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ABSTRACT  

Savanna grasslands are invaluable, but face threats from multiple stressors such as land 

degradation, woody encroachment and climate change. While it is expected that climatic 

changes will continue to exacerbate existing stressors, rapid invasion by woody plants such as 

Prosopis juliflora is now widely considered a key factor accelerating degradation in 

grasslands. This raises concerns about the functioning and sustainability of these ecosystems. 

In the savanna grasslands of Baringo County in Kenya, Prosopis juliflora (hereafter referred 

to as “Prosopis”) was introduced in 1982/83 to alleviate firewood shortage and mitigate 

desertification. However, it has become invasive and continues to disperse to new areas at 

exceptional rates, impacting on the environment, economies and people. This study utilized 

various datasets and methodologies to analyze the 1) spatio-temporal changes in Prosopis 

coverage in Baringo County since its introduction, 2) implications of these changes on other 

land-uses and land-cover, native Vachellia tortilis, livelihoods, biodiversity and selected 

ecosystem services (ES), and 3) impacts of current and predicted future climate change on 

suitable habitat of alien Prosopis and the dominant native Vachellia tortilis, which is 

currently highly threatened by Prosopis invasion. Prosopis spread at a rate of 640 ha / year 

between 1988 and 2016, replaced over 30% of other valuable land-uses/land-cover and 

caused significant livelihood losses. Further, grassland restoration is as effective as Prosopis 

invasion in replenishing soil organic carbon, and does not comprise the provisioning of other 

ES, while Prosopis limits fodder productivity and species diversity. Species distribution 

models revealed that climate warming will have profound effects on species geographic 

ranges of both alien and native species. Climate models predict both habit expansion and 

contraction. The adverse effects (habitat encroachment) of invasive plants on biodiversity 

will equally persist in the face of the envisaged climatic changes. Over 30% of the predicted 

future suitable habitat for Vachellia tortilis is also suitable for Prosopis, indicating possible 

invasion into these habitats in future. These findings suggest an integrated approach to 

Prosopis management to prevent further spread. Further, effects of climate change should be 

mainstreamed in policies addressing invasive species, land degradation and biodiversity loss. 

 

Keywords: Prosopis juliflora, Vachellia tortilis, grassland restoration, climate change, 

Kenya. 
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CHAPTER 1:  INTRODUCTION 

1.0 Introduction 

In this chapter, the general introduction and background information about the study are 

presented. It provides a brief highlight on the issue of woody encroachment, particularly 

exotic invasive species into grassland ecosystems and the interactions between the current 

global changes – climatic changes, biological invasions and land-use and land-cover changes. 

The subsections include background to the study, problem statement, objectives, justification 

and significance, scope and limitations, and thesis structure.   

1.1 Background 

Grassland ecosystems characterize many of the world’s arid lands and make up about 40% of 

the total land area globally (Millennium Ecosystem Assessment, 2005; White et al., 2000). 

They are dominated by grasses and shrubs and are seasonally maintained by grazing, fire, 

drought and / or freezing temperatures (White et al., 2000). They comprise savannas, 

woodlands, tundra and shrublands (White et al., 2000). Although grasslands are found in 

every region of the world, Sub-Saharan Africa has the largest total area of grassland at 14.5 

million km2 (White et al., 2000). Grasslands are invaluable because they provide 

comprehensive economic and ecological benefits to society (Gobelle and Gure, 2018) such as  

food, forage, biodiversity, carbon storage and recreation (White et al., 2000), and thus have 

substantial, multi-dimensional conservation value (Archer, 2010). However, they are under 

severe threat from multiple stressors such as land degradation (Gibbs and Salmon, 2015), 

desertification (White et al., 2000), global warming and climate change (Chen et al., 2019), 

woody encroachment, and land-use changes (Bhattarai, 2013; Gibbs and Salmon, 2015), 

thereby raising concerns about the combined implications of these multiple stressors on the 

functioning and sustainability of these ecosystems (Archer, 1995; Côté et al., 2016; Zijp et 

al., 2017).   

Woody encroachment (Ratajczak et al., 2012), also referred to as shrub encroachment 

(Eldridge et al., 2011) or bush encroachment (Ward, 2005) is the rapid invasion or sometimes 

gradual proliferation of trees and shrubs into semi-arid and arid grasslands (Belay et al., 

2013; Hudak et al., 2003). Other terminologies used include ‘woody weed invasion’ (Booth 

et al., 1996), and ‘thicketization’- a transition from a degraded grassland to woodland (Archer 

et al., 2001; Maestre et al., 2009). While an exacerbation of existing stressors is expected to 
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continue due to climate change, (Bagne et al., 2012), rapid invasion of woody plants is 

currently one of the multiple factors accelerating degradation in arid and semi-arid areas 

(Archer, 2010; Belay et al., 2013; Dickie et al., 2014; Jackson et al., 2002). For instance, 

transitions in plant community composition from grass to woody shrub have been associated 

with undesirable effects such as; change in ecosystem goods and services, increased water 

erosion (D’Odorico et al., 2012; Jackson et al., 2002), alteration of biodiversity patterns 

(Archer et al., 2001; Lunt et al., 2010), alteration of land surface-atmospheric interactions and 

nutrient cycling (Archer et al., 2001). These effects have altered the general functioning and 

structure of grassland ecosystems, which eventually undermines their productivity, long-term 

economic viability and ecological integrity (Tefera et al., 2008). Multiple triggers have been 

implicated in woody encroachment processes which include overgrazing often coupled with 

changed fire regimes (Lunt et al., 2010; Roques et al., 2001), reduced grazing intensity, 

feeding on tree seed pods by livestock and later dispersing them in dung, above-average 

rainfall (O’Connor, 1995; Venter et al., 2018a), severe droughts (Roques et al., 2001), rising 

atmospheric CO2 (D’Odorico et al., 2010; Scholes and Archer, 1997), agricultural 

abandonment (Cramer et al., 2008; Mbaabu et al., 2019), long-term climate change 

(D’Odorico et al., 2012, 2010; Knapp et al., 2008), and introduction of exotic trees (Archer, 

2010; Ndhlovu et al., 2016; Shackleton et al., 2015a; Yapi et al., 2018).  

While trees or shrub encroachment in grasslands may be seen as a natural ecological process 

where encroaching species are native and previously already present at lower densities in 

these landscapes (D’Odorico et al., 2012), in some cases it is not. This is particularly more so 

in many historically degraded savanna grasslands as well as hot, arid and semi-arid parts of 

Africa (Pasiecznik et al., 2001), Asia (Ratnam et al., 2016) and Australia where efforts to 

combat desertification led to intentional introductions of alien woody plants (Carboni et al., 

2016; Pasiecznik et al., 2001; Shackleton et al., 2014; Simberloff, 2013; Vila, 2013). The 

most widely used tree species are of the genus Prosopis (mesquite – belonging to the family 

Fabaceae) which consists of about 44 species (Burkart, 1976; Patnaik et al., 2017). 

From the native lands in South America, Mexico and the Caribbean, these species have in the 

past 200 years been introduced to various regions globally such as Hawaiian Islands in 1828, 

India in 1877, Australia in 1921, Philippines and Sri Lanka (Kathiresan, 2020; Shackleton et 

al., 2014; Van Klinken and Campbell, 2001). In Africa, about five Prosopis spp.: P. 

glandulosa, P. velutina, P. juliflora, P. chilensis and P. pallida were introduced in Senegal 

(1822), South Africa (1880), Sudan (1917), Kenya (1948), Somalia (1950) and Ethiopia 
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(1970) among other countries (Choge et al., 2022; Hoshino et al., 2012; Maundu et al., 2009; 

Pasiecznik et al., 2001; Wakie et al., 2016; Wuad and Abdulahi, 2021). Prosopis was 

preferred for rehabilitating degraded lands due to its rapid proliferation and ability to 

withstand harsh climate in tropical drylands (Pasiecznik et al., 2001). However, although 

these species provide some benefits such as firewood, timber and shade, they have become 

extremely weedy and invasive (Shackleton et al., 2014). Their rapid spread has been linked to 

biodiversity loss (Linders, 2019), land-cover and land-use changes (Mbaabu et al., 2019), and 

water reduction in streams and ground reservoirs (Archer, 2010; Dzikiti et al., 2017). 

Moreover, allelopathic effect of Prosopis leads to loss of herbaceous vegetation which 

increases erosion, flood risk, and reduces fodder availability. Together, these changes 

threaten the livelihoods of pastoral dependent communities particularly in grassland 

ecosystems in Sub-Saharan Africa. The contrasting environmental, social and economies 

impacts have raised contentious issues about this plant species (Van Wilgen and Richardson, 

2014) particularly when there are no efficient and effective management strategies in place 

(Shackleton et al., 2014), partly owing to the paucity of reliable information on the key 

attributes of this species in the invaded range.   

Faced with the four great global changes occurring today – climate change, biological 

invasions, enhanced geochemical cycles (particularly carbon and nitrogen), and land-use 

changes (Dukes and Mooney, 1999; Simberloff, 2013) – grasslands have only become more 

vulnerable to degradation in recent decades. These factors are interlinked, influence each 

other and generate synergistic interaction impacts (Dukes and Mooney, 1999; Simberloff, 

2013; Walther et al., 2009). For instance, current and predicted future climatic changes 

(IPCC, 2018), elevated CO2 and Nitrogen levels as well as habitat modifications are expected 

to influence species’ range expansion and contraction (Pearson and Dawson, 2003), not only 

for native flora, but also for aliens, and allow expansions in areas they would not have 

previously occurred (Bellard et al., 2013; Dukes and Mooney, 1999; Thuiller, 2004; Thuiller 

et al., 2007). On the other hand, invasion by alien plant species such as Prosopis, has  

resulted in notable changes in land-use and land-cover (Mbaabu et al., 2019) and affected the 

geochemical cycles in many regions where the species have invaded (Ansley et al., 2006; 

Geesing et al., 2000; Mohanraj et al., 2022; Soper et al., 2016). Moreover, anthropogenic 

responses to these global changes have the potential to enhance or compromise the 

sustainability of grasslands. For example, tree planting in degraded grasslands, sometimes 

even planting invasive alien varieties, has legitimately been embraced as a strategy for 
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addressing land degradation (Archer, 2010) and also for climate change mitigation under the 

Kyoto Protocol’s Clean Development Mechanism (CDM) and the program for Reducing 

Emissions from Deforestation and Forest Degradation (REDD+) (Law et al., 2015; Parr et al., 

2014).  

From a global context, previous studies have investigated multiple themes on grassland 

biomes and their implications on these ecosystems, economies, biodiversity and livelihoods 

(Archer et al., 1988; Baasch et al., 2016; Bardgett et al., 2021; Briggs et al., 2005; Buisson et 

al., 2019; Conant, 2010; Hector et al., 2010; Leys et al., 2018; Veldman et al., 2015; Waldén 

and Lindborg, 2016). These themes include land degradation, climate change, woody 

encroachment, carbon sequestration, grassland restoration, fire, plant diversity and grassland 

conversion or land-use and land-cover changes. The implications of these on grassland 

ecosystems have been widely documented. For example, degradation of grassland  threatens 

the livelihoods of millions of people who depend on grasslands for multiple uses such as 

food, fibre, fuel and cultural values (Bardgett et al., 2021). Global grassland degradation cost 

livestock production about US$ 6.8 billion between 2001 and 2011 (Kwon, 2015), with 

severe consequences for rural populations dependent on livestock (Bardgett et al., 2021). 

Moreover, degradation of grasslands is the real culprit for major environmental issues since 

these ecosystems are important for biodiversity conservation, water and climate regulation, 

forage production and global biogeochemical cycles. Changes from grasslands to croplands 

or disturbances through overgrazing, fire and invasive species threaten biodiversity in 

grassland ecosystems, with potential  remarkable losses in soil carbon (Murphy et al., 2016; 

Smith et al., 2008).  

The problem of woody encroachment into grasslands has been widely studied globally 

(D’Odorico et al., 2012; Huang et al., 2018), with examples from North America (Knapp et 

al., 2008; Ratajczak et al., 2012; Van Auken, 2009), Mediterranean region (Maestre et al., 

2009), South America (Adamoli et al., 1990; Silva et al., 2002), Asia (Kathiresan, 2020; 

Ratnam et al., 2016), Australia (Burrows et al., 1990; Fensham et al., 2005; Fensham and 

Fairfax, 2003; Lunt et al., 2010; Price and Morgan, 2008), Iberian Peninsula (Europe) 

(Montané et al., 2007) and Africa (Venter et al., 2018a). Despite all these studies, the 

linkages of their effects on land-use and land-cover, biodiversity, livelihoods, ecosystems 

services, and their interactive effects with climate change have rarely been investigated.  
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In the last two decades, woody encroachment in African grasslands has received increased 

research attention (Coetsee et al., 2013; Roques et al., 2001; Ruwanza and Shackleton, 2016; 

Venter et al., 2018a; Ward, 2005). The implications of these invasions have also been widely 

studied. For example, in Ethiopia, Dalle et al. (2006) found that woody encroachment in 

Borana lowlands had reached critical cover threshold (≥ 50%), which decreased fodder 

availability for livestock. Gobelle and Gure (2018) studied the impacts of tree invasion on 

plant diversity and carbon stocks. They found that tree invasion reduced species diversity and 

richness of herbaceous plants, while carbon stocks varied with tree density or cover. In 

southern Africa veldt, minimal gains in ecostystem carbon were observed after woody plant 

encroachment (Coetsee et al., 2013). Soil organic carbon decreases were also reported in 

semi-arid grasslands of South Africa following woody plant encroachment (Hudak et al., 

2003; Mureva et al., 2018). Mitchard and Flintrop (2013) analysed tree invasion and 

deforestation in woodlands in Sub-Saharan Africa through a review of studies between 1982 

and 2006. They found that woody encroachment increased north of the Congo basin while 

deforestation was prevalent in the Miombo woodlands. Trends in woody cover in Namibia’s 

savanna have been mapped using MODIS data (Wingate et al., 2019); it was found that 

woody cover decreased in dry forests but increased in shrublands. Belay et al. (2013) studied 

ecosystem responses to tree invasion in the semi-arid Omo region of Ethiopia. Contrary to 

findings in many other studies, they found that plant diversity and richness correlated 

positively with tree invasion. 

In Kenya, few studies have investigated the effects of woody encroachment (Herlocker et al., 

1981), until recently when Prosopis invasion became an issue of economic, environmental 

and social concern. Most of these studies on Prosopis in Kenya have been done from the year 

2000 onwards (Adoyo et al., 2022; Andersson, 2005; Choge et al., 2022, 2022; Choge and 

Pasiecznik, 2005; Eschen et al., 2021; Kyuma et al., 2016; Linders et al., 2020; Maundu et 

al., 2009; Mulinge et al., 2016; Muturi et al., 2013; Mwangi and Swallow, 2005; Ng et al., 

2017). However, these studies have largely focused on management and the impacts of 

Prosopis on livelihoods due to public outcry by the affected communities inhabiting the 

invaded areas. As such, local studies were significantly biased in their thematic scope to only 

social and economic aspects while leaving out the environmental component. This 

undermines the principle of sustainability in development which should consider three pillars 

(economic, social, and environmental). Consequently, this created a gap in knowledge and 

understanding of the spatial distribution of the species, spread rates and impacts of the spread 
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on other land-uses and land-cover, native plant diversity and rural livelihoods, and how these 

would interact under the changing climatic conditions. This thesis therefore identified this 

gap in knowledge and attempted to fill it. 

The rapid spread of invasive alien trees like Prosopis juliflora has posed complex 

management challenges, particularly in developing countries. This is partly because of 

contrasting views regarding their beneficial and harmful aspects and a lack of or unclear 

policies regarding their management (Laxén, 2007; Patnaik et al., 2017; Tiwari, 1999; Van 

Wilgen and Richardson, 2014). This is exacerbated by paucity of knowledge on their 

distribution, extent and nature of spread, benefits, costs and effective management 

interventions (Shackleton et al., 2014). Consequently, this scenario has led to a lack of 

consensus on management of Prosopis invasions in different contexts, giving chance to a mix 

of trial management approaches such as chemical, biological and mechanical control, 

management by ‘utilization’, eradication, toleration as well as acceptance of the ‘newcomer’ 

species as important for local biodiversity enrichment (Walther et al., 2009), regardless of 

their efficacy, socio-economic and ecological implications.  

In Kenya, initial Prosopis introductions occurred in Taita Taveta County, Bamburi in 

Mombasa County, Bura in Garissa County, Hola in Tana River and Turkana County. In the 

semi-arid grasslands of Baringo County, Prosopis spp were first planted in 1982 to  combat 

land degradation, mitigate desertification and alleviate shortage of firewood and livestock 

fodder (Little, 2019; Schwartzstein, 2019). Although about 3 Prosopis varieties (P. pallida, 

P. juliflora and P. chilensis) were introduced in Baringo County, only Prosopis juliflora is 

invasive (Castillo et al., 2021), and has continued to colonize new areas at exceptional rates, 

with remarkable impacts on the ecosystem such as biodiversity loss (Linders, 2019; Linders 

et al., 2019), and human welfare such as loss of livelihoods due to cropland and pasture 

invasion (Mbaabu et al., 2019; Mooney, 2005; Mwangi and Swallow, 2005; Pimentel et al., 

2005). Over time, Prosopis has become extremely unmanageable owing to fast proliferation 

rates and and high survival rate trough coppicing after cutting (Mwangi and Swallow, 2005). 

This invasion has continued to paralyze the livelihoods of the agro-pastoral Baringo 

communities, who have blamed it for loss of ecosystem services and biodiversity on their 

landscape. As a result, they have continued to pile pressure on the government (one that 

sactioned Prosopis introduction) and scientific community for more sustainable solutions 

(Mwangi and Swallow, 2005; Truth, Justice, and Reconciliation Commission, 2011). 

However, faced with this predicament, following a legal suit by Ilchamus community against 
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the Government of Kenya in 2006, the government in its defense argued that the semi-arid 

area in Kenya would be utilized better through planting and managing Prosopis for carbon 

sequestration and climate change mitigation. The Government of Kenya considered this move 

valid, legitimate and consistent with global environmental and sustainable development goals 

because Kenya is a Party to the United Nations Framework Convention on Climate Change 

(UNFCCC) as well as the Kyoto Protocol (Kenya Law, 2007; Little, 2019). 

1.2 Problem Statement 

Historically, many tropical drylands including Baringo lowlands in Kenya, have undergone 

continuous degradation partly due to extreme climatic events such as drought, and poor land-

use practices such as overgrazing (Little, 2019, 1992). Land degradation in Baringo over the 

past 300 years culminated into acute shortage of ecosystem goods and services which have 

persisted todate. This prompted rehabilitation efforts through tree planting including use of 

invasive species such as Prosopis juliflora, to avert possible desertification and to fortify the 

crumbling drylands (Schwartzstein, 2019). However, some of the introduced trees such as 

Prosopis juliflora have become very invasive over time causing damages to people and the 

environment. Baringo county in Kenya is a classic example of an ecosystem experiencing 

devastating effects of Prosopis juliflora tree invasion since its introduction in the early 1980s 

(Mbaabu et al., 2019b). At the start of this study in 2016, reliable estimates of Prosopis 

juliflora invasion needed to guide decision makers on policy were lacking. Specifically, there 

were information gaps regarding the invasion and spread of Prosopis juliflora, at what rates 

and the extent of invasion in Baringo County, its impacts on other land-use and land-cover, 

livelihoods and native biodiversity. This gap needed to be filled to support evidence-based 

policy making on Prosopis management in Kenya. Additionally, these estimates would be 

useful in enhancing the understanding of the implications of invasion on other land-uses and 

land-cover to land owners, conservationists and other stakeholders. Changes in land-uses and 

land-cover (LULC) need to be addressed because they are the primary mechanisms of losses 

of biodiversity, ecosystem services and livelihoods, which would derail economic 

development and eventually curtail the achievement of many Sustainable Development Goals 

including SDG 1-3, 6, 8, 10, 15 and 16 (United Nations, 2023).     

Besides land degradation and invasive plant species, Baringo drylands are also threatened by 

climate variability, effects of which would amplify the negative effects of land degradation 

and Prosopis invasion such as soil erosion, loss of herbaceous biomass, biodiversity and 

water. In relation to this, there were gaps in understanding and knowledge of how the current 
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and predicted future climatic changes would influence Prosopis invasion as well the habitat 

of key native flora –Vachellia tortilis (formerly Acacia tortilis). V. tortilis is a characteristic 

species in savanna grasslands, whose distribution is currently highly threatened by Prosopis 

invasion (Mbaabu et al., 2019). Moreover, studying the past Prosopis invasion dynamics and 

modeling the effects of future climatic changes could provide invaluable cues needed to 

understand the evolutionary history and future ecological dynamics on how the co-existing 

native and alien species may react to an altered climate. Moreover, projecting potential future 

changes in species geographic ranges in the context of biological invasions is important for 

developing adaptive invasive plants management. This enables identification of refugia as 

well as areas of vulnerability (threatened habitat) for native flora (Baumgartner et al., 2018), 

particularly to Prosopis invasion, for prioritization of biodiversity conservation efforts and 

resources. Further, this will inform policy decisions on current and future management of 

degraded and invaded savanna grasslands (Keppel et al., 2015). Additionally, this would also 

help to mitigate potential problems of climate change on ecosystems, people and economies 

early enough.  

1.3 Objective of the study 

1.3.1 Main Objective 
The main objective was to provide reliable estimates of alien Prosopis spread in Baringo 

County, Kenya and an understanding of the implications of the invasion dynamics on people 

and the ecosystem in the face of climate change.  

1.3.2 Specific objectives  
i. To estimate the spatial extent and dynamics of alien Prosopis invasion, its impacts on 

land-use and land-cover, selected native biodiversity (Vachellia tortilis) and rural 

livelihoods. 

ii. To evaluate and compare the impact of Prosopis invasion vs. grassland restoration on 

soil organic carbon stock, plant species richness and herbaceous biomass over the past 

30-35 years. 

iii. To assess the impact of climate change on Prosopis juliflora and Vachellia tortilis 

geographic ranges under current (1970-2000) and future (2041-2060 and 2071-2100) 

climate change scenarios, identify areas potentially at risk of Prosopis invasion and 

climate refugia for Vachellia tortilis.  
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1.3.3 Research Questions 
1. What is the current (as at 2016) spatial distribution of Prosopis juliflora and how has 

it evolved over the past 25-30 years? 

2. What are the spatial dynamics (invasion rate and density) over time in the study area, 

and how has it impacted the native Vachellia tortilis? 

3. How much grassland and agricultural land has been lost to Prosopis juliflora invasion 

and what are the implications on livelihood? 

4. What are the impacts of Prosopis juliflora cover and grassland restoration on the soil 

organic carbon, plant species richness and herbaceous biomass? 

5. Where are the suitable habitats for Prosopis juliflora and Vachellia tortilis under 

current (1970-2000) and future (2041-2060 and 2071-2100) climate change 

scenarios?  

6. Which areas are suitable for Vachellia tortilis but are at risk of Prosopis juliflora 

invasion in future? 

7. Which factors influence habitat suitability for both species and under current and 

future climate conditions? 

1.4 Justification and Significance 

1.4.1 Justification 

Nearly half of the African continent is covered with savanna grasslands which hosts most of 

the world’s mammals, rich in biodiversity and supports numerous livelihoods. Despite their 

vital significance, these grasslands have numerous threats with land degradation, woody tree 

encroachment and climate change as most pressing. Baringo region is mainly arid and semi-

arid and part of the larger savanna biome. Besides climate change and land degradation, this 

region is suffering devastating effects of alien Prosopis invasion. Invasion by alien species 

such as Prosopis are a key driver of landscape changes and biodiversity loss, with negative 

implications on livelihoods. Although Prosopis introduction and its subsequent invasion has 

been a highly contested topic which elicited a legal battle and attracted global attention, it still 

remains persistent with no solutions at hand partly due to lack of effective management 

strategies and policy framework. Policy frameworks need to be backed up by scientific 

evidence. For Baringo and other invaded areas in Kenya, crucial data such as Prosopis 

invasion dynamics (past and current extents), and its impacts was initially lacking. Moreover, 

predicted future climate change is expected to amplify alien species invasions as well as 

modify habitats for native species. As such, it is not known which areas are at risk of future 
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Prosopis invasion as well as how Prosopis and a selected key native species (Vachellia 

tortilis) will respond to climate change. Vachellia tortilis was selected for modeling because 

it is a key species characteristic of savanna grasslands that is currently being replaced by 

Prosopis colonization (Mbaabu et al., 2019). Furthermore, with the current global debates 

advocating for forest expansion into grasslands for carbon sequestration (as opposed to the 

expected grassland restoration), the extent to which afforestation can remarkably increase 

carbon stocks without compromising the provisioning of other ecosystem services is not 

known. Soil organic carbon assessment in Prosopis invaded areas and restored grassland was 

given consideration in this study because carbon sequestration is recognized as an important 

ecosystem service (Nelson et al., 2008). Besides, soil organic carbon is one of the three 

indicators used by UNCCD to assess land degradation neutrality because it represents the 

capacity of the land to provide ecosystem services (Feng et al., 2022). Baringo County and its 

environs was selected as case study because it presents a nexus of climate change, biological 

invasions, and land-use and land-cover changes, which are part of the current global 

challenges.  

1.4.2 Significance 

The findings will inform adaptive policies for management of Prosopis in Baringo and other 

invaded areas in Kenya amid climate change. They enhance the understanding of both native 

and alien tree species response to climate change and contribute to knowledge on global 

discourses regarding afforestation of grasslands for climate mitigation or addressing land 

degradation. Moreover, they will reveal potential target areas for prioritization of Vachellia 

tortilis conservation attention, action and resources, amid adverse Prosopis invasion threat. It 

is hoped that the findings will inform future actions on the management of savannas and 

grasslands and key tenets mainstreamed in national and county policies aimed at reversing 

and mitigating the current global problems of land degradation, climate change, invasive 

species and biodiversity loss. 

1.5 Scope and Limitations of the Research 

1.5.1 Scope 

This study focuses on three themes, namely biological invasions, land-use and land-cover 

changes and climate change within the context of savanna grassland biome. The impacts of 

Prosopis juliflora invasion on LULC are further extended to analyze the invasion 

implications on native biodiversity (Vachellia tortilis) and livelihoods. The geographic scope 
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is the larger rift valley area, comprising Baringo County and part of the surrounding counties 

with similar climate, topography and species dispersion i.e. where the target species are 

found. The time scope for invasion impact and soil organic carbon analysis was 40 years. The 

period under consideration was 1970-2000 (for current climate); 2041-2060 (for near future 

climate) and 2071-2100 (for distant future climate). A variety of data (qualitative and 

quantitative) representing climate, topography, landscape structures, species occurrence, 

socio-economic and other important satellite derived variables were used. A combination of 

different research approaches were used including time-series analysis for LULC change 

detection, field sampling and laboratory analysis, and climate modeling.   

1.5.2 Limitations 
 Analysis of Prosopis spread since its introduction was limited by the fact that in the premier 

years 1982-1987 when Prosopis was just introduced, the planted individual trees were still 

very young, small and barely detectable on the 30 m Landsat imagery. This limitation was 

overcome by excluding these early years from the analysis. Moreover, some areas such as 

Arabal and Mukutani of Marigat sub-region were also excluded, even though they are 

invaded by Prosopis. This is because groundtruthing was not possible due to heigthened 

insecurity associated with banditry and inter-ethinic conflicts. At the time of data collection, 

these zones were quarantined for security reasons.  

1.6 Structure of the Thesis 
Chapter one introduces the research, while chapter two provides a review of literature. The 

study area and research methods are described in chapter three. Chapter four deals with the 

Prosopis spread since its introduction and the effects of the spread on land-use and land-

cover changes, key biodiversity and human well-being. Chapter five sheds light on the recent 

and current discourses regarding climate mitigation in grasslands and dryland ecosystems. It 

analyses the climate mitigation potential of two contrasting strategies to land degradation on 

soil organic carbon stocks, biodiversity and herbaceous biomass. Chapter six is about the 

effect of climate change on Prosopis invasion and the habitat of native Vachellia tortilis in 

the current and future climate. It further investigates the effect of projected Prosopis spread 

on the habitat of Vachellia tortilis, with the aim of identify safe refuges for prioritizing of 

native Vachellia conservation amid the threats of climate change and Prosopis encroachment. 

Chapter seven provides a synthesis, draws conclusions across all the chapters and provides 

recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 
A review of pertinent literature on the thematic scope of each objective is provided in this 

chapter. The chapter starts with what has been studied regarding mapping historical changes 

of the invasive Prosopis juliflora and the implications of these changes on land and people. 

Then, a review of literature on the impacts of Prosopis invasion and grassland restoration on 

selected ecosystem services, and finally how past and future climatic changes affect species 

geographic range (suitable habitats of both alien Prosopis juliflora and the native Vachellia 

tortilis). The chapter concludes with a summary of what is known and not known about the 

topic and reveals information gaps, some of which, this study attempted to fill.  

2.2 Mapping historical spread of Prosopis juliflora and analyzing invasion effects on 
land and livelihoods 
African drylands experienced severe degradation attributed to drought in the 1970s and 

before (Brahic, 2009; Gaulter, 2012), which precipitated tree planting including alien species. 

Deliberate introductions of alien trees have occurred in many arid lands in Africa because 

they provide some benefits to rural communities through provisioning of goods and services 

(Choge et al., 2022; Mbaabu et al., 2019). Prosopis species, which are native to Central and 

South America are listed among the International Union for Conservation of Nature’s 

(IUCN’s) list of 100 World’s worst invasive alien species (Lowe et al., 2000). They were first 

introduced in Taita Taveta town for ornamental reasons in 1948,  Bamburi, Mombasa in 1973 

to rehabilitate quarries (Herlocker et al., 1981), and later in Baringo lowlands in Kenya in 

1982 under the Fuelwood Afforestation Extension Project (Kaur et al., 2012; Kimani et al., 

1990). The introductions in Baringo were aimed at mitigating land degradation and 

alleviating shortage of firewood (Kariuki, 1993; Schwartzstein, 2019). Prosopis spp., also 

locally known as ‘mesquite’ in native lands, and ‘Mathenge’ or ‘Promi’ in Baringo, are 

nitrogen-fixing perennial (multi-stemmed or single-canopy) trees, with a high tolerance to 

arid conditions (Andersson, 2005; Pasiecznik et al., 2001). In Baringo, they proliferated and 

flourished fast even on degraded and barren land where regeneration of natural vegetation 

seemed slow, difficult or impossible owing to constant ecosystem disturbances such as fire 

and overgrazing (Doran et al., 1979). Thus, they were at first appreciated for scaling down 

dust storms and soil erosion, as well as providing shade, and pods for livestock fodder 

(Choge and Pasiecznik, 2005; Kinyua, 1989). However, a few decades after introduction, 

these trees became  extremely problematic which caused havoc particularly in farmlands and 
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grazing areas (Mwangi and Swallow, 2005) by causing substantial landscape changes and 

losses of livelihood (Mbaabu et al., 2019). These trees have been widely recognized as super 

invaders and are a threat to environmental and economic sustainability in the invaded range 

(Shackleton et al., 2014). This presents considerable management challenges to the affected 

countries. Therefore, studying their spatio-temporal extent and spread rate is important for 

developing sustainable control and management strategies.   

