). Here the carbon nanotube was used as a nano-spacer to improve the electrochemical properties of the rGO/CNT
hybrid thin film electrode, by sandwiching the CNT between the 2D rGO layers, so as to prevent restacking of the rGO sheets
(Beidaghi & Wang, 2012). This was achieved by using a uniformly dispersed colloidal suspension of GO and CNTs in a mixture of
water and ethanol by ultra-sonication. This dispersion then was used for the formation of the electrode by ESD with a suspension flow
rate of 8–15mL/h on a Pt-coated Si-wafers at 10–15 kV and 300 °C. Thus, sandwiching the CNT (Fig. 25) in the hybrid electrode
increases the electrochemically effective surface area and also prevents agglomeration (restacking) of the rGO sheets. Cyclic vol-
tammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy, showed that the rGO/CNT hybrid
electrode had better electrochemical performance than a plain rGO electrode in terms of specific capacitances and rate capabilities.
The thin film electrode has a higher reversible specific capacitance of 187 F/g at 0.5 A/g and performed better having a rate cap-
ability and even showing 73% of the specific capacitance at 16 A/g (vs. 0.5 A/g) (see Fig. 26).

In another study, thin-film electrodes of graphene nano-platelets (GNPs) were fabricated with ESD. This combination of binder-
free ESD using an open pore structure of graphene films results in an excellent power performance of the electrodes, as shown by
cyclic voltammetry which showed almost rectangular curves even at a very high scan rate (Fig. 27). (Beidaghi, Wang, Gu, & Wang,
2012) A specific power and energy of about 75.46 kW/kg and 2.93Wh/kg, respectively, at a 5 V/s scan rate was obtained for 1 µm
thick electrodes, and about 53% of the initial specific capacitance of electrodes at low scan rates was retained at a scan rate of 20 V/s.
The thickness of the thin-film electrodes had some influence on the rate capability, but even an electrode with an thickness of 6 µm
retained about 30% if its initial capacitance at a very scan rate of 20 V/s. Hence, the GNP electrodes made with ESD proved to be
promising as thin-films for energy storage.

3.3.2. Carbon nanotube (CNT) film electrodes
CNT film electrodes were fabricated by ESD from a CNT suspension, where acid treated CNTs were dispersed in an aqueous

solvent through sonication. This suspension then was sprayed onto a metallic substrate (Kim, Nam, Ma, & Kim, 2006). The thin film
electrodes showed well-entangled and interconnected porous structures which adhere well to the metallic substrate (Fig. 28). A
specific capacitance of 108 F/g was obtained for the electrodes in 1M H2SO4 at high rate capability (Fig. 28).

3.3.3. MnxOy electrode materials
The focus here is on nanostructured manganese oxide layers without carbon additives deposited on stainless steel substrates. The

electrochemistry of the layers is mainly affected by the MnO2 morphology, resulting from the spraying conditions. The preferred
stoichiometry of the manganese oxide is MnO2, with a valence of 4+. A thermal treatment alone on the layers was not sufficient, but
further oxidizing to MnO2 by electrochemical means, revealed a significant improvement of the capacitance properties (Fig. 29a).
This was explained by a change in morphology upon electrochemically annealing, leading to fine MnO2 nanorods. The actual redox
reactions are then:

MnO2 + xNa+ + yH+ + (x+y)e- ↔ MnOONaxHy

The specific capacitance measured with cyclic voltammetry decreased of the non-electrochemically treated samples runs from 330

Fig. 25. SEM images of the rGO/CTN hybrid thin film; (a) cross-section view (Inset: basal plane view) and those of the rGO thin film electrode; (b)
cross-section view (Inset: basal plane view). Reprinted with permission from Youn et al. (2014).
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down to 150 F/g with increasing loading of the active mass, i.e. 18–116 μg/cm2, respectively (Marsalek et al., 2015). The electro-
chemically oxidized layers exhibited specific capacitances over 150 F/g (Fig. 29), which are comparable to the results published by
other research groups, but here made with less expensive materials.

In another study forming MnO2 via ESD (Dai, Wan, Zhao, & Xie, 2006), the hydrated MnO2 film deposited at 230 °C from a KMnO4

precursor solution is porous and cracked according to the SEM results. A specific capacitance of a thick deposited film was 149 F/g
recorded at a scan rate of 500mVs and 200 F/g at a scan rate of 5mV/s, showing good cyclic performance. The initial specific
capacitance was 163 F/g and showed a 103% of the initial specific capacitance, which could be retained after 10,000 cycles at a scan
rate of 50mV/s. Here too, the specific capacitance decreased from 267 to 135 F/g by increasing the load of active mass from 0.06 to
0.2mg/cm2.

Fig. 26. Cyclic voltammograms of (a) the rGO thin film electrode and (b) the rGO/CNT hybrid electrode at various scan rates (5–200mV/ s). (c)The
rate capabilities of the rGO thin film and rGO/CNT hybrid thin film electrode. (d) Specific capacitance and high rate capability of the rGO/CNT
hybrid electrodes as a function of CNT content, pure rGO and pure CNT electrodes. Reprinted with permission from Youn et al. (2014).

Fig. 27. Cyclic voltammograms recorded in 1M Na2SO4 (vs. Ag/AgCl) of GNP electrodes at scan rates ranging from 0.1 to 20 V/s of a 1-µm-thick
electrode (a, b). Cyclic stability tested at a 0.1-V/s CV scan rate (c). Reprinted with permission from Beidaghi et al. (2012).
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3.3.4. VO2/TiO2 electrode materials
Binder-free electrodes of VO2/TiO2 nano-sponges, having easily tailored nano-architectures and composition, were synthesized by

ESD (Hu et al., 2015). To form the metal oxide nano-architectures as layers, an ethanol solution of NH4VO3 and oxalic acid was made
at 70 °C, and another ethanol solution of titanium(IV)isopropoxide with acetic acid. Combinations of both solutions were prepared
referred to as VT1 (Ti/V=4), VT2 (Ti/V=2), and VT3 (Ti/V=1). To further dilute the solution, 40mL 1, 2-propylene was added.
Aluminium foils, nickel foams, and glass slides were used as substrates. ESD was done at a substrate temperature kept at 260 °C, with
a distance between substrate and nozzle of 3 cm. Residual carbonaceous substances were oxidized by annealing at 350 °C in air for
15min followed by an thermal treatment at 500 °C under 5% NH3/Ar atmosphere for 90min. The obtained VO2/TiO2 nano-sponges
(Fig. 30) showed an interconnected pore network and thereby a synergistic effect of the high capacity of VO2 and the stability of TiO2.
The electrode exhibits a capacity of 86.2 mF/cm2 (~548 F/g) and a cycleability with 84.3% retention after 1000 cycles (Fig. 30).

3.3.5. RuO2 electrode materials
Ruthenium oxide thin films were fabricated by ESD with a precursor solution of RuCl3• xH2O in a mixture of 80 vol% butyl

carbitol and 20 vol% ethanol at a substrate temperature of 200 °C (Fig. 31) (Kim & Kim, 2004). The electrochemical protonation may
be the most responsible process for the redox reaction of anhydrous ruthenium oxide thin film, according to:

RuOx(OH)y + wH+ + we- ↔ RuOx-w(OH)y+w

The specific capacitance at a potential scan rate of 20mV/s was 500 F/g and it decreased slightly with increasing potential scan
rate up to 200mV/s, also showing an excellent rate capability (Fig. 31).

Similar results were obtained by (Kim & Kim, 2001) using a one-step process ESD process to easily control the surface mor-
phology. The as-prepared hydrated RuO2 (RuO2•xH2O) thin films were amorphous, but become crystalline after annealing at tem-
peratures> 200 °C. RuO2•xH2O thin film electrode annealed at 200 °C showed a cyclic voltammogram indicative of a typical ca-
pacitive behaviour in 0.5M H2SO4 electrolyte at a scan rate of 20mV/s with an average specific capacitance of 650 F/g. The average
specific capacitance was 640 F/g at 2mV/s and 600 F/g at 50mV/s, respectively, indicating that the average specific capacitance

Fig. 28. Left panel: SEM images of (a) plane and (b) cross section views of CNT film electrode. Right panel: (a) Cyclic voltammograms and (b)
specific capacitance of a CNT film electrode as a function of the potential scan rate. Reprinted with permission from Kim et al. (2006).
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Fig. 29. (a) Voltammograms for a MnxOy layer (0.2mg/cm2) deposited for 10min (b) 300th cycle voltammograms for layers deposited for different
periods. (c) 300th and 1100th cycle voltammogram for a layer deposited for 2.5 h. (d) Evolution of specific capacitance of the layer deposited for
2.5 h during cycling. Reprinted with permission from Marsalek, Chmelar, Pocedic, and Kosek (2015).

Fig. 30. Left panel: SEM images of VT films on Al-foil. (a, b) VT1, (c,d) VT2, and (e, f) VT3. The insets show films on Ni-foam. Right panel:
Electrochemical performance of the VT2 film. CV curves for (a) the VT2 film, the VT2 powder and the Ni-foam (scan rate of 100mV/s), and (b) the
VT2 film at scan rates of 10, 20, 100, 200, 500, and 1000mV/s. (c) Galvanoastatic charge-discharge curves of the VT2 film at current densities of 3,
4, 5, 8, 10, 15, and 20 A/g. (d) Cycling performance at a current density of 10 A/g over 1000 cycles - the inset shows the specific capacitance as a
function of the scan rate. Reprinted with permission from Hu et al. (2015).
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decreased only slightly with increasing scan rate (Fig. 32).

3.3.6. NiO@rGO electrode materials
A binder-free NiO@rGO composite supported on nickel foams was fabricated by ESD. A suspension of GO and nickel acetate was

prepared in 1,2-propylene glycol (Zhang et al., 2015). A nickel foam substrate was heated to 250◦C, and the deposition was done with
a flow rate of 3mL/h at 20 kV. Then, the black nickel foam was rinsed several times and dried in air afterwards. The loading mass was
about 0.8 mg/cm2. The NiO nanoparticles were uniformly anchored onto the layered rGO sheets, thereby improving the electro-
lyte–electrode accessibility, allowing high electrochemical utilization of the NiO by maintaining open nano-channels of the com-
posites (Fig. 33). This thus led to a high specific capacitance of 881 F/g at a current density of 0.5 A/g and about 75.7% of the
capacitance was retained by increasing the current density to 50 A/g. Even after cycling for 3000 cycles at 20 A/g, 95% of the initial
capacitance was delivered Fig. 33).

Fig. 31. SEM images of RuO2 thin film prepared at 200 °C: (a) Top view, and (b) cross-section view. Reprinted with permission from Kim & Kim,
(2004).

Fig. 32. Left panel: SEMs of ruthenium oxide thin film electrode for (a) as-prepared at 200 °C and (b) Right panel: CVs of ruthenium oxide thin film
electrode annealed at 200 °C in 0.5M H2SO4 at a scan rate of (a) 2mV/s, (b) 20mV/s, (c) 50mV/s, (d) specific capacitance of ruthenium oxide thin
film electrode at different scan rates. Reprinted with permission from Kim & Kim, (2001).
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3.3.7. V2O5 electrode materials
In another study (Lee et al., 2017), polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh

capacitance electrode sheets were used as an unusual electrode architecture. Here, vanadium pentoxide (V2O5) is applied as an
electrode material to proof its feasibility. V2O5 electrode sheets are thus fabricated by a one-pot method via electrospraying (for V2O5

precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination at 250 and 300 °C, so as to arrive at amorphous
(V-250) or crystalline (V-300) V2O5 (Fig. 34). The heteromat V2O5 electrode sheets then offer 3D bicontinuous electron conduction
pathways, facilitating the necessary redox reaction kinetics of V2O5. The electrochemical reaction in V2O5 electrodes can be expressed
as follows:

V2O5 + xK+ + xe- ↔ KxV2O5

wherein x is the mole fraction of reacted K+ ions.
Electrochemical data are collected in Fig. 35, where the caption explains the actual results. A substantially increase in the

(electrode sheet-based) specific gravimetric electrode capacitances was obtained e.g. 134 F/gelectrode compared to 29 F/gelectrode for a
reference V2O5 electrode, recorded at scan rate of 1mV/s. Hence, the V2O5 electrode gave an significant increase of the specific
energy/power densities as shown in the Ragone plot.

