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ABSTRACT 

Orthogonal frequency division multiplexing (OFDM) has continued to be the most preferred 

signal-multiplexing scheme for the current and future standards for high-speed transmission of data 

over the wireless channel. This is due to its ability to provide a high spectral efficiency and to 

combat both intersymbol interference and multipath fading. However, an OFDM signal tends to have 

a high peak-to-average power ratio (PAPR) when the number of subcarriers is large. Subsequently, 

the high power amplifier in the transmitter nonlinearly amplifies the signal resulting in-band and out-

of-band radiations in the output of the device. In turn, these radiations give rise to bit-error rate 

(BER) degradation and adjacent channel interferences. Therefore, it is necessary to reduce the PAPR 

to avoid these two effects. This thesis proposes five new PAPR reduction methods for OFDM 

systems with a contribution to the class of additive signal methods. Three of the proposed methods 

follow the conventional tone-reservation (TR) approach; these are second-order cone program TR 

(SOCP-TR), linear program TR (LP-TR) and iterative re-weighted least squares TR (IRLS-TR). The 

remaining two methods, namely low-complexity signal addition (LCSA) and low-complexity 

additive signal mixing (LCASM), extend the transmit time to cater for the transmission of nonzero 

samples of the peak-reduction signal. The SOCP-TR and LP-TR are optimal schemes, while the 

remaining three are suboptimal and are preferable for practical realization due to their fast 

convergence rates and low computational complexities. The suboptimal methods can achieve similar 

or better PAPR reductions than the optimal schemes. From the perspective of the reservation of 

PAPR reduction resources, in either frequency or time domain, the IRLS-TR and LCSA methods 

offer the best performances. For example, with 5% of the transmit resources reserved in a system 

with 256 subcarriers, the IRLS-TR and LCSA methods achieve reductions of 5.84 and 5.69 dB, at 

the expense of only a small change in transmit power of 0.36 and -0.10 dB, respectively. 

Additionally, the five proposed methods reduce PAPR without degrading the BER. The proposed 

methods also perform better than other methods proposed in literature. In addition to offering new 

PAPR reduction methods, this thesis has established that the type of subcarrier modulation and 

signal structure, real or complex, insignificantly affect the amount of PAPR reduction. 
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CHAPTER 1  
 

INTRODUCTION 

This chapter introduces the research work in this thesis. The chapter begins with 

an overview of orthogonal frequency division multiplexing (OFDM) technique 

highlighting its competitive advantages and disadvantages. The specific drawback of 

OFDM technology that is addressed in this thesis is outlined in the section on problem 

statement. The chapter also provides the main and specific objectives of the research and 

the scope of work involved in this thesis. Towards the end of the chapter, a list of 

publications that have been realized during the course of this work is provided followed 

by a presentation of how the rest of the thesis is organized. 

1.1 Background 

The never-ending demand for high-speed transmission of data especially over the 

wireless medium has required a continuous evolution of wireless communication 

networks from one generation to the next. This evolution has been geared towards 

adopting new or enhanced technologies that aid in meeting latest and future demands for 

high data-rate over the hostile wireless medium. One of the key enabling technologies for 

high data-rate transmission over the wireless medium is the OFDM technique [1].  

The OFDM technique can be viewed as a digital multicarrier transmission 

technique that achieves high data-rate through having many data-bearing symbols 

modulate an equivalent number of subcarriers simultaneously. In this regard, each 

subcarrier constitutes a transmission subchannel. The overall data-rate can be enhanced 

further by applying different modulation schemes on different subcarriers depending on 

the quality of each channel. In this case, those subchannels with high signal-to-noise ratio 

(SNR) are used to carry more bits per symbol through employment of high-order 

modulation schemes. On the contrary, subchannels with low SNR carry a smaller number 

of bits via symbols drawn from low-order modulation schemes.  

In addition, several other important advantages of OFDM technique have made it 

very attractive for use in wireless communication. These include the 
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ability to suppress inter-symbol interference (ISI) and being resilient to multipath fading, 

the capability to attain high spectral efficiency, its efficient implementation using fast 

Fourier transform algorithm and the simplicity in the receiver design. 

The ISI is eliminated by having long symbol duration, typically much greater than 

the maximum expected multipath delay, together with guard interval in-between 

consecutive symbols. The long symbol duration also helps to combat multipath fading. In 

particular, the subchannel bandwidth, determined by the number of subcarriers and the 

total available bandwidth, is less than the coherence bandwidth; hence each subchannel 

has a flat-fading frequency response. This in turn simplifies the receiver design since 

only a single-tap equalizer is needed to recover a transmitted symbol.  

Additionally, a high spectral efficiency in each OFDM symbol is achieved by 

having mutually orthogonal subcarriers transmit data over the allocated bandwidth. The 

orthogonality of subcarriers allows many subcarriers to be tightly packed in the available 

bandwidth, with adjacent ones overlapping one another, hence increasing the data-rate. 

In addition to the above-mentioned advantages, OFDM can be combined with 

multiple-input multiple-output (MIMO) technology to add spatial diversity and/or spatial 

multiplexing. Through spatial diversity, the MIMO technique can improve the reliability 

of a wireless medium, and thus reduce the bit-error rate (BER) of a communication 

system. On the other hand, spatial multiplexing increases the data rate of a system. In 

addition, MIMO technique can be used to shape the transmit beam to increase coverage 

or to reduce the required transmit power.  

Despite having the above highlighted advantages, OFDM technique has a few 

drawbacks that remain unresolved. Two major ones are the sensitivity to both nonlinear 

amplification and frequency offsets. The first one is the focus of this thesis and is 

exacerbated by the occurrence of high peak-to-average power ratio (PAPR) in OFDM 

signals. This implies that the peak power of the transmit signal is much greater than the 

average power as illustrated in Figure 1.1. Essentially, a high PAPR indicates that a 

signal has a wide dynamic range of signal amplitudes with a few of them being very high. 

The occurrence of high PAPR originates from the nature of the composition of the 

transmit signal as a sum of a large number of modulated signals.  

The high PAPR causes two problems when the signal is processed through an 

OFDM transreceiver. The first one is the requirement to equip the digital-to-analogue 

converter (DAC) in the transmitter section with a large number of bits to cover the broad 

dynamic range of signal amplitudes. This leads to a significant increase in the cost of the 
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DAC. The same requirement and the associated cost apply similarly to the analogue-to-

digital converter (ADC) in the receiver section.  

The second problem resulting from high PAPR is the nonlinear amplification of 

the signal in the high power amplifier (HPA) in the transmitter section. The nonlinear 

amplification results in two types of distortions, namely out-of-band and in-band 

radiations. The out-of-band radiations causes the spectrum of the transmit signal to 

spread out of the allocated bandwidth thus leading to interferences in the adjacent 

channels. Mitigating this problem requires the use of highly selective filters, which are 

costly to design, or a wideband guard between OFDM channel and adjacent channels and 

this will lead to poor utilisation of the frequency spectrum. On the other hand, the in-band 

radiations can degrade the BER of the system to an extent that the transmitted 

information cannot be recovered.  

Traditionally, a workaround solution to avoid nonlinear amplification of transmit 

signal and the two undesirable effects has been to back-off the HPA from the 1-dB 

compression point to a linear point of operation depending on the PAPR of the input 

signal. However, this backing-off operation reduces the efficiency of the HPA, thereby 

causing it to consume and dissipate a lot of power. The high power consumption 

increases the cost of the HPA in addition to the device requiring a costly design. 

 

Figure 1.1. OFDM signal power fluctuations  
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Additionally, the lifetimes of battery powers in user terminals, such as handheld 

devices, are reduced significantly [2]. Therefore, the solution of backing-off the HPA is 

not satisfactory. This has motivated many researchers, up-to-date, to attempt to seek 

better solutions for avoiding nonlinear amplification of high-PAPR signals without 

interfering with the rated efficiency of the HPA. 

Recently, several methods have been proposed in literature to address the problem 

of high PAPR and the attendant nonlinear amplification in OFDM transmitters. The 

proposed methods are targeted at either reducing PAPR, extending linear operation or 

enhancing efficiency of HPA. The reduction of PAPR has been found to be much more 

convenient than the other two approaches because it is of lower computational 

complexity and does not require additional analogue circuitry. This has led to a lot more 

of research being directed towards PAPR reduction than in the other two approaches. In 

some cases, some methods combining PAPR reduction and linearization or efficiency 

enhancement have also been proposed. However, combining different techniques may 

increase the complexity and the cost of an OFDM system.  

The techniques proposed for reducing PAPR of input signals to the HPA are 

typically aimed at minimizing the ratio to a suitable level to enable the device to operate 

at the upper end of the linear region near the rated maximum efficiency without the need 

for a large input back-off. Up to now, the proposed PAPR reduction methods have been 

found to suffer from some shortcomings that hinder their practical realizations. The 

methods fail to have majority of the attributes desired for implementations in real-time 

systems. These include  

i) good PAPR reduction,  

ii) low computational complexity, 

iii) non-degradation of BER,  

iv) minimal loss in data-rate and the 

v) preservation of the transmit power  

Therefore, the aim of this thesis was to present practically realizable methods for 

reducing PAPR in wireless communication systems that use OFDM technique. 
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1.2 Problem Statement 

OFDM technique has of late been receiving a lot of attention as the best solution 

for sustaining the demand for high data rate, spectral efficiency and quality of service in 

wireless communication networks. However, an OFDM signal can have a high level of 

PAPR that can lead to degradation of quality of service, increase in the cost of transmitter 

devices and reduced battery lifetime in user terminals. 

Recently, several methods have been proposed in literature for reducing PAPR in 

wireless communication systems that use OFDM technique. However, these methods do 

not have one or more of the attributes desired for their implementation in real-time 

systems. The proposed methods are known to introduce one or more undesirable effects 

in the communication system; mainly a loss in data rate, an increase in transmit power, 

degradation in BER, an increase in computational complexity and additional analogue 

circuitry. To this end, there is still a need to develop new PAPR reduction methods that 

can be practically implemented in the current and future generations of OFDM-based 

wireless networks. 

1.3 Research Objectives 

The main objective of this research work was to develop and implement suitable 

algorithms for PAPR reduction in wireless communication systems that utilize OFDM 

technique with the aim of eliminating signal distortions that arise in the HPA in the 

transmitter due to nonlinear amplification of signals having high PAPR. The specific 

objectives were as follows: 

i) To develop optimal PAPR reduction algorithms, based on tone reservation, for 

benchmarking the performance of suboptimal algorithms.  

ii) To investigate whether the type of subcarrier modulation employed in an OFDM 

system affects PAPR reduction.  

iii) To investigate if the type of signal structure, real or complex, can affect PAPR 

reduction.  

iv) To develop low-complexity and reliable suboptimal algorithms for PAPR 

reduction based on tone reservation and other signal addition methods. 

v) To compare the performance of proposed algorithms and other related algorithms. 
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1.4 Scope of Research 

The focus of this thesis was on the reduction of PAPR in wireless communication 

networks that typically employ OFDM in the transmission of signals. All simulations 

were carried out in MATLAB to investigate the PAPR reduction capability of the 

developed algorithms and the associated effects on the underlying network using OFDM 

system configurations with different subcarrier-modulation schemes and numbers of 

subchannels. 

1.5 Publications 

This section gives a list of publications in refereed journals and conference 

proceedings that were achieved during the course of this research. Six international peer-

reviewed publications were accomplished from the findings of this research. Two of 

these were published in conference proceedings of the Institute of Electrical and 

Electronics Engineers (IEEE), while the remaining four were in peer-reviewed journals. 

The following are the papers published in peer-reviewed IEEE conference 

proceedings: 

i) The first one was titled “Effect of OFDM Signal Structure and Subcarrier 

Modulation on the Reduction of the Signal Peak Power”. It was published in the 

proceedings of IEEE AFRICON 2017 conference that took place from 18 to 20 

September 2017 in Cape Town, South Africa. It appears on page 262-266 of the 

proceedings [3].  

ii) The second paper titled “Use of Preset Reserved Tones in Reduction of PAPR in 

OFDM Systems” was published in IEEE AFRICON 2019 Proceedings of the 

conference held from 25 to 27 September 2019 in Accra, Ghana [4].  

The list of the four articles published in refereed journals is as follows: 

i) The first article was titled “An Iterative Re-Weighted Least-Squares Tone 

Reservation Method for PAPR Reduction in OFDM Systems”. It was published 

in the journal of Transactions on Communications of World Scientific and 

Engineering Academy and Society (WSEAS) on page 153-161 of volume 18 of 

2019 [5]. 

ii) The second journal paper titled “A Low-Complexity Signal Addition Method for 
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PAPR Reduction in OFDM Systems” was published in the International Journal 

of Computer Application (IJCA). It is on page 21-34 of issue number 10 of 

volume 5 of 2020 [6].  

iii) The third article titled “PAPR Reduction in MIMO-OFDM Systems Using Low-

Complexity Additive Signal Mixing” was published in the Journal of 

Communications (JCM) on page 468-478 of the November issue of volume 16 of 

the 2021 publications [7].  

iv) The fourth article was titled “Reducing PAPR of OFDM Signals Using a Tone 

Reservation Method Based on ℓ∞-Norm Minimization”. It was published in the 

Journal of Electrical Systems and Information Technology (JESIT) and it appears 

as article number 12 in volume 9 of 2022 [8]. 

1.6 Organization of Thesis  

The rest of the thesis is organized as follows. Chapter 2 offers a review of 

published literature on PAPR reduction in OFDM system that is related to this thesis 

together with alternative approaches, which are HPA linearization and efficiency 

enhancement techniques. Additionally, the chapter provides a highlight of the existing 

knowledge gaps. This is followed in Chapter 3 by coverage of OFDM technique 

including the cause of high PAPR, nonlinear amplification distortions and the effects they 

have in a communication system. In Chapter 4, important concepts of convex 

optimization and adaptive signal processing are presented. These concepts are essential to 

the development of the PAPR reduction methods proposed in Chapter 5. Chapter 5 

details the materials used in the research and the algorithms of the proposed PAPR 

reduction methods. In Chapter 6, simulation results from the proposed methods are 

presented, discussed and compared to results of other promising methods. Chapter 7 

provides conclusion and recommendations for future work. This is followed by a list of 

references and appendices. The appendices start by providing the notations used in this 

thesis in Appendix A. This is then followed by published works, which appear in 

Appendix B to G, and lastly by MATLAB codes for various simulations including those 

of the proposed methods in Appendix H.  
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CHAPTER 2  
 

LITERATURE REVIEW 

This chapter first presents a review of related work that has been proposed for the 

reduction of PAPR in OFDM and MIMO-OFDM systems. This is then followed in the 

second part by a brief coverage of linearization and efficiency enhancement techniques as 

applied to high power amplifiers. A linearization or an efficiency enhancement operation 

is considered as an alternative to PAPR reduction or as a supplement when it is combined 

with the latter with the intention to improve the performance. In the last part of the 

chapter, the knowledge gap is identified. This research is envisioned to fill this gap. 

2.1 Review of PAPR Reduction Methods 

In a communication system employing OFDM technique to transmit signals, the 

possibility of a transmit signal exhibiting a high PAPR remains a plaguing concern 

particularly so when the number of subcarriers involved is large. A signal with high 

PAPR is nonlinearly amplified in the high power amplifier (HPA) and as a result the 

BER of the system is degraded due to in-band radiations and interferences occur in 

adjacent channels owing to out-of-band radiations.  

In order to deal with the above-mentioned problems from nonlinear amplification 

of signals, different methods for reducing PAPR have recently been proposed in 

literature. These include signal clipping [9], [10], companding [11], selective mapping 

[12] - [14], partial transmit sequence [15], [16], coding [17], tone reservation [18], [19] 

and hybrid schemes [20] - [22].  

In general, based on how the above PAPR reduction methods alter the transmit 

signal, they can be classified into three main categories [23], namely:  

i) Signal distortion techniques, 

ii) Signal scrambling techniques and  

iii) Hybrid techniques.  
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In the following subsections, some key methods in the three categories are briefly 

reviewed together with a highlight of their advantages and disadvantages. 

2.1.1 Signal Distortion Techniques 

In the signal distortion group, the reduction of PAPR is achieved through an 

irreversible modification of the OFDM signal to reduce the highest peaks prior to 

amplification in the HPA. The techniques under this category, generally, introduce both 

in-band and out-of-band interferences and also increase the complexity of the underlying 

OFDM system. Some of the methods in this class are discussed here below. 

A. Clipping and Filtering 

The clipping of high amplitudes in a signal is the simplest way to reduce the 

PAPR [24] - [26]. In its basic form, the clipping method simply trims the amplitudes of a 

signal  𝑥(𝑡) to a desired threshold before passing it to the HPA. Taking 𝜑(𝑡) to be the 

instantaneous phase angles corresponding to the signal amplitudes, the clipped signal is 

given as 

 𝑥′(𝑡) = {
𝑥(𝑡)     ,

𝐴𝑒𝑗𝜑(𝑡),
       

|𝑥(𝑡)| < 𝐴

|𝑥(𝑡)| ≥ 𝐴
 (2.1) 

where 𝐴 is the clipping threshold. 

Since the clipping operation is nonlinear, the PAPR of the signal is reduced at the 

expense of in-band distortion and out-of-band radiations; the latter is also referred to as 

adjacent channel emissions [27]. The in-band distortion cannot be eliminated by filtering 

and thus end up degrading the BER. Obviously, the PAPR reduction and BER 

degradation depend on the level of clipping. A higher clipping threshold results in both a 

lower PAPR reduction and a lower BER degradation and vice versa.  

The out-of-band radiations may lead to a reduction in spectral efficiency since a 

larger frequency guard would be required between adjacent channels to avoid 

interferences. The filtering of a signal after a clipping operation can reduce out-of-band 

radiation but it may also cause peak regrowth at some time instants. At those time 

instances, the signal amplitudes exceed the clipping level after the filtering operation. To 

eliminate peak regrowth, a repeated clipping-and-filtering operation can be performed 

[28] but generally requires too much iteration to reach a desired amplitude level.  

An adaptive clipping technique (ACT) was proposed in [29] with an aim to 
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eliminate the drawbacks of the traditional clipping technique in Alamouti encoded 

MIMO-OFDM systems. However, the amount of PAPR reduction by the technique had 

to be regulated to avoid an intolerably high BER degradation. 

B. Peak Windowing 

As a solution to lower the out-of-band radiations associated with hard clipping, 

the peak widowing technique multiplies the largest signal peak with a window function 

[30]. The typical window functions employed in the technique are Gaussian, cosine, 

Hanning, Kaiser and Hamming windows. The resulting spectrum is a convolution of the 

spectrum of the original OFDM signal and that of the applied window function.  

Ideally, the spectrum of the window function should be as narrow as possible but 

not too long in the time-domain so as not to affect many OFDM signal samples and 

thereby increase the BER. However, a narrow window function in the time-domain 

implies wide out-of-band radiations and hence a reduction in spectral efficiency.  

C. Envelope Scaling 

An envelope-scaling algorithm was proposed in [31] to reduce PAPR by scaling 

the envelopes of some subcarriers in the input signal before it is sent for IFFT processing 

in the transmitter. The aim of the scheme is to achieve almost the same envelope in the 

subcarriers akin to PSK modulation. The combination of envelopes that gives the lowest 

PAPR is forwarded to the IFFT section for onward processing and transmission.  

The phases of the resulting transmit signal are the same as for the original signal 

but the two signals have different envelopes. Therefore, the received data symbols can be 

decoded at the receiver without requiring any side information in the case of PSK 

modulation. However, for QAM-modulated subcarriers, the envelope-scaling operation 

can result in serious BER degradation. This can only be mitigated by transmitting an 

unwarranted large amount of side information, especially when the number of subcarriers 

is large, to the receiver for the decoding of the transmitted symbols. 

D. Random Phase Updating 

In [32], a random phase updating algorithm was proposed where random phases 

are generated and assigned to each subcarrier. The phase update is done iteratively 

together with PAPR calculation until a minimum threshold level or a maximum iteration 

number is reached. The phase shifts have to be known to both the transmitter and the 

receiver in order to avoid BER degradation.  
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A large amount of side information has to be transmitted for the receiver to have 

information about all the effected phase changes in the transmitter and this reduces the 

data-rate of the system. In addition, the efficiency of the algorithm was found to depend 

on the selected threshold level and the maximum iteration number. Although quantization 

and grouping of phases together with an adaptive threshold could improve the 

performance of the algorithm, all this would occur at the expense of an increased 

computational complexity. 

E. Peak-Reduction Carrier 

In this technique [33], a number of peak-reduction carriers are employed to 

reduce PAPR of OFDM signals. The technique finds an optimal amplitude and phase of 

each peak-reduction carrier for a given OFDM symbol. To get optimal peak-reduction 

carriers, an exhaustive search for all possible combinations of amplitudes and phases is 

needed. The exhaustive search is computationally intensive especially when a large 

number of subchannels and peak-reduction carriers are involved. Many peak-reduction 

carriers, greater than 25% of the total number of subcarriers, are generally required to 

attain a significant PAPR reduction. Consequently, the large number of peak-reduction 

carriers significantly reduces the data-rate of the system. 

In the implementation of the technique, a higher order modulation scheme is used 

to represent a lower order modulation symbol. This forces the amplitude and phase of 

peak-reduction carriers to be confined within the constellation region of the data symbol. 

However, the use of higher order modulations increases the probability of error when 

detecting the transmitted symbols and hence a degradation in BER. Therefore, a trade-off 

between PAPR reduction level and BER performance must be considered when selecting 

a digital modulation scheme and the number of the peak-reduction carriers. 

F. Companding 

The companding technique is highly used in processing of speech signals. Such 

signals are composed of low signal amplitudes and infrequent occurrences of high signal 

peaks. A similar characteristic is observed in OFDM signals. In the companding 

technique, larger quantization step-sizes are used to code high amplitudes in comparison 

to lower ones; a process achieved through employment of a companding law such as 𝜇-

law or A-law. This way, the technique improves the quantization resolution of low signal 

amplitudes at the expense of high amplitudes. Because of the infrequent occurrences of 
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high amplitudes, the speech quality is barely affected by the companding operation. In 

addition, the companding operation reduces the number of quantization levels and 

therefore the required number of bits per sample and the transmission bandwidth.  

Similar companding transforms to the ones used in speech applications have been 

proposed [34], [35]  for reducing PAPR in OFDM signals. After the IFFT operation at the 

transmitter, the signal is first companded using 𝜇-law and then quantized before digital-

to-analogue conversion. With a 𝜇-law compression, a discrete-time companded signal 

can be expressed as 

 
𝑥𝑐𝑜𝑚𝑝(𝑛) =

𝑥𝑝 sgn(𝑥(𝑛)) ln (1 + 𝜇 |
𝑥(𝑛)
𝑥𝑝

|)

ln (1 + 𝜇)
 (2.2) 

where 𝑥𝑝 is the maximum peak of the signal 𝑥(𝑛) before companding, 𝜇 is a parameter 

for setting the nonlinearity of the companding function, sgn(. ) and ln(. ) are the standard 

signum and natural logarithmic functions, respectively. 

At the receiver, after analogue-to-digital conversion, the received signal is 

expanded via an operation that attempts to invert the companding transform in the 

transmitter. The expanded discrete-time signal can be expressed as 

 
𝑦𝑒𝑥𝑝𝑎𝑛𝑑(𝑛) =

𝑥𝑝 exp (
𝑦(𝑛)

𝑥𝑝 sgn(𝑦(𝑛))
ln(1 + 𝜇)) − 1

𝜇 sgn(𝑥(𝑛))
 

(2.3) 

where 𝑦(𝑛) is the received discrete-time signal. 

Due to the companding operation, quantization errors in high signal amplitudes 

can be significantly large, thus leading to BER degradation. In addition, the 𝜇-law 

companding does not change the peak power of the original OFDM signal but instead, 

through the control of 𝜇, it increases the average power in order to reduce PAPR. 

Subsequently, the increase in the average power leads to a further degradation in BER. 

Therefore, the reduction in PAPR through companding is achieved at the expense of BER 

degradation. 

2.1.2 Signal Scrambling Techniques 

Methods in this class can either generate many alternatives of the original OFDM 

signal followed by transmission of the one with the minimum PAPR or modify the signal 

by introducing phase shifts, adding peak-reduction tones or altering constellation points. 
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An overview of the main approaches in this category is given here below. 

A. Coding 

The coding scheme is motivated by the fact that the PAPR of a given OFDM 

symbol is dependent on the modulation symbols. Some combinations of modulation 

symbols in an OFDM symbol may result in higher PAPRs than others. The worst case 

PAPR can occur if the same data symbol modulates all subcarriers. An example is the 

case when BPSK modulation symbol 𝑋(𝑘) = +1, for 𝑘 = 0, 1, … ,𝑁 − 1, is transmitted 

on all the 𝑁 subchannels, thus after IFFT resulting in a discrete-time signal with a PAPR 

equal to 𝑁. 

In [36], a block coding approach was employed to avoid the transmission of 

identical modulation symbols. Another coding approach to avoid high PAPR is to search 

for a combination of optimal codes that yield low PAPR. For example, in [37] Golay 

complementary sequences were applied to reduce PAPR. In addition, the idea of 

integrating PAPR reduction and error-correction coding has been presented in several 

papers [38]. However, it is important to note that any form of coding reduces the useful 

data rate and increases computational complexity of the system. 

B. Tone Reservation  

This can be regarded as one of the additive signal methods for reducing PAPR in 

OFDM systems. The general idea behind a signal addition method is the creation of a 

dummy signal, also referred to as a peak-cancelling or a peak-reduction signal, which 

upon its addition to OFDM signal results into a signal of a much lower PAPR. In general, 

signal addition methods can achieve high PAPR reductions but their implementation may 

require the use of complex optimization algorithms to obtain the dummy signal. 

Tone-reservation methods [39] - [42] need to set aside a subset of subcarriers, 

referred to as peak-reduction tones, for creating the dummy signal through a search for a 

combination of peak-reduction weights in the frequency domain. The dummy signal is 

found from the inverse discrete Fourier transform (IDFT) of the peak-reduction weights. 

In other words, a tone reservation method attempts to solve a minimax problem  

 minimize max(|𝐱 + 𝐜|)   (2.4) 

where 𝐱 is the OFDM signal vector whose PAPR is to be reduced through addition of a 

dummy signal, denoted here by vector 𝐜, and given by 
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 𝐜 = IFFT(𝐂) (2.5) 

where vector 𝐂 contains the peak-reduction coefficients in the reserved locations and 

zeros in the rest of locations in an OFDM symbol. 

At the receiver, the reserved tones are ignored. Thus, a tone-reservation method 

does not require any side information to be transmitted and does not affect the BER of 

the underlying system. However, the average power of the transmitted signal increases 

and the overall bit-rate is reduced since the reserved subcarriers do not carry user data. 

Attempts to address these two drawbacks in addition to reducing the computational 

complexity in the finding of the peak-reduction coefficients, while at the same time 

attaining good PAPR reduction, have continued to attract a lot of research. 

Depending on the methodology of finding the peak-reduction weights, a tone-

reservation method can be said to be optimal or suboptimal. A tone-reservation method 

that seeks optimal solution to the peak-reduction weights generally employs an 

optimization technique such as linear programming [43], second-order cone 

programming [44] or quadratically constrained quadratic programming [45] to solve the 

problem in equation (2.4). Thus, an optimal tone-reservation method is characterised by 

both a high computational complexity and a slow convergence rate.  

Due to the shortcomings of the optimal tone-reservation approaches, several 

suboptimal algorithms have been proposed in literature. Among the first suboptimal 

methods, hereafter referred to as K-TR due to the use of a time-domain kernel signal, is 

the scheme that was proposed in 1997 by Tellado and Cioffi [46]. It employs a gradient 

algorithm in which the peak-reduction signal at each iteration is an appropriately scaled 

and phase-rotated kernel signal that is circularly shifted to have its peak coincide with the 

peak of the signal whose PAPR is being reduced in that particular iteration. The kernel 

signal is a pulse waveform that approximates the Dirac delta function and is given by 

 𝐩 =
√N

𝐿
IFFT(𝐏) (2.6) 

where 𝑁 and 𝐿 denote the total number of subcarriers and the number of reserved 

subcarriers, respectively, and 𝐏 is a frequency-domain vector that has peak-reduction 

weights set to one at reserved positions and zero for all the other elements. 

At the ith iteration, the peak-reduced transmit signal can be expressed as 

 𝐱𝑖 = 𝐱𝑖−1 − 𝛼𝑖𝐩[((𝑛 − 𝑚𝑖))𝑁] (2.7) 
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where 𝑚𝑖 is the index of the peak of signal 𝐱𝑖−1, ((𝑛 − 𝑚𝑖))𝑁 denotes a circular shift by 

𝑚𝑖 samples and 𝛼𝑖 is a complex scaling factor given by 

 𝛼𝑖 =
𝑥𝑖−1(𝑚𝑖)

max
0≤𝑛≤𝑁−1

|𝑥𝑖−1(𝑛)|
( max
0≤𝑛≤𝑁−1

|𝑥𝑖−1(𝑛)| − 𝑥𝐶𝐿) (2.8) 

where 𝑥𝐶𝐿 is a predetermined clipping level. 

The effective peak-cancelling signal at the ith iteration is obtained as follows: 

 𝐜 = −∑𝛼𝑖𝐩[((𝑛 −𝑚𝑖))𝑁]

 

𝑖

 (2.9) 

and the peak-reduction weights vector is given by 𝐂 = FFT(𝐜), while the peak-reduced 

transmit signal is the combined signal (𝐱 + 𝐜). The algorithm stops either when the 

targeted PAPR or the maximum iteration number is reached.  

The K-TR scheme can achieve good PAPR reductions. However, a major 

drawback of the scheme is the likelihood that a new peak is generated when equation 

(2.7) is on the executed. This problem, normally referred to as peak regrowth or 

regeneration, occurs because the kernel signal may have nonzero entries at other 

positions apart from the location of the peak amplitude. The peak regeneration 

destabilises the trajectory of the algorithm, hence slowing down its convergence. 

Additionally, the use of K-TR method increases the average transmit power. 

Another old suboptimal method is the clipping control tone-reservation (CC-TR) 

method that was proposed in 1997 by Gatherer and Polley [47]. It also employs a 

gradient algorithm to find peak-reduction weights. The method starts by hard clipping the 

multicarrier signal 𝐱 to obtain a clipped signal 𝐲 with the entries given by  

 𝑦(𝑛) = {
𝑥(𝑛)         ,         |𝑥(n)| < 𝑥𝐶𝐿
𝑥𝐶𝐿𝑒

𝑗𝜑(𝑛), |𝑥(n)| > 𝑥𝐶𝐿
 (2.10) 

where 𝜑(𝑛) is the phase of 𝑥(𝑛).  

From the clipped signal, the so-called correction signal is obtained as follows: 

 𝐜̃ = 𝐲 − 𝐱 (2.11) 

On this signal, a FFT is applied to obtain a frequency-domain vector containing peak-

reduction weights as follows:  

 𝐂̃ = FFT(𝐜̃)  (2.12) 
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However, to conform to the requirements of tone-reservation, the weights on the 

non-reserved positions are set to zero, thus giving the elements of the actual peak-

reduction weights vector 𝐂 as 

 𝐶(𝑘) = {
𝐶̃(𝑘),      𝑘 ∈ 𝑖𝑃𝑅𝐶
0       ,      𝑘 ∉ 𝑖𝑃𝑅𝐶

  (2.13) 

where 𝑖𝑃𝑅𝐶 denotes the set of indices of the reserved-subcarrier locations. From this 

equation, the peak-reduction signal is obtained by IFFT using equation (2.5). 

Every iteration in the method results in a time-domain signal 𝐜, which is added to 

the input signal to yield a peak-reduced signal. Thus, at the 𝑖th iteration, the peak-reduced 

signal is given by 

 𝐱𝑖 = 𝐱𝑖−1 + 𝜇𝐜𝑖   (2.14) 

where 𝜇 is a weighting factor and this together with the maximum iteration number are 

the parameters of the algorithm.  

The CC-TR method can attain a modest PAPR reduction with a slight degradation 

of BER performance. However, the maximum peak of the peak-reduction signal during 

the first iteration of the method is extremely smaller than the maximum peak of the 

original correction signal. This disorients the method, thus making it to require too much 

iteration to converge, thereby increasing its computational complexity.  

A tone reservation method based on least-squares approximation (LSA-TR) in 

[48] utilizes the CC-TR algorithm to find peak-reduction weights and least-squares 

approximation to obtain an optimal weighting factor 𝜇. Although the method converges 

fast and has a small increase in average power, it exhibits poor PAPR reduction 

performance. In addition, the method has a high computational complexity.  

In [49], a suboptimal tone-reservation method based on curve-fitting, abbreviated 

as CF-TR method, was proposed. The CF-TR method creates a peak-reduction signal by 

applying curve-fitting optimization to another signal referred to as a clipping noise signal, 

which is similar to the correction signal in equation (2.11). The reduction in PAPR by 

this method is strictly determined by the clipping threshold and is greatly diminished 

when the number of reserved subcarriers is less than the number of nonzero elements in 

the clipping noise vector. Although the method achieves a moderate PAPR reduction, it 

evaluates the computationally intensive Moore-Penrose pseudoinverse that gives 

inaccurate results in some instances when the coefficient matrix is close to being 
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singular. In addition, the method is prone to peak regeneration and it increases the 

average power of the resultant transmit signal.  

The paper in [50] proposed a scaling signal-to-clipping noise ratio tone-

reservation (SSCR-TR) method. A clipping noise signal is scaled down by an optimal 

factor to obtain a kernel peak-reduction signal. The scaling factor is found by solving a 

least-squares approximation problem with peak-regeneration constraints. The method 

converges fast but it is still disposed to peak regeneration and has the PAPR reduction 

performance strongly determined by the clipping threshold employed.  

A suboptimal weighted tone-reservation method in [51] solves a weighted least-

squares approximation problem to generate peak-reduction weights. Although the method 

is aimed at suppressing peak re-growth problem during PAPR reduction, it is not able to 

eliminate it. In addition, the method is not able to find the optimal peak-reduction 

weights and has poor PAPR reduction performance.  

The work in [52] proposed a tone reservation method, which combines artificial 

neural network and initial-value optimization (IVO-TR). It was aimed at reducing the 

runtime computational complexity through an offline generation of peak-cancelling 

signals. At runtime, the method classifies an OFDM signal and then searches for an 

appropriate peak-cancelling signal from among those stored in a pre-work table. The CC-

TR algorithm is employed to generate peak-reduction signals, which become the training 

targets for feedforward neural network. Consequently, the reduction in PAPR strongly 

depends on the CC-TR performance. In addition, the training process is computationally 

intensive, requires costly and powerful servers, and takes a lot of time due to the large set 

of data involved to generate near optimal peak-reduction signals. Moreover, the 

prediction process at runtime still has high computational complexity and the average 

transmission power is increased.  

An extreme learning machine tone-reservation (ELM-TR) scheme was proposed 

in [53]. It is based on an online sequential extreme learning machine. The training time is 

reduced by having a single hidden layer in the feedforward neural network. Peak-

reduction signals generated by the CC-TR scheme are used to train the neural network. 

Thus, the CC-TR implementation determines the PAPR reduction performance of the 

method. In addition, the generation of training and test data sets and the training process 

is computationally intensive and a huge storage space is needed to store the input data 

and several trainable parameters.  

A sub-optimal tone-reservation referred to as selective TR (S-TR) was proposed 
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in [54] for use to reduce PAPR in MIMO-OFDM systems employing space-frequency 

block codes (SFBC). The proposed algorithm reduces the peak power by adding a kernel 

peak-reduction signal to the transmit signal with the maximum PAPR. Although this 

method has lower computational complexity than optimal schemes, it is prone to re-

generation of new peaks during iterations, which slow down the convergence, and it 

increases the average power of the transmit signal. In addition, it has a poor PAPR 

reduction performance. 

C. Tone Injection  

The tone injection [55] method makes use of the so-called expanded constellation 

to reduce PAPR. An original constellation point is mapped onto one of the several points 

in the expanded constellation. The possible mapping points are spaced at the same 

distance from the original point. All the original symbols are mapped onto one of their 

possible alternatives in the expanded constellation to yield a combination of symbols that 

result in reduced PAPR.  

The operation of replacing an original constellation point with another one in the 

expanded constellation is similar to injecting a tone with an appropriate frequency and 

phase into the OFDM signal; thus the name of “tone injection”. Similar to the tone 

reservation, this method too does not require transmission of side information and has no 

effect on the BER of the underlying system. However, these advantages are outwitted by 

the high computational complexity involved to find a new set of modulation symbols and 

the rise in the average transmit power owing to the use of the expanded constellation. 

D. Adaptive Symbol Selection / Selective Level Mapping 

Adaptive symbol selection or selective level mapping (SLM) [56] - [58] is based 

on the creation of 𝑃 different signals from the original input data vector. All signal 

alternatives bear the same information. After the IFFT, the variant that yields the smallest 

PAPR is transmitted. Generally, two approaches are used to create signal alternatives. 

The first approach, illustrated in Figure 2.1, applies (𝑃 − 1) interleavers on the input bit 

stream to generate 𝑃 OFDM symbols 𝑋𝑖, 𝑖 = 0,1, … , 𝑃 − 1, while the second one in 

Figure 2.2 involves multiplying the original symbol 𝑋 with different phase sequences 𝜓𝑖, 

𝑖 = 0,1, … , 𝑃 − 1, of the same length as 𝑋. 

Depending on the choice of the SLM approach, the extent of PAPR reduction is 

highly influenced by the method of interleaving and the number of interleavers or by the 
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number and mode of generation of phase sequences. A large number of interleavers or 

phase sequences are required to attain a substantial PAPR reduction. The optimization 

process of selecting the signal with the lowest PAPR out of P signals may be 

computationally intensive if the number of subcarriers and P are large. 

