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ABSTRACT 

Even though there is progress in enhancing flood forecasting in Kenya, floods still continue to 

cause multiple casualties and substantial damages to infrastructure and properties leading to 

massive economic losses in areas like the Nzoia River Basin within Western Kenya. This 

unfortunately might worsen in the future, considering factors like climate change, urbanization 

and increased vulnerability of populations.  

 

The main objective of the study was to establish the teleconnection between ENSO and basin scale 

floods within the Nzoia River Basin. The datasets used included daily rainfall observations, the 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Potential 

Evapotranspiration (PET), Oceanic Niño Index (ONI) for ENSO analysis, and daily river 

discharge.  

To determine a comprehensive picture of rainfall across the Nzoia Basin, the rainfall data obtained 

was subjected to spatio-temporal analysis. Analysis entailed an identification of trends or patterns 

in the rainfall data, such as deviations in the intensity and frequencies of rainfall events over the 

years.  

From the results, there is an increasing trend of precipitation received over the basin from the 

western to the eastern part as evident from the mean annual precipitation ratio. Also, the basin 

receives consistently higher mean monthly rainfall from the months of March to May which 

represents the long rainy season in Kenya. 

The relationship between ENSO and daily rainfall within the Nzoia River Basin was determined 

through statistical analysis using the box and whisker plots. Box and whisker plots would represent 

the distributions of historical daily rainfall linked to ENSO over the Basin.  

To represent the relevant flood simulation processes within the Nzoia River Basin, the GR4J 

model, a lumped daily model, belonging to Soil Moisture Accounting Model (SMA) group was 

considered.  
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ENSO – daily rainfall relationship results showed a greater variability in the extreme daily rainfall 

response (95th Percentile) to strong El Nino events in comparison with the daily rainfall greater 

than 1mm. Further results also indicated that during some strong El Nino events, slightly less 

intense rainfall events were experienced within the basin.  

Hydrological modelling simulations showed that the observed and simulated flows have a similar 

pattern with rainfall variability over the basin except for a small bias that could be ascribed to 

either the response time of the catchment to extreme rainfall events especially during the ENSO 

years.  

The GR4J model showed a better performance with the Nash-Sutcliffe criterion (NSE) outcome 

values indicating an acceptable performance of above 50% both during the calibration and 

validation period.  Even though there was a difference amongst the calibration and validation 

phases, the GR4J acquires higher performance during the calibration phase hence could be 

efficient to perform and reproduce high river flows in the basin.  

The study findings enhance the existing knowledge on ENSO impacts on extreme rainfall and 

flooding and provide a foundation for routine provision of sub-seasonal to seasonal flood forecasts. 

This, in the long run is expected to contribute considerably to a better management and 

sustainable growth of socio-economic activities which have been greatly impacted by floods 

over the years.   
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

Floods are costly natural and short-lived events and can normally happen suddenly, occasionally 

with little or no warning (Gannon et al., 2018; D. A. Macleod et al., 2021; D. Macleod & 

Caminade, 2019) and commonly as a result of intense storms which enhance river run-offs than 

the normal channel or infiltration capacity. Floods normally occur as a result of an overflow in 

stream and river discharges and can cause massive destruction to property and loss of life. 

 

Compared to droughts which normally have slow onsets, the onset of floods is always rapid and 

result from excess rainfall. Even though the occurrence of floods is random, weather and climate 

patterns have a major influence. (Bates et al., 2010; Neumann et al., 2018). Other factors including 

land management practices also contribute to the heightening of land surface run-offs, contributing 

to river discharges and hence flooding.  

 

The East Africa’s and Kenya’s rainfall patterns shows significant variability both in space and 

time. This variability has been found to be a result of major interactions among several processes 

occurring in different timescales (Aming et al., 2014; Philip Omondi et al., 2013). Areas to the 

north of the region including parts of Uganda receives most rainfall between June and September. 

On the other hand, the central regions mostly bordering the equator have two main rainfall seasons; 

a main one occurring between March and May and a fairly shorter one from October to December.   

 

Major flooding events have affected the region greatly with the last decade due changes in the 

climate system (Otieno & Anyah, 2013; Serdeczny et al., 2016). Previous scientific studies like 

(Sciences, 2013; Shongwe et al., 2011; Stevenson et al., 2012; Tierney et al., 2015) have 

established that a combination of the effects of global warming and climate change have caused 

an intensification of the global hydrological cycle with changes in extreme rainfall characteristics 

like durations and frequencies. One of the major characteristic of the East African rainfall pattern 

is strong seasonal cycle with clearly distinct wet season within a better part of the region. (Tierney 
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et al., 2015). During the main rainfall season, drier periods normally compromise the accessibility 

of water available for faming activities and rain fed agriculture which a better percentage of the 

people normally relies on.  

 

The intraseasonal and interannual rainfall variability over the region is controlled by several 

remote forcing. Within the  October to December rainfall season, there exist a large year to year  

variability on interannual time scales and strong spatial consistency of rainfall pattern across most 

parts of the region, which has been linked to circulation anomalies within the tropical Oceans 

(Nicholson, 2017). Findings from previous studies indicates that during the main rainfall season, 

East African region experiences varying spatial variability which is weakly linked to global sea 

surface temperature anomalies (Endris et al., 2019; Shongwe et al., 2011; Stevenson et al., 2012). 

Recent observations indicate that there have been more frequent droughts within a better part of 

the East Africa even though the total amount received has reduced during the main rainfall seasons 

(Chris Funk et al., 2008; Verdin et al., 2005).  

 

El Niño-Southern Oscillation remains a significant recurring  occurrence which is one of the 

oceanic and atmospheric distribution of climate with a periodicity of about 8 years (Lau et al., 

2008; Trenberth, 1997). The ENSO phenomena has two extreme phases; a warm phase or 'El Nino' 

which denotes the warming within the Central or Eastern Pacific Ocean and ‘La Niña’, a cold 

phase which refers to the cooling within the Eastern or Central Pacific Ocean. Between these two 

extreme cases, is another phase referred to as ENSO ‘Neutral’. During the ENSO neutral phase, 

the SSTs within the Nino 4 region is always closer to normal. (Yan et al., 2013). 

 

ENSO signals have been captured in several global parameters including large scale convection, 

pressure, precipitation, cyclone activities tropospheric temperatures, monsoonal circulations as 

well as with non-climatic indicators like economic and biological consequences linking it to 

rainfall anomalies globally. (Hong et al., 2001). 

 

Findings from (Ambrosino et al., 2011; Bahaga et al., 2015; Diro et al., 2011; Philip Omondi et 

al., 2013) have also associated rainfall extremes over several parts of Africa including Eastern, 

Southern and Equatorial Africa to the ENSO phenomena. According to Omondi et al. 2013 and 
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Endris et al. 2019, significant teleconnections exits between ENSO and rainfall patterns within 

East Africa particularly throughout the Autumn and Summer seasons of the Northern Hemisphere 

with a robust association being evident along the coastal areas of Kenya during the autumn season.  

1.2 Problem statement 

Floods remains one of the major extreme events that threaten people’s livelihoods and lives within 

the Sub-Saharan Africa mostly because of great exposure and susceptibility of people. Even 

though there are currently early warning systems (EWS) in place, they have remained insufficient 

leading to increased impacts to people and properties. Kenya in particular has been susceptible and 

harshly affected by impacts of floods and climate variability owing to high seasonality and 

variations in the inter-annual rainfall (Conway et al., 2005; Schreck & Semazzi, 2004). 

Additionally, this vulnerability has further been worsened by low income levels among the general 

population that are exposed. (Beyene et al., 2010).  

Heavy rains still continue to have major societal impacts with rising societal impacts. This has led 

to loss of livelihoods and associated economic losses. Increased knowledge and understanding of 

the onset, magnitude and duration of the different phases of ENSO can provide a foundation for 

routine provision of sub-seasonal to seasonal forecasts and associated information and services for 

regions impacted by ENSO. 

Inadequate lead time for flood forecasts still remains a challenge. Further research is therefore 

needed to enhance the accuracy of long term flood forecasts allowing for better preparedness and 

response. According to (Joshua et al., 2014), the current flood forecasting models are not flexible 

for probabilistic or longer lead time forecasting. Another major challenge for Nzoia River Basin 

is a weak understanding of the major climate divers including ENSO. An expansion of such 

knowledge would therefore be vital in the operational monitoring and early warning of flood 

events, as well as formulating anticipation and mitigation procedures which are very fundamental 

when prioritizing the use of available resources for disaster response. 
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1.3 Research questions  

The following research questions were explored to achieve the study objectives.  

 

1. How is the distribution and characteristics of rainfall over Western Kenya in space and 

time?  

2. How do ENSO impact daily rainfall in Western Kenya?   

3. How is the linkage between flooding and extreme rainfall within the Nzoia River Basin 

during the ENSO years?   

1.4 Objectives  

The main objective of the study was to establish the teleconnection between ENSO and basin scale 

floods within the Nzoia River Basin. The following specific objectives were explored to achieve 

this main objective;     

a) To examine the space-time characteristics of rainfall over Western Kenya during ENSO years.  

b) To investigate the linkages between strong ENSO variations and intraseasonal rainfall during 

the OND rainfall season over Western Kenya.    

c) To examine the teleconnection between ENSO and flooding in over the Nzoia River Basin.  

1.5 Hypothesis  

For objective one and two, the hypothesis is that the distribution of the rainfall patterns within the 

basin is affected by both spatial and temporal factors. Spatially, this could be attributed to the 

topography and land use characteristics within the basin. Temporally, weather patterns and climate 

variability can influence the frequency, intensity, and duration of rainfall events. Through analysis 

of spatiotemporal patterns of rainfall data, a better understanding of the underlying factors that 

contribute to rainfall variability within the basin could be determined.  

For the third objective, the hypothesis for the study is that there exists a teleconnection between 

ENSO and basin-scale floods within the Nzoia River Basin, whereby warmer sea surface 
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temperatures associated with El Niño modes results in increased rainfall and hence flooding in 

downstream basins. 

El Niño events are always linked to be warmer-than-normal SSTs within the equatorial Pacific, 

which can impact weather patterns around the world. Previous research has suggested that ENSO 

may be linked to basin-scale floods, which occur in large river basins and can have significant 

socio-economic and environmental impacts. This hypothesis proposes that the mechanism behind 

this relationship is a teleconnection, whereby atmospheric and oceanic conditions in the Pacific 

Ocean influence rainfall patterns in downstream basins, leading to increased flood risk. Precisely, 

in El Niño years enhanced warming in the Pacific causes changes in atmospheric circulation 

patterns that cause more rainfall to fall in certain areas, potentially leading to increased runoff and 

flooding in downstream river basins. To test this hypothesis, the following research questions will 

be answered.   