4. ESD for energy conversion devices ((O)LEDSs and quantum dots)

The new generation of light sources light emitting diodes (LEDs) and organic light-emitting diodes (OLEDs), including polymer
light-emitting diodes (PLEDs) attracted considerable attention as used in solid lighting devices. (O)LEDs are more efficient than most
traditional light sources due to their long lifetime, high reliability, and high efficiency, making these interesting in many applications.
Besides, they seem to be environmental friendly, due to use of less toxic materials. Recently, the research has focused on new methods
of fabricating flexible, low-cost electronic components and devices, other than the (O)LEDs, e.g. flexible displays, organics photo-
voltaics (OPV), organic thin film transistors (OTFT), etc. Obviously, these products require mass and continuous production, such as
the roll-to-roll (R2R) printing or coating. Among the employed techniques, non-contact coating methods, such as spray coating via,
ESD and aerosol jet etc. are one of the most widely used. Only very recently, continuous and large area coating becomes available for
future mass production (Kim et al., 2010a, 2010b). It remains however, important to realise that the surface roughness issue needs to
be soughed out in order to arrive at a much more homogeneity in the layer thickness (Hwang, Bae, & Kim, 2014).

4.1. ESD for LEDs

Today's LEDs have efficiencies around 20% where the remaining energy is converted into heat at the junctions of the LED modules
(Kuo, Auner, & Wu, 1994; Lee et al., 2005b; Shanmugan, Mutharasu, & Haslan, 2014). Unfortunately then, insufficient heat dis-
sipation in LEDs, reduces the emission efficiency and also shortens a LED lifetime. Hence, thermal management is an important
strategy to overcome these shortcomings. One of the solution is to form an isolation layer with very low thermal conductivity, which
then gives a junction between the LED and metal Printed Circuit Board (PCB), providing a large thermal resistance, so the generated
heat is rapidly transferred to a heat sink. Various ceramic interlayers showed improvements for the thermal conductivity of the base
substrates and thus the performance of the device (Figueroa, Salas, & Oseguera, 2005; Yang et al., 2014; Yin, Tseng, & Zhao, 2013;
Zheng, Ren, Li, & Wang, 2012). One of the solutions is an aluminium nitride (AlN) coating used for heat dissipation in the packaging

Fig. 33. Left panel: (a-b) SEM images, (c) cross-section SEM image, scale bar equals 600 nm, (d-e) TEM images and SAED pattern (inset) of the NiO@
rGO composites. Right panel: (a) Cyclic voltammograms (b) Galvanostatic discharge curves of NiO@rGO composite films (c) Specific capacitances
calculated from the discharge curves, (d) the galvanostatic charge-discharge curves at 20 A/g. Reprinted with permission from Zhang et al. (2015).
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of LEDs, since this material has a high optical transparency and is chemically and thermally stable (Figueroa et al., 2005; Li, Ren, &
Sun, 2007; Rada & Triplett, 2010; Rada, Triplett, Graham, & Kovaleski, 2008; Shen, Zhu, & Wang, 2015; Shinde & Goela, 2006; Zheng
et al., 2012; Zuo, North, & Wert, 2001). However, as in many other new devices, cost reduction is an important requirement.
Electrostatically sprayed AlN coatings, as a heat sink on Cu and Al substrates, provide the requirements for the electronics industry, as
a highly conductive material with reasonable production costs (Jean, Jiang, Xu, & Chien, 2016). Applying these in a 1.2W LED at
700mA, the effect of the thermal resistance (Rja) and the thermal performance such as cooling are shown in Fig. 36. The figure shows
the temperature distribution during operation for 60min and after switching off the current. It was further observed that Rja for the
Cu is greater than that for the Al substrate, i.e. 16.2 °C/w and 15.1 oC/w, respectively. These results demonstrate that the temperature
of the LED packages is significantly reduced if there is an AlN-coated Al substrate at a current of 700mA, fabricated via ESD (Fig. 36).

Fig. 34. Morphological characterization of V2O5 layers as defined in the text: (a-c) V-250 and (d-f) V-300 electrode sheets. (a,d) SEM surface images
showing homogeneous dispersion of V2O5, MWNTs and PAN nanofibers – the insets are low-magnification photos. (b,e) SEM cros-section images.
(c,f) An adhesion test using commercial 3M scotch® tape. Reprinted with permission from Lee et al. (2017)
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4.2. ESD for OLEDs

(O)LEDs have attracted enormous interest, because they are light and flexible compared to more state-of-the-art inorganic
electroluminescence (EL) materials used in the LEDs. Typically, there are two fabrication methods of thin-film OLEDs, e.g. vacuum
deposition of low-molecular-weight organics, and casting polymer materials from solution, where the low-molecular-weight organic
ELs are made via vacuum deposition, and the polymer-type OLEDs are then manufactured via casting. It however needs to mention
that polymer materials are usually difficult to evaporate, making fabrication of a multi-layered structure complicated when using
low-molecular-weight organics. Also, the solvents used for layer-to-layer deposition affects the interfaces by mutual dissolution.
Therefore, ESD is an interesting alternative with great potential, where even patterning can be done. This patterning was carried out
with a dichlorobenzene (DCB) solvent to form an Emissive layer (EML)) on top of an ITO glass (Lee, Nguyen, Gim, & Ko, 2015). Here,
the distance between the quartz nozzle with a 211 µm diameter and the substrate was 50–100 µm. The line patterning width was
controlled by the distance between the nozzle and the substrate, under the cone-jet mode as shown in Fig. 37. Hence, the results
proved that inkjet printing via ESD is a versatile method for optimal patterning to draw very narrow lines, with a jetting fluid
diameter of only 15 µm, even after drying.

Fig. 35. Cyclic voltammetry curves showing typical Faradaic pseudocapacitive behaviour, measured at a scan rate of 1mV/s (a), galvanostatic
charge/discharge profiles measured at 1.0 A/cm2 (b), comparison in cycling performance between the different electrodes measured at 2.0 A/g (c),
comparison in the (electrode sheet-based) specific gravimetric capacitance (F/g) between the different electrodes vs scan rate (d), comparison in the
(electrode based) specific volumetric capacitance (F/cc) between the different electrodes vs scan rate (e), and a Ragone plot, with the cell weight
taken as the electrode sheet weight only. Reprinted with permission from Lee et al. (2017).

Fig. 36. Temperature profiles of an AlN coated Cu (a) and an Al (b) substrate, measured during applying a 700mA current and after switching it off
after 60mins. A comparison of (Rja) for a 1.2W LED on AlN-coated Cu and Al substrates (c). Reprinted with permission from Jean et al., 2016.
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ESD was also used to deposit an organic layer for polymer organic light-emitting diode devices (Hwang, Xin, Cho, Cho, & Chae,
2012). The electrospray was used to produce nanometer-scale thin films via micro-sized droplets. PLED were thus made using a
blended solution of either poly(N-vinyl carbazole) (PVK), 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,4-oxadiazole (PBD),

Fig. 37. Results of the patterning with dichlorobenzene solvent, an outside nozzle diameter of 211 µm, and a Jet thickness of 15 µm; the ejection
from the nozzle (a) and the patterned line (b). Reprinted with permission from Lee et al., 2015.

Table 2
Ratio of the PLED ink – data taken from Hwang et al. (2012).

Ink 1a Ink 2a

Poly(N-vinyl carbazole (PVK) 61 41.5
2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) 24 41.5
N,N’diphenyl-N,N’-bis(3-methylphenyl)-[1,1-biphenyl]-4,4’-diamine (TPD) 9 14.8
tris(2-(4-tolyl)phenylpyridine)iridium (Ir(mppy)3) 6 4.2

The difference between Ink1 and 2 is the ratio of hole and electron transport materials.
a Each value refers to weight percentage of material in solution.

Table 3
Summary of device performances – data taken from Hwang et al. (2012).

Process Ink Solvent EML (nm) Cd/A (max) Lm/W (max)

Spin coating Ink1 CB 78 24 10.0
ESD Ink1 CB/DCB (5:3) 100 15 6.0
ESD Ink1 CB/DCB (5:3) 120 18 6.6
ESD Ink2 CB/DCB (5:3) 70 18 7.5
ESD Ink2 CB/DCB (5:3) 100 24 9.2
ESD Ink2 CB/DCB (1:1) 103 23 8.6

EML: emissive layer; CB: chlorobenzene; DCB: dichlorobenzene.

Fig. 38. PVK film thickness and roughness as a function of deposition time. Reprinted with permission from Ref. Hwang et al. (2012).
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N,N’diphenyl-N,N’-Bis(3-methylphenyl)-[1,1-biphenyl]-4,4’-diamine (TPD), and tris(2-(4-tolyl) phenylpyridine) iridium (Ir(mppy)3)
dissolved in chlorobenzene (CB), DCB, or a mixture of CB and 1,2-DCB. Two inks were applied as shown in Table 2 and Table 3.

Fig. 38 shows that a 70–150 nm thick light-emitting organic layers was formed with about 1 nm surface roughness. The photo-
luminescence (PL) at 407 nm was observed using electrosprayed poly(N-vinyl carbazole) films, whereas a peak at 410 nm was ob-
served with the spin-coated ones. Similar difference in peak position was observed between aromatic and nonaromatic solvents in the
spin-coating process.

PLED devices were manufactured with a ratio of PVK/PBD/TPD/Ir(mppy)= 61:24:9:6 (ink 1) for both the spin-coating and
electrospray processes. With respect to the solvents, CB works best for the spin-coating process and DCB for the electrospray process.
In Fig. 39, the current-voltage characteristics of the PVK film using different solvents and processing methods is shown. Samples with
similar thickness, fabricated with aromatic solvents (mixtures of chlorobenzene, CB and dichlorobenzene, DCB) showed a higher

Fig. 39. Device performance made by spin-coating and ESD. The thicknesses of the EMLs are given in the insets. Reprinted with permission from
Hwang et al. (2012).

Fig. 40. Left panel: (a) Target multi-layered OLED structure and (b) energy diagram. Middle panel: Micrographs of MEH-PPV film surface formed by
ESD. The ratios of MEH-PPV in o-DCB at 0.6 wt% to acetone were (a) 2:1, (b) 1:2, and (c) 1:5. The center line in (a) and (b) are scratches marked for
thickness measurements. Right panel: Micrographs of MEH-PPV surfaces formed by ESD with nozzle inner diameters of 100mm (a) and 30mm (b).
Reprinted with permission from Anzai et al., 2012.
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current density than those fabricated with a nonaromatic solvent (1, 2-dichloroethane, DCE). Also the PVK film made by electrospray
showed a lower current density than that of spin-coated ones. Besides, these results proof that the PVK thin films were affected by the
processing method and the molecular structure of the solvent as shown Fig. 39. Hence, it is possible to fabricate layers by electrospray
with similar properties as with spin-coating by adjusting the solvent, i.e. they showed maximum current efficiency of 24 Cd/A, which
is comparable with that of the spin-coating process.

In another study (Anzai, Watanabe, & Sakamoto, 2012), ESD was applied for manufacturing an overlayer on a thin film made via
spin-coating so as to form a laminate structure. Unfortunately, the ESD process is not suitable for stacking various layers without any
mixing effect (Fig. 40).

In this study, the emitted droplet size was minimized by the use of adding acetone to the solution. Two different polymer
materials were used for the fabrication of the multi-layered structure. The first one was poly[2-methoxy-5-(2ethylhexyloxy)-1,4-
phenylenevinylene] (MEH-PPV) and the second one was poly[2,5-di(hexyloxy)cyanoterephthalylidene] (CN-PPV), but each of the
materials was dissolved in an o-dichlorobenzene (o-DCB) solvent at a 0.6 and 0.4 wt%, respectively. PEDOT:PSS was then used to
equalise and homogenise the indium tin oxide (ITO) glass substrate. The middle panel of Fig. 40 displays optical micrographs of the
MEH-PPV film surface at various ratios of the original solution to acetone, showing the impact of the acetone. The nozzle to substrate
distance was 8 cm, and the spray time was taken 1 h. The spectra in Fig. 41 were obtained from various mixed films of MEH-PPV and
CN-PPV prepared by either successive spin coating or ESD. It turns out that for the ESD deposited films the mixed films of MEH-PPV
and CN-PPV are clear linear combinations in contrast to the spin-coated samples. This obviously made clear that the double-layer
structure is in place.