Moreover, the knowledge about the method chosen for interleaving or phase 

sequencing needs to be sent to the receiver for the demodulation of symbols. The 

transmitted side information about interleaving and phase sequence reduces the data-rate 

of the system. In case of errors during the detection of the side information, the recovery 

of the data symbols may be impossible. Blind SLM schemes [59], [60] have been 

proposed to avoid transmission of side information but the complexity of demodulation at 

the receiver is greatly increased.  
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Figure 2.1. Block diagram of SLM using interleavers [56] 
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Figure 2.2. Block diagram of SLM using phase sequences [56] 
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A. Partial Transmit Sequences 

In partial transmit sequences (PTS) method [61] - [63], the input symbol to the 

IFFT is split into 𝑃 disjoint sub-blocks 𝑋𝑖, 𝑖 = 0, 1, … , 𝑃 − 1, as illustrated in Figure 2.3. 

The IFFT operation is then performed, not on the entire 𝑁-length OFDM symbol, but on 

the separate sub-blocks. The output of the 𝑖𝑡ℎ sub-block is then multiplied by the so-

called complex rotation factor 𝑏𝑖. The values of 𝑏𝑖, 𝑖 = 0, 1, … , 𝑃 − 1, for all sub-blocks, 

are optimized to yield a combined signal, 𝑥 = ∑ 𝑏𝑖𝑥𝑖
𝑃−1
𝑖=0 , with minimum PAPR. This 

optimization has to be performed in real time for each input OFDM symbol to the IFFT 

and hence leads to increased transmitter complexity.  

Moreover, the information about the complex rotation factors has to be sent as 

side information to the receiver. This transmission of the side information reduces the 

useful data rate. In addition, as demonstrated in [64], although the PAPR reduction 

increases with the number of sub-blocks, the effectiveness of PTS schemes are limited. 
 

B. Active Constellation Extension 

In this method, abbreviated as ACE, the exterior constellation points in the set of 

modulation symbols constituting one OFDM symbol are extended in the outward 

direction from their original positions in the constellation map to reduce PAPR [65], [66]. 

The motivation behind this method is to reduce PAPR by moving some points of the 

modulation symbols farther away from the decision boundaries without degrading the 

system BER. 
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Figure 2.3. Block diagram of OFDM transmitter with PTS scheme [64] 
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The ACE modification process is illustrated in Figure 2.4 for QPSK and 16-QAM 

modulation schemes. Each of the shaded regions represents the feasible points of a 

possible extension of the corresponding original point located at the innermost corner of 

region. For the 16-QAM constellation, the possible movement for the outer non-corner 

points are the straight lines from the point towards infinity. 

The ACE method guarantees that those points in one feasible region and another 

have a minimum Euclidean distance less than that between the corresponding original 

points. This ensures that only a small degradation of BER performance occurs. The 

constellation extension operation is transparent to the receiver. This implies that the ACE 

method does not need transmission of any side information and thus does not affect the 

system data rate.  

However, although the ACE technique can be applied to any digital modulation 

scheme, a large constellation size has a small number of possible extension points and 

this limits PAPR reduction. One consequence of constellation extension is the increase in 

transmit power that needs to be managed when the ACE method is employed. In 

addition, the complexity of the ACE technique strongly depends on the method used to 

extend the constellation points.  

 

(a)                 (b) 

Figure 2.4. Illustration of ACE method [65] (a) QPSK (b) 16-QAM 
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2.1.3 Hybrid PAPR Reduction techniques 

For this class of methods, two or more techniques are combined in order to 

improve PAPR reduction and reap from the advantages of different schemes. However, 

the hybrid schemes are more computationally complex [67] to implement in both 

hardware and software than discrete methods. The main aims of combining different 

methods have been to improve PAPR reduction, lower computational complexity and 

reduce BER. For example, in [68] a method combining PTS and error-correction coding 

(ECC) was proposed. This PTS-ECC technique offers better PAPR reductions than the 

ordinary PTS scheme especially when using pseudo-random sub-blocking partitions to 

reduce the complexity of implementing the PTS algorithm.  

Similarly, methods combining SLM and error-correction codes, and referred to as 

SLM-ECC schemes, have been proposed in [69] and [70]. These methods are built on the 

concatenated SLM scheme, which employs label insertion and scrambling to avoid 

transmission of side information and an error correction scheme together with 

interleaving block to improve BER performance. Typical error correction codes such as 

linear block codes, convolutional, turbo or cyclic codes can be used. However, the BER 

performance improvement is at the expense of reduced PAPR reduction performance and 

increased system complexity.  

Another example of a hybrid scheme was proposed in [71]. It combines iterative 

clipping and filtering technique and enhanced nonlinear companding scheme. The 

enhanced companding scheme does not require an expansion operation at the receiver to 

reverse signal compression at the transmitter. The hybrid method has a computational 

complexity somewhere between that of the enhanced nonlinear companding scheme and 

that of the iterative clipping and filtering technique. In addition, the hybrid method 

achieves better PAPR reduction capability and BER performance than the iterative 

clipping and filtering scheme alone. Additionally, the BER performance of the hybrid 

method is better than that of the enhanced nonlinear companding scheme when 

considering the same amount of PAPR reduction. 

The work in [72] proposed a hybrid technique that combines selective codeword 

shift and selective level mapping schemes (SCS-SLM) with aim to improve PAPR 

reduction in Alamouti coded MIMO-OFDM systems. The hybrid scheme offers a better 

performance than that offered by the individual SCS and SLM schemes; however, PAPR 
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reduction is still poor. 

A hybrid PAPR reduction method combining and optimizing three techniques, 

namely convolutional code, successive suboptimal cross-antenna rotation and inversion 

and iteratively modified companding and filtering, here abbreviated as CSC, was 

proposed for Alamouti encoded MIMO-OFDM systems in [73]. The hybrid scheme can 

achieve good PAPR reductions but at the cost of a degraded BER and increase in system 

complexity. 

2.2 Review of Alternatives to PAPR Reduction Techniques 

Typically, the PAPR of an OFDM signal ranges between 10 and 12 dB. 

Considering the lower value, if there is no PAPR reduction it would require the HPA to 

be operated with a 10 dB power back-off from the 1-dB compression (P1 dB) point to 

linearly amplify all signal amplitudes. However, the 10 dB power back-off significantly 

reduces the efficiency of the HPA. With typical efficiency values being in the range of 

40-70% at the P1dB point, the reduction could be to levels below 5% [74]. Consequently, 

applications based on OFDM technique are likely to cause poor battery lifetime in mobile 

terminals and high electrical power consumption in base stations. 

Two alternatives to PAPR reduction for avoiding operating the HPA in low 

power-efficiency point are either to extend the linear region of operation using 

linearization techniques or to increase the power efficiency through efficiency 

enhancement methods. Linearization techniques are applicable to a HPA that is operated 

near the saturation point where the efficiency approaches the maximum value but the 

gain is compressed and nonlinear distortion is likely to occur.  

On the other hand, efficiency enhancement techniques are applicable to a HPA 

that has been backed-off to have a linear performance and thus have low power 

efficiency. Therefore, a solution to improve linearity or efficiency ends up combining a 

linearizer and an efficiency enhancement technique. Several techniques proposed under 

the two approaches are discussed briefly in the following two subsections. 

2.2.1 Linearization Techniques for Power Amplifiers 

Linearization techniques attempt to correct the distortion from nonlinear 

amplification by providing an inversion function or by generating an appropriate 

correction signal. These techniques aim to extend the linear range of the power amplifier 
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to reduce signal distortion, specifically the intermodulation products, to below −60 dBc.  

The three most common linearization techniques are the digital predistortion, 

feedforward and feedback methods. The first two have lately attracted a lot of attention 

and are undergoing intensive research and development for use in wireless 

communication applications [75]. 

A. Digital Predistortion 

Predistortion generally refers to any technique that linearizes the HPA through an 

appropriate modification of amplitude and phase responses of the input signal. This is 

typically realized by passing an input signal through a predistorter system whose transfer 

function is the inverse of the HPA as illustrated in Figure 2.5. As a result, the 

combination of the predistorter and HPA yields a transfer function that allows for linear 

amplification of all the amplitudes of the input signal 𝑣𝑖(𝑡).  

Predistortion can be performed either at the baseband or passband level. However, 

in order to utilise the immense potential of digital signal processing, predistortion is 

performed at baseband frequencies and is thus generally referred to as digital 

predistortion. Two well-known drawbacks of the digital predistorters are their high 

sensitivity to analogue circuitry imperfections and their use, with some parameters, can 

result in intolerably high adjacent channel emissions [76]. 
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Figure 2.5. Digital predistortion (a) Device connection (b) Operation  
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B. Feedforward technique 

The feedforward method is the dominant linearization technique in multicarrier 

transmission systems. It attempts to cancel the nonlinear distortion of the power amplifier 

by applying a corrective signal on the output as illustrated in Figure 2.6. The input signal 

𝑣𝑖(𝑡) is applied to two channels. In the first channel, the signal is amplified through the 

main PA. In the second channel, the signal is appropriately delayed in the block labelled 

𝑡𝑎 to give a reference signal for comparison with the output of the attenuator. The block 

𝑡𝑎 compensates for the delay incurred during the processing of the input signal through 

the main PA and attenuator.  

The output of the main PA can be considered to consist of the undistorted input 

signal and the distortion signal, i.e. 

 𝑣𝑎(t) = 𝐴𝑣𝑣𝑖(𝑡) + 𝑣𝑑(𝑡) (2.15) 

For simplicity of notation, the delay through the main PA is not indicated. The output of 

the main PA is simultaneously passed to the attenuator and to the delay block 𝑡𝑒. The 

output of the attenuator is given by 

 𝑣𝑐(t) = 𝑣𝑖(𝑡) +
𝑣𝑑(𝑡)

𝐴𝑣
 (2.16) 

Assuming perfect delay compensation in the block 𝑡𝑎, the output of the first summation 

block is an error signal given by 
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Figure 2.6. Feedforward linearization technique [75] 
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 𝑒𝑖(t) = 𝑣𝑖(𝑡) − 𝑣𝑐(𝑡) =
𝑣𝑑(𝑡)

𝐴𝑣
 (2.17) 

Signal 𝑒𝑖(t) is amplified through the error amplifier to give a distortion signal 

 𝑒𝑜(t) = 𝑣𝑑(𝑡) (2.18) 

Finally, the distortion signal is subtracted from the output of the main PA, after 

the latter has passed through the delay block 𝑡𝑒. The passage of the main PA output 

through block 𝑡𝑒 compensates for the processing time in the error amplifier. Again 

assuming perfect delay compensation, the output of the second summation is 

 𝑣𝑜(t) = 𝑣𝑎(𝑡) − 𝑒𝑜(𝑡) = 𝐴𝑣𝑣𝑖(𝑡) (2.19) 

which is the undistorted part of the signal in equation (2.15). 

Therefore, the feedforward technique is able to cancel the nonlinear component in 

the output of the main PA and this is in addition to other known benefits of feedforward 

mechanism such as the suppression of internally generated noise and bandwidth 

extension. These benefits make the technique very attractive for use in multicarrier 

wireless applications.  

However, use of feedforward linearization may result in both gain and phase 

mismatches in the two signals at the input of the summation blocks. These mismatches 

affect the linearization that can be realised using the technique. In addition, although 

delay blocks can be realized using passive elements or transmission lines to alleviate the 

mismatch problems, the blocks may reduce the amplifier efficiency owing to power 

dissipation and they are difficult to design especially for wideband applications. 

C. Feedback technique 

The feedback technique can also be considered as a form of input signal 

correction or predistortion [77]. In this technique, a feedback network is added to pass a 

part of the output signal to the input terminal as shown in Figure 2.7. This linearization 

technique is based on the principle that a large change in open-loop gain causes only a 

small change in the closed-loop gain of a negative feedback amplifier. This is normally 

expressed using the following relationship between the two gains: 

 
𝑑𝐴𝑓

𝐴𝑓
=

1

1 + 𝛽𝐴𝑣  

𝑑𝐴𝑣
𝐴𝑣

 (2.20) 

where 𝐴𝑓, 𝐴𝑣 and 𝛽 are the closed-loop gain, open-loop gain and feedback factor, 
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respectively.  

The output signal can be expressed in the form 

 𝑣𝑜(t) = 𝐴𝑣𝑣𝑖(𝑡) + 𝑣𝑑(𝑡) − 𝛽𝐴𝑣𝑣𝑜(𝑡) (2.21) 

where 𝑣𝑑(𝑡) represents the distortion introduced by the nonlinear amplification of the 

input signal though the HPA. 

Equation (2.21) can be rearranged to give the output signal as 

 𝑣𝑜(t) =
𝐴𝑣

1 + 𝛽𝐴𝑣
𝑣𝑖(𝑡) +

𝑣𝑑(𝑡)

1 + 𝛽𝐴𝑣
 (2.22) 

where the distortion is now reduced by a factor 1 + 𝛽𝐴𝑣 due to the feedback network.  

From equation (2.22), it is clear that the overall gain on the input signal is reduced 

by the negative feedback from 𝐴𝑣to 𝐴𝑓 = 𝐴𝑣/(1 + 𝛽𝐴𝑣). This means that a feedback 

amplifier needs a large drive in order to give the same response level as the amplifier 

with no feedback.  

In addition, the reduction in nonlinear distortion is pegged on the loop gain 𝛽𝐴𝑣 

being large. At RF levels, a large loop gain may not be achieved. Additionally, the 

feedback loop may affect the stability of the system due to the introduction of a large 

number of poles by intrinsic components. This large number of poles may result in an 

extreme phase shift near 180°, thus making the system to oscillate. 
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Figure 2.7. Feedback linearization technique 



Chapter 2: Literature Review  

28 
 

2.2.2 Efficiency Enhancement Techniques for Power Amplifiers 

One of the inherent problems of amplifying the power of amplitude-modulated 

RF signals is that the circuit of a conventional PA is designed to provide maximum 

efficiency at a single power point typically near the rated maximum power for the device. 

When the PA is backed-off away from this level, its efficiency is significantly reduced 

and this is accompanied by increased power dissipation, even though the output power is 

reduced.  

To avoid the operation of PA at low power efficiency level, several efficiency 

enhancement techniques have been proposed. The four most common approaches are 

dynamic loading (Doherty amplifier), dynamic biasing, envelope elimination and 

restoration (EER) and envelope tracking (ET) [78]. These techniques work either by 

varying the load or by biasing the PA according to the amplitude characteristics of the 

input signal. These techniques are briefly reviewed here below. 

A. Doherty power amplifier 

The Doherty power amplifier, originally proposed in 1936 [79], employs dynamic 

loading to sustain high efficiency operation over a broad range of the input voltage in a 

linear PA supplied with high PAPR amplitude-modulated signals. The amplifier consists 

of two power amplifiers, referred to as main (or carrier) and auxiliary (or peak) PA as 

shown in Figure 2.8. The transistors in the two amplifiers are operated as dependent 

current sources. The main device is Class B (or Class AB) power amplifier, while the 

auxiliary is of Class C. The quarter-wave transmission line introduces a 90° phase shift 

on the signals passing through it. 

The final maximum RF output power of the system is the sum of the powers of 

the two amplifiers. In a typical implementation, as the main PA saturates at high input 

power, the auxiliary amplifier turns on. When the input drive decreases by about 6 dB 

from the maximum rated power, the auxiliary amplifier turns off and stops drawing DC 

input power. Thus the two amplifiers operate together only at high input power levels. 

The turning-off of the auxiliary PA helps to improve the power efficiency of the system 

at low input power levels. In addition, under correct impedance matching conditions, the 

main PA can remain near the maximum efficiency during the top 6 dB of the power 

range.  

The high efficiency together with a constant voltage gain over a broad range of 

input power is achieved by presenting the main amplifier with a load that dynamically 
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varies with the current of the auxiliary amplifier. The load variation is based on the 

principle that the impedance seen by one current source can be changed by supplying a 

current from another source.  

The quarter-wave transmission line between the main PA and the load 𝑅𝐿 acts as 

an impedance transformer. Assuming a typical implementation using MOSFET 

transistors, the transformed load seen by the main PA is the dynamic resistance given by 

 𝑅𝑚 =
𝑧0
2

𝑅𝐿 (1 +
𝐼𝑎
𝐼𝑚
)
 (2.23) 

where 𝑧0 is the characteristic impedance of the transmission line and 𝐼𝑎 and 𝐼𝑚 are the 

maximum values of the fundamental components of the drain currents of the auxiliary PA 

and main PA, respectively. 

From equation (2.23), if current 𝐼𝑎 decreases from the maximum value of 𝐼𝑚 to 

zero with the gate-to-source voltage 𝑣𝑖(𝑡), the load resistance 𝑅𝑚 increases from  𝑧02/2𝑅𝐿 

to 𝑧02/𝑅𝐿. Therefore, as 𝐼𝑚 decreases, the maximum value of the fundamental component 

of the drain-to-source voltage of the main amplifier given by 𝑉𝑚 = 𝑅𝑚𝐼𝑚 remains a 

constant. This is the condition for achieving high efficiency over the dynamic range of 

the input signal for a fixed voltage supply 𝑉𝐷𝐷. Thus, the efficiency of the main PA is 

 𝜂 =

1
2𝑉𝑚𝐼𝑚

𝑉𝐷𝐷𝐼𝐷
=
1

2
(
𝐼𝑚
𝐼𝐷
) (

𝑉𝑚
𝑉𝐷𝐷

) (2.24) 

where 𝐼𝐷 is the drain current. 
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Figure 2.8. Block diagram of Doherty amplifier [75] 
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Since the ratio 𝐼𝑚/𝐼𝐷 is constant, owing to the fact that the drain current has a 

conduction angle that is approximately constant, a high efficiency can be achieved if the 

ratio 𝑉𝑚/𝑉𝐷𝐷 is fixed at a value close to 1, a condition satisfied when 𝑉𝑚 is constant. 

Thus, when the auxiliary amplifier becomes active, it pulls the load impedance of the 

main amplifier to hold the maximum output voltage at a constant. This in turn achieves 

maximum efficiency over a wide range of the input power levels. The main drawback of 

the Doherty power amplifier is its weak linearity and this can only be improved by an 

additional analogue circuitry. 

B. Envelope elimination and restoration technique 

The envelope elimination and restoration (EER) technique, initially proposed by 

Kahn in 1952 [80], is illustrated in Figure 2.9. The input signal 𝑣𝑖(𝑡) is simultaneously 

fed to two signal-processing paths. One path comprises of an envelope detector followed 

by a low-frequency PA. The second path contains an RF limiter and a nonlinear high 

efficiency switched-mode PA.  

The input signal to the envelope detector can be considered to be of the form 

 𝑣𝑖(𝑡) = 𝑒(𝑡) cos[2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)] (2.25) 

where 𝑒(𝑡) is the signal envelope or the amplitude modulation part and 𝜃(𝑡) is the phase 

modulation part.  

The envelope detector separates the signal envelope from the input signal, thus 

giving the output as the envelope 𝑒(𝑡). This signal envelope is then amplified by the low-

frequency PA to give 𝐴𝑣𝑒(𝑡), which then modulates the DC power supply of the 

switched-mode RF PA to yield 𝑉𝐷𝐷𝐴𝑣𝑒(𝑡).  

On the hand, the limiter gives a constant-envelope signal 𝜗(𝑡), which is fed to the 

gate of the switched-mode PA as the input. Since the switched-mode RF PA is saturated, 

the output voltage amplitude is proportional to the modulated DC supply voltage. 

Therefore, the envelope of the input signal 𝑣𝑖(𝑡) is restored back at the output of the 

switched-mode PA.  

One important advantage of the EER technique is that it avoids the use of a linear 

power amplifier, which has very low power efficiency that also decreases with the level 

of the drive voltage. Highly efficient switched-mode PAs such as those in class D, E, DE 

or F have efficiencies that are not affected by the level of the drive voltage and can be 

used in the EER technique [81]. 
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Figure 2.9. Block diagram of envelope elimination and restoration scheme 

However, the EER system suffers from three major drawbacks. Firstly, there is a 

large phase mismatch between the two signal-processing paths. This is because the phase 

shift in the low-frequency path is greater than in the RF path. Secondly, since the limiter 

is built from nonlinear components, it introduces a phase distortion that corrupts the 

phase of the input signal. Thirdly, the amplitude modulation of the DC supply in the 

switched-mode PA causes the nonlinear transistor capacitance to introduce a phase 

distortion. 

C. Envelope tracking technique 

This efficiency enhancement method applies an envelope-derived modulation 

similar to the EER technique to the DC power supply of a linear RF power amplifier as 

illustrated in Figure 2.10 [78]. The level of the supply voltage is varied in proportion to 

the drive voltage in such a way as to ensure that the ratio 𝑉𝑚/𝑉𝐷𝐷 ≈ 1 in equation (2.24) 

in order to achieve a highly efficient amplification. 

One major disadvantage of the envelope tracking method is the introduction of 

gain and phase variations, which significantly reduces the linearity of the PA. To 

compensate for these variations a complex digital predistortion circuitry is required.  

2.3 Knowledge Gaps 

Based on the review of the PAPR reduction methods in the literature, it can be 

concluded that the techniques that have been proposed up to now fail to meet the majority 
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of the attributes that are desired for practical implementation especially in real-time 

systems. Several attributes have been cited by different sources [82], [83] as the basic 

requirement for a practically realizable PAPR reduction method. The most important 

attributes are the non-degradation of BER, low computational complexity, simplicity in 

implementation, high PAPR reduction capability and that the method should not affect 

the transmitted power and data-rate.  

In addition, the review shows that linearization techniques extend the linear 

operation of the power amplifier at the expense of an increased complexity in digital 

signal processing especially for digital predistortion or a complex analogue circuitry in 

the case of feedforward and feedback techniques.  

Similarly, the efficiency enhancement techniques are practically difficult to 

realize especially for high volume applications. This is because of the required additional 

analogue circuitry and an exact time synchronization mechanism between the carrier and 

the envelope of the modulating signal. 

From the above-mentioned drawbacks of linearization and efficiency 

enhancement techniques, the reduction of PAPR using a practically realizable method 

stands out as the best way to avoid signal distortion in a HPA owing to nonlinear 

amplification. For this reason, the aim of this work is to develop new PAPR reduction 

methods that have the desirable attributes for practical implementation and use in 

wireless communication systems employing OFDM technique. 
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Figure 2.10. Block diagram of envelope tracking  
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CHAPTER 3  
 

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING 

Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation 

technology that continues to be widely employed in signal broadcasting and wireless 

communication networks. Some of the applications include digital audio broadcasting 

(DAB), 1st and 2nd generations of terrestrial digital video broadcasting (DVB-T1 and 

DVB-T2), digital multimedia broadcasting (DMB), 4th and 5th generations (4G and 5G) 

of mobile communication network, IEEE 802.16 worldwide interoperability for 

microwave access (WiMAX), IEEE 802.11 wireless local area network (WLAN), power-

line and optical communications [84] - [86]. In addition, OFDM is being considered as 

one of the candidate technology that will be combined with other technologies to meet 

the expanded requirements and use cases for radio access network in the future 6G 

mobile communication network [86] - [89].  

The use of OFDM in several wire-line and wireless communication applications 

is propelled by several advantages. The three main ones that make the technology very 

competitive are the high spectral efficiency, its robustness against frequency-selective 

fading and intersymbol interferences. This chapter is intended to cover the fundamentals 

of OFDM transmission together with the advantages and disadvantages of the technique.  

3.1 Basic Principles of OFDM 

The OFDM technique divides the total available channel bandwidth into many 

equally spaced narrowband subchannels. Each subchannel bandwidth, also referred to as 

subcarrier spacing, is given by 

 ∆𝑓 =
𝑊

𝑁
 (3.1) 

where 𝑊 is the bandwidth of the system and 𝑁 is the total number of subchannels. 

The signal carriers on the subchannels are mutually orthogonal to one another, 

thus allowing adjacent spectra to overlap without interferences. Each subcarrier signal 

can be considered as a product of a single-tone signal and a rectangular pulse. The 
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spectrum of the rectangular pulse is a sinc function, as illustrated in Figure 3.1, which has 

a zero-closing bandwidth of 2/𝑇. Thus, a typical OFDM signal spectrum consists of 𝑁 

adjacent sinc functions, which are shifted by 𝛥𝑓 in the frequency axis as illustrated in 

Figure 3.2 for 𝑁 = 4 subcarriers. The peak of each subcarrier occurs at a point where the 

amplitude of all the other subcarriers is zero. This overlapping of adjacent spectra 

significantly increases the spectral efficiency of the system. 
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The arrangement of subcarriers in OFDM contrasts that in the conventional 

frequency division multiplexing (FDM), which does not use orthogonal subcarriers but 

rather separates neighbouring channels with a frequency guard in an attempt to eliminate 

ACI. Due to the use of frequency guards, an FDM system has a much lower spectral 

efficiency than an OFDM system for the same number of subcarriers. 

Majority of subcarriers in an OFDM system are employed to carry user 

information by way of being modulated by data-bearing symbols. Some of the remaining 

subcarriers are reserved for transmitting training (pilot) symbols, while others are 

designated as null subcarriers. Each modulation symbol represents a sequence of 

information bits and could be from one of the commonly used digital modulation 

schemes, namely the binary phase-shift keying (BPSK), quadrature phase-shift keying 

(QPSK) or an M-ary quadrature amplitude modulation (M-QAM) scheme.  

The OFDM baseband signal over one symbol duration is a superimposition of 𝑁 

modulated subcarrier signals and can be expressed as 

 𝑥(𝑡) =
1

√𝑁
∑ 𝑋(𝑘)𝑒𝑗2𝜋𝑘Δ𝑓𝑡
𝑁−1

𝑘=0

, 0 ≤ 𝑡 ≤ 𝑇 (3.2) 

where 𝑋(𝑘) is the kth modulation symbol, Δ𝑓 is the subcarrier spacing and 𝑇 is the 

symbol duration. The division by the term √𝑁 ensures that both time and frequency 

domains have the same signal power. 

Compared with a single-carrier system of the same symbol rate, the symbol 

duration of an OFDM system is 𝑁 times longer. This implies that for the same 

transmission rate, if one symbol is transmitted during a duration 𝑇𝑠 in the single-carrier 

system, then in the OFDM system, the symbol duration 𝑇 = 𝑁𝑇𝑠.  

The use of a long symbol duration in OFDM helps to reduce intersymbol 

interferences (ISI) that is known to occur in a time-dispersive channel owing to a long 

delay spread caused by multipath propagation. In a multipath scenario, transmitted 

signals may take different radio paths from the transmitter to the receiver, which results 

in different transmission delays and frequency-selective fading. The delay spread, which 

by definition is the difference in propagation time between the longest and shortest path, 

is used to characterise a multipath transmission environment. In this characterisation, 

only the paths that have significant signal energies are considered. 

Some signals in a multipath propagation environment may follow the line-of-sight 
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(LOS) path, while others may follow different non-line-of-sight (NLOS) paths. The 

NLOS paths are due to reflections by objects between the transmitter and receiver and 

have different radio propagation times as illustrated in Figure 3.3. In the figure, the 

propagation delays for the three NLOS paths are denoted by 𝜏1, 𝜏2 and 𝜏3. Assuming that 

the propagation delays are such that 𝜏1 < 𝜏2 < 𝜏3, the delay spread of the multipath 

channel is then  

 𝜏𝑚 = 𝜏3 − 𝜏1 (3.3) 

The delay spread of a channel determines the coherence bandwidth 𝐵𝑐; an 

indicator of how quickly a transfer function changes with frequency. Specifically, the 

coherence bandwidth is the range of frequencies in which the channel response is 

constant and is approximately equal to the reciprocal of the delay spread, i.e. 𝐵𝑐 ≅ 1/𝜏𝑚.  

A channel in which the coherence bandwidth is much greater than the bandwidth 

of the input signal, or equivalently the delay spread is considerably less than the symbol 

duration, is referred to as a flat-fading channel. In other words, a flat-fading channel has a 

constant frequency response, i.e. it is frequency-non-selective. Such a channel can be 

fully characterised by a single-tap impulse response using a scaled Dirac-delta function 

as ℎ(𝑡) = 𝛽𝛿(𝑡), where 𝛽 is a scalar. 

In case of a large number of obstructions between the transmitter and receiver, 

such that the delay spread is considerably greater than the symbol duration, the multipath 

channel becomes frequency-selective and the impulse response can be modelled as an 𝑛-

tap Rayleigh-fading channel [90] using the equation 

1

2

3

 

Figure 3.3. Multipath propagation scenario [91] 
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 ℎ(𝑡) =
1

√𝑛
∑𝑐𝑖(𝑡)

𝑛

𝑖=1

 (3.4) 

where 𝑐𝑖(𝑡) denotes the complex coefficient of the 𝑖th tap given by  

 𝑐𝑖(𝑡) = 𝛼𝑖(𝑡)𝑒
−𝑗𝜃𝑖(𝑡) (3.5) 

In equation (3.5), 𝛼𝑖(𝑡) and 𝜃𝑖(𝑡) = 2𝜋𝑓𝑐𝜏𝑖 are the attenuation and phase of the 𝑖th 

path, respectively, and 𝑓𝑐 is the carrier frequency. The division by the term √𝑛 

normalizes the average channel power over the paths to unity.  

The real and imaginary components of each tap weight 𝑐𝑖(𝑡) are independent and 

identically distributed Gaussian random variables with zero mean and variance  𝜎2 of 

0.5. Consequently, the tap magnitudes 𝑧 = |𝛼𝑖(𝑡)|, 𝑖 = 1, 2, … , 𝑛 are characterised by a 

Rayleigh random variable 𝑍 with a probability density function 

 𝑝𝑍(𝑧) =
𝑧

𝜎2
𝑒
−
𝑧2

2𝜎2 (3.6) 

and the phases 𝜃𝑖(𝑡), 𝑖 = 1, 2, … , 𝑛, have a uniform distribution over the range between 0 

and 2𝜋 and they are also independent of one another. 

In a typical design of an OFDM system for a wireless communication that takes 

into account multipath propagation and ensures that the channel is flat fading, the symbol 

duration is set sufficiently longer than the expected delay spread of the underlying 

environment, i.e. 

 𝑇 ≫ 𝜏𝑚 (3.7) 

or equivalently the subcarrier spacing is such that 

 ∆𝑓 ≪ 𝐵𝑐 (3.8) 

A typical rule of thumb usually employed has 𝑇 ≥ 4𝜏𝑚 [91]. 

In addition to the setting in equation (3.7), the orthogonality among the 

subcarriers is guaranteed if the relationship between the symbol duration and subcarrier 

spacing is governed by the equation 

 𝑇 =
1

∆𝑓
 (3.9) 

With this setting, the following minimum condition for mutual orthogonality among 

subcarriers is fulfilled over the duration of each OFDM symbol: 
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 ∫ 𝑒𝑗2𝜋𝑚∆𝑓𝑡𝑒−𝑗2𝜋𝑛∆𝑓𝑡𝑑𝑡 = {
𝑇, 𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

𝑇

0

 (3.10) 

where 𝑚 and 𝑛 are integers in the range 0 to 𝑁 − 1.  

In addition, it can be inferred from equations (3.1) and (3.8) that by selecting the 

number of subcarriers 𝑁 such that  

 𝑁 ≫
𝑊

𝐵𝑐
 (3.11) 

renders the ISI to be very small. 

However, the size of the subchannel bandwidth ∆𝑓 is limited mainly by two 

system design constraints. The first one requires that ∆𝑓 be sufficiently small so that the 

subchannel frequency response is essentially flat across each sub-band and the 

transmission rates are close to the channel capacity owing to high SNR. Because a flat 

frequency response corresponds to a scaled Dirac-delta impulse response in the time-

domain, each subchannel can be modelled as a linear time-invariant (LTI) system.  

Since the input signal to a given subchannel is a complex exponential, which 

happens to be an eigenfunction of a LTI system, the output signal is simply the input 

scaled by the frequency response of the channel, i.e. 

 𝑦𝑘(𝑡) = 𝐻𝑘(𝑓𝑘)𝑋(𝑘)𝑒
𝑗2𝜋𝑓𝑘𝑡 (3.12) 

where 𝑓𝑘 = 𝑘∆𝑓 is the 𝑘th subcarrier frequency and 𝐻𝑘(𝑓𝑘) is the frequency response of 

the 𝑘th subchannel evaluated at 𝑓𝑘. The subchannel frequency response 𝐻𝑘(𝑓𝑘) is in 

general a complex quantity and can be known by initially transmitting a pilot signal 

consisting of a known modulation symbol or an un-modulated subcarrier and observing 

the received signal.  

From equation (3.12), it is clear that the transmission over the radio channel 

changes only the amplitude and phase of the modulation symbols. In other words, the 

transmission does not affect subcarrier frequencies. This implies that the mutual 

orthogonality between subchannels is maintained all through to the receiver as long as the 

subchannels are linear and time-invariant and have constant frequency responses. 

The second constraint on the subcarrier spacing is imposed by the expected 

Doppler spread that may exist in the case of a time-variant radio channel when there is a 

relative motion between the transmitter and the receiver. The relative motion causes a 

difference in frequencies between the transmitted one and the received one. The received 
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frequency can be found as  

 𝑓𝑟 = (1 ±
𝑣

𝑐
) 𝑓𝑐 = 𝑓𝑐 + 𝑓𝐷 (3.13) 

where 𝑣 is the relative velocity of the receiver with respect to the transmitter, 𝑐 is the 

speed of light, 𝑓𝑐 is the transmitted frequency and the differential  frequency 𝑓𝐷, referred 

to as the Doppler shift, is given by 

 𝑓𝐷 = ±
𝑣

𝑐
𝑓𝑐 (3.14) 

The Doppler frequency shift may lead to an increase or a decrease in a subcarrier 

frequency and this can likely result into inter-carrier interferences (ICI) and a loss of 

orthogonality between subcarriers. In order to maintain the ICI at a tolerable level, the 

subcarrier spacing in OFDM is set considerably greater than the maximum expected 

Doppler shift, also referred to as Doppler spread, denoted here by 𝑓𝐷𝑚, i.e.  

 Δ𝑓 ≫ 𝑓𝐷𝑚 (3.15) 

with typical values of Δ𝑓 ≥ 33𝑓𝐷𝑚 [91].  

The Doppler power spectrum, which is the statistical variation of the channel 

power with respect to frequency, occurs over a bandwidth equal to 2𝑓𝐷𝑚 i.e. from  −𝑓𝐷𝑚 

to +𝑓𝐷𝑚. Another important quantity related to the Doppler shift is the coherence time, 

𝑇𝑐, which indicates how quickly an impulse response of a channel changes over time. The 

coherence time 𝑇𝑐 is inversely proportional to 𝑓𝐷𝑚 and is simply the period over which 

the impulse response remains constant.  

Depending on the magnitude of the coherence time in relation to the symbol 

duration, a channel can be said to be slow or fast fading. A slow-fading channel has 

𝑇 ≪ 𝑇𝑐, while a fast-fading one has 𝑇 ≫ 𝑇𝑐. From equations (3.9) and (3.15), it is clear 

that an OFDM channel has 𝑇 ≪ 𝑇𝑐, thus has slow-fading characteristics. This implies that 

the impulse responses of subchannels remain literally unchanged during the symbol 

period. 

3.2 Implementation of OFDM Using IFFT/FFT 

In practical OFDM systems, signals are digitally processed using FFT algorithms. 

The sampling of the OFDM baseband signal is typically done at a rate greater than the 

Nyquist rate. Given that the frequency components of the baseband signal in equation 
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(3.2) are in the range -0.5𝑁𝛥𝑓 to +0.5𝑁𝛥𝑓, the Nyquist sampling rate is 𝑁𝛥𝑓 and a 

signal sampled at this rate can be expressed as  

 𝑥(𝑛𝑇𝑠) =
1

√𝑁
∑𝑋(𝑘)𝑒𝑗2𝜋𝑘∆𝑓𝑛𝑇𝑠
𝑁−1

𝑘=0

, 0 ≤ 𝑛 ≤ 𝑁 − 1  (3.16) 

where 𝑇𝑠 = 1/𝑁𝛥𝑓 is the sampling time interval. On substituting for 𝑇𝑠 in equation 

(3.16), the sampled signal becomes 

 𝑥(𝑛) =
1

√𝑁
∑𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

, 0 ≤ 𝑛 ≤ 𝑁 − 1 (3.17) 

Equation (3.17) is equivalent to the IDFT of 𝑋(𝑘) and can thus be evaluated by the 

computationally proficient FFT algorithms.  

In case the sampling is at a frequency greater than the Nyquist rate, say by a 

factor ℒ, the oversampled signal can be expressed as 

 𝑥𝑠(𝑚) =
1

√𝑁
∑ 𝑋́(𝑘)𝑒

𝑗2𝜋𝑘𝑚
𝑁ℒ

𝑁ℒ−1

𝑘=0

, 0 ≤ 𝑚 ≤ 𝑁ℒ − 1 (3.18) 

where 𝑋́(𝑘) is obtained by zero-padding 𝑋(𝑘) with 𝑁(ℒ − 1) zeros as follows:   

 𝑋́(𝑘) = {
𝑋(𝑘), 0 ≤ 𝑘 ≤ 𝑁 − 1
       0, 𝑁 ≤ 𝑘 ≤ 𝑁ℒ − 1

 (3.19) 

The IFFT can also be used to generate the oversampled discrete-time signal in 

equation (3.18). However, the 𝑁(ℒ − 1) zeros should be inserted in the midpoint of  

𝑋(𝑘) rather than at the end since the first half of the samples relates to the positive 

frequencies of the IFFT and the last half to the negative frequencies. Therefore, 𝑋́(𝑘) 

should be formed as follows: 

 𝑋́(𝑘) =

{
 
 

 
 𝑋(𝑘), 0 ≤ 𝑘 ≤

𝑁

2
− 1

0   ,         
𝑁

2
≤ 𝑘 ≤ 𝑁ℒ −

𝑁

2
− 1

𝑋(𝑘), 𝑁ℒ −
𝑁

2
≤ 𝑘 ≤ 𝑁ℒ − 1

 (3.20) 

and in this case the oversampled signal is given by 

 𝑥𝑠(𝑚) = ℒ × IFFT{𝑋́(𝑘)} (3.21) 

In addition, the oversampling operation can be implemented directly in the time 
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domain by interpolation, which is done in two steps as shown in Figure 3.4. The input 

signal is sampled at the Nyquist rate 𝑓𝑠. The interpolation starts with the insertion of  

(ℒ − 1) zeros between the samples of 𝑥(𝑛) to obtain 𝑥𝑢(𝑚) followed by a low-pass 

filtering operation to generate the oversampled signal 𝑥𝑠(𝑚) containing the original 

samples of 𝑥(𝑛) and (ℒ − 1) interpolated samples in between them. The two most 

common impulse responses of the low pass filter are the rectangular and root-raised 

cosine pulses.  