Owing to their multi-faceted and damaging impacts (Table 2.1), analysis of the distribution of 

invasive plants at landscape level in space and time has become popular in the recent years 

because the invasion patterns and the associated proximate causes can be correlated (Brown 

and Carter, 1998; Shiferaw et al., 2019c). 
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Table 2.1 Positive and negative attributes of Prosopis trees 

Positive and negative attributes of Prosopis trees 

Positive  Negative References 

Firewood and charcoal 
production 

Loss of water resources Walter and Armstrong (2014) 

Wood  Walter and Armstrong (2014) 

Pods for fodder Loss of natural pastures for livestock Wise et al.(2012) 

Medicinal products Loss of biodiversity Choge et al. (2007), Haregeweyn et al.(2013) 

Shade  
Invasion of agricultural land – impacts household 
economies and human welfare 

Walter and Armstrong (2014) 

Soil stabilization Blockage of paths and roads – impending movement Abdulahi et al.,(2017) 

 Direct harm or injury to livestock and people Ayanu et al.,(2015) 

Carbon sequestration and 
storage 

 Abdulahi et al.(2017) 

Microclimate regulation  Abdulahi et al.(2017), Ilukor et al. (2016) 

Human food  Choge et al.(2007) 

Support honey production by 
providing forage for bees 

 Wise et al.(2012) 

Effective fencing tree  Walter and Armstrong (2014) 
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Mapping of invasive species is necessary for designing effective control and management 

strategies to prevent spread into new locations (Grice et al., 2011) as well as to support 

monitoring of the outcomes of management interventions (Mbaabu et al., 2021). Remote 

sensing technology is a cost-efficient means for analysing the distribution of aliens plants and 

monitoring their geographical expanse even in difficult terrain or inaccessible areas (Huang 

and Asner, 2009). Remote sensing data from Very High Resolution (VHR) sensors can be 

used for analyzing changes on the landscape and enable discrimination of Prosopis species 

from other co-existent vegetation such as Vachellia tortilis (Adam et al., 2017; Mirik and 

Ansley, 2012; Ng et al., 2017). However, these datasets are tasked, and the data source 

archives have limited reliability and temporal resolutions such as the early years of Prosopis 

introduction in a site (e.g. 1980s). Therefore they cannot be used to study past changes in 

Prosopis distribution. Thus, satellite data / imagery that has been consistently acquired, and 

over a considerable period such as from the Landsat sensor or the moderate-resolution 

imaging spectroradiometer (MODIS) are used for such assessments. Such data have been 

utilised to map the distribution of Prosopis invasions worldwide (Kaurivi et al., 2003; Meroni 

et al., 2017; Ndungu et al., 2019; Ng et al., 2016b; Wakie et al., 2014). Distribution maps 

from previous studies show that Prosopis has colonized millions of hectares of  arid lands in 

the Americas, Australia, Asia and Africa (Robinson et al., 2008; Singh and Joshi, 1979; 

Vidhya et al., 2017) and the species is currently found in over 129 countries (Shackleton et 

al., 2014). In Africa, it was estimated that Prosopis had invaded over 4 million hectares of 

rangelands by the year 2010 (Luizza et al., 2014; Witt, 2010; Witt et al., 2018). Shiferaw et 

al. (2019c) used Landsat 8 Surface Reflectances, topographic, climate and landscape features 

data to map Prosopis spread in Afar Region, Ethiopia. Prosopis invasion has been mapped in 

South Africa by Van den Berg et al. (2010) by combining MODIS, soil and terrain datasets. 

Mureriwa et al. (2019) mapped Prosopis distribution in South Africa using SPOT-6 satellite 

data and machine learning classification algorithms. Mureriwa et al. (2016) examined 

Prosopis spectral separability from other co-existent vegetation in South Africa by analyzing 

field spectral measurements using the guided regularized Random Forest technique. Adam et 

al. (2017) mapped the spread of  Prosopis glandulosa using WorldView-2 satellite imagery 

and machine learning classifiers on a South African landscape.  

In Kenya, Alvarez et al. (2019) classified the infestation risk of Lake Baringo Basin to 

Prosopis juliflora using environmental variables. They found that two variables: distance of 

invaded areas from original Prosopis plantations, and water availability had the highest 
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predictive potential of future invasion risks.  Kyuma et al. (2016) mapped the spatio-temporal 

dynamics in Prosopis spread in Southern Kenya between 2000–2013 using net primary 

productivity products and MODIS NDVI. They found that Prosopis correlated positively 

with increases in temperature (from 33°C in 2000 to 37°C in 2014); and negatively with 

precipitation decline (from 600 mm in 2000 to 250 mm in 2014). They also found that 

Prosopis invasion increased and took over 70% of land that was previous occupied by other 

land-uses and land-cover such as bushlands and woodlands. These studies show that 

assessing and monitoring Prosopis distribution in Africa and Kenya has gained attention in 

recent years. However, at the beginning of this study in 2015, reliable estimates of the spatial 

evolution and dynamics of Prosopis invasion and its effects on land-use and land-cover 

(LULC) and consequently on rural livelihoods were lacking for Kenya. Although Amboka 

and Ngigi (2015) mapped and monitored the spatio-temporal cover changes of Prosopis 

colonization in Baringo from 1985 to 2010, their findings are likely flawed because their 

spatial scope (geographical extent) does not correspond to the known Prosopis invaded areas 

in Baringo. Their study shows Prosopis cover in the area starting at longitude 35.3° E to 

35.8° E East of Prime Meridian, which represents highlands (Kabartonjo, Kabarnet and 

Tugen Hills) which are covered with plantation forest and other indigenous vegetation. 

Prosopis currently is found in the lowlands zones around Lake Baringo (starting from about 

longitude 35.8° E to 36.1° E). This flaw can be attributed to failure to carry out rigourous 

groundthruthing or validation of findings. Kiage et al. (2007) also studied land-use and land-

cover changes around Lake Baringo for the period between 1986 and 2000. They found up to 

40% forest cover loss over the 14-year period, as well as 10% loss of Lake Baringo surface 

area due to lake sedimentation.     

Most Sub-Saharan Africa rural communities are dependent on their natural environment for 

livelihood. Although Prosopis invasion offers some benefits to rural communities such as 

firewood, timber and charcoal (Maundu et al., 2009; Mbaabu et al., 2021; Mwangi and 

Swallow, 2008; Shackleton et al., 2015b), previous studies show that Prosopis invasions on 

previously productive landscapes have damaging effects on livelihoods in the invaded areas 

(Bekele et al., 2018a). For example, a global review of alien species invasion impacts on 

local livelihoods and human well-being has been provided by Shackleton et al. (2019). They 

established that many of these alien plant species provide livelihoods benefits to communities 

in the form of natural capital and job creation. On the other hand, these species negatively 

impact livelihood assets as households incur high labour and financial costs to manage them 
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thus impoverishing human, physical, and financial capital (Bekele et al., 2018a; Linders et 

al., 2020). In India, Walter and Armstrong (2014) investigated the benefits, threats and 

potential of Prosopis. They identified Prosopis benefits such as bio-power production, 

fuelwood and charcoal, and negative effects such as invasion of farmlands leading to high 

labour imputs, and eventually farm abandonment. Further, Prosopis invaded irrigation canals 

limiting water supply to the irrigation fields and high canal maintenance costs. Invasion of 

river banks also led to blockage of water flows which led to flooding and siltation of crop 

fields. In Africa, Prosopis invasion impacts on livelihoods have been previously studied 

(Bekele et al., 2018b; GIZ, 2014; Haile, n.d.; Ilukor et al., 2016; Mehari, 2015; Rogers et al., 

2017; Seid et al., 2020; Shiferaw et al., 2021; Wakie et al., 2012; Zeray et al., 2017). In 

Kenya, Mwangi and Swallow (2008) studied the effects of Prosopis invasion on rural 

livelihoods in Lake Baringo area. They concluded that, unlike other juridisdictions globally, 

few benefits of Prosopis have been realized in Baringo especially in areas where the invasion 

is advanced, which led to strong local support for eradication of the species. Maundu et al. 

(2009) investigated the effects of Prosopis invasion on Kenya’s arid and semi-arid landscapes 

and on local livelihoods. They found that Prosopis was important for charcoal and livestock 

fodder, while the prominent harmful effects were invasion of pastureland, cropland and 

homesteads. These reviews demonstrate that impact of Prosopis invasion on livelihoods has 

received significant research attention in recent years. Overall, these studies have provided 

evidence with conclusions that the overall costs of these invasions outweigh the benefits. For 

example, 86% of case studies in the review study by Shackleton et al. (2019), listed 

livelihood costs due to Prosopis while 79% listed benefits to local livelihoods. Similary, in 

Ethiopia, 84% of surveyed households rated Prosopis as undesirable and blamed it for 

invading dwellings and grazing areas (Mehari, 2015). Further, 70% of survey respondents 

from invaded areas in Kenya indicated that overall, Prosopis had negative impact on their 

livelihoods and that life would be better without Prosopis (Maundu et al., 2009; Seid et al., 

2020).  

Although these previous studies have contributed significantly in improving the 

understanding of the impacts of Prosopis invasion on livelihoods, most of them were 

descriptive or qualitatative in nature, and lacked hard numbers on which policy decisions can 

be anchored. Most importantly, they have not empirically linked the spatial changes in 

Prosopis cover to the livelihoods. Therefore, this study sought to link the spatial fractional 

cover (area covered by Prosopis) and land-use and land-cover dynamics to the monetary 
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costs of managing this cover in important land-uses / land-cover that are crucial for 

livelihoods.  

2.3 Comparison of the effects of Prosopis spread vs. grassland restoration on climate 
mitigation, plant species richness and herbaceous biomass 
Carbon is a basic element of life and is constantly exchanged between the various planetary 

repositories – atmosphere, lithosphere, biosphere (terrestrial plants and animals), water and 

the oceans. Of these repositories, oceans store more carbon than the rest (containing about 

38,000 gigatons (Gt) which is 16 and 60 times the carbon in the biosphere and atmosphere, 

respectively (Schröder, 2010). In the terrestrial space, soils are the largest pool, comprising 

more carbon than the atmosphere and vegetation combined (FAO, 2017). Comparably, soils 

also hold more stable carbon stocks than woody biomass which consist mainly transitory 

carbon (Doney et al., 2006). Nevertheless, soil organic carbon (SOC), which comprises about 

66% of soil carbon globally (Batjes, 1996), responds to land deterioration (Dlamini et al., 

2014), with substantial negative effects on soil quality, productivity and greenhouse gas 

emissions (IUCN, 2015). Hence, stopping and addressing land degradation through 

restoration of degraded landscapes is important for building sustainable agro-ecological 

systems (UNCCD, 2017; UNDP, 2015) and improved human well-being. 

Grassland biomes make up about 25% of global land area (Ontl and Janowiak, 2017), 

comprise about 40% of the Earth’s natural vegetation (Ramankutty et al., 2008) and contain 

significant amount of the world’s SOC (Conant et al., 2017). As such, they substantially 

contribute to environment, economies, and provide numerous cultural benefits (Parr et al., 

2014). For example, about 20% of the global population’s livelihoods are dependent on 

grasslands for fuel wood, food, medicinal plants and grazing. They also provide habitat for a 

sizeable diversity of flora and fauna (White et al., 2000). Additionally, they constitute about 

30% of total net primary productivity (terrestrial) globally, and provide other ecosystem 

goods and services such livestock forage, tourism, regulation and storage of water flows 

(White et al., 2000). In doing so, they sustain the lives of more than one billion people 

worldwide (Bai et al., 2008; Conant, 2010). Yet, despite their significance, they continue to 

face multifaceted risks ranging from climate change, anthropogenic disturbances and alien 

plant species invasion (Mbaabu et al., 2021). Thus, they are under severe threat from 

conversion to other land-uses and degradation (Gibbs and Salmon, 2015), thereby limiting 

their capacity to provide and support essential ecosystem services and functions.  
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The Clean Development Mechanism (CDM) and the program for Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) of the United Nations have received 

substantial adoption awareness in various countries in recent years (UNFCCC, 2023). 

Through the CDM, countries with an emission-limitation or emission-reduction under the 

Kyoto Protocol are allowed to implement emission-reduction projects in developing countries 

(UNFCCC, 2022a). The REDD+ (also known as Warsaw Framework for REDD+) is a 

guiding framework on activities by national governments to scale down emissions from forest 

loss and forest quality deterioration, and for sustainable forest management and conservation 

in developing countries (UNFCCC, 2022b). In response to these mechanisms, afforestation 

activities in degraded grasslands have been legitimately proffered as valid climate change 

mitigation strategies (Law et al., 2015; Parr et al., 2014). Consequently, degraded grasslands 

have become target areas for afforestation including use of invasive alien plant species, with 

some countries commercializing carbon credits under the Kyoto Protocol (Chisholm, 2010; 

Dickie et al., 2014).  

However, the extent to which woody plant expansion or alien tree invasions can increase 

SOC is largely dependent on the land-cover or land-use type, tree species planted and 

climatic conditions. Therefore, the attempts that rely on above-ground carbon stocks from 

tree plant invasions to reduce atmospheric concentration of greenhouse gases may be 

inappropriate and inaccurate as demonstrated in other studies globally. For example, Jackson 

et al. (2002), investigated the effect of tree invasion along varying precipitation amounts and 

compared carbon between a non-invaded grassland site and one that was invaded for about 30 

to 100 years in Texas, USA. They found a clear negative relationship between soil organic 

carbon and precipitation when grasslands were invaded by woody vegetation. Other studies 

have reported similar findings that actually, tree or shrub expansion into grasslands can cause 

declines in valuable soil carbon stocks (Conant et al., 2017; Conant and Paustian, 2002; 

Jackson et al., 2017; Smith, 2005). Additionally, over-emphasis on above-ground carbon 

stocks is probably because most of the studies on soil carbon have limited their analyses to 

upper soil (usually top 15-30 cm), potentially missing out on the substantial SOC stored at 

greater depths in grassland soils (Ward et al., 2016). Most importantly, the co-benefits and 

trade-offs with other ecosystem services should be identified and factored in decision making 

on soil carbon management actions, so as to promote ecosystem service multifunctionality 

(Manning et al., 2018). Notably, even in situations where tree expansion in tropical savannas 

increases carbon stocks, it may concurrently limit biodiversity and other ecosystem services 
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(ES). Because healthy grasslands have the potential to substantially accumulate huge amounts 

of carbon, degraded grassland restoration and implementation of sustainable grazing 

management would be an alternative climate change mitigation strategy in the target regions 

(Byrnes et al., 2018). In some previous studies, grasslands recorded a greater carbon 

accumulation to the roots than forests, hence remarkable replenishment of diminished SOC 

stocks in degraded grassland may be achieved through restoration as quickly as encroachment 

by woody species (Jobbágy and Jackson, 2000). In Kenya, a few studies related to this topic 

were found in literature. Sainepo et al. (2018) compared soil organic carbon and total 

nitrogen stocks in four land-use types (shrubland, agricultural land, grassland and bareland) 

in Narok County. They found that SOC was variable across the land-use types where 

shrubland had highest levels (31.26 Mg C ha-1) and lowest in bareland (12.85 Mg C ha-1). 

Total Nitrogen was highest in shrubland (4.22 Mg N ha-1) and lowest in bareland (1.6 Mg N 

ha-1). Also, surface (0-15 cm) soils contained higher SOC and TN stocks than sub-surface 

(15-30 cm) soil. Oduor et al. (2018) tested the use of pasture enclosures to enhance soil 

carbon (organic and particulate) and microbial biomass. They found that use of enclosures 

were valuable in enhancing vegetated cover and soil properties in tropical rangelands. Eschen 

et al. (2021) assessed the potential contribution of Prosopis juliflora management and 

grassland restoration on soil carbon sequestration and local livelihood support in Baringo 

County. Their predictions indicate that clearing Prosopis and restoring the formerly degraded 

grasslands would financially benefit households through income from increased livestock 

numbers, charcoal and carbon credits. By the start of this study in 2016, no previous studies 

had compared soil organic carbon stored in the different land-uses / land-cover types in the 

study area.   

2.4 Modeling the impact of climatic changes on suitable habitat for Prosopis and 
Vachellia tortilis 

2.4.1 Climate change–biological invasions–biodiversity nexus 
Alterations in vital aspects of the environment like temperature and precipitation are 

occurring due to climatic changes (Thuiller et al., 2007), with potential implications on the 

functioning of global ecosystems (Ehrlén and Morris, 2015). Variations in the intensity and 

frequency of these aspects coupled with their associated extreme climatic occurrences i.e., 

flood, drought and fires (Bellard et al., 2013) modify ecosystems, rearrange climatic zones 

with a likely emergence of novel conditions and a complete disappearance of some climate 

profiles (Baumgartner et al., 2018). These alterations may increase the vulnerability of 
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ecosystems to biological invasions and thereby create exceptional opportunities for growth 

and dispersal of invasive species (Bellard et al., 2013; Thuiller et al., 2007). Simultaneously, 

this decreases the resistance of natural plant community assemblages to invasion through 

disturbances in the dynamic equilibrium that maintains them (Thuiller et al., 2007).   

Projected future climate change and biological invasions will certainly interact, creating a 

complex imbalanced relationship between invasive species and the host ecosystem elements 

(Thuiller et al., 2007). Notably also, both micro- and regional climate can potentially be 

influenced by regional dynamics in community and ecosystem structure, thus providing 

complex feedback effects which may impact the rate of ecosystem change (Thuiller et al., 

2007). These complex interactions will undoubtedly lead to severe ecological disturbances, a 

crucial mechanism in mediating the dispersal, establishment and dramatic explosion of 

invasive alien species. Both climate change and alien plant species invasion may have 

profound influence on species geographic ranges (Araújo and Guisan, 2006), with substantial 

ramifications for biodiversity (Baumgartner et al., 2018). For instance, elevated CO2 levels 

coupled with a warmer and drier climate is predicted to cause over 40% species turnover in 

local communities in Europe (Thuiller et al., 2007). Invasion by alien plant species is 

putatively the second most important cause of biodiversity loss after land-use changes 

(Bellard et al., 2013; Kathiresan, 2020). These species are of concern because managing them 

and maintaining indigenous flora and fauna in the natural host ecosystems is substantially 

problematic (Halmy et al., 2019; Thuiller et al., 2007). This is because they can alter 

ecosystems through naturalization and establishment of viable populations with high growth 

rates that can potentially displace indigenous biodiversity (Fernandes et al., 2019; Thuiller et 

al., 2007). Inevitably, this modifies disturbance regimes culminating into potential 

transformation of the structure and functioning of the ecosystem (Fernandes et al., 2019; 

Thuiller et al., 2007), which is a threat to conservation and existence of native species (Halmy 

et al., 2019). Additionally, these invasive alien plant species inflict severe damage to society 

through a raft of socio-economic, ecological, and health impacts in the affected areas (Halmy 

et al., 2019; Simberloff, 2013; Simberloff et al., 2013). For instance, invasive plants may 

reduce agricultural yields, water availability and negatively affect the provisioning of natural 

ecosystems services (Witt et al., 2018), thus impoverishing livelihoods and restraining 

sustainable development (McNeely et al., 2001).  

Given the projected complexity and stress on natural systems introduced by changed climatic 

conditions, the forecasted dynamics of alien plant invasions may make survival of native 
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plant species in those ecosystems a tall order. Therefore, in order to protect natural 

ecosystems from invasive alien plants species encroachment and to safeguard native species 

in these ecosystems from the adverse effects of the aliens amid climatic changes, 

comprehensive studies and measures on these three interacting issues are required. There has 

been increased attention to identify vulnerable geographical spaces in anticipation of future 

invasions (Fernandes et al., 2019). This is particularly relevant because efforts to control or 

eradicate naturalized invasive species are costly and logistically difficult (Fernandes et al., 

2019), hence preventing new invasions and expansion of established invasive species are 

considered the most feasible and cost effective ways of managing invasive species. 

Remote sensing data and techniques are invaluable for mapping distribution of alien species 

and predicting areas potentially at risk of invasion (Rocchini et al., 2015), more so during 

global environmental change. Species Distribution Models (SDMs), also referred to as habitat 

suitability models, ecological niche models, resource selection functions, and climate 

envelope models (Araújo and Peterson, 2012; Elith and Leathwick, 2009) have been 

extensively used (Elith and Leathwick, 2009) to investigate effects of climate variability 

(Beaumont et al., 2008; Dullinger et al., 2012; Eckert et al., 2020; Engler et al., 2013, 2009) 

on plant species habitats (i.e. ecological niches) (Bellard et al., 2013; Eckert et al., 2020; 

Fernandes et al., 2019; Guisan et al., 2017; Ng et al., 2018; Thuiller et al., 2005). These 

models relate species occurrences at known locations with environmental data in order to 

provide an understanding or predict species dispersal in space and time (Elith and Leathwick, 

2009). On the basis of the assumption that the environmental preferences and tolerances of 

species are explained by the currently known locations of the species populations, these 

models predict habitat suitability of species in other locations unoccupied by the species 

(Elith and Leathwick, 2009). Although these models seem to generally poorly simulate the 

complex and intertwined interactions observed in the real world such as the nexus between 

climate change, biological invasions, and biodiversity, they may provide invaluable cues for 

the identification of ecosystems threatened by the development of such interactive effects 

(Elith and Leathwick, 2009). This is critical for the identification of climate refugia for 

prioritization of attention, action and resources for managing alien invasions and conservation 

of native biodiversity. Climate refugia are areas where species may migrate to or survive 

during extensive, prolonged climatic change (Keppel et al., 2015), or areas of climate 

suitability or those with tolerable ecological conditions for the keystone species 

(Baumgartner et al., 2018). Thus, SDMs are a suitable approach to investigate the 
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implications of anthropogenically-induced environmental change on biodiversity and the 

contributing role of climate change (Thuiller et al., 2007).   

Understanding how climate change will influence invasive species range distribution and 

consequently the interactive effect on native species in the host ecosystem requires 

simultaneous predictions of effects of climate change on the habitat of both invasive and 

native species as well as the concomitant effect of invasive species on indigenous species’ 

habitat. Despite the wide recognition of the dramatic and multifaceted impacts of non-native 

plant species, mapping and predicting their distribution range and impacts in the face of 

climate change has hardly been done in Kenya. Moreover, there are currently no published 

studies on the impacts of their projected range shifts on native species in the invaded range. 

Previous work has tended to disproportionately focus on modelling the effect of climate 

variability on invasive species (Eckert et al., 2020; Kyuma et al., 2016; Mbaabu et al., 2019; 

Muturi et al., 2013; Ng et al., 2018, 2016a; Witt et al., 2018) or native species (Becker et al., 

2016; Shackleton et al., 2017b; Witt et al., 2018) separately, without considering the 

interactive impacts of projected invasions to native species under climate change. This begs 

the question on how the projected climatic changes will influence future Prosopis invasion 

and consequently, the impact that would have on native Vachellia tortilis, a keystone species 

in the savanna biome.  

Although it is difficult to conceptualize and analyze the complex interrelationships between 

the changing climate and invasion dynamics (Thuiller et al., 2007), this study attempted to fill 

the current gap on the interactive effect of changing climate on biological invasions and the 

subsequent effect of these invasions on indigenous biodiversity in the invaded range using 

alien Prosopis and native Vachellia tortilis as a case study. This study is considered 

important for providing insights on the adaptive management of alien plant invasions and 

systematic planning for conservation of native biodiversity. Moreover, anticipating invasive 

alien plants in future distributions is important for promoting precautionary management 

decisions and actions including mitigating new introductions, early detection of invasion and 

controlling their spread (Bellard et al., 2013; Fernandes et al., 2019). Most importantly, 

identifying and protecting climate refugia is one of the three explicit strategies considered for 

mainstreaming adaptation to climate change into national conservation of biodiversity (Game 

et al., 2011; Groves et al., 2012), needed to drive conservation effort under the Convention on 

Biological Diversity (Game et al., 2011). 
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2.5 Summary 
Previous studies provide evidence that Prosopis is an aggressive invader with significant 

implications on nature and people. The inclusion of this species in the IUCN’s list of most 

damaging invasive species is a confirmation. However, review of pertinent literature revealed 

a number of gaps in knowledge in relation to the thematic scopes under investigation in 

relation to Prosopis invasion. These gaps included lack of reliable estimates of the spatial 

extent and dynamics of Prosopis invasion and its associated impacts on LULC, native 

dominant Vachellia tortilis species and consequently on rural livelihoods. With regards to 

impacts on rural livelihoods, previous studies show that Prosopis invasion is both benefial 

and costly to livelihoods, but overall, the costs outweigh the benefits. However, previous 

analyses have largely been qualitative in nature except for the work by Maundu et al. (2009), 

who estimated the cost of managing Prosopis in invaded croplands. However, their study did 

not establish a link between Prosopis invasion or cover with the monetary cost, as the cost of 

removing Prosopis per unit area is dependent on the density of invasion. The current study 

uses a different approach of first estimating the fractional cover of Prosopis and the average 

willingness to pay for Prosopis removal by households in the affected areas, and then uses 

these to estimate the total costs of clearing the presently invaded croplands and grazing land, 

which is the current knowledge gap.  

The role of trees or forests in climate mitigation and rehabilitation of degraded landscapes 

cannot be underestimated. However, different ecosystems and / or biomes require context-

specific strategies for addressing land degradation and climate mitigation options. Previous 

literature has revealed that some previous management interventions on savannas such as 

afforestation especially using alien invasive plants for climate mitigation are controversial. In 

particular, these interventions have been criticised because alien plant invasions especially by 

Prosopis has been linked to alteration of biodiversity patterns, rural livelihood 

impoverishment, and land-use and land-cover changes thereby, undermining ecological 

integrity and economic viability of invaded landscapes. At the start of this study, there was a 

long standing contentious issue between decision makers and other relevant stakeholders on 

how to deal with Prosopis menace in the study area. There was a conflict of interest where 

communities demanded compensation and eradication of the species while the government 

advocated for its management and promotion for carbon credits under REDD+ mechanism. 

However, promotion of woody alien species has received increased criticisms in recent years 

due to its associated impacts, and restoration of degraded land to original grasslands has been 
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cited as a better alternative. In view of these, the knowledge gap was whether it is Prosopis 

proliferation or restoration back to native grassland that would effectively mitigate climate 

change without compromising biodiversity and other ES provisioning.  

There is agreement from previous studies that indeed global environmental change, in 

particular, climate change is altering our ecosystems, posing serious threats to habitats and 

survival of biodiversity. Moreover, it is expected that climate change will likely exacerbate 

biological invasions. Previous work has disproportionately focused on modeling the effect of 

climate change on environmental range of invasive species or native species separately, 

without considering the interactive impacts of projected invasions to native species under 

climate change. The next chapter focuses on the methods used to answer the research 

questions associated with the highlighted gaps in literature.  
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CHAPTER 3: STUDY AREA AND METHODS 

3.0 Introduction 
This section provides relevant biophysical and socio–cultural background information about 

the study area(s) with the intention of enhancing the understanding of the system in which 

this study is based. Further, the methods adopted for each objective are described in detail.  

3.1 Study area(s) 

3.1.1 Study area(s) description 
The eastern rift valley system, which the Great Rift Valley in Kenya is part of stretches from 

Afar region in Ethiopia to Lake Natron in Tanzania. It is characterised by rifts and faults, a 

series of lakes and volcanoes, hills and escarpments. It has a unique combination of altitude, 

precipitation, soil and vegetation. The overall study is based in the semi-arid zone of the 

Great Rift Valley in Kenya (Figure 3.1). It covers the County of Baringo and in part eighteen 

(18) surrounding counties, spanning an area of 95,866 Km2. The study extent considered for 

each objective varied depending on the research questions. Marigat sub-region of Baringo 

County which extends from longitude 35° 20′ E to 36° 20′ E and latitude 0° 10′ N to 0° 50′ N 

was considered for objective one and two. The larger rift valley region stretching between 

latitudes 3° 55' N to 1° 1' S and longitudes 35° 50' E to 37° 26' E, and partly covering the 18 

counties was additionally considered for objective three. Objective three involves species 

distribution modeling under climate change hence the consideration for a larger study area as 

recommended by Pearson and Dawson (2003). This study was aimed at mapping and 

understanding the two species ecological niches (both current and future) in order to inform 

conservation decisions, planning, resource management and mitigating further spread of 

invasive alien Prosopis species. For this reason, the spatial extent tended toward the local 

scale.   
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Figure 3.1 The extent of the study area considered for the three research objectives. 

3.1.2 Biophysical setting 

3.1.2.1 Climate 
Climatic conditions are very varied, just like the huge variations in altitude. Over 35% of the 

study area is very steep. The lowest point in the study area has an elevation of 267 m a.s.l, 

while the highest point stands at 3992 m a.s.l (Figure 3.1). Due to these variations, the 

counties therein receive varying amounts of rainfall. The highlands (located in the southern 

part of the study area) are mild, usually with temperatures below 28°C and yearly 

precipitation of between 1000-1500 mm (Keitany et al., 2013). The lowland zones are 

relatively warmer and dry with temperatures usually reaching over 35 °C, with an average 

altitude of 700 m a.s.l, and total annual precipitation is between 300-700 mm (Olang, 1988). 

The wind speed ranges between (minimum) 0.60 m/s to 1.5 m/s and (maximum) 2.73 m/s to 

4.81 m/s (www.worldclim.org). The month of July is the least windy while August is the 

windiest.  