4.3. Quantum dots

Lumenescent properties can also be achieved by introducing Quantum Dots (QDs) in chalcogenide glass films, where e.g. the QD-
doped glass layer then serves as a compact, on-chip light source for planar photonic devices (Li et al., 2017). ESD in that respect is a

Fig. 41. (a) Fluorescence spectra of MEH-PPV (i), CN-PPV (ii), mixture of MEH-PPV and CN-PPV via spin-coating (iii), and CN-P Quantum DotsPV/
MEH-PPV double layer formed by ESD (iv). (b) Spectra obtained from linear combination of CN-PPV and MEH-PPV (i) and spectra with a ratio of 1:4
and CN-PPV/MEH-PPV double layer (ii). Reprinted with permission from Anzai et al., 2012.

Fig. 42. TEM images of gold NPs doped Ge23Sb7S70 made by ESD. (a) Dispersion of Ge23Sb7S70 droplets; (b) evidence of a ~100 nm diameter droplet
containing two gold NPs; (c) higher magnification showing NP size of nominally 5–10 nm. Reprinted with permission from Li et al., 2017.
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versatile method form these layers as typically, well established methods as spin coating lead to excessive material waste, show little
control on the pattern of the film and has difficulties in scaling-up. Here the concentration of the QDs in the ESD-solvent was chosen
to ensure one or none QD is present per liquid droplet. The transmission electron microscopy images of the films proof QD dispersion
with reduced 10 nm gold NPs and 5 nm QDs aggregations (Fig. 42). This dispersion is attributed to the isolation of an individual QD in
one droplet and the way the solvent has been vaporised during the time of flight. Photoluminescence spectra of the films of chal-
cogenide glass doped with QDs reveals similar emission results as reported by the manufacturer.

Green-red (GR) and blue-red (BR) bilayer stacked quantum dots (QDs) were made via ESD, in a for large-scale, high throughput,
uniform thin film fabrication system without using any annealing process (Yin et al., 2017). The morphology of the thin film is
controlled by varying the flow rate, voltage (3.5–4.5 kV), distance between the substrate and electrode (~4 cm) and the deposition
time (20 s). Here then, appropriate QDs were dispersed in solvents (hexane: octane=4:1) and sprayed onto 1 cm2 quartz collectors, so
as to form a layer by layer stack. Nevertheless, for the mixed samples, equimolar B (or G) and R QDs were suspended in the solvents in
advance., and those were sprayed for 40 s. The photo-behaviour of these QDs was analysed with several techniques and the observed
results are then ascribed to the energy transfer between different visible QDs (heterotransfer), and were estimated as 0.57 ± 0.01
and 0.65 ± 0.02 ns for GR and BR systems, respectively, which agree well with theoretical calculations. It was further shown that
with respect to their geometrical proximity, the mixed QD layers with GR and BR had qualitatively higher heterotransfer efficiencies
of 64% and 81%, compared to stacked QD layers, with efficiencies of 23% and 64%, respectively.

In another study (Ho, Kim, Kim, Cho, & Chae, 2014) it was shown that QDs for LED fabrication using ESD leading to nanoscale
thin QD-layers (25 nm) and smooth surfaces (roughness ˜3.16 nm) has significant benefits including simple and flexible control, low
cost, large-scale processability, and compatibility for multiple-layer-structure devices such as QD-LEDs. These layers were formed by
a mixture of two aliphatic liquids as solvent (hexane: octane=4:1). The ZnO nanoparticles were dispersed in ethanol (Fig. 43). The
QD-LED demonstrated a maximum luminance of 23 000 cd/m2 (see Fig. 43), a maximum current efficiency of ~6.0 cd/A, and a
FWHM of about 35 nm. Hence, ESD proved to a promising process for the fabrication of multiple-layer-structured devices for a direct
and nearly dry patterning for commercial production, as compared to the spin-coating process, where CB and DCB solvents cannot be
used since they dissolve the underlying organic hole transport layers. Hence, it confirms the strength of ESD where these solvent can
be easily employed, with minimal damage of the underlying organic layers.

5. Conclusions

In this review it was shown that electrohydrodynamic atomization (EHDA) or electrospraying stands out in thin film deposition
(ESD) in different areas, such as solar cells, photoelectrochemical cells, rechargeable batteries, capacitors, and (O)LEDs as well as for
the formation of layers for using quantum dots. Since charge transfer of either electrons or ions is an important issue for electrodes in
those devices, the morphology of it, is of utmost importance, because it will reflects the exchange area for these charge carriers.
Obviously, with ESD, several morphologies were achieved to suit the various requirements, so as to mention: flat, rough (porous), and
reticular structures. Furthermore, the method of ESD is flexible as it allows non- or poor volatile precursors to use once dissolved in
solution – provided the solvent is able to be atomised. This then opens up the possibility to form materials with complex compositions
as is often seen in today's devices with improved performance.
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A B S T R A C T   

The minimum and maximum flow rates (Qmin, Qmax) limit the operational window of electrospraying (cone-jet 
mode). Literature does not give a general, experimentally proven, useable formula. We derived with fundamental 
physics and curve fitting a relation between Qmin and Qo 

(
=

εoγ
ρK
)

, for Newtonian liquids with low/moderately 
high viscosities. The formula is corroborated by own experiments and data from literature. With the formula Qmin 
can be obtained by only measuring some properties of the liquid to be sprayed. Qmax, is difficult to address. An 
empirical result and experimental data indicate a ratio of Qmax/Qmin between some tens and some hundreds.   

1. Introduction 

Nowadays Electrohydrodynamic Atomization (EHDA) or Electro-
spraying is a well established technique. Numerous papers on the subject 
have been published including review articles. In one of the review ar-
ticles, written by Ref. [1]; a methodology to produce nano and micro 
particles with EHDA in the so called Cone-Jet mode, via scaling laws as 
developed by Refs. [2,3] is discussed. Appendix 1 gives a short sum-
mary. However, what is not treated in the article is the well-known fact 
that to work in the Cone-Jet mode the applied liquid flowrate (Q) has to 
be equal or above a certain minimum value, Qmin. Besides a Qmin there 
exists also a maximum flow rate, to stay in the Cone-Jet mode. In an 
applied voltage (for a specified electrode configuration) versus Q dia-
gram an operational window for electrospraying in the Cone-Jet mode 
becomes visible (see e.g. Appendix 2). For real production, for design 
purpose, both Qmin and Qmax have to be known. In this article an esti-
mation for Qmin is derived and an indication how to find an approximate 
value for Qmax is given. 

2. An alternative approach to derive Qmin 

The minimum flowrate (Qmin) for a certain liquid is the minimum 
flow rate at which it can be sprayed in the cone-jet mode. It is an 
interesting phenomenon, not only from a fundamental point of view but 

also from a practical one, such as the smallest droplets, which can be 
produced for certain applications. Several authors reported on this 
phenomenon over a rather long period, such as [4] on the propagation 
speed of disturbances on the jet surface in relation to Qmin, and proposed 
relationships for Qmin by Rosell-Llompart and Fernández de la Mora in 
1994 [5] and Gañán-Calvo in 1994 [6]. The experimental results of Chen 
and Pui (1997) [7] did not find a real fit with the proposed relations for 
Qmin of the mentioned authors. In 2014 Scheideler and Chen [8] pub-
lished a paper in where they adapt the Qmin as proposed by 
Rosell-Llompart and Fernández de la Mora for low viscosity liquids, but 
another expression for high viscous liquids. 

By studying the balance between the forces driving and opposing the 
liquid ejection in the cone-jet transition region [9], came up with two 
different Qmin scaling laws. For the viscous limit, when (εr.δμ)− 1≫1, 
Qmin ~ Qo.δμ

− 1 and for the high-polarity limit, when (εr.δμ)− 1«1, Qmin ~ 
Qo.εr, with an intermediate region with none of these valid. In here δμ =

electrohydrodynamic Reynolds number (δμ =
[

γ2ρεo
μ3K

]1/3
)

, where γ the 

surface tension, ρ is the density, K is electrical conductivity, μ is the 
viscosity, εo is vacuum permittivity, εr is relative dielectric constant, and 
Qo =

εoγ
ρK as defined by Refs. [9–11]. 

In 2019 Gamero-Castaño and Magnani [12] gave an extensive 
overview of Qmin in their article on the minimum flowrate of electro-
sprays in the cone-jet mode, in which they review the different articles 

* Corresponding author. 
E-mail address: caner_yurteri@bat.com (C.U. Yurteri).  

Contents lists available at ScienceDirect 

Journal of Electrostatics 

journal homepage: www.elsevier.com/locate/elstat 

https://doi.org/10.1016/j.elstat.2023.103809 
Received 9 November 2022; Received in revised form 26 March 2023; Accepted 27 March 2023   

mailto:caner_yurteri@bat.com
www.sciencedirect.com/science/journal/03043886
https://www.elsevier.com/locate/elstat
https://doi.org/10.1016/j.elstat.2023.103809
https://doi.org/10.1016/j.elstat.2023.103809
https://doi.org/10.1016/j.elstat.2023.103809


Journal of Electrostatics 124 (2023) 103809

2

including the latest ones. They conclude that the dimensionless mini-
mum flow (Qmin/Qo) rate increases at decreasing Re for both liquids they 
studied, and increases with the dielectric constant at fixed Re. Their 
conclusion on εr is true for their limited data but cannot be generalized 
as we will see later. They hypothesize that perturbations to the flow 
upsetting the coupling between the variables involved in the energy 
transfer will grow once the transferred power exceeds a threshold, i.e. at 
sufficiently low flow rates. 

As previously stated, [8] published an article on Qmin for both low 
and high viscosities, and [13] published an article on electrospraying of 
highly viscous liquids. The results of these papers will be mentioned 
later. During the writing of this manuscript another paper came to our 
attention, and it is in reasonable agreement with our results, [14]. We 
would also like to refer to Ref. [15]; who wrote a very interesting 
qualitative analysis on Qmin (of very polar liquids). 

In this paper we derive, starting with fundamental physics, a very 
simple formula for Qmin, which can be used as a good approximation for 
particle size design. We will compare the results of our formula with 
many data from literature, including the recent data from the paper by 
Ref. [11]. We also give an indication how to get an approximate value of 
Qmax and give examples of Cone-Jet Mode operational windows. 

In his PhD thesis Ref. [2] derived for the cone-jet mode models, 
which yield the shape of the liquid cone and jet, the electric fields in and 
outside the cone, and the surface charge density on the cone and jet 
surface. He also describes the process of the jet breaking up into droplets 
and derives scaling laws for the current through the liquid cone and for 
the produced droplet size. Although he did not go into details on Qmin, 
he concludes in his theoretical derivation of the scaling of the current; 
“the presented theory yields that the minimum flowrate is most likely a 
result of the relative reduction in the velocity pressure (which is also 
called dynamic pressure) in the jet compared to the surface tension 
stress with decreasing liquid flow rate”. 

By following this up and considering the liquid jet, we take as an 
initial assumption, to find a formula for Qmin, that Qmin is reached at 
equal values for the velocity pressure and the surface tension stress. So 
Qmin is found when the velocity pressure times the jet cross sectional 
area (A) equals the surface tension times the perimeter of the jet, see 
Fig. 1.Where. 

ρ = liquid density, v = liquid jet velocity, A = jet cross sectional area, 
D = jet diameter, d = droplet diameter, γ = liquid surface tension, with 
v = Q

A and A = π
4D

2 equation (1) becomes 

2ρ Q2

D3 = π2γ (2) 

It has to be noted that Hartman in his dissertation did not consider 
real high viscosities. The highest ones are for ethylene glycol and sun-
flower oil, both with a viscosity of about 20 mPa s. [13] show that for 
highly viscous liquids (in the range of 560–1400 mPa s) the measured 
droplet diameters are about six times greater than those predicted by the 
Hartman droplet diameter scaling law (they mention in general that the 
measured droplet diameters are 2–6 times greater than those predicted 
by the scaling laws, they considered). The reason why the Hartman 
scaling laws are not valid for real high viscosities could be the fact that in 
the derivation of the scaling laws, viscosity effects have been neglected, 
which can (probably) not be done for real high viscosities [2]. Hartman 
only considers low viscous (non-viscous) liquids. So the initial formula, 
which will be derived here can only be used for liquids with low (e.g. 
2-butanone with viscosity of 0.417 mPa s) and moderate viscosities (e.g. 
ethylene glycol with viscosity of about 20 mPa s). For liquids with higher 
viscosities is referred to the papers of [9,8]; and [13]. However, our final 
formula, for which fitting of data is employed, can approximately also be 
used for reasonably high viscosities as will be seen further in this paper. 

Going back to equation (2), we have to find a relation between Q and 
D. First of all as an approximation for D, we use d = 2D. For the relation 
between Q and d we take the scaling laws as derived by Hartman. The 
Hartman scaling laws can be found in Appendix 1. 