3.3 Cyclic Prefix  

Although the use of long symbol duration greatly reduces ISI, it may not be fully 

eliminated. A guard time interval between consecutive OFDM symbols is still needed to 

eradicate ISI. The guard interval is inserted between consecutive symbols in the form of a 

cyclic prefix (CP) or through padding with either zeros or known samples. However, the 

insertion of CP is the most common and involves a cyclic extension of an OFDM symbol 

through copying of a few tail-end samples to the front as demonstrated in Figure 3.5.  

By denoting the length of the guard interval by 𝑇𝑔𝑖, the effective duration of an 

OFDM symbol after the insertion of a CP is 

 𝑇𝑒𝑓𝑓 = 𝑇𝑔𝑖 + 𝑇 (3.22) 

The length of 𝑇𝑔𝑖 depends on the number of samples spanned by the delay spread 

of a channel. For example, if 𝜏𝑚 spans 𝑙 samples, the CP is made up of 

{𝑥𝑁−𝑙 , 𝑥𝑁−𝑙+1, … , 𝑥𝑁−1} samples from an OFDM block of 𝑁 samples {𝑥0, 𝑥1, … , 𝑥𝑁−1} 

as in equation (3.17). The guard interval is found as  

 𝑇𝑔𝑖 =
𝑙

𝑁
𝑇 (3.23) 

Up-sampling 

by a factor 
Low-pass filter)(nx )(mxs

   

 

)(mxu

 
Figure 3.4. Block diagram of oversampling using ℒ-times interpolator 
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Figure 3.5. ODFM symbol extension by cyclic prefix 

Once the CP is inserted, the new OFDM block consists of 𝑁 + 𝑙 samples, i.e. 

{𝑥𝑁−𝑙 , 𝑥𝑁−𝑙+1, … , 𝑥𝑁−1, 𝑥0, 𝑥1, … , 𝑥𝑁−1}. These samples are sent in series, one at time, 

within the duration 𝑇𝑒𝑓𝑓. In wireless applications, 𝑇𝑔𝑖 is typically set to 1/4𝑇, thus 

making the CP to contain a quarter of the total number of samples. In a typical 

implementation, 𝑇𝑔𝑖 is set greater than 𝜏𝑚 to confine the ISI of the current symbol within 

the guard interval of the next symbol in order not to affect the FFT processing taken over 

the duration 𝑇.  

The CP is directly removed at the receiver after a time synchronization procedure 

prior to the demodulation of the received signal. The use of long symbol duration makes 

the radio channel a LTI system within a period of a few OFDM symbols. This in turn 

ensures that the orthogonality of all subcarriers is completely preserved in the receiver 

even under frequency-selective radio channels. Thus, the CP helps to combat both ISI 

and ICI when the channel is non-ideal. The maintenance of orthogonality between 

subcarriers along the entire transmission path allows the modulated signals to be split 

directly into different data symbols using FFT and a simple single-tap equalization 

applied on each subchannel. 

Although the addition of CP to an OFDM symbol comes with the above 

highlighted benefits, it has two drawbacks. The first one is the reduction in SNR, which 

typically requires a boost of the transmitted signal energy. The SNR reduction can be 

explained from the consideration that the bit energy 𝐸𝑏 represents the energy in the useful 

bits, while the symbol energy 𝐸𝑠 is spread across the entire extended OFDM symbol. 

Assuming 𝑏 bits per symbol, the total bit energy is 𝑁𝑏𝐸𝑏 and the total symbol 

energy before cyclic extension is 𝑁𝐸𝑠. Since energy is conserved, the total symbol energy 
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is equal to the total bit energy, i.e. 𝑁𝐸𝑠 = 𝑁𝑏𝐸𝑏 and thus 𝐸𝑠 = 𝑏𝐸𝑏, which gives the SNR 

before the insertion of CP as 

 
𝐸𝑠
𝑁0

=
𝑏𝐸𝑏
𝑁0
  (3.24) 

where 𝑁0 is the noise power spectral density.  

When the OFDM symbol is extended by CP to length (𝑁 + 𝑙), the total bit energy 

remains the same, while the total symbol energy becomes (𝑁 + 𝑙)𝐸𝑠 [92]. Because of the 

energy conservation principle, (𝑁 + 𝑙)𝐸𝑠 = 𝑁𝑏𝐸𝑏 and the symbol energy becomes 

 𝐸𝑠 =
𝑁

𝑁 + 𝑙
𝑏𝐸𝑏 (3.25) 

while the overall SNR after the addition of CP is  

 
𝐸𝑠
𝑁0

=
𝑁

𝑁 + 𝑙

𝑏𝐸𝑏
𝑁0
  (3.26) 

From equations (3.24) and (3.26), the reduction in SNR from the original value 

due to the CP is given by  

 

𝑆𝑁𝑅𝑟𝑒𝑑 =
𝑏𝐸𝑏
𝑁0

−
𝑁

𝑁 + 𝑙

𝑏𝐸𝑏
𝑁0

 

     =
𝑙

𝑁 + 𝑙

𝑏𝐸𝑏
𝑁0
  

(3.27) 

This SNR reduction is due to the fraction of the total power allocated for the transmission 

of CP and hence not available for communicating user data. Thus, after CP extension, the 

transmitted symbol energy, in equation (3.25), needs to be boosted by multiplying it by a 

factor 𝑁/(𝑁 + 𝑙) to restore it to its original value of 𝑏𝐸𝑏. 

Secondly, the addition of a CP causes a loss in data rate. Without the CP, 𝑁 

modulation symbols are transmitted within the duration 𝑇, i.e. at a symbol rate equal to 

𝑁/𝑇. However, with the CP, the 𝑁 modulation symbols are transmitted over the extended 

symbol time 𝑇𝑒𝑓𝑓, hence at a rate of 𝑁/(𝑇 + 𝑇𝑔𝑖). Thus, there is a reduction in data rate 

given by 

 

𝑅𝑙𝑜𝑠𝑠 =
𝑁

𝑇
−

𝑁

𝑇 + 𝑇𝑔𝑖
 

          =
𝑇𝑔𝑖

(𝑇 + 𝑇𝑔𝑖)

𝑁

𝑇
  

(3.28) 
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By substituting for 𝑇𝑔𝑖 from equation (3.23) in (3.28), the data-rate loss becomes 

 𝑅𝑙𝑜𝑠𝑠 =
𝑙

(𝑁 + 𝑙)

𝑁

𝑇
  (3.29) 

Considering equations (3.27) and (3.29), both the SNR reduction and data-rate loss can 

be made small by selecting 𝑁 and 𝑙 such that 𝑙 ≪ 𝑁. 

3.4 Guard Band 

The combination of many frequency-shifted sinc waveforms in an OFDM signal, 

as was illustrated in Figure 3.2, leads to a large out-of-band (OOB) power and the 

occurrence of ACI. Thus in an OFDM system, a guard frequency band is necessary to 

mitigate the ACI outside the allocated bandwidth. One practical way to completely 

reduce the OOB emissions and hence combat the ACI is to employ a raised-cosine pulse 

shaping, rather than a rectangular windowing, in combination with a number of null or 

virtual subcarriers at the two edges of the transmission band [93]. The null or virtual 

subcarriers are what constitute the guard band. 

However, the OOB power is dependent on the value of the roll-off parameter of 

the raised-cosine pulse employed. As the value of the roll-off increases from 0 to the 

maximum value of 1, the OOB radiations are reduced. However, a large roll-off factor 

results in a further increase in the guard interval. Therefore, a trade-off is needed between 

the reduction in OOB radiations and the elongation of the guard interval.  

Moreover, virtual subcarriers do not carry any information but only offer a band 

for the OFDM spectrum to decay smoothly to zero at the symbol boundary. Although 

these unused subcarriers require no additional processing, they should be limited to a 

small number because they reduce the overall spectral efficiency of the system by a 

factor 𝑁𝑢/𝑁, where 𝑁𝑢 is the number of data-bearing subcarriers and 𝑁 is the total 

number of subcarriers in the system.  

3.5 OFDM Signal Processing Blocks 

In Figure 3.6, the main signal processing blocks in an OFDM system from the 

transmitter to the receiver are shown. The upper path represents the transmitter, while the 

lower one is the receiver. The binary input data is first encoded through addition of a 

forward error-correction code. The encoded binary data is then interleaved and/or 
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punctured before being mapped onto BPSK or 𝑀-QAM symbols. This is followed by the 

insertion of pilot symbols and serial-to-parallel (S/P) conversion.  

After the mapping of data and pilot symbols, the IFFT is applied on the symbols 

to generate discrete-time samples. This sequence of samples is then cyclically extended 

and a raised-cosine windowing applied to make the signal waveform transit smoothly to 

zero at the symbol boundary. The resulting samples are then converted into a continuous-

time signal followed by carrier modulation at radio frequencies, power-amplification and 

lastly the signal is sent to the antenna for RF transmission. 

In the receiver, reverse operations to those in the transmitter are performed. The 

received RF signal is first down-converted to baseband frequencies and then to a discrete-

time signal by the ADC block. This is followed by digital signal processing, which starts 

with a training phase to determine symbol timing and frequency offset. The cyclic prefix 

is then removed and FFT performed to recover transmitted modulation symbols. The 

recovered symbols are corrected using a single-tap equalizer and then mapped into bits, 

which are then de-interleaved and decoded to produce a binary data stream. 

Two important operations of the receiver are the recovery of the transmitted 

symbols via FFT and channel equalization, which are now briefly explained. Using 

equation (3.12) and assuming sampling at Nyquist rate, the received signal is given by 

 𝑦(𝑛) =
1

√𝑁
∑𝐻𝑘(𝑓𝑘)𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛
𝑁   

∞

𝑘=0

+ 𝑧(𝑛)  (3.30) 

The term 𝑧(𝑛) represents additive noise from the transmission channel.  
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Figure 3.6. Block diagram of OFDM system 
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The discrete-time signal in equation (3.30) can be considered as the actual output 

of the block labelled “Remove CP” in Figure 3.6. On applying FFT on 𝑦(𝑛) after 

parallel-to-serial (P/S) conversion, the received symbol from each subchannel is given by 

 𝑌(𝑘) =
1

√𝑁
∑ (

1

√𝑁
∑ 𝐻𝑚(𝑓𝑚)𝑋(𝑚)𝑒

𝑗2𝜋𝑛𝑚
𝑁   

∞

𝑚=0

+ 𝑧(𝑛))

𝑁−1

𝑛=0

𝑒−
𝑗2𝜋𝑘𝑛
𝑁  (3.31) 

This equation can be re-written as follows: 

 𝑌(𝑘) =
1

𝑁
∑ (∑ 𝐻𝑚(𝑓𝑚)𝑋(𝑚)𝑒

𝑗2𝜋𝑛(𝑚−𝑘)
𝑁

∞

𝑚=0

)

𝑁−1

𝑛=0

+
1

√𝑁
∑ 𝑧(𝑛)𝑒−

𝑗2𝜋𝑘𝑛
𝑁   

𝑁−1

𝑛=0

 (3.32) 

Noting that in the first term of this equation, we have 

 ∑(∑ 𝐻𝑚(𝑓𝑚)𝑋(𝑚)𝑒
𝑗2𝜋𝑛(𝑚−𝑘)

𝑁

∞

𝑚=0

)

𝑁−1

𝑛=0

= {
𝑁𝐻𝑚(𝑓𝑚)𝑋(𝑚), 𝑚 = 𝑘
0                          , 𝑚 ≠ 𝑘

 (3.33) 

the received symbols are obtained as follows: 

 𝑌(𝑘) =  𝐻𝑘(𝑓𝑘)𝑋(𝑘) + 𝑍(𝑘), 0 ≤ 𝑘 ≤ 𝑁 − 1 (3.34) 

where 𝑍(𝑘) denote the DFT of the noise signal 𝑧(𝑛). 

Single-tap equalization is then performed on each subchannel by dividing the 

received symbol by the frequency response to obtain an estimate of the transmitted 

symbol 

 𝑌̃(𝑘) =
𝑌(𝑘)

𝐻𝑘(𝑓𝑘)
=  𝑋(𝑘) +

𝑍(𝑘)

𝐻𝑘(𝑓𝑘)
, 0 ≤ 𝑘 ≤ 𝑁 − 1 (3.35) 

Using the constellation diagram of the modulation scheme employed during the mapping 

operation in the transmitter, the actual transmitted symbol is chosen as the one nearest to 

an estimated symbol. 

3.6 Peak-to-Average Power Ratio 

The peak-to-average power ratio (PAPR) measures the amplitude fluctuations of a 

signal in terms of how much the maximum instantaneous power exceeds the average 

power. The PAPR for an analogue signal is defined as 

 PAPR {𝑥(𝑡)} =
max {|𝑥(𝑡)|2}

E{|𝑥(𝑡)|2}
 (3.36) 
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where E{. } is the expectation operator, which gives the average value of the argument, 

i.e.  

 E(|𝑥(𝑡)|2) = lim
𝑇→∞

 
1

𝑇
∫ |𝑥(𝑡)|2
𝑇

0

𝑑𝑡 (3.37) 

If the statistical distribution of signal amplitudes is known, it is usually possible to 

know the expected amount of PAPR of that signal. For the OFDM signal in equation 

(3.2), the 𝑁 complex modulated signals can be considered statistically independent and 

identically distributed. The signal can be written as a sum of real and imaginary signals 

as follows: 

 𝑥(𝑡) = 𝑥𝑅(𝑡) + 𝑗𝑥𝐼(𝑡) (3.38) 

where the amplitudes of each of the two components are Gaussian distributed with a 

mean of zero and a variance of 0.5. Thus, the signal envelope 

 |𝑥(𝑡)| = √|𝑥𝑅(𝑡)|2 + |𝑥𝐼(𝑡)|2 (3.39) 

has Rayleigh-distributed amplitudes when N is large in accordance with the central limit 

theorem [94]. As an example, the normal and Rayleigh distributions of the amplitudes of 

the real, imaginary and envelope of an OFDM signal with 16 subcarriers are shown 

Figure 3.7. 

The Rayleigh distribution of the amplitudes of the envelope |𝑥(𝑡)| implies that 

some of them could be well above the mean value as shown in Figure 3.8. In the figure, 

the real and imaginary signal parts of the 16 modulated signals are shown in black, while 

their respective combined signals are in blue colour. The signal envelope at the bottom of 

the figure has some peaks that are greater than the average value indicated by the red 

horizontal line and this occurs at the time instants when the modulated signals add 

constructively.  

Although it is very appropriate to compute PAPR from the continuous-time 

signal, owing to the use of digital signal processing, it is in practice obtained from the 

oversampled discrete-time signal in equation (3.18) as follows: 

 PAPR {𝑥𝑠(𝑛)} =
max

0≤𝑛≤𝑁ℒ−1
{|𝑥𝑠(𝑛)|

2}  

E{|𝑥𝑠(𝑛)|
2}

 (3.40) 

However, a sufficiently high oversampling factor typically greater than 4, i.e. 

ℒ ≥ 4 [95], is needed in order have the discrete-time PAPR closely estimate the 
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continuous one given by equation (3.36). The high oversampling factor ensures that the 

oversampled signal has as many samples as possible so that the peak amplitude of the 

continuous-time signal is present in the discrete-time signal. 

 
Figure 3.7. Distribution of OFDM signal amplitudes with N = 16 subcarriers  

 
Figure 3.8. Envelope of an OFDM signal with N = 16 subcarriers 
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3.6.1 Complementary Cumulative Distribution Function 

The magnitude of the PAPR can be measured by complementary cumulative 

distribution function (CCDF), which gives the probability of the PAPR being greater than 

a specified value. This CCDF for a discrete-time signal can be found conveniently by 

considering that a discrete-time signal 𝑥(𝑛) can be decomposed into its real and the 

imaginary parts by expressing it as 𝑥(𝑛) = 𝑥𝑅(𝑛) + 𝑗𝑥𝐼(𝑛).  

The absolute amplitudes of the signal are 

 |𝑥(𝑛)| = √𝑥𝑅
2(𝑛) + 𝑥𝐼

2(𝑛) (3.41) 

They are independent and identically Rayleigh distributed, regardless of the underlying 

distribution of the real and imaginary parts. However, for the case of OFDM signals, both 

the real and imaginary components are Gaussian distributed.  

The CCDF of |𝑥(𝑛)| can be derived as follows. Let 𝑋 be the Rayleigh random 

variable of the distribution of the signal amplitudes |𝑥(𝑛)|. Then, the probability density 

function (pdf) of 𝑋 is given by  

 𝑓𝑋(𝑥) =
𝑥

𝜎2
𝑒
−
𝑥2

2𝜎2   (3.42) 

where 𝜎2 is the variance of the Gaussian distribution of the real and imaginary parts of 

𝑥(𝑛) and 𝑥 is a variable for the values of the signal amplitudes |𝑥(𝑛)|.  

From equation (3.42), the cumulative distribution function (CDF) of 𝑋 can be 

found as follows:  

 

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) 

                     = ∫
𝑢

𝜎2
𝑒
−
𝑢2

2𝜎2
𝑥

0

𝑑𝑢  
(3.43) 

where Pr(𝑋 ≤ 𝑥) denotes the probability that 𝑋 is less than or equal to 𝑥. By changing 

the variable 𝑢 through letting 𝑦 = 𝑢2/(2𝜎2 ), the CDF becomes 

 
𝐹𝑋(𝑥) =  ∫ 𝑒−𝑦𝑑𝑦

𝑥2

2𝜎2

0

 

       = 1 − 𝑒
−
𝑥2

2𝜎2 

(3.44) 

The maximum value that the random variable 𝑋 can have is referred to as the 
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crest factor and is simply the square root of the PAPR. Denoting the crest factor by 𝑥𝑐𝑓 

and considering that all possible values 𝑋 can take are less than or equal to 𝑥𝑐𝑓, the CDF 

Pr(𝑋 ≤ 𝑥𝑐𝑓) can be expressed as 

 Pr(𝑋 ≤ 𝑥𝑐𝑓) =∏Pr (𝑋𝑖 ≤ 𝑥𝑐𝑓)

𝑁−1

𝑖=0

= (1 − 𝑒
−
𝑥2

2𝜎2)

𝑁

  (3.45) 

The magnitude of the crest factor can be measured by the complementary CDF (CCDF), 

which is the probability of the random variable exceeding the crest factor and is given by 

 Pr(𝑋 > 𝑥𝑐𝑓) =  1 − (1 − 𝑒
−
𝑥2

2𝜎2)

𝑁

 (3.46) 

Considering that 𝑥2/(2𝜎2) is a ratio of the power of signal 𝑥 over the average 

power, equation (3.46) can be rewritten in a form that allows for the direct assessment of 

the magnitude of PAPR as follows: 

 Pr{PAPR(𝑥(𝑛)) > 𝛾} =  1 − (1 − 𝑒−𝛾)𝑁 (3.47) 

Here, 𝛾 = 𝑥2/(2𝜎2) is the threshold value against which the comparison is done to check 

the highness of PAPR. This equation also shows that the CCDF, and hence the PAPR, 

increases with the number of subcarriers employed in an OFDM system. To further 

demonstrate this, examples of CCDFs for N = 64, 128, 256, 512 and 1024 based on 

equation (3.47) are plotted in Figure 3.9 together with the simulated CCDFs.  

 
Figure 3.9. CCDF of OFDM signals with different number of subcarriers 
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Additionally, equation (3.47) shows that if the CCDF value on the left-hand side 

is kept constant, then for a fixed number of subcarriers, a large value of 𝛾 points to a 

higher PAPR and vice versa. This in turn implies that the difference between any two 

values of 𝛾 at the same value of CCDF may be used to measure the reduction in PAPR 

and to evaluate the performance of a proposed method. 

3.6.2 The Upper Bound on PAPR 

The statistical analysis of OFDM signal presented in Subsection 3.6.1 has 

established that the summation of many modulated subcarrier signals as given by 

equation (3.17) is likely to increase the PAPR. The increase was found to be due to 

constructive addition of signals and is proportional to the number of subcarriers.  

Following the preceding analysis, an upper limit or the maximum possible PAPR 

can be determined for an OFDM signal by considering a case where all subcarriers are 

modulated by the same data symbol, i.e. 𝑋(𝑘) = 𝑋𝑑 for 0 ≤ 𝑘 ≤ 𝑁 − 1. The peak power 

of the corresponding time-domain signal 𝑥(𝑛) is given by 

 

max
0≤𝑛≤𝑁−1

(|𝑥(𝑛)|2) = max
0≤𝑛≤𝑁−1

(
1

√𝑁
∑ 𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

1

√𝑁
∑ 𝑋∗(𝑘)𝑒

−𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

)  

= max
0≤𝑛≤𝑁−1

(
1

𝑁
∑∑|𝑋𝑑|

2

𝑁−1

𝑘=0

𝑁−1

𝑘=0

 )                  

=  𝑁|𝑋𝑑|
2                                                      

(3.48) 

Similarly, the average power of the time-domain signal is given by 

 
E(|𝑥(𝑛)|2)    = E (

1

√𝑁
∑𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

1

√𝑁
∑𝑋∗(𝑘)𝑒

−𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

)  

= |𝑋𝑑|
2                                                   

(3.49) 

Therefore, from equations (3.48) and (3.49), the upper limit of PAPR is 

 PAPR𝑢𝑙 =
𝑁|𝑋𝑑|

2

|𝑋𝑑|2
= 𝑁 (3.50) 

This again shows that the maximum possible PAPR in an OFDM system is proportional 

to the number of subcarriers. 
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3.7 PAPR of passband OFDM Signal 

The passband OFDM signal can be easily related to the baseband signal given in 

equation (3.2). This is because the passband signal is obtained through amplitude 

modulation of a carrier signal, at RF frequency 𝑓𝑐, with the baseband signal, i.e. 

 
𝑠(𝑡) = Re{𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡}                                                           

= 𝑥𝑅(𝑡) cos(2𝜋𝑓𝑐𝑡) − 𝑥𝐼(𝑡) sin(2𝜋𝑓𝑐𝑡)          
(3.51) 

This signal can also be expressed in the form 

 𝑠(𝑡) = |𝑥(𝑡)|cos (2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)) (3.52) 

where 𝑥(𝑡) = √(𝑥𝑅
2(𝑡) + 𝑥𝐼

2(𝑡)) is the signal envelope and  𝜃(𝑡) = tan−1(𝑥𝐼(𝑡)/𝑥𝑅(𝑡)) 

is the phase angle.  

The envelope in equation (3.52) is still Rayleigh distributed and the phase is 

uniformly distributed over the range 0 to 2𝜋. It can be inferred from equation (3.52) that 

the RF passband signal has the same envelope as the baseband signal but is of half its 

average power due to the multiplication by the cosine function. This reduction of the 

average power by a half makes the PAPR of the passband signal to be twice the baseband 

PAPR. 

3.8 Power Amplification 

An OFDM signal is an amplitude-modulated signal that has a non-constant 

envelope. This requires the signal to be linearly amplified using linear power amplifiers, 

typically class A, B or AB amplifiers. These power amplifiers are operated as current-

dependent sources in the active region where the output signal varies linearly with the 

input. Considering a sinusoidal input to the three classes of power amplifiers, the 

conduction angles, which are determined by the location of the quiescent point, are 360°, 

180° and between 180° and 360° for the class A, class B and class AB power amplifiers, 

respectively.  

In terms of linearity, class A power amplifier is the most linear of the three 

classes and gives an output waveform similar to the input, while class B is the least linear 

and its output has crossover effects and harmonic distortions. The linearity performance 

of class AB is in between that of class A and class B and the output waveform has barely 

noticeable distortions compared to the input waveform. 
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However, in terms of power efficiency, class A is the worst with a maximum 

efficiency of 50%, while class B has the best maximum efficiency of 78.5%. The power 

efficiency of Class AB is between 50% and 78.5%.  

Although, the three classes are operated in the linear region, they may be driven 

by large signal amplitudes that, depending on the quiescent point of the underlying power 

amplifier, may lead to nonlinear amplification of the input signal. This section considers 

the different signal distortions that arise from nonlinear amplification of a signal and how 

they are measured.  

3.8.1 Nonlinear Amplification and Distortion Measurements 

A high power amplifier (HPA) as a nonlinear device can be modelled as shown in 

Figure 3.10. The baseband nonlinearity of the device can be described by the equation  

 𝑔{𝑥(𝑡)} = 𝐺{|𝑥(𝑡)|}𝑒𝑗(𝜃(𝑡)+Ψ{|𝑥(𝑡)|}) (3.53) 

Here, functions 𝐺{|𝑥(𝑡)|} and Ψ{|𝑥(𝑡)|} are the AM/AM and AM/PM characteristics that 

operate on the input signal amplitude to produce the amplitude and phase angle 

characteristics in the output, respectively.  

Due to different AM/AM and AM/PM characteristics, several HPA models exist. 

The models are either for the travelling wave tube amplifier (TWTA) or for the solid-

state power amplifier (SSPA). The TWTA is essentially used in microwave receivers as a 

low noise RF amplifier and in amplifying wideband signals especially in satellite 

communication, while the SSPA is used with narrowband signals in wireless 

communication. The two types of amplifiers are modelled in different ways.  

The most common model for the TWTA is the Saleh model given in [96], while 

the SSPA is usually modelled using Ghorbani [97] or Rapp [98] models. However, the 

Rapp model is the more commonly used model for the SSPA owing to its simplicity and 

as such, it will be used in the simulation work in this thesis.  
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Figure 3.10. General HPA model 
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The Rapp model for a SSPA has the following AM/AM and AM/PM 

characteristics: 

 

𝐺{|𝑥(𝑡)|} =
|𝑥(𝑡)|

(1 + (
|𝑥(𝑡)|
𝐴𝑠𝑎𝑡

)
2𝑝

)

1
2𝑝

 

Ψ{|𝑥(𝑡)|}  = 0                                     

(3.54) 

where 𝑝 is a smoothness parameter and 𝐴𝑠𝑎𝑡 is the output saturation level of the HPA at 

the 3-dB point. 

Typical values of the smoothness parameter 𝑝 are in the range between 2 and 3. 

The parameter is employed to render smooth amplification changeover from the linear to 

the saturation region. Thus, the smaller the parameter is, the smoother is the transition. 

The Rapp model does not introduce phase distortion; hence, its output signal is simply 

 

𝑔{𝑥(𝑡)} = 𝐺{|𝑥(𝑡)|}𝑒𝑗𝜃(𝑡) 

                                    =
|𝑥(𝑡)|

(1 + (
|𝑥(𝑡)|
𝐴𝑠𝑎𝑡

)
2𝑝

)

1
2𝑝

𝑒𝑗𝜃(𝑡) (3.55) 

A typical AM/AM characteristic curve for a Class A power amplifier is illustrated 

in Figure 3.11. For maximum output power and efficiency, it is desired that the HPA be 

operated near the saturation point, typically defined at the 1-dB compression point. 

However, at that point, the gain of the HPA is reduced and the input is nonlinearly 

amplified, which results in signal distortions in the output of the device. 

There are mainly two types of nonlinear distortions, namely harmonic and 

intermodulation distortions. Harmonic distortion refers to the case where the output has 

new signal components at frequencies, which are integer multiples of the fundamental 

frequencies in the input signal. This distortion can occur regardless of whether the input 

signal consists of a single tone or multiple tones.  

On the other hand, intermodulation (IM) products can only occur when the input 

signal contains multiple tones. When different frequency components are mixed in the 

power amplifier, they give rise to new frequency components in the output of the device 

consisting of sums and differences of the frequencies in the input. 

To analyse nonlinear distortions from a power amplifier, the output is commonly 

modelled using a Taylor series 



Chapter 3: Orthogonal Frequency Division Multiplexing 

 

55 
 

PAPR

Input signal 
peak power

Input signal 
average power

Input 
power

O
ut

pu
t 

po
w

er

Psat
Power gain

1
-d

B
 c

om
pr

es
si

on
 p

oi
nt

-1 dB

Power efficiency curve

Pou
t

 

Figure 3.11. AM/AM characteristic of Class A power amplifier [99]  

 𝑦(𝑡) = ∑𝑎𝑘(𝑥(𝑡))
𝑘

∞

𝑘=1

 (3.56) 

where 𝑎𝑘 are the coefficients of the series and 𝑥(𝑡) is the input signal.  

The input to the amplifier is taken to be a two-tone test signal 𝑥(𝑡) =

𝐴1𝑐𝑜𝑠(𝜔1𝑡) + 𝐴2𝑐𝑜𝑠(𝜔2𝑡). Using this signal, the frequencies of the harmonic and IM 

products in the output signal can be expressed as  

 𝜔 = 𝑚𝜔1 ± 𝑛𝜔2 (3.57) 

where 𝑚 and 𝑛 are integers in the range from 0 to ∞. 

If either 𝑚 or 𝑛 = 0 in equation (3.57), there is a harmonic distortion component 

otherwise it is an IM term. The IM distortion terms are commonly referred to by their 

order, typically specified as 𝑖th-order IM, where 𝑖 is the sum of the values of 𝑚 and 𝑛, i.e. 

 𝑖 = 𝑚 + 𝑛 (3.58) 

To simply finding the output signal from a nonlinear amplifier, it is assumed that 

𝐴1 = 𝐴2 = 𝐴 and that 𝑎3 ≪ 𝑎1. The output signal from equation (3.56) up to the third 
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power can obtained as 

 

                  𝑦(𝑡) ≈ 𝑎1𝐴[cos(𝜔1𝑡)  + cos(𝜔2𝑡)]

+ 𝑎2𝐴
2[cos((𝜔1 −𝜔2)𝑡)  + 𝑐𝑜𝑠((𝜔1 + 𝜔2)𝑡)]

+
3

4
𝑎3𝐴

3[cos((2𝜔1 − 𝜔2)𝑡)  + 𝑐𝑜𝑠((2𝜔1 + 𝜔2)𝑡)

+ cos((2𝜔2 − 𝜔1)𝑡)  + 𝑐𝑜𝑠((2𝜔2 + 𝜔1)𝑡)] + ⋯ 

(3.59) 

Equation (3.59) reveals that the amplitude of an 𝑖th-order IM component is proportional 

to the 𝑖th power of the amplitude of the fundamental component. This in turn implies that 

for a 1 dB increase in the fundamental level, the 𝑖th-order IM component increases by 𝑖 

dB.  

The 𝑖th-order IM distortion (𝐼𝑀𝐷𝑖) can be measured by the ratio of the power in 

the 𝑖th-order IM component to that in the fundamental component. For example, the 

intermodulation distortion for the 3rd-order IM component at the frequency 2𝜔1 − 𝜔2 is 

obtained as follows: 

 

𝐼𝑀𝐷3 = 10 log (
𝑝(2𝜔1 − 𝜔2)

𝑝(𝜔1)
) 

  = 20 log (
3

4

𝑎3
𝑎1
 𝐴2) 

(3.60) 

where 𝑝(𝜔) denotes the average power of a component at frequency 𝜔.  

Generally, the IM components of greater concern are those that have frequencies 

very close to those of the input signal since they may be captured in the receiver’s 

bandwidth, thus leading to degradation of the BER of the received signal. Given that the 

difference between 𝜔1 and 𝜔2 is generally small, the IM components of greater concern 

correspond to the odd-order terms having frequencies 

 𝜔 = 𝑚𝜔1 − 𝑛𝜔2 (3.61) 

The 3rd-order IM products corresponding to these frequencies dominate the 

intermodulation distortions at small signal levels. However, at large signal levels, the 5th- 

and 7th-order terms may become significant and should not be ignored. 

For real signals like the two-tone test signal, the figure of merit for measuring the 

IM distortion given in equation (3.60) is appropriate. However, it is insufficient when 

strong linearity is required and complex digital modulations are involved e.g. in OFDM 
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signals. The two figures of merit best suited for these latter cases are the envelope vector 

magnitude (EVM) and adjacent channel power ratio (ACPR) [100], [101].  

The EVM measures the extent of in-band distortions in a received signal. It is 

defined as the magnitude of the error vector between the original or reference 

constellation point and the respective measured point at the receiver as illustrated in 

Figure 3.12 for a 64-QAM constellation. It is computed over a number of symbols and is 

given by the formula  

 𝐸𝑉𝑀 = √
∑ |𝑌𝑘 − 𝑋𝑘|2
𝐾
𝑘=1

∑ |𝑋𝑘|2
𝐾
𝑘=1

  (3.62) 

where 𝑋𝑘 and 𝑌𝑘 are the vectors corresponding to the transmitted and received symbols 

and 𝐾 is the number of symbols used in the EVM computation. 

The ACPR ratio measures OOB radiations or the spread of a signal spectrum into 

adjacent channels due to IM distortions. It is given by the ratio of the power that leaks 

into an adjacent channel to the power in the main channel, i.e. 

 𝐴𝐶𝑃𝑅 = 10 log (
∫ 𝑆(𝑓)
 

Bach
𝑑𝑓

∫ 𝑆(𝑓)
 

Bmch
𝑑𝑓
) [dBc] (3.63) 

where 𝐵𝑎𝑐ℎ and 𝐵𝑚𝑐ℎ are, respectively, the bandwidth of the adjacent and the main 

channel as illustrated in Figure 3.13 and 𝑆(𝑓) is the power spectral density of the signal 

amplified through the power amplifier.  

Q 

I 
 

(a)           (b) 

Figure 3.12. EVM (a) Error vector (b) Reference (blue) and received (red) constellation points [102] 
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Figure 3.13. Power leakage into adjacent channel [102] 

3.8.2 Operating Point of Power Amplifier 

To avoid nonlinear distortions, the operating point of a power amplifier can be set 

in the linear region away from the saturation point depending on the envelope 

fluctuations of the input signal. Practically, the operating point is determined by the value 

of the input power back-off (IBO), which is the ratio of the saturation (maximum peak) 

power to the average power of a signal, i.e. 

 IBO = 10 log (
Pin,sat
Pav

) [dB] (3.64) 

Thus, it is equal to the PAPR of the signal.  

From equation (3.64), it is clear that a signal that has a low PAPR requires a small 

IBO, and hence can be amplified near the saturation point with high power efficiency. 

This is illustrated in Figure 3.14, where due to the reduction in PAPR, it is shown that the 

power fluctuations in the signal are reduced, thus making the operating point to move 

from low to high efficiency region owing to reduced IBO. 

Without PAPR reduction, a high PAPR causes a power amplifier to be operated at 

low efficiencies, even below 5%. For example, a typical OFDM signal has a PAPR 

ranging from 10 to 12 dB, thus requires a legacy linear power amplifier to be operated 

with an IBO of between 10 and 12 dB from the 1-dB compression point in order to 

amplify linearly all the signal amplitudes. Since a linear power amplifier has an 

efficiency of between 40 and 70%, an IBO of 10 to 12 dB forces the device to operate 

with a much lower efficiency of around 5%.  
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Figure 3.14. Power amplifier operation at a high efficiency region [103] 

The low efficiency operation leads to a high power consumption and a high 

thermal power dissipation and hence an increase in the cost of the device due to the need 

of an advanced cooling system. High power consumption may translate to a high utility 

bill that can be extreme especially with base stations, which are normally in large 

numbers in a wireless communication network. This is in addition to air pollution and 

carbon emissions from the electricity generating stations that power the base stations.  

For example, a single-carrier tri-sector 3G macro-site base station, that is 

commonly used to cover highly populated areas, when using a power amplifier that has 

been linearized and the efficiency enhanced to 15%, may consume power of 

approximately 1.45 kW [104]. The power amplifier in the base station consumes about 

55% (0.8 kW) of this power.  

At the current cost of KSh 19.70 per kWh in Kenya, the total cost of power will 

be KSh 246,801.60 per year per a base station. An operator having 2,500 base stations 

would consume 3.625 MW of power at a cost of KSh 617 million per year at a carbon 

footprint of approximately 0.02 MtCO2 per year. 

In addition, in the case of portable devices such as mobile phones, operating a 

power amplifier at a low efficiency zone owing to a large IBO depletes the battery charge 

very fast. Thus, the battery requires constant or frequent charging, which greatly 

inconveniences the user. 
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3.8.3 Bit-Error Rate Performance 

Although the EVM given in equation (3.62) is a good measure of in-band 

distortions in a signal, the most important performance metric in a digital communication 

system is the BER. By definition, BER is the ratio of the number of erroneous bits to the 

total number of bits received. However, it is commonly measured by the probability of a 

bit error (𝑃𝑏) at a given ratio of bit energy to noise power spectral density (𝐸𝑏/𝑁0). The 

ratio 𝐸𝑏/𝑁0 can be related to the SNR by expressing it as follows: 

 

𝐸𝑏
𝑁0

=

𝑆
𝑅
𝑁
𝑊

 

          =
𝑆

𝑁

𝑊

𝑅
 

(3.65) 

where the ratio 𝑆/𝑁 is the SNR, 𝑊 is the signal detection bandwidth at the receiver and 

𝑅 is the bit rate. Because of the relationship between the two ratios, 𝐸𝑏/𝑁0 is commonly 

referred to as SNR per bit.  

It is normally desired that the required SNR per bit be as small as possible for a 

given value of 𝑃𝑏. However, this is not always the case. A typical plot of 𝑃𝑏 values 

against 𝐸𝑏/𝑁0 has a “waterfall-like” shape indicating a trade-off between the two as 

illustrated in Figure 3.15. For each curve, 𝑃𝑏 decreases nonlinearly with the increase in 

𝐸𝑏/𝑁0. The arrow in the figure indicates the direction of improved BER performance. 

Thus, curve 2 has a better BER performance than curve 1 because for the same value of 

𝑃𝑏 e.g. at 𝑃𝑏 = 𝑝0, curve 2 requires a lower 𝐸𝑏/𝑁0 than curve 1. 

The required BER depends on the underlying application. For a given application, 

the BER of the received signal is expected to be equal to or less than the one specified for 

that particular application. For example, vocoded speech requires a BER between 10−2 

and 10−3, data transmission over wireless channel aims for a BER between 10−5 and 

10−6, video transmission needs a BER in the range of 10−7 to 10−12, while financial 

data transmission requires a BER of 10−11 and below [105]. 