3.1.2.2 Vegetation 
Genrally, the study area has a mosaic of loamy, clay, sand and rocky soils, with loamy soils 

dominating the highlands. Lowlands have a mostly a patchy distribution of loam, clay, sandy 
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and rocky soils. The highlands have relatively well drained soils and dense vegetation cover 

of evergreen forests (both indigenous and exotic). Currently, the lowland vegetation 

comprises predominantly a mixture of woody native and exotic species, although historically, 

the landscape was characterised by Vachellia-dominated shrubland and different grasses 

(Kiage and Liu, 2009; Maitima, 1991). Over the last three centuries, land degradation of 

unprecedented magnitude has been witnessed in the area, driven primarily by anthropogenic 

pressure (livestock keeping) and climate variability (Little, 2019, 1992). 

3.1.2.3 Land Uses and Resources 
The steep variations in environmental gradients strongly influence the physical conditions of 

the land, which consequently bears on the distribution of flora and fauna. The area comprises 

different agro-ecological zones which favour different land-use patterns, economic and 

cultural activities. The highlands are suitable for cultivation of crops such as maize, beans, 

fruits and vegetables. The lowlands are semi-arid and predominated by livestock and bee 

keeping ventures, and minimal crop farming under irrigation (Omwega and Norgbey, 2004). 

The area hosts diverse and spectacular tourist attractions in terms of physical resources such 

as mountains, rivers, lakes, wildlife and the rift valley scenery itself, making the zone a 

tourism hotspot in the country.   

3.1.2.4 Physiography and Drainage 
The process leading to the formation of the Rift Valley (RV) is continuous,  but much of its 

present shape is attributed to tectonic activity during the mid-Pleistocene period (Morgan, 

1969). The present ranges and escarpments such as the Mau, Losiolo, Elgeyo, Nguruman and 

Aberdare range resulted from magmatic hot spots that separated the ground when the valley 

opened up. This give rise to a mosaic landscape comprising a unique combination of 

topographic features with different elevations such as hills, river valleys, plains, lakes and 

volcanic rocks. This region hosts a series of volcanic mountains such as Longonot, Paka, 

Silali, Menengai, Olkaria, Namarunu, Emuruangogolak, Eburu and Korosi. The rivers drain 

into the lakes or swamps. The major lakes include Baringo, Bogoria, Turkana, Nakuru, 

Naivasha and Elmenteita (Lelenguyah, 2013). Water supply is mainly from lakes and rivers.  

3.1.2.5 Water Resources 
The main rivers within the study area are Turkwel, Kerio, Perkerra, Molo, Loboi, Suguta of 

Arabal and Waseges. There are also several fresh and salt water lakes which include Baringo, 

Bogoria, Nakuru, Elmenteita, Naivasha, Turkana and Magadi. These lakes have important 
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functions such as fishing, mining, tourism, species habitat, provision of water and agricultural 

support.  

3.1.2.6 Biophysical vulnerabilities 
The semi-arid region is characterised by sparse population mainly pastoralists and 

subsistence farmers. Over 80% of the population live in rural areas with high poverty 

incidence levels at ⁓58.7%. Economically, agriculture is the economic base of most residents, 

with crops such as tea, maize and a good blend of horticultural crops and livestock keeping. 

Productive agriculture and livestock keeping, which are the primary livelihood sources, are 

greatly limited by environmental deterioration and constant water shortages. The region is 

also prone to human conflicts arising from natural resources scarcity i.e. water, pasture and 

boundary disputes. Due to its unique and varied geography, it is one of the tourism hotspots 

in Kenya (Keitany et al., 2013).  

3.1.3 Socio-economic setting 

3.1.3.1 Political and Administrative Context 
Kenya runs on a federal system of governance with operations at both counties and national 

government. There are 47 counties, each headed by an elected governor. The counties host 

constituencies, which are divided into administrative wards. These regions exist as devolved 

functional units since 2013 as enshrined in the Constitution of Kenya 2010. Following this, 

some government functions such as health services, agriculture, trade development and 

implementation of some national government policies on environmental conservation of 

forests, soil, and water and utilization of natural resources were devolved to the county 

governments (KLRC, 2022).  

3.1.3.2 Economic context 
The  country’s estimated population was 54.98 million in 2021 (World Bank, 2022a). In the 

same year, Gross Domestic Product (GDP) was US$ 110.35 billion, with an annual GDP 

growth rate of 7.5% and a GDP per capita growth of 5.1% (World Bank, 2022b). The 

proportion of unemployed youth has nearly doubled, from 7.3% in 2016 to 13.8% in 2021. 

The proportion of the country’s population living below US$1.9 per day reduced from 19.2 

million (35.7%) in 2020 to 18.8 million (34.3%) in 2021 (Guguyu, 2022), but currently 

stands at 40% due to Covid-19 (Nyawira, 2021). The GDP for all the counties included 

relative to the national value is less than 10%. For example, of the 18 counties considered, 

Nakuru County had the highest GDP in 2017 at US$ 10.3 million against a national GDP of 

US$ 163.76 million. However, in terms of GDP per capita, some counties in the central rift 
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valley such as Nyandarua and Nakuru has significantly higher values (up to 215%) than the 

national average (Kenya National Bureau of Statistics, 2019). The study area has a mix of 

highland and lowland zones. The poverty incidence levels on the highland areas such as 

Eldoret, Iten, Nyahururu, Kericho and Londiani are lower compared to the lowlands such as 

Marigat, Mararal, Turkana, Marsabit, Laikipia and Samburu (Data Science Ltd, 2019). This is 

because the highlands are more economically productive due to favourable climatic 

conditions while the lowlands are generally semi-arid with low resource base, conflicts, poor 

soils and unfavourable climate. Statistically, all the counties included in the study have 

poverty incidence levels of over 30%, with Turkana as the poorest county at 87.5% (Data 

Science Ltd, 2019). The main economic activities include tourism, agriculture, lumbering, 

bee and livestock keeping.   

3.1.3.3 Social Setting 
Kenya is diverse in ethnicities (45 ethnic groups) and rich in culture. The study area hosts 

diverse communities including Kalenjins, Maasai, Ilchamus, Tugens, Pokot and Turkana. The 

population densities are varied, with high densities (e.g Kericho County 390/km2) in the 

highlands and low densities (e.g Turkana County 14/km2) in the lowlands (World Bank, 

2023). Nearly three-quarters of the study area is within the rift valley zone. It is the most 

populated region in Kenya, with about 12.7 million people (Nyawira, 2019) and population 

density of 90/km2 in 2019 (World Bank, 2023). Although the population has been rising 

steadily over the years since 1979, the rates of decadal increase have been on the decline 

(annual growth rates 1979: 5.4%; 1989: 4.0%; 2009: 4.3% and 2019: 2.7%) (City Population, 

2019). The male to female ratio is 49.5% to 50.5%. Both nationally and regionally, the 

proportion of youth and children (0 – 29 years) represents two-thirds of the total population; 

while people aged 65 and above represent only 3.9% (City Population, 2019). Kenya had a 

national literacy rate (% population aged 15 years and above who are able to read and write) 

of 82% in 2018, up from 72% in 2007 (World Bank, 2022c). According to the 2019 census 

report, primary education is the highest education level for about 50% of the population, 

while about 25% have received education up to secondary level. About 9.3% have no 

education (Kamer, 2022). The study area has differential literacy levels with southern parts 

having high literacy e.g. Uasin Gishu 80%, while the northern part has very low literacy 

levels e.g. Turkana 20% (Kapchanga, 2022; KNBS, 2015).    
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3.1.3.4 Health and Social Services Setting 
Health is one of the devolved (partly) national functions under the new Constitution. 

Although the overall running of health matters rest under the national Ministry of Health, 

county governments oversee the running of county healthcare facilities, cemeteries, and 

promotion of veterinary services and primary healthcare among other functions (KLRC, 

2022). Social services such as land administration, public housing, public transportation, fire 

services, early childhood and development education (ECDE) and social work are managed 

by the county governments.    

3.1.3.5 Regulatory Framework 
Legislation on all issues affecting society is a mandate of the national government. County 

governments are mostly tasked with implementation of the national government policies, but 

are also mandated to develop regulatory frameworks on the devolved functions as contained 

in the Fourth Schedule of the Kenyan constitution (Makena, 2019). Climate change and 

environmental facets are enshrined in the Kenyan Constitution in Articles 2, 10, 42, 69, 70 

and 162. These are further supported by various statutes and policies such as the Environment 

and Management Co-ordination Act (EMCA) 1999, Treaty Making and Ratification Act 

2012, and the Climate Change Act 2016. The EMCA Act is the operative law on all 

environmental matters. The regulators of these legal provisions and frameworks include 

institutions such as the National Climate Change Council, the National Environment 

Management Authority (NEMA), the National Environment Tribunal, the Environment and 

Land Court, the Climate Change Directorate and national and county governments 

(Mallowah and Oyier, 2022). Climate change has received recognition as both a national and 

global threat to sustainable development. Since the country’s economy is largely dependent 

on sectors that are highly susceptible to climate variability and extreme weather events such 

as tourism, rainfed agriculture and natural resources (USAID, 2023), successive climate 

change impacts cause about 3% – 5% annual losses of Gross Domestic Product, thereby 

impeding development efforts (Ministry of Environment and Forestry, 2020). In this regard, 

the country has developed policies and strategies on climate change which include the 

Climate Change Act of 2016, the National Climate Change Action Plan III (NCCAP III under 

review) (Ministry of Environment, Climate Change and Forestry, 2023), the updated 

Nationally Determined Contribution (2020),  the National Adaptation Plan (NAP) 2015-2030, 

the National Climate Change and Response Strategy, and the National Climate Change 

Framework Policy (Ministry of Environment and Forestry, 2020).   
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3.1.3.6 Socio-Economic Vulnerabilities 
Socio-economic factors such as high poverty, illiteracy and unemployment rates, and high 

natural resource dependency for jobs, food and income are prevalent both nationally and 

regionally (East Africa/Africa). In this era of global environmental changes such as those 

induced by climate variability, both urban and rural communities remain increasingly 

exposed to socio-economic vulnerabilities. The rich highlands zones in the study area are 

dependent on agriculture and forestry which are threatened by extreme climatic changes such 

as floods, drought and forest fires. For example, Kenya has persistently experienced severe 

droughts in the last 10 years: 2010 - 2011, 2016 - 2017 and 2020 – 2022 (Relief Web, 2022). 

The 2017 drought negatively affected over 2.7 million people countrywide by causing 

humanitarian disruptions through displacement, hunger, and loss of livelihood (Mlaba, 2021). 

The recent drought (2020 - 2022), has affected more than 4.2 million Kenyans (about 24%) 

of the ASAL population, caused loss of more than 2.4 million livestock and exacerbated 

inter-ethnic conflicts over limited access to resources among pastoralist communities (Relief 

Web, 2022). The affected ASAL areas include a large part of the 18 counties considered in 

this research such as Turkana, Marsabit, Baringo, Samburu, West Pokot, and Laikipia. 

Wildlife populations have seriously been affected with the recent severe loss of over 10,000 

crocodiles recorded in the Lake Kamnarok Game Reserve (The New Times, 2023). 

Deforestation and forest degradation is prevalent which severely affects livelihoods, habitat 

and important ecosystem services. With an ever upward trending population both locally and 

nationally, the semi-arid lowlands are inevitably the only available zones for agricultural 

expansion due to pressure for more food and raw materials. The rising population coupled 

with arable land scarcity in the productive highlands have induced human migration to 

marginal areas with little regard to their ecological limitations. This has exerted pressure 

resulting in substantial deterioration of the land which threatens the livelihoods of thousands 

of residents in these areas. In particular, drylands such as in Baringo, Turkana and Marsabit 

generally exemplify most of the challenges of marginal and fragile semi-arid areas 

(Johansson and Svensson, 2002). These drylands are also prone to human conflicts arising 

from natural resources scarcity i.e. water, pasture and boundary disputes (Lelenguyah, 2013). 

Currently, the lowlands are very fragile, threatening livelihood security and environmental 

sustainability. The situation is presently aggravated by climate change and rapid spread of 

invasive alien plant species such as Prosopis juliflora and Opuntia stricta (Strum et al., 

2015).  
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3.1.4 The Study Region and Target Species 
Kenya is one of the richest countries in Africa in terms of flora and fauna due to its diverse 

climate and habitat. Its ecosystem comprises of different vegetation zones such as grasslands, 

open (shrub) savanna and wooded savanna, forest, woodland, bushland and desert. The low-

lying regions (low elevation) within the Great Rift Valley zone are largely arid and semi-arid. 

They were historically dominated by a mix of grass species and a scanty distribution of 

woody tree mixture (Maitima, 1991). The dominant trees are the Vachellia (Acacia) species 

such as Vachellia tortilis, Vachellia nilotica, Vachellia mellifera, Vachellia kirkii and 

Vachellia reficiens among others. In this study, two tree species native Vachellia tortilis and 

exotic Prosopis species were considered. Vachellia tortilis is a vital tree species in savannas 

because it is provides animal fodder, wood, charcoal, and aesthetic values (Ng et al., 2017). 

The study considered areas under Prosopis species because it is highly invasive and presently 

catalyzing LULC changes in the study area (Mbaabu et al., 2019). Since its introduction in 

the study area, it has contributed to about 30% loss of Vachellia tortilis- dominated 

vegetation between 1983 and 2016 (Mbaabu et al., 2019). It is therefore considered a threat to 

the native plant biodiversity particularly to Vachellia species due to its fast rate of habitat 

colonization and displacement of native plants.  

3.1.4.1 Species Description 

Vachellia tortilis 

The genus Vachellia is a large group of leguminous woody trees in the family Fabaceae. 

There are over 1342 recognized different Acacia species globally. Acacia’s are the most 

widespread trees is Sub-Saharan Africa, but also occur in southern USA, the Caribbean and 

South America, Southern Europe, Middle East, India and Australia (Dharani, 2006). 

Vachellia tortilis (Table 3.1), also widely and previously known as Acacia tortilis (Forssk.) 

Hayne, is one of the 132 different Vachellia species in Africa and one of the six endemic 

Vachellia in the rift valley zone (Groot and Hall, 1989).  

Prosopis juliflora 

Prosopis is a genus of leguminous flowering plants in the family Fabaceae. It has about 44 

recognized species (Burkart, 1976). They are native to the Americas (40 species from western 

North America to Patagonia), and (4 species in southwest Asia and Africa) (Van Klinken and 

Campbell, 2001). From the native lands, these species have been introduced to various 

regions globally (Kathiresan, 2020; Shackleton et al., 2014; Van Klinken and Campbell, 
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2001). In their introduced range, some of these species have become naturalized and 

hybridized. A detailed discription of these two species is available in Table 3.1. 
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Table 3.1 A summary of the two species distribution, characteristics, habitat, adaptation and uses. 

Species Distribution Characteristics Habitat and Adaptation Uses 

 

Native to 
African Savanna 
and Sahel. 

Also found in 
parts of 
southern Europe 
and the Middle 
East 

It is a perennial slow-
growing leguminous 
thorny tree, with an 
umbrella-shaped canopy. It 
is 4-20 m tall, usually 
multi-trunked, rough bark 
(medium grey to almost 
black), leaves are up to 2.5 
cm long, white or cream 
aromatic flowers, pods (up 
to 14 seeds), multiple 
lateral roots and a deep tap 
root system. 

Grows mostly in arid and semi-arid lowland zones at elevations 

of below 1000 m but may also be found at slightly higher 

elevations, tolerates annual precipitation and temperature of 

approximately 100 to 1000 mm and 18 to 28 °C, respectively 

but withstands higher temperatures of up to 50 °C and rainfall 

as low as 40 mm (Netshisaulu, 2012). It grows on sandy, rocky 

alkaline soils with pH of 6.5 to 8.5. It is drought resistant; 

compound leaves with 6 to 22 tiny leaflets to minimize water 

loss in dry seasons and deep roots to tap water from the deep 

water table (Dharani, 2006). 

Timber, fence posts, 

firewood, charcoal, 

fodder and foliage, 

honey production, 

medicinal, dunes 

reclamation (Roy et 

al., 1973), tannin, 

tourist attraction, 

species habitat, etc. 

 

Native to Latin 
America. Have 
been introduced 
worldwide but 
mainly to 
Africa, Asia and 
Australasia 
(Van Klinken 
and Campbell, 
2001). 

Prosopis juliflora is an 
evergreen, perennial fast-
growing nitrogen-fixing 
thorny, single canopy trees 
(up to 15 m height) or 
multi-stemmed shrubs (3-5 
m tall). It has bipinnate 
leaves, golden-yellow 
flowers and produces pods 
with numerous seeds. Has 
a main deep taproot 
extending even up to 80 m 
down, and a dense knit of 
lateral roots.   

Grows in a variety of soils; rocky, sandy, loam, waterlogged and 

saline soils within an elevation range of 300 – 1900 m a.s.l. 

They are salt and drought tolerant due to their ability to tap 

underground water due to the deep roots, fast proliferation and 

massive seed production. It’s a fast invader and highly 

allellopathic which suppresses understory vegetation, thereby 

helping to reduce competition for nutrients and water wherever 

it grows.  

Firewood, charcoal, 

food for humans and 

livestock, bee forage 

for honey production, 

live fencing and 

timber. 
Prosopis juliflora 

Vachellia tortilis 
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3.1.5 Conceptual Framework 
The impacts of Prosopis invasion on the landscape and its implications on ecosystem goods 

and services provisioning, and rural livelihoods were framed around the United Nation’s 

three pillars of sustainability viz social, environment and economic (Figure 3.2) (Purvis et al., 

2019). This is premised on the fact that the environment or climate system influences 

Prosopis invasion, which in turn affects ecosystem multifunctionality. While antropogenic 

activities are the main culrprit behind climatic changes through greenhouse gas emissions, the 

resultant climatic changes also influence the ecosystems and species present in those 

ecosystems. Disturbances on the ecosystem or environment affects the provisioning of the 

ecosystem services which have a bearing on livelihoods and human well-being. These 

operate within  political or governance ecosystems whose decisions influence the state of all 

the three pillars. Moreover, this framework is embedded or emphasizes the need for adopting 

transdisciplinary and One Health appproaches when addressing societal issues such as land 

degradation, biological invasions and climate change.  
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Figure 3.2 Conceptual framework on the interrelationships between Prosopis invasion, LULC, ecosystem services and rural livelihood under 

climate change. 
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3.1.6 Research Design 
This study was part of the CABI’s woody weeds project in East Africa 

www.woodyweeds.org. The study area was purposively selected to represent areas invaded 

by Prosopis and / or Lantana camara in Kenya, Ethiopia and Tanzania. In each country case 

(within the invaded areas), samplings plots were randomly selected. Mixed methods 

(qualitative and quantitative) approaches were used. The land-use and land-cover types 

present in the study area such as Prosopis, cropland, mixed vegetation and water were 

mapped and qualitatively described, while spatio-temporal changes in these LULC were 

quantitatitvely analysed. Further, the impacts of Prosopis invasion on livelihoods and other 

ecosystem services were also partly qualitatively described. When projecting climate change 

impacts on future habitat of Prosopis and Vachellia and the likely impact of future Prosopis 

invasion on indigenous Vachellia tortilis, habitat comparisons and identification of climate 

refugia was partly done qualitatively. Quantitative spatial analysis methods were used to 

quantify dynamics in land-use and land-cover as well as to estimate the current and future 

suitable areas for Prosopis and Vachellia tortilis. Comparisons of soil organic carbon stocks, 

species richness and herbaceous biomass across selected land-use / land-cover categories 

were done quantitatively.   

3.2 Methods per objective 

3.2.1 Estimation of the spatial expansion, dynamics and impacts of alien Prosopis trees 
The focus of this objective was on the small area (Marigat subregion) shown by a purple 

polygon in Figure 3.1. This was informed by a) Prosopis plantations were first established in 

Marigat and invasion progression has been observed over time, b) although Baringo County 

has three unique ecological units, Prosopis has survived and naturalized in the lowlands 

around lakes Baringo and Bogoria, and c) there is a high concentration of invaluable LULCs 

for supporting diverse livelihoods activities in this zone. Therefore, mapping of Prosopis 

invasion and relevant LULCs were carried out in this zone as it is currently the invasion 

hotspot.  

3.2.1.1 Analysis of Spatial Changes in Land-Use and Land-Cover  

Ground truthing Data 

To assess Prosopis spread and LULC changes in space and time (the period 1988 to 2016), 

ground reference data were needed. Therefore, groundthruth data points for training and 

validating satellite image classification were collected in Marigat subregion between October 
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2015 and June 2016, a period that spans a dry and wet season, using a handheld GPS 

receiver. For analysis of historical imagery i.e. for images acquired before 2016, groundtruth 

data was collected through visual interpretation of Very High Resolution (VHR) satellite 

imagery available via the Google Earth Pro (Google Earth Pro, 1987). Information acquired 

on the Google Earth Pro was supplemented with visual interpretation of the Landsat satellite 

data and verified from seven local elderly residents with long-term indigenous knowledge 

about the study area’s LULC change history, including chiefs, farmers, livestock officers and 

other community leaders. Furthermore, the selection of groundtruth data points was informed 

by the distinct pattern of species occurrence attributes such as along linear features like roads, 

rivers and in settlements, as well as vegetation differentiation due to variation in elevation, 

soil types, homogeneity and contiguity. Separation of Prosopis from other LULC types was 

enhanced by seasonality and vegetation scantiness due to aridity conditions.  

Initially, 13 LULC types were identified for which regions of interest (ROIs) or small 

polygons were digitized for each class. LULC classification was then performed on the 13 

classes which were then aggregated to eight most prominent and predominant classes. The 

aggregation criterion was informed by study goals and the LULC types present in the study 

area. The considered classes are described and presented in Table 3.2.  

Table 3.2 Land-use and land-cover (LULC) classes present in the study area 

        

Class ID LULC Classification Description   

1 Prosopis Woody alien shrub predominating the lowland areas around Lake Baringo   

2 Vachellia tortilis 
An umbrella-shaped native tree speciespredominantly found within the 
tropical ASALs   

3 Mixed Vegetation A combination of native trees and shrubs that exist as a mix of single stands or 
as small patches and water weeds. 

4 Grassland Areas predominantly covered by grass   

5 Bareland  Areas with little or no vegetation cover (uncovered soils)   

6 Rainfed cropland Farmlands that entirely depend on rainfall for crop production   

7 Irrigated cropland Farmlands that are equipped to provide water    

8 Water Visible surface water such as in rivers, lakes and dams    

 

For the analysis of objective two, classes 1, 4 and 5 were considered. They were further 

subdivided to form five LULC classes as follows: pristine grassland, degraded grassland, 

Prosopis-low density, Prosopis-high density, and restored grassland (see section 3.2.2). 
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3.2.1.2 Remote Sensing Data Selection and Pre-processing 
This objective focused on the period 1988-2016. Spatial temporal analysis relies on 

availability of good quality satellite data or imagery. For this reason, 30 m spatial resolution 

Landsat data which are freely available were considered. Cloud-free satellite images were 

chosen from 1988 (base year) because prior to this date, Prosopis was hardly visible on 

Landsat data. More so, invaded areas in the study area were mostly small patches and within 

the original Prosopis plantations’ perimeter. Images were selected at 7 year intervals as 

follows: 1988, 1995, 2002, 2009 and 2016 (Table 3.3). Seven years interval is considered 

ideal to observe any spatial changes in vegetation cover between the intervals. The end date 

2016 was considered as the latest because that was the last available data date in the Climate 

Data Record (CDR) archive during data collection for this study.  

From the Landsat Surface Reflectance CDR, Landsat images which have already been 

atmospherically corrected were downloaded (Masek et al., 2006; Roy et al., 2016). 

Atmospheric correction (AC) involves the removal of atmospheric effects (scattering and 

absorption effects) on the image reflectance values acquired by satellite or airborne sensors. 

AC is one of the most important image pre-processing steps and failure to do so produces 

erroneous results about the area under study (Hadjimitsis and Themistocleous, 2008). For all 

the five time steps, Landsat data bands blue, green, red, near infrared (NIR), and two 

shortwave infrared bands (SWIR1 and SWIR2) (i.e. bands 1-5, 7) were selected. Although 

Landsat data is sufficient for vegetation mapping, it has limitations for species mapping 

because of its medium spatial resolution. Therefore, in order to reliably detect species in this 

study, three data-enhancement strategies were employed. First, dry and wet season’s 

normalized difference vegetation indices (NDVI) were calculated. NDVI represents a ratio-

based index comprising information about biological and physical properties of the earth’s 

surface, thereby increasing the separability of different landscape components (Vidhya et al., 

2017). Secondly, both dry and wet season data were considered because the study context is 

semi-arid with two distinct climate seasons. These two two seasons enabled maximization of 

the spectral differences between Prosopis and other native vegetation such as Vachellia spp. 

and seasonal herbaceous vegetation, for optimization of component separability during the 

analysis. Prosopis spp. present in the study area are evergreen and tend to maintain a higher 

growth vigor and canopy than the present natural vegetation during the dry season (Rembold 

et al., 2015). For each time step, dry season images were selected for the period between 

January and March, and April and August for the wet season. Lastly, in each time step data, 
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elevation data from the Shuttle Radar Topography Mission (SRTM) was also included 

because, Prosopis spp. growth is limited to areas with elevations below 1500 m a.s.l in the 

study area (Orwa et al., 2012).  

In total, five time-step datasets comprising 15 bands each were created. Further, the datasets 

were pre-processed (mosaicking, cloud masking and band/layer stacking). Mosaicking is the 

process of combining or merging two or more images to a single raster dataset (mosaic). The 

satellite data may have been obtained at different dates, at different viewing angles or from 

different satellite sensors (Zhang et al., 2018). Cloud masking involves detection and removal 

of clouds and their shadows from the images. Optical satellite sensors like Landsat cannot 

provide clear images on cloudy days. Usually, nearly 60% of the earth’s surface is under 

cloud cover in a year (Wang et al., 1999), with tropical environments accounting for the 

largest share of cloud cover (Candra et al., 2016), where on average, images obtained by 

Landsat-7 ETM+ sensor contain about 35% cloud cover (Ju and Roy, 2008). As such, product 

quality must be enhanced by removing both clouds and shadows. Finally, for each time-step, 

all the 15 bands / layers were stack together into one single image with same spatial extent 

and resolution.  

Table 3.3 Characteristics of satellite data used for the classification. 

 

Sensor 
Acquisition date  
dry season           wet season 

Year assigned 
to classification 

Landsat 5 TM Mar, 1989 July, 1987 1988 

Landsat 5 TM Jan, 1995 Mar,1995 1995 

Landsat 5 TM Feb, 2002 July, 2002 2002 

Landsat 5 TM Jan, 2010 June, 2008 2009 

Landsat 8 OLI Feb, 2016 July, 2015 2016 

 

3.2.1.3 Classification of Landsat Satellite Data 
Classification of satellite images involves categorizing / classifying and labeling groups of 

pixels (picture elements) on an image based on specific rules. The two general image 

classification methods are supervised and unsupervised (Abburu and Babu Golla, 2015). 

Supervised classification involves visually selecting reference data (training samples) on the 
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image and assigning them to pre-selected categories or classes such as grass, water, crop and 

roads, in order to create statistical measures to be applied to the entire image. Common 

supervised classification methods include Maximum Likelihood, Minimum Distance to 

Mean, Fisher classifier, Artificial Neural Network (ANN), Mahalanobis Distance, K-Nearest 

Neighbour, Decision Tree, Image segmentation (object based analysis), Support Vector 

Machine, Random Forest, Semantic Based and Parallelepiped or Box classifier (Abburu and 

Babu Golla, 2015; Akgun et al., 2004). Unsupervised classification is a computerized process 

and does not use training/reference/sample data, but instead, uses an algorithm to 

systematically detect specified characteristics of an image during image processing. The two 

frequently used algorithms are ISODATA and K-means.  

In this study, Random Forest (RF) classifier – a supervised classification (Machine Learning) 

technique (Breiman, 2001) was used for classifying the images into the LULC types listed in 

(Table 3.2). The classification was done using the RF package in R software version 3.4.4 

(Breiman, 2001b; R Core Team, 2018). RF is a type of decision tree algorithm that builds an 

ensemble or many self-learning decision trees i.e. “forest” to categorize the image pixels. The 

trees are grown randomly and predictions are made by individual trees, which are finally 

averaged (Cutler et al., 2007). Many decision trees (i.e. ensemble) are preferred as they 

provide one strong and robust decision compared to a single decision tree. RF uses self-

learning trees and each tree automatically defines rules at each node on the basis of the 

training dataset. Growing each tree requires a different randomly selected bootstrap sample 

(reference /ground truth) data. Two-thirds of this sample data is used for fitting the RF model, 

while 30% is used for prediction and estimation of the associated error (‘out-of-bag’ (OOB) 

error). Once the fit RF model is satisfactory, it is then applied to the entire dataset or image to 

be classified (Liaw and Wiener, 2014).  

Therefore, in this study, we generated five RF models (i.e. one model for each time-step) 

(Figure 3.6A). Then, 70% of the reference data (manually delineated ROIs) were used to train 

each RF model, which was then applied to each data stack (each time-step), while 30% of the 

samples were used for validation (accuracy assessment of the classification output). For each 

model, 1000 trees were grown and all other RF function arguments were kept at default 

settings.  
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3.2.1.4 Accuracy Assessment 
Maps created through image classification should procedurally report an estimate of 

classification accuracy. This is important because decision making or scientific analysis with 

data of low or unknown accuracy results in information with low reliability and propagated 

error effects, hence limited value. In principle, accuracy assessment compares classification 

estimates with reality and quantifies the difference between the two which is reported as an 

error and the smaller the error, the better the result. In LULC classification, the estimates are 

the classes mapped for each pixel and reality represents the actual LULC in the areas 

corresponding to each pixel in the dataset.  

In addition to the OOB error estimate provided by the RF model, an independent 10-fold 

cross-validation accuracy assessment was performed. Cross-validation (CV) method 

evaluates the accuracy or skill of machine learning models on sample data by dividing the 

reference data into two sets (training and validation). In this process, the training and 

validation samples are assumed to be independent. CV has a single parameter called k, hence 

the name k-fold cross-validation, where k represents the number of groups that a given data 

sample is split into. Therefore, when a specific k value is chosen, it is replaces k in the model. 