It seems to be realistic to assume varicose break up for Qmin, because 
of the relatively low flow rate. However [11], mentioned whipping was 
observed in certain experiments on Qmin. For our derivation of Qmin, we 
will assume varicose break up. It is always possible to check if one really 
deals with varicose break up. A simple way to do this is explained in 
Appendix 1. 

It has to be realized that by using these scaling laws some effects of 
liquid properties and nozzle configurations are neglected and approxi-
mations such as in the used constants, and by taking d = 2D, are 
introduced. The approximations will probably not have a big influence, 
but the liquid properties and the nozzle configuration could have. In 
Hartman’s dissertation he mentions that ion species have an influence 
on the current and this is also true for the nozzle diameter. He indicates 
that the scaling laws can be improved by taking these facts into 
consideration. He also mentions that the applied potential has an in-
fluence on the current through the liquid cone as also observed by others 
such as [16]. 

According to Ref. [2]; viscosity (if not very high as discussed earlier) 
has little influence on the current and the droplet size as long as the 
radial profile of the axial liquid velocity in the jet is almost flat, see 
appendix A1 and as reported before among others Gañán-Calvo and 
Montanero (2009) [17] and Gamero-Castaño and Magnani (2019) [12]. 
But with the extension of the current scaling law to non-flat profiles, 
viscosity is taken in to account. If in the droplet size scaling law, the 
measured current (so not the one from the current scaling law) is used 
then ion species, nozzle configuration and the applied potential differ-
ence might have little influence on the droplet size. 

Taking all considerations into account, the derivation of Qmin is as 
follows (for used formulas see Appendix 1): 

d = cd

(
ρεoQ4

I2

)1 /

6

= 2D (Formula A1.4),we take cd = 2 (3) 

Giving, 

D=

(
ρεoQ4

I2

)1 /

6

(4) 

Merging (4) and (2) yields, 

Fig. 1. Shows the cone jet region, including the transition. We used a down-
ward spray configuration with a plate electrode for our studies, and as far as we 
know, the data provided was obtained in nozzle-plate configuration but not 
always with the nozzle oriented vertically. 
1
2

ρv2A= πDγ (1)    
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2Iρ0.5

εo
0.5 = π2γ (5)  

For a non flat profile I = CVNI* (formulas of A1.1 and A1.3, see Appen-
dix 1 for CVN explanation, there b equals 2.17, which we round here off 
to 2) 

I =CVN(2)(γKQ)
0.5 (6) 

Plugging (6) in (5) gives 

Qmin =
π4

24CVN
2

εoγ
ρK

=
6.1

CVN
2Qo (7) 

Note that εr is not included in Qmin in equation (7). 
It is interesting to see that [9] came up with a expression for Qmin for 

the viscous limit, Qmin ~ Qo δμ
− 1 (see introduction), which look like 

equation (7). In figure A1.1 (appendix I) a log-log representation is 
certainly not a straight line. However if we consider separately low (say 
below 10) and high (say above 10) VNs, we can get 2 linear fits. The one 
for VN > 10 is CVN = 0.723 VN0.271. 

The data in the graph above VN = 10 are much more scattered than 
data below 10. Also 10 is a rather arbitrary value. So it is possible to 
force the fitting to a power of 0.5 which gives CVN = 0.38VN0.5 (see 
figure A1.1). 

This leads in equation (7) to Qmin ~ Oo/CVN
2 ~ Qo/VN. 

[10] use the dimensionless parameter δμ δ1/3 ~ 
[

γ2εo
2

μ3K2Q

]1/3
, where δ is 

the inverse of the dimensionless flow rate, i.e. δ = Qo/Q, and δμ δ1/3 is 
equal to our VN. So for VN > 10 is found Qmin ~ Qo/δμ δ1/3 

Which resembles Qmin ~ Qo δμ
− 1 (see earlier in this paper) but is not 

the same, since δμ =
[

ρεoγ2

Kμ3

]1/3
. 

Coming back to our equation (7), for a flat profile CVN = 1 so Qmin 
becomes, 

Qmin(flat profile)= 6.1Qo (8) 

So, to calculate Qmin using our formula, assume a flat profile and use 
equation (8) to calculate Qmin. Use this Qmin to calculate the VN number. 
If this VN number is low, say less than or equal to 1 then the Qmin is the 
right one. If the VN number is greater than 1 then the formula of Qmin for 
a non-flat profile has to be used, for this we use the CVN as calculated 
with the Qmin for a flat profile. As a result, a new value for Qmin is found. 
This procedure or iteration is repeated until two subsequent iterations 
differ by less than 1%. 

Let us consider first the results of some own experiments as described 
in Appendix 2. In here the stability or operational window for the cone- 
jet (single jet), in the flowrate – applied electric potential plane, is given 
for some liquids. The details to find the Qmin, Qmax and the window are 
given in Appendix 2. (See also [8,16,18] and [19]) It should be noted 
that for a given flowrate Q, the V range to be in the window is a function 
of the configuration of the spray set-up (as it concerns the electric field 
strength) and the surface tension of the liquid. The results for experi-
ments done with 2-propanol with some nitrates dissolved in it, are 
shown in a stability window. The measured Qmin is about 5.56 nl/s. For 
the used configuration (nozzle to plate distance is 2 cm) the applied 
electric potential varies over the window from about 4 kV till about 6.5 
kV (so 2–3.3 kV/cm). Qmin_est (flat profile) equals to 4.97 nl/s. For this 
case the VN number is 0.51. So we assume a flat profile and Qmin_est is 
4.97 nl/s. Appendix 2 also shows experimental results and operational 
windows for ethylene glycol and n-methyl-2-pyrrolidone (NMP). Note 
that 2-propanol and ethylene glycol have the same conductivity. 

Although it is difficult to find reliable values for measured Qmin, we 
will now look at some examples from the literature. For example [8], 
state that the uncertainty in the Qmin measurements was typically within 
±30%, Chen and Pui (1997) mention “The minimum feed rate was 
limited by the liquid pump oscillation and the evaporation rate of test 
solutions”. They also state that “ …. , the determination of minimum 

feed rates of solvents with high vapor pressure e.g., alcohol, 60% water 
+40% alcohol, and 85% water +15% alcohol, were difficult to define 
due to the high evaporation rate”. It seems prudent to assume that at 
least a part of the measured values for Qmin are only approximations 
indicating the order of magnitude. 

Scheideler and Chen [8] present a large number of measured Qmin 
values for ethylene glycol, ethanol and some concentrations of 
glycerol-water mixtures. To create different conductivities, the liquids 
were doped with potassium chloride. As an example, we look at ethylene 
glycol with a conductivity (K) of 5.0E-4 S/m. The outer diameter of the 
used nozzle is 150 mm and the properties of ethylene glycol are provided 
in Table 1. Equation (8) results in Qmin_est(flat profile) = 4.7 nl/s. For this 
Qmin_est VN = 0.093, so we have a flat profile. The measured value as 
given by Scheideler and Chen is 6.9 nl/s. The same procedure has been 
followed for some other liquids and the results are found in Table 1. 

For ethanol in Table 1 with K = 5.0E-4 S/m [8], give a measured 
value of Qmin = 5.0 nl/s. Our formula produces Qmin_est(flat profile) =
3.01 nl/s. For this Qmin_est, VN = 0.863. Although it is less than 1 and we 
consider it as a flat profile, we perform an iteration to see if the value 
changes. 

To do this we use (7) 

Qmin est(nonflat profile)=
6.1
C2

VN

εoγ
ρK 

From Appendix 1: 

1
CVN

= 1 − 0.1VN0.45 = 0.904,

CVN = 1.107,

so 

Qmin est(nonflat profile)=
6.1

1.1072
εoγ
ρK

= 2.46 nl
/

s 

So it decreased a bit (18%). As mentioned before we suggested to use 
VN less than or equal to 1 as a criterion for flatness. As seen for VN =
0.863, this is not completely justified. However, as an approach we as-
sume it to be sufficient. The next liquid is heptane +0.3 wt %stadis, with 
a much lower conductivity (K = 1.40E-6 S/m) than the foregoing liq-
uids, from a paper by Ref. [20]. The reported measured Qmin_meas equals 
to about 158 nl/s. We calculate Qmin_est(flat profile) = 1048.58 nl/s and 
VN = 14.87, so certainly not a flat profile. CVN = 1.51 and Qmi-

n_est(nonflat profile) = 461 nl/s. In continuing the iteration step, we use 
the new Qmin to find VN = 19.55, and 1/CVN = 0.619, and CVN = 1.616. 
So the new Qmin(nonflat profile) = 402 nl/s. After 2 more iteration steps, 
the criterion of a difference less than 1% between 2 follow-up iterations 
is satisfied, giving Qmin_est(nonflat profile) = 389 nl/s. Finally, we 
consider our own experiments as discussed in Appendix 2, which uti-
lized 2 propanol with dissolved nitrates. 

As we can see from Table 1, the values of Qmin_meas and Qmin_est for 
heptane are significantly different. This will be discussed later. 

Table 2 compares measured Qmin_meas as found in literature, with a 
range of conductivities, viscosities and dielectric constants, with the 
Qmin_est as calculated with our formula. Included are values for glycerol 
and glycerol water mixtures, but these liquids with high viscosities 
(order of 100, 1000 mPa s) will be considered in the next section. For 
Table 2, iterations are done if needed. 

[11,8] discuss with rational arguments that for high viscosity liquids 
(order of 100 mPa s or higher), the scaling for Qmin has a different form 
from the one for low and moderately low viscosities. It is prudent to 
consider these laws for high viscous liquids. Still we try our formula to 
explore how the results of our formula compare with theirs for higher 
viscosities, see Table 2. 

We first introduce the minimum flow rate scaling for high viscous 
liquids as used by Ref. [8]. 
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Qmin ∼
γDn

2

μ (9a)  

or Qmin meas =CDn
γDn

2

μ (9b)  

In where Dn = Nozzle diameter [8] give outer nozzle diameter), with CDn 
a proportionality constant. 

[8] measured Qmin for many cases of glycerol water mixtures and of 
glycerol, with 7 different outer nozzle diameters Dn (smallest 125 μm, 
largest 840 μm) and conductivities varying between 100 and 10,040 
mS/m. For Qmin_est with our formula, Qmin_meas and their ratio, see 
Table 2. In this table also the values for Qmin as calculated with equation 
(9a) are given. 

By comparing the Qmin_meas and calculated with formula 9a, value for 
CDn can be calculated (Table 2). We consider only the data for glycerol, 
not for the glycerol-water mixtures, since Scheideler and Chen mention 
that Qmin of 90% glycerol was not completely independent of conduc-
tivity and eq. (9) may not be fully applicable at this viscosity. Although 
this is not mentioned for 96% glycerol, we do not include it. As can be 
seen there is a big spread in the CDn’s for glycerol, the largest being 
5.53E-3 and the smallest 0.964E-3 with a tendency of getting smaller for 
larger Dn. So a ratio of 5.53/0.964 = 5.5. This ratio becomes much 
smaller when only one nozzle diameter is considered (e.g. 1.4 for Dn =

150 μm from 5 measurements of different conductivities). Their mea-
surements on glycerol make clear that CDn is a function of Dn. 

2.1. Analysis of the results and discussion 

At first sight the data in the previous section look rather scattered but 
let us analyze them in a sensible way. Since Scheideler and Chen provide 
us with many measurements on ethylene glycol for different conduc-
tivities and nozzle diameters, we start with ethylene glycol, sprayed with 
a nozzle of 150 μm. We consider first one size diameter, because, as we 
have seen, the nozzle diameter can have an influence. Fig. 2a shows 
Qmin_meas and Qmin_est (with our formula) as a function of Qo, which is 
actually also a function of 1/K. Fig. 2b gives the same data, but now 
expressed as the ratio of Qmin_est over Qmin_meas. In both figures the 
Qmin_meas data form a smooth line. As can be seen in Fig. 2b, for low 
values of Qo, the line becomes very steep. Fig. 2a and b indicate that for 
Qo close to 2 nl/s, our formula yields a comparable value to the 
measured ones. 

Our Qmin_est based on equation (7) is in Fig. 2a a straight line, as for 
all points we have to do with a flat profile. This is clearly different from 
the measured values. 

In the derivation of equation (7) we used an equality of the forces by 
the velocity pressure and the surface tension, while it was stated “rela-
tive reduction in the velocity pressure to the surface tension stress”. This 
yielded the value of 6.1. A more realistic value of Qmin, and so indirectly 
about the ratio of the forces, can be obtained from the measured data. 