In an OFDM system, the 𝑃𝑏 can be found by considering the modulation scheme 

employed together with the underlying channel characteristics. For the general 𝑀-ary 

QAM scheme, the symbol-error rate (SER) probability function for an additive white 

Gaussian noise (AWGN) channel or a Raleigh-fading channel is sufficient for analysing 

the BER performance of a system.  
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Figure 3.15. Illustration of bit-error rate probabilities 

In an OFDM wireless channel characterised by AWGN and employing 𝑀-ary 

QAM, the probability of occurrence of a symbol error is given [105] by 

 𝑃𝑠 = 1 − [1 −
2(√𝑀 − 1)

√𝑀
𝑄(√

6 log2(√𝑀)

(𝑀 − 1)

𝐸𝑏
𝑁0
)]

2

 (3.66) 

where 𝑄() is the well-known Q-function defined as 

 𝑄(𝑥) = 1 − 𝐹𝑋(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑦2

2 𝑑𝑦
∞

𝑥

 (3.67) 

where 𝐹𝑋(𝑥) is the CDF of a random variable 𝑋.  

The bit-error probability can be obtained from the symbol-error probability in 

equation (3.66) as 

 𝑃𝑏 =
𝑃𝑠

log2 √𝑀
 (3.68) 

rather than by log2𝑀 because an 𝑀-ary QAM symbol can be considered to consist of an 

in-phase and a quadrature component, each of them representing log2 √𝑀 bits, and 
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modulating an in-phase carrier cos (2𝜋𝑓𝑐𝑡) and a quadrature carrier sin (2𝜋𝑓𝑐𝑡), 

respectively.  

In the case of a transmission through a Rayleigh-fading channel, the probability of 

a symbol error is obtained as follows [93]: 

 𝑃𝑠 =
(√𝑀 − 1)

√𝑀
[1 −

𝛽

𝛽 + 1
] (3.69) 

where 

 𝛽 =
6 log2(√𝑀)

2(𝑀 − 1)

𝐸𝑏
𝑁0

 (3.70) 

Similarly, the bit-error probability is given by equation (3.68).  

The two symbol-error rates obtained using equation (3.66) and (3.69) offers a 

theoretical lower-limit or the best performance that can be used for benchmarking 

simulated SER performances for a given communication system. 

3.9 Multiple-Antenna Techniques in OFDM System 

OFDM can be combined with multiple antennas in the transmitter and receiver to 

boost the overall channel capacity and reliability of a communication system. Such a 

system is referred to as multiple-input multiple-output OFDM, i.e. MIMO-OFDM 

system. Since OFDM technique has been covered in the preceding sections of this 

chapter, this section will briefly cover MIMO technology and its benefits in the first part. 

This will then be followed by a short coverage of one of the most common transmit-

antenna diversities referred to as Alamouti space-time block coding that was used in the 

simulation of MIMO-OFDM systems in this work.  

3.9.1 MIMO Antenna Technique 

In a MIMO system, multiple antennas are employed at both the transmitter and 

the receiver. The antennas are sufficiently spaced, typically by a distant of more than 

10𝜆, to avoid interferences. Denoting the number of transmit antennas by 𝑁𝑡 and the 

receive antennas by 𝑁𝑟 in a general MIMO configuration, three special cases of antenna 

arrangements that can be derived. These are the single-input single-output (SISO) when 

𝑁𝑡 = 𝑁𝑟 = 1, single-input multiple-output (SIMO) in which 𝑁𝑡 = 1 and multiple-input 

single-output (MISO) antenna configuration when 𝑁𝑟 = 1.  
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The aim of combining multiple transmit and receive antennas in a communication 

system is to achieve spatial diversity and/or spatial multiplexing. Spatial diversity 

improves the BER performance, hence increasing reliability of the system. On the other 

hand, spatial multiplexing boosts the transmitted data rate. Combining spatial diversity 

and spatial multiplexing in a communication system improves both system reliability and 

bit rate. 

The spatial diversity of a MIMO system can be measured by what is referred to as 

diversity order or gain, which by definition is the number of uncorrelated transmission 

channels between the transmitter and the receiver and is given by 

 𝑁𝑑 = 𝑁𝑡 × 𝑁𝑟 (3.71) 

Spatial diversity greatly improves system reliability because the probability of 

having a low SNR on all the 𝑁𝑑 channel paths is very small. In particular, the average bit-

error probability in a MIMO system decays exponentially as diversity order [106] 

increases according to the relation 

 𝑃𝑏 = 𝑘 (
𝑆

𝑁
)
−𝑁𝑑

 (3.72) 

where 𝑘 is a constant that depends on the modulation scheme used in the system and  

𝑆/𝑁 is the received SNR.  

In addition to providing spatial diversity, multiple transmit antennas can be used 

for beamforming, i.e. to shape the beam of the transmit signal towards the target receiver, 

when the relative phases of the downlink channels are known at the transmitter. 

Beamforming can increase the strength of received signal by up to 𝑁𝑡 times, thus 

allowing the coverage area to be increased or the transmit power to be reduced.  

Additionally, an increase in the signal strength can lead to a linear increase in 

SNR and a proportional increase in the channel capacity as illustrated in Figure 3.16. 

This is according to Shannon-Hartley channel capacity theorem [107], which can be 

expressed as 

 𝐶𝑁 = log2 (1 +
𝑆

𝑁
) (3.73) 

where 𝐶𝑁 = 𝐶/𝑊 is the normalized channel capacity, i.e. channel capacity divided by the 

bandwidth, and 𝑆 and 𝑁 denote the average power of signal and noise, respectively.  

However, the stated increase in channel capacity happens only for channels that 
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have low SNR, in which case 𝐶𝑁 ≈ 𝑆/𝑁. Because of low SNR, such channels have a low 

data rate. As the diversity is increased, the channel capacity becomes proportional 

to log2 (𝑆/𝑁) at high values of SNR and eventually saturates unless the bandwidth is also 

increased.  

A substantial increase in data rate at higher SNRs can be achieved through spatial 

multiplexing where multiple antennas send multiple uncorrelated data streams. This 

allows the channel capacity to increase linearly with the number of antennas without 

saturating. In a power-limited system, it is possible to have 𝑁𝑚 = min (𝑁𝑡, 𝑁𝑟) parallel 

channels each with 𝑁𝑚 times lower SNR due to splitting of the available power among 

the channels [108]. The normalized channel capacity for one channel is then given by  

 𝐶𝑁
(𝑖)
= log2 (1 +

𝑁𝑟
𝑁𝑚

S

N
) , 𝑖 = 0, 1, … , 𝑁𝑚  (3.74) 

while that for the whole system is 

 𝐶𝑁 = 𝑁𝑚 log2 (1 +
𝑁𝑟
𝑁𝑚

S

N
) (3.75) 

By setting 𝑁𝑡 = 𝑁𝑟 in equation (3.75), the total channel capacity for a MIMO 

system with spatial multiplexing becomes 

 𝐶𝑁 = 𝑁𝑚 log2 (1 +
S

N
) (3.76) 

Thus, it increases linearly with the number of antennas.  

 

Figure 3.16. Normalized channel capacity variation with SNR 
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3.9.2 Transmit Diversity by Space-Time Block Coding 

The Alamouti space-time coding was the first space-time block coding (STBC) to 

provide transmit diversity. The Alamouti STBC delivers a space-time rate of one without 

ISI. A space-time rate of one means that the encoder input has the same symbol rate as 

the one available at each transmit antenna, thus offering bandwidth utilization equal to 

one.  

The Alamouti STBC is a complex orthogonal space-time coding scheme that 

specialise on just two transmit antennas. It can also be extended to a higher number of 

antennas but for complex modulation schemes, such as 𝑀-ary QAM, a space-time rate of 

one without ISI can only be achieved with two transmit antennas.  

The encoding of symbols in an Alamouti STBC is done on two consecutive 

symbols, 𝑋1 and 𝑋2, using a space-time codeword matrix [109]: 

 𝑋𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 = [
𝑋1
𝑋2
  
−𝑋2

∗

   𝑋1
∗] (3.77) 

where the superscript ∗ signifies complex conjugation. 

The signal from the Alamouti-STBC encoder is sent over two symbol periods 

from two transmit antennas. The first and the second antenna, respectively, transmits 

symbols 𝑋1 and 𝑋2 simultaneously in the first symbol duration. In the second symbol 

duration, the first and the second transmit antenna essentially resends the same symbols 

in the form −𝑋2∗ and 𝑋1∗, respectively. The receiver needs to implement an Alamouti 

STBC decoder for recovering the transmitted symbols. 

There are two realizations of receivers for decoding Alamouti STBC signals. The 

first one has one receive antenna, while the other has two, respectively forming 2 × 1 and 

2 × 2 multiple-antenna systems. Since over the two symbol durations, only two symbols 

are essentially transmitted, the two implementations of Alamouti STBC receivers have 

the same channel capacity as a SISO configuration.  

However, the 2 × 2 MIMO scheme has a diversity gain of 4, which is twice that 

of a 2 × 1 MISO configuration and four times that of SISO system. Similarly, from 

equation (3.72), the 2 × 2 MIMO system has a better BER performance than the other 

two systems. 

Figure 3.17 illustrates the Alamouti STBC encoding scheme for the 2×2 

configuration. The impulse responses ℎ11, ℎ12, ℎ21 and ℎ22 of the four channel paths are 

assumed to be complex and constant over two symbol periods, hence can be expressed in 



Chapter 3: Orthogonal Frequency Division Multiplexing 

 

66 
 

the form 

 ℎ𝑖𝑗 = |ℎ𝑖𝑗|𝑒
𝜃𝑖𝑗 (3.78) 

where |ℎ𝑖𝑗| and 𝑒𝜃𝑖𝑗  are the amplitude and phase of the impulse response of the path from 

antenna 𝑗 to 𝑖 over two symbol durations. Subscripts 𝑖 and 𝑗 can be either 1 or 2.  

At each receive antenna, the received signal is given by the convolution of the 

channel impulse responses and the symbols transmitted from the two antennas. Noting 

that a convolution of a signal and a constant is simply the product of the two, the signals 

received by the top receive antenna in Figure 3.17 in the first and second symbol 

intervals are given, respectively, by 

 
𝑌11 = ℎ11𝑋1 + ℎ12𝑋2 + 𝑛11 

     𝑌12 = −ℎ11𝑋2
∗ + ℎ12𝑋1

∗ + 𝑛12 
(3.79) 

Similarly, the received signals at the second receive antenna are 

 
𝑌21 = ℎ21𝑋1 + ℎ22𝑋2 + 𝑛21 

    𝑌22 = −ℎ21𝑋2
∗ + ℎ22𝑋1

∗ + 𝑛22 
(3.80) 

The four additive terms 𝑛11, 𝑛12, 𝑛21 and 𝑛22 are the AWGN terms of the four channels.  

On complex conjugating the two signals received during the second interval, the 

system equation for an Alamouti STBC 2 × 2 MIMO system can be written as 

 [

𝑌11
𝑌12
∗

𝑌21
𝑌22
∗

] =

[
 
 
 
 
ℎ11
ℎ12
∗    

   ℎ12
−ℎ11

∗

ℎ21
ℎ22
∗    

   ℎ22
−ℎ21

∗ ]
 
 
 
 

[
𝑋1
𝑋2
] + [

𝑛11
𝑛12
∗

𝑛21
𝑛22
∗

]. (3.81) 
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Figure 3.17. Alamouti scheme for 2×2 MIMO system 
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and has the form 

 𝐘 = 𝐻𝐗 + 𝐧 (3.82) 

where 𝐻 is the channel matrix given by 

 𝐻 =

[
 
 
 
 
ℎ11
ℎ12
∗    

   ℎ12
−ℎ11

∗

ℎ21
ℎ22
∗    

   ℎ22
−ℎ21

∗ ]
 
 
 
 

 (3.83) 

Because the two columns of 𝐻 are orthogonal, the estimates of the transmitted 

symbols can be found by multiplying the two sides of equation (3.82) by the conjugate 

transpose of 𝐻 given by  

 𝐻𝐻 = [
ℎ11
∗

ℎ12
∗   

 ℎ12
−ℎ11  

  
ℎ21
∗

ℎ22
∗   

   ℎ22
−ℎ21

] (3.84) 

The transmitted symbols can then be estimated as follows: 

 𝐗̂ = [
𝑋̂1
𝑋̂2
] =

𝐻𝐻𝐘

|ℎ11|
2 + |ℎ12|

2 + |ℎ21|
2 + |ℎ22|

2
 (3.85) 

3.9.3 Space-Time Block-Coded MIMO-OFDM System 

The 2 × 2 STBC MIMO system in Figure 3.17 can be combined with OFDM to 

have a 2 × 2 MIMO-OFDM system. This can be accomplished by adding blocks for 

processing OFDM signals after the STBC encoder as illustrated in Figure 3.18 [110], 

[111]. 

 

Figure 3.18. MIMO-OFDM system employing 2×2 Alamouti STBC 
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Therefore, a general MIMO-OFDM transmitter has 𝑁𝑡 independent transmit 

branches, with each of them similar to a SISO-OFDM transmission path. Each transmit 

branch performs the same sequence of signal-processing operations presented in Section 

3.5, which include serial-to-parallel conversion, pilot insertion, 𝑁-point IFFT, cyclic 

extension and digital-to-analogue conversion before the final signal is amplified and up-

converted to RF level for transmission. In some spatial multiplexing systems [112], 

channel encoding and digital modulation can also be done differently on each of the 𝑁𝑡 

transmit branches.  

The receiver in a MIMO-OFDM system reverses the signal processing operations 

done in the transmitter in a similar manner described earlier in Section 3.5 for the SISO-

OFDM system. From the foregoing presentation of MIMO-OFDM system, it is clear that 

each of the 𝑁𝑡 transmit signals has the same characteristics as those for the OFDM signal, 

including a high PAPR. Therefore, due to high PAPR, some or all of the 𝑁𝑡 transmit 

signals may experience nonlinear amplification resulting in the undesirable effects 

presented in Section 3.8.  

3.9.4 PAPR of a MIMO-OFDM System 

In a MIMO-OFDM system, there are 𝑁𝑡 transmit branches and hence 𝑁𝑡 parallel 

OFDM signals, each with its own PAPR. Considering the same specifications for HPAs 

in all the 𝑁𝑡 branches, the interest would then be to limit the maximum PAPR in order to 

avoid nonlinear distortions in the system. The maximum PAPR for the system can 

obtained as 

 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 = max(PAPR{𝑥1(𝑛)}, PAPR{𝑥2(𝑛)}, … , PAPR{𝑥𝑁𝑡(𝑛)}) (3.86) 

where 𝑥𝑖(𝑛) is a sufficiently oversampled discrete-time signal corresponding to the 𝑖th 

transmit path during the first symbol duration.  

The maximum PAPR in the second symbol duration can be found in a similar 

manner. However, since the same symbols are essentially retransmitted in the second 

period, the maximum PAPR will be the same for the two symbol durations.  
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CHAPTER 4  
 

FUNDAMENTALS OF CONVEX OPTIMIZATION AND 
ADAPTIVE SIGNAL PROCESSING 

This chapter covers the basic concepts that form the foundation of this work, 

specifically for the development of the proposed algorithms. These concepts are mainly 

drawn from convex optimization and adaptive signal processing. The first part focuses on 

the essential concepts of convex functions and optimization. Under this part, a special 

coverage is given to three classes of convex optimization problems, namely least-squares 

minimization, linear programming and second-order cone programming, which form the 

basis of the PAPR reduction algorithms proposed in this thesis. In the second part, 

important concepts of adaptive signal processing that are used to characterise the 

proposed algorithms are covered in details.  

4.1 Basics of Convex Functions and Optimization 

Optimization problems have become a common occurrence in signal processing 

applications e.g. in the design of filters, signal estimations and noise cancellation. An 

optimization problem normally involves finding an optimum solution to a cost function 

defined over the input signal and some coefficients. The general form of an optimization 

problem is given by a set of equations 

 

minimize        𝑓(𝑥)           

subject to       𝑔(𝑥) ≤ 0 

                         ℎ(𝑥) = 0 

                              𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

(4.1) 

where 𝑥 is the optimization variable of the problem, 𝑓(𝑥) is the objective function and 

𝑔(𝑥) and ℎ(𝑥) are the inequality and equality constraint functions, respectively. The 

limits 𝑥𝑙 and 𝑥𝑢 are the lower and upper bounds of the optimization variable, respectively 

[113]. 
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Many optimization problems exist but they can be classified according to the 

characteristics of their objective and constraint functions. Of interest to this thesis is the 

class of convex optimization problems in which both the objective and constraint 

functions are convex. This means that the values of the functions satisfy the following 

inequality: 

  𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2) (4.2) 

for every real number 𝛼 in the range 0 < 𝛼 < 1 and every pair of points (𝑥1, 𝑥2) in a 

convex set ℛ𝑐.  

The set ℛ𝑐 is said to be convex if a third point formed as 

 𝑥3 ≤ 𝛼𝑥1 +  (1 − 𝛼)𝑥2 (4.3) 

from any two points in the set is also located in the same set. In other words, if a straight 

line connects any two points (𝑥1, 𝑥2) in the set ℛ𝑐, then ℛ𝑐 is said to be convex if every 

point on the line segment between the two points is a member of the same set. 

On the left-hand side of equation (4.2), 𝑓(𝑥) is evaluated on the line segment 

joining points 𝑥1 and 𝑥2, whereas on the right-hand side, it is approximated using a linear 

interpolation. Thus, the function 𝑓(𝑥) is said to be convex over the set ℛ𝑐 if the linear 

interpolation of the function between any two points in the set overestimates the function. 

Since all functions in a convex optimization problem are convex, the local 

minimum of function 𝑓(𝑥) is the global minimum. In other words, an optimal solution is 

always guaranteed for a convex optimization problem. Unfortunately, there is in general 

no analytical method for finding optimal solutions of convex optimization problems. 

However, the interior-point algorithms [114] have of late proved to be very effective in 

solving the problems in a number of iterations between 10 and 100. 

An interior-point method finds the best solution by traversing the interior of the 

feasible region, itself a convex set, encoded by a self-concordant barrier function. This 

follows from the fact that any convex optimization problem can be transformed into a 

minimization (or a maximization) of a linear function over a convex set by converting it 

into an epigraph form. The barrier function is a convex function with the property that its 

value at a point tends to infinity as the point approaches the boundary of the feasible 

region of an optimization problem. 

The interior-point method approximates a constrained convex optimization 

problem 
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minimize        𝑓0(𝑥)           

                                  subject to       𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, … ,𝑚 
(4.4) 

where the inequality constraints 𝑓𝑖(𝑥), 𝑖 = 1, 2, … ,𝑚 , are convex and smooth (i.e. at 

least twice continuously differentiable), by another smooth unconstrained convex 

optimization problem of the form 

 minimize        𝑓0(𝑥) +
1

𝜇
ℬ(𝑥) (4.5) 

where 𝜇 is a small positive scalar, i.e. 𝜇 > 0 and ℬ(𝑥) is a barrier function for the 

feasible set of the original problem in equation (4.4).  

Parameter 𝜇 is used to control how deep inside the feasible set one wants to be 

with respect to how much the objective function need to be minimized. In other words, 

the parameter sets the accuracy of the optimization. A high value of 𝜇 gives a good 

approximate solution of the original problem in equation (4.4).  

The basic idea of using the barrier function is to implicitly put the inequality 

constraints in the objective function and allow Newton’s method, discussed in Section 

4.2, to solve the optimization problem. Thus, the barrier function should be continuous 

and at least twice differentiable. A typical barrier function for the problem is the 

logarithmic barrier function given by 

 ℬ(𝑥) = −∑log(−𝑓𝑖(𝑥))

𝑚

𝑖=1

 (4.6) 

The domain of this function is the set of points that strictly satisfy all the inequality 

constraints. 

Although the quality of approximation of the solution of the problem in equation 

(4.5) to the one of (4.4) improves with increasing value of 𝜇, it is difficult to minimize 

the former when the parameter is large, since the Hessian of 𝑓0(𝑥) + (1 𝜇⁄ )ℬ(𝑥) changes 

quickly close to the boundary of the feasible set. To avoid this difficulty, the interior-

point algorithm finds the optimal solution by solving a sequence of unconstrained convex 

problems with increasing values of 𝜇. 

One important advantage of interior-point algorithms is that the number of 

iterations is determined by a solver’s stopping criteria rather than the problem size and 

starting point. The stopping criteria may include several tolerances that can be set by the 
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user depending on the required precision in a problem. A tolerance is simply a threshold 

that when crossed stops the iterations of a solver.  

Typical tolerances for interior-point algorithms include the function tolerance that 

gives the lower bound on the change in the value of the objective function from one 

iteration to the next and the maximum allowed number of iterations. Others are the 

constraint tolerance that gives an upper bound of the absolute value of any of the 

constraints, and the step tolerance that sets a lower bound of the step-size.  

From the foregoing discussion, it is clear that the computational effort in an 

iteration of an interior-point algorithm determines the differences of computational 

complexities and convergence times of different optimization problems. 

4.1.1 Norm Approximation 

In most signal processing applications, the optimization problem involves 

estimating a specified or desired response. The problem requires minimization of the 

difference between the actual and desired response, commonly referred to as 

approximation or residual error, given by 

 𝐫 = 𝐛 − 𝐴𝐱 (4.7) 

where 𝐴 is a matrix of 𝑚 rows and 𝑛 columns containing real coefficients, i.e. 𝐴 ∈

ℝ𝑚×𝑛, 𝐱 is a real vector of 𝑛 components, i.e. 𝐱 ∈ ℝ𝑛, and the product 𝐴𝐱 constitutes the 

actual response, while vector 𝐛 ∈ ℝ𝑚 represents the desired response.  

If 𝐛 does not lie in the space spanned by the columns of 𝐴 or 𝑚 ≠ 𝑛, there is no 

exact solution to equation (4.7), i.e. 𝐫 cannot be 𝟎. The case when an exact solution does 

not exist corresponds to the system of linear equations 𝐴𝐱 = 𝐛 being overdetermined if 

𝑚 > 𝑛 or underdetermined if 𝑚 < 𝑛. For these two cases, in order to have 𝐫 ≈ 𝟎, an 

approximation problem is posed to minimize an objective function defined as a norm of 

some type on vector 𝐫.  

The chosen norm is simply a function that assigns a positive length to vector 𝐫 in 

the respective vector space. Using a general ℓ𝑝-norm, an objective function 𝑓(𝑥) can be 

expressed as 

 𝑓(𝑥) = ‖𝐫‖𝑝 = (∑|𝑟𝑖(𝑥)|
𝑝

𝑚

𝑖=1

)

1
𝑝

 (4.8) 
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or simply as 

 𝑓(𝑥) = ‖𝐫‖𝑝
𝑝 =∑|𝑟𝑖(𝑥)|

𝑝

𝑚

𝑖=1

 (4.9) 

where 𝑝 is an positive integer and 𝑟𝑖(𝑥) denotes the 𝑖th component of 𝐫. 

Two special cases of ℓ𝑝-norm, one when 𝑝 = 2 and the other when 𝑝 = ∞, 

corresponding to the Euclidean and Chebyshev norms are discussed next together with 

their respective optimization problems. 

4.1.2 Least-Squares Problem 

If 𝑝 = 2 in equation (4.8), the Euclidean or ℓ2-norm given by 

 𝑓(𝑥) = ‖𝐫‖2 = (∑|𝑟𝑖(𝑥)|
2

𝑚

𝑖=1

)

1
2

 (4.10) 

is minimized. 

On squaring the Euclidean norm, the objective function can be written as 

 𝑓(𝑥) = ‖𝐫‖2
2 =∑|𝑟(𝑖)|2

𝑚

𝑖=1

 (4.11) 

but still minimizes the same norm.  

The optimization problem in equation (4.11) is referred to as a least-squares 

problem. In vector form, it can be expressed as follows: 

 
𝑓(𝑥) = (𝐛 − 𝐴𝐱)𝑇(𝐛 − 𝐴𝐱)                     

= 𝐛𝐛𝑇 − 2𝐛𝑇𝐴𝐱 + 𝐱𝑇𝐴𝑇𝐴𝐱 
(4.12) 

Here, without loss of generality, matrix 𝐴 and vectors 𝐫, 𝐱 and 𝐛 are assumed to be real-

valued and 𝑚 > 𝑛. Equation (4.12) is quadratic in 𝐱, and therefore convex, and can be 

solved by setting the first derivative, given by 

 𝜕𝑓(𝑥)

𝜕𝑥
= −2𝐴𝑇𝐛 + 2𝐴𝑇𝐴𝐱 (4.13) 

to zero. This is equivalent to solving a system of linear equations  

 (𝐴𝑇𝐴)𝐱 = 𝐴𝑇𝐛 (4.14) 

normally referred to as normal equations, whose closed form solution is 
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 𝐱 = (𝐴𝑇𝐴)−1𝐴𝑇𝐛 (4.15) 

The computational complexity of obtaining the least-squares solution is dependent on the 

dimensions of the coefficient matrix 𝐴 and is found to be 𝑂(𝑚𝑛2). 

4.1.3 Weighted Least-Squares Problem 

In some cases of the application of least-squares minimization, there may be a 

need to emphasize the minimization of some critical residual error components, while de-

emphasizing others. This can be achieved through solving a weighted least-squares 

problem, where different weights are applied on the error components to yield an 

objective function of the form 

 𝑓(𝑥) = ‖𝑊𝐫‖2
2 =∑|𝓌𝑖𝑟𝑖(𝑥)|

2

𝑚

𝑖=1

 (4.16) 

where 𝑊 ∈ ℝ𝑚×𝑚 is a diagonal matrix of relative weights 𝓌𝑖 , 𝑖 = 1, 2, … ,𝑚,  i.e. 

 𝑊 = [

𝓌1

0
⋮
0

   

0
𝓌2

⋮
0

   

⋯
⋯
⋱
⋯

   

0
0
⋮
𝓌𝑚

] (4.17) 

Here, 𝓌𝑖 denotes the weight applied on the 𝑖th component of 𝐫. 

The weighted least-squares problem in equation (4.16) can be readily cast into a 

standard least-squares problem with the following set of normal equations: 

 (𝐴𝑇𝑊𝑇𝑊𝐴)𝐱 = 𝐴𝑇𝑊𝑇𝑊𝐛 (4.18) 

hence leading to a closed form solution 

 𝐱 = (𝐴𝑇𝑊𝑇𝑊𝐴)−1𝐴𝑇𝑊𝑇𝑊𝐛 (4.19) 

After the minimization of the problem in equation (4.16), the final residual errors 

in the weighted error vector tend to have approximately the same magnitude, say equal to 

𝛿, i.e. , i.e. 𝓌𝑖𝑟𝑖(𝑥) ≅  𝛿 for 𝑖 = 1, 2, … ,𝑚. Therefore, in case a large weight, say 𝓌𝑘, 

was placed on the component 𝑟𝑘(𝑥) during the minimization, the corresponding residual 

error on this component in the un-weighted error vector 𝐫 is 𝛿/𝓌𝑘 and is therefore very 

small, i.e. it was highly minimized owing to the large weighting. 



Chapter 4: Fundamentals of Convex Optimization and Adaptive Signal Processing 
 

75 
 

4.1.4 Iterative Re-Weighted Least Squares 

The iterative re-weighted least squares (IRLS) is an optimization procedure that 

iteratively solves the weighted least-squares problem in equation (4.16) in order to solve 

the ℓ𝑝-norm approximation problem of the objective function in equation (4.9). The 

objective function for the minimization of the ℓ𝑝-norm can be expressed as an equivalent 

weighted least-squares function as follows: 

 𝑓(𝑥) = ‖𝐫‖𝑝
𝑝
=∑|𝑟

𝑖

𝑝−2
2 (𝑥)𝑟𝑖(𝑥)|

2𝑚

𝑖=1

 (4.20) 

which can be rewritten as 

 𝑓(𝑥) = ‖𝐫‖𝑝
𝑝 =∑|𝓌𝑖𝑟𝑖(𝑥)|

2

𝑚

𝑖=1

 (4.21) 

where the components of the residual error are weighted by 

 𝓌𝑖 = |𝑟𝑖(𝑥)|
𝑝−2
2 , 𝑖 = 1, 2, … ,𝑚 (4.22) 

The weighted least-squares objective function in equation (4.21) has the same 

analytical solution given in equation (4.19). However, because the optimal weights that 

will give the minimum value of the ℓ𝑝-norm are unknown, the IRLS algorithm solves the 

weighted least-squares problem iteratively until convergence is achieved when the 

residual error does not change any more [115].  

The algorithm starts by setting all weights to unity, i.e. 𝓌𝑖 =1, for 𝑖 = 1, 2, … ,𝑚, 

and then finding the initial solution using equation (4.19). At every other iteration, the 

algorithm calculates a new error vector using equation (4.7) and new weights from 

equation (4.22). In order to have a proportionate weighting on the components of the 

residual error, the new weights are normalized by the sum ∑ 𝓌𝑖
𝑚
𝑖=1 . Using the normalized 

weights, the algorithm finds a new solution 𝐱. These steps are repeated until a possible 

convergence to an optimal solution for the ℓ𝑝-norm approximation problem.  

4.1.5 Linear Programming Problem 

Linear Programming is a class of optimization problems in which the objective 

and all constraint functions are linear functions of the optimization variable, i.e. they 

satisfy the condition 
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  𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) = 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2) (4.23) 

On comparing equation (4.23) and equation (4.2), it can be observed that, like the least-

squares problem, the linear program falls under the class of convex optimization 

problems.  

A general linear program (LP) can be formulated using the following set of 

equations: 

 

minimize        𝐜𝑇𝐱                     

subject to       𝐴𝑛𝑒𝑞𝐱 ≤ 𝐛𝑛𝑒𝑞 

                       𝐴𝑒𝑞𝐱 = 𝐛𝑒𝑞 

                         𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢 

(4.24) 

Here 𝐜𝑇𝐱 is the inner product of vectors 𝐜 and 𝐱, and 𝐱𝑙 and 𝐱𝑢 are the lower and upper 

bounds of vector 𝐱, respectively. 

Unlike the least-squares problem, the linear program in equation (4.24) does not 

have a closed form solution. Nevertheless, there exist several efficient algorithms for 

solving the program such as interior-point, simplex and active-set algorithms [116].  

In practice, the computational complexity of linear program solvers such as the 

interior-point method is known to be 𝑂(𝑛2𝑚), where 𝑛 denotes the number of variables, 

i.e. the length of vector 𝐱,  and 𝑚 is the number of constraints. Many problems, which in 

their original formulation are not in the standard linear program form in equation (4.24), 

can be readily transformed to an equivalent linear program and solved using an 

appropriate linear program solver.  

4.1.6 Chebyshev Approximation Problem 

When 𝑝 = ∞ in equation (4.8), the objective function is referred to as Chebyshev 

or ℓ∞-norm and is given as 

 𝑓(𝑥) = ‖ 𝐫‖∞ = lim
𝑝→∞

(∑|𝑟𝑖(𝑥)|
𝑝

𝑚

𝑖=1

)

1
𝑝

 (4.25) 

If we let 𝑓𝑚𝑎𝑥 denote the maximum of the absolute values of the components of 𝐫, i.e. 

𝑓𝑚𝑎𝑥 = max1≤𝑖≤𝑚|𝑟𝑖(𝑥)|, then equation (4.25) can be written as follows: 
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 𝑓(𝑥) = 𝑓𝑚𝑎𝑥 lim
𝑝→∞

(∑|
𝑟𝑖(𝑥)

𝑓𝑚𝑎𝑥
|

𝑝𝑚

𝑖=1

)

1
𝑝

 (4.26) 

Because all the terms |(𝑟𝑖(𝑥))/𝑓𝑚𝑎𝑥| in the sum in equation (4.26) are less than unity 

except for the maximum term, which is equal to 1, they will tend to zero when raised to a 

large power and hence the summation in the bracket will be equal to 1.  

Therefore, an objective function defined in terms of ℓ∞-norm is simply the 

maximum absolute value of the components of vector 𝐫 and can be written as 

 𝑓(𝑥) = ‖𝐫‖∞ = max {|𝑟1(𝑥)|, |𝑟2(𝑥)|… , 𝑟𝑚(𝑥)} (4.27) 

An optimization problem to minimize this function is referred to as Chebyshev 

approximation problem or minimax approximation problem and is stated as follows: 

 minimize  max {|𝑟1(𝑥)|, |𝑟2(𝑥)|… , 𝑟𝑚(𝑥)} (4.28) 

Unfortunately, there is no closed form solution to the minimax problem but upon 

casting it into a linear program, a solution can be found in a finite number of steps. The 

linear program for the Chebyshev approximation problem has an epigraph form 

 

minimize        𝑡                             

subject to       |𝑟𝑖(𝑥)| − 𝑡 ≤ 0 

                            −|𝑟𝑖(𝑥)| − 𝑡 ≤ 0 

(4.29) 

for 𝑖 = 1, 2, … ,𝑚 and 𝑡 and 𝑥 are the optimization variables. 

4.1.7 Second-Order Cone Programming 

A second-order cone programming (SOCP) is an optimization problem in which 

the constraints are second-order cones. Both the objective function and the second-order 

cone constraints are convex, thus making a SOCP a convex optimization problem. The 

standard form of a SOCP has the following set of equations:  

 
minimize        𝐟𝑇𝐱                                       

subject to      ‖𝐴𝑖𝐱 + 𝐛𝑖‖2 ≤ 𝐜𝑖
𝑇𝐱 + 𝑑𝑖 

(4.30) 

for 𝑖 = 1, 2, …𝑚. Here 𝐱 ∈ ℝ𝑛 is the optimization variable, while 𝐟 ∈ ℝ𝑛, 𝐴𝑖 ∈

ℝ(𝑘𝑖−1)×𝑛,  𝐛𝑖 ∈ ℝ𝑘𝑖−1, 𝐜𝑖 ∈ ℝ𝑛 and 𝑑𝑖 ∈ ℝ are the problem parameters. 

The constraint ‖𝐴𝑖𝐱 + 𝐛𝑖‖2 ≤ 𝐜𝑖
𝑇𝐱 + 𝑑𝑖 is referred to as a second-order cone 
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constraint because it requires the affine functions 𝐴𝑖𝐱 + 𝐛𝑖 and 𝐜𝑖𝑇𝐱 + 𝑑𝑖 to lie in a unit 

second-order cone of dimension 𝑘𝑖 defined as follows: 

 𝒞𝑘𝑖 = {[
𝑣
𝑡
] ∈ ℝ𝑘𝑖  | ‖𝑣‖2 ≤ 𝑡 } (4.31) 

where 𝑣 = 𝐴𝑖𝐱 + 𝐛𝑖 and 𝑡 = 𝐜𝑖
𝑇𝐱 + 𝑑𝑖.  

A SOCP can be viewed as a generalization of several convex optimization 

problems such as the linear program, quadratic program (QP) and quadratically 

constrained quadratic program (QCQP). This is due to the reason that many convex 

optimization problems can be reformulated as the program in equation (4.30) through a 

slight modification of the second-order cone constraints.  

For example, if 𝐴𝑖 = 0 and 𝐛𝑖 = 0, for 𝑖 = 1, 2, …𝑚, the SOCP reduces to a 

general linear program 

 
minimize        𝐟𝑇𝐱                   

subject to      0 ≤ 𝐜𝑖
𝑇𝐱 + 𝑑𝑖 

(4.32) 

Similarly, if 𝐜𝑖 = 0 for 𝑖 = 1, 2, …𝑚, the second-order cone constraints are 

reduced to ‖𝐴𝑖𝐱 + 𝐛𝑖‖2 ≤ 𝑑𝑖, which can be expressed as quadratic constraints 

 ‖𝐴𝑖𝐱 + 𝐛𝑖‖2
2 ≤ 𝑑𝑖

2, 𝑖 = 1, 2, …𝑚 (4.33) 

hence the SOCP reducing to a QCQP. 

4.2 Fundamental Concepts in Adaptive Signal Processing  

In many signal-processing applications, there is need for digital filters to adapt 

their coefficients to time-varying characteristics of the input signal, noise, and/or the 

physical system in order to produce the desired output. This kind of signal processing is 

referred to as adaptive filtering.  

There are many different adaptive filtering schemes but they differ only in the 

way the desired signal is obtained. Adaptive filtering has been widely used in signal 

processing to solve many problems [117] e.g., in channel equalization, signal prediction, 

interference cancellation, adaptive antenna arrays and system identification.  

An adaptive filter system consists of two basic elements, namely a digital filter 

and an adaptation algorithm. The digital filter gives an output in response to an input 

while the adaptation algorithm is responsible for adjusting the filter coefficients. An 
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adaptive filter can be described as a digital filter that self-adjusts its coefficients in order 

to minimize a cost function.  

A block diagram of an adaptive filter in the discrete-time domain is illustrated in 

Figure 4.1. The input signal to the filter is denoted by 𝑥(𝑛), the desired (or reference) 

signal by 𝑑(𝑛), the filter coefficients by 𝑤(𝑛) and the output signal by 𝑦(𝑛). The arrow 

through the block of filter coefficients, indicates their time adaptation with the error 

signal 𝑒(𝑛). 

The error signal 𝑒(𝑛) is the difference between the output and the desired signal, 

i.e. 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) (4.34) 

The adaptation or the update of the coefficients is aimed at minimizing a certain 

objective function, which is normally defined as a specific norm of the error signal. The 

minimization of the error is supposed to yield a filter whose output approximates the 

desired signal.  

Different applications have different requirements on the adaptation algorithm. 

The most common measures used to assess the suitability of an adaptation algorithm for a 

given application are the following:  

i) Rate of convergence  

This is the number of iterations an adaptation algorithm undergoes to 

converge to the optimal solution for a given objective function. A fast rate of 

convergence means that an algorithm is well suited for adjusting to rapid 

changes in the signal or system characteristics. 