In this study, k was replaced with 10, hence the data sample was split into 10 groups making 

it a 10-fold cross-validation procedure. In k-fold cross-validation, first, the dataset is 

randomly divided into k equally (or almost equal) sized folds. Then, k number of iterations of 

training and validation are performed, for which each iteration uses a different fold of the 

dataset for model validation, while the remaining k-1 folds are used for learning 

(Refaeilzadeh et al., 2009). Validation is performed on a pixel by pixel basis; subsequently 

each pixel inside a validation polygon is compared with the same location on reference 

LULC type. In this study, 10-fold cross-validation runs were performed, where the training 

dataset were randomly partitioned 10 times with 90% and 10% for training and validation, 

respectively. Then, the 10 results for each classification (i.e. each time-step) were generated 

and confusion matrices produced for calculation of user’s, producer’s, and overall accuracies. 

K-fold cross-validation is a state-of-the art method and popular because it generates less 

biased model predictions than other accuracy assessment methods. 

3.2.1.5 Land-Use and Land-Cover Change Analysis 
Analysis of the changes in land-use and land-cover is recognized as an important research 

topic in the context of global environmental change and sustainable development (Lambin et 

al., 2003). Land-cover denotes the biological and physical attributes of the earth’s surface 
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such as forest, water, grass, while land-use is the human purpose applied for the biophysical 

attributes (Batunacum et al., 2018), such as agriculture, settlement etc.  

Cross-tabulation matrices were used to calculate the land-use and land-cover changes for the 

intervals from 1988 to 1995, 1995 to 2002, 2002 to 2009, 2009 to 2016, and 1988 to 2016. 

Then, computations of gains, losses, net changes and rates of change were done, and 

visualized using charts and tables. Additionally, Prosopis extents and spread rates for each 

time interval were determined. In order to determine the impact of Prosopis invasion on other 

each LULC type and at which time interval, the net changes per LULC class per time interval 

were obtained by subtracting the contributions of each LULC class to Prosopis class (Losses 

to P) from their respective gains from Prosopis class (Gains from P). In order to understand 

how Prosopis invaded from original plantations, analysis of change statistics and a visual 

assessment of LULC maps were performed. This relied heavily on information about 

seasonal socio-economic and climatic activities including charcoal production, irrigation 

farming, livestock grazing, and flood events which immensely aided the interpretation of the 

LULC type change outputs and Prosopis dispersal patterns over time. This information was 

acquired through interactions with the host community, focus group discussions and field 

observations during data collection.  

3.2.1.6 Estimation of the impacts of Prosopis invasion on livelihoods 
Majority of Baringo residents are dependent on farming and livestock keeping for livelihood. 

Therefore, any purtubations on their natural ecosystem is bound to impact on their livelihood 

sustainence. In order to analyse the impact of Prosopis invasion on their livelihood, monetary 

cost of removing and managing Prosopis from croplands and loss of pasture (obtained from 

Bekele et al. (2018a)) were used as proxies. Prosopis spread into farmlands restricts crop 

production while pasture losses reduces household income and wealth, since livestock 

keeping is the primary livelihood source for millions of agro-pastoralists and pastoralistsin 

Sub-Saharan Africa (Doran et al., 1979; Kassahun et al., 2008). Prosopis impacts on 

livelihoods was analysed by combining spatial and non-spatial datasets (outputs) generated 

for the study area using transdisciplinary approaches. These datasets were Prosopis fractional 

cover, land-use and land-cover changes and the average willingness to pay (WTP) for 

removing Prosopis trees from affected areas in Baringo.  
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Prosopis fractional cover mapping 

Vegetation fractional cover map is the percentage of vertical vegetation projection of the total 

study area (leaves, roots and stems) (Li et al., 2015; Zhang et al., 2019). In this case, it is a 

map showing the area covered by Prosopis and the respective density classes or categories 

such low, medium and high invasion). It is an important parameter for monitoring vegetation 

and development of terrestrial ecosystems. Fractional vegetation cover maps have in recent 

years been widely used in research on land quality deterioration and desertification 

assessment, climate change, soil, hydrology and invasive alien plant species (Li et al., 2015; 

Mishra et al., 2014; Shiferaw et al., 2019c; Zhang et al., 2019).  

 Prosopis fractional cover was estimated by combining field reference data on Prosopis 

occurrence (presence and absence georeferenced field data points) and a set of spatial 

datasets (variables) that explain Prosopis distribution. These spatial datasets included 

variables describing topography (elevation, slope, relief, landform, aspect), climate 

(temperature, precipitation), hydrology (distance to water bodies, rivers), vegetation indices 

(NDVI), soils and soil pH, anthropogenic landscape features (roads, villages, human footprint 

index), livestock market, grazing areas and migration routes. Some of these datasets such as 

livestock grazing and security routes, and markets were unavailable but vital in explaining 

Prosopis distribution as livestock are a major mechanism for Prosopis seed dispersal through 

dung. Therefore co-production of these datasets was employed. This involved participatory 

GIS mapping with key stakeholders and scientists such as pastoralists, village leaders, 

farmers, students and officers working in the forestry and livestock department in Baringo 

county (video and Figure 3.3). The fractional cover was then generated by regressing the 

occurrence points with the spatial variables using the Random Forest modeling. More details 

about the methodology are provided by Shiferaw et al (2019c). The output fractional cover 

map represented coverage from 0 – 98% (Figure 3.4). 



46 
 

 

Figure 3.3 A-C Participatory GIS mapping of livestock grazing, security and market routes and markets. A: one of the participants marking the 

route on the map after consultation with the others. B: Participatory mapping partipants and C, the marked routes, markets and grazing areas.  
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Figure 3.4 Prosopis fractional cover, showing the areas covered by Prosopis and the density 

of cover ranging from 0 – 98%. 
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Willingness to pay 
Willingness-to-pay (WTP) is an economic evaluation approach anchored in the theory of 

collective action where members of a community collectively make efforts to solve 

communal problems (Freeman III et al., 2014; Kenter et al., 2011). It enables a valuation of 

the complex linkage between ecosystems and human well-being (Pejchar and Mooney, 

2009). Therefore, WTP is useful for estimating how invasive plant species impact on human 

welfare using the ecosystem service approach (Bekele et al., 2018a). This study utilized the 

average WTP (in US$ per hectare per annum) values estimated for Baringo (Bekele et al., 

2018a). The costs of physically removing Prosopis trees from invaded areas, which is 

expressed as average willingness to pay was estimated using a choice experiment conducted 

in a household survey of 250 participants in the invaded areas of Baringo County (Bekele et 

al., 2018a).  

3.2.2 Impact of Prosopis spread and grassland restoration on soil organic carbon, plant 
species richness and herbaceous biomass  

3.2.2.1 Selection criteria and experimental design for sampling plots 
The study area comprises a mosaic of LULC types of known-age and history, which 

presented an opportunity to study this objective. Therefore, five LULC types representing the 

prevalent ground cover and distinct land-use activities in the study area were identified. 

These LULC types were: pristine grasslands, degraded grasslands, restored grasslands, 

Prosopis-low cover, and Prosopis-high/dense cover (reference photos in Figure 3.5). These 

classes were chosen, categorized and described on the basis of time, historical events and 

biophysical characteristics as informed by field observations, literature review and expert 

judgement. This was achieved through consultations with farmers, livestock keepers, village 

leaders and conservationists with respect to events and change dynamics in the area since 

1950s or before. This reference time in the area’s history was used because around mid 20th 

century (1950s), the area experienced a mega drought, which occurred after a prolonged dry 

period following the habitual seasonal bush burning in savannas and rangelands (Leys et al., 

2018). 

3.2.2.2 Classification and description of the land-use and land-cover types 
The selected LULC types were categorized as follows: i) pristine grasslands: grasslands with  

more than 80% grass cover, that have been predominated by grass for more than 70 years; ii) 

degraded grasslands: mostly bare ground for more than 70 years; iii) restored grasslands: 

grasslands that were previously degradaded but restored some 25 – 35 years ago; iv) 
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Prosopis-low cover: invaded areas with less than 30% Prosopis cover and invaded some 10 – 

15 years ago; and v) Prosopis-high cover: invaded areas with more than 80% Prosopis cover 

and invaded about 25 – 35 years ago. Pristine grasslands were historically predominantly 

covered with grass, moderately grazed and comprised a mixture of native grass species and 

shrubs. They experienced moderate grazing because as a traditional cultural practice, the 

pastoralists reserved them to provide pasture during the dry seasons and therefore carefully 

regulated grazing during the critically dry seasons (Mureithi et al., 2010). Degraded 

grasslands were characterized by barren soil and were unsustainably grazed over time. 

Sample plots on degraded grasslands were selected from communal grazing lands which 

markedly suffered from severe, intermittent droughts before and during the 1950s, 1965 and 

later (Anderson, 2016; Kiage and Liu, 2009; Little, 1992). Restored grasslands comprised 

degraded grasslands which got reseeded with different native grass species, including 

Enteropogon machrostachyus (Hochst.ex A. Rich.) Munro ex Benth((Hochst.ex A. Rich) 

Munro ex Benth, 1881), Cenchrus ciliaris (L)(Cenchrus ciliaris L. in GBIF Secretariat, 

1753), Eragrostis superba (Peyr)(Eragrostis superba Peyr. in GBIF Secretariat, 1860), 

Sehima nervosum (Rottler) Stapf (Sehima nervosum Stapf, 1917), and Cymbopogon 

pospischilii (K. Schum) C.E. Hubb (Cymbopogon pospischilii (K.Schum.), 1949). They 

experienced moderate grazing, coupled with seasonal harvesting of biomass and grass seeds. 

Some of the grass species used had been recommended for reseeding severely degraded lands 

in Kenya (Bogdan and Pratt, 1967). All restored grasslands sites had solar-powered electric 

protective enclosures (Mureithi et al., 2010). Prosopis-invaded sites were formerly degraded 

grassland that later got invaded due to the expansion of the introduced alien Prosopis species. 

Sampling plots for Prosopis-high cover category were chosen in sites with the longest known 

history of Prosopis invasion in the study area, i.e from the early 1980s to 1990s (Mbaabu et 

al., 2019). Sampling was carried out in sites with Prosopis tree cover of < 30% and > 80% for 

plots with a low and high level of Prosopis invasion, respectively. These explicit Prosopis 

tree cover thresholds were determined using a fractional cover map of Prosopis for the study 

area (Mbaabu, 2017). 

Initially, the classification and categorization of sites in the study area to the five LULC types 

was made on the basis of a LULC map for the study region (Mbaabu et al., 2019), as well as 

literature review. The final decision on whether to include the pre-selected site in the final 

sampling sites was made after specific field site visits for inspection and consultation with 

key informants from the community. All the chosen sites were situated within the same 
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geographic region with almost homogenous elevation, topography, soil characteristics and 

geological history. The patchy and mosaic distribution of the LULC types enabled the 

selection of interspersed replicates of the categories at different spatial locations. 

Plots of 15 x 15 m were randomly selected and geo-located at each selected site. For restored 

and pristine grassland sites, sample plots were established randomly in areas with contiguous 

and undisturbed grass cover. This means that tree thickets or bushes were avoided as well as 

driveways, gullies and slopes. In total, 63 plots (pristine grassland: 10, degraded grassland: 

restored grassland: 15, 16, Prosopis-low: 12, Prosopis-high: 10) were sampled for soil, 

herbaceous biomass and plant species richness. Soil samples were picked during the dry 

season (period from September – November 2017 and 2018). This was important because soil 

sampling during the growing season increases the effect of plant type and growth stage on 

SOC, especially in soil carbon fractions that have a rapid turnover rate (Hoyle, 2013). 

Herbaceous biomass and plant species richness were sampled in the middle of the wet 

seasons (April-July 2017 and 2018) when vegetative growth is at its peak. 

In the field, each 15 x 15 m sample plot was sub-divided into nine subplots of 5 x 5 m (Figure 

3.6B). Samples were taken from five out of the nine subplots (the centre plot and the four 

corner subplots). For SOC measurement, a pit was dug incrementally at the centre of each of 

the four corner subplots (Figure 3.5a). From this pit, 4 independent soil cores were sampled at 

the following four soil depth increments: 0-15 cm, 15–30 cm, 30–60 cm and 60–100 cm 

similar to soil sampling depth considered by (Don et al., 2011; Kutsch et al., 2009). For soil 

bulk density (which is the dry weight of soil per unit volume of soil), a soil pit was dug 

incrementally at the centre subplot and three soil cores taken at the same depth increment for 

all the four soil sampling depths (i.e. 3 cores at 0-15 cm, 3 cores at 15-30 cm …).  
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Figure 3.5 Plot design and reference photos for each land-use and land-cover type. The 

abbreviation “sp” means “subplot”. 

For measurement of herbaceous biomass and plant species richness,  four of the five subplots 

were randomly selected and a point frame (1x1 m quadrat subdivided into a mesh of 100 

squares of 10x10 cm each), placed at the centre each of the four subplots (5x5 m) within 

which abundances of all plant species were assessed (Floyd and Anderson, 1987). Each 

subplot was surveyed for vascular plants (within the quadrat) by a botanist capable of 

identifying more than 90% of the species encountered and samples of unknown plants 

collected for future identification. Plant species richness was measured by physically 

counting the number of squares occupied by each species and the total number recorded out 

of 100. Any other species existing within the large plot (15x15 m) but had not been 

encountered within any of the four quadrats were also recorded. Herbaceous vegetation (any 

vegetative growth 2 cm above the ground) samples were harvested from a 25x50 cm patch 

within the 1x1 m2 quadrat, amalgamated together per plot, oven-dried and weighed to 

determine the dry weight. Herbaceous biomass samples analysis was done at the Kenya 

Forestry Research Institute (KEFRI-Nairobi) laboratories. Soil samples analysis was done at 

the Kenya Agricultural and Livestock Research Organization (KALRO-Kenya) soil 

laboratories. The Colorimetric method was used to determine the soil organic carbon (SOC) 

concentration (Baillie et al., 1990). Bulk density samples were first oven-dried, weighed and 

measured using the procedure by Klute (1986). Bulk density sample values were then used to 
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convert the SOC concentration to ecosystem estimates of SOC stocks per unit area or 

volume. 

 

Figure 3.6A Methodological flowchart of spatio-temporal analysis of Prosopis spread  
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Figure 3.7B Methodological flowchart for assessment of soil organic carbon, plant species 

richness and herbaceous biomass. 

3.2.2.4 Statistical analysis 
Data analysis was done in R software (R Core Team, 2020), version 3.6.3. First, data 

normality and homogeneity were checked using Shapiro-Wilk’s tests and by visually 

inspecting the residuals against the fitted values and histograms. Any dataset that did not 
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meet the basic model assumptions were therefore log-transformed before proceeding with the 

statistical analysis. To determine the effect of soil depth on percent SOC and SOC per 

volume soil (g cm-3) across land-cover types, a linear mixed effect model was fitted using the 

lme function within the nlme package (Pinheiro et al., 2020). The parameters land-cover type, 

soil depth increment and the interaction of land-cover type and soil depth increment were 

included as fixed effects in the model, and sample plot as random factor. Tukey’s HSD Post-

hoc test on the model’s least square means was used to evaluate the differences between the 

means among land-cover types and soil depth increments. To determine how land-cover type 

affects SOC down to 1 m depth (full depth), herbaceous biomass, and species richness 

general linear models with land-cover type as fixed effect were used, followed by Tukey’s 

HSD Post-hoc test. SOC stocks per unit area (t C ha-1) were estimated using the formula: 

SOC t ha-1 =  %SOC x BD (g cm-3) x d (cm), where %SOC = carbon concentration of the soil 

sample, BD = bulk density in g cm-3, and d = height of the soil depth increment (cm) 

(Abdallah et al., 2020; Hoyle, 2013). Then, the total SOC stocks down to 1 m depth were 

then derived through a summation of the SOC tons per hectare values estimated for each 

depth increment (Grüneberg et al., 2014; Ward et al., 2016). An indicator species analysis test 

using the labdsv package in R was used to determine the species characteristic of the different 

land-cover types.  

3.2.3 Climate change impact on current and future Prosopis and Vachellia tortilis 
habitat. 

3.2.3.1 Species occurrence (biodiversity) and environmental data 
To model the current and future suitable habitats for the two species, species occurrence 

(presence) data were collected from the species distribution in the study area between 2008 

and 2018. Known species locations were identified and marked with a handheld GPS 

Receiver. For some remote and inaccessible locations, Google Street View service was used 

to find species locations. Vachellia tortilis occurrence records were supplemented by 

occurrence data records obtained from Global Biodiversity Information Facility (GBIF) 

(https://www.gbif.org/). True absence data were lacking, therefore, background or pseudo-

absence data were randomly generated in the study area using the random generation with 

exclusion buffer (RGEB) (Rew et al., 2021). The RGEB technique is used for adjusting 

distances between pseudo-absence points using a specified exclusion buffer zone, such that 

the pseudo-absence points are generated outside of these buffer zones. A 10 km exclusion 

buffer around each presence location is usually recommended in several studies in order to 
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avoid grids that contain both pseudo-absence and presence data points (Aiello-Lammens et 

al., 2015; Barbet-Massin et al., 2012; Rew et al., 2021). Therefore, this recommended 10 km 

exclusion buffering distance was used when generating pseudo-absence data for both species. 

A total of 944 and 1197 (Prosopis) and 861 and 417 (Vachellia tortilis) presence and pseudo-

absence (background) points were collected, respectively.  

Spatial autocorrelation 

Fitting species distribution models (SDMs) with spatially autocorrelated input species 

occurrences introduces environmental biases in the models because SDMs tend to over-fit 

towards the environmental bias. Having spatially clustered species occurrences introduces 

sampling biases which results in problems of spatial autocorrelation. Use of spatially 

clustered occurrence data in SDMs reduces the ability of the model to predict spatially 

independent data which results in inflated model values (Brown et al., 2017). Moreover, 

spatial autocorrelation is of concern particularly when modeling invasive species because 

dispersal and colonization processes strongly influences biological invasions, which in turn 

produces highly structured distribution patterns (Václavík et al., 2012). Therefore, 

eliminating or minimizing the localities with these spatial clusters of occurrences is necessary 

before calibrating and evaluating the model. To overcome problems of spatial autocorrelation 

inherent in the occurrence dataset, spatial filtering of locality data (reducing the clustered 

occurrence localities to a single data point)  by a specified input distance and within a 

specified Euclidean distance was done, using the Spatially Rarefy occurrence data tool within 

the SDMtoolbox (Brown et al., 2017). A graduated filtering procedure at several distances 

e.g. (5 km2, 10 km2 and 30 km2) with respect to habitat, topographic and climate 

heterogeneity is applied in sites with high, medium and low environmental heterogeneity, 

respectively. In this study, both climate and topographic heterogeneity were calculated. 

Climate heterogeneity computes the first three principal components (PCs) of all input 

climate dataset, calculates the heterogeneity of each principal component, weighs each PC 

heterogeneity layer depending on the amount of variation explained, and finally adds them up 

to create a single heterogeneity layer. To calculate topographical heterogeneity, elevation 

data was used. The study area was found to have medium topographical and low climate 

heterogeneity. Therefore, only topographical heterogeneity dataset was used to parameterize 

the Spatially Rarefy function at a filtering distance of 14 km2 (resolution 14 km). This process 

yielded 676 and 373 (Prosopis) and 508 and 145 (Vachellia tortilis) bias corrected presence 

and pseudo-absence points, respectively.   
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Environmental data  

Landscape, physical and anthropogenic variables 

A suite of data representing the climate, topography and vegetation that characterize habitat 

diversity and environmental conditions that are vital for Vachellia tortilis growth and for 

establishment and dispersal of the alien Prosopis species were identified (Table 3.6). 

Additionally, anthropogenic data representing the cumulative human pressure on the 

environment was also included (Venter et al., 2018b, 2016). Some of the variables were 

found to be of relevance particularly those related to the hydrosphere e.g. water bodies and 

rivers, and biosphere e.g. albedo, evaporation and vegetation indices because they are 

classified as essential climate variables (ECVs) (GCOS, 2021) by the Global Climate 

Observing System (GCOS) (Table 3.6). They are imperative to the characterization of the 

Earth’s climate and therefore are required for climate change analysis purposes (European 

Commission, 2022). Moreover, the choice of other functionally relevant variables was 

informed by recommendations in other related studies (Dilts et al., 2015; John et al., 2008; 

Synes and Osborne, 2011), for modeling species in similar ecological conditions (arid and 

semi-arid climates).  

Finally, the following categories of variables were included: topographical variables; 

elevation and landforms, surface water variables; Euclidean distance to water bodies and 

rivers, edaphic variables; soils, vegetation indices and anthropogenic variable; Global Human 

Footprint Index (HFP) (Table 3.6). Raster datasets for distance to water bodies and rivers 

were generated by calculating Euclidean distances using the vector data for both rivers and 

water bodies in ArcMap 10.2.2 (ESRI, 2014). Rivers Euclidean distances were weighted by 

their category (streams level 1-7 were used). Then the minimum of all Euclidean distances of 

all layers was chosen to generate a minimum (weighted) Euclidean distance layer of the river 

network. The water bodies were buffered first, and then Euclidean distance was calculated.  

Topographical, edaphic and anthropogenic variables were provided by Eckert et al. (2020) as 

part of the dataset that was used for regional (Eastern Africa) modeling of invasive alien 

species distribution. These variables were considered for modeling as other studies have 

shown their prowess in influencing the target species habitat, in particular Prosopis spp. (Ng 

et al., 2018; Shiferaw et al., 2019b, 2019c).  
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Climate data and Climate Models 

For current climate, models were fitted using two datasets: 1) from the standard bioclims and 

2) from the Uni-Bern bioclims. For future climate, the climatic variables were customized to 

three GCMs (MPI-ESM-LR, CNRM-CM5 and INM-CM4) (Table 3.4) and one regional 

model dataset (Uni-Bern). The standard 19 bioclimatic variables for both current and future 

climatic situation were obtained from www.worldclim.org at 30-seconds (⁓ 1 km2 or 0.01 

degree)  spatial resolution (Fick and Hijmans, 2017). Bioclimatic variables generated by the 

Climate and Environmental Physics (CEP) Department of the University of Bern (hereafter 

referred to as “Uni-Bern”) were also acquired. The current climate data covered the period 

between 1970-2000 and near-future climate 2050 representing an average for the period 

2041-2060. For the Uni-Bern climate dataset, the temporal coverage was current climate 

1970-2000 and distant-future climate 2085 representing an average for the time period 2071-

2100. The radiative forcing scenario RCP8.5, which is one suite of scenarios (RCPs) that 

describe a number of potential future pathways, was considered as the future climate change 

scenario. Each scenario defines the level (concentration ) of carbon in the atmosphere at any 

point in time (climatenexus, n.d.). Although there are other plausible climate change 

scenarios (RCP 2.5, 4.5 and 6.0), guided by the goal of this study (to model the impact of 

climate change on future species habitat), it was envisaged that the real climate change 

impact would exist when we assumed no intervention to the climate situation – a business as 

usual scenario (as is the case for RCP 8.5 i.e. high emissions that would deliver about 4.3° C 

increase in average temperature by 2100, relative to pre-industrial temperatures). This has 

been vindicated by the latest climate change report by IPCC, which indicates that the world is 

not on track to keep global temperature rises to no more than 1.5° C (UNDP, 2022), implying 

that “tipping points” in the climate system are plausible (UN, 2022). It is also noted with 

concern that without prompt and deep emissions reductions across all sectors, meeting this 

temperature reduction is currently beyond reach (UN, 2022). Therefore, RCP 8.5 which is the 

worst case scenario seems the most likely and realistic scenario. As such, all other RCPs were 

excluded from the analysis.  
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Table 3.4 Overview of climate datasets 

Climate scenario Data / climate model Spatial coverage Climate period Carbon level (RCP) 

Current climate 
WorldClim Global 1970 – 2000 RCP 8.5 

Uni-Bern Regional (East Africa) 1970 – 2000 RCP 8.5 

Future climate 

WorldClim    

 MPI Global 2041 – 2060 RCP 8.5 

 CNRM Global 2041 – 2060 RCP 8.5 

 INMCM4 Global 2041 – 2060 RCP 8.5 

Uni-Bern Regional (East Africa) 2071 – 2100 RCP 8.5 

 

Additionally, for comparisons with our Kenya specific model generated at CEP, global 

Worldclim Bioclim variables were downloaded. These WorldClim datasets were acquired for 

three Global Climate Models / General Circulation Models (GCMs) (Table 3.5), under the 

Coupled Model Intercomparison Project (CMIP) Phase 5 and 6. CMIP5 was utilized for 

future climate data and CMIP6 for current climate data). The three models considered were 

CNRM-CM5, INMCM4 and MPI-ESM-LR. A detailed summary of the models is provided 

in (Table 3.5).  

 

CMIP5 data was used for future climate modeling instead of CMIP6 data because in CMIP6, 

the needed dataset was not available at the required finer resolution of (⁓ 1 km2). These 

models were systematically selected on the basis of regional downscaled model performance 

reported by Dosio et al. and McSweeney et al. (2015; 2015) for CMIP5. The models were 

categorized according to performance into four classes 1) Satisfactory, 2) Biased, 3) 

Significantly biased, and 4) Implausible (McSweeney et al., 2015). The purpose of 

downscaling the CMIP5 models was to identify a set of models suitable for application in 

regional climate change assessments for three geographical regions – Europe, Southeast Asia 

and Africa (McSweeney et al., 2015). The best models are those that performed well across 

multiple regions while the least realistic (“worst”) models were those that poorly simulated 

the key aspects of regional climate such as temperature and precipitation (McSweeney et al., 

2015). Further, during the GCM model downscaling for African climate by Dosio et al. 

(2015), model performance was tested on the basis of a model’s ability to reproduce the 
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principal components / characteristics of the African climate (Dosio et al., 2015) such as sea 

level pressure, temperature, precipitation and related indices such as consecutive dry and wet 

days, and the frequency of flood events, among others. Therefore, for purposes of this study, 

the three models were selected on the basis of their ability or inability to simulate the African 

climate and their temporal resolution completeness i.e. the data date (temporal) range covered 

our modeling time period (2050). For purposes of comparison of model performance in 

predicting target species’ habitat distribution, the models were picked from two classes 

representing both extremes in terms of performance (2 Satisfactory models - with one being 

satisfactory but an outlier, and 1 significantly biased) (Table 3.5). This choice was premised 

on the understanding that usually, decisions on climate scenarios / models are based on 

convenience. As argued by Baumgartner et al. (2018), predictions using a few climate change 

scenarios or models may not capture the full range of uncertainty in future climate conditions 

that has been recorded by a broader set of climate models. As such, consideration of broader 

climate futures is highly recommended in order to yield prediction estimates that capture 

better the possible range of climate change impacts (Baumgartner et al., 2018). This would 

mean, including a suite of relevant plausible models (excluding implausible models) even 

though they may present qualitatively contrasting futures (Evans et al., 2014), because 

variability exists among simulations and no single ‘best’ model exists (Beaumont et al., 

2008). Furthermore, variations on impacts across the predicted model outputs capture 

uncertainties associated with future climatic conditions hence, enabling visualization of 

spatial patterns of agreement about distribution and suitability of habitats in SDMs 

(Baumgartner et al., 2018).  
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Table 3.5 Summary of GCM models MPI-ESM-LR, CNRM-CM5 and INM-CM4 as well as relevant model performance attributes based on three studies (Dosio et al., 2015; 
Dosio and Panitz, 2016; McSweeney et al., 2015) that informed their selection for this study. Details on model teleconnections are available from Rowell (2013). The bold 
and italicized attributes are those that are close to or cover our study area. The performance of the models was determined by the model’s ability to simulate the key aspects 
of regional (Africa, Asia and Europe) climates such as temperature and precipitation. The best performing models are those that performed well across multiple regions 
(McSweeney et al., 2015)  

Modeling Centre 
and Country 

Model 
name/version 

Classification by 
performance 

# Teleconnections 
(of 36) 

Relevant model performance attributes (for African 
climate; either current or future climate) 

 

References 

MPI, Germany MPI-ESM-LR Satisfactory 29 

 
o Performed better than all other  3 models, although a 

cold bias was evident 
o Predicts warming (though biased) over eastern 

Mauritania. 
o Overestimates precipitation in the  JFM season over 

the western part of the sub-equatorial coast  
o Shows a dry bias over Madagascar and 

Mozambique in the JFM season 

 
 
 
Dosio et al., 2015; 
Dosio and Panitz 2016; 
(McSweeney et al., 2015); 
Rowell , 2013 

CNRM, France CNRM-CM5 Satisfactory - Outlier 24 

 
o Temperature is underestimated over South Africa 

and north-equatorial region, but slightly 
overestimated for the Congo region. 

o Temperatures over South Africa and the Sahara 
region are underestimated  

o Precipitation during the JFM season is overestimated 
over South Africa. 

o Predicts dryness (though biased) in the JFM season 
for central Africa  

 
 
Dosio et al., 2015; 
Dosio and Panitz 2016; 
(McSweeney et al., 2015); 
Rowell, 2013 

INM, Russia INM-CM4 Significantly biased 20 

 
o Oftenly, its predictions are at one end of the 

ensemble range, with consistent projections of the 
least warming for nearly all the seasons and regions  

o Showed that its change in rainfall projections have 
low correlations in relation to the ensemble mean 
change especially for the African climate. 
 

 
 
 
(McSweeney et al., 2015); 
Rowell , 2013 
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Data preparation 

Finally, all data were consistently transformed to WGS84 / UTM zone 37N (EPSG: 32637), 

masked to the study extent (Figure 1.1), resampled using nearest neighbour interpolation 

technique and analyzed at 30 m spatial resolution. In order to obtain precise results and to 

avoid processing difficulties, all environmental variables must have the same spatial extent, 

resolution, origin, and projection (Hijmans and Elith, 2021). To obtain a modest variable 

sample, variable reduction by performing correlation analysis was done. Therefore, only 

variables with low correlation averages as well as the most counts of pairwise variable 

correlation values less than 0.6 (r<0.6) for each species were selected. Any variables with 

pairwise correlation values at or exceeding this threshold (0.6) were excluded from the 

analysis. Therefore, altogether, 13 functionally relevant predictor variables (those marked 

with “Y” in Table 3.6) were retained for fitting the models. The variables were assumed to 

best represent the physiological requirements of the two species. Moreover, a large subset of 

these variables has proven useful when fitting skillful SDMs in other studies in the same 

region (Eckert et al., 2020; Ng et al., 2018). To ensure modeling consistency and to enable 

model output comparisons without bias, the same standard set of variables was maintained 

for modeling the two species under the present and future climate change scenarios – only 

Bioclims were customized for each model and climate scenario. All the variables, data 

sources and relevant references are listed in Table 3.6. 
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Table 3.6 An overview of initial variables, sources and formula references for the derived variables. 
Variables with “Y” were included in the final model, and those with “N” excluded. Variable names 
with “[2]” means that the variable was computed for both dry and wet season. CGLS means 
Copernicus Global Land Service.  