To explain the shape of the curve is more complicated. Hartman 
mentions in his dissertation that in his model air friction is neglected and 
that when air friction is taken into account, it would result in a slightly 
thicker jet. Calculating the average jet velocity for the measured Qmin 
points for ethylene glycol in Fig. 2a, by using equation A1.5 (because of 
flat axial velocity profiles and varicose break up) and D(jet) = 0.5 d 
(droplet), reveals that this velocity is about 16 m/s for K = 100 μS/m and 
increases with K till about 74 m/s for K = 9960 μS/m. So by going in 
Fig. 2a from right to left, the velocity increases and so does the stress due 
to air friction, resulting in a increased influence on the jet thickness D, 
see analysis provided in Appendix 3. An increase of D means an increase 
in Qmin (equation (2)). From the foregoing consideration it is evident 
that the prefactor in the formula for Qmin ~ Qo (Qmin = prefactor.Qo) 
should be found from experimental results and that it is a function of Qo. 

For larger values of Qo, so for decreasing values of K, the curve of 
Fig. 2a flattens, so increasing the distance with the straight line of our 
formula for a flat profile. This is completely in line with our formula for a 
non-flat profile (equation (7)). For a decreasing K, and the rest of the 
liquid parameters constant, VN goes up and also does CVN, resulting in a 
decreasing Qmin_est. For ethylene glycol we do not have large values for 
Qo, so we look at the already mentioned example, Heptane +0.3 wt % 
Stadis (Tang and Gomes, 1996), with Qo = 171.9 nl/s. Realize that the 
liquid properties differ from the ones of ethylene glycol. As seen Qmin_-

meas = 158.06 nl/s and Qmin_est with our formula with iterations is 389 
nl/s. Without iterations, the difference with the straight line for Qmi-

n_est(flat profile) = 1048.58 nl/s becomes huge. 
When we consider in Table 2 the data of Scheideler and Chen for 

ethylene glycol for values of the nozzle diameter different from 150 μm, 
we see comparable values and tendencies for Qmin_meas as a function of 
Qo (or K), as for Dn = 150 μm, with the same behaviour for very high 
conductivities. To identify if for the considered data there is a de-
pendency of Qmin_meas on the nozzle diameter we can use the Qmin_meas 
values, for one common value of K, i.e. K = 500 μS/m. For Dn = 150, 
250, 330, 550, and 840 μm, the Qmin_meas values are: 6.9, 9.7, 8.6, 8.9 
and 8.9 nl/s respectively. This does not give an indication of a de-
pendency. This is in contradiction with a result of [16]; who mention 
that for dioxane + formamide with K = 0.32 μS/m Qmin_meas = 0.05 
mm3/s with OD of the capillary of 0.5 mm, and Qmin_meas = 0.5 mm3/s 
for a capillary OD = 1 mm. We have to realize that conductivities of the 
two liquids are significantly different. 

Table 1 
Comparison of Qmin in literature and Qmin_est calculated by our formula (Where the author did not report the Qmin, we estimated it by digitizing the figure. Tang and 
Gomez Fig. 3 shows that Qmin is about 0.569 cc/h).  

Liquid [8] ethylene glycol 
+ KCl 

[8] ethanol +
KCI 

1st [20] 1st 2nd 3rd iterations this study 

heptane + 0.3 wt% 
stadis 

4th 2 propanol +
nitrates 

ρ (kg m-3) 1110 790  684     785 
μ (Pa s) 2.10E-02 1.20E-03  4.21E-04     2.38E-03 
γ (N m-1) 4.80E-02 2.20E-02  1.86E-02     2.17E-02 
K (S m¡1) 5.00E-04 5.00E-04  1.40E-06     3.00E-04 
ε/εo 41 25  1.93     19.26 
εο [C⩍⩍2/(Nm⩍⩍2)] 8.85E-12 8.85E-12  8.85E-12     8.85E-12 
Qo¼εo γ/ρK [nl/s] 0.77 0.49  171.90     0.82 
Qmin_meas (nl/s) 6.9 5.0  158.06     5.56 
Qmin_est(flat)¼6.1*Qo (nl/s) 4.67 3.01  1048.58 . . . . 4.97 
Qmin_est(non-flat)¼6.1*Qo/ 

CVN⩍⩍2 (nl/s)   
2.46  461 402 391 389  

VN 0.093 0.863 0.92 14.87 19.55 20.47 20.65 20.68 0.51 
1/CVN   0.904  0.619 0.611 0.609 0.609  
CVN   1.107  1.616 1.637 1.641 1.642  
Profile Flat Flat  Non Flat     Flat  
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Table 2 
Summary of Qmin_est, Qmin_meas values for various liquids from literature.  

# Ref. Liquid ρ 
(kg/m3) 

μ 
(Pa s) 

γ 
(N/m) 

K 
(S/m) 

Dn 

(μm) 
Qo 

[nl/s] 
Qmin_est 

(nl/s) 
Qmin_meas 

(nl/s) 
Qmin_est/Qmin_meas Equation (9a) 

(nl/s) 
CDn 

1 x EtOH 790 0.0012 0.022 0.0001 150 2.465 11.5 22.0 0.52   
2 x EtOH 790 0.0012 0.022 0.0004 150 0.649 3.950 8.6 0.46   
3 x EtOH 790 0.0012 0.022 0.0005 150 0.493 3.002 5.0 0.60   
4 x EtOH 790 0.0012 0.022 0.0007 150 0.368 2.240 5.3 0.42   
5 x EtOH 790 0.0012 0.022 0.0010 150 0.246 1.501 4.7 0.32   
6 x EtOH 790 0.0012 0.022 0.0011 150 0.233 1.416 3.9 0.36   
7 x EtOH 790 0.0012 0.022 0.0025 150 0.099 0.600 2.5 0.24   
8 x EtOH 790 0.0012 0.022 0.0005 250 0.493 3.002 5.6 0.54   
9 x EtOH 790 0.0012 0.022 0.0005 330 0.493 3.002 6.1 0.49   
10 x EtOH 790 0.0012 0.022 0.0005 550 0.493 3.002 6.9 0.44   
11 x EtOH 790 0.0012 0.022 0.0005 840 0.493 3.002 5.0 0.60   
12 x EG 1110 0.021 0.048 0.0001 125 2.944 17.928 13.3 1.35   
13 x EG 1110 0.021 0.048 0.0004 125 1.063 6.474 7.8 0.83   
14 x EG 1110 0.021 0.048 0.0011 125 0.364 2.220 3.6 0.62   
15 x EG 1110 0.021 0.048 0.0001 150 3.827 23.307 16.7 1.40   
16 x EG 1110 0.021 0.048 0.0003 150 1.126 6.866 8.6 0.80   
17 x EG 1110 0.021 0.048 0.0005 150 0.765 4.669 6.9 0.68   
18 x EG 1110 0.021 0.048 0.0007 150 0.571 3.484 5.8 0.60   
19 x EG 1110 0.021 0.048 0.0010 150 0.383 2.334 4.2 0.56   
20 x EG 1110 0.021 0.048 0.0025 150 0.153 0.934 2.2 0.42   
21 x EG 1110 0.021 0.048 0.0034 150 0.114 0.697 2.1 0.33   
22 x EG 1110 0.021 0.048 0.0100 150 0.038 0.234 1.2 0.20   
23 x EG 1110 0.021 0.048 0.0001 210 3.189 19.454 19.4 1.00   
24 x EG 1110 0.021 0.048 0.0008 210 0.472 2.882 6.7 0.43   
25 x EG 1110 0.021 0.048 0.0040 210 0.097 0.590 3.3 0.18   
26 x EG 1110 0.021 0.048 0.0098 210 0.039 0.239 1.7 0.14   
27 x EG 1110 0.021 0.048 0.0005 250 0.765 4.669 9.7 0.48   
28 x EG 1110 0.021 0.048 0.0005 330 0.765 4.669 8.6 0.54   
29 x EG 1110 0.021 0.048 0.0005 460 0.832 5.075 6.4 0.79   
30 x EG 1110 0.021 0.048 0.0038 460 0.102 0.619 3.9 0.16   
31 x EG 1110 0.021 0.048 5.00E-04 550 0.765 4.669 8.9 0.52   
32 x EG 1110 0.021 0.048 3.70E-04 840 1.034 6.309 8.9 0.71   
33 x EG 1110 0.021 0.048 5.00E-04 840 0.765 4.669 8.9 0.52   
34 x EG 1110 0.021 0.048 9.10E-04 840 0.421 2.565 5.6 0.46   
35 x EG 1110 0.021 0.048 3.45E-03 840 0.111 0.677 2.6 0.26   
36 x EG 1110 0.021 0.048 1.05E-02 840 0.037 0.223 1.0 0.22   
37 xx 3 EG 1136 0.049 0.0454 5.04E-03 222–400ii 0.070 0.428 3.7 0.12   
38 xxx 1 octanol 827 0.0072 0.0235 9.00E-07 210–220ii 279.424 1704.484 138.9 12.27   
39 xxx 1 decanol 828 0.0118 0.028 3.00E-07 210–220ii 997.585 4774 111.1 42.97   
40 x 90% G 1240 0.220 0.065 6.50E-04 150 0.714 4.354 8.9 0.49   
41 x 90% G 1240 0.220 0.065 1.00E-03 150 0.464 2.830 7.8 0.36   
42 x 90% G 1240 0.220 0.065 1.41E-03 150 0.329 2.007 7.5 0.27   
43 x 90% G 1240 0.220 0.065 3.90E-03 150 0.119 0.726 5.6 0.13   
44 x 96% G 1250 0.620 0.064 1.00E-03 150 0.453 2.764 5.6 0.49   
45 x 96% G 1250 0.620 0.064 1.10E-04 330 4.119 25.128 14.9 1.69   
46 x 96% G 1250 0.620 0.064 3.00E-04 330 1.510 9.213 15.3 0.60   
47 x 96% G 1250 0.620 0.064 7.24E-03 330 0.063 0.382 16.7 0.02   
48 x G 1260 1.400 0.063 1.80E-04 125 2.458 14.996 3.8 3.95 703.1 5.40E-03 
49 x G 1260 1.400 0.063 9.10E-04 125 0.486 2.966 3.3 0.90 703.1 4.69E-03 
50 x G 1260 1.400 0.063 1.00E-04 150 4.425 26.993 5.1 5.29 1012.5 5.04E-03 
51 x G 1260 1.400 0.063 5.00E-04 150 0.885 5.399 5.3 1.02 1012.5 5.23E-03 
52 x G 1260 1.400 0.063 1.00E-03 150 0.443 2.699 4.3 0.63 1012.5 4.25E-03 
53 x G 1260 1.400 0.063 2.50E-03 150 0.177 1.080 5.6 0.19 1012.5 5.53E-03 
54 x G 1260 1.400 0.063 1.00E-02 150 0.044 0.269 3.9 0.07 1012.5 3.85E-03 
55 x G 1260 1.400 0.063 9.10E-04 210 0.486 2.966 8.4 0.35 1984.5 4.23E-03 
56 x G 1260 1.400 0.063 2.83E-03 210 0.156 0.954 8.3 0.11 1984.5 4.18E-03 
57 x G 1260 1.400 0.063 4.99E-03 210 0.089 0.541 8.5 0.06 1984.5 4.28E-03 
58 x G 1260 1.400 0.063 5.00E-04 250 0.885 5.399 12.5 0.43 2812.5 4.44E-03 
59 x G 1260 1.400 0.063 1.20E-04 330 3.688 22.494 11.9 1.89 4900.5 2.43E-03 
60 x G 1260 1.400 0.063 5.00E-04 330 0.885 5.399 18.1 0.30 4900.5 3.69E-03 
61 x G 1260 1.400 0.063 5.20E-04 330 0.851 5.191 13.1 0.40 4900.5 2.67E-03 
62 x G 1260 1.400 0.063 9.30E-04 330 0.476 2.902 13.3 0.22 4900.5 2.71E-03 
63 x G 1260 1.400 0.063 1.42E-03 330 0.312 1.901 12.8 0.15 4900.5 2.61E-03 
64 x G 1260 1.400 0.063 3.10E-03 330 0.143 0.871 13.9 0.06 4900.5 2.84E-03 
65 x G 1260 1.400 0.063 5.00E-04 550 0.885 5.399 37.5 0.14 13612.5 2.75E-03 
66 x G 1260 1.400 0.063 4.10E-04 840 1.079 6.584 51.4 0.13 31752.0 1.62E-03 
67 x G 1260 1.400 0.063 5.00E-04 840 0.885 5.399 47.2 0.11 31752.0 1.49E-03 
68 x G 1260 1.400 0.063 1.16E-03 840 0.381 2.327 36.1 0.06 31752.0 1.14E-03 
69 x G 1260 1.400 0.063 3.87E-03 840 0.114 0.697 30.6 0.02 31752.0 9.64E-04 
70 x G 1260 1.400 0.063 4.99E-03 840 0.089 0.541 30.6 0.02 31752.0 9.64E-04 

x [8]; xx [5] from Tables 1 and 2, xxx [11]. EtOH = ethanol, EG = ethylene glycol, G = glycerol, TEG = Triethylene glycol, DEG = diethylene glycol. Nozzle diameter 
refers to outer diameter of nozzle except where indicated as ii, ii = inner – outer nozzle diameter. Qmin_est values, iterations are done if needed (this is for 1 and 39). 
(N.B. for reader’s information some of the data are rounded to fit the table, for exact values we refer to the original reference). 
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Now we examine in Table 2 the results for high viscous liquids. For 
90% glycerol, with μ = 220 mPa s, we see that for Dn = 150 μm, Qmin_meas 
decreases with increasing K and the ratio’s of Qmin_est/Qmin_meas are 
somewhat smaller than for ethylene glycol and that for the highest K, 
this ratio becomes small. 