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Figure 4.1. Block diagram of adaptive filter 



Chapter 4: Fundamentals of Convex Optimization and Adaptive Signal Processing 
 

80 
 

ii) Computational complexity 

This refers to the number of multiplications and additions the adaptation 

algorithm performs to find the optimal filter coefficients. Since for every 

sample of the input signal, the algorithm must complete the computation of 

filter coefficients, a lower computational effort means that the signal can be 

sampled at a higher sampling rate and vice versa. 

iii) Robustness 

This is the ability of an adaptation algorithm to converge under the effects of 

disturbances or that they just lead to small estimation errors. For example, a 

robust and numerically stable adaptive algorithm is insensitive to quantization 

errors resulting from finite-length registers in digital signal processors. 

iv) Misadjustment 

This is an indicator of how far an obtained solution is from the optimal 

solution. It is defined as 

 𝓂 =
𝑓(𝐰∗) − 𝑓(𝐰𝑜𝑝𝑡)

𝑓(𝐰𝑜𝑝𝑡)
 (4.35) 

where 𝑓(𝐰∗) and 𝑓(𝐰𝑜𝑝𝑡) are, respectively, the values of the objective 

function at the final adaptive filter coefficients and the optimal weights. For 

example, if the objective function is given by the mean square value of the 

error signal, then 𝑓(𝐰𝑜𝑝𝑡) will be the optimal value given by the Wiener 

filter. 

 

The adaptation process in the filter is largely determined by the choice of the filter 

structure. On the other hand, the structure is application-specific as the resulting filtering 

transfer function determines the relationship between the input and the output signals. 

Typical filter structures include the transversal (or tapped-delay line) finite-duration 

impulse response (FIR), lattice FIR and infinite-duration impulse response (IIR) filters.  

The choice of the filter structure greatly affects the computational complexity of a 

given adaptation algorithm and the speed of convergence of the adaptation process. 

Because of its simplicity and efficiency, the transversal FIR structure in Figure 4.2, is by 

far the most widely used structure. Each of the blocks labelled 𝑧−1 represents a delay 

element. The output of the FIR filter is given by 
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        𝑦(𝑛) = 𝑤𝑜𝑥(𝑛) + 𝑤1𝑥(𝑛 − 1) + ⋯+ 𝑤𝑁−1𝑥(𝑛 − 𝑁 + 1) 

= 𝐰𝑇𝐱(𝑛)                                                            
(4.36) 

where 𝑁 is the filter order and 𝐱(𝑛) and 𝐰 are the vectors containing the input signal 

samples and filter coefficients 𝑤(𝑛) respectively, i.e. 

 𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1)…  𝑥(𝑛 − 𝑁 + 1)]𝑇 (4.37) 

and 

 𝐰 = [𝑤0 𝑤1… 𝑤𝑁−1]
𝑇 (4.38) 

In case 𝐱(𝑛) is complex, the output signal is given by 

 
𝑦(𝑛) = 𝐰𝐻𝐱(𝑛)           

= 𝐱𝐻(𝑛)𝐰 
(4.39) 

where the superscript 𝐻 denotes the Hermitian or conjugate transpose.  

An optimal filter design problem can be represented as shown Figure 4.3. The aim 

of optimal filter design is to find the filter coefficients that optimize a particular objective 

function of the error signal given the input and desired signals. Several criteria exist for 

optimizing the objective function depending on the purpose of the filter. 

   

  
 

 

  - 
+ 

 

Figure 4.2. Block diagram of transversal FIR filter 
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Figure 4.3. Block diagram of optimal filter 

The most common criteria used to optimize the objective function of the optimal 

filter are: 

i) Minimum mean square error (MSE) criterion, which finds the filter 

coefficients 𝐰 that give the minimum value of the average of the square of 

the error signal, usually denoted by the expectation of the squared signal as 

𝐸{𝑒2(𝑛)}. This corresponds to the Wiener filtering problem. 

ii) Least-squares criterion, which finds the filter coefficients 𝐰 that gives the 

minimum value of the sum of squared errors up to the present sample, i.e. 

∑ 𝑒2(𝑖)𝑁−1
𝑖=0 .  

iii) Least absolute sum criterion that finds the filter coefficients 𝐰 that give the 

minimum of the sum of absolute errors of the error signal given by 

∑ |𝑒(𝑖)|𝑁−1
𝑖=0 . 

iv) Minimum of the maximum absolute-error criterion, which determines the 

filter coefficients 𝐰 that yield the minimum of the maximum value of 

 (|𝑒(𝑖)|). This corresponds to the optimal Chebyshev filter design problem.  

v) Minimum mean absolute error that finds 𝐰, which minimizes 𝐸{|𝑒(𝑛)|}.  

 

The first and the second optimization criteria are the most commonly used 

standards because of their relatively low computation, robust performance and analytical 

tractability that leads to closed form solutions. 

4.2.1 Wiener Filtering 

The optimal Wiener filter [117] is the basis of adaptive filtering and is the 

fundamental filter that most adaptation algorithms attempt to achieve. Wiener filtering 

aims to minimize the MSE objective function 
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 𝑓(𝐰) = 𝐸{𝑒2(𝑛)}                                                       

= 𝐸{[𝑑(𝑛) − 𝑦(𝑛)]2}                        

= 𝐸{𝑑2(𝑛) − 2𝑑(𝑛)𝑦(𝑛) + 𝑦2(𝑛)} 

(4.40) 

with respect to the tap weights 𝐰.  

Since 𝑦(𝑛) is a sum of products, and therefore a scalar quantity, from equation 

(4.39), the term 𝑦2(𝑛) can be written as 

 𝑦2(𝑛) = 𝐰𝑇𝐱(𝑛)𝐱𝑇(𝑛)𝐰 (4.41) 

Substituting for 𝑦2(𝑛) from (4.41) in equation (4.40) and using the fact that the 

expectation operator is linear and distributive over the terms in the curly brackets, the 

MSE function becomes 

 𝑓(𝐰) = 𝐸{𝑑2(𝑛)} − 2𝐸{d(𝑛)𝐰𝑇𝐱(𝑛)} + 𝐸{𝐰𝑇𝐱(𝑛)𝐱𝑇(𝑛)𝐰} (4.42) 

Because the filter coefficient vector is not a random variable, the above equation 

can be rewritten as 

 𝑓(𝐰) = 𝐸{𝑑2(𝑛)} − 2𝐰𝑇𝐩 +𝐰𝑇𝐑𝐰  (4.43) 

where 𝐩 is the correlation vector of the desired signal and the input signal, and 𝐑 is the 

input signal correlation matrix, with the two defined as follows: 

 𝐩 = 𝐸{𝑑(𝑛)𝐱(𝑛)} 

         = [𝑝0 𝑝1⋯𝑝𝑁−1]
𝑇 

(4.44) 

and 

 

𝐑 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)} 

                                          = 𝐸 {[

𝑟0,0
𝑟1,0
⋮

𝑟𝑁−1,0

   

𝑟0,1
𝑟1,1
⋮

𝑟𝑁−1,1

   

⋯
⋯
⋱
⋯

   

𝑟0,𝑁−1
𝑟1,𝑁−1
⋮

𝑟𝑁−1,𝑁−1

]} 
(4.45) 

where each element of 𝐩 is given by 𝑝𝑖 = 𝑑(𝑛)𝑥(𝑛 − 𝑖) and that of 𝐑 is given by 

𝑟𝑖,𝑗 = 𝑥(𝑛 − 𝑖)𝑥(𝑛 − 𝑗) for integers 𝑖 and 𝑗 in the range 0 to 𝑁 − 1. 

In equation (4.43), the second and the third terms are linear and quadratic with 

𝐰. This makes the MSE function to be quadratic and therefore a convex function. The 

optimal minimum point of the function can be found by taking the gradient with respect 
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to 𝐰 and setting it to zero. The gradient can be found by partially differentiating the 

function 𝑓(𝐰) with respect to the tap-weights and can be given as a vector 

 𝛁𝑓(𝐰) = −2𝐩 + 2𝐑𝐰 (4.46) 

where the gradient operator ∇ defined as 

 𝛁 = [
𝜕

𝜕𝑤0
 
𝜕

𝜕𝑤1
… 

𝜕

𝜕𝑤𝑁−1
]
𝑇

 (4.47) 

Setting the gradient in equation (4.46) to zero, gives the famous Wiener-Hopf 

equation 

 𝐑𝐰𝑜𝑝𝑡 = 𝐩 (4.48) 

where the subscript 𝑜𝑝𝑡 denotes optimal coefficients. From this equation and assuming 

that the inverse of 𝐑 exists, the optimum Wiener filter, which yields minimum MSE can 

be obtained as follows: 

 𝐰𝑜𝑝𝑡 = 𝐑−𝟏𝐩 (4.49) 

By substituting the optimal tap-weights in equation (4.43), the minimum MSE is 

obtained as 

 
𝑓(𝐰𝑜𝑝𝑡) = 𝐸{𝑑

2(𝑛)} − 𝐰𝑜𝑝𝑡
𝑇 𝐩 

                           = 𝐸{𝑑2(𝑛)} − 𝐰𝑜𝑝𝑡
𝑇 𝐑𝐰𝑜𝑝𝑡 

(4.50) 

Although theoretically, the Wiener filter is the optimal solution for the minimum 

MSE function, it is not suitable for practical implementation for two main reasons. First, 

computing the inverse of the correlation matrix, i.e. 𝐑−𝟏, is computationally intensive 

and therefore not appealing to most real-time applications. Secondly, the Wiener filter 

design is based on statistical formulation of 𝐑 and 𝐩, thus it requires a prior knowledge of 

the mean and correlation statistics of the signals being processed in order to compute the 

filter coefficients.  

For a reliable estimation of the required statistics, a large number of realizations 

of signal sequences are required. This is not feasible because practical situations deal 

with single realizations of signals. Therefore, 𝐑 and 𝐩 are not available and have to be 

somehow estimated, for example, by assuming that the underlying signals are ergodic 

and therefore stationary with the same ensemble and time averages. This assumption can 

then allow time averages to be used in the Wiener filter design. 
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Nevertheless, the estimation of the required statistics can be avoided by using an 

adaptation algorithm that updates the filter coefficients iteratively while attempting to 

attain the optimal Wiener solution with a minimum number of computations per iteration. 

In particular, the iterative adaptation process has been found to be more advantageous 

than the non-iterative approach for the following main reasons [117], [118]:  

i) The iterative approach does not require a lot of memory like that needed in 

the optimal design for storage of signal samples for computing the signal 

statistics. 

ii) The iterative design approach eliminates the processing delay in the optimal 

design that comes from the accumulation of signal samples for computing the 

required signal statistics. 

iii) Using an iterative adaptation enables the filter to have a tracking ability and 

therefore is able to work in a non-stationary environment because the solution 

provided can adapt to new signal statistics. 

iv) In general, it is easier to code and/or implement an iterative design in 

hardware than a corresponding non-iterative design. 

4.2.2 Gradient-Based Iterative Search Algorithms for Wiener Filter 

In the last subsection, it was shown that the optimal coefficients of a transversal 

Wiener filter can be obtained by solving the Wiener–Hopf equation (4.49) provided that 

𝐑 and 𝐩 of the signals to be processed are available. However, the computation of the 

wiener filter required the inversion of 𝐑, which renders the equation hard to implement in 

real time.  

A better alternative approach is to use an iterative search algorithm to 

approximate the Wiener filter iteratively by adjusting the filter coefficients vector 𝐰 at 

each iteration 𝑘, until the resulting solution 𝐰(𝑘) converges to the optimal solution 𝐰∗, 

possibly in a few iterations. An iterative search algorithm starts with an arbitrary initial 

tap-weight vector 𝐰(𝑘 = 0) and progressively moves towards the optimum vector in 

steps through adjusting of the filter coefficients at each of the iterations. Each step is 

chosen so that the value of the cost function is reduced at the next iteration.  

If the cost function is convex, like the MSE function in equation (4.43), the 

iterative adaptation algorithm is guaranteed to converge to the optimal minimum point of 

the function at the optimum filter tap-weights. Some common gradient-based iterative 
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search algorithms for approximating the Wiener filter will now be presented. They 

include the Newton’s, steepest-descent, least mean-square error (LMS) and recursive 

least-squares (RLS) algorithms. 

A. Newton’s Algorithm 

This algorithm has a fast speed of convergence to the Wiener filter. The update 

equation [118] for the tap-weights at the 𝑘th iteration is given by  

 𝐰(𝑘 + 1) = 𝐰(𝑘) −
𝜇

2
𝐑−1𝛁𝑓(𝐰(𝑘)) (4.51) 

where the step-size 𝜇𝐑−1is matrix-based, and 𝛁𝑓(𝐰(𝑘)) is the gradient vector at the 

𝑘th iteration given by  

 𝛁𝑓(𝐰(𝑘)) = 2𝐑𝐰(𝑘) − 2𝐩 (4.52) 

On substituting for 𝛁𝑓(𝐰(𝑘)) in equation (4.51), the filter adaptation equation becomes 

 𝐰(𝑘 + 1) = (1 − 𝜇)𝐰(𝑘) + 𝜇𝐑−1𝐩 (4.53) 

which by using 𝐩 = 𝐑𝐰𝑜𝑝𝑡 from equation (4.48), it further reduces to 

 𝐰(𝑘 + 1) = (1 − 𝜇)𝐰(𝑘) + 𝜇𝐰𝑜𝑝𝑡 (4.54) 

Subtracting 𝐰𝑜𝑝𝑡 from both sides of equation (4.54) gives the adaptation equation, 

 𝐰(𝑘 + 1) − 𝐰𝑜𝑝𝑡 = (1 − 𝜇)(𝐰(𝑘) − 𝐰𝑜𝑝𝑡) (4.55) 

Defining a filter coefficients error vector 

 𝛆(𝑘) = 𝐰(𝑘) − 𝐰𝑜𝑝𝑡 (4.56) 

and on substituting it in equation (4.55), the filter adaptation equation becomes 

 𝐰(𝑘 + 1) = 𝐰𝑜𝑝𝑡 + (1 − 𝜇)𝛆(𝑘) (4.57) 

If at the initial point, i.e. at 𝑘 = 0, the initial coefficients error vector,  

 𝛆(0) = 𝐰(0) − 𝐰𝑜𝑝𝑡 (4.58) 

then at the 𝑘th iteration, the filter coefficients vector is given by 

 𝐰(𝑘) = 𝐰𝑜𝑝𝑡 + (1 − 𝜇)
𝑘𝛆(0) (4.59) 

Similarly, the error-performance function at the 𝑘th iteration is given by 
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 𝑓(𝐰(𝑘)) = 𝑓(𝐰𝑜𝑝𝑡) + (1 − 𝜇)
2𝑘𝑓(𝐰(0)) (4.60) 

where 𝑓(𝐰(𝑘)) denotes the value of the MSE function for filter coefficients 𝐰(𝑘).  

Equations (4.59) and (4.60) show that the convergence of the Newton’s algorithm 

to the Wiener filter 𝐰𝑜𝑝𝑡 is solely determined by the step-size parameter 𝜇. In order to 

guarantee for the convergence and the stability of the algorithm, the step-size parameter 

should be selected to satisfy the condition |1 − 𝜇| < 1, or equivalently put 

 0 < 𝜇 < 2 (4.61) 

The conventional Newton’s method has a step-size 𝜇 = 1.0 in order to make the 

algorithm converge to 𝐰𝑜𝑝𝑡 in a single step. Despite this fast convergence, the algorithm 

must perform the computationally intensive inversion operation on matrix 𝐑, which may 

render it prohibitive for real-time applications. 

B. Steepest-Descent Algorithm 

This algorithm avoids the inversion operation performed on matrix 𝐑 in the 

Newton’s algorithm by replacing the matrix-based step-size 𝜇𝐑−1 with just a scalar step-

size parameter [119]. The algorithm starts at an arbitrary point on the error-performance 

surface of the objective function and then takes a small step in the direction in which the 

objective function decreases fastest. At 𝑘th iteration, the filter coefficients are updated as 

follows: 

 𝐰(𝑘 + 1) = 𝐰(𝑘) −
𝜇

2
𝛁𝑓(𝐰(𝑘)) (4.62) 

where 𝜇 is a scalar step-size parameter greater than zero and 𝛁𝑓(𝐰(𝑘)) is the gradient of 

the objective function at the iteration. This update is repeated until convergence to the 

minimum value of the objective function at which 𝐰(𝑘 + 1) = 𝐰𝑜𝑝𝑡.  

The stepwise search at each iteration corresponds to a step in the direction along 

the steepest-descent slope of the error-performance surface, i.e. following the opposite 

direction to the gradient vector. This is illustrated in Figure 4.4 for the case of a two-tap 

adaptive filter. The rate of convergence of the algorithm towards 𝐰𝑜𝑝𝑡 depends on the 

value of the step-size parameter.  

A small step-size leads to a slow convergence, while a large one makes the 

adaptation algorithm to converge within a few steps although it may also cause the 

recursive equation in (4.62) to diverge. To investigate the effect of the step-size on the 
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convergence rate of the algorithm, equation (4.46) is substituted in equation (4.62) to 

yield 

 𝐰(𝑘 + 1) = 𝐰(𝑘) − 𝜇𝐑𝐰(𝑘) + 𝜇𝐩 (4.63) 

This equation can be re-arranged to have 

 𝐰(𝑘 + 1) = (𝐈 − 𝜇𝐑)𝐰(𝑘) + 𝜇𝐩 (4.64) 

where 𝐈 is an 𝑁 ×𝑁 identity matrix.  

Substituting for 𝐩 from equation (4.48) and subtracting 𝐰𝑜𝑝𝑡 from both sides of 

equation (4.64) gives  

 𝐰(𝑘 + 1) − 𝐰𝑜𝑝𝑡 = (𝐈 − 𝜇𝐑)𝐰(𝑘) + 𝜇𝐑𝐰𝑜𝑝𝑡 −𝐰𝑜𝑝𝑡 (4.65) 

which reduces to 

 𝐰(𝑘 + 1) − 𝐰𝑜𝑝𝑡 = (𝐈 − 𝜇𝐑)(𝐰(𝑘) − 𝐰𝑜𝑝𝑡) (4.66) 

By using the definition of the coefficients error vector 𝛆(𝑘) in equation (4.56), equation 

(4.66) can be expressed in the form 

 𝛆(𝑘 + 1) = (𝐈 − 𝜇𝐑)𝛆(𝑘) (4.67) 
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Figure 4.4. Error-performance surface of steepest descent algorithm 
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Because the correlation matrix 𝐑 is Hermitian, i.e. 𝐑𝐻 = 𝐑, it can be diagonalised 

or equivalently transformed using a unitary matrix 𝐔, having the property 𝐔𝐔𝑇 = 𝐈, as 

follows 

 𝐑 = 𝐔𝚲𝐔𝑇 (4.68) 

where 𝚲 = diag(λ0 𝜆1… 𝜆𝑁−1) is a diagonal matrix containing the eigenvalues 𝜆𝑖 (𝑖 =

0, 1, 𝑁 − 1) of 𝐑 in the diagonal and 𝐔 is a unitary matrix containing the corresponding 

eigenvectors in the columns. 

Now, substituting equation (4.68) in equation (4.67), the coefficients error vector 

changes according to 

 𝛆(𝑘 + 1) = (𝐈 − 𝜇𝐔𝚲𝐔𝑇)𝛆(𝑘) (4.69) 

which by pre-multiplying with 𝐔𝑇on both sides and using 𝐔𝐔𝑇 = 𝐈 becomes  

 𝐔𝑇𝛆(𝑘 + 1) = 𝐔𝑇𝛆(𝑘) − 𝜇𝚲𝐔𝑇𝛆(𝑘) (4.70) 

By defining 𝛆̂(𝑘) to represent the transformed filter coefficients error vector as 

 𝛆̂(𝑘) = 𝐔𝑇𝛆(𝑘) (4.71) 

equation (4.70) can be written as follows: 

 𝛆̂(𝑘 + 1) = (𝐈 − 𝜇𝚲)𝛆̂(𝑘) (4.72) 

Each element of the transformed error vector in this equation is given by 

 𝜀𝑖̂(𝑘 + 1) = (1 − 𝜇𝜆𝑖)𝜀𝑖̂(𝑘), 𝑖 = 0, 1, … ,𝑁 − 1  (4.73) 

Since both 𝜇 and 𝜆𝑖 are constants, if the initial 𝑖th element in the transformed 

coefficients error vector is 𝜀𝑖̂(0) at 𝑘 = 0, then at the 𝑘th iteration it becomes 

 𝜀𝑖̂(𝑘) = (1 − 𝜇𝜆𝑖)
𝑘𝜀𝑖̂(0), 𝑖 = 0, 1, … ,𝑁 − 1  (4.74) 

Similarly, the filter weights and the error-performance function at the 𝑘th iteration 

relative to the optimal point are given by 

 𝐰(𝑘) = 𝐰𝑜𝑝𝑡 +∑ 𝜀𝑖̂(𝑘)

𝑁−1

𝑖=0

𝐯𝑖 (4.75) 

and 

 𝑓(𝐰(𝑘)) = 𝑓(𝐰𝑜𝑝𝑡) + ∑ 𝜆𝑖𝜀𝑖̂
2(𝑘)

𝑁−1

𝑖=0

 (4.76) 
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respectively, where 𝐯𝑖 is the eigenvector of 𝐑 corresponding to the eigenvalue 𝜆𝑖 for 

𝑖 = 0, 1, … ,𝑁 − 1.  

Equations (4.74) and (4.75) imply that the filter coefficients 𝐰(𝑘) will converge 

to the optimal values 𝐰𝑜𝑝𝑡 if and only if 𝜀𝑖̂(𝑘) converges to zero, as 𝑘 increases towards 

infinity. This is only possible if the step-size parameter satisfies the condition 

 |1 − 𝜇𝜆𝑖| < 1, 𝑖 = 0, 1, … ,𝑁 − 1 (4.77) 

In addition, this condition is a guarantee for the stability of the algorithm since the error 

vector decays exponentially towards zero as 𝑘 increases.  

Again, since 𝐑 is Hermitian, it is also positive semidefinite and all the 

eigenvalues are real and nonnegative, i.e. 𝜆𝑖 ≥ 0, 𝑖 = 0, 1, … ,𝑁 − 1. Therefore, the 

condition in equation (4.77) can equivalently be written as 

 0 < 𝜇 <
2

𝜆𝑖
, 𝑖 = 0, 1, … ,𝑁 − 1 (4.78) 

Since this condition must be satisfied for all the eigenvalues, the condition for the 

convergence of the steepest-descent algorithm requires the step-size to be set as follows: 

 0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
 (4.79) 

where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of 𝐑.  

From the foregoing discussion, it has been established that the speed of 

convergence of the steepest-descent algorithm is highly influenced by the range of the 

eigenvalues of the correlation matrix. In equation (4.77), each 𝜆𝑖 can be seen as 

contributing to one mode of convergence; the fastest convergence being achieved when 

𝜆𝑖 = 𝜆𝑚𝑎𝑥 and the slowest at 𝜆𝑖 = 𝜆𝑚𝑖𝑛. For each mode of convergence, the fastest 

convergence would be achieved if the step-size were selected as  

 𝜇 =
1

𝜆𝑖
 (4.80) 

so as to have |1 − 𝜇𝜆𝑖| = 0 and thereby achieve convergence in one iteration. 

However, for the whole algorithm, the speed of convergence is determined by the 

smallest eigenvalue and can be indicated by the factor 

 𝜉 = 1 − 𝜇𝜆𝑚𝑖𝑛 (4.81) 

for a given step-size parameter 𝜇.  
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Considering the full range of the eigenvalues, the optimal step-size can be found 

at the point where the two extreme lines; |1 − 𝜇𝜆𝑚𝑖𝑛| and |1 − 𝜇𝜆𝑚𝑎𝑥|, corresponding to 

the minimum and maximum eigenvalues meet. The two extreme convergences are 

illustrated in Figure 4.5. In this figure, all other convergence modes will fall between the 

two lines. At the optimal step-size 𝜇𝑜𝑝𝑡, the two lines satisfies the condition 

 (1 − 𝜇𝑜𝑝𝑡𝜆𝑚𝑖𝑛) = −(1 − 𝜇𝑜𝑝𝑡𝜆𝑚𝑎𝑥) (4.82) 

Thus, yielding the optimal step-size as 

 𝜇𝑜𝑝𝑡 =
2

𝜆𝑚𝑖𝑛 + 𝜆𝑚𝑎𝑥
 (4.83) 

Substituting equation (4.83) in equation (4.81) gives 𝜉 as a function of the 

eigenvalue spread 𝑎 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛, i.e. 

 𝜉 =
𝑎 − 1

𝑎 + 1
 (4.84) 

Based on this equation, the convergence factor 𝜉 can only have values between 0 

and 1. It is equal to 0 when 𝜆𝑚𝑎𝑥 = 𝜆𝑚𝑖𝑛, which means that the algorithm converges to 

the optimal solution in one step. On the other hand, a value of 1, corresponding to the 

case when 𝜆𝑚𝑎𝑥 ≫ 𝜆𝑚𝑖𝑛, implies a very slow convergence.  

 

Figure 4.5. Optimal step-size of the steepest descent algorithm when λmin = 1.67 and λmax = 5.00 
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The foregoing analysis shows that the steepest-descent algorithm has a good 

performance only when the eigenvalue spread is small. This corresponds to a signal 

having a nearly flat power spectral density similar to the white noise. 

C. Least Mean Square Algorithm 

The least mean square (LMS) algorithm, proposed by Widrow and Hoff in 1960 

[120], is in practice the most widely used adaptive filtering algorithm. This is due to its 

simplicity in implementation and low computational complexity. The algorithm simply 

approximates the steepest-descent algorithm by replacing the MSE function with 

instantaneous squared-error (ISE) function. The ISE cost function is given by 

 

𝑓(𝐰) = 𝑒2(𝑛)                                                       

= [𝑑(𝑛) − 𝑦(𝑛)]2                         

= 𝑑2(𝑛) − 2𝑑(𝑛)𝑦(𝑛) + 𝑦2(𝑛) 

(4.85) 

On substituting equations (4.36) and (4.41) in (4.85), the objective function becomes 

 𝑓(𝐰) = 𝑑2(𝑛) − 2𝑑(𝑛)𝐰𝑇𝐱(𝑛) + 𝐰𝑇𝐱(𝑛)𝐱𝑇(𝑛)𝐰 (4.86) 

The gradient of this ISE function with respect to filter coefficients is  

 
𝛁𝑓(𝐰)  = −2𝑑(𝑛)𝐱(𝑛) + 2𝐱(𝑛)𝐱𝑇(𝑛)𝐰 

= −2 𝐱(𝑛)𝑒(𝑛)                 
(4.87) 

This derivation shows that the LMS algorithm uses the estimates of 𝐩 and 𝐑, from 

equations (4.44) and (4.45) of the steepest-descent algorithm, as follows: 

 𝐩 = 𝐸{𝑑(𝑛)𝐱(𝑛)} ≅ 𝑑(𝑛)𝐱(𝑛) (4.88) 

and 

 
𝐑 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)} 

≅ 𝐱(𝑛)𝐱𝑇(𝑛)   
(4.89) 

Using equation (4.87), the per iteration filter adaptation equation is given by 

 𝐰(𝑛 + 1) = 𝐰(𝑛) −
𝜇

2
 𝛁𝑓(𝐰) (4.90) 

and thus 

 𝐰(𝑛 + 1) = 𝐰(𝑛) + 𝜇 𝐱(𝑛)𝑒(𝑛) (4.91) 
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where 𝜇 is the step-size parameter.  

Considering equation (4.91), the simplicity of implementing the LMS algorithm 

can be easily determined. For a filter with 𝑁 taps, the equation requires 𝑁 + 1 

multiplications and 𝑁 additions. The computation of the filter output y(𝑛) = 𝐰𝑇(𝑛)𝐱(𝑛) 

requires 𝑁 multiplications and 𝑁 − 1 additions, while the error 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 

needs only one addition. In total, the algorithm requires 2𝑁 + 1 multiplications and 2𝑁 

additions. Since additions demand less computations than multiplications, the 

computational complexity of the algorithm is 2𝑁 + 1 ≅ 2𝑁, i.e. 𝑂(𝑁)and hence, it is 

proportional to the length of the filter. 

Although the LMS algorithm has much lower computational complexity 

compared to the steepest-descent algorithm, it has the same problem of slow 

convergence, which is dependent on the eigenvalue spread of the underlying input 

signals. The convergence of the algorithm can be analysed starting with the subtraction of 

the optimal filter coefficients from both sides of equation (4.90) to give 

 𝐰(𝑛 + 1) − 𝐰𝑜𝑝𝑡 = 𝒘(𝑛) − 𝒘𝑜𝑝𝑡 + 𝜇 𝐱(𝑛)[𝑑(𝑛) − 𝐱
𝑇(𝑛)𝐰(𝑛)] (4.92) 

Using the definition of the tap-weight error in equation (4.56), we have  

 𝜺(𝑛 + 1) = 𝜺(𝑛) + 𝜇[𝐱(𝑛)𝑑(𝑛) − 𝐱(𝑛)𝐱𝑇(𝑛)𝐰(𝑛)]  (4.93) 

Taking the expectation of both sides yields gives  

 𝐸{𝜺(𝑛 + 1)} = 𝐸{𝜺(𝑛)} + 𝜇[𝐸{𝐱(𝑛)𝑑(𝑛)} − 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)𝐰(𝑛)}]  (4.94) 

At this point, it is assumed that at time 𝑛, the filter coefficients vector 𝐰(𝑛) is 

independent of the input vector 𝐱(𝑛) and the desired signal 𝑑(𝑛). This is referred to as 

the independence assumption and is practically valid for small values of 𝜇. Using this 

assumption, equation (4.94) can be rewritten as follows: 

 𝐸{𝜺(𝑛 + 1)} = 𝐸{𝜺(𝑛)} + 𝜇[𝐩 − 𝐑𝐸{𝐰(𝑛)}] (4.95) 

which by substituting for 𝐩 = 𝐑𝐰𝑜𝑝𝑡 becomes 

 𝐸{𝜺(𝑛 + 1)} = (𝐈 − 𝜇𝐑)𝐸{𝜺(𝑛)} (4.96) 

Except for the expectation operator, the above equation is similar to equation 

(4.67) that was used to derive the conditions for the convergence of the steepest-descent 

algorithm. Therefore, following the same analysis as before, the stability and the 

convergence of the LMS algorithm is guaranteed if the mean of the tap-weight error  
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vector 𝜺(𝑛) goes to zero as 𝑛 is increased. This is possible only if the values of the step-

size parameter lie in the range: 

 0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
 (4.97) 

The tendency of the mean of the tap-weight error towards zero implies that the 

expected value of the tap-weights converges to the Wiener solution, i.e. 𝐸{𝐰(𝑛)}  →

𝐰𝑜𝑝𝑡. This shows that the use of an LMS adaptation algorithm causes the adaptive filter 

to converge in the mean. 

Practically, the eigenvalues of the correlation matrix 𝐑 are not known beforehand; 

thus, equation (4.97) cannot be used to set the step-size parameter. A practical way is to 

estimate the upper limit of 𝜇 directly from the power of the input signal. This is justified 

by the following derivation that relates the sum of the eigenvalues of the correlation 

matrix to the power of the input signal. 

From the transformation 𝐑 = 𝐔𝚲𝐔𝑇 in equation (4.68), since 𝐔𝑇𝐔 = 𝐈, then 𝐑 

can be diagonalised using unitary transformation to give 𝚲, i.e. 

 𝐔𝑇𝐑𝐔 = 𝚲 (4.98) 

For any two matrices 𝐀 and 𝐁, the following holds on the trace, i.e. the sum of the 

diagonal elements, of their product:  

 tr{𝐀𝐁} = tr{𝐁𝐀} (4.99) 

Using this relationship, the trace of the matrix product on the left of equation (4.98) is 

given by 

 

tr{𝐔𝑇𝐑𝐔} = tr{𝐔𝑇(𝐑𝐔)} 

                  = tr {𝐑𝐔𝐔𝑇⏟
𝐈

} 

       = tr{𝐑} 

(4.100) 

Since 𝚲 = diag(𝜆0, 𝜆1, … , 𝜆𝑁−1), then 𝑡𝑟{𝚲} = ∑ 𝜆𝑖
𝑁−1
𝑖=0 , which from equation 

(4.98) implies that  

 

tr{𝐑} = tr{𝚲} 

            = ∑ 𝜆𝑖

𝑁−1

𝑖=0

 
(4.101) 
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But since for the LMS algorithm, 𝐑 ≅ 𝐱(𝑛)𝐱𝑇(𝑛), then 

 
tr{𝐑} = 𝑥2(𝑛) + 𝑥2(𝑛 − 1) + ⋯+ 𝑥2(𝑛 − 𝑁 + 1) 

= ‖𝐱(𝑛)‖2
2                                                    

(4.102) 

and this is equal to the power of 𝐱(𝑛) which is usually known or can be estimated a 

priori. Because 𝜆𝑚𝑎𝑥 is the maximum of the elements in the set {𝜆0, 𝜆1, … , 𝜆𝑁−1}, it is 

obvious that 

 
𝜆𝑚𝑎𝑥 ≤ ∑ 𝜆𝑖

𝑁−1

𝑖=0

 

                = ‖𝐱(𝑛)‖2
2 

(4.103) 

and 

 
1

𝜆𝑚𝑎𝑥
≥

1

‖𝐱(𝑛)‖2
2 (4.104) 

Therefore, for convergence of the LMS algorithm, the necessary limits for the step-size 

parameter in equation (4.97) can be set firmer and more realistic as follows: 

 0 < 𝜇 <
2

‖𝐱(𝑛)‖2
2 (4.105) 

A larger step-size leads to a faster convergence of the LMS algorithm but this 

occurs at the expense of increased misadjustment error [121], which is given by  

 𝓂𝐿𝑀𝑆 = ∑
𝜇𝜆𝑘

2 − 𝜇𝜆𝑘

𝑁−1

𝑘=0

 (4.106) 

Therefore, the value of the step-size should be chosen in a way that allows a trade-off 

between the rate of convergence and the steady-state misadjustment error. 

D. Recursive Least-Squares Algorithm 

The recursive least-squares (RLS) filtering algorithm is based on the method of 

least-squares which is a deterministic framework for finding FIR filter tap-weights at 

time 𝑛 > 0 that minimize the objective function of the sum of 𝑛 weighted squared errors 

up to the current time, i.e., 

 𝑓𝑛(𝐰) = ∑𝛾𝑛−𝑘
𝑛

𝑘=1

𝑒2(𝑘) (4.107) 
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where the weighting (or the forgetting) factor 𝛾 is limited to the range 0 < 𝛾 ≤ 1 and is 

used for emphasizing the contribution of the current data, rather than the past data, to the 

cost function.  

In equation (4.107), 𝑘 = 1 denotes the starting time of the algorithm, 𝑘 = 𝑛 is the 

present time, and 𝑒(𝑘) denotes the error sample at any time instant 𝑘 for 𝑘 = 1, 2, … , 𝑛. 

Therefore, the least-squares method optimizes filter coefficients using past and present 

statistics. 

However, when 𝛾 < 1, the weights 𝛾𝑛−𝑘, 𝑘 = 1, 2, … , 𝑛, in equation (4.107) give 

more weightage to the most current error samples than the past samples. In other words, a 

value of 𝛾 < 1 emphasizes more on the recent samples, while tending to forget the past 

ones. The lower the value of 𝛾, the more the emphasis on latest samples and vice versa.  

The typical values of the 𝛾 are close to 1 [116]. However, the forgetting factor can 

be chosen with an aim to achieve a small misadjustment. The misadjustment error is a 

function of the forgetting factor and is given [117] by  

 𝓂𝑅𝐿𝑆 =
1 − 𝛾

1 + 𝛾
𝑁 (4.108) 

where 𝑁 is filter length. From this equation, the forgetting factor is found to be 

 𝛾 =
𝑁 −𝓂𝑅𝐿𝑆

𝑁 +𝓂𝑅𝐿𝑆
 (4.109) 

Thus, for a given desired value of misadjustment and the number of filter coefficients, the 

value of the forgetting factor can be obtained using equation (4.109). 

In order to find the RLS algorithm, the objective function in equation (4.107) is 

expressed in quadratic form using equation (4.34) for the error 𝑒(𝑘), as follows:  

 

𝑓𝑛(𝐰) = ∑𝛾𝑛−𝑘
𝑛

𝑘=1

[𝑑2(𝑘) − 2𝑑(𝑘)𝐰𝑇(𝑛)𝐱(𝑘)                            

+ 𝐰𝑇(𝑛)𝐱(𝑘)𝐱𝑇(𝑘)𝐰(𝑛)] 

                     = 𝜎𝑑
2 − 2𝐰𝑇(𝑛)𝐩(𝑛) + 𝐰𝑇(𝑛)𝐑(𝑛)𝐰(𝑛)                                  

(4.110) 

where 

 𝜎𝑑
2(𝑛) = ∑𝛾𝑛−𝑘

𝑛

𝑘=1

𝑑2(𝑘) (4.111) 
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 𝐩(𝑛) = ∑𝛾𝑛−𝑘
𝑛

𝑘=1

𝑑(𝑘)𝐱(𝑘) (4.112) 

 𝐑(𝑛) = ∑𝛾𝑛−𝑘
𝑛

𝑘=1

𝐱(𝑘)𝐱𝑇(𝑘) (4.113) 

The quadratic cost function in equation (4.110) has a gradient 

 𝛁𝑓𝑛(𝐰) = −2𝐩(𝑛) + 2𝐑(𝑛)𝐰(𝑛) (4.114) 

which is set to zero to yield the optimal solution for the weighted least-squares problem 

as  

 𝐰(𝑛) = 𝐑−1(𝑛)𝐩(𝑛) (4.115) 

To avoid matrix inversion, a recursive least squares (RLS) algorithm is used 

to solve equation (4.115). The RLS algorithm avoids the intensive computation of 𝐩(𝑛) 

and 𝐑(𝑛) using equations (4.112) and (4.113) by adopting recursive updates 

 
𝐩(𝑛) = ∑𝛾𝑛−𝑘

𝑛

𝑘=1

𝑑(𝑘)𝐱(𝑘)                   

= 𝛾𝐩(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛) 

(4.116) 

and 

 
𝐑(𝑛) = ∑𝛾𝑛−𝑘

𝑛

𝑘=1

𝐱(𝑘)𝐱𝑇(𝑘)                    

= 𝛾𝐑(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛) 

(4.117) 

Substituting equation (4.116) into equation (4.115) gives a recursive update for the tap-

weights 

 

𝐰(𝑛) = 𝐑−1(𝑘)[𝑑(𝑛)𝐱(𝑛) + 𝛾𝐩(𝑛 − 1)]  

          = 𝐑−1(𝑘)[𝑑(𝑛)𝐱(𝑛) + 𝛾𝐑(𝑛 − 1)𝐰(𝑛 − 1)]                                   

          = 𝐑−1(𝑘)[𝑑(𝑛)𝐱(𝑛) − 𝐱(𝑛)𝐱𝑇(𝑛)𝐰(𝑛 − 1)   

            + 𝐱(𝑛)𝐱𝑇(𝑛)𝐰(𝑛 − 1) + 𝛾𝐑(𝑛 − 1)𝐰(𝑛 − 1)]  

    = 𝐑−1(𝑘){ 𝐱(𝑛)[𝑑(𝑛) − 𝐱𝑇(𝑛)𝐰(𝑛 − 1)] + 𝐑(𝑛)𝐰(𝑛 − 1)} 

(4.118) 
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         = 𝐰(𝑛 − 1) + 𝐑−1(𝑘)𝐱(𝑛)𝑒̂(𝑘)                                                          

where  

 𝑒̂(𝑘) =  𝑑(𝑛) − 𝐱𝑇(𝑛)𝐰(𝑛 − 1) (4.119) 

is called a priori error estimate. 