1.6 Justification and Significance of the study  

The livelihoods and economies of countries within East Africa is reliant on agriculture which is 

normally rain fed and greatly sensitive to weather and climatic conditions. Extreme climatic 

conditions including floods have also been found to greatly affect agriculture in the region leading 

to low food productivity. (Kandji et al. 2006, Waithaka et al. 2013). Previous studies like Olila and 

Wasonga 2016, have unfortunately shown that climate variability within the region that is currently 

being observed is anticipated to increase owing to climate change effects. The subsequent effects 

of such changes will include adverse effects on food security situation in the region which might 

lead to other climate and food security related conflicts. Reports by AfDB 2014, Jane Kabubo-

Mariara and Kabara 2015 also indicates that climate extremes, variability and change continues to 

pose significant danger to food security despite progress that have been made in the region.  

According to Macleod et al., 2021 and Wainwright et al., 2020, the floods of 2018 in Kenya 

highlighted the potential impacts of unmatched climatic risks. Addressing these risks is 

consequently critical and efforts should be focused on building resilience among the most 

vulnerable populations. Studies from Bizimana, Bessler Regents, and Angerer 2016 also mounts 

to the fact that various climatic extremes including floods and droughts have increased over the 

recent years in frequency and intensity within the Eastern Africa region including Kenya.  
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Several studies have highlighted the teleconnection between various climate drivers and East 

Africa and Kenya’s rainfall variability. Precisely, ENSO is considered among the major drivers of 

interannual climate variability within the tropics. Previous studies like (Giannini, 2010; Giannini 

et al., 2008; Plisnier et al., 2000) have linked ENSO to noticeable effects on interannual rainfall 

variability over East Africa and specifically Kenya.  

 

Based on these previous research findings, one of the best approaches of identifying best policies 

to support the most exposed in areas affected by these extremes is to understand the forces that 

control the monthly or seasonal weather and climate patterns. The study will document past and 

current climate trends, identify main patterns of variability and determine how these patterns align 

with flooding trends in West Kenya region. This will help determine in advance the likely impacts 

of these events on livelihoods hence reliable information can appraise the most susceptible and 

further and plan interventions. 

 

Building upon the existing knowledge of the influence of ENSO, the results generated from this 

study will also contribute towards a better understanding of the atmospheric circulations over 

Western Kenya and East Africa as a whole. The findings will provide a crucial information needed 

for monitoring and early warning of extreme events in Western Kenya.  

 

1.6.1 Impact Based Action Approach   

In spite of the constant progress flood forecasting in Kenya, floods still continue to cause multiple 

casualties and substantial damage to infrastructure and properties yearly leading to massive 

economic losses for flood prone areas like the Nzoia Basin in Western Kenya. This trend 

unfortunately might worsen in the future, considering factors like climate change, urbanization, 

increased exposure and vulnerability of populations. Studies by the European Environment 

Agency has shown that annual floods have caused major losses and the same will likely rise to 

fivefold by 2050 and up to 17-fold by 2080. For improvement of Early Warning Systems (EWSs) 

of extreme rainfall and floods, a shift is needed from hazard to impact forecasting.    
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Seldom, both meteorological and hydrological forecasts are linked to quantifiable estimates of 

their potential impacts. As a result, actions from institutions in charge of emergency 

preparedness/response are grounded on the knowledge accrued by the scientists/forecasters from 

computer analysis. This, on the other hand makes the decisions to safeguard population and assets 

to be determined through a personal perception of local risk conditions. Hence, in as much as there 

is an understanding of what is likely to happen in terms of weather, what the weather might do still 

remains a challenge. (World Meteorological Organization (WMO), 2021)  

 

For an improvement of the Early Warning Systems, transitioning from a hazard to impact forecasts 

is necessary. Impact-Based Flood forecasting is a methodology that focuses on providing accurate 

and timely information on the potential impacts of flooding affecting communities and 

infrastructure, in addition to traditional flood hazard information such as water levels and flow 

rates. The impact based approach emphasizes the importance of providing information on potential 

impacts of a flood, which enables stakeholders to take appropriate action in a timely manner, 

reducing loss of life and destruction of property. By focusing on impacts, rather than solely on 

hazard, the approach can help ensure that emergency response resources are deployed more 

effectively and efficiently. 

1.7 Study area 

1.7.1 Domain and Physical Features of the Study Area 

The Nzoia River Basin (Figure 1) lies between longitude 34°-36°E and latitude 0°03-1°15´ N in 

Western Kenya. The river is approximately 334km long and drains into Lake Victoria, the biggest 

freshwater lakes in Kenya. The Nzoia River basin is one of the largest river basins in Kenya and 

has an approximate area of 12,900km2 .The basin lies within and an altitude range of between 1100 

to 3000m (Othieno, 2022) with areas around the Mt. Elgon and Cherangani Hills serving as the 

main river sources.   
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Figure 1: Nzoia River basin map and associated river network (green). Source: Othieno, 2022 

 

1.7.2 Climatology of the study area  

The Nzoia River Basin generally experiences two rainfall seasons, a long rainfall season from 

March to May, with a shorter one from October to December. rainfall throughout the year, with a 

maximum in the month of April. (Omondi et al., 2014). It is important to note that the, for long 

rains, onset always vary between the start of March to end of April over the basin. 

 

The Nzoia River Basin’s climate is typically tropical humid with daily temperatures ranging 

between 16ºC to 280c within the highland regions of and lowers areas respectively.(Othieno, 2022). 

The basin’s economy is mostly rural-based small scale farming with nearly 90 per cent of the 

population earning a living from keeping livestock and subsistence agriculture.(Joshua et al., 

2014). The lower areas of the basin is generally flat, swampy and flood prone is characterized by 

mainly clay soils.  Most of the farmlands are individually owned with food crops like maize, beans, 

groundnuts, sorghum, cassava, potatoes, millet and bananas grown (Notification et al., 2006).  
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The Nzoia River plays a great economic value both to the locals and a country as whole especially 

in sectors like agriculture, transport, fishing and tourism. The basin has been considered for this 

study because of its great local and regional importance and majorly because been prone to 

flooding.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 Introduction  

The existing literature on Rainfall characteristics within the Nzoia Basin, ENSO, and flooding in 

Western Kenya is reviewed in this section.  

2.2 Spatial-temporal characteristics of Western Kenya’s rainfall 

The climate of East Africa shows major a spatial heterogeneity because of great topographical 

disparities over the region. Within the region, rainfall peaks occur during the boreal spring and 

autumn with an equatorial rainfall regime prevailing. The boreal spring rains normally occurs 

between March to May with the autumn one in the October-November period.(B. O. Ayugi et al., 

2018; C. Funk et al., 2014) Previous studies like Vigaud, Lyon, and Giannini 2017 indicates an 

annual rainfall bimodal pattern over a better part of the region with the local climate distribution 

being linked mostly to the latitudinal movement of the ITCZ. The ITCZ pattern predominantly 

modifies the South East and North East trade winds during the Northern and Southern summer 

respectively, resulting into two main rainfall seasons from March to May normally called ‘long 

rains’ with a shorter one occurring as of October to December. (Lyon, 2014; Philip Omondi et al., 

2013).  

 

With most of the agricultural activities being rain fed, a better part of the East Africa and Kenya’s 

population in particular remains vulnerable to weather and climate variations hence making the 

country greatly food insecure.(Shukla et al., 2014). This has been worsened by occasionally both 

rainfall seasons  (Lyon & Dewitt, 2012) resulting in major droughts and humanitarian crisis 

affecting millions of people across the country.  

 

Kenya is specifically located within the Indian and West African monsoons border with rainfall 

regimes in the bordering Ethiopia and South Sudan being  closely associated with the West African 

monsoon (Nicholson, 2017). Also, both the northeasterly and easterly flows that occurs between 
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November and March associated with the Indian monsoon has also been found to be linked to the 

West African monsoon.(Endris et al., 2019) 

Western Kenya’s general rainfall  pattern has been found to be heterogeneous, owing to the 

intricacy of both large and small scale divers (Aming et al., 2014). Some of these drivers include 

water bodies like lakes and maritime influence, topography and dynamics of seasonal variations 

of circulations within the tropics. Even though the rainfall amount received varies seasonally and 

greatly over short distances, there is relatively a strong consistency in the inter-annual variability 

patterns.(Endris et al. 2019, Funk et al. 2014).  

 

Due to ITCZ passage, the Nzoia River Basin also has two rainfall seasons every year. However, 

there are also influences of local features like Lake Victoria that alter the normal distribution, 

occasionally leading to a rainfall peak between the main seasons.(Odwori & Wakhungu, 2021). 

The annual mean rainfall received within most parts the region ranges between 800 and 1200 mm  

(Cattani et al., 2018; Mutai & Ward, 2000; Nicholson, 2017) but is much higher over highland 

areas and reduces much over lower areas.  

2.3 The El Niño-Southern Oscillation (ENSO)  

2.3.1 Main Features  

ENSO is a significant climate variability which occurs when sea surface temperatures and pressure 

are high and low respectively across the Equatorial Pacific. The East Africa and Kenya in specific 

is among the areas where the impacts of ENSO have been experienced in terms of both temperature 

and rainfall anomalies. 

(Wang et al., 2017) describes it as stable mode mainly triggered by the forcing of stochastic or 

mode of naturally self-sustained oscillation coupled by the system of the ocean – atmosphere. 

According to (Lehodey et al., 2021), it is currently known as one of the largest world’s fluctuations 

in natural climate. 

ENSO’s two main features - El Niño and Southern Oscillation (ENSO) are mainly two diverse 

occurrences with similar and closely connected characteristics (Gannon et al., 2018). Wang et al., 

2017 describes Southern Oscillation as one that is categorized by the inter-annual sea level 

pressure fluctuation in the tropics between the Western and Eastern Pacific which comprises of a 
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strengthening and the slackening of the easterly trade winds over the tropical Pacific. (Kim et al., 

2021) states that the Southern Oscillation is an air pressure fluctuation in large scale and its 

negative phase occurs in the El Niño periods and positive in the La Niña periods. 

El Niño-Southern Oscillation (ENSO) is considered a major driver of climate variability on an 

inter-annual timescale with different theories used in its description including the linear stochastic 

theory. 

2.3.2 ENSO Impacts and Teleconnections  

Several studies have done to understand the teleconnection between rainfall and climate drivers 

within the East African region. Chris Funk et al. 2008 for instance associated the positive SST 

trends within Central and South Indian Ocean to negative trend in rainfall anomalies and 

modification of regional moisture and wind patterns.  

 

Williams and Funk 2011 linked drier conditions within the region to higher SST gradients within 

the Indian and Pacific region. However, studies by Lyon & Dewitt, 2012 provided a linkage 

between the drier conditions to variations SSTs in the tropical Pacific basin coupled with 

strengthening in Western Pacific. Previous studies to understand the East Africa’s seasonal rainfall 

variations have also associated the same to variations in sea surface temperatures within the 

southwest Indian Ocean (Cai et al., 2014, 2015; Wang et al., 2019). Ogallo, Janowiak and Halpert 

1988; Indeje and Semazzi 2000 among other researchers also studied the linkage between the SST 

over Pacific and inter-annual variability of rainfall over East Africa.  

 

Both Goddard and Mason 2002 and Goddard and Graham 1999 have shown that wind anomalies 

at low levels which occurs during El Niño or La Niña years results in the warming or cooling 

within the Western Indian Ocean zonal SST gradient which is anomalous usually occurs across 

the Indian Ocean basin causing enhancement or reduction of rainfall to the far east and  is 

enhanced/reduced in the east and on the other hand reduction or increase over East Africa region 

in the west. 