For 96% glycerol, with μ = 620 mPa s, the similarity with ethylene 
glycol has gone. Here with increasing K (for Dn = 330 μm), Qmin_meas 
even slightly increases. It is remarkable that the values for the ratio’s of 
Qmin_est over Qmin_meas, are comparable with the ones for ethylene glycol, 
except for the high value of K = 7240 μS/m. For glycerol, with μ = 1400 
mPa s, for the different Dn’s, with increasing K, the Qmin_meas is almost 
constant. This is in agreement with equation (9). The exception is for Dn 
= 840 μm, where an increasing K goes with a decreasing Qmin_meas. Again 
it is noticeable that with the exception of the two biggest nozzle di-
ameters (550 and 840 μm) the ratios of Qmin_est/Qmin_meas have the same 
tendency as the ratios for ethylene glycol, with the exception of the 
lowest K’s (100 and 180 μS/m). For high viscosities and lower con-
ductivities, we don’t have any data, so we’re not going to speculate on it. 
The ratio for the highest K’s is the same as previously mentioned. 

Finally, we look into a possible influence of the relative permittivity 
(εr). As seen εr does not appear in our formula, but [9] describe, as 
already mentioned, two scenarios, one with Qmin Qo.εr and the other one 
with Qmin ~ Qo/δμ, with neither of the two valid for the intermediate 
region. To tackle this item we compiled in Table 3, the relevant infor-
mation of a number of liquids, covering both the Qo and the (εr.δμ)− 1 

domains. We will cover examples in the Qo domain from about 1 till a 
few hundred nl/s, for liquids where (εr.δμ)− 1 < 0.2. For our formula we 
already discussed this region. As we see in Table 3, the factor 
Qmin_meas/Qo.εr varies rather widely (0.05 till 0.509), especially 
considering the indication in Fig. 2 of [9]; that the minimum value of 
Q/Qo.εr is about 0.0125. If we look in Fig. 2a, the curve of Qmin_meas for 
ethanol as a function of Qo (see Table 2), lays well above the one for 
ethylene glycol. Since εr(ethylene glycol) = 41 and εr(ethanol) = 25, this 
is in contradiction with the scaling Qo.εr. It has to be noted that for the 
highest mentioned εr = 80, Qmin_meas is 3.62 times larger than calculated 
with our formula (Qmin_estimated after iterations = 24.42 nl/s). For this 
case the factor Qmin_meas/Qo.εr is 0.17 and not really close to the indi-
cated minimum. We conclude that these experimental values do not give 
a clear proof that Qmin is proportional to εr. A short discussion on the 
intermediate and the Qmin Qo.δμ

− 1 regions sound to be warranted. In 
Table 3 there are three cases for ethylene glycol in the intermediate 
region. All three are far to the left in the Qo domain, because of their 
(rather) high K values. The other liquids in the intermediate region as 
given by Ref. [9] all have (rather) high K values (only no value given for 
sunflower oil). Also for the region in where Qmin Qo.δμ

− 1, the only (few) 
data given by Gañán-Calvo et al. are for (very) high K values, so (very) 
low Qo’s. The only one for which we could find in the relevant literature 
a measured Qmin value is for 3-ethylene glycol (d) [5], Qo.δμ

− 1 = 1.66 nl/s 

and Qmin_meas = 3.7 nl/s. Our formula 8 (flat profile) yields 0.43 nl/s. 
Since we have only one value, we cannot further comment on this. As 
seen before Gamero-Castaño and Magnani (2019)Ref. [12] show that for 
the 2 liquids, they employed, the dimensionless minimum flow rate 
increases with εr at fixed Re. This is also true if their data are plotted as 
Qmin = f(Qo) (then the PC curve (εr = 64.9) lays above the TBP (εr =

8.91)). In Fig. 2a we see that the curve for ethanol (εr = 25) lays well 
above the one for ethylene glycol (εr = 41). This is also true if the 
dimensionless Qmin is plotted as function of Re (although there is no 
common Re). So their conclusion on εr (for their 2 liquids) can not be 
generalized. 

2.2. Curve – fitting 

In the foregoing we reasoned that the pre-factor in our formula Qmin 
~ Qo itself is a function of Qo. The modelling on which the derivation of 
our formula is based, is not detailed enough to provide us with that pre- 
factor. So we depend on reliable experimental data from literature and/ 
or own measurements, and curve fitting. For the fitting we looked only 
for data, for which explicitly is mentioned that it considers minimum 
flowrates. We begin with liquids with lower viscosities. For this [8] 
provide us with an extensive data set for Ethylene glycol (μ = 21 mPa s) 
and Ethanol (μ = 1.2 mPa s), see Table 2. Qo values range from about 
0.04 nl/s to about 4 nl/s. 

Because of the very limited number of data, they have to be taken as 
one population from statistical point of view. Fig. 3 depicts the measured 
data-set and the fitted curve (based on log-log linear) is,  

Qmin_fit*= 8.903Qo
0.55 (nl/s).                                                            (10) 

For high values of Qo (so low values of K) there are only very few 
Qmin_meas data available [11]. present measurements of Qmin for 1-octa-
nol (μ = 7.2 mPa s, Qo = 279 nl/s) Qmin_meas = 138.89 nl/s and for 1-dec-
anol (μ = 11.8 mPa s, Qo = 998 nl/s) Qmin_meas = 111.1 nl/s. For another 
low value of Qo we take 3-Ethylene glycol(d) from Rosell-Llompart and 
Fernández de la Mora (1994), (μ = 49 mPa s from their Table 2), with Qo 
= 0.0702 nl/s and Qmin_meas = 3.7 nl/s. In Fig. 4 these 3 values have been 
added to the ones in Fig. 3 and the curve fitting results in  

Qmin_fit = 8.175Qo
0.474 (nl/s).                                                           (11) 

It is not overstated to say that the number of data points on which 
formula 11 is based is very small, especially for higher values of Qo. With 
more measured data the curve will become more reliable. Despite this 
shortcoming we will apply formula 11 to some Qmin measurement data 
or to Q data, for which we expect to be close to Qmin. In appendix 2 we 
find for 2-propanol (μ = 2.38 mPa s, Qo = 0.815 nl/s) Qmin_meas is close to 
5.56 nl/s and for Ethylene glycol (μ = 16.1 mPa s, Qo = 1.25 nl/s) 
Qmin_meas is close to 5.56 nl/s. For 2-propanol formula 11 yields Qmin_fit 

Fig. 2 a. Qmin_est and Qmin_meas as a function of Qo for 150 μm nozzle and test liquid ethylene glycol and, Qmin_meas as a function of Qo for 150 μm nozzle and test liquid 
ethanol, on a linear-linear plot (left side) and for ethylene glycol on a log-log plot (right side). 
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= 7.42 nl/s and for ethylene glycol 9.09 nl/s [20]. show an extensive 
number of data of flow rates of Heptane + 0.3(wt)% stadis (μ = 0.421 
mPa s, K = 1.4 μS/m, Qo = 172 nl/s), sprayed in the cone-jet mode. They 
do not explicitly mention Qmin for their lowest flow rate in e.g. their 
Fig. 2a, which is 0.25 cc/hr = 69 nl/s. Since the highest flow rate in that 
figure is 28 cc/hr = 7778 nl/s, so the ratio of the highest over the lowest 
is 113, we assume that 69 nl/s is not too far from Qmin, as follows from 
the next paragraph. For Qo = 172 nl/s in formula 11, Qmin_fit = 93.78 
nl/s [23]. give data for a very high Qo = 39,400 nl/s, i.e. for Isopar 
+15% ButOH (μ = 1.73 mPa s). They did experiments at six flow rates, of 
which the lowest is 3 ml/h = 833 nl/s. They also do not mention Qmin. It 
is unclear how close this value is to Qmin. The ratio between the highest 
mentioned flow rate (120 ml/h = 33,333 nl/s) and the lowest is 40. If we 
still use the Qo in formula 11, we get 1232.40 nl/s [16]. give for dioxane 
+ formamide (μ = 1.39 mPa s, K = 0.32 μS/m, Qo = 940 nl/s), Qmin =

0.05 mm3/s = 50 nl/s (Note: see former part on nozzle diameter) and 
formula 11 yields Qmin_fit = 209.77 nl/s. From Fig. 2 in Gañan-Calvo 
et al. (2013), we estimate for 1-octanol (μ = 8.1 mPa s, Qo = 321 nl/s), 
1-decanol (μ = 11.79 mPa s, Qo = 998 nl/s) and 1-dodecanol (μ = 12.5 
mPa s, Qo = 2930 nl/s), Qmin_meas respectively about 164 nl/s, 124 nl/s 
and 238 nl/s. Formula 11 gives for these cases respectively 126.06, 

215.81 and 359.57 nl/s. 
By applying formula 11 to the mentioned data we find for the ratio 

between Qmin_meas and Qmin_fit (formula (11)) values in increasing order 
0.24, 0.57, 0.61, 0.66, 0.68, 0.74, 0.75, and 1.30. 

Gamero-Castaño and Magnani (2019) [12] give the measured Qmin 
data (in their table they show the dimensionless Qmin) for 2 liquids 
(tributyl phosphate (TBP) and propylene carbonate (PC)), both for 7 
different conductivities. Interestingly they did not use a syringe pump, 
which shows the induced flow rate, but an own constructed pump. We 
did not use their data for our curve fitting, but will discuss them here. 
For 2 data point Qo proves to be between 8 and 9, for the rest Qo is 
(much) lower. The Qmin-measured/Qmin-fit values are with decreasing Qo 
for PC 3.12, 1.79, 0.90, 0.86, 0.63, 0.32 and 0.23 and for TBP 0.35, 0.32, 
0.27, 0.21, 0.17, 0.16, and 0.14. Despite some rather high and low ratios 
in the last series, regarding the mentioned uncertainties in the measured 
values and limited number of data, we consider formula 11 as at least 
not far off and for the purpose of design certainly sufficient. This is also 
true in relation to the result in a recent paper by Ref. [14]. They report 
for the minimum flowrate of diethylene glycol (DEG) with ρ = 1118.0 
kg/m3, γ = 0.0448 N/m, K = 2.4E-5 S/m, εr = 6.66 and μ = 0.0385 Pa s, 
Qmin is about 14.75 nl/s. Our formula 11 yields 29.32 nl/s. 

Fig. 5a depicts for high viscosity liquids, Qmin_meas as a function of Qo 
for Glycerol (μ = 1400 mPa s, see Table 2). Each nozzle diameter Dn has 
its own graph. For most nozzle diameters the measured Qmin data could 
be fitted by an almost horizontal line. This is in agreement with formula 
9. The exception is for Dn = 840 μm, where the fitted line is absolutely 
not horizontal. Also for 96% glycerol (μ = 620 mPa s) and Dn = 330 μm, 
the fit is an almost horizontal line, Fig. 5b. However for 90% glycerol (μ 
= 220 mPa s), the pattern of Qmin_meas as function of Qo follows that of 
liquids with a lower viscosity. The four values of Qmin_meas, with Dn =

150 μm, as given by Scheideler and Chen are: 8.9, 7.8, 7.5 and 5.6 nl/s, 
while formula 11 yields respectively: 6.97, 5.68, 4.83 and 2.98 nl/s, 
which gives a ratio of Qmin_meas over Qmin_fit of respectively 1.28, 1.37, 
1.55 and 1.88. So we assume that for a liquid with μ = 220 mPa s for-
mula 11 is still applicable, although it has to be stated that we do not 
have any Qmin_meas values for higher Qo values for this rather high vis-
cosity. This remark is also true for real high viscosities. 