A recursive formula for finding the matrix inverse 𝐑−1(𝑛) can be derived from 

equation (4.117) by using the following lemma for inverting a matrix [121]: 

 [𝐀 + 𝐁𝐂𝐃]−1 =
𝐀−1𝐁𝐃𝐀−1

𝐂−1 + 𝐃𝐀−𝟏𝐁
 (4.120) 

By setting 𝐀 = 𝛾𝐑(𝑛 − 1), 𝐁 = 𝐱(𝑛), 𝐂 = 1 and 𝐃 = 𝐱𝑇(𝑛), the inverse 𝐑−1(𝑛) is 

obtained as follows: 

 𝐑−1(𝑛) =
𝐑−1(𝑛 − 1)

𝛾 + 𝐱𝑇(𝑛)𝐑−1(𝑛 − 1)𝐱(𝑛)
 (4.121) 

The basic RLS algorithm starts at 𝑛 = 0 with the initial filter weights 𝐰(0) = 0 and 

the inverse 𝐑−1(0) = (1 𝛿⁄ )𝐈, where 𝛿 is a small positive constant. At each iteration 𝑛 

the algorithm computes the product 𝐑−1(𝑛) and the error 𝑒̂(𝑘) using equations (4.121) 

and (4.119), then updates the tap-weights using equation (4.118). This is repeated until 

𝑛 ≥ 𝑁 in order to allow for the complete formation of matrix 𝐑 and vector 𝐩 and for 

convergence to be achieved, which occurs when the mean of tap-weights equals to the 

optimal tap-weights. 
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CHAPTER 5  
 

MATERIALS AND METHODS 

This chapter presents the materials that were used to carry out the research work 

in this thesis and an in-depth coverage of the methods that were developed for reducing 

PAPR in OFDM systems. The chapter has two main sections: Section 5.1 and Section 

5.2. The chapter starts with Section 5.1, which gives key materials used during the 

research period. This is followed by Section 5.2, which opens with the description of 

tone-reservation concept in relation to PAPR reduction in OFDM systems. The second 

part of Section 5.2 presents five PAPR reduction methods that were originated during the 

course of the research together with an analysis of their computational complexities. 

5.1 Materials 

The list of key materials used during the course of this work especially for 

simulating OFDM systems and for programming and testing of the proposed methods is 

as follows: 

i) Dell desktop OptiPlex 7010, Windows 10 Professional, Intel core i5-3470 @3.20 

GHz 3.20 GHz, 4.00 GB RAM, 64-bit operating system, x64-based processor.  

ii) Math Works, MATLAB version 8.1.0.604 (R2013a), for 64-bit Windows 

operating system, February 15, 2013 [122]. This is an interactive, matrix-based 

system for scientific and engineering numeric computation and visualization. In 

addition to the basic MATLAB product, the three toolboxes for signal processing, 

communications system and optimization, all of which have inbuilt functions for 

digital signal processing, were used to develop and test the proposed algorithms 

during the research period.  

iii) CVX MATLAB software for disciplined convex programming, version 

2.2, which was available at http://cvxr.com/cvx by January 2020. CVX is a 

software package for modelling convex optimization problems in MATLAB. The 

package allows MATLAB to act as a modelling language, thus allowing cost 
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functions and constraints to be specified using the standard syntax of MATLAB. 

5.2 Proposed PAPR Reduction Methods 

In this section, a detailed description of the tone-reservation concept and the 

methods developed at different stages of the research are presented. These are:  

i) SOCP-based tone reservation method 

ii) LP-based tone reservation 

iii) IRLS-based tone reservation method 

iv) Low-complexity signal addition method 

v) Low-complexity additive signal mixing method 

The first three methods directly utilise the tone reservation concept where some 

frequency resources are reserved for use in the reduction of PAPR. The remaining two 

methods also apply a similar technique of reserving some transmission resources for 

PAPR Reduction but they do so in the time-domain. In addition, both the first and the 

second methods seek an optimal solution to the minimax problem but through solving 

equivalent SOCP and LP problems, respectively.  

Therefore, the first two methods are expected to have slow convergence rates and 

high computational complexities. However, the second method has a lower 

computational complexity than the first one because of a simple generation of the desired 

peak-reduction signal for a given OFDM signal, which is then estimated by the 

optimization process. The two optimal methods, (i) and (ii), were needed for providing 

results for benchmarking the performances of methods (iii) – (v), which utilise 

suboptimal schemes to find peak-reduction signal.  

The third method was built around the second technique but utilizing a fast IRLS 

algorithm to solve the minimax problem to find the peak-reduction signal. The 

development of the last two methods was motivated by the need to reduce further the 

computational complexity and convergence rate, while at the same time aiming at 

achieving similar or higher PAPR reduction performance than the third technique.   

In the following sections, the general tone reservation concept upon which the 

proposed methods are founded is presented followed by a detailed description of the 

proposed methods.  
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5.2.1 Tone Reservation Concept  

The concept of reserving some tones to carry peak-reduction signal for reducing 

PAPR in multicarrier transmission systems was first proposed by Tellado and Cioffi in 

1997 [123]. The concept is just about allocating a small number of subcarriers to carry a 

combination of coefficients that are converted via an IFFT operation into a peak-

reduction signal. This means that if there 𝑁 total number of subcarriers available for 

transmitting user data, 𝐿 subcarriers out of that, where 𝐿 ≪ 𝑁, are assigned for carrying 

peak-reduction coefficients.  

Those subcarriers reserved for transmitting peak-reduction coefficients are 

referred to as peak-reduction tones (PRTs). Similarly, the coefficients carried by PRTS 

are referred to as peak-reduction coefficients (PRCs). The time-domain signal arising 

from the modulation of the PRTS by the PRCs, found by applying IFFT on the PRCs, is 

the peak-reduction signal (PRS) that is used to reduce the PAPR of OFDM signal.  

In Figure 5.1, the concept of tone reservation is illustrated. The inputs to the upper 

𝑁-IFFT block are the modulation symbols, 𝑋(𝑖), 𝑖 = 0, 1, … ,𝑁 − 1, which are all non-

zeros except in the positions of the 𝐿- reserved subcarriers. Similarly, the inputs to the 

lower 𝑁-IFFT block are the PRCs, 𝐶(𝑖), 𝑖 = 0, 1, … ,𝑁 − 1, which are all non-zeros 

except in the (𝑁 − 𝐿) positions of subcarriers for carrying user data.  

Since all PRCs are placed on subcarriers different from those for carrying user 

data, the transmitted modulation symbols 𝑋(𝑖), 𝑖 = 0, 1, … , 𝑁 − 1,  can be extracted from 

the received signal by FFT without any distortion. This is can be accomplished by 

choosing the set of outputs corresponding to the (𝑁 − 𝐿) positions of data-bearing 

subcarriers in the FFT output.  
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Figure 5.1. Tone reservation concept 
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The reservation of 𝐿 subcarriers in an OFDM symbol can be done in three ways, 

namely in a contiguous block, equally spaced or in a random manner. However, for the 

random allocation, the information about the locations of reserved subcarriers must be 

sent to the receiver for correct demodulation of the data-bearing modulation symbols. 

To reduce the PAPR of the OFDM signal, it is necessary to select carefully the 

PRCs whose combination with the available data symbols, through an IFFT operation, 

yields a signal of lower PAPR than when the latter are transmitted alone. This in the time 

domain implies that with a good selection of PRCs, the PAPR of signal (x – c) from the 

IFFT block in the transmitter should be less than the PAPR of the input signal x.  

The IFFT of the combined signal can be described by the equation 

 𝐱 − 𝐜 = 𝐱 −
1

√𝑁
∑ 𝐶𝑘𝑒

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

 (5.1) 

This equation can equivalently be written as  

 𝐱 − 𝐜 = 𝐱 − 𝑄𝐂 (5.2) 

with 𝐱 ∈ ℂ𝑁, 𝐜 ∈ ℂ𝑁, 𝐂 ∈ ℂ𝑁 and 𝑄 ∈ ℂ𝑁×𝑁 is the IFFT matrix whose elements are given 

by (1 √𝑁⁄ ) exp(𝑗2𝜋𝑘𝑛/𝑁) and 𝑘 and 𝑛 are integers in the range 0 to 𝑁-1.  

The time-domain vector 𝐱 = [𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)]𝑇 contains the time-

samples of the OFDM signal while 𝐂 = [𝐶(0), 𝐶(1), … , 𝐶(𝑁 − 1)]𝑇 is a frequency-

domain vector whose nonzero components comprises the PRCs. Since, vector 𝐂 contains 

(𝑁 − 𝐿) zeros, the complexity in the computation of the discrete-time signal 𝐜 can be 

significantly reduced if only the nonzero components of 𝐂 and the 𝐿 columns of the IFFT 

matrix 𝑄 corresponding to the reserved subcarriers are used.  

Accordingly, letting a vector 𝐂̂ ∈ ℂ𝐿 to contain only the nonzero elements of 𝐂 

and a matrix 𝑄̂ ∈ ℂ𝑁xL to be made up of only the 𝐿 columns of 𝑄 corresponding to 

locations of reserved subcarriers, the peak-reduction signal can be expressed as 

 𝐜 = 𝑄̂𝐂̂ (5.3) 

Following this development, the problem of finding the PRCs that result in PAPR 

reduction can be framed as a minimax optimization problem of the form 

 min 
𝐂̂
max(|𝐱 − 𝑄̂𝐂̂|)   (5.4) 

The optimization variable for this problem is 𝐂̂ ∈ ℂ𝐿 and the problem parameters are 
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𝐱 ∈ ℂ𝑁 and 𝑄̂ ∈ ℂ𝑁×𝐿.  

The effectiveness of a method founded on the tone-reservation concept to reduce 

PAPR can be determined by comparing the peak power of the combined signal (𝐱 − 𝐜) 

and the mean power of the original signal 𝐱. To enable such an assessment, a convenient 

measure of PAPR of the combined signal is given as 

 PAPR{𝐱 − 𝐜} =
max

0≤𝑛≤𝑁−1
{|𝑥(𝑛) − 𝑐(𝑛)|2}

𝐸{|𝑥(𝑛)|2}
 (5.5) 

Although, the application of the tone reservation concept may be very effective in 

reducing PAPR, two major drawbacks arise from its use. The very first and obvious one 

is the loss in data-rate due to the reserved subcarriers, which cannot be used to carry user 

data. Such a loss can be measured by the ratio of the number of the reserved subcarriers 

to the total number of subcarriers initially meant for the transmission of user data, i.e. 

 𝑅𝑓 =
𝐿

𝑁
 (5.6) 

To minimize data-rate loss, it is desirable that 𝐿 be much less than 𝑁, i.e. 𝐿 ≪ 𝑁. 

If 𝐿 = 0, there is not PAPR reduction and 𝑅𝑓 = 0. On the other hand, 𝐿 = 𝑁 corresponds 

to a trivial case where no user-data is transmitted, thus there is 100% data-rate loss. A 

given value of 𝐿 limits the number of available PRCs combinations to cancel all the 

highest peaks of a signal and thus the amounts of PAPR reductions that can be achieved.  

Obviously, PAPR reduction will increase as the value of  𝐿 increases, but this is at 

the expense of an increase in the value of 𝑅𝑓. Therefore, a method realizing tone-

reservation concept should aim to achieve a high PAPR reduction with the smallest 

number of reserved tones possible. In particular, the minimum value of 𝐿 is the one that 

can achieve PAPR reduction sufficient to avoid nonlinear amplification of signals in the 

HPA.  

The second drawback associated with the tone-reservation approach is the 

increase in the average power of the transmitted signal, in this case the power of the 

combined signal (𝐱 − 𝐜). This is caused by the minimax nature of the optimization 

problem, which is known to yield signal amplitudes that are virtually uniformly 

distributed. A possible mitigation of this drawback requires the search for the PRCs to be 

done in a manner allowing for only a minimal increase in the average transmission 

power, while at the same time adhering to the maximum power rating of the HPA.  
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5.2.2 SOCP-based Tone Reservation Method 

The SOCP-based Tone Reservation Method (SOCP-TR) was developed with the 

aim to reduce PAPR through finding an optimal peak-reduction vector 𝐂̂ and to establish 

whether the type of subcarrier modulation affect the amount of PAPR reduction. The 

knowledge on the influence or lack of it, of the type of subcarrier modulation on the level 

of PAPR reduction, once established, would be essential in choosing one modulation 

scheme over another or in generalising the results of PAPR reduction from just one 

modulation scheme. 

The third quest for the SOCP-TR method was to find out whether using a real 

signal as is normally the case with discrete multi-tone (DMT) technique, the baseband 

variant of OFDM in wireline twisted-pair channel, or a complex OFDM signal as 

employed in wireless communication channel influences the extent of PAPR reduction.  

In addition, since the method finds optimal PRCs, its PAPR reduction results 

could be used as references for benchmarking the performance of a method that finds 

suboptimal PRCs and therefore help to judge whether it is well designed. 

A. Proposed Algorithm 

The minimax problem in equation (5.4) is formulated as a second-order cone 

program. As described in Subsection 4.1.7 of Chapter 4, an SCOP is a convex 

optimization problem that involves minimization of a linear function over the intersection 

of an affine set and product of second-order cones. Considering equation (5.2) and using 

a time-domain vector 𝐬 to represent the PAPR-reduced transmit signal as follows: 

 𝐬 = 𝐱 − 𝑄̂𝐂̂ = [𝑠(0), 𝑠(1), … , 𝑠(𝑁 − 1)]𝑇 (5.7) 

the infinity or ℓ∞-norm of vector 𝐬 can be expressed as 

 ‖𝐬‖∞ = max{|𝑠(0)|, |𝑠(1)|, … , |𝑠(𝑁 − 1)|} (5.8) 

The components of vector 𝐬, i.e. 𝑠(𝑖), 𝑖 = 0, 1, … ,𝑁 − 1, are complex and each of 

them can be considered to be a complex number of the form 

 𝑟𝑖 = 𝑥𝑖 − 𝐪𝑖
𝑇𝐂̂, 𝑖 = 0, 1, … , 𝑁 − 1  (5.9) 

Here superscript 𝑇 denotes transpose and 𝐪𝑖 ∈ ℂ𝐿 is a column vector equal to the 

transpose of the 𝑖th row of IFFT submatrix 𝑄̂ ∈ ℂ𝑁×𝐿.  

An optimization problem to minimize the ℓ∞-norm of 𝐬 can be formulated as a 
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linear program as follows [123]: 

 
minimize          𝑡                                                                

subject to         |𝑥𝑖 − 𝐪𝑖
𝑇𝐂̂| ≤ 𝑡,   𝑖 = 0, 1, … ,𝑁 − 1 

(5.10) 

Here the optimization variables are 𝐂̂ ∈ ℂ𝐿 and 𝑡 ∈ ℝ and the input parameters are  

𝑥𝑖 ∈ ℂ and 𝐪𝑖 ∈ ℂL. 

Letting 𝑥𝑖 − 𝐪𝑖𝑇𝐂̂ = 𝑟𝑖, the inequality constraints in equation (5.10) require the 

magnitude of each complex number 𝑟𝑖 to be less or equal to 𝑡. Since the magnitude |𝑟𝑖| 

can be written as 

 |𝑟𝑖| = (𝑟𝑖𝑟𝑖
∗)
1
2 , 𝑖 = 0, 1, … ,𝑁 − 1  (5.11) 

where the superscript * denotes complex conjugate, then each inequality constraint in 

equation (5.10) can be expressed as a 3-dimensionsional second-order cone as 

 𝒞3 = [
𝑟𝑖
𝑡
] = [𝑥𝑖 − 𝐪𝑖

𝑇𝐂̂
𝑡

] , 𝑖 = 0, 1, … ,𝑁 − 1  (5.12) 

By decomposing vector 𝐂̂ into two vectors, 𝐲 and 𝐳, made up of the real and 

imaginary parts such that 𝐂̂ = 𝐲 + 𝑗𝐳, the problem formulation in equation (5.10) can be 

expressed in the standard form of SOCP as follows: 

 

 minimize   [
𝟎1𝐿
 𝟎1𝐿
1
]

𝑇

[
𝐲
𝐳
𝑡
] 

subject to  ‖− [
𝑅𝑒{𝐪𝑖

𝑇}

𝐼𝑚{𝐪𝑖
𝑇}
   
−𝐼𝑚{𝐪𝑖

𝑇}

𝑅𝑒{𝐪𝑖
𝑇}
   
0
0
] [
𝐲
𝐳
𝑡
] + [

𝑅𝑒{𝑥𝑖}

𝐼𝑚{𝑥𝑖}
]‖

2

≤ [
𝟎1𝐿
 𝟎1𝐿
1

]

𝑇

[
𝐲
𝐳
𝑡
] 

(5.13) 

In this formulation, ||. ||2 denotes the ℓ2-norm, 𝟎1𝐿 is a column vector of 𝐿 zeros and 

index 𝑖 = 0, 1, … ,𝑁 − 1. The problem has (2L+1) optimization variables, which are 

 𝑡 ∈ ℝ, 𝐲 = 𝑅𝑒{𝐂̂} ∈ ℝ𝐿 and 𝐳 = 𝐼𝑚{𝐂̂} ∈ ℝ𝐿.  

Because the SOCP optimization problem in equation (5.13) is convex, it yields an 

optimal solution for the (2L+1) variables for any input signal 𝐱, and hence the required 

PRCs and PRS. The main steps of the just described SOCP-TR algorithm are given in 

Table 5.1. A software package referred to as CVX, which is a modelling system for 

forming and finding solutions of disciplined convex programs in MATLAB [125], can be 

directly employed to solve the problem.  
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Table 5.1. SOCP-based tone reservation algorithm 

 SCOP-TR algorithm 

i.  Set number of subcarriers 𝑁, allowed data-rate loss 𝑅𝑓 and maximum allowed 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 

ii.  Generate OFDM signal 𝐱  

iii.  Calculate PAPR of 𝐱 

iv.  If calculated PAPR < 𝑃𝐴𝑃𝑅𝑚𝑎𝑥, transmit 𝐱 and terminate the program, else go to step (v) 

v.  Generate IFFT submatrix 𝑄̂ ∈ ℂ𝑁×𝐿 

vi.  Use SOCP optimization function formulated in CVX to find 𝐂̂ = 𝐲 + 𝑗𝐳 

vii.  Compute peak-reduction vector 𝐜 = 𝑄̂𝐂̂ 

viii.  Compute 𝐬 = 𝐱 − 𝐜 and transmit 

ix.  End 
 

A. Computational Complexity 

In CVX, a SOCP can be solved using primal-dual interior-point algorithm by 

SeDuMi [126], SDPT3 [127] or MOSEK [128] software packages. The three packages 

can solve a SOCP problem in about 10 to 100 iterations, each with a polynomial 

complexity of 𝑂(𝑛2𝑚), where 𝑛 and 𝑚 are the number of variables and constraints, 

respectively. Thus, to find 𝑛 = 2𝐿 + 1 variables subject to 𝑁 constraints in equation 

(3.13), the computational complexity per iteration is approximately 𝑂(𝑁𝐿2). 

5.2.3 LP-based Tone reservation method 

This method, abbreviated as LP-TR, was invented with the motivation that an 

ideal peak-reduction signal should be equal to the signal the HPA clips off from an 

original OFDM signal. Following this, an ideal peak-reduction signal can be represented 

analytically by vector 𝐝 = [𝑑(0), 𝑑(1),… , 𝑑(𝑁 − 1)]𝑇, whose components are given by 

 𝑑(𝑛) = {

𝑥(𝑛)

|𝑥(𝑛)|
(|𝑥(𝑛)| − 𝑥𝑡ℎ), |𝑥(𝑛)| > 𝑥𝑡ℎ

0                                 , |𝑥(𝑛)| ≤ 𝑥𝑡ℎ

  (5.14) 

where 𝑥𝑡ℎ is the clipping threshold.  

The clipping threshold should be ideally greater than the average of the 

magnitudes of the complex signal amplitudes. It is possible to find this threshold for a 

given OFDM signal if the maximum PAPR allowed by the HPA is provided using the 

following equation: 
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 𝑥𝑡ℎ = √𝑃𝐴𝑃𝑅𝑚𝑎𝑥E{|𝑥(𝑛)|2} (5.15) 

where 𝐸{. } is the expectation operator that outputs the average of the argument.  

A. Proposed Algorithm 

For efficient reduction of PAPR, the actual peak-reduction signal needs to be 

approximately equal to the ideal one in equation (5.14). In other words, the residual error 

signal between the desired and actual peak-reduction signals given by 

 𝐫 = 𝑄̂𝐂̂ − 𝐝 (5.16) 

where 𝐫 = [𝑟(0), 𝑟(1), … , 𝑟(𝑁 − 1)], should be as small as possible if not zero.  

The process of generating the PRCs can be viewed in a similar manner to the 

adaptive filtering scheme illustrated in Figure 5.2. For every OFDM signal vector 𝐱, a 

new vector 𝐂̂ containing a new set of PRCs is computed. However, in the process of 

generating the PRCs, the desired signal is not fixed like in the adaptive filtering since it 

varies with the incoming OFDM signal.  

The search for the peak-reduction vector that yields components of 𝐫 near zero 

can be accomplished by minimizing a specially chosen measure of the residual error. 

Since the aim here is to reduce the PAPR caused by the peak amplitude of 𝑥(𝑛), the 

largest magnitude of the residual error should be minimized. This requires the 

minimization of the Chebyshev norm of the residual error. 

Thus, to find a vector 𝐂̂ that minimizes 𝐫, a Chebyshev approximation problem 

expressed as 

 minimize
𝐂̂

    ||𝑄̂𝐂̂ − 𝐝||∞ (5.17) 

where ||. ||∞ denotes ℓ∞-norm, needs to be solved.  


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

 

 

  

 

Figure 5.2. Generation of peak-reduction coefficients 
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The Chebyshev approximation problem in equation (5.17) is known not to have a 

closed form solution but it can be casted into a LP and solved using readily available LP 

solvers. The LP for the problem is of the form  

 

minimize       𝑡                               

subject to      𝐪̂𝑛
𝑇𝐂̂ − 𝑡 ≤ 𝑑(𝑛) 

                               −𝐪̂𝑛
𝑇𝐂̂ − 𝑡 ≤ −𝑑(𝑛) 

(5.18) 

with 𝑡 ∈ ℝ and 𝐂̂ ∈ ℂ𝐿 being the optimization variables and 𝐪̂𝑛 ∈ ℂ𝐿 and 𝑑(𝑛) ∈ ℂ, for 

𝑛 = 0, 1, 2, … , 𝑁 − 1, are the problem parameters. Here, it should be noted that vector  

𝐪̂𝑛 is equal to the transpose of the 𝑛th row of matrix 𝑄̂.  

After solving for the PRCs vector, the PRS and the peak-reduced signal can be 

found from equations (5.3) and (5.7), respectively. A sequence of steps for the just 

described LP-TR algorithm is given in Table 5.2.  

The use of the LP-TR method to reduce PAPR may increase the average power of 

the transmit signal. However, because the majority of elements in the desired PRS given 

in equation (5.14) are zero, a similar majority of the PRS samples generated by the 

method would be very small nearing zero; hence, the power increase is expected to be 

very small.  

Table 5.2. LP-based tone reservation algorithm 

 LP-TR algorithm 

i.  Set the number of subcarriers 𝑁, allowed data-rate loss 𝑅𝑓 and maximum allowed 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 

ii.  Generate OFDM signal 𝐱 

iii.  Compute PAPR of signal 𝐱 

iv.  If PAPR < 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 , transmit 𝐱 and end the program, otherwise go to step (v) 

v.  Compute clipping threshold 𝑥𝑡ℎ = √𝑃𝐴𝑃𝑅𝑚𝑎𝑥𝐸{|𝑥(𝑛)|2} 

vi.  Generate desired PRS 𝐝 

vii.  Generate IFFT submatrix 𝑄̂ ∈ ℂ𝑁×𝐿 

viii.  Apply interior-point algorithm on ||𝑄̂𝐂̂ − 𝐝||∞ to solve for 𝐂̂ 

ix.  Compute PRS 𝐜 = 𝑄̂𝐂̂ 

x.  Compute and transmit the peak-reduced signal 𝐬 = 𝐱 − 𝐜 

xi.  End 
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A. Computational Complexity 

In practice, there is no simple analytical method to solve a LP. This makes it 

difficult to establish exactly the required number of arithmetic operations needed to find a 

LP solution. However, one of the three solvers for LPs, namely interior-point method, 

active-set method or simplex method, can be employed to solve for the PRCs vector  𝐂̂ 

for the problem in equation (5.18) depending on the problem size.  

The interior-point method is the most superior of the three solvers and can solve 

the LP in less than 85 iterations each of maximum complexity 𝑂(𝑁𝐿2), where 𝑁 and 𝐿 

are, respectively, the row and column dimensions of matrix 𝑄̂. In addition, since matrix  

𝑄̂ is derived from the IFFT matrix, which bears a special structure, the computational 

complexity of the LP could be reduced to 𝑂(𝑁 log2𝑁) [129]. 
 

5.2.4 IRLS-based Tone Reservation Method 

This method is abbreviated as IRLS-TR. It employs the IRLS algorithm presented 

in Subsection 4.1.4 of Chapter 4 to find the required PRCs for a given OFDM signal.  

A. Proposed Algorithm 

The method starts by generating the desired peak-reduction signal and the residual 

error signal using equations (5.14) and (5.16), respectively. The problem of minimizing 

𝑙∞-norm in equation (5.17) can be framed as a problem of minimizing ℓ𝑝-norm when  𝑝 

is large, i.e. 

 minimize
𝐂̂

     ||𝑄̂𝐂̂ − 𝐝||𝑝
𝑝 , 𝑝 → ∞. (5.19) 

In practice, the solution that minimizes ℓ𝑝-norm is found to approximate that 

which minimizes ℓ∞-norm when 𝑝 ≥ 10 [130]. However, there does not exist an 

analytical procedure to find the optimal solution that minimizes any other norm except 

ℓ2-norm. Thus, it is necessary to transform the problem in equation (5.19) into a form of 

a least-squares problem, specifically to a weighted least-squares formulation, in order to 

find its closed form solution.  

An equivalent weighted least-squares form of problem (5.19) can be expressed as 

 minimize
𝐂̂

     ||𝑊(𝑄̂𝐂̂ − 𝐝)||2
2 (5.20) 

where the weighting matrix 𝑊 is a real diagonal matrix of size 𝑁 × 𝑁 



Chapter 5: Materials and Methods 
 

110 
 

 𝑊 =  [

𝑤(0)
0
⋮
0

   

0
𝑤(1)
⋮
0

   

⋯
⋯
⋱
⋯

   

0
0
⋮

𝑤(𝑁 − 1)

] (5.21) 

 The purpose of this matrix is to apply heavy weights on the largest amplitudes of the 

residual error to emphasize on their minimization.  

The problem in equation (5.20) can be cast into a standard least-squares problem 

and if the diagonal weights are known, the peak-reduction vector is given by the closed 

form solution 

 𝐂̂ = (𝑄̂𝐻𝑊𝑇𝑊𝑄̂)
−1
𝑄̂𝐻𝑊𝑇𝑊𝐝 (5.22) 

Here the superscripts 𝑇 and 𝐻 denote the transpose and conjugate transpose of a matrix, 

respectively.  

The two problems in equation (5.19) and (5.20) can be made equal by assigning 

the residual errors 𝑟(𝑛) to the diagonal elements of the weighting matrix according to 

 𝑤(𝑛) = |𝑟(𝑛)|
𝑝−2
2 , 𝑛 = 0, 1, … ,𝑁 − 1 (5.23) 

Thus, by substituting equation (5.23) in (5.20), the weighted least-squares problem 

becomes identical to the ℓ𝑝-norm minimization problem in (5.19).   

The weighted least-squares problem can be solved analytically but not in a single 

step because the weights that give an optimal approximation solution when they are 

substituted in equation (5.22) are unknown a priori. For this reason, the weighted least-

squares problem is solved iteratively us an IRLS algorithm. The starting point of the 

algorithm is to find a solution of 𝐂̂ using equation (5.22) when all the weights are set to 1, 

i.e. 

 𝑤(𝑛) = 1, 𝑛 = 0, 1, … ,𝑁 − 1 (5.24) 

This is followed by finding a residual error using equation (5.16) and a computation of 

new weights for the next iteration using equation (5.23).  

A new weighted least-squares solution 𝐂̂ is then computed from the new set of 

weights using equation (5.22). The steps from the computation of the residual error are 

repeated until the algorithm converges to a literally unchanging value of the ℓ𝑝-norm of 

the error, measured by a tolerance parameter of the required precision, during several 

iterations or the maximum number of iterations is reached.  
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The IRLS algorithm, in its basic form given above, has two main drawbacks that 

need to be avoided. First, it may not converge due to numerical instabilities experienced 

when the algorithm is minimizing the ℓ𝑝-norm for some values of 𝑝. Secondly, the basic 

algorithm converges in linear manner, thus making it slow and unsuitable for real-time 

practical applications. The two drawbacks can be evaded by transforming the basic IRLS 

algorithm to have an iterative behaviour similar to the Newton’s method presented in 

Subsection 4.2.2 of Chapter 4 by only partially updating the solution at each iteration as 

follows: 

 𝐂̂(𝑘) = 𝜇𝑘𝐂̂(𝑘) + (1 − 𝜇𝑘)𝐂̂(𝑘 − 1) (5.25) 

where 𝜇𝑘 = 1/(𝑝𝑘 − 1) is the partial-update parameter at the 𝑘th iteration [131], [132].  

However, as it is common with most of the methods based on the Newton’s 

algorithm, the partial update in equation (5.25) causes the IRLS algorithm to become 

sensitive to initial approximations. This sensitivity to initial approximations affects the 

convergence rate at the very early phases of the algorithm. Fortunately, the convergence 

in the initial phases can be improved by gradually varying the value of 𝑝 from the initial 

value of 2 to the one of the target ℓ𝑝-norm chosen to approximate the ℓ∞-norm. 

The gradual increase of 𝑝 from a starting value to a final value can be considered 

similar to a homotopic deformation [133], [134] and can be done iteratively through 

multiplication of 𝑝 and a convergence-rate controlling factor 𝛼 of between 1 and 2. The 

convergence-rate controlling factor can be determined from the number of iterations and 

the value of 𝑝 of the target ℓ𝑝-norm according to the following equation:  

 𝛼 = 10log(𝑃) 𝑘𝑚𝑎𝑥 ⁄   (5.26) 

where 𝑘𝑚𝑎𝑥 denotes the maximum iteration number allowed and 𝑃 is the value of 𝑝 of 

the target ℓ𝑝-norm. Following this, the value of 𝑝 at the 𝑘th iteration can be determined 

from the equation 

 𝑝𝑘 = min(𝑃, 𝛼𝑝𝑘−1) (5.27) 

The sequences of steps for the proposed IRLS-TR method are summarized in Table 5.3.  

From equation (5.27), it can be found that 𝑝𝑘 increases gradually from an initial 

value of 2 but after several iterations it saturates at the final value of 𝑃. For example, if 

the problem of ℓ𝑝-norm minimization is to be considered for 𝑃 = 20 over 15 iterations 

with 𝛼 = 1.22, then 𝑝 will increase from 2 to 20 as shown in Figure 5.3. This means that 
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at different iterations, different ℓ𝑝-norm minimizations determined by the value of 𝑝 are 

performed starting with ℓ2-norm at the first iteration up to ℓ20-norm at the thirteenth 

iteration, which is then minimized for the remaining number of iterations.  

Following the two settings in equations (5.26) and (5.27), a reliable quadratic 

convergence to the optimal approximation solution is guaranteed in just a small number 

of iterations. For example, minimizing ℓ20-norm for the ℓ∞-norm, the algorithm 

converges in about 9 iterations as illustrated in Figure 5.4. A fast convergence is achieved 

because the difference between consecutive solutions of the minimization of the 

gradually changing ℓ𝑝-norm gets smaller as 𝑝 progressively increases towards the value 

of the target ℓ𝑃-norm at which the algorithm iterates for numerous times. 
 

Table 5.3. IRLS-based tone reservation algorithm 

 IRLS-TR algorithm 

i.  Set number of subcarriers 𝑁, allowed data-rate loss 𝑅𝑓 and maximum allowed 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 

ii.  Set maximum iteration number 𝑘𝑚𝑎𝑥, ℓ𝑝-norm parameter 𝑃 and convergence parameter 𝛼 

iii.  Initialize diagonal weights 𝑤(𝑛) = 1, 𝑛 = 0, 1, … , 𝑁 − 1 and set function tolerance 𝜀𝑡ℎ 

iv.  Generate OFDM signal 𝐱 and calculate PAPR 

v.  If PAPR < 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 , transmit 𝐱 and end the program, otherwise go to step (vi) 

vi.  Compute clipping threshold 𝑥𝑡ℎ = √𝑃𝐴𝑃𝑅𝑚𝑎𝑥𝐸{|𝑥(𝑛)|2}  

vii.  Generate desired PRS 𝐝 

viii.  Generate IFFT submatrix 𝑄̂ ∈ ℂ𝑁×𝐿 

ix.  Initialize iteration counter 𝑘 = 0 and set initial ℓ𝑝-norm parameter  𝑝0 = 2 

x.  Compute initial weighted least-squares solution using 𝐂̂(0) = (𝑄̂𝐻𝑊𝑇𝑊𝑄̂)
−1
𝑄̂𝐻𝑊𝑇𝑊𝐝 

xi.  Compute residual error 𝐫𝑘 = 𝑄̂𝐂̂𝑘 − 𝐝 

xii.  Compute new diagonal weights 𝑤𝑘(𝑛) = |𝑟𝑘(𝑛)|
(𝑝𝑘−2)/2 , 𝑛 = 0, 1, … , 𝑁 − 1 

xiii.  Compute current weighted least-squares solution 𝐂̂(𝑘) = (𝑄̂𝐻𝑊𝑇𝑊𝑄̂)
−1
𝑄̂𝐻𝑊𝑇𝑊𝐝 

xiv.  Calculate new update parameter 𝜇𝑘 = 1/(𝑝𝑘 − 1)  

xv.  Partially update current weighted least-squares solution as 𝐂̂(𝑘) = 𝜇𝑘𝐂̂(𝑘) + (1 − 𝜇𝑘)𝐂̂(𝑘 − 1) 

xvi.  Compute ℓ𝑝-norm of error ||𝛆𝑘||𝑝  = (∑ |𝑟𝑘(𝑛)|
𝑝𝑁−1

𝑛=0 )1/𝑝 

xvii.  
Set 𝑘 = 𝑘 + 1. If 𝑘 < 𝑘𝑚𝑎𝑥  or ||𝛆𝑘||𝑝 > 𝜀𝑡ℎ, update ℓ𝑝-norm parameter 𝑝𝑘 = min(𝑃, 𝛼𝑝𝑘−1) 
and go to step (xi); else transmit  𝐬 = 𝐱 − 𝑄̂𝐂̂ 

xviii.  End 
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Figure 5.3. Homotopic variation of p 

 
Figure 5.4. Convergence characteristic curve of IRLS algorithm  

B. Computational Complexity 

Much of the computational effort is spent in step (xiii) in Table 5.3 to compute 

the weighted least-squares solution from the normal equations 

 (𝑄̂𝐻𝑊𝑇𝑊𝑄̂)𝐂̂ = 𝑄̂𝐻𝑊𝑇𝑊𝐝 (5.28) 

In order to determine the computational complexity of finding the weighted least-

squares solution, equation (5.28) can be rewritten in the standard form  

 (𝐴𝐻𝐴)𝐂̂ = 𝐛 (5.29) 

where 𝐴 = 𝑊𝑄̂ and 𝐛 = 𝐴𝐻𝑊𝐝. In addition, only multiplication operations are 
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considered for the evaluation of complexity because they are computationally more 

demanding than additions.  

Obtaining matrix 𝐴 with dimensions 𝑁 × 𝐿 requires 2𝑁𝐿 real multiplications. 

Since one complex multiplication requires four real multiplications, then for the complex 

matrix product (𝐴𝐻𝐴) of dimensions 𝐿 × 𝐿, a total of 2𝑁𝐿 + 4𝑁𝐿2 real multiplications 

are needed. Moreover, to obtain the 𝐿 complex elements of vector 𝐛, 4𝑁𝐿 real 

multiplications are required. In addition, solving for 𝐂̂ from the system of linear 

equations in (5.29), here rewritten as 

 𝐵𝐂̂ = 𝐛 (5.30) 

needs the formation of matrix 𝐵 = 𝐴𝐻𝐴, which requires 4𝐿2 real multiplications. 