Variable name Abbr. Used Data source Formula reference 

Annual mean diurnal temperature range  Bio2 “Y” WorldClim v2.1  

Temperature seasonality Bio4 “Y” WorldClim v2.1  

Maximum temperature of warmest month  Bio5 “Y” WorldClim v2.1  

Temperature annual range Bio7 “Y” WorldClim v2.1  

Mean temperature of driest quarter Bio9 “Y” WorldClim v2.1  

Precipitation seasonality Bio15 “Y” WorldClim v2.1  

Bioclimatic variables (Bio1,3,6,8,10-14,16-19) Bio…. “N” WorldClim v2.1  

Soil map (derived from KENSOTER v. 2.0) Soils “Y” KALRO  

Weighted minimum Euclidean distance to rivers Dist_Riv “Y” derived ESRI, 2014 

Minimum Euclidean distance to buffered 
waterbodies 

Dist_WB “Y” 
derived  ESRI, 2014 

Elevation  “Y” Eckert et al., 2020  

Landforms  “Y” Eckert et al., 2020  

Global Human Footprint Index HFP “Y” Eckert et al., 2020  

Absolute Minimum Temperature AMT “N” derived Prentice et al,., 1992 

Actual Evapotranspiration  AcET “N” USGS USGS FEWS NET, 2021 

ALBEDO [2]   “N” CGLS European Union, 2018  

Aridity Index AI “Y”  Trabucco & Zomer, 2019 

Climate Water Deficit or Soil Water Deficit CWD “N” derived Lutz et al., 2010 

Dry Matter Productivity [2] DMP “N” CGLS European Union, 2018 

Fraction of Absorbed Photosynthetically Active 
Radiation [2] 

FAPAR “N” CGLS European Union, 2018 

Fractional Vegetation Cover [2] FCOVER “N” CGLS European Union, 2018 

Growing Degree Days GDD “N” derived Synes & Osborne, 2011 

Gross Dry Matter Productivity [2] GDMP “N” CGLS European Union, 2018 

Leaf Area Index [2] LAI “N” CGLS European Union, 2018 

Moisture Index Moid “N” derived Box, 1981 (cited in Attore et al, 2007) 

Ombrothermic Index Oi “N” derived 
Rivas-Martinez (1996) cited in Attorre 
et al. (2007) 

Potential Evapotranspiration  PET0 “N”  Trabucco & Zomer, 2019 

Pluviothermic Quotient PluQ “N” derived 
Emberger (1930) cited in Attorre et al. 
(2007) 

Normalized Top of Canopy Reflectance [2] TOCR “N” CGLS European Union, 2018 

Topographic Wetness Index   TWI “N” derived Wolock & McCabe, 1995 

Vegetation Condition Index [2] VCI “N” CGLS European Union, 2018 

Vegetation Productivity Index [2] VPI “N” CGLS European Union, 2018 

Normalized Difference Water Index  NDWI “N” derived  Vermote et al., 2016 

Soil Salinity Index SSI “N” derived Ghazali et al 2020;  

Normalized Difference Senescent Vegetation 
Index 

NDSVI “N” derived Qi et al., 2002 
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Soil Adjusted Vegetation Index SAVI “N” derived Vermote et al., 2016 

Normalized Difference Vegetation Index [2] NDVI “N” Eckert et al., 2020  

Slope Slope 
“N” Eckert et al., 2020  

Euclidean Dist. villages Dist_V 
“N” derived derived  

     

3.2.3.2 Species Habitat Suitability Modeling 
SDMs are recognized and considered as useful tools for predicting habitat suitability and 

species distribution (Duscher and Nopp-Mayr, 2017; Rew et al., 2021; Schwager and Berg, 

2021), as they are the principal means of evaluating how species respond to a multitude of 

environmental and climate gradients (Baumgartner et al., 2018). Generally, SDMs combine 

information on known species occurrence locations with co-located abiotic and biotic data 

such as soil, elevation, climate, vegetation indices and changes in land-use to map and predict 

the probability of occurrence of that species at other unsampled sites or times, e.g. 

considering the future climate situation (Ehrlén and Morris, 2015; Rew et al., 2021; Schwager 

and Berg, 2021). Usually, a fitted model is projected on spatial environmental data (raster 

predictor variables), which then produces continuous probabilities (scores) indicating the 

relative environmental suitability for a particular species (Baumgartner et al., 2018).   

Two machine learning modeling approaches or algorithms - Random Forest (RF; (Breiman, 

2001b) and Boosted Regression Trees (BRT; (Elith et al., 2008)), were used to model suitable 

habitat for species in this study. These SDM algorithms were preferred over others because 

they provide reliable results with higher accuracies compared to the well known entropy 

modeling method (MAXENT), and of high predictive accuracy and hence, are generally 

considered robust (Franklin, 2010; Schwager and Berg, 2021; Scornet, 2017).  Moreover, 

these two machine learning algorithms outperformed another machine learning algorithm – 

Support Vector Machine (SVM),  in a previous study on Prosopis on a national scale (Kenya) 

(Eckert et al., 2020). For each of the target species, both RF and BRT models were fitted 

using species data: presence-background (pseudo-absence) as the response (dependent) 

variable and the 13 raster files (those marked with “Y” in Table 3.6) as predictors or 

explanatory variables, for both current climate and future climate scenario RCP8.5. A 

schematic description of the methodological workflow is presented in Figure 3.7. All BRT 

models were calibrated using a “Bernoulli” family appropriate response variable of presence 

(1) and pseudo-absence (0) with a learning rate (shrinkage parameter) of 0.005, a tree 

complexity of 5, and a bag fraction of 0.5 (BCCVL, 2021; Elith et al., 2008). The learning 
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rate (lr) is used to determine the contribution of each individual tree in the growing model 

whereby, the smaller the lr value, the more the trees will be built. The tree complexity (tc) 

parameter is set for controlling whether interactions are made between environmental 

variables. For instance, a tc value of 1 results in a single split and therefore the model does 

not take into account predictor variable interactions (BCCVL, 2021), while a tc value of 5 

indicates five-way interactions. These two parameters determine the maximum number of 

trees needed for model optimization and  prediction (Elith et al., 2008). As a rule of thumb, 

the parameters must be set to grow models with at least 1000 trees while also resulting in 

minimal prediction error (BCCVL, 2021). Cross-validation approach using holdout deviance 

reduction technique as a measure of success is used to determine the optimal number of trees 

to grow and lr (Elith et al., 2008, 2006). Use of cross-validation to progressively grow 

models avoids overfitting as it uses withheld portions of data to test predictive accuracy (Elith 

et al., 2006). The BRT modeling process is stochastic – because it includes a probabilistic or 

random component known as bag fraction. Introducing some stochasticity (randomness ) into 

a boosted model improves prediction accuracy, model computing speed/time and minimizes 

model overfitting (Friedman, 2002). The bag fraction parameter setting in the BRT model 

controls the stochasticity by specifying the proportion of the dataset to be selected at each 

boosting step. In this study, the default setting bag fraction value of 0.5 was used, meaning 

that 50% of the dataset were randomly drawn without replacement from the full training set 

at each iteration. The default setting of 0.5 was maintained because bag fraction values in the 

range of 0.5 to 0.75 have been found to improve model performance and give best results for 

presence-absence responses (Elith et al., 2008). The BRT model was implemented in R using 

the ‘Dismo’package, with an additional algorithm fine-tuning using the gbm.step function 

(Eckert et al., 2020; Elith et al., 2008).  

RF, just like BRT, is a non-parametric machine learning method that performs both 

classification (if the response variable is a factor or categorical –see description in section 

3.2.1.3) and regression (if response variable is a data.frame with predictor variables) 

(Hijmans and Elith, 2021). RF fits numerous individual trees, usually to the tune of hundreds 

to thousands and then combines their predictions by determining the average (Hastie et al., 

2009; Valavi et al., 2021; Zurell, 2019). Each tree is fitted using a bootstrap data sample of 

the training dataset (a random sample) drawn with replacement, representing about 64% of 

the data points (Freeman et al., 2012; Valavi et al., 2021). The data samples that are not 

selected are referred to as out-of-bag samples, which represent about 36% of the data points, 
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and are used for model error estimation (Freeman et al., 2012; Valavi et al., 2021). RF model 

was implemented in R in the function ‘randomForest’(Liaw and Wiener, 2014). RF model 

was calibrated: model response type = regression, ntree = 1000 and nodesize = 5. Parameter 

‘ntree’ means number of trees. Similar to BRT, the standard recommended number of trees 

for fitting RF models is usually 1000 as many trees yield better results (Freeman et al., 2012; 

Probst et al., 2019; Scornet, 2017; Valavi et al., 2021). However, as a rule of thumb, it is 

recommended to start by growing (p x 10) trees and adjust accordingly, where p is the 

number of features or predictor variables (Boehmke and Greenwell, 2020). The ‘nodesize’ 

parameter is key for controlling the complexity of individual trees. The default nodesize 

value for regression is 5 (Boehmke and Greenwell, 2020). The other RF model parameters 

were kept at default (i.e. not tuned) as RF is known to perform reasonably well at its default 

parameters (Valavi et al., 2021). For both models, variable importance or relevance was also 

automatically generated.  

Soils, elevation, landforms and global footprint index were assumed to remain static and 

maintained for both current and future climate modeling (Table 3.6). Although soils and 

human footprint change over time, their descriptions for the future climate situation were 

lacking.  
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Figure 3.8 Flowchart of methods for modeling potential species distribution under current and future climate change scenarios.



 

67 
 

3.2.3.3 Model validation  
Evaluation involves testing the models predictive performance at sites by assessing the 

agreement between presence – pseudo-absence data records and the predictions (Elith et al., 

2006). Model evaluation was done using the k-fold cross-validation technique (described in 

section 3.2.1.4), but in this case, k = 5 making it a 5-fold cross-validation (Rew et al., 2021). 

As a goodness-of-fit measure, both true skill statistic (TSS; Allouche et al. (2006) and Area 

Under the  receiver operating Curve (AUC; Swets (1988)) were used. These two metrics have 

been widely applied in ecological studies (Barbet-Massin et al., 2012; Chefaoui and Lobo, 

2008; Eckert et al., 2020; Elith et al., 2006; Iturbide et al., 2015; Liu et al., 2011; Ng et al., 

2018; Rew et al., 2021; Schwager and Berg, 2021). AUC is the measure of a model’s ability 

to discriminate between sites where the target species is present, vs. where it is absent (Elith 

et al., 2006; Liu et al., 2011). AUC values closer to 1 implies better discrimination 

performance (Rew et al., 2021). AUC was chosen as a candidate evaluation metric because it 

is also regarded as a relevant measure for models fitted with presence and background data 

(Valavi et al., 2021). TSS represents agreements (matches) and disagreements (mismatches) 

between observation and predictions, and is derived from sensitivity and specificity (Rew et 

al., 2021) or the mean of the net prediction success rate for presence sites and that for absence 

sites (Liu et al., 2011). It is currently touted in several studies as more realistic, practical and 

the best metric for evaluating the performance of SDM models (Rew et al., 2021; Shabani et 

al., 2018). 

The AUC and TSS were calculated as the mean of five model iterations, where each iteration 

was built using 80% of the data and validated against the remaining 20% of the data (Rew et 

al., 2021). This model evaluation approach was applied for each species (n = 2), and for each 

model (n = 2), and for each climate - current and future - individually for each climate 

scenario (n = 5). Only models with TSS and AUC values of at least 0.5 and 0.9, respectively 

were finally accepted. These values were based on thresholds recommended in literature 

(Gallien et al., 2012; Rew et al., 2021), or thresholds achieved / considered in other studies in 

the same study region (Eckert et al., 2020). Moreover, in SDMs, models with an AUC of 0.7 

are generally accepted while those with an AUC of 0.9 are considered excellent (Evans and 

Cushman, 2009; Rew et al., 2021; Swets, 1988). For TSS, values between 0.4 - 0.6 are 

considered appropriate or acceptable while values ≥ 0.8 are regarded as excellent (Rew et al., 

2021).  
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3.2.3.4 Spatial projections  
For each species, four and eight models with continuous habitat suitability predictions 

(probability of species presence) for current climate and future climate scenarios were 

produced, respectively. These continuous probability predictions were finally converted into 

binary maps of suitable/unsuitable species habitat, using optimum threshold values that 

maximize the sum of sensitivity and specificity (Baumgartner et al., 2018; Liu et al., 2013; 

Shabani et al., 2018) for each model. Sensitivity is the probability that an observation of a 

species (known presence) at a particular site  is predicted correctly (i.e as presence) by the 

model, while specificity is the probability that an absence site is predicted correctly (i.e. as 

absence) (Liu et al., 2011). The optimum threshold values were generated using the 

optim.thresh function which is available in R package SDMTools following the procedure 

described by Eckert et al. (2020). This thresholding approach has been frequently used and 

recommended because of its ability to more skillfully reflect the prevalence of the modeled 

species (Baumgartner et al., 2018; Eckert et al., 2020; Jiménez-Valverde and Lobo, 2007; Liu 

et al., 2016, 2013, 2011). Using the most skilful output models or best performing models 

(i.e. TSS ≥ 0.5 and AUC ≥ 0.9), ensemble habitat suitability layers were generated for each 

species for both current and future climate (Figure 3.8). Ensembles were generated following 

the method described by Eckert et al. (2020). The ensemble creation approach has been 

widely applied in ecology (Eckert et al., 2020; Ng et al., 2018; Rew et al., 2021; Stohlgren et 

al., 2010), as it minimizes over-fitting and provides better predictions than predictions from 

single models (Rew et al., 2021).  
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Figure 3.9 SDM modeling framework and ensembles generation scheme. Ensembles were 

generated by combining the BRT and RF predictions and calculating the mean probabilities 

predictions and optimum thresholds for each species (Eckert et al., 2020). 

3.2.3.5 Comparisons of predicted spatial distributions and refugia identification 
In order to reveal and understand the spatial pattern of the two species habitat, the two output 

raster (binary maps) for both current (present) and future climate models (each model) were 

combined by stacking. Then, the combined output raster was converted to a polygon and a 

union done. To determine the climate change effect on spatial change pattern of each species 

habitat, differences in habitat suitability (between SDM algorithms and between models of 

current and future climate scenarios) were calculated and visualized. Habitat change 

(contraction, expansion or no change) between the two binary SDMs (e.g. current and future 

SDMs) were determined by subtracting the quantified future suitable habitat area from the 

current suitable habitat area.  

The main aim of objective 3 was to identify potential climate refugia for Vachellia tortilis 

and their vulnerability to Prosopis invasion in order to inform policy and management 

decisions for prioritization of Vachellia tortilis conservation actions and resources. Refugia 
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represent areas suitable for species in the present time (i.e under current climatic conditions) 

and are also predicted as suitable areas during the future climate conditions (Baumgartner et 

al., 2018). While there are two types of refugia (ex situ and in situ) as described by 

Baumgartner et al. (2018), this study focused on identification of refugia (as suitable areas for 

the species in the current climate that are projected to retain their suitability under climate 

change). If, for example, an area is suitable in the current climate and unsuitable in future or 

vice versa, then it is not considered as refugia in this study. 

3.4 Data synthesis  
Diverse quantitative and qualitative data were collected for each objective. The groundtruth 

data (reference points and historical expert knowledge) acquired from the field was combined 

with Landsat time-series spatial data to analyze the changes in Prosopis coverage and its 

implications on other LULC types, using machine learning Random Forest technique in R 

software. Monetary cost of removing Prosopis from croplands and pasture loss were used as 

proxies for estimating Prosopis invasion impact on livelihoods. The monetary cost was 

estimated from the average willingness to pay for Prosopis clearing , which was determined 

through a choice experiment conducted in a household survey (n=250) in Baringo (Bekele et 

al., 2018a).   

The comparison of effects of Prosopis spread versus restoring grassland on climate change 

mitigation and other ecosystem services was done on five land-use and land-cover categories. 

Field measurements of soil organic carbon at different soil sampling depths up to one meter 

below the surface, plant species richness and herbaceous biomass were carried out. Indicator 

species analysis was done both qualitatively and quantitatively. 

Climate change models data for modeling potential future habitat of Prosopis and Vachellia 

tortilis were selected intentionally depending on their performance or ability to model key 

aspects of the East African or African climate such as temperature and precipitation. Field 

reference points for species presence were used to train and validate the climate models using 

BRT and RF species distribution models. These resulted in prediction maps for suitable / 

unsuitable habitats under both climate conditions. Further, the outputs for the two species 

were overlaid and areas of overlap identified (showing areas where native Vachellia tortilis 

would survive in future but is also at risk of invasion by Prosopis). Further, climate refugia 

were identified using this approach.  
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CHAPTER 4: ESTIMATION OF THE SPATIAL EVOLUTION, DYNAMICS AND 
IMPACTS OF PROSOPIS INVASION 

4.1 Introduction 
In this chapter, landscape changes between 1988 and 2016 were assessed and quantified for a 

historically severely degraded landscape in Baringo County that was later invaded by alien 

Prosopis species. The spatial and temporal changes in Prosopis coverage and its implications 

on other land-uses and land-cover, and livelihoods are analyzed and discussed.  

4.2 Results 
Random Forest classification algorithm generated good accuracies > 70% (producer’s and 

user’s) for all the 8 classes (Prosopis, Vachellia tortilis, mixed vegetation, grassland, 

bareland, rainfed cropland, irrigated cropland and water) across the 5 time steps, with the 

exception of Vachellia tortilis in 2016 (producer’s accuracy =53.5%) and Prosopis in 2002 

(producer’s accuracy =53.5%). The overall accuracy ranged between 98.1 – 98.5%, while 

kappa coefficient ranged between 0.93 – 0.96. The degree of accuracy was better for the 2016 

classification and lower for the base year (1988) (see appendix 1.1 -1.5). 

4.2.1 Spatial changes in Prosopis coverage from 1988 to 2016 
The analyzed study area comprises approximately 180,000 ha. In 1988, mixed vegetation and 

bareland were the dominant LULC comprising about 71.5% and 8.3% of the total study area, 

respectively (Figure 4.1). In the same year, Prosopis coverage was scanty occurring mainly 

on the shores of Lake Baringo and as little patches in Kailer and Eldume sublocations. The 

prominent pathways of spread were along rivers including Lembus, Molo, Chemeron, Loboi, 

Sandai Perkerra, and Endao, as well as along irrigation canals and road networks (Figure 

4.1C). The LULC maps reveal invasion spread corridor commencing on the southern shores 

of Lake Baringo southwards to Lake Bogoria through the swampy area covering Lake 94, 

including along the rivers draining into the lakes. From this invasion corridor (pathway), 

Prosopis expanded to the surrounding bare lands tending to the western zones of Lake 

Baringo, culminating into encroachment of Perkerra irrigation scheme (Figure 4.1A), a 

crucial agricultural facility in the area, existing since the 1950s.  
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Figure 4.1A Overview map showing  the extent of the study area (red boundary zone) and 

topography (elevation), waterways and lakes, Perkerra irrigation scheme (pink polygon), and 

sublocations.   
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Figure 4.1B-F LULC change maps of Marigat subregion in Baringo County, Kenya, for the 

years 1988, 1995, 2002, 2009, and 2016.  

Between 1988 and 2016, Prosopis coverage increased sharply and steadily, from 882 ha in 

1988 up to 18,792 ha in 2016 (Table 4.1, Figure 4.2). However, the rates of increase varied 

among the seven-year intervals (Figure 4.2), increasing from 4.7% until 1988 to 13.1% in 

1995 and stabilizing at about 27% since 2002. This translates into an annual spread rate of 

about 3.8 – 4.0% since 2002.  
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Table 4.1 LULC change proportions for each class in hectares (ha) and percent share of the total area for the years 1988, 1995, 2002, 2009 and 

2016. 

 

1988 1995 2002 2009 2016 

LULC Classes ha % share ha % share ha % share ha % share ha % share 

Prosopis 882 0.5 3345 1.9 8375 4.7 13568 7.5 18792 10.4 

Vachellia tortilis 8517 4.7 6809 3.8 3158 1.8 3718 2.1 4915 2.7 

Mixed vegetation 128727 71.5 130385 72.4 132969 73.9 124392 69.1 123310 68.5 

Grassland 7229 4.0 5652 3.1 1194 0.7 691 0.4 977 0.5 

Bareland 15001 8.3 16904 9.4 14130 7.9 13420 7.5 8503 4.7 

Rainfed cropland 3840 2.1 3189 1.8 5531 3.1 5453 3.0 2408 1.3 

Irrigated cropland 1501 0.8 473 0.3 1463 0.8 3708 2.1 652 0.4 

Water 14325 8.0 13264 7.4 13204 7.3 15071 8.4 20464 11.4 
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Figure 4.2  A) LULC changes in hectares (ha) for each LULC class for all the 5 time steps 

(from 1988 to 2016), and B) Prosopis spread rate for each observed 7-year time interval (not 

per year) since introduction (with the total invaded area in 2016 considered as 100%). 
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4.2.2 Changes in Land-Use and Land-Cover between 1988 and 2016 
During the study period, Prosopis and water increased in spatial extent by 2031% and 42%, respectively, while all the other LULC classes 

declined (Figure 4.2A) and (Table 4.2). It was observed that water levels first declined, and then started to increase again from 2009 (Figure 

4.2A). Increase in area under Prosopis was nearly constant since 1995 and was not affected by the 2013 floods (effect could be noticed in future) 

or the implementation of the ‘management by utilization’ (Figure 4.2 A and B). 

Table 4.2 The overall net changes of LULC in hectares (ha) and percent class shares of total study area and percent class shares of case class 

area in 1988. Changes were calculated for 1988–1995, 1995–2002, 2002–2009, 2009–2016, and 1988–2016.  

  
Net Changes 1988  - 1995 1995 - 2002 2002 - 2009 2009 - 2016 1988 - 2016   

LULC  ha 
% 

Total 
area 

% of 
Class 

Area in 
1988 

ha 
% 

Total 
area 

% of Class 
Area in 

1988 
ha 

% 
Total 
area 

% of Class 
Area in 

1988 
ha 

% 
Total 
area 

% of Class 
Area in 

1988 
ha 

% 
Total 
area 

% of 
Class 

Area in 
1988 

  

Prosopis 2463 1.4 279.4 5030 2.8 570.4 5193 2.9 589.0 5224 2.9 592.5 17910 10.0 2031.3 

Vachellia tortilis -1708 -1.0 -20.1 -3651 -2.0 -42.9 560 0.3 6.6 1197 0.7 14.1 -3602 -2.0 -42.3 

Mixed vegetation 1658 0.9 1.3 2583 1.4 2.0 -8576 -4.8 -6.7 -1082 -0.6 -0.8 -5417 -3.0 -4.2 

Grassland -1577 -0.9 -21.8 -4458 -2.5 -61.7 -503 -0.3 -7.0 286 0.2 4.0 -6252 -3.5 -86.5 

 Bareland 1903 1.1 12.7 -2774 -1.5 -18.5 -709 -0.4 -4.7 -4917 -2.7 -32.8 -6498 -3.6 -43.3 

Rainfed cropland -651 -0.4 -17.0 2342 1.3 61.0 -78 -0.0 -2.0 -3045 -1.7 -79.3 -1432 -0.8 -37.3 

Irrigated cropland -1027 -0.6 -68.5 989 0.6 66.0 2246 1.3 149.7 -3056 -1.7 -203.7 -849 -0.5 -56.6 

Water -1061 -0.6 -7.4 -61 -0.0 -0.4 1868 1.0 13.0 5393 3.0 37.6 6139 3.4 42.9 

                                  



 

77 
 

Overall, the highest losses in land area for the classes considered occurred in grasslands (-

86%), irrigated croplands by (-57%), bareland (-43%), Vachellia tortilis (-42%), rainfed 

cropland (-37%), and the lowest change was observed in mixed vegetation class at (-4%) 

(Table 4.2). It was, however, observed that the LULC classes that generally reduced in 

coverage also sporadically exhibited slight increases during certain intervals; for example, 

bareland in 1995, cropland in 2002 and 2009, and Vachellia tortilis in 2016 (Figure 4.3). 

Prosopis increased steadily across all the five intervals. At the initial invasion years (1988–

2002), the most affected LULCs were Vachellia tortilis (-5359 ha) and grasslands (-6035 

ha) which are crucial resources for pastoralists, while in the latter years (from 2002–2016), 

mixed vegetation (-9659 ha), bareland (-5626 ha), rainfed cropland (-3123 ha), and irrigated 

cropland (-811 ha), had marked changes (Figure 4.2A). The water levels in the lakes 

(Baringo and Bogoria) also declined in the former years (1988 – 2001) and increased in the 

latter years (2002 – 2006). 

 

Figure 4.3 The gains and losses of each LULC class in percent shares of the total study 

area for intervals 1988–1995, 1995–2002, 2002–2009, and 2009–2016. 
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4.2.3 Prosopis-specific induced changes in other LULC classes  
Land previously under Vachellia tortilis and grass (grasslands) was generally lost to 

Prosopis class between 1995 and 2002 (losses amounting to 22% and 12%, respectively), 

whereas the mixed vegetation area, bareland and irrigated cropland mostly got invaded by 

Prosopis between 2009 and 2016 (by 1.94%, 18% and 74%, respectively); Table 4.3, 

changes are visualized in Figure 4.4). Generally, Prosopis colonization of other LULC 

mostly occurred between 2009 and 2016, while the least invasion was observed between 

1988 and 1995.  

Cumulatively, over the 28-year period, Prosopis spread resulted in LULC losses of 

Vachellia tortilis by 3452 ha (-41%), grasslands by 2675 ha (-37%), bareland by 5351 ha (-

36%), irrigated cropland by 373 ha (-25%), mixed vegetation by 6215 ha (-5%), and rainfed 

cropland by 129 ha (-3%). Prosopis class also gained from other LULC types, with the 

three largest donors being, in order of ranking, mixed vegetation which comprises mostly 

indigenous trees and shrubs, bareland and Vachellia tortilis, with a mean annual losses of 

222 ha/a, 191 ha/a, and 123 ha/a, respectively. Grasslands and irrigated croplands, which 

are the basic livelihood sources for the agro-pastoral community were lost at a rate of 96 

ha/a and 13 ha/a, respectively. 

 

Figure 4.4 Sankey plot showing changes in area coverage from one LULC class to the 

other for all time steps between 1988 and 2016. 
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Table 4.3 The net change impact of Prosopis invasion on individual LULC for 1988–1995, 1995–2002, 2002–

2009, 2009–2016, and 1988–2016.The numbers represent the time interval, V (Vachellia tortilis), P (Prosopis), 

M(Mixed vegetation), G (Grassland), B (Bareland), R (Rainfed cropland), I (Irrigated cropland), W(Water). For 

example, V88 – P95 =Vachellia 1988 – Prosopis 1995. The rows in bold represent the periods with the highest 

changes, the rows in italics the periods with lowest changes. The rows with border line represent the overall net 

changes associated with Prosopis invasion from 1988 to 2016. 

Time Period  Losses to P (ha) Gains from P (ha) Net Change (ha)  % of Class area in 1988 

V88-P95 984 235 -750 -8.8 

V95-P02 2146 237 -1909 -22.4 

V02-P09 789 409 -381 -4.5 

V09-P16 913 281 -633 -7.4 

V88-P16 3478 26 -3453 -40.5 

M88-P95 651 227 -424 -0.3 

M95-P02 2183 725 -1458 -1.1 

M02-P09 3837 1340 -2498 -1.9 

M09-P16 4247 1753 -2494 -1.9 

M88-P16 6308 93 -6215 -4.8 

G88-P95 510 82 -428 -5.9 

G95-P02 1042 163 -879 -12.2 

G02-P09 341 170 -171 -2.4 

G09-P16 126 285 159 2.2 

G88-P16 2688 13 -2675 -37 

B88-P95 50 5 -44 -0.3 

B95-P02 1009 124 -885 -5.9 

B02-P09 2977 856 -2121 -14.1 

B09-P16 3644 974 -2670 -17.8 

B88-P16 5361 10 -5351 -35.7 

R88-P95 17 0.7 -17 -0.4 

R95-P02 5 16 11 0.3 

R02-P09 709 139 -571 -14.9 

R09-P16 423 136 -287 -7.5 

R88-P16 131 3 -129 -3.4 

I88-P95 44 0 -44 -2.9 

I95-P02 7 58 51 3.4 

I02-P09 456 368 -89 -5.9 

I09-P16 1287 173 -1115 -74.3 

I88-P16 378 5 -373 -24.9 

W88-P95 758 1 -757 -5.3 

W95-P02 44 84 40 0.3 

W02-P09 0.1 637 636 4.4 

W09-P16 7 1822 1814 12.7 

W88-P16 10 295 285 2 
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4.2.4 Prosopis invasion impact on livelihoods 

Prosopis invaded about 2948 ha of cropland between 1988 and 2016, of which 891 ha was 

cleared of Prosopis and converted back to cropland over the same period. Prosopis removal is 

done by individual land owners or labourers. Using the estimated Prosopis clearing labour 

costs (USD 265.61 per ha per annum) (Eschen et al., 2021),  together with the land-use and 

land-cover changes and fractional cover data, the study found that this translated to a labour 

cost of about USD 236,658.51, over the period (1988 – 2016). The net loss of cropland to 

Prosopis as at 2016 was about 2057 ha, which would require a about USD 546,359.77 to 

restore to productive farmland. Equally, the invaded pastures (2675 ha) would require a 

budget of USD 710,506.75 to restore to grazing lands. This scenario compounds the 

livelihood situation of the already disenfranchised and vulnerable inhabitants in the invaded 

areas of Baringo as well as other invaded lands in Kenya. Many households cannot meet the 

costs of managing these farmlands hence abandon them creating a further loss in livelihood.  