2.3. Some thoughts on the maximum flow rate 

Qmin has been discussed previously with the specific goal of making it 
easily useable for design purposes. For the same reason, it is of interest to 
have an indication on the maximum flow rate. 

It is much more difficult to attribute a formula to Qmax than to Qmin, 

Fig. 2 b. Qmin_est/Qmin_meas as a function of Qo for 150 μm nozzle and test liquid 
ethylene glycol. 

Table 3 
Data compiled to investigate the influence of εr.  

Liquid and Source K [μS/m] εr Qmin meas [nl/s] Qo [nl/s] δμ (εrδμ)
− 1 Qoεr [nl/s] Qmin meas

Q0εr  

Qoδ− 1
μ (nl/s) 

1 340 41 8.6 1.13 0.19 0.13 46.3 0.186 – 
1 100 41 16.7 3.83 0.29 0.08 157 0.106 – 
2 100 25 22 2.46 2.70 0.015 61.5 0.358 – 
3 102 80 ~88.3 6.33 7.73 1.62E-3 506.4 0.17 – 
4 1.4 1.93 ~169 172 27.17 0.019 332 0.509 – 
5 0.9 10 139 279 2.29 0.044 2790 0.050 – 
1 2500 41 2.2 0.153 0.10 0.24 – – – 
1 9960 41 1.2 0.0385 0.063 0.39 – – – 
6 16,900 38.66  0.0228  ~0.5 – – – 
7 5040 23.7 3.7 0.0702 0.0422 ~1 – – 1.66 

1. Ethylene glycol [8]. 
2. Ethanol, Scheideler and Chen (2014). 
3. Deionized water [21]. 
4. Heptane +0.3(wt)% Stadis, Tang and Gomez (1996). 
5.1-octanol, Ponce Torres et al. (2018). 
6. Ethylene glycol-3 [9,22]. 
7.3-ethylene glycol, Rosell-Llompart & Fernández de la Mora (1994) and Table 2 of this article. 
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as explained for example by Ref. [19] and demonstrated by Ref. [18]. 
Qmax is dependent on a number of parameters [20]. report that the 
maximum liquid flow rate for the cone-jet decreases dramatically with 
increasing capillary diameter, so decreasing the Cone-jet operation 
window. Also [16] give as an example for dioxane + formamide, with K 
= 36 μS/m (Qo = 8.35 nl/s) for a capillary of 0.5 mm a Qmax of about 0.3 
mm3/s, while for a finer capillary Qmax is at least four times higher. As 
seen already they also report a dependency of Qmin on the nozzle 
diameter. Chen and Pui (1997) state that there are many factors, which 

could affect the operation envelop, including the set-up configuration, 
the physical properties of the liquid (also wettability of capillary) and 
the surrounding atmosphere. Also [5] state that Qmax is not as universal 
a quantity as Qmin. 

To get an idea on Qmax we do not start with a fundamental discussion 
but with an empirical result as introduced by Chen and Pui (1997). Chen 
and Pui defined the maximum feed rate as the flow rate before the start 
of jet bifurcation. See also appendix 2. 

Chen and Pui (1997) show for a number of liquids that for Qmax the 
ratio of d/R* assumes the constant value of about 0.5. d is the produced 
droplet diameter and R* is the inertial characteristic length = (ρQ2/γ)1/ 

3, derived from the balance between the dynamic pressure and the 
capillary pressure. If we assume this to be true in general, then for Qmax, 

Fig. 3. This curve fit uses data from Ethylene Glycol and Ethanol (Scheideler 
and Chen), based on log-log fit. Correlation is Qmin_fit* = 8.903 Qo 0.55 (nl/s). 

Fig. 4. Curve fitting is done using data of Ethylene Glycol, Ethanol (Scheideler 
and Chen), and Data from Rosell-Llompart and Fernández de la Mora, and 
Ponce-Torres et al. (based on log-log fit). Correlation is Qmin_fit = 8.175 Qo0.474 

(nl/s). 

Fig. 5a. Qmin_meas as function of Qo for glycerol (μ = 1.4 Pa s).  

Fig. 5b. Qmin_meas as function of Qo for 90% (μ = 0.22 Pa s) and 96% glycerol 
(μ = 0.62 Pa s). 
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d = k(c)
(

ρQ2
max

γ

)1 /

3

where k(c) is 0.5 (12) 

We use this with our scaling laws. For Qmax it is assumed that there is 
whipping of the jet. We consider the general case for I, i.e. a non-flat 
profile: 

I=CVNI*, I* is taken as 2(γKQ)
1 /

2 and d = dwhip =
[

0.8 288ε0γQ2
[

CVN*2(γKQ)
1

/

2
]2

]1/3
. 

d =
3.86
C

2 /

3
VN

ε1 /

3
o Q1 /

3

K1 /

3
(13)  

and equate this with equation (12) 

d = 0.5
(

ρQ2
max

γ

)1 /

3

=
3.86
C

2 /

3
VN

ε1 /

3
o Q

1 /

3
max

K1 /

3 

So 

Qmax =
460.1
C2

VN

εoγ
ρK

=
460.1
C2

VN
Qo (14) 

For Qmin we found that the prefactor is a function of Qo itself and our 
final formula is obtained by curve fitting. As we have hardly measured 
data for Qmax, we can not even dream of such a fit for Qmax, and also we 
have to keep in mind the remarks in the beginning of this paragraph. 
Fortunately we have some complete cone-jet windows in appendix 2, in 
where is described that for the considered liquids after increasing the 
flow rate beyond Qmax the cone jet shifted from the center to the side, i.e 
the jet deviated from the nozzle axis, so a global instability. For all three 
liquids the same small nozzle was used. For 2-propanol (+ some addi-
tives) with Qo = 0.815 nl/s, Qmin_fit = 7.42 nl/s and Qmin_meas = 5.56 nl/ 
s, so they are close to each other. Calculations show a flat profile and 
varicose break-up. Using equation (14), we get Qmax_est = 374.9 nl/s and 
Qmax_meas = 416.7 nl/s, which are rather close to each other as well 
(calculations show a flat profile and whipping break-up). The ratio of 
max to min is 75 for both estimations and measurements. Keeping the 
remarks made on Qmax in mind, we will consider some cases for which 
we have a measured value of Qmax, or a value for which we assume not to 
be too far off. Appendix 2 shows for ethylene glycol (K = 300 mS/m, Qo 
= 1.25 nl/s), Qmin_meas is about 5.56 nl/s and Qmax_meas = 583.34 nl/s, 
giving a ratio of max over min of 105. For heptane +0.3 (wt) % stadis (K 
= 1.4 μS/m, Qo = 172 nl/s) [20], we presented already the ratio of the 
highest over the lowest flow rate as 113, noting that not explicitly is 
mentioned Qmin and Qmax. Also already mentioned are the minimum and 
maximum measured flowrates for isopar +15% ButOH (Qo = 39,400 
nl/s [23], with a ratio between max and min of 40. Again it is unclear 
how close these values are to Qmin and Qmax. For dioxane + formamide 
(K = 0.32 μS/m, Qo = 940 nl/s), Cloupeau and Prunet-Foch give as 
Qmin_meas = 50 nl/s. In their Fig. 9, Qmax falls outside the diagram, but 
Qmax>10 mm3/s = 10,000 nl/s, indicating a ratio Qmax/Qmin > 200. In 
the same figure a complete cone-jet window is given for dioxane +
formamide with K = 3 μS/m (Qo = 100.2 nl/s). From this figure 
Qmax/Qmin is estimated at about 60. 

Lastly we look at data for n-butanol (K = 15 μS/m, Qo = 17.9 nl/s) by 
Refs. [2,3,24]. From their Fig. 11 (2000), the highest measured flow rate 
is estimated at about 8300 nl/s and the lowest one at about 260 nl/s. 
Again, it is not mentioned that we have to do with Qmax and Qmin, 

although for the lowest flow rates in Figs. 14 and 15 of [24] for 
n-butanol, which are about the same as in Fig. 11 (2000) is mentioned: 
“… the measurements in this section were considerably closer to the 
minimum flow rate than in the previous section”. So the ratio of the 
highest over the lowest measured flow rate is about 32. If we apply our 
formula 11 to n-butanol, Qmin_fit 32.1 nl/s nl/s, we find a much lower 
value than the lowest measured flow rate, which would mean a much 
wider operation window. It should be mentioned that the [2] experi-
ments were performed with a cylindrically shaped nozzle, with a flat 
bottom with a diameter of 8 mm, having in the middle a hole of a few 
hundred micrometer. In contrast to the nozzle he used, for all discussed 
sprayed liquids until now, as far as we know, (rather) thin walled and/or 
sharp nozzles/capillaries have been used [23]. showed measured flow 
rates for isopar + n-butanol mixtures, using capillaries with OD of 1.4 
and 1.6 mm, which seem a bit big, but much smaller than the one of [2]. 

3. Conclusions 

Starting with [2] theoretical derivation of the scaling of the current 
for electrospraying in the cone-jet mode, and by using his scaling laws, it 
is found that Qmin is proportional to Qo. The formula for Qmin, valid for 
Newtonian liquids with low till moderately high viscosities, is however 
only valid for a limited range in the Qo domain. The model of Hartman is 
not detailed enough to derive quantitatively the formula for Qmin for 
smaller or bigger values of Qo, than for the mentioned limited range in 
the Qo domain. However, a qualitative explanation can be extracted 
from Hartman’s work. We made it plausible that the pre-factor itself in 
Qmin = pre-factor.Qo (Qmin Qo) is a function of Qo. Curve fitting on 
experimental data was used to find the pre-factor, which being a func-
tion of Qo, combined with Qo forms formula 11 in the text. 

This formula can be used for liquids with viscosities up to a few 
hundred mPa s. It has to be noted that the curve fitting is based on a 
limited number of data, especially for the higher values of Qo, so we 
expect that in the future, with more data, a refinement can be made. We 
also believe that for design purposes the formula is sufficiently close. 

For design purposes it is also useful to have an indication of the 
maximum flow rate, Qmax. It proves that it is not possible to come up 
with a formula for Qmax. It is found though, by means of an empirical 
result and with very limited experimental data, that the ratio of Qmax 
over Qmin varies between some tens till a few hundreds. Own mea-
surements for 2-propanol show a complete cone-jet mode operational 
window, with a value for the ration of Qmax over Qmin of 75. 

We are confident that by only measuring the properties of the liquid 
to be sprayed, and by applying the results of this paper, a sound starting 
point is obtained for the design of particles and films, produced with 
electrospraying in the cone-jet mode. 
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Appendix 1. A brief, on the Viscosity Number and Scaling Laws 

Several equations have been developed to estimate the size of the produced main droplet and the electric current flowing through a liquid sprayed 
in the cone-jet mode as a function of liquid properties and flow rate. See e.g. Refs. [1,2] and the references therein are referred to for a detailed, 
in-depth study. 
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Hartman [2] derived theoretically the following electric current scaling law for liquids with a flat radial profile of the axial liquid velocity in the jet, 

I* = 2.17(γKQ) (A1.1) 

However, this equation was already reported by Ref. [25] with a bit different coefficient (see also Gañán-Calvo’s scaling laws in Journal of Aerosol 
Science, 1999 [26]). In formula A1.1. I* is the electric current for a jet with a flat velocity profile. The constant 2.17 is based on the experimental works 
of [10] and of [2]. For liquids where the radial velocity profile is not flat, but with the fluid velocity at the jet surface higher than in the jet center [2], 
derived an extension to the scaling law which relates I/I* to the different parameters, for Newtonian liquids [1]. simplified this relation to equation 
A1.2, by curve fitting experimental data (figure A1.1) to  

I/I*=(1-0.1*VN0.45)− 1                                                                                                                                                                                  (A1.2) 
Where I is the electric current for a jet with a non-flat axial fluid velocity profile [1], and VN (Viscosity Number) is the dimensionless number, 
(γ3εο

2/μ3K2Q)1/3, which was introduced by De la Mora and Loscertales (1994) as viscous parameter but this one includes εr. In 1997 Ganan-Calvo et al. 
introduced a dimensionless number in above form which is as also used by Ref. [2]; and which we called Viscosity Number. For low values of VN 
(practically VN ≤ 1), corresponding to a high value for the combined values of K and μ, CVN is about 1.  