 

Several studies have also  acknowledged the recent reduction in the long rains since 1998 or 1999 

to date (Endris et al., 2019, Lyon and Dewitt 2012 and Pricope et al. 2013 ). Other studies have 
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provided further indication that the East Africa long rains abruptly shifted through the tropical 

Pacific SST forcing ((Liebmann et al., 2017; Lyon, 2014; Lyon & Dewitt, 2012) while recent trend 

in warming of the Pacific warm pool has been linked with strong Walker circulation, largely driven 

by tropical Pacific SST gradient (Bahaga et al., 2015; Cai et al., 2014, 2015; Diro et al., 2011; 

Enfield & Mestas-nuñez, 2010).  

 

However, with less information well-known at intraseasonal scales there still remains a need for 

an improvement in knowledge gaps for understanding the rainfall variability and various 

atmospheric processes. A couple of studies like Berhane and Zaitchik 2014 and Shongwe et al. 

2011 depicts an existence of a sub-seasonal connection between the MJO and the variability of the 

East African long rains. This variability operates through several mechanisms including the Somali 

low-level jet modulation. 

 

Previous studies by Ogallo, Janowiak, and Halpert 1988 have linked extreme rainfall anomalies 

over equatorial, eastern and Africa to ENSO. Important teleconnections between the seasonal 

rainfall over several regions of East Africa and southern oscillation, particularly in the seasons of 

northern hemisphere autumn and summer were observed by this study. Also (Ogallo, Janowiak, 

and Halpert 1988) showed that strongest relationships occurred during the autumn season along 

the coast of Kenya with evidence of a relationship between austral summer rainfall anomalies and 

cold and warm ENSO phases.  

Mutemi et al., 2007 found a strong connection the evolutionary ENSO phase and the rainfall within 

East Africa, with his findings indicating that ENSO mainly plays major role in the determination 

of the monthly and seasonal patterns of rainfall in the East African region. (Mutemi 2003) also 

observed shifts in the onset and cessations of patterns of rainfall over certain region with a 

reduction that is significant in seasonal peak being evident in others.  

Funk et al. 2014 showed that a change in the SST gradients could lead to the strengthening of the 

Walker circulation branch within the Indian Ocean which may in turn enhance subsidence on East 

Africa.  

 

According to Korecha and Barnston 2007 and Diro, Grimes, and Black 2011, the main driver of 

East African rainfall variability during the JJAS season has been linked to the linked to the tropical 
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seas surface temperatures and ENSO. Overally, the East African interannual rainfall variability 

have been linked to these SSTs and IOD.  

 

Nonetheless, these past findings have not yet entirely proven the interannual rainfall and ENSO 

linkages specifically in Kenya. Broad questions proposed in this study will offer further insights 

into the key above-mentioned climate linkages. Furthermore, this study will lay a foundation for 

improvement of the existing statistical prediction models for Kenya’s rainfall on intraseasonal 

scales, by ascertaining significant thermodynamic and dynamic oceanic and atmospheric variables.  

2.4 Other large-scale drivers of Rainfall in Western Kenya   

The distribution of rainfall in Kenya is influenced by several large scale drivers. These systems 

range from local scale to global scale as well as local physical features. Their interactions normally 

in complex ways brings about the observed distribution of rainfall in Kenya. These systems include 

mesoscale systems (for example, land, lake and sea breezes), synoptic scale systems like the 

tropical cyclones, subtropical quasi-permanent anticyclones (Mascarene, St. Hellena, Arabian, and 

Azores), global teleconnections with global climatic anomalies like El Nino Southern Oscillation 

(ENSO), dipole modes like the Indian Ocean Dipole (IOD), Madden-Julian Oscillations (MJO), 

Quasi-biennial Oscillations (QBO), jet streams, monsoons and easterly waves. The subsequent 

sections offer brief descriptions of how these systems affect the Kenyan climate.  

2.4.1 Inter-Tropical Convergence Zone (ITCZ) 

The Inter Tropical Convergence Zone is a fine area which normally forms around the equator 

where North westerly and South Easterly winds converge. (Byrne & Schneider, 2016). According 

to Liu et al., 2020 the formation of the ITCZ is normally responsible for over 30 percent of the 

global precipitation with variability affecting most people living within the tropical regions. ITCZ 

has also been found to be strongly associated with the Hadley cell atmospheric circulation where 

it reflects both thermodynamic and dynamic tropical coupling and interactions between the air and 

the sea over oceans (Xiang et al., 2018).  

According to Mukabana, 1992 and Mutai et al., 1998, the ITCZ is the dominant rainfall feature in 

the region characterized by mass convergence at low level with intensified precipitation that 

encircles the equatorial region.  
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Following the seasonal insolation cycle, ITCZ moves across the equator north and southwards and 

it is closely associated with the seasonal monsoon circulations (Byrne & Schneider, 2016). This 

movement is one of the prominent patterns in the prediction of shifts in the large scale drivers of 

precipitation as depicted by global climate models in relative to the climate change response.  

The oscillation of the ITCZ over East Africa reaches extreme positions over eastern Africa during 

July at 15ºN and January at 15ºS. This oscillation is portrayed in the bimodal nature of rainfall in 

the larger equatorial east Africa. Suzuki, 2011 showed that the ITCZ is characterized by deep 

convection, zonal moisture convergence and that its seasonal variability is because of solar 

insolation changes. 

 

Over East Africa, Okoola, 1999 identified that the ITCZ is influenced by the vigor of the sub-

tropical highs. Okoola, 1999 identifies that the onset and cessation of the March to May rains 

within East Africa is closely associated with the modification of the Inter Tropical Convergence 

Zone by active convection in the regions of Madagascar (Arabian Sea). Also, the incursions of 

moisture into the Madagascar region during the long rains create oscillations of active convection 

between parts of the Indian Ocean and Central Africa.  

 

2.4.2 Indian Ocean Dipole (IOD)  

The Indian Ocean Dipole is a natural kind of variation in climate which occurs mainly due to the 

oceanic and atmospheric coupled interactions within the Indian ocean and is linked to several 

variations in the atmospheric state within the Equatorial Indian Ocean on inter-annual time scales. 

(Hameed et al., 2018). Yuan et al., 2018 highlights IOD’s significant global impacts with 

predominantly severe consequences in the areas around the Indian Ocean basin. Studies by 

Ummenhofer et al., 2009 has also linked IOD’s variability to some of the worst droughts in  

Australia. Cai et al., 2012 also stated that a positive IOD event increases the threats of fire within 

the some regions in Australia during the following austral summer season. According to Anderson 

et al., 2019, there has also been associations of couple of Indian Ocean Dipole events to an increase 

in food security risks by affecting crop yields. From the same study and Hashizume et al., 2012, 

other associated risks from this climate mode within the East Africa region includes flooding and 

disease outbreaks.  
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Study by Abram et al., 2020 have shown that a negative IOD event comprises the intensification 

of the zonal sea surface temperature gradients with warming up and cooling in the East and West 

respectively. Although the negative IOD are generally weaker than positive IOD events they still 

have caused significant impacts. For instance, the most potent negative IOD event on record which 

happened in 2016 led to heavy rainfall within the Australia and Indonesia region while enhancing 

extreme drought in Eastern Africa. (Lim et al., 2017).   

2.4.3 Madden-Julian Oscillation (MJO)  

The Madden-Julian Oscillation (MJO) comprises of a wave of tropical convection which oscillates 

from East to West round the globe orbiting through the equator. (Madden & Julian, 1971). The 

Madden-Julian Oscillation, can be identified in analysis of atmospheric variables since it has 

unique signatures of zonal wind, temperature and pressure anomalies. The MJO convection has a 

period in the range of 30-60 days and the average speed is about 5m/s.  

 

The monitoring and detection of MJO events is based on the criteria put forward by Waliser et al., 

2009 as follows: - Persistence of OLR anomalies for at least four pentads whereby the zonal 

existence of the anomaly must exceed 30 degrees of longitude; OLR at the centre should be almost 

-15 W/m2 and the strongest events should have a minimum 50 degrees’ longitude wide and -25 

W/m2. This classification is useful for diagnostic studies and as well for monitoring active weather 

systems. The most widely used index for MJO propagation monitoring was developed by Wheeler 

& Hendon, 2004. The index commonly known as the Real-time Multivariate MJO index was 

founded on a pair of principal component time series.  

 

In Kenya, the Madden-Julian Oscillation has been attributed to the variation in the intra-seasonal 

rainfall during both the March to May Season and the October to December rains. (Pohl & 

Camberlin, 2006). In the long rainfall season of MAM, Sandjon et al., 2014 identified that the 

convection in the region 70/80ºE and 120ºW greatly influence variability of the early March and 

late May rainfall. This shows that the MJO has the possibility of influencing the seasonal length 

of rainfall in the region. The MJO signal however has not been detected during April. 

 

Studies by Pohl & Camberlin, 2006 also concurs that the MJO influences the variability of the 

MAM rainfall by triggering early onsets of the season as well as the occurrence of significant wet 
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events at the beginning of the season. For October – December season, the MJO strengthens at 

120oE (10oW) and has been linked to the occurrences of dry (wet) spells confined only to the East 

African coast. However, the effects of the system are variable from year to year. According to 

Omeny et al., 2008, the MJO can also be used to proficiently forecast the intra-seasonal rainfall 

variability over some regions within East Africa. 

 

2.4.4 Tropical Cyclones  

Tropical cyclones are defined as low pressure centres in the tropics that are characterized by 

rainfall and strong winds of atleast 32m/s that is approximately 64knots. Tropical cyclones can 

also be referred to as typhoon or hurricanes (P. J. Klotzbach & Oliver, 2015)   

According to Klotzbach et al., 2019 tropical cyclones are among the most destructive natural 

catastrophes that causes many fatalities and damage globally every year. The losses associated 

with the tropical cyclone from 1971 to 2016 are about $700billion according to Zsótér et al., 2016  

and in 2017 the losses were around $284.7 billion (CRED, 2019).  

Tropical cyclones that modulate the weather in Kenya normally occurs within the South Western 

Indian Ocean (SWIO). The effects of these systems normally depends on the season, basin of 

formation and the prevailing synoptic flows (Ongoma et al., 2015). The conditions favorable for 

their formation include SSTs of at least 26.5ºC, reduced vertical wind shear and moisture 

availability. For this reason, the formation of the cyclones is usually enhanced during active MJO 

phase over the Indian Ocean.(Ash & Matyas, 2012; P. J. Klotzbach & Oliver, 2015) 

 

2.4.5 The Quasi-Biennial Oscillation (QBO) 

Quasi-Biennial Oscillation is a lower stratospheric circulation involving changes in the phase of 

zonal winds where we have easterlies for one year and westerlies for another year. The 

development of the QBO normally starts in the top lower troposphere spreading downwards at an 

approximate rate of around 1.2km per month. However, this pattern decays upon reaching the 

lower tropopause (Pascoe et al., 2005).  