4.3 Discussion 

4.3.1 Spatial evolution of Prosopis invasion in Baringo 
It is a well-known fact that Prosopis is a notorious invader and currently also branded as an 

ecosystem engineer (Ayanu et al., 2015; Shackleton et al., 2014) due to its ability to colonize 

and dominate diverse landscapes, particularly drylands (Maundu et al., 2009). However, there 

are significant gaps in understanding its spread rates in the affected regions and the 

implications on other LULC types in those regions. This study analysed the development of 

Prosopis and the concomitant changes in the LULC types present in the invaded regions in 

time and space using multi-temporal and multi-spectral Landsat satellites imagery. These data 

were supplemented by validation of LULC distribution maps with historical information 

available on Google Earth imagery service (Google Earth Pro, 1987) and local expert 

knowledge. The Random Forest classifier produced reasonably good estimations with reliable 

accuracies which has also been reported in other studies (Immitzer et al., 2018; Li et al., 2013, 

2017; Ng et al., 2017; Reynolds et al., 2016). This provides baseline information for use as 

reference for long-term monitoring of Prosopis spread. This study covered the entire Prosopis 

invasion history, and used rigorous methods to analyse its spatio-temporal spread and change 

dynamics. The gap filled by this study is how these invasion dynamics have influenced LULC 

changes in the study area. This information was previously lacking but has now been filled 

using the findings from this study (Mbaabu et al., 2019). The use of seasonality data, 

particularly the dry season information was imperative to accurately separate Prosopis from 

the other co-existing vegetation and other LULC categories. However, it should be noted that 
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this study was limited by inaccessibility to the eastern areas of Lake Baringo. The area  prone 

to inter-ethnic conflicts and violence (Relief Web, 2017), and at the time of field data 

collection, access to this zone was restricted for security reasons. Therefore, ground 

verification (groundtruthing) was missed out for that particular zone.   

A closer look at the densely invaded region (overlaid with original Prosopis plantations) 

further shows how combining multi-temporal Landsat satellite imagery and using Random 

Forest classifier enabled the identification and and visualization invasion processes at various 

scales (Figure 4.5). Both spatial and temporal patterns observed at the case study level and at 

smaller scales show that initially, Prosopis dispersed away from original plantations mainly 

along roads and around waterbodies or lakeshores. This shows agreement with results from 

Afar region in Ethiopia, where road networks and waterbodies were identified as important 

drivers of Prosopis spread (Shiferaw et al., 2019c). Then, Prosopis progressively moved to 

areas away from waterbodies, especially areas that are usually under Vachellia tortilis cover, 

grasslands, and mixed vegetation. 
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Figure 4.5 The spatial spread pattern of Prosopis from initial plantations in 1982 and 1983: the blue trees symbolize the initial plantations; Prosopis 

covered areas are in deep red. The sequence of LULC distribution maps visualizing a zoom view south of Lake Baringo shows the gradual increase in 

area under Prosopis cover and a general decline in most of the other LULC classes, especially grassland and Vachellia tortilis over time (A-E). 

Locations Loruk*, Logumgum** and Sandai*** are marked with a symbol in the 1988 map.   
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4.3.2 Spatio-temporal changes in Prosopis coverage 
Between 1982 and 1983, Prosopis species were introduced in about 31 sites (Andersson, 

2005) in Marigat sub-region of Baringo to rehabilitate the heavily degraded dryland and to 

alleviate firewood shortage (Choge and Pasiecznik, 2005; Kariuki, 1993; Maundu et al., 

2009). These plantations were established along rivers, grazing areas and in irrigation 

schemes in order to increase their survival rate owing to the harsh climatic conditions. These 

zones would later become vulnerable to the invading Prosopis because they were zones of 

convergence for both animal-dispersed and waterborne seeds, as well more conducive for tree 

growth (Robinson et al., 2008). This study revealed a total Prosopis invaded area of 882 ha by 

1988, which is comparable to the findings by Mwangi and Swallow (2005), who reported 

739.5 ha of invaded land by 1990). Prosopis was estimated to increase in coverage at an 

annual rate of 640 ha, which is within range reported by Kyuma et al. (2016), who estimated 

Prosopis annual spread rate of around 532 ha on hillslopes and 13 to 1309 ha in the 

floodplains in Kajiado County, Kenya. The observed invasion distribution pattern in this 

study also compares with the pattern of Prosopis mapping conducted by Ng et al. (2017), who 

used higher resolution satellite imagery from Sentinel-2 and Pléiades sensors, to map 

Prosopis distribution in the same area. These findings therefore confirm that Prosopis is a 

notorious invader, which show agreement with findings from other studies in Africa (Babiker, 

n.d.; Meroni et al., 2017; Ndhlovu et al., 2016; Shiferaw et al., 2019c; Wakie et al., 2016). 

Further, these results suggest that Prosopis invasion is progressive and follows a regular and 

gradual pattern of expansion. The observed low rate of Prosopis expansion between 1988 and 

1995 can be explained by the fact that these were the preliminary years of Prosopis growth, 

and probably not many trees had matured and produced seeds for propagation or dispersal by 

agents such as livestock.    

4.3.3 LULC changes in the study area between 1988 and 2016 
The Njemps Flats is a classic example of anecosystem undergoing exceptional changes in 

LULC in the recent decades (Kiage et al., 2007). It was observed that while the alien Prosopis 

coverage increased more than 20 times its coverage in 1988, LULC representing native 

vegetation and farmlands declined, each by over 40% of their 1988 areal estimate. This has 

significantly hurt the livelihood support system of the local communities such as grasslands 

and croplands, at an unprecedented velocity. The findings from this study uphold those of 

Kiage et al. (2007), on LULC changes in the same study area (around Lake Baringo) using 

Landsat imagery. They reported that the area under forest (which corresponds to Vachellia 

tortilis in this study), declined by 40% between 1986 and 2000. This study shows that 



84 
 

Prosopis encroachment took over 30% of land area that was previously under other LULC. 

However, besides Prosopis colonization, anthropogenic activities such as overgrazing, 

deforestation, together with human-induced climatic changes have also likely led to the 

LULC change dynamics observed in Baringo. Nevertheless, Prosopis is seemingly more 

ecologically adaptive than the native species (Muthana and Arora, 1983), owing to its deep 

root system, massive seed production and ability to survive even on nutrient-poor soils (very 

degraded land). Additionally, Prosopis severely constrains the survival of native plant species 

most likely due to allelopathy or competition for water, nutrients and space (Schachtschneider 

and February, 2013).  

Over the last century, Njemps Flats has undergone marked land degradation and the observed 

increase in barenland from 1988 to 1995 may be treated as a continuity of this phenomena. 

This corroborates the findings by Kiage et al. (2007) who observed that denuded spaces 

increased on Lake Baringo shores between 1986 and 2000. An exacerbation of land condition 

in the study area was likely caused by multiple and interlinked factors such as human 

population growth, and consequently increases in livestock activity as pastoralism is the 

primary source of income for the local community (goats and donkeys increased while cattle 

and sheep reduced due to bush encroachment which favored browsers than grazers) (Setey, 

2020) . Moreover, Baringo County experienced extremely low levels of precipitation between 

1978 and 1996 (approx. annual average = 51.7 mm) which may have led to further increases 

in bareland. 

Prosopis management by utilization (using Prosopis for charcoal and use of Prosopis pods as 

livestock feed) was introduced in Baringo in 2007. The findings from this study have shown 

that this approach has not succeeded in curtailing Prosopis progression. Instead, utilization 

leads to coppicing of several Prosopis stems from the originally cut mother stem, which 

creates impenetrable thickets and fuels further Prosopis spread through multiplied seed 

production from the coppiced trees. On the basis of successful and long-term Prosopis 

management observed in Australia, this study proposes that effective and sustainable 

management of Prosopis in Baringo can be realized through a combination of different 

management methods such as mechanical, biological and chemical. Additionally, regular 

monitoring or surveillance of invasion risk areas and early removal of any observed Prosopis 

populations at the invasion front should be urgently considered (Shackleton et al., 2014).  

4.4 Summary 
By the year 2016, Prosopis had colonized 18,792 ha of land in Marigat. This invasion was 

reached through a spread rate of about 640 ha/yr between 1988 and 2016. Over the same 



85 
 

period, the land covered by all the other LULC classes reduced, by over 40% each, of its 

original spatial extent in 1988. Therefore, Prosopis has become an additional driver of the 

ongoing LULC changes in Baringo, which has serious consequences on provisioning of 

important ecosystem services, and biodiversity. Due to the invasion of farmlands (2948 ha) 

and pastures (2675 ha), rural livelihoods have been grossly affected leading to food shortages, 

poverty, livestock deaths and high costs of clearing Prosopis which are additional livelihoods 

strains to the affected communities. These results are important in that they provide evidence 

upon which decisions on effective and stustainable management of Prosopis can be based.  

At the height of Prosopis invasion in 2007 (Kenya Law, 2007; Little, 2019), coupled with no 

managenent interventions in sight, some stakeholders argued that these species could be 

managed / utilized for climate change mitigation. The next chapter presents findings that give 

insights into the soundness, feasibility and sustainability of this.  
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CHAPTER 5: COMPARISON OF THE IMPACT OF PROSOPIS INVASION VERSUS 
GRASSLAND RESTORATION ON CLIMATE CHANGE MITIGATION, PLANT 

SPECIES RICHNESS AND OTHER ECOSYSTEM SERVICES 

5.1 Introduction 
In this chapter, soil organic carbon stocks to one meter belowground, plant species richness, 

dry herbaceous biomass and key ecosystem indicator species were estimated from field 

measurements in five land-cover types. The variations in these parameters across the five 

land-cover types are analyzed and discussed. 

5.2 Results 

5.2.1 Soil sample characteristics per land-cover type 

Soil organic carbon stocks, plant species richness and dry herbaceous biomass were compared 

across the five land-cover types. Further indicator species that characterize each land-cover 

were also analysed. Age, vegetation cover and the parameters measured in each land-cover 

are described in Table 5.1.  

  

Soil Bulk density 

Soil bulk density was also strongly influenced by land-cover type (F4, 58 = 5.106, p = 0.0014). 

It was highest in pristine grasslands, intermediate in restored and degraded grasslands and 

lowest in Prosopis invaded plots (Table 5.1). However, the effect of soil depth on bulk 

density was not consistent (F3, 174 = 1.549, p = 0.2036), but varied among land-cover types 

(with interaction effect: F12, 174 = 2.482, p = 0.0051; appendix 5.5). While bulk density in 

pristine grasslands increased with increase in soil depth, it declined or showed no consistent 

trend in the other land cover types (appendix 5.5).  

5.2.1 Effect of soil depth and land-cover type on SOC concentration and SOC per 
volume 
The linear mixed effect model analysis revealed that SOC concentration (i.e. %SOC) and 

SOC per volume of soil (expressed in g/cm3) were significantly affected by soil depth 

(%SOC:F3,174 =36.63, p < 0.001; and SOC per volume: F3,174 =37.80, p < 0.0001) and land-

cover type (%SOC: F4,58 =4.82, P = 0.002; SOC per volume: F4,58 = 6.15, P = 0.003) (Figure 

5.1 and appendix 5.1). Furthermore, the differences in %SOC and SOC per volume across 

land-cover types were also influenced by soil depth (interaction effect %SOC: F12, 174 = 

2.2609, p = 0.011; interaction effect SOC per volume: F12, 174 = 1.981, p = 0.0285; (appendix 

5.2 and 5.3). The effect of land-cover type on %SOC and SOC per volume was stronger in 

surface soils (0-30 cm: F4, 58 = 7.718, p < 0.0001) than in deeper soil layers (31-100 cm: F4, 58 
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= 3.152, p = 0.0206). The highest values for %SOC and SOC per volume in the top layer were 

recorded in pristine grasslands and Prosopis-high land-cover types, while at higher soil 

depths, the highest values were observed in restored and pristine grassland (appendix 5.2 and 

5.3). Both %SOC and SOC per volume diminished with increasing soil depth down to 1 m 

(appendix 5.1 and 5.4). Greatest declines in %SOC and SOC per volume across depth were 

recorded in Prosopis-high and pristine grasslands by 62%; 62% and 54%; 49%, respectively, 

while the smallest declines occurred in degraded and restored grasslands (26%; 30% and 

30%; 33%, respectively). Overall, surface soils (0-15 cm) had the largest variation in %SOC 

and SOC per volume across land-cover types. 

5.2.2 Total Soil Organic Carbon Stock 
Total SOC stock to 1 m depth was strongly affected by land-cover type (F4, 58 = 5.532, p < 

0.0001), with pristine grasslands having the highest total SOC stock (49.76±2.28 t C ha-1), 

followed by restored grasslands (44.68 ±3.77 t C ha-1), high Prosopis densities (40.05 ±1.28 t 

C ha-1), low Prosopis densities (36.99 ±2.51 t C ha-1) and degraded grasslands (31.52±3.04 t 

C ha-1) (Figure 5.2A). Moreover, the total SOC in degraded grassland was significantly lower 

than in pristine (-37%) and restored grasslands (-29%), while total SOC recorded in  both low 

and high Prosopis  cover densities did not differ from any of the other land-cover types 

(appendix 5.6). 

 

Figure 5.1 Soil organic carbon concentration (%SOC) measured for the five land-cover types 

and four soil depth increments. Error bars represent standard errors. “Prosopis-low” and 

“Prosopis-high” means ≤ 30% and ≥ 80% Prosopis fractional cover, respectively. The arrows 

are used hypothetically and represent conversion from one land-cover state to the next over 

time. 
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Table 5.1 Sampling sites attributes and mean (Standard Error) of the various parameters per land-cover type. The land-cover types sharing a letter are 

not significantly different at α = 0.05. Age estimations were done using a combination of information sources and criteria such as literature review 

(Anderson, 2016; Kiage and Liu, 2009; Little, 1992), time series maps for the study area – outputs from objective 1 (Mbaabu et al., 2019), and 

consultations with key informants (already listed in section 3.2.1.1). Vegetation cover was estimated using Prosopis fractional cover map for Prosopis 

plots, together with LULC maps and field observations for the other land-cover types.  

 

Land-cover Age (years) 
Vegetation 
cover (%) 

n 
% SOC 

0-100 cm 
Bulk density 

(g cm-3) 
SOC per 

volume (g cm-3) 
Total SOC t ha-1 

0-100 cm 
Species Richness 

/225 m2 
Herb. Biomass 

(g m-2) 

Pristine > 70 > 80 10 0.091 (0.005)  1.37 (0.02) 0.0053 (0.0006) 49.76 (2.28) c 18.30 (0.58) c 1281.7 (213.01) b 

Degraded > 70 < 5 16 0.064 (0.005)  1.26 (0.03) 0.0031 (0.0003) 31.52 (3.04) a 8.62 (1.19) a 147.3 (42.92) a 

Prosopis-low 10 - 15 < 30 12 0.077 (0.005)  1.21 (0.02) 0.0037 (0.0004) 36.99 (2.51) ab 12.67 (1.03) bc 59.9 (16.88) a 

Prosopis-high 25 - 35 > 80 10 0.083 (0.006)  1.20 (0.03) 0.0043 (0.0005) 40.05 (1.28) abc 9.40 (0.95) ab 5.7 (1.20) a 

Restored 25 - 35 > 80 15 0.089 (0.006)  1.26 (0.02) 0.0044 (0.0004) 44.68 (3.77) bc 9.40 (1.37) ab 678.0 (85.36) b 
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5.2.3 Plant species richness and land cover-specific indicator species  
In total of 81 different plant species were observed from the 63 sampling plots representing 

the five land-cover types. Plant species richness per plot significantly varied among the five 

land-cover types (F4, 58 =8.656, p < 0.0001). It was nearly twice as high in pristine grasslands 

than in degraded grasslands (Table 5.1; Figure 5.2B). Plant species richness was lower in 

degraded grassland than in pristine grasslands and low density Prosopis areas, but did not 

vary from high density Prosopis and restored areas. Plant species richness in low density 

Prosopis areas did not also vary from that recorded in pristine grasslands (appendix 5.7). 

Four indicator species typical of three dominant land-cover types in the study area were 

identified: Portulaca oleracea (degraded grassland), Cynodon dactylon and Waltheria indica 

(pristine grasslands), and Cenchrus ciliaris (restored grasslands) (Table 5.2). There were no 

plant species associated with (characteristic) of Prosopis invaded areas.  
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Figure 5.2 A-C Estimated Total soil organic carbon in tonnes per hectare at four soil depth 

increments from surface to 1 m below ground (A), species richness per plot (225 m2) (B) and 

weight of dry herbaceous vegetation g m-2 (C), shown for the five land-cover types. The error 

bars indicate standard errors. The land-cover types sharing a letter are not significantly 

different at α = 0.05. Land-cover types with a combination of letters e.g. abc means that the 

value of the parameter in that land-cover type is not significantly different from the other 

categories with a combination of letters of individual letters that make the group. That is 

“abc” is not significantly different from “a”, “b”, “c”, “ab”, “ac”, and “bc”. 
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Table 5.2 Indicator species characteristic of three land-cover types, indicator value and number of plots containing species in the five land-cover types. 

Significance level (α = 0.05). 

  Number of plots containing species 

Indicator species Lifeform Land-cover 
Indicator 

value 
p-value 

Pristine Degraded 
Prosopis-

low 
Prosopis-

high 
Restored 

Portulaca oleracea Annual Degraded 0.08 0.02 0 12 2 0 2 

Cynodon dactylon Perennial Pristine 0.05 0.05 10 0 7 0 2 

Waltheria indica Perennial Pristine 0.05 0.04 10 0 0 0 1 

Cenchrus ciliaris Perennial Restored 0.09 0.03 3 7 3 0 14 

 

5.2.4 Herbaceous biomass  
Dry herbaceous biomass differed significantly among land-cover types (F4, 58 =33.97, p <0.0001). It was almost six times higher in pristine grassland 

than in degraded or sparsely invaded areas, and over 200 times higher than in densely invaded areas (Figure 5.2C). Herbaceous biomass in pristine and 

restored grasslands did not substantially differ from each other (appendix 5.8). 
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5.3 Discussion  

5.3.1 Soil Organic Carbon stocks at depth 
Corroborating with results from similar studies assessing SOC (%SOC and SOC per volume) 

at different soil depths (Bhojvaid and Timmer, 1998; Jobbágy and Jackson, 2000; Torn et al., 

1997), both variables declined with increase in soil depth across all the land-cover types. 

Most reductions in SOC per volume occurred from 0-15 to the 15-30 cm depths, similar to 

observations made by Torn et al. (1997) on the Hawaiian Islands. Nonetheless, with regard to 

total SOC per ha, our results corroborate other studies in grasslands that showed deeper soils 

can in fact store substantial amounts of SOC (Jobbágy and Jackson, 2000; Ward et al., 2016). 

For instance, 59.6% of the total SOC found in pristine grassland soils were stored between 30 

and 100 cm depth. These values closely match with the findings by Lal et al. (2018), that 

globally, ⁓55% of the SOC to 1 m depth exists below 30 cm depth. Jobbágy & Jackson 

(2000) used global datasets of soil profiles and estimated that in grasslands, the amount of 

SOC stored in the second and third meters was 43% of that stored in the first meter. The 

significant storage of SOC in deeper soil layers across all the land-cover types considered in 

this study underscores the importance of estimating SOC from soil samples beyond the usual 

threshold of 30 cm belowground (Gross and Harrison, 2019; Ward et al., 2016). 

5.3.2 Soil organic carbon across different land-cover types 
The total SOC values estimated in this study for pristine and restored grasslands to 1 m depth 

(49.76 and 44.68 t C ha-1, respectively) are slightly lower than those reported by Adams et al. 

(1990) for savanna, and scrub woodland biomes (54 and 60 t C ha-1, respectively), but within 

the reported FAO-UNESCO soil unit range of 42 – 62 t C ha-1 estimated for Xerosols (Batjes, 

1996). The SOC values of Prosopis invaded areas (both in low and high density areas) were 

within the range of estimated SOC values for low and dense Prosopis cover in the native 

range in Texas, USA (Geesing et al., 2000).  

 

While long-term variation in organic carbon storage in soils is mostly determined by factors 

influencing soil formation, geology and climate, (Adams et al., 1990; Torn et al., 1997), 

changes in LULC are influential over shorter periods (Batjes, 1996; Lal, 2018). For instance, 

the total and vertical distribution of SOC  is affected by plant functional groups with varying 

allocation of photosynthates to aboveground and belowground sections of plant parts and 

with different root structure (Batjes, 1996; Jobbágy and Jackson, 2000). The findings in this 

study show that degradation of native vegetation in Baringo landscape and the subsequent re-



93 
 

establishment of new vegetation have caused major fluctuations in total SOC stocks and SOC 

profiles to 1 m belowground. Foremost, total SOC stock in degraded grasslands was 37% 

lower than that estimated in pristine grasslands. This is substantially higher than that reported 

by Dlamini et al. (2014) in a worldwide review of degraded grasslands in arid and semi-arid 

regions (-16%).  However, studies in South Africa reported losses of SOC stocks which were 

comparable or even higher than those reported in this study. Some of these studies include 

work by Dlamini et al. (2014) who reported 79% and 42% SOC losses in grasslands with 

<5% and <50% vegetation cover, respectively in KwaZulu-Natal Province, and Baer et al. 

(2015) who reported 56% SOC losses in the South African veld due to grasslands cultivation. 

In East Africa, Ritchie (2014) modeled the impact of grazing intensity on SOC storage in 

Serengeti National Park in Tanzania, and predicted that SOC values increase at moderate 

grazing intensities but then rapidly decline with high grazing intensities.  

 

Notable differences in total SOC stocks were also observed between degraded and restored 

grasslands, where, 30 years of grassland restoration led to substantial increases in SOC in all 

soil depth increments. During COP21, the ‘4 per 1000 – Soils for Food Security and Climate’ 

initiative was launched to promote climate change mitigation through yearly increases in soil 

organic carbon by 0.4% in the top 30-40 cm of grasslands, farm lands, and forest soils 

(4p1000, 2018; Minasny et al., 2017). The difference between restored grasslands (3 decades 

old) and degraded grasslands in this study translates to about 1.4% ([SOC in restored 

grasslands – SOC in degraded grasslands]/years since restoration started) average increase in 

total SOC annually, in both the top 30 cm and in the top 100 cm, which is markedly above 

the set threshold value of 0.4% of the ‘4 per 1000’ initiative. The higher values of yearly 

increase in this study corroborate with the findings by Corbeels et al. (2019), that SOC 

accumulation rates under sustainable agriculture and systems under multiple strata 

agroforestry are in fact relatively higher than the set threshold value of 0.4%. In other African 

drylands, increases in SOC stocks after restoring degraded grasslands have also been 

recorded by Chaplot et al. (2016);  33% increase within two years of NPK fertilization and 

livestock exclosure in KwaZulu-Natal Province, South Africa) and by Oduor et al. (2018); 

27% increase in 3 to >20 years old grassland exclosures in West Pokot, Kenya). Notably, 17 

of the 20 countries globally with > 70% of grassland area are located in Sub-Saharan Africa 

(White et al., 2000) and almost 25% of the same region is categorized as ‘heavily degraded’ 

(Vågen et al., 2005). Therefore, sustainable grassland management is crucial for impactful 
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SOC buildup in SSA owing to the extensive areal coverage of this ecosystem as it potentially 

offers considerable climate change mitigation opportunities.  

 

The Prosopis-low and the Prosopis-high density areas exhibited intermediate levels levels of 

total SOC stocks which neither of total SOC stocks which neither differed significantly from 

those of pristine nor restored grasslands nor those of degraded grasslands. SOC stocks present 

in pristine and restored grasslands tended to be even higher than those in Prosopis invaded 

sites. In part, this may be due to the fact that organic matter content in grassland soils is at 

least twice as high as in forests because grassland ecosystems add organic organic matter to 

top soil from both above-ground (from annual biomass decay) and roots (NRCS, 2014). 

Grass species Cenchrus ciliaris andCynodon dactylon, which characterize restored and 

pristine grasslands, respectively, have deep root systems extending up to 200 cm into the soil 

profile (CRC Weed Management, 2008; Mnif and Chaieb, 2009). Specifically, C. ciliaris, the 

main grass species broadcasted in the Rehabilitation of Arid Environments Charitable Trust 

(RAE Trust) grassland restoration project, is reported to grow 60-100 cm long roots within 4-

16 months after broadcasting (Mashau, 2010).  

 

Previous studies in the pristine and in the invaded range revealed that the impact of invasion 

by woody species such as Prosopis on SOC stocks depends on the local context. A negative 

correlation between precipitation and changes in SOC content after grasslands were 

encroached by woody plants were reported by Jackson et al. (2002) and Mureva et al. (2018), 

where wetter sites lost and drier sites gained SOC. Because the overall losses of SOC at the 

wetter sites were large enough to offset increases in carbon from plant biomass, Jackson et al. 

(2002) suggested that assessments that are targeting and relying on carbon growth from 

woody plant invasions for balancing greenhouse gas emissions may be flawed. This study has 

demonstrated that the effect of Prosopis invasion on SOC stocks also depends on the 

ecological context. For instance, if Prosopis invades an already degraded site, then SOC 

increases are likely, particularly in the upper 30 cm of the soil. On the contrary, if Prosopis 

encroaches restored or pristine grasslands, it probaly will have no impact or potentially a 

negative effect on SOC stocks. Prosopis invasion into grasslands increases C stored in 

aboveground plant biomass, but C stocks in plant biomass in Prosopis invaded ecosystems is 

lower than the SOC pool in the upper 30 cm of the soil and considerably lower than the SOC 

pool down to 100 cm (Figure 5.2; appendix 5.9) (Birhane et al., 2017). Furthermore, C stocks 

in aboveground plant biomass are more exposed to losses from biomass harvesting, fire, and 
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other site disturbances (Grace et al., 2006; Mwangi and Swallow, 2008), than soil C stocks. 

Notably, the sum of carbon values from both soils and plant biomass of plots under high 

Prosopis (Prosopis-high) cover densities was lower than that of pristine grasslands plots. 

 

Prosopis invasion in an already degraded lands in Baringo added SOC mainly to the surface 

soil (the top 30 cm), which translates to about 65% and 55% of the total SOC in Prosopis-

high and Prosopis-low density plots, respectively. This effect can be attributed to the fact that 

Prosopis trees present two unique rooting systems – the main taproot and a dense network of 

very extensive lateral roots (Heitschmidt et al., 1988). Mature Prosopis stands exhibit 

taproots that are associated with multiple small roots at depths of ⁓ 100 cm (Heitschmidt et 

al., 1988), while the lateral roots are mainly in the upper 30 cm of the soil profile (Yoda et al., 

2012).  

5.3.3 Grassland management to optimize carbon sequestration, biodiversity and 
ecosystem services 
Grassland ecosystems provide numerous benefits to society, including agricultural production 

and indirect ecosystem services such as climate and water quality regulation, and plants for 

medicinal purposes and pollination services (White et al., 2000) among others. 

Fundamentally, grasslands are perhaps one of the most invaluable biomes for ecosystem 

service provision, yet also the most threatened by human activities and perturbations (Gibson, 

2009). Globally, there is a continued loss in grasslands owing to land-use changes or 

degradation arising from unsustainable grazing or invasion by exotic species, which 

undermines their ability to provide ecosystem services and support biodiversity (Parr et al., 

2014).  

 

In Baringo County, multiple factors such as human population increases, unsustainable 

grazing management, land-use changes, and communal land onwership, have caused 

considerable degradation of grasslands, which is negatively affecting biodiversity and the 

provisioning of numerous ecosystem goods and services (Anderson, 1989; Anderson and 

Bollig, 2016; Johansson and Svensson, 2002). Prosopis species continue to spread into 

valuable land in Baringo and other similar regions in  SSA (Shiferaw et al., 2019a), especially 

in croplands and protected areas. Recent research has shown that in both Baringo, Kenya and 

Afar Region of Ethiopia, > 30% of the grasslands that were present about 40 years ago, have 

been colonized by Prosopis (Mbaabu et al., 2019; Shiferaw et al., 2019c).  
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Sustainable land use in Baringo, and other similar and threatened landscapes in Sub-Saharan 

Africa, to restore multiple functioning of the ecosystem (Manning et al., 2018), while also 

meeting the needs of diverse stakeholders dependent on them remains a challenge. This is 

because, there are potential trade-offs between certain ecosystem services and biodiversity, or 

among ecosystem services. Carbon sequestration programs that promote afforestation in 

tropical grasslands and savannas cannot be assumed to offer net benefits for conservation or 

for provision of ecosystem multifunctionality (Chisholm, 2010; Dickie et al., 2014). For 

instance, Abreu et al. (2017) demonstrated that fire suppression in savannas of the Brazilian 

Cerrado increased carbon stocks but was also associated with severe losses in biodiversity. 

Similarly, Prosopis invasion into degraded grasslands in Baringo has increased carbon stocks 

and provided wood, but simultaneously suppressed biodiversity across multiple trophic 

ecosystem levels (Linders et al., 2019), and increased mosquito densities (Muller et al., 

2017). It also reduces pasture for livestock (Linders et al., 2020), water (Dzikiti et al., 2013; 

Le Maitre et al., 2020), adversely affects tourism (Shackleton et al., 2014) and limits access 

to water, croplands, pastures, and fishing points (Weber, 2003). High consumption of water 

by Prosopis in arid and semi-arid regions is an issue of great concern, as it reduces 

groundwater recharge,  thus negatively affecting household water availability in the  invaded 

ecosystems (Dzikiti et al., 2013).  

 

The findings from this study show that SOC stocks replenishment through restoring degraded 

grasslands is achievable within a period of about 20–30 years and does not compromise the 

existence of biodiversity or provision of ecosystem services. Additionally, restoration of 

grasslands also increased fodder to almost the level of pristine grasslands, a key ecosystem 

service for the livestock-dependent livelihoods of millions of pastoralists occupying 

grasslands in SSA. These results also agree with the results by Mureithi et al. (2016), that 

restored grasslands in Baringo, which were managed as communal enclosures, provide 

household income through livestock sales, harvested hay and grass seeds. Moreover, and in 

contrast to Prosopis encroachment, grasslands restoration does not interfere with ground 

water availability or water access (Dzikiti et al., 2013; Le Maitre et al., 2020), thus, grassland 

restoration does not aggravate climate change effects in these ecosystems.  