Adding all the complexities together, the computation of the weighted least-

squares solution needs a total of 2𝑁𝐿 + 4𝑁𝐿2 + 4𝑁𝐿 + 4𝐿2 ≅ 4𝑁𝐿2 real 

multiplications. Therefore, the computational complexity per iteration of the IRLS 

algorithm is proportional to (𝑁𝐿2) and can be stated as 𝑂(𝑁𝐿2). Since this complexity 

increases with the square of the value of 𝐿, it is necessary to reserve only a small number 

of subcarriers to achieve a PAPR reduction sufficient to avoid nonlinear amplification of 

a signal.  

5.2.5 Low-Complexity Signal Addition Method 

This method, abbreviated as LCSA, reserves resources for reducing PAPR in the 

time-domain by way of extending the transmit signal by a few samples. The main 

objective of this method is to create a peak-reduction signal that is an exact copy of the 

desired signal in equation (5.14) through a very low computational complexity process 

and without a significant change on the transmission power. To achieve these goals 

simultaneously, the method follows a very different approach of generating the actual 

peak-reduction signal from the one employed by the IRLS-TR method in Subsection 

5.2.6. 

A. Proposed Algorithm 

The peak-reduction signal from the IRLS algorithm does not match the desired 

signal amplitudes as demonstrated by Figure 5.5. For example, at the positions where the 

desired signal 𝐝 has zero entries, the actual signal 𝐜 may have nonzero entries. This may 

lead to an increase in the average power of the transmit signal. 
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The proposed LCSA method utilizes only the nonzero components of 𝐝 to 

generate the actual PRS. If the desired PRS has 𝑀 nonzero entries, a vector containing 

only these components can be expressed as 

 
𝐜̂ = [𝑐̂(0), 𝑐̂(1),… , 𝑐̂(𝑀 − 1)]𝑇 

     = [𝑑(𝑖0), 𝑑(𝑖1),… , 𝑑(𝑖𝑀−1)]
𝑇  

(5.31) 

The elements of 𝐜̂ correspond to a set of indices {𝑖0, 𝑖1, … , 𝑖𝑀−1} of vector 𝐝 in the range 

0 to 𝑁-1 corresponding to the positions of the nonzero entries.  

Generating a time-domain PRS signal 𝐜 matching the desired signal 𝐝 by using a 

frequency-domain product, i.e. by having 𝐜 = 𝑄̂𝐂̂ in the tone reservation approach, is not 

feasible because 𝑄̂ ∈ ℂ𝑁×𝐿 is not square, given that 𝐿 ≪ 𝑁 and the value of N must be 

always the same as the length of 𝐝. A simpler way to circumvent this difficulty is to 

confine the formation of the actual PRS in the time-domain by having it equal to the 

desired signal, i.e. 

 𝐜 = 𝐝 (5.32) 

However, generating the peak-reduced signal using 𝐬 = 𝐱 − 𝐜 will clip some 

signal amplitudes and subsequently lead to severe BER degradation. Thus, after 

transmitting signal 𝐬, it is necessary to restore back the clipped amplitudes at the receiver 

in order to guarantee a successful recovery of the transmitted modulation symbols. This 

can be accomplished by transmitting the nonzero samples of the actual PRS vector 

together with the samples of peak-reduced signal so that at the receiver they can be 

recovered and used to reconstruct the clipped samples back to their original amplitudes.  

 
Figure 5.5. Desired and actual peak-reduction signals for the IRLS-TR method 
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Since the number of nonzero samples will in practice be small, they can be 

transmitted by appending them to the tail end of the transmit signal, thus yielding a 

composite signal 𝐬 as shown in Figure 5.6. In the figure, the signal part in blue is the 

peak-reduced signal 𝐬, while in red are the nonzero samples of the PRS. As can be 

observed, the waveform of the composite signal is essentially the same as the waveform 

of the peak-reduced signal, thus the average powers of the two signals should be 

approximately the same. 

However, the actual effect of the proposed method on the transmit power can be 

analysed by comparing the average power of composite signal to the power of the 

original OFDM signal. This can be done by comparing the total power in the clipped 

samples and the appended PRS samples to the total power in the corresponding unclipped 

samples in the original OFDM signal. To this end, let 𝑖 = 0, 1, … ,𝑀 − 1 be the index of a 

clipped sample in the original OFDM signal and 𝑐̂(𝑖) and 𝑥(𝑖) be, respectively, the 

nonzero PRS and original unclipped signal samples. The total power in the clipped and 

nonzero PRS samples satisfies the condition 

 ∑(𝑥𝑡ℎ
2 + 𝑐̂2(𝑖))

𝑀

𝑖=1

≤∑𝑥2(𝑖)

𝑀

𝑖=1

 (5.33) 

The inequality condition in equation (5.33) implies that the power of the 

composite signal will always be less than or equal to that of the original OFDM signal. 

However, because the amplitudes of the nonzero PRS samples are very small and all the 

sample magnitudes under consideration are between 0 and 1, the power of the composite 

signal will practically be equal to the power of the original OFDM signal.  

 
Figure 5.6. Composite transmit signal 
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The foregoing analysis shows that the LCSA method does not affect the transmit 

power. However, the extension of the transmit signal by some peak-reduction samples 

reduces the data-rate of the system because during the period the PRS samples are 

transmitted no user data can be sent. This reduction in data rate can be measured by the 

ratio of the number of nonzero samples in the PRS to the total number of samples in the 

composite transmit signal, i.e. 

 𝑅𝑡 =
𝑀

𝑁 +𝑀
  (5.34) 

Obviously, for 𝑀 = 𝐿, this data-rate loss is slightly less than the loss due to the tone 

reservation in equation (5.6).  

The data-rate loss in equation (5.34) is a function of 𝑀 and can be controlled by 

altering the values of 𝑀. However, this can only be achieved by adjusting the clipping 

threshold. When the clipping threshold is set, 𝑀 can be found easily from the statistical 

distribution of the amplitudes of an OFDM signal, which from Chapter 3 are known to be 

Raleigh-distributed with a cumulative distribution function 

 𝐹X(𝑥) = 1 − 𝑒
−
𝑥2

2𝜎2 (5.35) 

where 𝜎2 is the variance of the normal distribution of the real and imaginary parts of the 

OFDM signal.  

From equation (5.35), the probability of the magnitude of a signal amplitude 

being higher than a specified clipping threshold is given by 

 Pr(𝑋 > 𝑥𝑡ℎ) = 𝑒
−
𝑥𝑡ℎ

2

2𝜎2  (5.36) 

and is simply equal to the ratio of the number of nonzero entries in the PRS to the total 

number of samples in the signal, i.e. 

 𝑀

𝑁
= 𝑒

−
𝑥𝑡ℎ

2

2𝜎2  (5.37) 

The clipping threshold can be related to the mean of the distribution in equation (5.35) by  

 𝑥𝑡ℎ = 𝜆𝑥 (5.38) 

where 𝑥 is the average value and 𝜆 is a clipping level control parameter ranging from 1 

up to a maximum value given by max(|𝑥(𝑛)|) /𝑥.  

The mean of the Rayleigh distribution in equation (5.35) is given by  



Chapter 5: Materials and Methods 
 

118 
 

 𝑥 = 𝜎√
𝜋

2
  (5.39) 

On substituting equation (5.39) in (5.38), the clipping threshold becomes 

 𝑥𝑡ℎ = 𝜆𝜎√
𝜋

2
 (5.40) 

The number of signal amplitudes above the clipping threshold can be found upon the 

substitution of equation (5.40) in (5.37) as 

 𝑀 = 𝑁𝑒−
𝜋
4
𝜆2

 (5.41) 

Equation (5.1) shows that 𝑀 falls exponentially with the square of the clipping-

level control parameter. It has a maximum value of  0.46𝑁 at 𝜆 = 1, i.e. when the 

clipping threshold is equal to the average value of the signal. On the other hand, 𝑀 has a 

minimum value of zero when the clipping threshold is equal to the maximum peak value 

of the signal. It is desirable to have a high clipping threshold close to the maximum peak 

value in order to have a small vale of 𝑀 and hence to reduce the loss in data rate. 

However, the reduction in PAPR decreases with 𝑀 and approaches zero when the 

clipping threshold tends toward the maximum peak of the signal. Thus, while setting the 

value of 𝑀, it is necessary to take into account the trade-off between PAPR reduction and 

data-rate loss. If for a given OFDM system the maximum acceptable data-rate loss is 

specified, the value of 𝑀 can be found from equation (5.34) as follows: 

 𝑀 =
𝑁𝑅𝑡
1 − 𝑅𝑡

  (5.42) 

Consequently, the optimal clipping threshold can be obtained from equation 

(5.37) as follows: 

 𝑥𝑡ℎ = 𝑥√
4

𝜋
ln (

𝑁

𝑀
) (5.43) 

This optimal clipping level can then be used to find the desired PRS and to reduce PAPR. 

On the other hand, if the OFDM system is not sensitive to data-rate loss, the value of 𝑀 

can be set in a flexible manner to control the amount of PAPR reduction.  

One simple way of controlling the amount of PAPR reduction using 𝑀 is by 

setting a clipping threshold equal to one of the highest samples of a signal. The 

amplitudes of the signal can first be arranged in a descending order and if the position of 
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the sample designated as the clipping threshold is 𝑛, then 𝑀 is simply equal to 𝑛 − 1. By 

choosing different samples as the clipping threshold and hence different 𝑀 values, PAPR 

reduction can be controlled easily. Similarly, the value of 𝑀 that gives a desired PAPR 

can be found without difficulty.  

Following the above discussion, the main steps of the proposed LCSA algorithm 

can be summarized as shown in Table 5.4. A transmitter implementing the method is 

illustrated in Figure 5.7. In the figure, 𝐗 is a vector containing modulation symbols, 𝐱, 𝐜 

and 𝐬 are the discrete-time OFDM signal, peak-reduction signal and peak-reduced signal, 

respectively. The nonzero samples of 𝐜 are added to the peak-reduced signal in the block 

“Append 𝐜̂” to give a composite transmit signal 𝐬.  

In the “Append CP” block, the OFDM signal is extended with a cyclic prefix to 

create a time-guard interval for eliminating ISI. At the receiver, after the removal of the 

cyclic prefix, the 𝑀 PRS samples are then recovered. These samples are added to the 

clipped samples in the received signal to recreate them to their original level before the 

demodulation operation in the FFT block. 

Table 5.4. LCSA PAPR reduction algorithm 

 LCSA algorithm 

i.  Set number of subcarriers N, data-rate loss 𝑅𝑡 or maximum allowed PAPRmax 

ii.  Generate OFDM signal 𝐱 and calculate PAPR 

iii.  If PAPR< 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 transmit 𝐱  and terminate the program, otherwise go to step (iv) 

iv.  Set clipping threshold 𝑥𝑡ℎ 

v.  Generate desired PRS 𝐝 

vi.  Assign 𝐝 to be the actual peak-reduction signal 𝐜 

vii.  Generate vector 𝐜̂ to contain nonzero samples of 𝐜 

viii.  Generate peak-reduced signal 𝐬 = 𝐱 − 𝐜  

ix.  Append 𝐜̂ to 𝐬 and pass the composite signal 𝐬̂ for on-ward processing 

x.  End 
 

 
Figure 5.7. Transmitter implementation of LCSA method 
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B. Computational Complexity 

From the foregoing description of the proposed LCSA method, the two main 

operations that are computationally demanding are the generation of a peak-reduction 

signal using equation (5.14) and the subtraction of this signal from an OFDM signal to 

reduce the PAPR. The generation of a peak-reduction signal is done in a single step, 

which requires 𝑀 real additions and 2𝑀 real multiplications. The operation of reducing 

PAPR requires 2𝑀 real additions.  

Therefore, the algorithm executes 2𝑀 real multiplications and 2𝑀 real additions 

in the two operations. Considering only multiplications, because of being more 

computationally intensive than additions, the computational complexity of the LCSA 

algorithm increases with 𝑀, thus it can be stated as 𝑂(𝑀). Given that 𝑀 ≪ 𝑁, the 

proposed method will barely increase the computational complexity of an OFDM system 

since 𝑂(𝑀) is much less than 𝑂(𝑁 log2𝑁), the complexity of the FFT, which happens to 

be the most computationally expensive operation in the system.  

Compared to the IRLS-TR method proposed in Subsection 5.2.4 for 𝐿 ≅ 𝑀, the 

proposed LCSA is by far much faster because it requires only 1 iteration of complexity 

𝑂(𝑀) against 9 iterations of the former, each requiring a complexity of 𝑂(𝑁𝐿2).  

5.2.6 Low-Complexity Additive Signal Mixing Method for MIMO-OFDM 

System 

This section presents a low-complexity additive signal mixing (LCASM) 

algorithm that can be employed in MIMO-OFDM systems to reduce PAPR. In general, 

the LCASM algorithm is quite similar to the LCSA technique in presented in Table 5.4, 

except for a few amendments to cater for simultaneous reduction of PAPR in more than 

one transmission paths. 

Without loss of generality, only an algorithm for a 2 × 2 Alamouti-encoded 

MIMO-OFDM system, which was presented in Subsection 3.9.3, will be given. The 

system can be considered as having two parallel OFDM systems, each with its own 

transmit signal. Thus, reduction of PAPR must be performed on the two transmit signals, 

here denoted by 𝐱1 and 𝐱2, from the two parallel transmission paths. However, of the two 

signals, more reduction should be performed on the one with higher PAPR during a given 

symbol duration in order to effectively reduce the PAPR of the whole system, which is 

given by  
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 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 = max(PAPR{𝐱1}, PAPR{𝐱2}) (5.44)  

A. Proposed Algorithm 

From the allowed data-rate loss in a MIMO-OFDM system, the number of 

nonzero samples in peak-reduction signals can be determined using equation (5.42). Two 

clipping threshold, 𝑥𝑡ℎ1 and 𝑥𝑡ℎ2, for each transmit signals can then be obtained using 

equation (5.43). The effective clipping threshold for the system should be the maximum 

of the two thresholds, i.e. 

 𝑥𝑡ℎ = max(𝑥𝑡ℎ1, 𝑥𝑡ℎ2) (5.45) 

The required peak-reduction signals, 𝐜1 and 𝐜2, for the two transmit branches are 

then generated using equation (5.14). Additionally, two vectors 𝐜̂1 and 𝐜̂2, for holding the 

nonzero elements of the peak-reduction signals, 𝐜1 and 𝐜2, respectively, are needed. If 

one of the vectors, 𝐜̂1 and 𝐜̂2, has less number of elements than the other, it can be 

padded with zeros to have the same length on the two signals. 

The peak-reduced signals for the two MIMO transmit branches can be created as 

follows: 

 
𝐬1 = 𝐱1 − 𝐜1 

𝐬2 = 𝐱2 − 𝐜2 

(5.46) 

Signals 𝐜̂1 and 𝐜̂2 are then appended to the two peak-reduced signals, 𝐬1 and 𝐬2, 

to form the composite transmit signals 𝐬1 and 𝐬2, respectively. Two typical composite 

transmit signals are shown in Figure 5.8. From the figure, it is evident that as long as the 

number of nonzero PRS samples appended to the transmit signal is small, the waveforms 

of composite transmit signals, 𝐬1 and 𝐬2, are essentially the same as the ones for the 

peak-reduced signals 𝐬1 and 𝐬2. Therefore, similar to the proposed LCSA method, the 

transmission of nonzero PRS samples together with peak-reduced MIMO-OFDM signals 

barely affects the transmission power.  

B. Computational Complexity 

The proposed LCASM algorithm is presented in Table 5.5. Since the sequence 

and the steps of the algorithm are similar to those of the LCSA method in Table 5.4, 

except for the accommodation of a second transmit signal, the LCASM method has a 

similar implementation and computational complexity to the LCSA method. 
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Figure 5.8. Peak-reduced transmit signals for 𝟐 × 𝟐 Alamouti encoded MIMO-OFDM system 

Table 5.5. LCASM PAPR reduction algorithm for MIMO-OFDM system 

 LCASM algorithm 

i.  Set the number of subcarriers N, data-rate loss 𝑅𝑡 and 𝑃𝐴𝑃𝑅𝑚𝑎𝑥 

ii.  Generate signals 𝐱1 and 𝐱2 for the two MIMO branches  

iii.  Find 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂  

iv.  If 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 <  𝑃𝐴𝑃𝑅𝑚𝑎𝑥, transmit 𝐱1 and 𝐱2, end the algorithm, otherwise go to step (v) 

v.  Calculate clipping threshold 𝑥𝑡ℎ 

vi.  Generate peak-reduction signals 𝐜1 and 𝐜2 

vii.  Generate signals 𝐜̂1 and 𝐜̂2 containing nonzero elements of 𝐜1 and 𝐜2 

viii.  Generate peak-reduced signals 𝐬1 = 𝐱1 − 𝐜1 and 𝐬2 = 𝐱2 − 𝐜2 

ix.  Append 𝐜̂1 and 𝐜̂2 to 𝐬1 and 𝐬2 and transmit the composite signals 

x.  End 
 

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

n

T
x 

si
gn

al
 1

 

 

 

PAPR-reduced signal part
Appended peak-reduction signal 

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

n

T
x 

si
gn

al
 2

  

 

 



Chapter 5: Materials and Methods 
 

123 
 

5.2.7 Computational complexity Comparison 

Table 5.6 gives the computational complexities of the proposed LCSA, LCASM, 

IRLS-TR, LP-TR and SOCP-TR methods and some other methods relevant to this 

research and which were briefly reviewed in Chapter 2, namely LSA-TR [48], CF-TR 

[49], SSCR-TR [50], IVO-TR [52] and ELM-TR [53]. The number of iterations required 

to obtain the PRS at runtime for the proposed IRLS-TR, LP-TR and SOCP-TR methods 

is denoted by 𝐼𝑖𝑟𝑙𝑠, 𝐼𝑙𝑝 and  𝐼𝑠𝑜𝑐𝑝, respectively. For the LSA-TR, CF-TR and SSCR-TR 

methods, the number of iterations at runtime is denoted by 𝐼𝑙𝑠𝑎, 𝐼𝑐𝑓 and 𝐼𝑠𝑠𝑐𝑟, 

respectively.  

The parameter 𝑀 in the complexities of LCSA, LCASM, CF-TR and LSA-TR 

denotes the number of nonzero entries in the clipping noise signal. The parameters 𝑁𝑠, 

𝑁𝑖, 𝑁ℎ and 𝑁𝑜 in the complexities of the IVO-TR and ELM-TR methods are the size of 

the training data set and the number of neurons in the input layer, hidden layer and output 

layer of the neural network, respectively.  

The LCSA, LCASM, IRLS-TR, LP-TR, SOCP-TR, SSCR-TR, CF-TR and LSA-

TR methods have only runtime operations. However, the computational complexity of 

the two machine-learning algorithms, IVO-TR and ELM-TR, is in three parts; these are 

in the CC-TR [47] iterations to generate training targets, the training process and the 

runtime prediction procedure. 

Except for the number of iterations, the computational complexities of the 

proposed IRLS-TR, LP-TR and SOCP-TR methods are similar. However, the IRLS-TR 

method converges faster in about 9 iterations against about 85 iterations of the SOCP-TR 

and LP-TR methods.  

In addition, the minimization of the ℓ∞-norm through an iterative computation of 

the weighted least-squares solution in IRLS-TR method is rather more direct and faster 

than using the rather complicated primal-dual interior-point method to solve a linear 

program and a second-order cone program in LP-TR and SOCP-TR methods, 

respectively. 

Compared to the IRLS-TR method, the LCSA method is much faster as it requires 

only one operation of complexity 𝑂(𝑀) to generate the PRS against 9 iterations each of 

complexity 𝑂(𝑁𝐿2) by the former, for approximately the same number of reserved 

subcarriers and number of nonzero samples, i.e. 𝐿 ≅ 𝑀 and 𝑀 ≪ 𝑁. In addition, the 

LCSA method has a much lower complexity than the other methods in the table. 
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Table 5.6. Computational complexity of different PAPR reduction methods 

PAPR reduction method Complexity during training  Complexity at runtime  

Proposed LCSA Not applicable 𝑂(𝑀) 

Proposed LCASM Not applicable 𝑂(𝑀) 

Proposed IRLS-TR Not applicable 𝐼𝑖𝑟𝑙𝑠 × 𝑂(𝑁𝐿
2) 

Proposed LP-TR Not applicable 𝐼𝑙𝑝 × 𝑂(𝑁𝐿
2) 

Proposed SOCP-TR Not applicable 𝐼𝑠𝑜𝑐𝑝 × 𝑂(𝑁𝐿
2) 

LSA-TR [48] Not applicable 𝐼𝑙𝑠𝑎 × 𝑂(𝑀 + 𝑁 log2𝑁) 

CF-TR [49] Not applicable 𝐼𝑐𝑓 × 𝑂(𝑀𝐿
2 + 𝑁 log2𝑁) 

SSCR-TR [50] Not applicable 𝐼𝑠𝑠𝑐𝑟 × 𝑂(𝑁 +  𝑁 log2 𝑁) 

IVO-TR [52] 𝑁𝑠 ×  𝑂(𝑁𝑖𝑁ℎ + 𝑁ℎ𝑁𝑜 + 𝐿𝑁𝑜)  𝑂(𝑁𝑖𝑁ℎ  +  𝑁ℎ𝑁𝑜) 

ELM-TR [53] 𝑂(𝑁𝑖𝑁ℎ + 𝑁𝑠𝑁ℎ𝑁𝑜) 𝑂(𝑁𝑖𝑁ℎ  +  𝑁ℎ𝑁𝑜) 
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CHAPTER 6  
 

RESULTS AND DISCUSSION 

This chapter presents results from MATLAB simulation of the proposed methods. 

The results are for the methods in Chapter 5, which are the three tone-reservation 

methods based on SOCP, LP and IRLS algorithms and the other two additive signal 

mixing methods formerly abbreviated as LCSA and LCASM. For each method, results 

from MATLAB simulations are first presented and discussed followed by a comparison 

with those from other related and recently published PAPR reduction methods.  

The OFDM and MIMO parameters used during simulations are listed in Table 

6.1. The simulations were run for 104 randomly generated OFDM symbols to enhance the 

accuracy of the results. For each OFDM symbol, subcarriers were modulated with data 

from one of the most commonly used digital modulation schemes, namely BPSK, QPSK 

and 𝑀-ary QAM for 𝑀 = 16, 64, 256, 1024 or 2048.  

The performance analysis for each method is based on the results of PAPR 

reduction, BER degradation and increase in average transmit power. The evaluation of 

PAPR reduction capability was done at the conventionally accepted CCDF value of 10-3. 

For the measurement of the level of BER degradation, the amount of SNR per bit, i.e. 

𝐸𝑏/𝑁𝑜, required at the BER probability of 10-3 was used as a performance indicator in 

both AWGN and Rayleigh-fading channels. 

Table 6.1. Simulation parameters 

FFT size, N 16, 32, 64, 128, 256, 512, 1024, 2048 

Modulation BPSK, QPSK, M-ary QAM 

Number of symbols per frame 104 

Time-domain signal structure Real and complex 

Type of subcarrier reservation Random, block and equidistant 

Oversampling factor ℒ 4 

HPA model Rapp model with 𝑝 = 2, IBO = 7, 8 

MIMO configuration 2×2 with Alamouti STBC  

Channel model AWGN, Rayleigh flat-fading 
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6.1 Results from SOCP-based Tone Reservation Method  

This section presents results of PAPR reductions achieved by the proposed 

SOCP-TR method when 5% and 20% of subcarriers were reserved and different 

modulation schemes were employed with real and complex signals. The two percentages 

of tone reservations, 5% and 20%, were purposely chosen to give two representative 

performances of the method when a small and a large number of subcarriers are reserved, 

respectively.  

The proposed method was initially tested to confirm that it minimized the highest 

peaks of the input signal as required. Since its algorithm is designed for solving a 

minimax problem to find the required peak-reduction coefficients for a given input 

OFDM signal, the distribution of the resultant peak-reduced signal amplitudes is 

expected to follow a uniform distribution. This was found to be the case regardless of the 

type of subcarrier modulation or the input signal structure, real or complex, as depicted in 

Figure 6.2 and Figure 6.1, thus verifying the correct functioning of the proposed 

algorithm.  

 

Figure 6.1. Scatter plot of 16-QAM real signal 
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Figure 6.2. Scatter plot of 16-QAM complex signal 

After successful testing of the proposed method, it was applied to reduce PAPR in 

an OFDM system with 𝑁 = 256 subcarriers. The variation of PAPR with the number of 

bits per symbol when the system employed BPSK, QPSK, 16-QAM, 64-QAM, 256-

QAM, 1024-QAM and 2048-QAM subcarrier modulations is given in Figure 6.3. A 

symbol in these modulation schemes carries 1, 2, 4, 6, 8, 10 and 11 bits, respectively. The 

legends “0% for PRCs”, “5% for PRCs” and “20% for PRCs” are indications that 0, 13 

and 52 subcarriers out of 256 were reserved for peak reduction, respectively.  

From Figure 6.3, two there are two clear observations. The first one is that a real 

signal has a higher PAPR than a complex signal of the same length, typically by 

approximately 2.4 dB, regardless of the type of subcarrier modulation scheme employed. 

This observation was indicated for the three percentages of tone-reservations and could 

be attributed to the requirement of conjugate symmetry in the formation of a real signal, 

which can limit destructive addition of amplitudes in the OFDM signal. 

The second observation is that the PAPR reduction capability of the proposed 

method increases with the number of reserved subcarriers. This observation is brought 
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out clearly by the results of PAPR reductions in Table 6.2 and Figure 6.4 that were 

achieved with different modulation schemes with 5% and 20% of tones reserved.  

For both real and complex signals, the proposed method is capable of attaining 

good PAPR reductions. Specifically, with 5% of subcarriers reserved for PRCs, the 

respective average PAPR reduction was 4.37 dB and 4.59 dB for the real and complex 

signals for the 7 modulation schemes. In the case of reserving 20% of tones, the average 

reductions were 7.93 dB and 7.71 dB for the real and complex signals, respectively. 

Thus, the difference in PAPR reduction between the real and complex signals is 

approximately ±0.2 dB, implying that the structure of the signal has an insignificant 

effect on the amount of PAPR reduction.  

To assess the effect of the type of subcarrier modulation on PAPR reduction, the 

standard deviation at each level of subcarrier reservation was computed over the seven 

modulation schemes. The deviations from the mean PAPR reduction for complex signals 

were 0.20 and 0.21 for 5 and 20% tone reservations, respectively. For the real signals, the 

respective deviations were 0.21 and 0.14 for the two amounts of tone reservations. These 

results show that the type of subcarrier modulation does not significantly affect the extent 

of PAPR reductions. 

 
Figure 6.3. PAPR versus modulation bits for the SOCP-TR method 
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Table 6.2. PAPR reduction by SOCP-TR for real and complex signals for different modulations 
 

Signal 
structure 

Percentage 
reservation 

BPSK QPSK 16 
-QAM 

64 
-QAM 

256 
-QAM 

1024 
-QAM 

2048 
-QAM 

Real 
signal 

5% 4.15 4.40 4.05 4.50 4.60 4.55 4.35 

20% 8.10 7.95 8.05 7.70 8.00 7.90 7.80 

Complex 
Signal 

5% 4.30 4.55 4.75 4.80 4.40 4.80 4.55 

20% 7.60 7.80 7.85 7.90 7.35 7.90 7.60 

 

Figure 6.4. PAPR reduction versus number of modulation bits when using SOCP-TR method 

6.2 Results from LP-based Tone Reservation Method 

In this section, simulation results of the LP-TR method proposed in Subsection 

5.2.3 and their analysis are presented. In order to simulate the method in MATLAB, the 

problem in equation (5.18) was firstly re-formulated to separate real and imaginary 

inequality constraints. An inbuilt MATLAB linprog function for solving linear programs 

was called with interior-point algorithm to solve the re-formulated problem to find the 

peak-reduction signal given an OFDM signal.  

In addition, an oversampling factor of four was applied to the OFDM signal for 

ensuring that the PAPR of the discrete-time signal was close to that of the continuous-

time signal. Moreover, the Rapp model of HPA with a smoothness parameter value of 2 
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and an IBO of 8 dB were used during the simulations for BER measurements. This IBO 

was approximately 1 dB greater than the PAPR of the signal at CCDF = 10-3 and ensured 

that the HPA clipped less than 1% of the input signal amplitudes. 

Figure 6.5 shows the capability of the proposed method to reduce PAPR in a 

system with 64 subcarriers, out of which 4 and 8 were reserved, corresponding to a 

reservation of 6.25% and 12.5% of tones in a symbol, respectively. The two reservations 

were intended to give two representative performances of the method when a small and a 

large number of tones are reserved.  

For the two cases of 6.25% and 12.5% of tone reservation, the PAPR reduced by 

4.06 and 5.75 dB, respectively. The achieved reductions were at a cost of a slight increase 

in the average power by 0.46 and 0.19 dB, respectively. On an OFDM system with 256 

subcarriers with 5% reserved, the PAPR reduction was 4.66 dB, as shown in Figure 6.6, 

and the transmit power increased slightly by 0.57 dB.  

 
Figure 6.5. PAPR reduction by LP-TR method for 6.25% and 12.5% of tones reserved, for N = 64 

 
Figure 6.6. PAPR reduction by LP-TR method for 5% of tones reserved, for N = 256 
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The above results demonstrate the excellent capability of the proposed method to 

reduce PAPR with only a few subcarriers reserved for PRCs. In addition, while the 

reduction in PAPR will tend to rise with the number of reserved tones, this is conversely 

true for the increase in the average power of the signal. 

Additionally, the proposed LP-TR method was compared to the SOCP-TR 

method proposed in this thesis and five other related tone reservation methods found in 

the literature and which were earlier on reviewed and abbreviated as LSA-TR, CF-TR, 

SSCR-TR, IVO-TR and ELM-TR. The iterations in CF-TR, LSA-TR and SSCR-TR 

methods are 2, 3 and 5, respectively.  

The IVO-TR and ELM-TR methods have 𝑁𝑜 = 100 peak-cancelling signal classes 

(or neurons in the output layer) and 𝑁ℎ = 1000 neurons in the hidden layer. The size of 

the training and test data sets is 105 and 104 of random OFDM input signals, respectively. 

In addition, each training target peak-reduction signal is generated from 100 iterations of 

CC-TR algorithm.  

The performance comparison was for an OFDM system with 64 subcarriers, out 

of which 4 are reserved for peak-reduction coefficients, and QPSK modulation was used 

on all subcarriers. The PAPR reduction performances for the seven methods are depicted 

in Figure 6.7. The results of PAPR reduction and increase in average power are provided 

in Table 6.3. From these results, the proposed LP-TR method has better PAPR reduction 

performance than the proposed optimal SOCP-TR method and the other five methods. 

The proposed method attains more reduction in PAPR of 0.45, 1.75, 0.90, 0.87, 0.51 and 

0.21dB than SOCP-TR, LSA-TR, CF-TR, SSCR-TR, IVO-TR and ELM-TR methods, 

respectively.  

 
Figure 6.7. PAPR reduction performance comparison for the LP-TR method 
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Table 6.3. Comparison of reduction in PAPR and increase in average power for the LP-TR method 

PAPR reduction Method  PAPR reduction [dB] Average Power increase [dB] 

Proposed LP-TR 4.06 0.46 

Proposed SCOP-TR 3.61 0.51 

ELM-TR [53] 3.85 0.59 

SSCR-TR [50] 3.19 0.25 

IVO-TR [52] 3.55 0.57 

CF-TR [49]  3.16 0.84 

LSA-TR [48] 2.31 0.30 
 

 

In addition to PAPR reduction comparison, the BER performance of each method 

in an AWGN channel is shown in Figure 6.8. The amounts of the required 𝐸𝑏/𝑁0 at BER 

= 10-3 for each method under comparison are also listed in Table 6.4. The BER curve 

with the legend “Theoretical” is the expected BER performance for the QPSK 

modulation obtained by the formula in equation (3.66).  

The performance with the legend “Without PAPR reduction” represents the BER 

when the signal was transmitted through a HPA, with IBO set at 0 dB, without prior 

reduction in PAPR; thus, it presents the worst amount of BER degradation. Since all the 

techniques being compared are tone-reservation methods, they are not expected to 

degrade the BER, hence their BER performances should be nearly the same. However, 

due to the value of the IBO used and the higher reduction in PAPR by the LP-TR 

method, it has a minor BER improvement of 0.02, 0.02, 0.06, 0.03, 0.08 and 0.11 dB over 

the SOCP-TR, ELM-TR, SSCR-TR, IVO-TR, CF-TR and LSA-TR methods, 

respectively.   

6.3 Results from IRLS-based Tone Reservation Method 

This section presents results of the IRLS-TR method proposed in Subsection 5.2.4 

of Chapter 5. The performance of the method was assessed from MATLAB simulations 

of OFDM system with different percentages of reserved subcarriers. Reserving of 

subcarriers in an OFDM symbol was done in either a random or a fixed manner.  

The aim of the proposed method is to reduce the convergence rate of the optimal 

LP-TR method in Section 5.2.3, while at the same time achieving high PAPR reductions 

by generating a peak-reduction signal with the highest peaks close to the desired ones as 
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shown in Figure 6.9.  

In the figure, the algorithm generated a peak-reduction signal with the largest 

peak of magnitude of 1.21 at the discrete-time instant 𝑛 = 137 to approximate the 

maximum peak of magnitude 1.81 in the desired peak-reduction signal at the same time 

instant. Furthermore, as it can be found from the figure, all the major peaks in the actual 

PRS are below the highest peaks in the desired PRS. 

 
Figure 6.8. Comparison of BER performances over AWGN channel for the LP-TR method 

 

Table 6.4. Comparison of required Eb/N0 for the LP-TR method 

Method Eb/N0 [dB] at BER = 10-3 

Proposed LP-TR 7.21 

Proposed SOCP-TR 7.23 

ELM-TR 7.23 

SSCR-TR 7.27 

IVO-TR 7.24 

CF-TR 7.29 
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Figure 6.9. Desired and actual peak-reduction signals 

Because of the highest peaks in the actual PRS being below those in the desired 

PRS, on subtracting the former from the OFDM signal, no new peaks are generated at 

other locations. This avoids the problem of peak re-growth experienced in tone 

reservation methods that utilize a kernel PRS [135], [136] to cancel the highest peaks, 

one at a time iteratively. 

The ability of the proposed method to reduce PAPR is illustrated in Figure 6.10 

for an OFDM system with 256 subcarriers, all QPSK-modulated, out of which 2, 4, 8, 13, 

22 and 52 were reserved for PRS. The selection of these numbers of reserved tones is to 

enable have a representative performance spectrum from small to large amount of tone 

reservation and bring out the dependency of PAPR reduction on the number of reserved 

subcarriers. 

It is observable from Figure 6.10 that PAPR reduction increases with the number 

of reserved subcarriers. However, even with a few reserved subcarriers, a good PAPR 

reduction performance can be realized. This is clearly demonstrated in Table 6.5 for the 

achieved PAPR reduction at CCDF of 10-3 for different numbers of reserved tones. For 

example, with 4 and 13 tones reserved, which are equivalent to approximately 1.6% and 

5% of total tones reserved, 3.77 dB and 5.84 dB reductions were attained, respectively.  
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Figure 6.10. PAPR reduction with different number of reserved subcarriers out of 256 

Table 6.5. PAPR reduction by IRLS-TR method for different subcarrier reservations 

Number of reserved 
subcarriers, L 

Percentage of reserved 
tones 

PAPR Reduction [dB] 
at CCDF = 10-3 

2 0.78 % 2.15 

4 1.56 % 3.77 

8 3.13 % 5.02 

13 5.08 % 5.84 

22 8.59 % 6.85 

52 20.31 % 8.30 

 

The PAPR reduction performances of the proposed IRLS-TR and LP-TR methods 

were also compared for an OFDM system with 64 total subcarriers out of which 6.25% of 

the tones were reserved. The performance by each method is shown in Figure 6.11. The 

proposed IRLS-TR method has a better PAPR reduction performance of about 1 dB over 

the LP-TR method. This is in addition to a smaller increase in the average transmit power 

of 0.19 dB below that of the latter. Furthermore, based on the above results and those 

reported earlier in Table 6.3, it is clear that the proposed method outperforms other 

methods proposed in literature.  

The results just presented are for randomly reserved subcarrier locations. Such a 

reservation would require the receiver to be furnished, symbol by symbol, with the 

information about the indices of reserved subcarriers for the demodulation of symbols.  
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Figure 6.11. Comparison of PAPR reduction by IRLS-TR and other methods 

However, the transmission of side information about the locations of reserved 

subcarriers would additionally lower the data rate. A better way to avoid transmitting the 

side information about subcarrier reservation is to pre-select and permanently fix the 

reserved subcarrier locations in all OFDM symbols. This should be the case if pre-set 

reservation can achieve a comparable PAPR reduction performance to the random 

reservation. Two common ways of pre-setting locations of reserved subcarriers are either 

to place them in a block of contiguous positions or to space them equally across the entire 

spectrum of an OFDM symbol.  

The results of an investigation carried out on the PAPR reduction performance of 

the two types of fixed reservations are given in Table 3.1. For the purpose of performance 

comparison, the results achieved with randomly reserved tones are also included in the 

same table. The results in the table show that randomly reserved subcarriers provide 

better PAPR reduction than the two approaches of fixed positions of reserved subcarriers 

for an equivalent number of reserved tones in an OFDM symbol.  

For example, when 6.25% of subcarriers are reserved out of 64, the random 

reservation achieves 1.12 dB more of PAPR reduction than the two types of fixed 

reservations as shown in Figure 6.12. However, the equispaced reservation has the lowest 

increase in the average power, which is 0.07 and 0.15 dB below the random and 

contiguous reservations, respectively.  