 

A couple of studies have linked the occurrence and distribution of rainfall within East Africa to 

the Quasi-Biennial Oscillation patterns. Ogallo et al., 1988 and Omondi et al., 2012 identified a 
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2.5-3.7-year rainfall patterns which shows the influence on the QBO on the regional rainfall. The 

lower stratospheric flow has also shown that extremely excess (deficient) rainfall is associated 

with easterly (westerly) wind phases (Ng’ongolo & Smyshlyaev, 2010). The findings of this study 

based on regression techniques, showed that the QBO phase usually for the months preceding the 

March to May season is suitable for rainfall prediction. Indeje & Semazzi, 2000 found that MAM 

and JJA rainfall can be forecasted up to a lead time of four months based on the QBO. 

 

2.4.6 East African Low Level Jet (EALLJ)  

A jet stream is a fine horizontal current of air characterized by strong vertical and horizontal wind 

shear and featuring several velocity maxima in the world. The East African Low Level Jet is 

southerly low level jet originating from the southern Indian Ocean and is mainly responsible for 

moisture transport during the Indian summer monsoon. The jet can be observed at 850mb wind 

vector (Subrahmanyam, 2014). According to (Oscar et al., 2022) the EALLJ forms as a result of 

cross-equatorial northerly advection of planetary vorticity that is directed to the east coast of Africa 

by the north-south barrier highlands of East Africa. 

 

The East African highlands are understood as key in restraining the westward advance of the jet, 

thereby promoting the eastward flow upon crossing the equator. The discovery of this flow is 

credited to the work of Findlater, 1977. The path of the jet over the lowlands of Kenya, Ethiopia 

and Somalia is associated with high wind speeds. The diffluent nature of the jet yields dry 

conditions in the region, save for the coastal zones (Camberlin et al., 2010).  

The East African Low Level Jet normally originates within the South West Indian Ocean with 

associated development to the intensification of the Indian Ocean Anticyclone during the southern 

hemisphere winter. The jet being diffluent at low levels, it thus does not bring precipitation over 

the East African region. However, it is responsible for moisture transport into the summer 

monsoonal region of India.  
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2.4.7 Sub-Tropical Anticyclones 

East Africa is influenced by both continental and maritime anticyclones. The anticyclones are 

normally synoptic and near permanent high pressure cells which affects the wind flow and hence 

moisture and temperature in the region. Their existence is characterized by regions of large scale 

subsidence located in the borderline of Ferrel and Hadley cells (Tyson et al., 1996). 

 

The Arabian and Azores Highs normally exists in the Northern Hemisphere while the St. Helena 

and Mascarene High occurring in the Southern hemisphere. Due to pressure differences, north 

(south) hemisphere highs control the flow of the north (south) easterlies. The convergence of these 

two hemispheric flows generally determines the location of the ITCZ. The highs intensify 

(weaken) during the respective winter (summer) seasons. 

 

In modulating the wind patterns, the anticyclones normally affect the transport of moist air from 

the Indian Ocean into Kenya. For other regions like the Atlantic Ocean, the St. Helena high has an 

influence in promoting the influx of moisture into western Uganda, western Kenya and Tanzania 

during the JJA season leading to rainfall. The enhancement of both the Mascarene and the St. 

Helena highs have also been associated with increased rainfall events in East Africa. The 

Mascarene high can be identified at lower troposphere and migrates within the latitudes 30 - 35ºS 

(Manatsa et al., 2014). The Mascarene high, which drives the south easterlies over a longer 

trajectory over the Indian Ocean results to intense moisture influx into the region thereby 

responsible for the long rains during MAM. The anomalous zonal displacement of the Mascarene 

High has great influence on the variability of the OND rainfall over East Africa. With the 

displacements to the west (east), the heat and moisture field of the South Indian Ocean is modified 

resulting to suppressed (enhanced) convective activity over the western Indian Ocean and thereby 

increasing the likelihood of depressed (enhanced) rainfall over East Africa (Manatsa et al., 2014). 

 

The Arabian high is responsible for the north easterly flow. However, the north easterlies have 

little moisture due to their short transverse over the ocean and thereby their influence results to the 

short rains during OND. The dynamics of these anticyclones; position, orientation and intensity as 

well influence the characteristics of the ITCZ. The Azores high usually modulates the northward 
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boundary of the West African ITCZ. However, declining trends of rainfall over Kenya, Tanzania 

and Ethiopia have been associated with the strengthening of the Azores high. 

 

2.4.8 Monsoons  

Monsoons are moist circulations of summer that provide many countries with the most annual 

rainfall in both the subtropics and the tropics therefore influencing more than a third of the 

population of the world (Geen et al., 2020). They are also dominant features of the climate of 

tropical and subtropical in most of the world’s regions and they are associated with prevailing 

winds being seasonally reversed, summer seasons that are rainy and winter seasons being drier. 

Like the other divers already discussed above, the coastal currents driven by the monsoon winds 

have been found to have an effect on the circulation of water around the coastal East Africa. 

(Kamau et al., 2020).  

Monsoons are normally formed from the cross- equatorial pressure gradient development which is 

produced by various physical properties of associated land, ocean and atmospheric systems like 

differential heating. Through such processes, heat that is normally stored by the oceans and land 

is transported vertically and modified through differential heating by moist processes,  

2.5 Causes and Impacts of Floods in Kenya    

Floods have been a part of Kenya's history since ancient times. Kenya has experienced several 

notable floods throughout its history. Some significant flood events in Kenya are the 1961 Tana 

River floods which was caused by heavy rainfall along the Tana River in eastern Kenya, The El 

Niño weather phenomenon in 1997/1998 which brought heavy rainfall and widespread flooding 

to various parts of Kenya, 2006 Kenya experienced heavy rains that led to flooding in different 

regions such as Nairobi, Nyanza, Rift Valley, and Coast provinces, the period between 2010 and 

2011 saw heavy rainfall and flooding in different parts of Kenya like Nairobi, Rift Valley, Coast, 

and Nyanza and  2018, Kenya experienced heavy rainfall that triggered floods in various areas, 

including Nairobi and western Kenya. 

 

Flooding in Kenya arises from various factors and circumstances and the causes can be attributed 

to various factors, including meteorological, geographical, and human-induced factors. 
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Meteorologically, heavy and prolonged rainfall is a primary trigger for flooding. The country 

normally has two rainfall seasons – a long season occurring between March and May, and a shorter 

season from October to December. Both seasons are characterized by intense precipitation, 

overwhelming the natural drainage systems. Kenya's geographical features, such as its proximity 

to the equator, extensive river systems, lakes and steep terrain, exacerbate the impact of heavy 

rainfall by rapidly channeling water into vulnerable areas. (Kilavi et al., 2018 ) 

 

Okaka and Odhiambo, 2018 stated that both climatic and non-climatic factors have played a role 

in past and future flooding in Kenya. The El Niño phenomenon, largely influenced by global 

warming, normally contributes to a higher flood frequency throughout the entire country. The 

1997/98 El Niño event is a good example of the devastating floods it can cause. Seasonal rainfall 

anomalies in East Africa are influenced by SSTs anomalies in the Indian Ocean, particularly when 

they coincide with El Niño events, as seen in 1997/98. The response of the Indian Ocean 

temperature to tropical Pacific fluctuations occurs with a few months' time lag. The massive 

flooding experienced in Kenya during the 1997/98 El Niño phenomenon serves as a notable 

example. 

 

Even though floods are affected by climate patterns, the drainage basin characteristics and land 

use both in the upper and downstream including construction of dams and reservoirs influence 

flooding within a basin. In urban areas, the vulnerability to flood hazards and risks can be attributed 

to both natural and man-made factors. (Olang & Fürst, 2011) 

 

Recently in 2021, the country has experienced significant flooding events over a better part of the 

country. (Wanzala, Ficchi, et al., 2022) Data from the Emergency Events Database reveals the 

country has experienced big flooding events averagely once every two years, with more than 

70,000 people being affected per event (B. Ayugi et al., n.d.). According to B. Ayugi et al., n.d., 

the country has experienced 17 major flood occasions between 1964–2004 with high impact events 

occurring in 1961, 1997–1998, 2006, 2012, and 2018.  

 

Even though there are benefits of heavy rainfall and flooding including replacement of surface and 

groundwater resources, enhanced crop yields and livestock fodder among others, losses from the 
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big events have been massive, ranging from water system damages, infrastructure and 

communication systems and water borne diseases (Gannon et al., 2018) with have affected millions 

of people across the country. Gannon et al., 2018 for instance, the flooding events of the 1997/1998 

El Nino costed at least USD $870 million, nearly corresponding to 10% of Kenya’s GDP. 

Averagely, Kenya experiences a flooding event costing around 5.5% of the country’s GDP every 

seven years. 

 

From previous studies including Kilavi et al., 2018 found out that most flooding events in the 

country occur during the March to May season (long Rains). However, major large-scale climate 

drivers like ENSO that control weather and climate variability are more active during the OND 

rainfall season. Even though there are initiatives to enhance forecasts of extreme rainfall and 

flooding in the flood prone areas including Western Kenya, limited understanding of major climate 

drivers still exists. An increased understanding of the teleconnection of ENSO and flooding in 

Western Kenya will enhance forecasts skills and co-production of products over longer lead times 

and integration into Early Warning System using an Impact Based Action Approach. 

 

According to Owuor & Mwiturubani, 2022, floods can occur in certain river basins even under 

normal rainfall conditions. This occurrence is mainly attributed to the excessive runoff of surface 

water caused by unfavorable land practices, such as deforestation, degradation of land upstream, 

and inadequate cultivation methods. 

 

Talha et al., 2019 found out that most of the floods that induce loses socio-economically are mainly 

exacerbated by the unabated upsurge in population, development in the urban area, indiscriminate 

land use and systems that are unregulated in the municipal systems hence it is therefore important 

to implement a system for the prediction of flood than can potentially be helpful in the 

consequences of the flood that are induced. 

 

Tempest et al., 2017 indicates that floods have both effects on mental and physical health and it 

has been associated with the increase in the majority of the effects of the mental health such as the 

anxiety, post-traumatic stress disorder and depression which can persist several months and years 

afterwards. 
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In Kenya, the vulnerability of infrastructure to floods is a cause for concern since in the recent 

years, the country has encountered major floods episodes that led to high occurrences of most 

failure in the infrastructure hence leading to loses that are socio-economically associated with the 

interference with the infrastructural services like the damages of the road networks, social 

facilities, buildings and even energy facilities (Njogu, 2021). Study done by the Kenya Institute 

for Public Policy Research and Analysis (KIPPRA) revealed that the floods episodes of 2017 and 

2018 in Kenya that occurred in 27 counties had a wide range of effects on user’s infrastructure 

across the different counties. 

 

Flooding disrupts the environmental balance and often creates a favorable environment (breeding 

grounds) for the proliferation of pathogens and vectors. According to (Brown and Murray, 2013), 

diseases that are most susceptible to flooding are those that rely on waterborne transmission 

between hosts or require a host/vector for their life cycle therefore flooding can impede access to 

and delivery of urgent medical services, leading to further spread of infectious diseases.   