 

In Baringo, three decades of grassland restoration was insufficienct for restoring plant 

diversity. Partly, this may be due to the long-standing land degradation witnessed in the study 

area (Kimosop et al., 2007) and a probable depletion of the soil seed bank due to denudation. 
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In the Afar Region of Ethiopia, experiments targeting grassland restoration on Prosopis 

cleared land resulted in re-establishment of species-rich communities within the short term 

(Megersa, unpubl. results). Prosopis-low density plots tended to have higher species richness 

than degraded, restored and areas with high Prosopis invasion. This is because, at low 

Prosopis densities, Prosopis trees may provide shade for seasonal plants to grow underneath 

their canopies. However, annual plants do not provide the same ecosystem service as 

perennial plants such as Cenchrus ciliaris, because they do not build up extensive below-

ground biomass, while their above-ground biomass dries up when the rains recede. Moreover, 

the velocity at which Prosopis proliferates rapidly generates high cover densities which 

suppress the understory vegetation. Species richness in Prosopis-invaded habitats 

significantly diminishes once Prosopis has reached cover densities of ⁓ 50% (Linders et al., 

2019). This has been linked to competitive exclusion of the slow-growing shade-intolerant 

herbaceous savanna species by Prosopis species, either due to its allelopathic effects of 

Prosopis or through competition for water and nutrients (Hoffmann et al., 2012).  

5.4 Summary 
The findings show that restoration of degraded grasslands in the semi-arid regions of Baringo 

County, Kenya, is at least as effective as encroachment by the invasive Prosopis tree in 

replenishing SOC pool. Grassland restoration for thirty years increased SOC pool to almost 

the level of pristine grasslands. Additionally, and in contrast to woody alien Prosopis 

encroachment, grassland restoration also promoted fodder for livestock production, thus 

avoiding carbon-fodder trade-offs. However, recovery of plant biodiversity requires more 

time and/or promotion of grassland management interventions which also target restoration 

of the characteristic biodiversity. These findings signify the need to incorporate relevant 

evidence in decision-making and that use of native species should be given priority during 

restoration of degraded landscapes.  

 

Further, following from the findings in objective one where Prosopis invasion led to 

significant loss of valuable native biodiversity (Vachellia tortilis), the modeled impacts of 

climate change on the current and future habitat of Prosopis and its associated impacts on 

Vachellia tortilis habitat are presented in the subsequent chapter 6.     
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CHAPTER 6: MODELING THE IMPACT OF CLIMATE CHANGE ON SUITABLE 
HABITAT FOR PROSOPIS AND VACHELLIA TORTILIS  

6.1 Introduction 
In this chapter, suitable / unsuitable habitat for Prosopis and Vachellia tortilis were modelled 

under different climate change scenarios using SDM approaches and a suite of climate 

change models. The analysis covered a much larger area (study extent covers 18 counties) 

than the focus in objective one and two (Baringo County and Marigat Sub-County, 

respectively) (see section 3.1.1). The suitable habitat for both species were analyzed, 

compared and discussed. 

6.2 Results 

6.2.1 Predictive performance of individual SDMs on species occurrences 
The predictive performance on the two species occurrences were compared between climate 

models trained with presence and pseudo-absence response data by applying two species 

modeling algorithms. The two SDM algorithms showed prowess in their ability to predict 

suitable / unsuitable habitats for both species in the current and future climate, with 

reasonable accuracies (Table 6.1). With the two considered model performance evaluation 

metrics (TSS and AUC), model performance did not seem to vary either between the species, 

climate scenarios or time. TSS ranged between 0.53 and 0.59 for Prosopis (AUC: 0.98 and 

0.99) and between 0.52 and 0.61 for Vachellia tortilis (AUC: 0.98 to 1.000). Notable 

variations in model performance between the two SDM algorithms were observed where; RF 

model predictions had higher TSS scores than BRT. Conversely, BRT predictions had 

slightly higher AUC scores than RF. Because of this, ensemble models were then generated 

from the two predictions (RF and BRT) for current and future climate for each species (see 

schematic diagram Figure 3.8). Furthermore, use of ensembles (an aggregation of more than 

one model) is highly recommended in species distribution studies (Rew et al., 2021), as this 

produces more reliable estimates. Therefore, for brevity, only ensemble results are further 

presented and discussed in this study.  
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Table 6.1 Model prediction accuracies (AUC and TSS) for Prosopis and Vachellia tortilis presented for BRT (left) and RF (right) SDM 
algorithms, under current and future climate scenarios. The grayed out columns indicate information that applies to both (left and right) extremes 
of the table.  

BRT SDM algorithm predictions     RF SDM algorithm predictions 

Accuracy    Output Climate scenario Climate data (Model) Year Species Output Accuracy 

AUC TSS       AUC TSS 

0.998 0.532 Prediction1.tif Current WorldClim 1970-2000 Prosopis Prediction7.tif 0.988 0.593 

0.998 0.527 Prediction2.tif Current Bioclims-Uni-Bern 1970-2000 Prosopis Prediction8.tif 0.989 0.589 

0.999 0.533 Prediction3.tif Future RCP8.5 MPI-ESM-LR 2041-2060 Prosopis Prediction9.tif 0.991 0.586 

0.998 0.537 Prediction4.tif Future RCP8.5 CNRM-CM5 2041-2060 Prosopis Prediction10.tif 0.991 0.589 

0.999 0.532 Prediction5.tif Future RCP8.5 INMCM4 2041-2060 Prosopis Prediction11.tif 0.991 0.593 

0.998 0.532 Prediction6.tif Future RCP8.5 Uni-Bern 2071-2100 Prosopis Prediction12.tif 0.990 0.591 

1.000 0.522 Prediction13.tif Current WorldClim 1970-2000 Vachellia tortilis Prediction19.tif 0.982 0.584 

1.000 0.531 Prediction14.tif Current Bioclims-Uni-Bern 1970-2000 Vachellia tortilis Prediction20.tif 0.981 0.598 

1.000 0.543 Prediction15.tif Future RCP8.5 MPI-ESM-LR 2041-2060 Vachellia tortilis Prediction21.tif 0.995 0.607 

0.999 0.532 Prediction16.tif Future RCP8.5 CNRM-CM5 2041-2060 Vachellia tortilis Prediction22.tif 0.997 0.609 

1.000 0.533 Prediction17.tif Future RCP8.5 INMCM4 2041-2060 Vachellia tortilis Prediction23.tif 0.991 0.606 

0.999 0.519 Prediction18.tif Future RCP8.5 Uni-Bern 2071-2100 Vachellia tortilis Prediction24.tif 0.989 0.601 
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6.2.2 Suitable habitat assessment under current and future climate change scenarios 
The current and future predicted suitable (green areas) / unsuitable (gray areas) habitats are 

displayed for the various models for both species (Figure 6.1A and 6.1B). Visually, all the 

models (maps) show consistencies in the spatial distribution pattern of predicted suitable 

habitat for both species, the areal variations across time and models notwithstanding. 

Notably, current predictions for Vachellia tortilis appeared to be more spatially knit with Uni-

Bern data as opposed to the more noisy distribution with the WorldClim data (see also Figure 

6.2A and B).  

In the current climate, predictions with the WorldClim data estimate a higher potential 

suitable habitat for both Prosopis and Vachellia tortilis, respectively (863,703 ha and 

1,641,856 ha) than predictions with the Uni-Bern data (693,739 ha and 1,363,908 ha) (Table 

6.2). In the future climate, potential suitable areas for Prosopis growth were highest with the 

CNRM model at 933,012 ha and lowest with the Uni-Bern model at 703,307 ha. However, 

for Vachellia tortilis, MPI model predicted the highest potential suitable areas at 2,066,531 ha 

while the lowest predictions were observed with the Uni-Bern model at 1,142,924 ha.  
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Figure 6.1A Ensemble binary predictions for the potential suitable habitat for Vachellia 

tortilis under the current and future climate. Ensembles were generated from the respective 

BRT and RF predictions. VC and VC_Bern = Vachellia tortilis suitable habitat under current 

climate using WorldClim and Uni-Bern data, respectively; VF = Vachellia tortilis suitable 

habitat under future climate using WorldClim and Uni-Bern datasets for the models indicated 

and RCP85. Maps are projected to UTM Zone 37N. 
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Figure 6.1B Ensemble binary predictions for the potential suitable habitat for Prosopis under 

the current and future climate. Ensembles were generated from the respective BRT and RF 

predictions. PC and PC_Bern = Prosopis suitable habitat under current climate using 

WorldClim and Uni-Bern data, respectively; PF = Prosopis suitable habitat under future 

climate using WorldClim and Uni-Bern datasets for the models indicated and RCP85. 
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Table 6.2 Potential suitable habitat changes between current and future climate for Prosopis and Vachellia tortilis. Two trajectories for analyzing 
habitat suitability changes are used; 1) current SDM (WorldClim) predictions minus all the four future predictions, and 2) current SDM (Uni-Bern) 
predictions minus all the future predictions. “S. Area” = study area 

  Current climate               Future climate      

Species Dataset Area (Ha) % S. Area Model Area (Ha) % S. Area Net change 
(Ha) 

% Change Change type 

Prosopis 

WorldClim 863703 9.0 

cnrm 933012 9.7 -69309 -8.0 expansion 

Inmcm4 822653 8.6 41050 4.8 contraction 

mpi 820030 8.6 43673 5.1 contraction 

Uni-Bern 703307  160396  contraction 

Uni-Bern 693739 7.2 

cnrm 933012  -239273  expansion 

Inmcm4 822653  -128914  expansion 

mpi 820030  -126291  expansion 

Uni-Bern 703307 7.3 -9568 -1.4 expansion 

Vachellia tortilis 

WorldClim 1641856 17.1 

cnrm 1717987 17.9 -76131 -4.6 expansion 

Inmcm4 1535772 16.0 106084 6.5 contraction 

mpi 2066531 21.6 -424675 -25.9 expansion 

Uni-Bern 1142924  498932  contraction 

Uni-Bern 1363908 14.2 

cnrm 1717987  -354079  expansion 

Inmcm4 1535772  -171864  expansion 

mpi 2066531  -702623  expansion 

Uni-Bern 1142924 11.9 220984 16.2 contraction 
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Mapped habitat distribution changes in response to climate change between the current and 

future binary SDMs revealed both habitat expansion and contraction for both species across 

all future climate models under RCP8.5 scenario for 2050 and 2085. Net habitat changes 

were estimated by calculating the areal difference between the predicted suitable habitat in 

the present time (current climate) and the predicted suitable habitat in the future time (Table 

6.2). This analysis was done by simulating two pathways of change: 1) by estimating habitat 

changes using predictions from WorldClim data (present SDM minus each of the four future 

SDMs i.e. cnrm, inmcm4, mpi and Uni-Bern), and 2) in the same way, by estimating habitat 

changes using current predictions from Uni-Bern data (Table 6.2). The latter attempt was 

based on the assumption that, probably, it is possible that predictions in the current climate 

using Uni-Bern dataset were more realistic for the study area as opposed to the WorldClim 

dataset. This is because Uni-Bern dataset was modeled on a relatively smaller spatial scale – 

exclusively for the East African climate. Therefore, they have finer resolution as compared to 

datasets provided by WorldClim which are modeled at a global scale - hence more coarse 

resolution. Another assumption (in regard to simulation 1), is that the predicted future habitat 

under Uni-Bern provides more reliable estimates for the same reason of smaller spatial scale 

consideration. However, the findings presented on the basis of these simulations should be 

treated with caution because of the temporal mismatch between the future time climate 

datasets: WorldClim – near future (2041-2060), and Uni-Bern – distant future (2071-2100). 

In simulation pathway 1, Prosopis suitable habitat is expected to contract as projected by 

three models (inmcm4, mpi and Uni-Bern) and expand under cnrm predictions. In the same 

simulation, Vachellia tortilis suitable habitat would expand under cnrm and mpi, and shrink 

under inmcm4 and Uni-Bern. In simulation 2, projected suitable areas for Prosopis would 

expand under all the four future model datasets. The same (expansion) would happen for 

Vachellia tortilis with an exception of contraction observed under Uni-Bern model (Table 

6.2).   

6.2.3 Projected habitat comparison between Prosopis and Vachellia tortilis  
Although both species generally tend to co-occur in the currently known presence locations 

in the study area, their predicted habitat suitability has revealed spatial differences between 

them. For instance, in the current climate, both models consistently predict that areas to the 

west and southwest of Lake Turkana and around Lake Baringo as probable for Prosopis 

occurrence. The same distribution pattern is also observed for Prosopis in the future climate 

as all the four models predict Prosopis expansion along rivers and around lakes Bogoria, 
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Nakuru and Naivasha, suggesting that water is an important variable influencing its 

distribution (Figure 6.2).  With this kind of spatial pattern, the counties hosting a sizeable 

share of Prosopis suitable habitat both in the current and future climate include Turkana, 

Baringo, Nakuru and West Pokot (Figure 6.2C).  

On the other hand, although both species show potential co-existence around Lake Baringo, 

there is a stark contrast in predicted occurrence around Lake Turkana. While Prosopis 

suitable habitat tends towards the west and southwest of the lake, Vachellia tortilis prefers 

areas to the north, east and southeast. Furthermore, in both climates, both models coherently 

predict (although more pronounced in the WorldClim / CMIP5 models than Uni-Bern model) 

substantial suitable habitats for Vachellia tortilis in Baringo, West Pokot, Elgeyo Marakwet, 

Nakuru, Kericho, Marsabit, Samburu and Kisumu counties (Figure 6.2C). 

Generally, in both climate scenarios, higher elevation areas (> 1000 m) are substantially 

suitable for Vachellia tortilis but nearly devoid of Prosopis suitable habitat. However, 

exceptions to this have been observed with all the models predicting probability of Prosopis 

occurrence at elevations of about 1500 m along rivers (e.g. Rivers Turkwel and Kerio) and 

around settlements such as Ortum and Sebit in West Pokot County. Potential pockets of 

suitability have also been observed at elevations about 1700 m in East Pokot and even higher 

grounds at 2100 m within Lake Naivasha basin. This further confirms that water is a key 

factor that influences Prosopis habitat.  

Subtle variations between model predictive performances were observed. For instance, the 

Uni-Bern model was able to capture Prosopis suitable habitat along the eastern shores of 

Lake Turkana which are not visible in the WorldClim model output (Figure 6.2B). On the 

other hand, all the WorldClim data-based models captured potential Prosopis habitat around 

Lake Naivasha, which the Uni-Bern data-based models missed. 
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Figure 6.2A-G Distribution of predicted suitable habitat overlap for Prosopis and Vachellia 

tortilis in the current (WorldClim and Uni-Bern) and future climates for three CMIP5 GCMs 

(WorldClim) and Uni-Bern. 

Habitat overlap occurred in areas with converging low elevation, floodplains, and relatively 

high anthropogenic disturbance. A comparison of habitat overlaps revealed that in the current 

climate, the habitat overlap was 28.0% and 24.6% for WorldClim and Uni-Bern models, 

respectively (Table 6.3). In the future climate, habitat overlap ranged from 23.5% (mpi 

model) to 29.7% (inmcm4 model). Highest and lowest habitat overlap areas occurred in mpi 

(484,787 ha) and Uni-Bern (317,537 ha), respectively. The spatial distribution pattern of 

habitat overlap was consistent across all the models. 
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Table 6.3 Suitable habitat overlap area estimates in hectares (ha) for Prosopis and Vachellia 

tortilis under future climate change (2041-2060 and 2071-2100) shown for the three CMIP5 

GCMs (WorldClim) and Uni-Bern. 

                                                 Current Climate Future Climate 

Suitable habitat  WorldClim Uni-Bern cnrm inmcm4 mpi Uni-Bern 

 

Prosopis (ha) 863703 693739 933012 822653 820030 703307 

Vachellia tortilis (ha) 1641856 1363908 1717987 1535772 2066531 1142924 

Habitat overlap (ha) 459174 336088 475832 455706 484787 317537 

Habitat overlap (%) 28.0 24.6 27.7 29.7 23.5 27.8 

 

 

6.2.4 Potential refugia for Vachellia tortilis conservation and Prosopis invasion threat 
Spatially, there was congruence among models in presenting climate refugia for Vachellia 

tortilis with potential areas ranging from 10% to 14% of the total study area (Figure 6.3). Mpi 

and Uni-Bern models had highest and lowest refugia areas at 1,337,949 ha and 917,146 ha, 

respectively (Table 6.4). Because Prosopis is an aggressive invader, it is estimated with 

consonance among all the four models that over 30% of the predicted refugia area for 

Vachellia tortilis will be lost to Prosopis invasion in future. The average potential refugia 

area at risk of Prosopis invasion (‘areas of vulnerability) was estimated at 382,469 ha 

representing ⁓34% of the mean suitable refugia area i.e. average of the four models.  
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Figure 6.3A-D Spatial distribution of potential climate refugia for Vachellia tortilis 

visualized together with potential Prosopis suitable habitat layer. 
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Table 6.4 Potential refugia habitat for Vachellia tortilis and the proportion at risk of invasion by 

Prosopis.  

Model Year 

Refugia habitat 

(ha) % Study area 

Refugia under Prosopis  

threat (ha) 

Potential refugia loss 

(%) 

 

Cnrm  2041-2060 1157660 12.1 423991 36.6 

Inmcm4  2041-2060 1138040 11.9 414670 36.4 

Mpi  2041-2060 1337949 14.0 409661 30.6 

Uni-Bern 2071-2100 917146 9.6 281552 30.7 

 

 

6.2.5 Relative importance of environmental variables 
Variable relative influence graphs (Figure 6.4A and 6.4B) revealed the contribution of each 

environmental variable in influencing the probability of each species occurrence. Variable 

contributions differed considerably between the two species. Suitable habitat for Prosopis 

were highly influenced by proximity to water bodies, human footprint index, bio9 (mean 

temperature of driest quarter), elevation and bio5 (maximum temperature of warmest month). 

In the current climate, the predicted habitat using the WorldClim data also presented bio4 

(temperature seasonality) as contributing relatively more than the other bioclimatic variables, 

while with the Uni-Bern data, bio9 outperformed bio4. Aridity index, bio2 (annual mean 

diurnal temperature range), soils, landforms and bio7 (temperature annual range) were found 

to be least important in influencing distribution of potential Prosopis habitat, with all 

contributing less than 5% to the models. 

Landscape factors (soils, elevation and distance to rivers) and anthropogenic pressure (human 

footprint) are the principal candidates in determining the potential suitable habitat for 

Vachellia tortilis. While soils and bio2 ranked among the least important factors for Prosopis 

habitat (Figure 6.4), they emerged among the most influential predictors for Vachellia tortilis 

distribution. In the same vein, while distance to water bodies was paramount for potential 

Prosopis habitat, it was inconsequential for Vachellia tortilis. The insignificant variables for 

Vachellia tortilis were aridity index, landforms and distance to water bodies. The common 

denominator variable important for both species was human footprint (HFP), which averagely 
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contributed about 15% and 30% to Vachellia tortilis and Prosopis models, respectively. 

Generally, landscape variables and human footprint are more influential than climatic 

variables in predicting potential habitat for both species under both climate scenarios. 

However, climatic variables seemed more important than landscape variables under the Uni-

Bern model of Vachellia tortilis habitat both in the current and future climate. Seemingly, the 

few influential climatic variables are those that measure temperature regime such as bio9, 

bio5, bio7 and bio4. Rainfall (precipitation seasonality – bio15) moderately influenced both 

species habitat across all the models but exhibited stronger influence on Vachellia tortilis 

habitat under the Uni-Bern model in the future climate.  
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Figure 6.4A-C The relative importance (%) of environmental variables on the distribution of 

each species in the current climate (A), future climate – Vachellia tortilis (B) and future 

climate –Prosopis (C). The abbreviated variables are Bio2 (annual mean diurnal 
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temperature), Bio4 (temperature seasonality), Bio5 (maximum temperature of warmest 

month), Bio7 (temperature annual range), Bio9 (mean temperature of driest quarter), Bio15 

(precipitation seasonality), Dist_Riv (weighted minimum Euclidean distance to rivers), 

Dist_WB (minimum Euclidean distance to buffered waterbodies), AI (aridity index), and 

HFP (global human footprint index) (Table 3.6). 

6.3 Discussion 

6.3.1 Suitable habitat for Prosopis and Vachellia tortilis under current and future 
climate  
Under the current climate, the global model (WorldClim) predicted a slightly higher Prosopis 

suitable habitat (9% of total study area) than the regional model (Uni-Bern) which predicted 

7.2% suitability (Table 6.2). In the future climate, one global model (CNRM – for 2050) and 

the regional model (Uni-Bern for 2080) predicted an increase in Prosopis suitable habitat 

from the current conditions at 9.7% and 7.3%, respectively (Table 6.2). On the contrary, two 

global models (Inmcm-4 and MPI – both for 2050 projections) predicted a decrease in 

Prosopis suitable habitat, both predicting 8.6% suitable habitat (Table 6.2). These predictions 

closely corroborate the results by Sintayehu et al. (2020), who modeled Prosopis distribution 

dynamics in Africa for both current and future climate scenarios RCP4.5 and RCP8.5 for 

2050 and 2070 using the improved 5th version of the atmosphere-ocean General Circulation 

Model. They estimated that under the current climate, 11.4%, 7.4% and 5.6% of Africa has 

low, moderate and high suitability to Prosopis juliflora, respectively. Specifically, they 

observed that most suitable areas will occur in the eastern Africa region with Kenya listed 

among the countries falling under high Prosopis suitability (Sintayehu et al., 2020). A similar 

recent study in Eastern Africa predicted that nearly 17% of Kenya is currently suitable for 

Prosopis (Eckert et al., 2020). In the future climate, Prosopis suitability will expand in the 

study area as revealed by the CNRM and Uni-Bern models in this study, a similar pattern of 

projections was reported in previous studies (Eckert et al., 2020; Ng et al., 2018; Sintayehu et 

al., 2020). Sintayehu et al. (2020) projected Prosopis expansion over Africa through 2050 

and 2080.  In this study, areas suitable for Prosopis will increase by 8% by 2050 as predicted 

by the CNRM model and by 1.4% by 2080 as predicted by Uni-Bern model. Declines in 

suitable areas by 2050 (by 4.8% under Inmcm4 and by 5.1% under the MPI model) were 

recorded.   

In this study, Prosopis suitability tended towards lowland areas surrounding water bodies 

such as lakes Turkana and Baringo, and along rivers such as River Turkwel. This potential 
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habitat distribution pattern was also observed by Eckert et al. (2020) for Eastern Africa, 

suggesting that water is a key determinant factor of Prosopis habitat, similar to observations 

in other studies (Dakhil et al., 2021; Ng et al., 2018; Schachtschneider and February, 2013). 

However, it was also observed that in contrast, despite water presence, areas to the southeast, 

east and northeast of Lake Turkana as well as around Lake Bogoria remained largely 

unsuitable for Prosopis. This suggests that Prosopis habitat is probably influenced by 

interplay of multiple factors at site. The observed unsuitability may be attributed to 

differences in soil conditions brought about by sediments deposited by water at the late stages 

of the river. Clay content has been found to substantially increase the invasion risk of 

Prosopis juliflora thereby positively influencing habitat suitability (Dakhil et al., 2021). 

Because of the influence of rivers Turkwel and Kerio (draining into Lake Turkana) and River 

Waseges-Sandai (draining into Lake Bogoria), the southwest and west of Lake Turkana and 

northern tip of Lake Bogoria show high Prosopis suitability. This is in tandem with the 

already observed mapped Prosopis distribution in those areas as reported in previous studies 

(Mbaabu et al., 2019; Muturi et al., 2013, 2009; Ng et al., 2016a). It is however noted that,  

this study’s prediction (lack of Prosopis suitability around Lake Turkana) contrasts the 

findings in a similar study in the study area (Eckert et al., 2020). Visual comparisons of their 

Prosopis suitable habitat generated for eastern Africa region present Prosopis suitable habitat 

in larger areas to the south east, east and northeast of Lake Turkana. These model differences 

may be attributed to the choice of predictor variables included in the models for the two 

separate studies. Specifically, it is noted that Eckert et al. (2020) did not include edaphic-

related variables such as soil or landforms which were included in this study. Although soil 

did not contribute significantly to our prediction models, incorporating soil-related variables 

in the models showed better performance and produced more accurate predictions - similar 

observations were reported by Dakhil et al. (2021). Furthermore, Kumar et al. (2009) points 

out that provided climatic conditions are suitable, edaphic-related factors can set the 

ecological limits that restrict species distributions.  

It was also determined that both minimum Euclidean distance to waterbodies and human 

footprint index (HFP) contributed more than 50% in determining Prosopis habitat, mirroring 

previous findings (Eckert et al., 2020; Ng et al., 2018). This implies that humans and their 

associated human-environment interactions greatly shape habitat suitability for Prosopis. 

However, a contrasting finding was reported by Dakhil et al. (2021), who modeled the global 

invasion risk of Prosopis juliflora at biome level, by running MaxEnt algorithm on three 
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different clusters of predictors: 1) climate, 2) climate + soil, 3) climate + soil + human. They 

determined that human influence did not have a significant contribution on Prosopis potential 

distribution. Site suitability may also be limited by certain factors at play at the landscape 

level that were probably not investigated in this study such as alkalinity, soil depth and 

ground water table, but these data are largely scarce or not available particularly for our 

modeling scale. For instance, for both current and future climate conditions, it was observed 

that landforms, aridity index and temperature annual range (bio7) together explained less than 

5% of the global climate models predictions. Climatic factors that greatly explained Prosopis 

habitat suitability both under current and future climate conditions were temperature 

seasonality (bio4) and temperature of the driest quarter (bio9), similar to observations in other 

studies (Dakhil et al., 2021; Eckert et al., 2020; Ng et al., 2018). 

The results further show that high Prosopis habitat suitability tended towards the currently 

Prosopis-invaded locations, an observation that was also reported in previous studies 

(Sintayehu et al., 2020). This is because, areas neighboring Prosopis plantations usually 

become the first victims of invasion owing to their proximity and a likely traversing of non-

invaded locations by dispersal agents such as livestock or seed transportation during flood 

events.  

For Vachellia tortilis, the global (WorldClim) and regional (Uni-Bern) models predicted 

suitable habitat of 17.1% and 14.2% of total study area, respectively, under the current 

climatic conditions. In the future climate (2050), both CNRM and MPI predicted an increase 

in Vachellia tortilis suitable areas at 17.9% and 21.6% of the study area, while Inmcm4 

predicted the lowest and decreased suitable habitat at 16.1% (Table 6.2). This represents an 

increase in habitat suitability by 4.6% and 25.9% for the two models (in order), respectively, 

of the suitable area under the current conditions. The regional model predicted a decrease in 

suitable habitat from the current conditions at 11.9%, representing habitat contraction of 

16.2%. An expansion of Vachellia tortilis habitat has also been reported in Africa (Mechergui 

et al., 2021). They modeled the current and future potential distributions of Vachellia tortilis 

under climate change in Tunisia for 2050 and 2070 using MaxEnt species distribution model. 

Their estimated rate of increase (6.22% by 2050 RCP8.5) in suitable habitat compares to our 

estimate with the Inmcm4 model (increase by 6.5% by 2050 under the same climate 

scenario).  
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In contrast to Prosopis, that is spatially limited to lowland areas, Vachellia tortilis suitability 

tended even towards highland areas within the counties of West Pokot, Uasin Gishu, Nandi, 

Elgeyo Marakwet, Nakuru, Kericho, Bomet, Laikipia, Samburu and Marsabit. This 

observation is not surprising as elevation appeared among the most influential variables in 

determining suitable habitats for Vachellia tortilis. Furthermore, soils and HFP contributed 

substantially to Vachellia tortilis habitat (Figure 6.4).  

Model outputs showed a substantial overlap in the predicted suitable habitats for both species 

at (model average) 26.3% and 27.1% for current and future climate, respectively (Figure 6.2). 

Although both species tend to co-occur in lowland zones, it is evident from this study that the 

native Vachellia tortilis has a wider climate envelope than Prosopis species, suggesting that 

Vachellia tortilis could benefit from this in the face of adverse climatic conditions. It was also 

interesting to find pockets of suitable Prosopis habitat in very high elevation areas of up to 

2100 m a.s.l, but locations at close proximity to water. These findings suggest that water is 

the most important factor in delimiting Prosopis habitat (Figure 6.4), and that the two species 

respond differently to habitat water conditions. Of the three global climate models considered 

in this study, the MPI model predicts a warmer and drier climate over the eastern Africa coast 

including Madagascar and Mozambique (Eckert et al., 2020; McSweeney et al., 2015). This 

model predicted an expansion by 25.9% in Vachellia tortilis suitable habitat with reference to 

the current climate conditions and a decrease by 5.1% in Prosopis suitable habitat, suggesting 

that the predicted drier climate over this region may restrict future expansion of Prosopis, but 

promote native Vachellia expansion.  

6.3.2 Climate refugia for Vachellia tortilis 
These results indicate that refugia areas of varying sizes (depending on the models) will exist 

at least up to 2050 or 2080. Potential refugia areas ranged between 10 to 14% of the total 

study area across the four models. These zones present potential areas where actions, efforts 

and resources need to be targeted for conservation of Vachellia tortilis which is currently 

threatened by Prosopis species (Figure 6.3). On the other hand, if conservation measures are 

not taken up early enough, these refugia areas present areas of vulnerability and 30% of the 

refugia is at high risk of Prosopis invasion by 2080. This is because Prosopis has been 

widely reported as an aggressive invader in previous studies, usually engineering invaded 

ecosystems (Ayanu et al., 2015; Mbaabu et al., 2019; Ng et al., 2017). 
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6.3.3 Performance of global and regional climate models in predicting potential suitable 
habitats 
A comparative assessment of the models shows an expansion of suitable habitat for both 

species in the current climate. However, the global climate model predicts a slightly larger 

suitable habitat (Prosopis: 9% vs. 7.2% and Vachellia tortilis 17.1% vs.14.2%) for both 

species under both climates than the regional model. Although the models were consistent in 

their projections from current to future climates, they showed slightly conflicting results with 

regards to habitat suitability in the future climate. For example, while CNRM (global model) 

and Uni-Bern (regional model) showed that Prosopis habitat would expand  from current to 

future climate, the two other global models (Inmcm4 and MPI) showed that Prosopis habitat 

will decrease in future. Similarly, for Vachellia tortilis, both CNRM and MPI predict habitat 

expansion while Inmcm4 and Uni-Bern predict habitat contraction. These differences in 

model performances could largely originate from the differences in the individual model 

performance characteristics (McSweeney et al., 2015). For example, the global model 

classifications were: CNRM model - satisfactory but an outlier, MPI – satisfactory and 

Inmcm4 – significantly biased (Table 3.5).  