With CVN = I/I*                                                                                                                                                                                          (A1.3) 

Fig. A1.1. (a) log-normal presentation of the data and best fit of I/I* or CVN vs Viscosity Number, VN, (b) log-log presentation of the data with curve fit ‘c’ and 2 
separate log-log fits for VN < 10 ‘b’ and VN > 10 ‘a’ of I/I* as well as CVN ∼ VN0.5 ‘d’. 

The data presented in Ref. [1] ranges from 1 to 2 for CVN. Despite the fact that data scattering is greater at high VN values than at low VN values, 
Equation A1.2 can be safely used up to VN values of about 10. 

Hartman [2] also derived two scaling laws for the droplet size in the cone-jet mode. This is related to the jet break-up mechanism. The mechanism 
depends on the ratio of the normal electric stress over the surface tension stress in the jet. At a low value of this ratio, the jet breaks up due to varicose 
instabilities. At a higher value, which means for a certain liquid a higher flow rate, the jet starts to whip and the break up is influenced by both varicose 
and kink instabilities. For the varicose jet break-up regime [2] reports the following scaling law in the varicose jet break-up regime. 

dd,varicose = cd

(
ρεoQ4

I2

)
1
6 (A1.4)  

And, for a jet with a flat axial velocity profile, approximating 2.17 by 2 and taking cd equals to 2, as reported by Ref. [1]; equation A1.4 becomes, 
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dd,varicose =

(
16ρεoQ3

γK

)1/6

(A1.5) 

where dd,varicose denotes main droplet diameter, Q denotes flow rate, and K denotes liquid conductivity [3]. 
For the whipping jet break-up regime [2], developed the following droplet size scaling law: 

dd,whipping =

(

0.8
288εoγQ2

I2

)1/3

(A1.6)  

where dd,whipping is the droplet size predicted for a jet that breaks up in the whipping jet break-up regime. The constant 0.8 is based on, as Hartman 
mentiones, highly scattered experimental data. Hartman reasons that more precise measurements could give a more accurate value for the constant 
0.8, but 0.8 is certainly sufficient for our purpose. 

Calculating both droplet sizes allows you to easily determine which of the two droplet size scaling laws, dd,varicose or dd,whipping, should be used. The 
one which gives the smallest droplet size is the correct one. This indicates whether the jet is in the varicose or whipping regime. 

For a spherical droplet, a simple derivation relates the diameter of the (final) solid particle (dp) after drying to the droplet diameter [27] by 
Equation A1.7: 

dp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f
ρdroplet

ρparticle
d3

droplet
3

√

(A1.7)  

where f is the mass fraction of the material in the solution (− ), ρdroplet is the density of the solution and ρparticle is the density of the final (product) 
particle (kg/m3). This is of course only true if the particle is not porous or not hollow. 

Appendix 2. Cone-jet operational window 

To experimentally determine the cone-jet operation window, three different liquids were used and their parameters are shown in Table A2.1. 
Among these parameters, relative permittivity, viscosity, surface tension and density were obtained from literature while conductivity was measured. 
The required conductivity was obtained by adding a few drops of a solution made from lithium nitrate, nickel nitrate and manganese nitrate in 2-prop-
anol for experiment 1, n-methyl-2-pyrrolidone (NMP) for experiment 2 and ethylene glycol for experiment 3.  

Table A2.1 
Values of three different liquids parameters whose cone-jet operation window was experimentally determined  

Physical parameters Experiment 1 Experiment 2 Experiment 3 

Solvent 2-propanol n-methyl-2-pyrrolidone (NMP) ethylene glycol 
Conductivity (K) S m− 1 0.0003 0.0011 0.0003 
Density (ρ) kg m− 3 785 1027 1113 
Surface tension (γ) N/m 0.0217 0.0418 0.0473 
viscosity (μ) Pa s 0.00238 0.00165 0.0161 
Relative permittivity 19.26 33 37 

The experimental parameters for the electrospray process were. 
Nozzle type = Optimum® general purpose stainless steel dispense tips (Red). 
Nozzle inner diameter = 0.25 mm. 
Nozzle outer diameter = 0.52 mm. 
Nozzle to substrate distance = 2 cm. 
Operating temperature = room temperature (was not measured but expected to be around 25 ◦C). 
Orientation = downward spraying. 

To get an idea of the starting flow rate for each liquid, Qo, Qmin_est and Qmin_fit values were calculated as shown in Table A2.2. The starting flow rate 
was critical in selecting a syringe with the correct diameter to cover the required flow rate range for each liquid.  

Table A2.2 
Calculated Qo and Qmin values for the three precursor liquids.  

Parameter 2-propanol NMP ethylene glycol 

Qo =
εₒγ
ρK 

,
nl
s 

0.815 0.3275 1.25 

Q min_est =
6.1

CVN
2Qo 

Q min_est_flat = 6.1Qo ,
nl
s 

4.972 1.998 7.625 

Q min_fit = 8.175Qo
0.474 ,

nl
s  

7.42 4.82 9.09 

(note that 1E-12 m3/s = 1 nl/s). 
Using Qmin flat profile, the viscosity number (VN) is found to be less than one for all the three liquids leading to 
the selection of the equation for Qmin_est_flat. 

To determine the cone-jet window for each precursor liquid, electrospray experiments were carried out spraying downwards in cone-jet mode 
using nozzle to plate setup, with nozzle on high voltage and plate grounded. After setting the pump at the selected starting flow rate, if possible close to 
the calculated Qmin, the applied voltage was then increased slowly starting from zero with an aim of attaining stable cone-jet mode. From the 
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experiments, it was observed that a steady cone could only be attained within a given range of the applied voltage. For instance, in experiment 1, a 
steady cone is attained at Q = 55.56 nl/s within a voltage range of 4.6–5.8 kV. Starting for these 3 liquids, with the lowest possible flow rate, as 
determined by the pump, the flow rate was then increased each time recording the voltage range within which a stable cone was observed, using the 
naked eye, and the values recorded as shown in Table A2.3. Before reaching V1, a pulsating cone was observed which turned into a stable cone for 
voltage values between V1 and V2, then above V2 the cone splits into multiple jets. For 2-propanol and ethylene glycol, the lowest flow rate values that 
could be measured are close to the minimum flow rates. However, for NMP no value for Qmin or close to Qmin could be measured with the available 
pump. For all the three liquids, the highest flow rate values measured are their maximum flow rates. When the flow rate is increased beyond the 
indicated Qmax, the cone jet became unstable for all liquids, i.e. the cone jet shifted from the center to the side, i.e. the jet deviated from the nozzle axis. 
For each liquid, the experiments were performed in duplicate, and the average values later used to plot curves.  

Table A2.3 
Experimental flow rate and voltage values defining the cone-jet window for each precursor liquid used.  

Precursor liquid Flow rate Experiment 1 Experiment 2 Average 

(nl s− 1) V1 (kV) V2 (kV) V1 (kV) V2 (kV) V1 (kV) V2 (kV) 

2-propanol 5.56 4.2 4.5 4.2 4.45 4.2 4.475 
13.89 4.25 4.8 4.25 4.75 4.25 4.775 
22.22 4.3 5.1 4.35 5.15 4.325 5.125 
27.78 4.35 5.15 4.4 5.3 4.375 5.225 
55.56 4.55 5.75 4.6 5.8 4.575 5.775 
138.89 5.2 6.1 5.1 6.2 5.15 6.15 
194.45 5.6 6.25 5.5 6.3 5.55 6.275 
277.78 6.1 6.45 6.0 6.45 6.05 6.45 
361.11 6.4 6.5 6.35 6.45 6.375 6.475 
416.67 6.4 6.4 6.35 6.35 6.375 6.375 

NMP 27.78 8 8.9 8 8.8 8 8.85 
55.56 8.2 8.9 8.2 8.9 8.2 8.9 
83.33 8.4 8.95 8.4 8.95 8.4 8.95 
111.11 8.7 8.95 8.7 8.95 8.7 8.95 
138.89 9 9 9 9 9 9 

Ethylene glycol 5.56 6.5 6.7 6.9 7.1 6.7 6.9 
8.33 6.5 6.8 6.9 7.4 6.7 7.1 
11.11 6.7 7 6.9 7.4 6.8 7.2 
13.89 6.8 7 6.9 7.4 6.9 7.2 
27.78 6.9 7.6 6.9 7.6 6.9 7.6 
55.56 6.8 7.7 6.8 7.7 6.8 7.7 
83.33 6.8 8.3 6.8 7.7 6.8 8 
111.11 6.8 8.3 6.8 7.7 6.8 8 
138.89 6.8 8.4 6.8 7.8 6.8 8.1 
277.78 7 8.4 7 7.8 7 8.1 
416.67 7.4 8.5 7.4 7.9 7.4 8.2 
555.56 8.4 8.5 8.4 8.5 8.4 8.5 
583.34 8.4 8.4 8.4 8.4 8.4 8.4  

For each experiment, a curve of voltage versus flow rate was then plotted. The lowest measured flow rate values on the left side of the curve gave 
values close to the minimum flow rates for 2-propanol and ethylene glycol while the highest measured flow rate values on the right side of the curve 
gave values of the maximum flow rates for the three liquids.

Fig. A2.1. Voltage-flow rate curve used for the determination of the minimum flow rate (Qmin) and the cone jet window for 2-propanol.   
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Fig. A2.2. Voltage-flow rate curve used for the determination of the cone-jet window for NMP.  

Fig. A2.3. Voltage-flow rate curve used for the determination of the minimum flow rate (Qmin) and the cone jet window for ethylene glycol  

Appendix 3. Stress on the jet due to air friction 

We consider the stress due to the air friction on the jet. Let us assume that it is 

∼ μg
v
D

(A3.1)  

Where μg is the gas (air) viscosity, D is the diameter of the jet, and v the velocity of the jet. So the air friction stress increases with increasing v and 
increases with decreasing D. We consider varicose break-up and a flat radial profile of the axial velocity in the jet. 

For D we use equation (4): 

D=

(
ρεoQ4

I2

)1
6 

For I equation (6), with CVN = 1 

I =(2)(γKQ)
1
2 

So 

D =

(
ρεoQ3

4γK

)
1
6 with Q = Qmin  

In general for a liquid with only changing K: 

D ∼
Q

1
2
min

K1
6
,Qmin ∼ Qo =

εoγ
Kρ  

D ∼
(εoγ

Kρ

)1
2
/

K1 /

6 ∼
1

K1
2K1

6
=

1
K2

3
(A3.2) 
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v=
Qmin

A
∼

εoγ
Kρ

(
π D2

4

) ∼
1

KD2 with (A3.2)=
1

K
(

1
K

2
3

)2 =K1
3 (A3.3) 

So for one liquid with only changing K: if K increases, D decreases and v increases, and the stress by the air friction increases. 
Now we consider, as done in the text, ethylene glycol with i) K = 100 μS/m and ii) K = 9960 μS/m (in Table 2 this is rounded off till K = 0.0100 S/ 

m). For both i) and ii) there is a flat velocity profile, and varicose break-up.  

i) For Ki = 100 μS/m, vi ~16 m/s (see text). Di =
(
(1110)(8.85E− 12)(16.7E− 12)3

4(0.048)(0.0001)

)1
6
= 1.16E − 6m.  

ii) For Kii = 9960 μS/m, vii~74 m/s (see text). Dii =
(
(1110)(8.85E− 12)(1.2E− 12)3

4(0.048)(9960E− 6)

)1
6
= 1.44E − 7m so for case ii) equation (A3.1) ~ (74/1.44E-7) and for i) ~ 

(16/1.16E-6) and their ratio is about 37. 

The difference will be less because of slip. For spherical aerosol particles the slip correction factor for d = 1.16 mm is Cc~1.13 and for d = 0.144 
mm is Cc ~2.28 (realize that Cc comes in the denominator of eq. A3.1). (Hinds 1998) [28] 

N.B. if we compare these results with A3.2, we get 

Di

Dii
=

1
Ki

2
3

1
Kii

2
3

=
Kii

2
3

Ki
2
3  

so Di =
Kii

2
3

Ki
2
3
Dii = 3E − 6 m (in reality Di = 1.16E-6 m, so slightly out but order of magnitude OK). 

And with A3.3 

vi

vii
=

Ki
1
3

Kii
1
3

so vi =
Ki

1
3

Kii
1
3
= 15.96 m

/
s  
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