2.6 Flood Modelling  

Flood modeling is the method of using advanced mathematical and computational techniques to 

simulate and predict the behavior and consequences of floods in a particular region. It involves 

analyzing the intricate relationships between various factors like rainfall, water runoff, river 

channels, floodplains, and more, to understand how flooding occurs and its impact on the area. 

Part of the focus for the study will be to model basin scale flooding within the basin.  Nzoia River 

Basin is a medium sized and has been selected for this study because it’s among the main basins 

that are susceptible to flooding the country. The basin also benefits from long and high quality 

daily discharge datasets.   

2.6.1 Introduction to Hydrological Models 

Hydrological models are beneficial in both short and medium scale flood predictability (Alfieri et 

al., 2013; Emerton et al., 2018), risk and hazard mapping, climate and water resource assessment 

among other uses. (Krysanova et al., 2017). Hydrological variables including stream flow are 

predicted by hydrological models of different types and which require different input parameters. 
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In circumstances where few input data exist, these models can always also be used to estimate 

river flow and runoff within ungauged catchments. (Parajka et al., 2013). 

 

According to (Paul et al., 2020), hydrological model selection for research and or operational flood 

monitoring and forecasting is not easy due to the representation of different processes, availability 

of input data, minimization of uncertainties and errors within the modeling chain.  

 

From (Melsen et al., 2019), the choice of model for any application at times becomes difficult 

because of several reasons including;   

 

(i) Most hydrological models are not custom-made to particular climate or conditions. 

This elimination of various processes at times challenging. 

(ii) Similarity in the characteristics and weaknesses of various hydrological models.   

(iii) Generally, there is a lack of a classification to rank models and ascertain 

appropriateness  

(iv) The over reliance only on streamflow for model evaluation, which in most cases is too 

limited to differentiate among models, specifically calibrated models.  

 

Wanzala et al., 2022 highlighted a procedure for preselecting models with a filter classification 

used for flood prediction applications in the country. The paper concentrates on six aspects of 

hydrological modelling; (i) Representation of the various processes (ii) Applicability of models to 

various climatic and physiographic backgrounds, (iii) Model resolutions and data requirements, 

(iv) Smaller scale downscaling capabilities (v) Accessibility of various model codes (vi) 

probability of operationalizing the model.  

These assessments served as an objective model preselection criterion for choice of a hydrological 

model for use in this work.   

 

2.6.2 GR4J Model  

The GR4J model, often referred to as the "Génie Rural à 4 paramètres Journalier" model, is a 

hydrological model utilized for rainfall-runoff modeling at the daily scale. This model was 

developed by researchers associated with the French National Institute for Agricultural Research 
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(INRA). It is a conceptual model with lumped characteristics, signifying that it represents 

hydrological processes at the catchment scale without explicitly considering variations in space 

within the catchment. It is specifically designed to simulate the conversion of rainfall into runoff 

and has been widely used in water resource management, flood forecasting, water resource 

management, and hydrological investigations. 

To represent the relevant flood simulation processes within the Nzoia River Basin, and as also 

highlighted by (Barasa & Perera, 2018; Olang & Fürst, 2011; Onyando et al., 2003), the GR4J 

model was considered.  

 

Figure 2: GR4J model diagram (Perrin et al., 2003)  

 

The GR4J model, a lumped daily model, belongs to Soil Moisture Accounting Model (SMA) 

group. The model is a four parameter rainfall runoff model (Perrin et al., 2003) and an improved  

GR3J model version that was initially suggested by Edijatno  and Michel (1989) then sequentially 



26 
 

upgraded by (Edijatno et al., 1999). It has been considered for this study because of its 

parsimonious structure, low data requirement and simplicity.   

 

The model concept is centered on two successive reservoirs which simulate a catchment scale 

runoff generation development. On the first reservoir, two input parameters; Precipitation (P) ad 

Evaporation (E) are used to simulate the soil moisture budget. The extreme production store 

capacity (X1, mm), a representative threshold of the soil reservoir (S) extreme storage volume, 

normally controls the moisture amount retained by the soil.  

The outgoing water from the first reservoir is divided in two flows: a catchment short-time 

response represented by a fast flow and a much slower flow, representing the slower catchment 

response of the system and leads to the second deposit. Part of this much slower flow leading to 

the second reservoir is normally defined by the groundwater exchange coefficient X2. The 

threshold value of the second deposit signifies the extreme quantity of water that the system can 

hold is defined by the parameter X3. 

Lastly, both the slower and faster flows’ routing time is determined using a unit hydrograph whose 

base corresponds to parameter X4. (See figure 3). From figure 3, the unit hydrograph time base 

(UH1) represents the flow routing time getting into the second reservoir, while the unit hydrograph 

time base (UH2) represents contribution of the direct streamflow routing time and is normally 

twice the unit hydrograph time base (UH2). 

 

The distinctive GR4J model inputs include potential evaporation and precipitation, both estimated 

within a catchment of interest. Since the model parameters are only few, simple optimization 

algorithms are usually able to determine the parameter values that would yield acceptable results. 

The consideration of the GR4J model for the study was mainly because of its uncomplicated and 

relatively fast calibration structure hence high performance levels (Ficchì et al., 2019).  

2.7 Conceptual Framework 

A conceptual framework illustrating the linkage expected between the main variables – rainfall 

observations, potential evapotranspiration, ENSO indices and river discharge observations to be 

analyzed is defined in this section. The framework outlines the relevant study objectives for the 
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research process while mapping out how the variables come together to make comprehensible 

conclusions. A schematic representation of the framework for the study is depicted in Figure 1 

below.  

 

Figure 3: The conceptual framework of the study (Source: Author)  
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CHAPTER THREE 

3 DATA AND METHODOLOGY 

3.1 Introduction  

A detailed illustration and explanation of the types and sources of data and methodology explored 

the in analysis to realize the study objectives is discussed in this chapter.  

3.2 Data 

The datasets that were analyzed include daily rainfall observations from the KMD, the Climate 

Hazards Group Infrared Precipitation with Station data (CHIRPS), Potential Evapotranspiration 

(PET), Oceanic Niño Index (ONI) for ENSO analysis, and daily river discharge observations for 

the Nzoia River.  

3.2.1 Rainfall Observations  

The Nzoia River Basin rainfall observations were acquired from the Kenya Meteorological 

Department. Four rainfall observing stations – Bungoma, Eldoret, Eldoret Airport and Kitale were 

used as representative stations with data from each used to analyze and assess the skill of the 

CHIRPS dataset considered in this study.   The location coordinates of the stations used in the 

study are provided in Table 1 below.  

Table 1: List of stations and coordinates used in the study  

LAT LON Nearest KMD 

Station 

Mean 

Annual 

Rainfall 

Seasonal 

Distribution 

(OND) 

Mean 

Annual 

Variability 

Seasonal 

Variability 

(OND) 

0.57 35.30 Eldoret 1266.4 250.7 18.1 38.6 

0.58 34.58 Bungoma 1841.2 432.2 14.0 35.6 

1.00 34.98 Kitale 1178.1 232.1 18.2 39.0 

0.45 34.85 Kimilili 1260.8 243.7 18.7 39.9 
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3.2.2 Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)  

The Climate Hazards Group InfraRed Precipitation with Station datasets (CHIRPS) ranging from 

1st January 1981 to 31 December 2021 were used for analysis. CHIRPS datasets, established by 

the United States Agency for International Development Famine Early Warning Systems Network 

(USAID-FEWSNET) has been used generally for analysis and monitoring of agricultural drought 

at different timescales including daily, decadal and monthly. The dataset consists of many years 

of rainfall records (from 1981 to present) and has a global coverage limit of between 500S–500N 

latitude. 

It is a gridded rainfall dataset created by a combination of a 0.050 by 0.050 spatial resolution 

infrared satellite data and station observations.  (Funk et al. 2015 ). The dataset has been considered 

for the study due to its large coverage, fairly high resolution, low bias and the availability of 

records available over long periods.  

Over East Africa where there is a robust association between rainfall and ENSO variability, 

CHIRPS datasets have been vital for enhanced drought and famine emergency anticipation, hence 

making available important information for humanitarian organizations working responses to 

extreme climatic conditions. (Wenhaji Ndomeni et al., 2018). 

The need for a combination of a long duration of rainfall dataset and high skill in prediction and 

application led to the consideration of the CHIRPS for this study.  

3.2.3 Potential Evapotranspiration (PET) 

The Potential Evapotranspiration (PET) data is a resultant dataset of the FAO's Penman-Monteith 

formulated using ERA5-Land climate variables (Bliss et al., 2021). The PET dataset used in the 

study covered the time period between 1981 to 2021 and was at 0.1 degrees’ global land area 

spatial resolution. 
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3.2.4 ENSO Indices   

Sea surface temperature, an important climate variable is an essential indicator of the global 

climate.  SST datasets have been widely used in the monitoring and simulation of climate with 

several datasets developed by global centres and updated on a monthly timescale. For this study, 

the Oceanic Niño Index (ONI) was considered to define the El Niño-Southern Oscillation. ONI, a 

primary index for classifying and monitoring the ENSO strength as defined by NOAA. It uses a 

3-month rolling SST averages within the East and Central Tropical Pacific region commonly called 

the Niño 3.4 region. ONI values of +1.0 and higher were considered to define strong El Nino years 

in the study. (Kousky & Higgins, 2007). 

3.2.5 Daily River discharge observations 

The determine the linkage between flooding and extreme rainfall within the Nzoia River Basin, 

daily discharge observations spanning from 1st January 1981 to 31st December 2021 at River 

Gauging station 1EE01 were utilized. The River Gauging station 1EE01 was considered because 

if its location on the Lower Nzoia Basin which normally experiences most flooding over the basin.  

3.3 Methodology  

3.3.1 Time Series Analysis  

To determine the performance of the CHIRPS dataset before being used for further analysis, time 

series plots analysis were carried out for CHRIPS data against the four representation station 

observations. The CHIRPS dataset analyzed was gotten by extracting a grid box over each of the 

representative stations within Nzoia Basin. Further, Pearson correlation coefficient analysis was 

carried out to determine the level and strength of relationship between the two datasets. 

To determine the temporal variation of monthly rainfall data, time series plots were again 

considered to evaluate the temporal evolutions of the data. For this study, the mean monthly 

rainfall totals for the four stations were plotted for the CHIRPS dataset used in the study to assess 

the annual variability 

3.3.2 Spatial-temporal Analysis  

To determine a comprehensive picture of rainfall across the Nzoia Basin, the rainfall data obtained 

was subjected to spatio-temporal analysis. Analysis entailed an identification of trends or patterns 
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in the rainfall data, such as deviations in the intensity and frequencies of rainfall events over the 

years. The mean annual rainfall was determined by summing the long term averages for the twelve 

months.  

The coefficient of variation, a measurement of variation which compares the standard deviation to 

the mean which mainly provides an indication of the dependability of rainfall patterns. The 

coefficient of variation depicting the dependability of the rainfall within a given area was derived 

by dividing the standard deviation by the rainfall averages and expressed as a percentage.   