6.4 Summary 
Using two SDMs and four climate model datasets, this study predicted potential (current and 

future) suitable habitats for Prosopis and Vachellia tortilis within a semi-arid landscape in rift 

valley Kenya. Species distribution models revealed that climate warming will have profound 

effects on species geographic ranges of both alien and native species. Climate models predict 

both habit expansion and contraction. The adverse effects (habitat encroachment) of invasive 

plant species on native biodiversity will equally persist in the face of the envisaged climatic 

changes. Over 30% of the predicted suitable habitat for Vachellia tortilis was also predicted 

as suitable for Prosopis, an indication of possible Prosopis invasion into these habitats in 

future. The key strategies for mitigating further spread of invasive alien plant species and 

their negative effects include prevention of introductions, early detection and rapid response, 

as well as controlling their spread (Bellard et al., 2013; Fernandes et al., 2019). In order to 

achieve this, anticipating invasive alien plants in future distributions is essential for 

promoting pre-emptive and adaptive management decisions and actions. These findings 

therefore provide the requisite baseline information regarding future invasion of the two 

species. 
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CHAPTER 7: SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS 

7.1 Synthesis 
The analysis and monitoring of landscape changes over time and in space is important for 

promoting sustainability of global ecosystems amid global environmental changes. These 

changes are strong indications of anthropogenic disturbance on landscapes occurring at fine 

scale e.g. species level or coarse scale e.g. at global level (Alphan, 2017). Some of the causes 

of landscape changes include fire, agricultural expansion and intensification, population 

increase, land fragmentation, climate change, pollution, technological development, 

globalization, and biological invasions (Bürgi et al., 2004; Tesfamariam et al., 2018). 

Landscape changes have implications on ecosystems, biodiversity, livelihoods and economies 

(Bürgi et al., 2004), hence should be carefully assessed and monitored to inform effective 

management decisions (Alphan, 2017). 

Despite the multiple documented negative impacts of grassland degradation on ecosystems 

and livelihoods e.g. (Han et al., 2020; Luo et al., 2023; Tiscornia et al., 2019; Xiao et al., 

2022), and the recent studies to understand the impacts of invasive species (Bekele et al., 

2018b; Dzikiti et al., 2013; Linders et al., 2020, 2019; Mooney, 2005; Muller et al., 2017; 

Pejchar and Mooney, 2009; Shackleton et al., 2017b, 2019), grasslands – particularly tropical 

savannas - are still exposed to degradation. In particular, invasive weedy plants continue to 

spread at unprecedented rates, compromising ecosystem services provisioning which 

immensely hurts ecosystems, economies and livelihoods, with a likely exacerbation by 

climate change. Yet, there remain barriers to policy formulation and decision making that can 

guide effective alien plant species management and sound sustainable ecosystem restoration 

solutions. These barriers are in part due to lack of reliable information regarding invasive 

plant species spread, as well as paucity of local and context-specific data on impacts. Due to 

the scarcity of these relevant data, coupled with pressing impacts on communities, the urgent 

need for solutions has led to implementation of strategies that aren’t informed by evidence. 

For example, the model of Prosopis management by “utilization” implemented in Kenya and 

Ethiopia was not based on any scientific evidence, and there were no known studies 

providing evidence regarding the efficacy of the model to curtail further spread of the 

invasive plant.   

This thesis has provided reliable estimates of the spatio-temporal changes in Prosopis cover, 

and the multifaceted impacts of these changes on the ecosystem, people, and their 
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livelihoods. In particular, Prosopis has proven its aggressiveness and ability to engineer 

invaded ecosystems by inducing changes in other land-uses and land-cover, similar to 

findings in other studies in Kenya (Kyuma et al., 2016; Ng et al., 2017, 2016a), Africa (Adam 

et al., 2017; Ayanu et al., 2015; Babiker, n.d.; Meroni et al., 2017; Rembold et al., 2015; 

Shackleton et al., 2015a; Shiferaw et al., 2019c) and globally (Brown and Carter, 1998; 

Dakhil et al., 2021; Robinson et al., 2008, 2008; Shackleton et al., 2014; Vidhya et al., 2017). 

As a result of these invasions, the capacity of these ecosystems to supply various ecosystem 

services such as fodder, food, water among others has been impaired. While Prosopis is 

considered as a conflict-of-interest species because of the derived potential benefits such as 

charcoal, wood and greening the ambient environment, previous studies have shown that the 

overall negative effects of invasion outweigh the benefits both at local and national scales 

(Bekele et al., 2018a; Linders et al., 2020, 2019). Prosopis invasion compromises rural 

livelihood provisioning and sustainability in invaded areas (Bekele et al., 2018b; Mwangi and 

Swallow, 2005), as demonstrated by the findings in this thesis, using proxies such as invasion 

of croplands and grazing areas, which further increases land maintenance costs beyond the 

reach of many households in the affected areas. 

Recent discourses have oriented climate mitigation actions such as afforestation in semi-arid 

areas. While it is true that afforestation is one of the mechanisms for climate change 

mediation, our findings suggest that these assertions are potentially incorrect and ill-fated, 

similar to observations in other studies (Jackson et al., 2002; Parr et al., 2014). Our study 

provides evidence that even though Prosopis expansion plays a role in soil carbon 

sequestration, it hurts biodiversity, limits provisioning of essential ecosystem services such as 

livestock fodder. This is in agreement with findings in other studies on Prosopis inavasion in 

semi-arid areas (Shackleton et al., 2015a; Van Klinken and Campbell, 2009). This study finds 

that grassland restoration would be a more effective approach for climate change mitigation 

as it additionally offers markedly more other benefits such as alleviating negative effects of 

land degradation, promotes biodiversity and rural livelihood support.  

Climate change is impacting species habitats in unprecented ways (Eckert et al., 2020; 

Kyuma et al., 2016). The findings in this thesis are in tandem with those from other studies 

that show anthropogenically induced environmental change will favour expansion of woody 

alien species in some areas and a contraction in other environments. This means that there 

will be an amplification of the negative effects associated with these invasions. One of the 

projected effects of future invasion is a continual replacement of native biodiversity. While 
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some native biodiversity will likely be pushed to extinction by climatic changes, the 

additional threat by invasion calls for evidence informed decision. The findings in this thesis 

provide evidence needed for advancing decision making on management of alien invasions in 

the face of the current and envisaged climatic changes. This is particularly paramount since 

the species invades fragile ecosystems that host some of the already marginalized and 

vulnerable communities currently experiencing other livelihood threats.   

7.1.1 Management implications of this study  
Because of the expected and inevitable impacts of projected climatic changes, forecasting, 

quantifying and visualizing potential ramifications on species habitat across a range of 

plausible future scenarios is crucial for supporting conservation management and decision-

making especially in the context of invasive alien species. This study attempted to support 

pre-emptive conservation planning by modeling, identifying and quantifying potential 

suitable habitats for both species as well as estimating climate refugia for Vachellia tortilis, to 

enhance biodiversity conservation. Regardless of the model, it is important to note that, these 

results provide predictions from four different models, hence, areas where refugia are 

projected under all the four climate scenarios should be treated as realistic conservation 

targets. 

Since established populations of Prosopis are difficult and expensive to manage (Heshmati et 

al., 2019; Ng et al., 2018), strategies to prevent invasion of new areas, as well as early 

detection and rapid response (EDRR) should be adopted. Moreover, since Prosopis invasion 

threatens the existence of local biodiversity such as Vachellia tortilis, conservation strategies, 

efforts and resources should be prioritized in protecting the climate refugia areas for this 

species from likely Prosopis invasion in future. Furthermore, emphasis should be put to 

retain the suitable habitat currently occupied by Vachellia tortilis in order to facilitate their 

survival even in situations when the climatic conditions exceed the tolerance level of the 

species. 

7.2 Conclusions 
As part of this thesis, the spatio-temporal spread of Prosopis and its impacts on other land-

uses and land-cover was assessed in Baringo County. The findings presented in chapter four 

have revealed that, over nearly four decades since Prosopis was introduced in Baringo, the 

species has spread from original plantations taking up valuable land such as croplands, 

pastures and native woodlands at a rate of 640 ha per year. This has consequently led to over 
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30% changes in other LULC, which is severely affecting native biodiversity and rural 

livelihoods.  

Further, the emerging advocacy for growing trees for climate change mitigation projects has 

seen many tropical degraded grasslands being targeted for woody expansion in recent years, 

which is eliciting much debate. In order to contribute to these debates, this study further 

investigated and compared the effects of grassland restoration and woody Prosopis 

encroachment on soil organic carbon stocks, plant species richness and herbaceous biomass. 

This thesis provides evidence that grassland restoration is as effective as Prosopis in 

replenishing soil organic carbon stocks. Moreover, unlike Prosopis which limits fodder 

production and other ecosystem service provisioning, grassland restoration does not 

compromise herbaceous biomass productivity and supports provisioning of other ecosystem 

services needed to support agro-pastoral livelihoods.  

Climate is a delimiting factor influencing species distributions; hence, it is expected that 

predicted climatic changes could have a bearing on species geographic ranges in future. In 

chapter six, the potential species suitability under projected climatic changes was modeled for 

Prosopis and Vachellia tortilis, and potential suitable habitat overlaps determined to inform 

conservation of native V. tortilis. This study demonstrates that future climatic changes will 

increase potential suitable habitats for both Prosopis and V. tortilis. However, over 30% of 

the land suitable for V. tortilis (climate refugia) is at a high risk of Prosopis invasion. Further, 

Prosopis has high affinity for areas at close proximity to water and favourable soils. This 

study concludes that riparian zones, irrigation canals, wetlands and lake shores are at higher 

risk of invasion which may limit water availability and access and further compound 

Prosopis invasion impacts on livelihoods. The livelihoods are threatened by Prosopis 

invasion and the situation will likely be exercebated by the changing climatic conditions.  

7.3 Recommendations 
Prosopis has been present in Kenya for more than 70 years (since 1948). Over this period, it 

has gradually spread throughout the country and even crossed national borders to other 

countries such as Tanzania. It has caused tremendous environmental damages and affected 

people’s way of life. Yet, despite the outcry and push by affected communities for lasting 

solutions, the invasion continues unabated, with negative impacts accelatating with changing 

climatic conditions. On the basis of these findings, urgent actions on Prosopis management 

are recommended as below.  
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1. Management actions need to target Prosopis using a blend of approaches such as 

mechanical, chemical and biological control, because use of a single strategy alone 

may be too costly in the long-term, ineffective and unfeasible especially for 

management of naturalized Proposis over large areas.  

2. Strategies for reversing land degradation should consider restoration of native 

grasslands in a mosaic of other compatible ecosystems such as forest and shrublands 

comprising non-invasive woody species. Moreover, promoting further spread of 

woody species particularly Prosopis should be ceased immediately.  

3. Because the rapidity and velocity of climate change, coupled with the fast spread of 

Prosopis may render survival of native biodiversity intolerable, immediate protection 

and prioritization of V. tortilis conservation should be considered. Most importantly, 

prevention of Prosopis invasion into these landscapes should be treated as a matter of 

urgency. 

These results are considered important for both National and County Governments in Kenya, 

particularly counties classified as arid and semi-arid (ASALs) such as Baringo, West Pokot, 

Samburu, Turkana, Isiolo, Tana River and Garissa, because suitability of Prosopis species is 

highest in lowland areas in these ASALs. As such, the impacts of Prosopis on these regions 

and their host communities might become even more pronounced in the future due to climate 

change. Therefore, prompt responses to new introductions of Prosopis and control of 

invasions should be mainstreamed in national climate change mitigation plans as well as in 

plans targeting invasive plant species management and biodiversity conservation. 

7.4 Directions for future research 
This study modeled the impact of climate change on geographic range of Prosopis and V. 

tortilis. Future research should be targeted in modeling the responses of other flora 

characteristic of savanna ecosystems to projected climatic changes. Further, a holistic 

landscape scale quantification of costs of land degradation and Prosopis invasion would be 

important to inform management decisions and guide restoration actions in the severely 

degraded and invaded areas. Furthermore, there have been claims by some stakeholders e.g. 

fishermen and traders that Prosopis has caused depletion of fish stocks in Lake Baringo. 

Further research should investigate the impacts of Prosopis on water quality and aquatic life.  
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APPENDICES 

Appendix 1.1 1988 Classification Accuracy Report 

                                

1988 classification   Reference Data                         
LULC Type   1 2 3 4 5 6 7 8 9 10 11 12 13 Classified Total User’s Accuracy (%) 

Prosopis  1 101 2 0 0 0 0 0 0 0 0 20 0 0 123 82.1 

Vachellia tortilis  2 7 144 0 5 0 0 0 0 0 1 2 2 0 161 89.4 

Vachellia reficiens  3 2 6 131 15 0 0 0 7 23 9 2 2 0 197 66.5 

Mixed vegetation 4 0 4 12 325 0 6 1 4 2 0 1 0 0 355 91.5 

Indigenous forest 5 0 0 0 0 136 14 2 0 0 0 0 0 0 152 89.5 

Plantation forest 6 0 0 0 10 55 779 8 0 0 0 0 0 0 852 91.4 

Water   7 0 0 0 0 0 0 5999 0 0 0 0 0 0 5999 100.0 

Rain-fed cropland 8 0 0 4 0 0 0 2 92 9 0 0 0 0 107 86.0 

Bareland 9 0 0 0 0 0 0 0 0 164 0 0 0 0 164 100.0 

Grassland 10 1 0 0 0 0 0 0 0 19 117 0 1 0 138 84.8 

Balanites aegyptica 11 8 4 0 0 0 0 0 0 0 0 101 0 0 113 89.4 

Irrigated cropland 12 0 0 0 0 0 0 0 0 0 0 0 45 0 45 100.0 

Water weeds 13 5 0 0 1 0 0 0 0 0 0 0 0 55 61 90.2 

Reference Total   124 160 147 356 191 799 6012 103 217 127 126 50 55 8467   

Producer`s Accuracy (%)   81.5 90.0 89.1 91.3 71.2 97.5 99.8 89.3 75.6 92.1 80.2 90.0 100.0     
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Appendix 1.2 1995 Classification Accuracy Report 
                                  

1995 classification Reference Data                         
LULC Type   1 2 3 4 5 6 7 8 9 10 11 12 13 Classified Total User’s Accuracy (%) 

Prosopis  1 135 3 0 3 2 0 0 0 0 3 14 0 10 170 79.4 

Vachellia tortilis  2 4 122 0 3 0 0 0 0 0 0 13 0 1 143 85.3 

Vachellia reficiens  3 0 0 113 1 0 0 0 3 4 0 0 2 0 123 91.9 

Mixed vegetation 4 0 8 26 349 0 0 0 0 4 0 4 0 0 391 89.3 

Indigenous forest 5 5 0 0 0 189 5 0 0 0 0 2 0 0 201 94.0 

Plantation forest 6 0 2 0 4 15 795 0 0 0 0 0 0 0 816 97.4 

Water   7 0 2 0 0 0 0 6527 0 0 0 0 0 0 6529 100.0 

Rain-fed cropland 8 0 0 4 0 0 1 0 106 8 0 0 0 0 119 89.1 

Bareland 9 0 0 2 0 0 0 0 0 181 6 0 0 1 190 95.3 

Grassland 10 3 0 0 0 0 0 0 0 0 177 9 0 0 189 93.7 

Balanites aegyptica 11 4 17 0 0 0 0 0 0 0 0 76 0 0 97 78.4 

Irrigated cropland 12 0 0 0 0 0 0 0 0 0 0 0 37 0 37 100.0 

Water weeds 13 1 1 0 0 0 0 0 0 0 0 0 0 46 48 95.8 

Reference Total 152 155 145 360 206 801 6527 109 197 186 118 39 58 9053   

Producer`s Accuracy (%) 88.8 78.7 77.9 96.9 91.7 99.3 100.0 97.2 91.9 95.2 64.4 94.9 79.3     
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Appendix 1.3 2002 Classification Accuracy Report 
                                  
2002 classification Reference Data                         

LULC Type   1 2 3 4 5 6 7 8 9 10 11 12 13 Classified Total User`s Accuracy (%) 

Prosopis  1 70 9 0 1 0 0 0 1 2 0 6 0 11 100 70.0 

Vachellia tortilis  2 6 105 3 3 0 0 0 1 0 0 3 0 0 121 86.8 

Vachellia reficiens  3 0 0 102 0 0 0 0 7 1 0 0 1 0 111 91.9 

Mixed vegetation 4 0 9 31 358 0 0 0 1 3 0 2 0 0 404 88.6 

Indigenous forest 5 0 0 0 0 175 0 0 0 0 0 6 0 0 181 96.7 

Plantation forest 6 0 0 0 0 16 851 0 0 0 0 0 0 0 867 98.2 

Water   7 0 0 0 0 0 0 6227 0 0 0 0 0 0 6227 100.0 

Rain-fed cropland 8 0 0 5 0 0 0 0 91 1 0 2 0 0 99 91.9 

Bareland 9 7 1 6 0 0 0 0 0 207 0 0 0 0 221 93.7 

Grassland 10 0 0 0 0 0 0 0 0 2 76 0 0 0 78 97.4 

Balanites aegyptica 11 24 12 0 0 0 0 0 2 0 0 107 0 0 145 73.8 

Irrigated cropland 12 1 0 0 0 0 0 0 0 0 2 0 42 0 45 93.3 

Water weeds 13 0 1 0 0 0 0 0 0 0 0 0 0 61 62 98.4 

Reference Total   108 137 147 362 191 851 6227 103 216 78 126 43 72 8661   

Producer`s Accuracy (%) 64.8 76.6 69.4 98.9 91.6 100.0 100.0 88.3 95.8 97.4 84.9 97.7 84.7     
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Appendix 1.4 2009 Classification Accuracy Report 
                                  
2009 classification Reference Data                         

LULC Type   1 2 3 4 5 6 7 8 9 10 11 12 13 Classified Total User`s Accuracy (%) 

Prosopis  1 179 9 0 1 0 0 0 0 3 0 32 0 5 229 78.2 

Vachellia tortilis  2 12 77 0 2 0 2 0 0 0 0 5 0 5 103 74.8 

Vachellia reficiens  3 0 0 108 1 0 0 0 2 4 0 0 0 0 115 93.9 

Mixed vegetation 4 1 4 14 357 0 0 0 0 4 0 0 0 1 381 93.7 

Indigenous forest 5 0 0 0 0 201 19 0 0 0 0 1 0 0 221 91.0 

Plantation forest 6 0 0 0 1 0 809 0 0 0 0 0 0 0 810 99.9 

Water   7 2 0 0 0 0 0 6309 0 0 0 0 0 0 6311 100.0 

Rain-fed cropland 8 0 0 9 0 0 0 0 97 0 0 0 0 0 106 91.5 

Bareland 9 8 0 4 0 0 0 0 0 204 1 0 0 0 217 94.0 

Grassland 10 2 0 0 0 0 0 0 0 0 67 0 0 1 70 95.7 

Balanites aegyptica 11 16 10 0 0 3 0 0 0 0 0 92 0 0 121 76.0 

Irrigated cropland 12 0 0 14 0 0 0 0 0 1 0 0 54 0 69 78.3 

Water weeds 13 0 0 0 1 0 0 0 0 0 0 0 0 3 4 75.0 

Reference Total   220 100 149 363 204 830 6309 99 216 68 130 54 15 8757   

Producer`s Accuracy (%) 81.4 77.0 72.5 98.3 98.5 97.5 100.0 98.0 94.4 98.5 70.8 100.0 20.0     
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Appendix 1.5 2016 Classification Accuracy Report 
                                  
2016 classification Reference Data                         

LULC Type   1 2 3 4 5 6 7 8 9 10 11 12 13 
Classified 

Total User`s Accuracy (%) 

Prosopis  1 170 19 0 0 0 0 0 0 0 4 20 1 8 222 76.6 

Vachellia tortilis  2 6 53 0 1 0 0 0 0 0 0 1 0 0 61 86.9 

Vachellia reficiens  3 1 0 132 4 0 0 0 1 0 0 0 16 0 154 85.7 

Mixed vegetation 4 2 3 4 336 0 3 0 0 0 0 2 0 0 350 96.0 

Indigenous forest 5 0 0 0 0 166 2 0 0 0 0 0 0 0 168 98.8 

Plantation forest 6 0 2 0 0 5 789 0 0 0 0 0 0 0 796 99.1 

Water   7 0 0 0 0 0 1 6889 0 1 0 0 0 0 6891 100.0 

Rain-fed cropland 8 0 0 7 0 0 0 0 120 0 0 0 0 0 127 94.5 

Bareland 9 0 0 0 0 0 0 0 0 216 2 0 0 0 218 99.1 

Grassland 10 2 2 0 0 0 0 0 0 0 64 0 0 3 71 90.1 

Balanites aegyptica 11 14 20 0 0 1 0 0 0 0 0 106 0 0 141 75.2 

Irrigated cropland 12 1 0 0 0 0 0 0 0 0 0 0 100 0 101 99.0 

Water weeds 13 3 0 0 0 0 0 0 0 0 0 6 0 132 141 93.6 

Reference Total   199 99 143 341 172 795 6889 121 217 70 135 117 143 9441   
Producer`s Accuracy (%) 85.4 53.5 92.3 98.5 96.5 99.2 100.0 99.2 99.5 91.4 78.5 85.5 92.3     
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Appendix 5.1 SOC per volume (g cm-3) for the five land cover types and four soil depth 
increments. Error bars indicate standard errors. The arrows represent a hypothetical transition 
from one land cover state to the next over time. 
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Appendix 5.2 Interaction effects of land cover type and soil depth on SOC concentration 
(%SOC).  
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Appendix 5.3 Interaction effects of land cover type and soil depth on SOC per volume (SOC 
g cm-3).  
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Appendix 5.4 Effect of land cover type and soil depth on SOC concentration (%SOC). Land 

cover-soil depth combinations sharing the same letter do not differ significantly from each 

other (Tukey HSD Post-Doc test; α = 0.05). 

 Num DF Den DF F-value p-value   

(Intercept) 1 174 1097.7480 <.0001   
Land cover 4 58 4.8207 0.002   

Soil depth 3 174 36.6325 <.0001   

Landcover:soil depth 12 174 2.2609 0.011   

       

Land cover 
Soil depth 

(cm) 
%SOC SE df lower CL upper CL 

Tukey  
HSD 

Pristine  0-15 0.5767 0.0693 58 0.3953 0.8414 f 
Degraded 0-15 0.2816 0.0267 62 0.2089 0.3796 abcd 

Prosopis-low 0-15 0.3772 0.0413 58 0.2671 0.5324 bcdef 

Prosopis-high 0-15 0.5648 0.0678 58 0.3871 0.8241 ef 

Restored 0-15 0.4483 0.0439 58 0.3292 0.6102 def 

        

Pristine 15-30 0.3870 0.0465 58 0.2652 0.5646 bcdef 

Degraded 15-30 0.2695 0.0256 62 0.1999 0.3633 abc 

Prosopis-low 15-30 0.3044 0.0333 58 0.2156 0.4297 abcd 

Prosopis-high 15-30 0.3967 0.0476 58 0.2718 0.5787 cdef 

Restored  15-30 0.3539 0.0347 58 0.2599 0.4817 bcdef 

        

Pristine  30-60 0.3188 0.0383 58 0.2185 0.4652 abcde 

Degraded  30-60 0.2234 0.0212 62 0.1657 0.3012 ab 

Prosopis-low 30-60 0.3019 0.0331 58 0.2138 0.4262 abcd 

Prosopis-high 30-60 0.2456 0.0295 58 0.1683 0.3583 ab 

Restored  30-60 0.3047 0.0298 58 0.2238 0.4148 abcd 

        

Pristine  60-100 0.2786 0.0334 58 0.1909 0.4064 abcd 

Degraded  60-100 0.2101 0.0199 62 0.1558 0.2832 a 

Prosopis-low 60-100 0.2504 0.0274 58 0.1773 0.3535 abc 

Prosopis-high 60-100 0.2273 0.0273 58 0.1558 0.3317 ab 
Restored  60-100 0.2942 0.0288 58 0.2161 0.4005 abc 
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Appendix 5.5 Effect of land cover type and soil depth on SOC per volume (SOC g cm-3). 

Land cover-soil depth combinations sharing the same letter do not differ significantly from 

each other (Tukey HSD Post-Doc test; α = 0.05). 

 Num DF Den DF F-value p-value   

(Intercept) 1 174 25021.776 <.0001   
Land cover 4 58 6.148 0.0003   

Soil depth 3 174 37.796 <.0001   

Land cover:soil depth 12 174 1.981 0.0285   

       

Land cover 
Soil depth 

(cm) 
SOC per  
volume 

SE df lower CL upper CL 
Tukey  
HSD 

Pristine  0-15 0.0074 0.0009 58 0.0051 0.0109            k 

Degraded  0-15 0.0035 0.0003 62 0.0026 0.0048 abcdefghi 

Prosopis-low 0-15 0.0048 0.0005 58 0.0034 0.0068 cdfhijk 

Prosopis-high 0-15 0.0069 0.0008 58 0.0047 0.0101 jk 

Restored  0-15 0.0057 0.0005 58 0.0042 0.0078         ijk 

        

Pristine  15-30 0.0053 0.0006 58 0.0036 0.0077 ghijk 

Degraded  15-30 0.0035 0.0003 62 0.0026 0.0048 abcdefghi 

Prosopis-low 15-30 0.0036 0.0003 58 0.0025 0.0051 abcdefghi 

Prosopis-high 15-30 0.0047 0.0005 58 0.0032 0.0068     efghijk 

Restored 15-30 0.0046 0.0005 58 0.0034 0.0063 bdghijk 

        

Pristine  30-60 0.0044 0.0005 58 0.0030 0.0065 abcdefghij 

Degraded  30-60 0.0028 0.0003 62 0.0021 0.0037 acef      

Prosopis-low 30-60 0.0036 0.0004 58 0.0026 0.0052 abcdefghi 

Prosopis-high 30-60 0.0029 0.0004 58 0.0020 0.0043 abcdefgh 

Restored  30-60 0.0037 0.0004 58 0.0027 0.0050 abcdefgh 

        

Pristine  60-100 0.0039 0.0005 58 0.0027 0.0057 abcdefghij 

Degraded  60-100 0.0026 0.0002 62 0.0019 0.0035 a           

Prosopis-low 60-100 0.0029 0.0003 58 0.0021 0.0041 abeg 

Prosopis-high 60-100 0.0028 0.0003 58 0.0019 0.0040 abcd 

Restored  60-100 0.0036 0.0004 58 0.0027 0.0049 abcdefgh 
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Appendix 5.6 Effect of land cover type on total SOC per unit area (t ha-1). Land cover types 

sharing a letter are not significantly different from each other (Tukey HSD Post-Doc test; α = 

0.05).  

 Df Sum of 
Squares 

Mean Square F-value  p-value 

Landcover 4 2539 634.7 5.532 0.000766*** 

Residuals 58 6654 114.7   

      

Land cover  total SOC SE Asymp.LCL Asymp.UCL 
Tukey 
HSD 

Degraded 31.52287 2.677832 24.64416 38.40159 a 

Prosopis-low 36.98844 3.092094 29.04558 44.93130 ab 

Prosopis-
high 

40.04675 3.387220 31.34578 48.74772 abc 

Restored 44.67903 2.765653 37.57473 51.78334 bc 

Pristine 49.75775 3.387220 41.05678 58.45872 c 
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Appendix 5.7 Effect of land cover type on plant species richness (number of species plot-1). 

Land cover types sharing a letter do not differ significantly from each other (Tukey HSD 

Post-Doc test; α = 0.05). 

 

 Df Sum of 
Squares 

Mean Square F-value p-value 

Land cover 4 6.245 1.5612 8.656 <0.0001*** 

Residuals 58 10.461 0.1804   

 

Land cover 
species 

richness 
SE Asymp.LCL Asymp.UCL Tukey HSD 

Degraded 7.23 0.77 5.50 9.49 a 

Restored 8.59 0.94 6.48 11.38 ab 

Prosopis-high 8.97 1.20 6.35 12.66 ab 

Prosopis-low 12.26 1.50 8.94 16.79 bc 

Pristine 18.21 2.45 12.90 25.72 c 
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Appendix 5.8 Effect of land cover type on dry herbaceous biomass (dry weight g m-2). Land 

cover types sharing a letter do not differ significantly from each other (Tukey HSD Post-Doc 

test; α = 0.05). 

 Df 
Sum of  
Squares 

Mean Square F-value  p-value 

Land cover 4 14578 3644 33.97 <0.0001*** 

Residuals 58 6223 107   

 

Land cover Biomass SE Asymp.LCL Asymp.UCL Tukey HSD 

Prosopis-high 13.90 3.28 5.49 22.31 a 

Prosopis-low 21.29 2.99 13.61 28.97 a 

Degraded 23.03 2.59 16.38 29.68 a 

Restored 46.73 2.67 39.86 53.60 b 

Pristine 55.20 3.28 46.79 63.61 b 
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Appendix 5.9 Above-ground carbon stock (mean and standard error of the mean) expressed 

in tonnes per hectare for pristine, restored and Prosopis invaded areas. These were 

determined using dry woody Prosopis above-ground biomass (for Prosopis invaded areas) 

derived by applying a Prosopis-species allometric equation on the diameter at breast height 

(DBH at 0.3 m from ground) of all individual Prosopis trees in randomly sampled 5x5 m 

subplots following the methods described by Linders et al. (2020). The Prosopis species 

allometric equation was developed by Linders et al. (2020) using Prosopis data from Kenya 

by Muturi et al. (2012). For grasslands dry herbaceous biomass was used to estimate above-

ground carbon stocks. For both grasslands and Prosopis invaded areas, a conversion factor of 

0.47 was used to convert dry above-ground biomass to carbon stocks (IPCC, 2006).  

 

Land cover n Above-ground C (t ha-1) Standard error 

Pristine 10 6.02  1.00 

Restored 15 3.19  0.40 

Prosopis-high 5 12.46 2.84 

Prosopis-low 28 2.78 0.47 

 
 

 

 

 

 

 

 