𝐶𝑉 =  
𝑆𝐷

𝑀𝑒𝑎𝑛
 𝑥  100                               Equation 1 

 

Whereby;  

CV = Coefficient of Variation 

SD = Standard deviation 

A higher variability typically implies a lower dependability of the rainfall while a lower variability 

the reverse. For monthly rainfall values, cases below 100% of Coefficient of variation were 

considered dependable, while those more than 100% not dependable rainfall. For this study, the 

coefficient of variability was calculated for long term mean annual rainfall.   

On the precipitation ratio was used to determine the anomalies of rainfall within a specific region. 

The precipitation ratio was considered to give an indication of rainfall stability with a spatial 

pattern. The higher the ratio, the higher the rainfall anomaly while lower ratios depicts a lesser 

anomaly. The precipitation ratio was determined using the formula below;  

 

𝑃𝑅 =  
𝑃𝑥− 𝑃𝑛

𝑃𝑚
  𝑥 100                 Equation 2 

where;  

PR = Precipitation Ratio 

Px = Maximum of Rainfall 

Pn = Minimum of Rainfall  
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Pm = Mean Rainfall  

The spatial analysis of rainfall data for the basin was performed using geospatial techniques. Data 

points for representative stations were first extracted and processed before various indices - rainfall 

totals, coefficient of variation and precipitation ratio computed. Afterwards, grid points were 

converted to shape file formats in the Universal Transverse Mercator (UTM) projection before 

generating interpolations using the IDW technique.  

 

3.3.3 Box and whisker plots 

For ENSO effects on the daily rainfall patterns over the Nzoia Basin, CHIRPS data between the 

period of 1981 to 2021 was examined. The methodology entailed the identification of strong El 

Nino years defined by ONI values greater than +1 in the rainfall data period.  

However, it is imperative to highlight that both El Nino or La Nina events normally starts to 

develop averagely around August/September and reach their maximum around December/January 

before decaying through until around April/May. This therefore means that the maximum ONI 

values considered for the study were observed during the OND season.  

For this study, this whole period is defined as an ‘El Nino event’. For this reason, to look at a 

whole period of an El Nino event, normal years were shifted from a calendar year of January – 

December to August - July as my year so that it covers the whole el Nino event period. For instance, 

for an El Nino that started in September 2009 and finished in May 2010, daily rainfall data between 

August 2009 and July 2010 were analyzed. 

The relationship between ENSO and daily rainfall within the Nzoia River Basin was determined 

through statistical analysis using the box and whisker plots. Box and whisker plots would represent 

the distributions of historical daily rainfall linked to the three ENSO phases over Western Kenya. 

Box and whisker plots are considered as it normally outlines important summaries various 

characteristics datasets like central tendencies, extreme and dispersions. The above characteristics 

are normally arrived at through analysis of percentile ranks and minimum and maximum values in 

a box and whisker plot.  

The technique has also been considered for this study as its provides the best way to identify 

asymmetrical attributes in a dataset. Furthermore, the fundamental statistics are more resilient 
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toward distinct outliers compared to other methods like the standard deviation and the mean. Also, 

box and whisker plots’ graphically compact nature enables side-by-side assessment of several data, 

data extremes and results from different stations, which can normally be challenging to understand 

or interpret by way or means of other representations like the histogram. 

3.3.4 Significance Tests  

Significance tests were performed on the results obtained from the ENSO/daily rainfall 

relationship. For the rainfall distributions during the El Nino years analyzed, statistical significance 

testing of the results was considered, to test whether the variations in the rainfall distribution was 

due to chance or ENSO influence. The Monte Carlo resampling method of testing statistical 

significance of a distribution was considered.  

3.3.4.1 Monte Carlo Simulation/Resampling  

Monte Carlo simulation is a technique of statistical simulation which computes results based on 

statistical analysis of recurring random sampling. The simulation method is very closely linked to 

random experimentations, for which the explicit results are not known beforehand. For this study, 

Monte Carlo technique was preferred for testing the statistical significance of the results, to test 

whether the variations in the rainfall distribution were due to chance because of the limited sample 

size of data.  

 

For a given strong El Nino year, the median for all of the rainfall data was determined for all the 

days with rainfall greater than 1mm. Randomly selected days equivalent to the rainfall days greater 

than 1mm for a given strong El Nino year were selected from the whole dataset (whole data). The 

median for this random sample was then determined with the process being repeated 1000 times, 

with the medians being saved each time that so that there were 1000 medians. The original median 

for each strong El Nino year was then compared against these 1000 values.   

 

A characteristic feature of the Monte Carlo resampling method is that the distinctive values 

(medians, quantiles, means to definite values of y, etc.), gotten as an outcome of n trials, are not 

always the same in any two sets of simulations. The results are therefore only an estimate, but they 

are closer to the actual values for more trials. For this case, if the median is outside the range of 

90% of the 1000 medians (i.e., if the median of the original distribution is less than the 5th 
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percentile, or greater than the 95th percentile), then the result was considered statistically 

significant at the 90% confidence level. 

 

 

3.3.5 GR4J Model Calibration/Validation    

The calibration and validation of the GR4J model was done by dividing the data into sub periods 

indicated in Table 5. These sub periods were selected based on an analysis of the stationary 

breaking in the rainfall and discharge time series, ensuring that the sub periods were homogenous. 

To calibrate the model, 65% of the entire dataset was utilized. The calibration period spanned from 

1st January 1982 to 31st December 2000 with the year 1981 being used for model warm-up period 

specifically for calibration purposes. During this period, the model was prepared for the calibration 

process, but the results were not considered in the final calibration score computation. Following 

the calibration phase, the model was then validated using the remaining 35% of the data. The 

validation period extended from 1st January 2002 to 31st March 2018. Similarly, the year 2001 was 

set as the validation warm-up period for the validation process. This validation warm-up period 

allowed the model to adjust to the new data and ensured that the results obtained during this time 

were not included in the final validation analysis. The aim of dividing the data into these distinct 

sub periods was to evaluate the performance and accuracy of the GR4J model in simulating rainfall 

and discharge. Both the calibration and validation processes allowed for the evaluation and 

refinement of the model's parameters and performance ensuring its reliability in predicting 

hydrological phenomena. 

To optimize the model parameters and for measurement of model performance for flow 

simulations, the Nash-Sutcliffe efficiency (NSE) criterion that is centered on the goodness-of-fit 

approach was considered for evaluation (Nash & Sutcliffe, 1970). According to evaluation Nash 

& Sutcliffe, 1970, the NSE criterion is calculated based on four options – flow square roots, high 

water flows, flow logarithms and a criterion based on the balance sheet. The range of parameters 

used to calibrate the model and for initial runs are those also presented in Perrin et al., 2003 

For these four options, it is the criterion based on flow of high water which was considered for this 

study. This criteria of flows of high water can be expressed by the formula below;  
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𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖𝑚

𝑛
𝑖=1  − 𝑄𝑜𝑏𝑠 )

2

∑ (𝑄𝑜𝑏𝑠
𝑛
𝑖=1  − 𝑄𝑚𝑒𝑎𝑛 )2

                      Equation 3 

 

Where; 

Qsim = Simulated daily runoff  

Qobs = Observed daily runoff  

Qmean = Mean daily runoff 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

CHAPTER FOUR 

4 RESULTS AND DISCUSSIONS    

4.1 Validation of CHIRPS  

The time series plots indicating the performance of the CHRIPS data against the four 

representation station observations are depicted in Figure 4 (a-d) below. The CHIRPS dataset 

analyzed was gotten by extracting a grid box over each of the representative stations within Nzoia 

Basin.  

 

  

Figure 4: Comparison between CHIRPS and station(observed) rainfall data . The x-axis 

represents the time period in months  
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Figure 3 clearly indicates data consistency between CHIRPS data and observed data. The close 

match in the time series depicted by the plot indicates an agreement between the observed rainfall 

observations and the CHIRPS datasets.  

Table 2: Table of Pearson correlation (r) between observed and Chirps data 

Station Pearson correlation (r) 

Kitale 0.95 

Eldoret 0.95 

Bungoma 0.96 

Eldoret Airport 0.89 

 

From Table 1, there is a high Pearson correlation coefficient of above 80% (0.80) between the 

station observations and the CHIRPS data for the mentioned stations implying a strong similarity 

in the precipitation patterns captured by CHIRPS.  

Other studies which have also used CHIRPS dataset as a proxy for observed data for Kenya and 

East Africa include (King et al., 2021; Le & Pricope, 2017a; Omay et al., 2023 and Wanzala, 

Stephens, et al., 2022 ). This indicates that CHIRPS data can be a reliable and accurate source for 

assessing precipitation in these locations. 

4.2 Objective 1 - Spatial and Temporal Rainfall Distribution  

The objective one results, comprising the analysis of spatio-temporal variations of rainfall within 

the basin is presented in this section.  

4.2.1 Spatial Distribution  

For spatial rainfall distribution, the collected rainfall data was analyzed using three rainfall indices 

to define the spatial distribution within the basin. The precipitation ratio, mean seasonal (OND) 

and annual rainfall totals and coefficient of rainfall variation are considered to define the basin 

rainfall characteristics. The final analysis results were mapped using GIS to get spatial outlooks. 

Table 2 depicts a summary of the rainfall indices analyzed with a few data points within the study 

area.   
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Table 3: Annual and Seasonal Rainfall Distribution summary for Nzoia River Basin  

LAT LON Nearest KMD 

Station 

Mean 

Annual 

Rainfall 

Seasonal 

Distribution 

(OND) 

Mean 

Annual 

Variability 

Seasonal 

Variability 

(OND) 

0.57 35.30 Eldoret 1266.4 250.7 18.1 38.6 

0.58 34.58 Bungoma 1841.2 432.2 14.0 35.6 

1.00 34.98 Kitale 1178.1 232.1 18.2 39.0 

0.45 34.85 Kimilili 1260.8 243.7 18.7 39.9 

 

Table 4: Annual and Seasonal Rainfall Precipitation Ratios for Nzoia Basin   

LAT LON Nearest KMD 

Station 

Annual Precipitation 

Ratio 

OND Precipitation 

Ratio 

0.57 35.30 SCC, Eldoret 101.1 152.5 

0.58 34.58 Bungoma 77.5 149.3 

1.00 34.98 Kitale 103.0 151.1 

0.45 34.85 Kimilili 103.6 155.3 

 

4.2.1.1 Annual and Seasonal Rainfall Distribution 

For the study area, the mean annual averages ranged between slightly below 1200mm and above 

1800mm. From Figure 5 below, it is evident that the western region of the basin receives more 

annual rainfall, averaging above 1400mm compared to the Eastern part at around 1200mm. Figure 

5 (a) shows the spatial distribution of the mean annual rainfall over the basin.  
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(a)                                                                                          (b) 

Figure 5: (a) Mean Annual Rainfall and (b Seasonal (OND Season) Rainfall Distribution        

For OND seasonal rainfall distribution (Figure 5(b)), a similar spatial distribution pattern to the 

annual rainfall distribution is evident. However, it’s worth noting that the OND season contributes 

a smaller rainfall amount to the annual share with a seasonal total variation of around 250mm to 

slightly above 400mm. The OND rainfall maximum rainfall also occurs in the western parts of the 

basin around the Mt. Elgon. It is also evident from the spatial maps that the seasonal distribution 

is more concentrated on the western regions of the study area with the eastern sides having lesser 

values. On the other hand, the mean annual distribution depicts pockets of higher values also on 

the eastern part of the basin.  
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4.2.1.2 Mean Annual and Seasonal Rainfall variability  

      

(b)                                                                                          (b) 

Figure 6: (a) Mean Annual Precipitation Ratio and (b) Seasonal (OND) Precipitation Ratio         

From the results obtained, the coefficient of variability of the basin is seen to range between 15% 

to 18% (Figure 6a). Minimum variability is found mostly within the western parts of the basin area 

with a variability of around 15% to 16% indicating a higher level of dependability in terms of 

rainfall patterns with the reverse evident around the eastern parts at 17% to 18% indicating a 

relatively less dependable rainfall pattern distribution. 

 

For OND season rainfall variability, the Figure 6b provides an insight of the basin variability. 

Slightly higher variations are found compared to the annual values. A range of variability of 

between 35% to 37% concentrates around the eastern parts of the basin area suggesting a less 

dependable rainfall during this season in this region. However, lower variability range of around 

34% to 35% is seen more on the western parts mostly around the Mt. Elgon area indicating a 

relatively more dependable rainfall distribution during the OND season in these areas. The high 

OND rainfall variability compared to the annual variability suggest a less occurrence of rainfall 
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during OND compared to the annual distribution. This is true as earlier found under the analysis 

of the mean annual and seasonal rainfall distribution. 

 

4.2.1.3 Annual and Seasonal Precipitation ratio 

Figure 7(a), clearly shows that the mean annual precipitation ratio exhibits a lower value in the 

western region, gradually increasing towards the eastern part. Specifically, in the western section, 

the ratio ranges from 85mm to 90mm, while in the eastern part, it surpasses 95mm. This implies a 

trend of an increase in precipitation from the western to eastern parts of the basin.  

 

     

(a)                                                                                          (b) 

Figure 7: Mean Annual Precipitation Ratio (a) and OND (Seasonal) Precipitation Ratio       

 

For comparisons between seasonal and annual precipitation ratios, Figure 7 indicates that the 

western part has higher OND ratios compared to the mean annual precipitation ratio. Over the 

western region, the ratio ranges from 148mm to 152mm with an increase towards the east, 

surpassing 152mm. However, in the furthest east, the ratio reduces and falls within the range of 

148mm to 152mm. In terms of spatial variability, the precipitation ratio demonstrates overall high 
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values across the sub basin. This indicates that the distribution of rainfall was not uniform 

throughout the Nzoia sub basin, as certain locations received significantly higher amounts of 

rainfall compared to others. 

There is an increasing trend of precipitation from the western to the eastern part as evident from 

the mean annual precipitation ratio. The OND precipitation ratio indicates higher values in the 

western region compared to the annual ratio.  

 

4.2.2 Temporal Distribution of Daily Rainfall 

 

 

Figure 8: Monthly Rainfall Distribution with the Nzoia Basin 

Figure 8 clearly indicates that Station 2 consistently recorded the highest mean monthly rainfall in 

most years, apart from for the months of July and August when Station 3 had the highest values. 

In general, the peak rainfall across all four stations occurred during the March to May season, 

which represents the long rainy season in Kenya. Specifically, the highest mean rainfall of 264mm 

was recorded in April, while the lowest mean rainfall of 34mm occurred in February. The data 

indicates that Station 2 consistently received the highest average rainfall throughout the year, with 

exceptions in July and August when Station 3 surpassed it. However, during the MAM season, all 

stations registered their highest rainfall values indicating the peak period for rainfall in the region. 
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The specific month of April had the highest mean rainfall of 264mm, suggesting it is a critical 

period for precipitation in the basin area. On the other hand, February recorded the least mean 

rainfall of 34mm, highlighting it as a relatively drier period compared to other months. 

  

4.2.3 Spatial Distribution of Potential evapotranspiration 

From Figure 9(a) and (b) which are the Mean Annual Potential Evapotranspiration (PET) and 

Seasonal (OND) distribution, the analysis of the spatial distribution of potential evapotranspiration 

nearly similar in both cases.  

       

Figure 9: Mean Annual Potential Evapotranspiration (a) and Seasonal (OND) Distribution (b)   

In both figures, the western region displays a range of mean annual PET values between 3.40mm 

and 3.45mm, which progressively increases towards the eastern side, reaching a range of 3.50mm 

to 3.55mm. Moreover, the central region exhibits relatively higher values with a mean annual PET 

of 3.55mm and above. The figures also demonstrate a consistent spatial pattern of PET across the 

Nzoia basins. The western side consistently experiences lower PET values, indicating relatively 

lower potential evapotranspiration rates. Conversely, as we move towards the eastern side, PET 

values gradually increase, suggesting higher rates of potential evapotranspiration. The central 
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region stands out with the highest PET values, signifying a zone characterized by enhanced 

evapotranspiration processes.     

4.2.4 Temporal Variation of Potential evapotranspiration   

The mean annual cycle for the potential evapotranspiration (PET) data was analyzed for the period 

1981 to 2021. The mean annual cycle for PET in this study was defined as the monthly average of 

the available hourly observations between the period 1981 to 2021.  

 

 

Figure 10: Temporal Variation of the Spatial Average of the Potential Evapotranspiration in 

Nzoia Basin       

From the results depicted in Figure 10, the mean PET exhibits distinct temporal variation with a 

sharp decrease from May to August before increasing comparatively quickly towards the end of 

the year. The time series shows that the highest PET values were observed during the month of 

March with August recording the lowest PET values. March is the period with the highest average 

potential evapotranspiration, indicating a significant demand for water due to atmospheric 

conditions and environmental factors during that time. On the other hand, August experiences the 
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lowest mean PET values suggesting relatively cooler and less demanding conditions for water loss 

through evapotranspiration.  

4.3 Objective 2 - ENSO effect on Rainfall Distribution  

For the second objective, the ENSO response to daily rainfall patterns was examined over the study 

area using the CHIRPS data for the period 1981 to 2021. The ENSO index, Oceanic Niño Index 

(ONI) was first used to categorize strong El Nino years to be considered for further analysis. Strong 

El Nino years for this study was defined as years with ONI index greater than +1.0. A time series 

plot of ONI values between 1980 and 2021 is shown in Figure 11. This result reveals the extreme 

wet and dry years as indicated by red and blue lines respectively.  

 

Figure 11: Mean Annual Potential Evapotranspiration (a) and Seasonal (OND) Distribution (b). 

The Red and Blue dashed lines represent thresholds for strong El Nino and La Nina respectively  

 

Further, after analyzing the ONI indices, the extremely wet (El Nino) years considered for further 

analysis in this study are summarized in Table 4 below.  
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Table 5: El Nino Years Considered for the study 

El Nino Years Maximum ONI Values 

1982/1983 2.2 

1986/1987 1.2 

1987/1988 1.6 

1991/1992 1.7 

1994/1995 1.1 

1997/1998 2.4 

2002/2003 1.2 

2009/2010 1.6 

2015/2016 2.6 

 

The probability of daily response to ENSO was first determined and compared to the rainfall 

probability of the entire dataset. For each rainfall station (data point) being analyzed, daily rainfall 

greater than 1mm and extreme values (95th percentiles) were considered (Figure 11 and 12).  

4.3.1 Rainfall distribution greater than 1mm  

To determine the influence of ENSO on the distribution of rainfall within the basin, a box-and-

whisker plot of all rain days together with separate box-and-whisker plots for each strong El Nino 

years (ONI>1) were plotted to see a shift in the rainfall distribution during El Nino years. To 

determine how ENSO, change the probability of rainfall, an initial minimum threshold value of 

1mm was considered using all the days, then the probability of rainfall using only strong El Nino 

years. (Figure 12) 

To determine the impact of ENSO on the spatial distribution of rainfall within a specific basin, a 

box-and-whisker plot was generated to visualize the distribution of rainfall on all the rainfall days 

within the basin. Another separate box-and-whisker plots were created specifically for the years 

characterized by strong El Niño years (indicated by ONI values greater +1.0). The box-and-

whisker plot for all the rainfall days provided a comprehensive overview of the rainfall distribution 

within the basin, showcasing the spread of rainfall amounts, the median rainfall value, and any 
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potential outliers. By examining this plot, any significant shifts or variations in the rainfall 

distribution during El Niño years could be identified. To further investigate how ENSO influences 

the probability of rainfall, an initial threshold of a minimum amount of 1mm of rainfall was 

established. This threshold was applied to all days within the dataset, regardless of ENSO 

conditions. Subsequently, the probability of rainfall exceeding this minimum threshold was 

calculated using data exclusively from the strong El Niño years. Strong El Niño years were defined 

based on the ONI, which is a measure of the deviation in sea surface temperatures in the tropical 

Pacific Ocean. Strong El Niño years were characterized by ONI values exceeding 1, indicating a 

substantial departure from average sea surface temperatures and a pronounced El Niño event. The 

reason for quantitatively evaluating the probability of rainfall exceeding the 1mm threshold during 

strong El Niño years was to ascertain any notable changes in the likelihood of rainfall occurrence 

compared to the overall rainfall distribution across all years. (Figure 12) presents the resulting 

plots, allowing for a visual comparison of the rainfall distribution on all rainfall days with the 

distribution during strong El Niño years.  
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Figure 12: Box and whisker plots of daily rainfall greater than 1mm for the whole dataset (blue box) and strong El Nino years (green 

boxes)
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4.3.2 Extreme daily rainfall distribution (95th Percentile) 

For the extreme rainfall distribution, a similar analysis to the previous one was conducted. 

However, this time, the focus shifted to extreme rainfall occurrences. In order to identify extreme 

rainfall events, a different threshold was employed. Instead of using a fixed minimum amount of 

rainfall, a relative threshold was applied, specifically the 95th percentile of rain rates observed at 

each station within the basin. The 95th percentile was determined using the equation below;  

𝑅 =  
95

100
  𝑥 𝑛                               Equation 4 

 

where; 

R = Rank/ 95th Percentile 

n = number of data points for the individual ENSO year 

 

This ensured that extreme values were captured in a station-specific manner. The analysis was then 

carried out separately for each strong El Niño year, where strong El Niño events were defined 

based on an ONI value exceeding 1. The aim of examining the extreme rainfall distribution during 

these specific years was to investigate the impact of strong El Niño events on extreme daily 

rainfall. The results depicted in (Figure 13), revealed a higher variability in the response of extreme 

daily rainfall (95th percentile) to strong El Niño events compared to the analysis considering 

rainfall greater than 1mm as shown in (Figure 12). This suggests that the influence of El Niño on 

extreme rainfall events is more pronounced and varied. However, the overall distribution of 

extreme rainfall during El Niño years did not exhibit substantial differences compared to the non-

El Niño years. Some El Niño events had a lesser impact on extreme rainfall despite their high 

magnitudes. This observation was particularly evident in the case of the 2015/2016 event, which 

had the greatest magnitude among the analyzed El Niño events but exhibited a lesser impact on 

extreme rainfall compared to previous, less intense El Niño events. 
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Figure 13: Box and whisker plots of daily rainfall above 95th Percentile the whole dataset (blue box) and strong El Nino years (green 

boxes)
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From the results depicted in Figure 14 and 15, it is evident that the median for all the strong El 

Nino years analyzed were either smaller or greater than the 90% of the 1000 medians (Monte Carlo 

Medians) i.e., the median of the original distribution was either less than the 5th percentile, or 

greater than the 95th percentile. This therefore means that the analysis obtained from the extreme 

daily rainfall (greater than 95th Percentile) were statistically significant at 90% confidence level.  
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Figure 14: Significance test results for Bungoma station from Monte Carlo Simulations for daily rainfall above 95th Percentile.  

The red dashed lines represent the 5th and 95th percentiles while the blue continuous line represent the Monte Carlo median  
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Figure 15: Significance test results for Bungoma station from Monte Carlo Simulations for daily rainfall above 95th Percentile.  

The red dashed lines represent the 5th and 95th percentiles while the blue continuous line represent the Monte Carlo median  
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4.4 Objective 3 - Hydrological Modelling Results   

For initial run, the GR4J model was set up with its default parametrization values indicated in 

Table 6 and run once with the precipitation data. The main goal of this was to determine the 

capacity of the GR4J model to replicate the overall hydrological conditions with the Nzoia basin. 

This was also vital to establish the baseline performance which would allow the assessment of the 

improvement gotten through calibration.  

 

Table 6: GR4J Model parameters setting 

Model 

Parameter  

Description   Optimal value  

X1 

X2 

X3 

 

X4 

  

Production store maximum capacity   

Groundwater exchange coefficient (mm) 

Routing store maximum capacity (one day 

ahead (mm)) 

Unit Hydrograph Time base UH1 (days) 

 

62.92 

-12.84 

 

875.12 

2.33 

 

After establishing the baseline performance, the data was then divided into years for calibration 

and validation indicated in Table 7.  

Table 7 below outlines the specific periods for calibration and validation within the GR4J model, 

including warm-up periods to establish and test the model's performance. Calibration Warm-Up 

Period (1981) allowed the model to stabilize and adjust initial settings without considering the data 

for calibration.  

Table 7: GR4J Calibration/Validation sub periods 

Calibration Warm 

up Period 

Calibration  

Period   

Validation  

Warm up Period 

Validation 

Period  

1981  1982 – 2000  2001 2002 – 2018 
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It basically sets the starting conditions for the calibration period. Calibration Period (1982-2000) 

involved modification of the model using observed data from 1982 to 2000. The model parameters 

are adjusted to best match the historical data during this time frame mainly to ensure that the model 

adequately captures the system's behavior and dynamics within this specific period. Validation 

Warm-Up Period (2001) allows the model to adjust to the conditions of the validation period, 

preparing it for making predictions without using the subsequent validation data. Validation Period 

(2002-2018) is an independent test of the model's performance.  

 

Table 8: Applied metrics results for the GR4J model 

Model Phase NSE (%) 

GR4J Calibration 72% 

Validation 61% 

 

The applied metrics for evaluating the GR4J performance is presented in. The model demonstrates 

a generally better performance as indicated by the NSE values exceeding 50% during both the 

calibration and validation periods. The Nash-Sutcliffe efficiency, a widely used metric for 

assessing the accuracy of models, with values above 50% indicating an acceptable level of 

performance. However, there exists a disparity between the calibration and validation phases in 

terms of general model performance.  

Calibration involves adjusting model parameters to best fit historical data. A 72% efficiency 

indicates that the model replicates the observed behavior of the system during the calibration 

period. Validation involves testing the model's performance on an independent dataset, typically a 

different time period from the calibration data. A NSE of 61% during validation indicates how 

well the model predicts unseen data.  
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Table 9: Summary of the statistical characteristics of the basin observations 

Summary  PET (mm)   Q obs(m3/sec) Rainfall (mm)  Q obs (mm) 

Minimum 

1st Quartile 

Median 

Mean 

3rd Quartile 

Maximum 

  

0.9  

3.1 

3.6 

3.7 

4.2 

6.6 

4.68 

54.40 

109.10 

133.36 

194.90 

611.87 

0 

0.2 

1.8 

4.1 

5.8 

50.2 

0.1 

0.4 

0.7 

1.1 

1.4 

4.2 

 

The model is seen to perform better during the calibration phase in comparison to the validation 

phase. Analyzing the optimization criteria of the model provides valuable insights into the model's 

flood simulation ability over the basin. The optimization criteria serve as indicators for evaluating 

and appreciating the performance of the GR4J model. Other studies like Kodja et al., 2018 in an 

attempt to analyze the GR4J performance in reproducing high flows in similar also used the same 

criteria. These criteria helped in assessing how well the model captures the observed flood flows 

and how accurately it reproduces the dynamics of the basin's hydrological processes. 

 

4.4.1 GR4J Model Performance    

 

From the results (Figure 16 and 17), the observed and simulated flows depict a similar pattern with 

rainfall variability over the basin. Nonetheless, there exists a small bias between the observed and 

simulated flows that can be ascribed to most likely a slow response of the catchment basin to 

extreme rainfall events especially during the ENSO years. This slow response could arise due to 

model simplifications in accounting for slow water movement during extreme events, inadequate 

representation of soil saturation effects, or limitations in capturing the complexities of how the 

basin responds to heightened precipitation. However, the extreme rainfall events which cause 

flooding in the area, occur during these months depending on the season. Unfortunately, the heavy 

rainfall events which leads to basin flooding normally take place during these months depending 

on the season.   
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Further analysis on the simulated flows also shows an over estimation of the river flows during the 

low water period compared to the high water. The scatter plots of the observed verses simulated 

flows also depicted in Figure 16 and 17 for both the calibration and validation stages shows that 

the model slightly overestimates the simulation for higher flows during the validation phase while 

capturing higher ones with lower deviances during the calibration phase. From this, it is clear that 

the model performed better during the calibration phase compared to the validation. Similar 

findings were also realized in flood modelling in similar basins  by Cantoni et al., 2022 using the 

GR4J model. Based on these findings, it is worth noting that the GR4J model generally represents 

well the average flows within the Nzoia River basin. 
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Figure 16: Rainfall variability, observed and simulated flow rates in calibration (1981-2006) 

with the GR4J model from the criterion of (NSE (Q)) 
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Figure 17: Rainfall variability, observed and simulated flow rates in validation (2007-2021) with 

the GR4J model from the criterion of (NSE (Q)) 
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CHAPTER FIVE 

5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

5.1 Summary 

From the above analysis, trends in rainfall patterns over time, such as increasing or decreasing 

rainfall amounts were identified. The OND season rainfall variability depicts a slightly higher 

variations are found compared to the annual values. A range of variability of between 35% to 37% 

concentrates around the eastern parts of the basin area suggesting a less dependable rainfall during 

this season in this region. However, lower variability range of around 34% to 35% is seen more 

on the western parts mostly around the Mt. Elgon area indicating a relatively more dependable 

rainfall distribution during the OND season in these areas. The high OND rainfall variability 

compared to the annual variability suggest a less occurrence of rainfall during OND compared to 

the annual distribution.  

Further analysis also identified the interannual variability of rainfall from year to year, which can 

be useful in understanding the impacts of flood events and will provide valuable insights for 

environmental management and planning. 

ENSO – daily rainfall relationship results showed a greater variability in the extreme daily rainfall 

response (95th Percentile) to strong El Nino events in comparison with the daily rainfall greater 

than 1mm. Further results also indicated that during some strong El Nino events, slightly less 

intense rainfall events were experienced within the basin.  

Hydrological modelling simulations showed that the observed and simulated flows have a similar 

pattern with rainfall variability over the basin except for a small bias that could be ascribed to 

either the response time of the catchment to extreme rainfall events especially during the ENSO 

years. The GR4J model showed a better performance with the Nash-Sutcliffe criterion (NSE) 

outcome values indicating an acceptable performance of above 50% both during the calibration 

and validation period.  Even though there was a difference amongst the calibration and validation 

phases, the GR4J acquires higher performance during the calibration phase hence could be 

efficient to perform and reproduce high river flows in the basin.  
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5.2 Conclusions 

ENSO – flooding analysis can provide valuable insights on the connection between extreme 

weather events and various climate patterns. The findings would therefore be vital in informing 

flood management and preparedness, and hence build more resilient communities in flood-prone 

areas.  

The study findings enhance the existing knowledge on ENSO impacts on extreme rainfall and 

flooding and provide a foundation for routine provision of sub-seasonal to seasonal flood forecasts. 

This, in the long run is expected to contribute considerably to a better management and 

sustainable growth of socio-economic activities which have been greatly impacted by floods 

over the years.    

5.3 Recommendations  

A significant statistical relationship between ENSO and flooding in Nzoia River basin have been 

identified. This information can be used to inform flood forecasting EWS systems. Overally, this 

ENSO – flooding analysis can provide valuable insights on the connection between extreme 

weather events and various climate patterns. Policy makers and various stakeholders could 

incorporate the findings from this study to have in place measures to help the population cushion 

against expected risks that would result from extreme rainfall in the basin  

The findings would therefore be vital in informing flood management and preparedness, and hence 

build more resilient communities in flood-prone areas within the Nzoia Basin and the larger 

western Kenya. 

5.3.1 Research Scientists and Research Institutions 

Research scientists and institutions involved in climate and hydrology studies could leverage the 

identified statistical relationship between ENSO and flooding in the Nzoia River basin to enhance 

flood forecasting and Early Warning Systems (EWS). Further research could improve the accuracy 

and lead time of flood predictions in the basin. Collaborative efforts among research institutions 

would be beneficial for robust data collection, modeling, and dissemination of findings. 
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5.3.2 Policy makers  

Policy makers could incorporate the findings from this study into flood management strategies. 

These insights should inform the development and implementation of policies aimed at enhancing 

flood preparedness, response, and recovery in the Nzoia Basin and surrounding areas. Investment 

in infrastructure, early warning systems, community awareness programs, and disaster response 

mechanisms aligned with the forecasted risks would significantly mitigate the adverse impacts of 

extreme rainfall events. Incorporating scientific data into policy frameworks would contribute to 

building resilient communities in flood-prone regions and foster sustainable development. 

5.3.3 Users of Climate/Flooding/Modeling Information: 

The findings from this study can be useful to the users relying on climate, flooding, and modeling 

information, such as emergency responders, local authorities, NGOs, and community leaders. 

They can use the findings to refine existing disaster preparedness plans, tailor educational 

campaigns, and implement proactive measures. Accessible dissemination of accurate, up-to-date 

information regarding potential flood risks linked to ENSO phases would empower communities 

to take timely actions, from implementing adaptive land-use practices to organizing evacuation 

plans. Encouraging the incorporation of these insights into decision-making processes at various 

levels would amplify the effectiveness of response measures and contribute to community 

resilience. 
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