2 3 4 5 6 7 8 9 10 11
10

-3

10
-2

10
-1

10
0

 (dB)

P
r
(P

A
P

R
 >

 
)

 

 

Without PAPR reduction

Proposed LP-TR

Proposed IRLS-TR



Chapter 6: Results and Discussion 
 

137 
 

Table 6.6. Performance comparison of random, contiguous and equispaced tone reservations 

Type of 
subcarrier 
reservation 

L = 2 (3.125%) L = 4 (6.25%) L = 8 (12.50%) 

PAPR 
reduction 

[dB] 

Power 
increase 

[dB] 

PAPR 
reduction 

[dB] 

Power 
increase 

[dB] 

PAPR 
reduction 

[dB] 

Power 
increase 

[dB] 

Random 3.62 0.27 5.07 0.27 6.46 0.03 

Contiguous 3.60 0.32 3.95 0.35 4.91 0.21 

Equispaced 3.45 0.27 3.95 0.20 4.04 0.06 

 
Figure 6.12. PAPR reduction with random, contiguous and equispaced 6.25% reservation 

Considering the effect of the number of reserved tones, in this case 𝐿 = 2, 4 and 8, 

on the PAPR reduction for the two fixed reservations, the PAPR tends to reduce by 

higher amounts with contiguously reserved subcarriers than with equally spaced ones, 

although at the expense of increased average transmit power. This is demonstrated in 

Figure 6.13 for the case of 𝐿 = 8 reserved subcarriers out of 64 and also in Table 3.1, 

where the contiguously reserved tones have 0.87 dB more reduction in PAPR than the 

equally-spaced tones but at the expense of an extra 0.15 dB increase in signal power. 

In addition to achieving a good PAPR reduction, the proposed IRLS-TR 

algorithm does not degrade the BER performance because reserved subchannels are 

dropped during the demodulation procedure to recover data in the receiver. Thus, the 

BER performance of the method will always be close to the theoretical one given by 

equation (3.66) and very similar to the performance in Figure 6.8 of the LP-TR method. 
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Figure 6.13. PAPR reduction with random, contiguous and equispaced 12.5% reservation 

Lastly, an investigation was carried out to establish if there existed any 

relationship between PAPR reduction and the total number of subcarriers. Figure 6.14 

shows the simulation results for this investigation for the same subcarrier modulation 

when 5%, 10%, 15% and 20% of subcarriers were reserved for PAPR reduction. From 

these results, it can be observed that PAPR reduction varies almost linearly with the 

binary logarithm of the total number of subcarriers in a system. For the subcarrier 

reservations of 5 and 15%, PAPR reductions can be estimated by straight-line equations 

0.4 log2(𝑁) + 0.6 and 0.4 log2(𝑁) + 1.7, respectively.   

The linear variation of PAPR reduction with log2𝑁 can help to estimate the 

expected PAPR reduction when given both the total number of subcarriers and the 

percentage of reservation. In addition, since the linear relationships for different 

percentages of reserved subcarriers have almost the same gradient, it is easy to estimate 

the possible increase in PAPR reduction at a given 𝑁 owing to increase of reserved 

subcarriers. For the two cases of 5 and 15% reservation, the difference of 1.1 dB between 

the vertical intercepts of the two line equations is the PAPR reduction gained by 

increasing the percentage of reserved subcarriers from 5 to 15%. 

6.4 Results from LCSA Method 

This section presents and discusses the results of PAPR reduction and BER 

performance of the LCSA method proposed in Subsection 5.2.5 of Chapter 5. The section 

also gives a detailed performance comparison of the LCSA method and the other two 

methods, LP-TR and IRLS-TR, proposed in this thesis.  

2 3 4 5 6 7 8 9 10 1110-3

10-2

10-1

100

 [dB]

Pr
 ( P

AP
R  

>  
 )

 

 

Without PAPR reduction
12.5% equispaced reservation
12.5% contiguous reservation
12.5% random reservation



Chapter 6: Results and Discussion 
 

139 
 

 
Figure 6.14. Variation of PAPR reduction with number of subcarriers 

The proposed LCSA method is designed to generate a PRS signal that exactly 

matches the desired one. This is illustrated in Figure 6.15 for an OFDM system with 64 

total subcarriers and in which the desired PRS is generated in such a way as to have only 

four nonzero samples with an oversampling factor of four. As can be observed from the 

figure, the actual and the desired peak-reduction signals are identical. 

Without loss of generality, an OFDM system with 256 QPSK-modulated 

subcarriers was chosen for assessing the PAPR reduction capability of the method. The 

PAPR of the system was targeted for reduction using different peak-reduction signals 

having 𝑀 = 3, 6, 13, 19 and 26 nonzero PRS samples, approximately corresponding to 

1.2, 2.3, 4.8, 6.9 and 9.2% data-rate losses, respectively. 

The CCDFs for different values of 𝑀 are portrayed in Figure 6.16. From this 

figure, it is clear that reduction in PAPR increases with 𝑀. This trend can be well 

observed in the results of PAPR reduction in Table 6.7. In addition, these results show 

that using a peak-reduction signal with only a few nonzero samples, and hence a 

corresponding small data-rate loss, the proposed method can achieve a significant 

reduction in PAPR.  

In addition, the last row of Table 6.7 demonstrates that the proposed method 

barely affects the average transmit power. For example, when the PRS has 𝑀 = 26 

nonzero PRS samples, which is unlikely in practice, the average power drops by just 

−0.21 dB or 4.7% from the original value before PAPR reduction. From the same table, 
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it can be observed that for all the simulations the average transmit power is slightly 

decreased which translates into a small increase in the power efficiency of the system 

given that PAPR is also reduced.  

In addition, the plots in Figure 6.17 of power spectral density of the original and 

peak-reduced OFDM signals for different values of 𝑀 show that using the proposed 

method does not significantly increase the out-of-band radiations. This is demonstrated 

by the worst case of PRS with 𝑀 = 26, which presents a relatively small out-of-band 

radiation of -61.90 dB, which is just 1.63 dB above the radiation of -63.53 dB from the 

original OFDM signal.  

 
Figure 6.15. Desired and actual peak-reduction signals for the proposed LCSA method 

 
Figure 6.16. PAPR reduction by LCSA method for different PRS signals for N = 256 
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Table 6.7. PAPR reduction at CCDF = 10-3 for different PRS signals for N = 256 

Number of nonzero samples in PRS  3 6 13 19 26 

Percentage loss in data rate  1.16% 2.29% 4.83% 6.91% 9.22% 

PAPR Reduction [dB] 2.28 4.04 5.69 6.35 6.85 

Increase in average power  [dB] -0.02 -0.05 -0.10 -0.15 -0.21 
 

 

Figure 6.17. Power spectral densities for different peak-reduced signals 

Additionally, the proposed method was compared to the previously proposed LP-

TR and IRLS-TR methods. A QPSK-modulated OFDM system with 64 subcarriers was 

employed for this purpose. A PRS with four nonzero samples was used for the proposed 

LCSA method, while four subcarriers were reserved for peak-reduction coefficients in 

the case of the two tone-reservation methods. 

The CCDFs for the three methods are plotted in Figure 6.18 and their respective 

PAPR reductions are presented in Table 6.8. Compared to the suboptimal IRLS-TR 

method, the LCSA method has a lesser PAPR reduction by 0.94 dB. However, the LCSA 

method slightly reduces the average transmit power by 0.12 dB, compared to a 0.27 dB 

increase by IRLS-TR method.  

In comparison with the optimal LP-TR method, the LCSA technique has a similar 

performance since their PAPR reductions are separated barely by 0.07 dB. However, the 
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LP-TR method causes a power increase of 0.58 dB more than the LCSA method. Based 

on this comparison, it is clear that the proposed LCSA method also outperforms the other 

methods in Table 6.3. 

In addition to the PAPR reduction performance analysis and comparison, the BER 

performance of the proposed method was evaluated using a Rapp model of HPA with 

IBO set at 7 dB and parameter 𝑝 at 2. The setting of the IBO was just above the PAPR of 

6.57 dB at CCDF equal 10-3 to ensure that the HPA clipped less than 1% of signal 

amplitudes. 

The transmission channel was assumed to have AWGN channel characteristics. 

At the receiver, the appended samples of peak-reduction signal were added back to 

positions of clipped-amplitudes in the peak-reduced signal. This was followed by 

demodulation and de-mapping of modulation symbols to recover transmitted binary data. 

The recovered binary data was then used to calculate the BER.  

The variation of BER with 𝐸b/𝑁0 is illustrated in Figure 6.19 and the required 

𝐸b/𝑁0 for each method is given in Table 6.9. From the results of the required 𝐸b/𝑁0, 

there are minor differences between the LCSA method and the LP-TR and IRLS-TR 

methods proposed earlier. This shows that the LCSA technique has a similar BER 

performance to tone reservation methods; specifically it does not interfere with the BER 

of the underlying system. 

 

Figure 6.18. PAPR reduction performance comparison for the proposed LCSA method 
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Table 6.8. PAPR reduction comparison for the proposed LCSA method at CCDF = 10-3 

Method PAPR reduction [dB] Power increase [dB] Data-rate loss 

Proposed LCSA 4.13 -0.12 5.88% 

Proposed IRLS-TR 5.07 0.27 6.25% 

Proposed LP-TR 4.06 0.46 6.25% 
 

 
Figure 6.19. BER performance comparison for the proposed LCSA method 

 

Table 6.9. Comparison of required Eb/N0 for the LCSA method 

Method Eb/N0 [dB] at BER = 10-3 

Proposed LCSA 6.91 

Proposed IRLS-TR 6.93 

Proposed LP-TR 6.97 
 

6.5 Results from LCASM Method for MIMO-OFDM Systems 

This section covers the PAPR reduction performance of the LCASM method, 

proposed in Subsection 5.2.6, in MIMO-OFDM systems. The system in Figure 3.18, 

which has OFDM combined with a 2 × 2 MIMO configuration with an Alamouti space-
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time block encoder is used in assessing the performance of the method. 

The PAPR reduction performance of the LCASM technique is also compared to 

the performances of four other related methods, which were reviewed in the literature 

review chapter of this thesis, namely ACT, SCS-SLM, CSC and S-TR. A MIMO-OFDM 

system with 128 subcarriers and QPSK modulation is used in this comparison. The 

acceptable loss in data-rate is set at 15% and a peak-reduction signal with 23 nonzero 

samples is generated.  

Figure 6.20 shows the performances of the five methods. The respective PAPR 

reductions at the CCDF value of 10-3 are given in Table 6.10. From these results, it is 

evident that the PAPR reduction capability of the proposed LCASM method is superior 

to the other four methods. The proposed method reduces PAPR more than SCS-SLM, S-

TR, ACT and CSC methods by 4.40, 3.35, 2.85 and 0.90 dB, respectively.  

Additionally, the BER performance of the method was evaluated with a HPA 

modelled using the Rapp’s model with parameter 𝑝 set at a value of 2. The IBO was fixed 

at 12.5 dB to guarantee that less than 1% of signal amplitudes were clipped by the HPA 

since the PAPR of signals for the simulated MIMO-OFDM system was 11.8 dB at the 

CCDF value of 10-3. 

During the simulation, the composite signals derived from the PAPR reduction 

operation were first amplified through the HPA followed by a transmission through 

Rayleigh-fading channels with AWGN. At first, an analysis was done on the effect of 

different peak-reduction signals generated by the LCASM method on the BER. This was 

followed by a BER performance comparison with the other methods. 

 
Figure 6.20. PAPR reduction for MIMO-OFDM system by different methods for N = 128 
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Table 6.10. PAPR Reduction comparison for LCSAM for CCDF = 10-3 and N = 128 

Method Proposed 
LCASM 

CSC [73]  ACT [29] S-TR [54] SCS-SLM 
[72] 

PAPR reduction [dB] 7.32 6.39 4.46 3.97 2.89 
 

 

The BER performances of the LCASM method when employing different peak-

reduction signals are shown in Figure 6.21. The two performances marked “Ideal” 

represent cases when the transmit signals were not subjected to PAPR reduction. In one 

of the two cases, a HPA was not used, while in the other it was present but was backed-

off with 12.5 dB, which is greater than the expected PAPR; thus the two cases are similar 

and represent the situation when there is no BER degradation.  

The performance with legend “No reduction, IBO=0” represents the worst BER 

degradation. It corresponds to the performance of a system with the HPA IBO set to 0 dB 

and there is no PAPR reduction; hence, all amplitudes above the average value are 

clipped. The rest of the BER performances for various values of 𝑀 show that the BER is 

only slightly degraded by an increase in the value of 𝑀, or rather an increase in PAPR 

reduction. All the BER performances for different values of 𝑀 are near to the ideal case. 

Therefore, the proposed method can proficiently reduce PAPR to improve the power 

efficiency of a HPA, without degrading the BER of a MIMO-OFDM system. 

 

Figure 6.21. BER performance for PRS signal with different number of nonzero samples 
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For the purpose of comparison, the BER performance of the proposed LCASM 

method together with the performances of other four methods, which are ACT, CSC, 

SCS-SLM and S-TR methods, are depicted in Figure 6.22. It can be observed from the 

figure that the BER performances from equation (3.66) and by simulation are the same 

for a SISO-OFDM system.  

The BER performance in Figure 6.22 labelled “MIMO-OFDM ideal” represents 

the case where a HPA is not used and there is no PAPR reduction, so the BER is not 

degraded. The performance with the legend “MIMO-OFDM no PAPR red.” is for the 

case where a HPA without IBO is used and PAPR is not reduced, thus leading to a severe 

BER degradation. The rest of BER performances in the figure are for when the LCASM 

and the other four PAPR reduction methods listed above were integrated into the system. 

One important and noticeable observation in the figure is that the simulated 

MIMO-OFDM system, with a diversity gain of 4, has a far much better BER 

performance, even for the worst degradation scenario, than a SISO-OFDM system that 

has a diversity gain of 1. This concurs with the theoretical postulation in equation (3.72) 

that the BER probability of a system reduces exponentially with diversity gain.  

From the figure, it can also be observed that the LCASM and S-TR methods have 

similar BER performances near to the ideal performance, while the other three methods 

exhibit poor performances away. In overall, the proposed LCASM method outperforms 

the rest. This is clearly demonstrated by Table 6.11, where the LCASM demand for SNR 

per bit is lower than for the S-TR, SCS-SLM, CSC and ACT methods by 0.29, 2.68, 3.05 

and 3.64 dB, respectively. 

 
Figure 6.22. BER performance by different methods in MIMO-OFDM system for N = 128 
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Table 6.11. Required Eb /No for different methods at BER = 10-3 for MIMO-OFDM system 

PAPR reduction Method Proposed 
LCASM 

S-TR SCS-
SLM 

CSC ACT 

Required Eb /No [dB] 4.36 4.75 7.04 7.41 8.00 
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CHAPTER 7  
 

CONCLUSION AND FUTURE WORK 

This chapter summarizes the findings and the achievements of the research 

carried out in this thesis together with recommendations that are considered appropriate 

for future work on PAPR reduction in OFDM systems. 

7.1 Conclusions 

This thesis has addressed the problem of high PAPR in OFDM signals that causes 

signal distortions, due to nonlinear amplification, and an increase in the cost of 

transmission over a communication system employing OFDM technique. In particular, 

five methods for reducing high PAPR in OFDM systems have been proposed in this 

thesis. 

The proposed methods can achieve high PAPR reductions at the cost of a small 

loss in data rate caused by a reservation of transmission resources, previously meant for 

user data, to carry peak-reduction coefficients or time-domain samples. The transmission 

resources for PAPR reduction are reserved either by setting aside some subcarriers to 

carry peak-reduction coefficients or by extending the transmit signal by a few of peak-

reduction signal samples. In addition, all the five proposed methods were found not to 

degrade the BER of a system when they were applied to reduce PAPR. 

The thesis starts by proposing an optimal method, referred to as SOCP-TR, which 

employs second-order cone programming to find the required peak-reduction coefficients 

for a given OFDM signal using the conventional tone-reservation approach of reducing 

PAPR. Although this method may not be very attractive in real-time OFDM systems, its 

purpose was firstly to establish whether subcarrier modulation and the structure of 

OFDM signal, real or complex, affect PAPR reduction. By the end of this investigation, it 

was found that neither the subcarrier modulation nor the signal structure affects the 

amount of PAPR reduction. This important discovery allowed for using, without any 

reservations, of any subcarrier modulation and complex-valued OFDM signals in the rest 
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of the research work. 

The second purpose of developing the optimal SOCP-TR scheme was to find out 

the standard PAPR reductions that can be achieved by tone-reservation methods. The 

findings from this investigation helped to design, in this thesis, practical suboptimal 

methods that are simple, fast and reliable but which have mathematical tractability and 

low computational complexity and can achieve similar or better PAPR reduction 

performance than optimal methods. 

This thesis approaches the key issue of reducing computational complexity and 

the time to solution of an optimal method, such as the SOCP-TR, through devising a 

simple formulation of the desired peak-reduction signal for an OFDM signal. The 

proposed methods then attempt to generate a replica of the desired peak-reduction signal. 

There are four such methods proposed in this thesis, namely LP-TR, IRLS-TR, LCSA 

and LCASM. The first two, LP-TR and IRLS-TR methods, are founded on the tone 

reservation concept that operates in the frequency-domain, while the remaining two are 

purely based on signal addition operations in the time-domain.  

The LP-TR method utilizes linear programing, while the IRLS-TR employs 

iterative re-weighted least-squares algorithm in estimating the desired peak-reduction 

signal. Thus, the LP-TR method is an optimal scheme, and consequently has high 

computational complexity and slow convergence rate. Its peak-reduction results were 

used for benchmarking the performance of suboptimal methods. The IRLS-TR method is 

a suboptimal scheme, which can be viewed as an improvement of LP-TR algorithm to 

satisfy the requirements of practical realization and to achieves better and higher PAPR 

reductions than both SOCP-TR and LP-TR methods and others proposed in literature.  

For example, in an OFDM system with 64 subcarriers out of which 4 are reserved 

for peak-reduction coefficients, following the tone-reservation concept, the IRLS-TR 

method reduces PAPR by 5.07 dB, which is 1 to 3 dB above the reductions by the 

proposed SOCP-TR and LP-TR methods and other related methods proposed in 

literature, namely LSA-TR, CF-TR, SSCR-TR, IVO-TR and ELM-TR. The reported 

PAPR reduction for the proposed IRLS-TR scheme is at the expense of a 0.27 dB 

increase in average power, which is 0 to 0.57 dB below the increases by the other 

methods.  

The LCSA method is also a suboptimal scheme but it reserves transmission 

resources for reducing PAPR in terms of the time to transmit nonzero samples of the 

desired peak-reduction signal. The actual peak-reduction signal is the same as the desired 
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peak-reduction signal. Therefore, the method converges in a single step and has a simple 

implementation of very low computational complexity.   

Additionally, the desired PAPR reduction can be easily controlled in the LCSA 

method by fixing the number of nonzero samples in the peak-reduction signal. In other 

words, given the maximum allowed PAPR for an OFDM system, one only needs to set 

the number of nonzero samples to fix the clipping threshold and to attain a PAPR 

reduction up to a required level.  

The LCSA method reduces PAPR without significantly affecting the transmit 

power of an OFDM signal. The method has a high PAPR reduction performance 

comparable to the proposed IRLS-TR method for OFDM systems with many subcarriers. 

However, for OFDM systems with a small number of subcarriers, the LCSA method 

achieves a PAPR reduction slightly less by 1 dB to the IRLS-TR method.  

For example, with about 5% of transmission resources reserved for PAPR 

reduction in an OFDM system with 256 total subcarriers, the LCSA method reduces 

PAPR by 5.69 dB with a negligible power reduction of 0.10 dB, while the IRLS-TR 

method attains 5.84 dB with a power increase of 0.36 dB. When the OFDM system has 

64 subcarriers and approximately 6% of resources reserved for PAPR reduction, the 

LCSA method reduces PAPR by 4.13 dB with a negligible power loss of  0.12 dB, while 

the IRLS-TR method has a reduction of 5.07 dB with a 0.27 dB increase in power. From 

this, it is obvious that the LCSA method outperforms all the other methods given above.   

In addition, the algorithm of the LCSA method was modified to come up with 

LCASM method for reducing PAPR in MIMO-OFDM systems where multiple signals 

are transmitted simultaneously. The LCASM method can achieve good PAPR reductions 

higher than by other methods for MIMO-OFDM systems. For example, in a 2×2 

Alamouti space-time encoded MIMO-OFDM system with 128 subcarriers, the LCASM 

technique reduces PAPR by 7.30 dB. This reduction is more by 0.90, 2.85, 3.35 and 4.40 

dB to what is achieved by S-TR, SCS-SLM, CSC and ACT methods, respectively. 

7.2 Recommendations for Future Work 

The search for practical algorithms to achieve good PAPR reduction in OFDM 

systems still faces several challenges. Further research can be carried out to address the 

following identified issues: 

i) An investigation on PAPR reduction in OFDM systems with adaptive modulation 
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and coding (AMC).  

In this thesis, the same type of subcarrier modulation has been assumed as 

applicable to all subchannels during one symbol duration. However, to maximize 

system capacity and maintain the desired BER performance, AMC schemes are 

normally employed during one symbol duration, where different modulations 

channel coding are used on the subcarriers depending on the quality of 

subchannels. Therefore, it would be a good idea in future to estimate PAPR and 

its distribution for an OFDM system utilising mixed modulations based on AMC 

and develop new algorithms to reduce it or apply the already proposed ones such 

as those found in this thesis. 

ii) Restrictions on the increase in transmit power when using tone-reservation 

methods.  

One drawback of all tone-reservation methods is that the average power of the 

transmit signal after reduction of PAPR is increased. Although the increase is 

normally small, it cannot be ignored and should be constrained to about 0 dB 

while reducing the PAPR. This is to ensure that the transmit power budget 

remains unaltered; otherwise the gain of the power amplifier must be dynamically 

adjusted according to the power of the transmit signal and this can increase the 

cost of the hardware. Therefore, future research may consider integrating a 

constraint for power conservation in the tone-reservation algorithms proposed in 

this thesis. 

iii) Implementation of the proposed methods in a testbed platform with power 

amplifiers and other equipment. 

Simulations in this thesis were carried out in MATLAB and the results thereof 

used to analyse the performance of the proposed PAPR reduction techniques. In 

future, it will be advisable to implement the proposed algorithms in a testbed with 

real-time signal processing equipment to perform measurements and compare the 

experimental results with the simulations. 

iv) Development of specific PAPR reduction solutions for different future 

generations of OFDM systems.  

The OFDM technique is currently employed in several communication systems, 

which include broadcasting, mobile communication and wireless internet and has 

been proposed for use in future generations of these networks. In this thesis, the 

proposed methods are for reducing PAPR in a general OFDM system. In future 
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works, the proposed methods can be tuned or modified, if need be, to fit for 

specific wireless application, e.g. 5G or 6 G mobile networks, taking into account 

the unique features of each system. The proposed methods could also be applied 

for PAPR reduction in OFDM with index modulation (OFDM-IM), which 

combines subcarrier and index modulations to increase spectral efficiency.  

v) Development of PAPR reduction method based on machine learning utilizing the 

proposed algorithms to generate training targets for neural network.  

Because of the low-computational complexity and good PAPR reduction 

performance, especially by the proposed IRLS-TR, LCSA and LCASM 

algorithms, it will be of much interest to use these schemes to generate peak-

reduction signals for training the neural network in PAPR reduction schemes 

employing deep learning.  

 



 

153 
 

REFERENCES 

[1] E. Dahlman, S. Parkvall, J. Sköld, and P. Beming, 3G Evolution: HSPA and LTE for 
Mobile Broadband, London: Elsevier Ltd, 2007. 

[2] Y. Louët and J. Palicot, “A classification of methods for efficient power amplification 
of signals,” Annals of Telecom., vol. 63, No. 7-8, 2008, pp. 351-368. 

[3] S. Kiambi, E. Mwangi and G. Kamucha, “Effect of OFDM Signal Structure and 
Subcarrier Modulation on the Reduction of the Signal Peak Power,”  IEEE AFRICON 

2017 Proceedings, Cape Town, South Africa, Sept. 18-20, 2017, pp. 262-266, 
https://doi.org/10.1109/AFRCON.2017.8095492. 

[4] S. Kiambi, E. Mwangi and G. Kamucha, “Use of Preset Reserved Tones in Reduction 
of PAPR in OFDM Systems,” IEEE AFRICON 2019 Proceedings, Accra, Ghana, Sept. 
25-27, 2019, pp. 1-5, https://doi.org/10.1109/AFRICON46755.2019.9133894. 

[5] S. Kiambi, E. Mwangi and G. Kamucha, “An Iterative Re-Weighted Least-Squares 
Tone Reservation Method for PAPR Reduction in OFDM Systems,” WSEAS 

Transactions on Communications, E-ISSN: 2224-2864, vol. 18, pp. 153–161, 2019, 
http://www.wseas.org /multimedia/journals/communications/2019/a425104-1078.php.  

[6] S. Kiambi, E. Mwangi and G. Kamucha, “A Low-Complexity Signal Addition Method 
for PAPR Reduction in OFDM Systems,” International Journal of Computer 

Application, ISSN: 2250-1797, Issue 10, vol. 5, pp. 21–34, 2020, doi: 
https://dx.doi.org/10.26808/rs.ca.i10v5.03. 

[7] S. Kiambi, E. Mwangi and G. Kamucha, “PAPR Reduction in MIMO-OFDM Systems 
Using Low-Complexity Additive Signal Mixing,” Journal of Communications, JCM 
vol. 16, no. 11, pp. 468-478, November 2021. http://www.jocm.us/show-261-1699-
1.html. 

[8] S. Kiambi, E. Mwangi and G. Kamucha, “Reducing PAPR of OFDM Signals Using a 
Tone Reservation Method Based on ℓ∞-Norm Minimization,” Journal of Electrical 

Systems and Information Technology (JESIT), vol. 9, article no. 12, pp. 1-15, 2022, doi: 
https://doi.org/10.1186/s43067-022-00055-0. 

[9] H. Ochiai and H. Imai, “Performance analysis of deliberately clipped OFDM signals,” 
IEEE Transactions on Communications, vol. 50, no. 1, pp. 89–101, January 2002. 

[10] R. Zayani, H. Shaiek and D. Roviras, “PAPR-aware massive MIMO-OFDM downlink,” 
IEEE Access, vol. 7, pp. 25474-25484, 2019.  

[11] Vallavaraj, B. G. Stewart and D. K. Harrison, “An evaluation of modified µ-law 
companding to reduce the PAPR of OFDM systems,” AEU-International Journal of 

Electronics and Communications, vol. 64, no. 9, pp. 844-857, 2010.  



  References  

154 
 

[12] H. B. Jeon, J. S. No and D. J. Shin, “A low-complexity SLM scheme using additive 
mapping sequences for PAPR reduction of OFDM signals,” IEEE Transactions on 

Broadcasting, vol. 57, no. 4, pp. 866-875, 2011. 

[13] T. Jiang, C. Ni and L. Guan, “A novel phase offset SLM scheme for PAPR reduction in 
Alamouti MIMO-OFDM systems without side information,” IEEE Signal Processing 

Letters, vol. 20, no. 4, pp. 383-386, 2013. 

[14] X. Wang, Q. Zhang, R. Gao, W. Xishuo, X. Xin, T. Feng, Q. Tian, W. Yongjun, Z. Li, 
D. Guo and H. Huan, “Constellation Reshaping Method for PAPR Reduction of SIM-
OFDM based on SLM algorithm,” 2021 Asia Communications and Photonics 

Conference (ACP), 2021, pp. 1-3.  

[15] Lahcen, A. Saida and A. Adel, “Low computation complexity PTS scheme for PAPR 
reduction of MIMO-OFDM systems,” 10

th
 International Conference Interdisciplinarity 

in Engineering, Procedia Eng. 181, 2017,  pp. 876-883.  

[16] H. Xu, Y. Chen, Y. Lu, J. Liu and F. Hu, “Improved Elitist Genetic Algorithm 
Optimization based PTS to PAPR Reduction for Multi-Carrier Signals,” 2022 IEEE 6th 

Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, pp. 
1746-1750. 

[17] N. Telagam, S. Lakshmi and K. Nehru, “PAPR reduction of GFDM system using 
Parallel concatenation of LDPC codes,” 2022 IEEE Fourth International Conference on 

Advances in Electronics, Computers and Communications (ICAECC), 2022, pp. 1-5. 

[18] Y. Ni and T. Jiang, “A novel adaptive tone reservation scheme for PAPR reduction in 
large-scale multiuser MIMO-OFDM systems,” IEEE Wireless Communications Letters, 
vol. 5, no. 5, pp. 480-483, 2016. 

[19] X. Wang, N. Jin and J. Wei, “A Model-Driven DL Algorithm for PAPR Reduction in 
OFDM System,” in IEEE Communications Letters, vol. 25, no. 7, pp. 2270-2274, July 
2021. 

[20] H. Abdelali, H. Ghennioui, M. El Kamili and M. Firdaoussi, “New PAPR reduction 
technique combining the Tone Reservation based on PCG algorithm with 
Clipping,” 2019 International Conference on Wireless Networks and Mobile 

Communications (WINCOM), 2019, pp. 1-6. 

[21] B. Bakkas, I. Chana and H. Ben-Azza, “PAPR reduction in MIMO-OFDM based on 
Polar Codes and Companding,” International Conference on Advanced Communication 

Technologies and Networking (CommNet), 2019, pp. 1-6. 

[22] Beena, S. Pillai and N. Vijayakumar, “Hybrid PTS-clipping scheme for PAPR 
reduction in MIMO-OFDM systems,” International Journal of Applied Engineering 

Research, ISSN 0973-4562, vol. 13, no. 11, pp. 9924-9928, 2018.  

[23] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction in OFDM 
systems: A survey and taxonomy,” IEEE Communication Surveys and Tutorials, vol. 
15, no. 4, pp. 1567-1592, 2013. 

[24] X. Li and L. Cimini, “Effect of clipping and filtering on the performance of OFDM,” 



  References  

155 
 

IEEE Communications Letters, vol. 2, no. 5, pp. 131-133, May 1998. 

[25] V. -N. Tran and T. -H. Dang, “New Clipping-and-Filtering Method for Peak-to-
Average Power Ratio Reduction in OFDM,” 2021 International Conference 

Engineering and Telecommunication (En & T), 2021, pp. 1-5. 

[26] Rajini and G. Sikri, “Reducing peak- to-average by classical clipping over BPSK and 
QPSK in OFDM system,” Proceedings of International Conference on Recent 

Advances and Future Trends, 2012, pp. 26-28. 

[27] H. Ochiai and H. Imai, “On the clipping for peak power reduction of OFDM signals,” 
in Proceedings of IEEE Global Communications Conference (GLOBECOM), San 
Francisco, USA, 2000, pp. 731–735. 

[28] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and 
frequency domain filtering,” IEEE Electronics Letters, vol. 38, no. 8, pp. 246-247, 
February 2002. 

[29] S. Singh and A. Kumar, “Performance analysis of adaptive clipping technique for 
reduction of PAPR in Alamouti coded MIMO-OFDM systems,” Procedia Comp. Sci. 

93, 609 – 616, 2016. 

[30] G. Chen, R. Ansari and Y. Yao, “Improved Peak Windowing for PAPR Reduction in 
OFDM,” VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, 2009, pp. 1-
5.  

[31] P. Foomooljareon and W. Fernando, “Input sequence envelope scaling in PAPR 
reduction of OFDM,” IEEE 5

th
 International Symposium on Wireless Personal 

Multimedia Communications, vol. 1, October 2002. 

[32] H. Nikookar and K. Lidsheim, “Random phase updating algorithm for OFDM 
transmission with low PAPR,” IEEE Transactions on Broadcasting, vol.48, no. 2, pp. 
123-128, July 2002. 

[33] C. Tan and I. Wassell, “Data bearing peak reduction carriers for OFDM 
systems,” Fourth International Conference on Information, Communications and Signal 
Processing and the Fourth Pacific Rim Conference on Multimedia, 2003, pp. 854-858. 

[34] X. Wang and T. Tjhung, and C. Ng, “Reduction of peak to average power ratio of 
OFDM system using a companding technique,” IEEE transactions on broadcasting, 
vol. 25, no. 3, pp. 303-308, September 1999. 

[35] W. Al-Azzo and B. Ali, “Adaptive square-rooting companding technique for PAPR 
reduction in OFDM systems,” WASET International Journal of Electronics and 

Communication Engineering, vol. 5, no. 3, pp. 283-287, 2011. 

[36] T. Wilkinson and A. Jones, “Minimization of the peak-to-mean envelope power ratio of 
multicarrier transmission schemes by block coding,” IEEE Vehicular Technology 

Conference, July 1995, pp. 825-829. 

[37] B. Popovic, “Synthesis of power efficient multitone signals with flat amplitude 
spectrum,” IEEE transactions on Communications, vol. 39, no. 7, pp. 1031-1033, July 



  References  

156 
 

1991. 

[38]  A. Abouda, “PAPR reduction of OFDM signal using turbo coding and selective 
mapping,” Proceedings of the 6th  Nordic Signal Processing Symposium NORSIG-

2004, Espoo, Finland, June 2004. 

[39] B. Horvath and B. Botlik, “Optimization of Tone Reservation-Based PAPR Reduction 
for OFDM Systems”, Radio Engineering, vol. 26, no. 3, pp. 791-797, September 2017. 

[40] F. Hu, Y. Lu, L. Jin, J. Liu, Z. Xia, G. Zhang and J. Xiao, “Hybrid Energy Efficiency 
Friendly Frequency Domain TR Algorithm Based on PSO Algorithm Evaluated by 
Novel Maximizing HPA Efficiency Evaluation Criteria,” Energies, vol. 15, issue 3, pp. 
1-19, 2022. 

[41] Z. Liu, W. Liu, L. Hu, L. Zhang and F. Yang, “A Low Complexity Improved Tone 
Reservation Method Based on ADMM for OFDM Systems' PAPR Reduction,” 2021 

13th International Conference on Wireless Communications and Signal Processing 

(WCSP), 2021, pp. 1-5.  

[42] S. Sumitra and G. Ramprabhu, “Reduction of Peak-to-Average Power Ratio in OFDM 
System using SCR based Tone Reservation Technique,” 2020 International Conference 

on System, Computation, Automation and Networking (ICSCAN), 2020. 

[43] J. Tellado and J. M. Cioffi, “Efficient algorithms for reducing PAR in multicarrier 
systems,” Proceedings of 1998 IEEE International Symposium on Information Theory 

(Cat. No.98CH36252), 1998, p. 191. 

[44] S. Zabre, J. Palicot, Y. Louet and C. Lereau, “SOCP approach for ofdm peak-to-average 
power ratio reduction in the signal adding context,” Proceedings of IEEE International 

Symposium on Signal Processing and Information Technology, 2006, pp. 834–839. 

[45] D. Guel J. Palicot and Y. Louet, “Tone reservation technique based on geometric 
method for orthogonal frequency division multiplexing peak-to-average power ratio 
reduction,” IET Communications, vol. 4, issue 17, pp. 2065–2073, 2010. 

[46] J. Tellado and J. Cioffi, “PAR reduction in multicarrier transmission systems,” ANSI 

Document, T1E1.4 Technical Subcommittee, no. 97-367, 98-083 and ITU, Q4/15, no. 
D-150 (WP 1/15). 

[47] A. Gatherer and M. Polley, “Controlling clipping probability in DMT transmission,” in 

Proceedings of 31st Asilomar Conference on Signals, Systems and Computers, vol. 1, 
November 1997, pp. 578–584. 

[48] H. Li, T. Jiang and Y. Zhou, “An improved tone reservation scheme with fast 
convergence for PAPR reduction in OFDM systems,” IEEE Transactions on 

Broadcasting, vol. 57, no. 4, pp. 902-906, December 2011. 

[49] T. Jiang, C. Ni, C. Xu, and Q. Qi, “Curve fitting based tone reservation method with 
low complexity for PAPR reduction in OFDM systems,” IEEE Communication Letters, 
vol. 18, No. 5, pp. 805–808, May 2014.  

[50] J. Wang, X. Lv and W. Wu, “SCR-based tone reservation schemes with fast 



  References  

157 
 

convergence for PAPR reduction in OFDM system,” IEEE Wireless Communications 

Letters, vol. 8, no. 2, pp. 624–627, April 2019. 

[51] L. Xin and W. Yi, “A New Weighted Tone Reservation Method for PAPR Reduction in 
OFDM Systems,” Journal of Communications, vol. 9, no. 12, pp. 980-986, 2014.  

[52] H. Li, J. Wei and N. Jin, “Low-complexity tone reservation scheme using pre-generated 
peak-cancelling signals,” IEEE Communication Letters, vol. 23, issue: 9, pp. 1586-
1589, September 2019.  

[53] Z. Li, N. Jin, X. Wang and J. Wei, “Extreme Learning Machine-Based Tone 
Reservation Scheme for OFDM Systems,” in IEEE Wireless Communications Letters, 
vol. 10, no. 1, pp. 30-33, Jan. 2021.  

[54] M. Habibi and M. Naeiny, “Selective tone reservation method for PAPR reduction in 
SFBC-OFDM systems,” Journal of Communication Engineering, vol. 3, no. 2, pp. 109-
122, 2014.  

[55] S. Han, J. Ciofi and J. Lee, “Tone injection with hexagonal constellation for peak-to-
average power ratio reduction in OFDM,” IEEE Communication Letters, vol. 10, no. 9, 
pp. 646–648, September 2006. 

[56] H. Jeon, J. No and D. Shin, “A Low-complexity SLM scheme using additive mapping 
sequences for PAPR reduction of OFDM signals,” IEEE Transactions on Broadcasting, 
vol. 57, no. 4, pp. 866-875, June 2011. 

[57] S. Carcangiu, A. Fanni and A. Montisci, “A closed form selected mapping algorithm for 
PAPR reduction in OFDM multicarrier transmission,” Energies, vol. 15, issue 15, pp. 1-
23, 2022. 

[58] D. Lim, J. No, C. Lim and H. Chung, “A new SLM OFDM scheme with low 
complexity for PAPR reduction,” IEEE Signal Processing Letters, vol. 12, no. 2, pp. 
93-96, February 2005. 

[59] H. Breiling, S. Muller-Weinfurtner and J. Huber, “SLM peak power reduction without 
explicit side information,” IEEE Communication Letters, vol. 5, no. 6, pp. 239–241, 
June 2001. 

[60] S. Goff, S. Al-Samahi, B. Khoo, C. Tsimenidis and B. Sharif, “Selected mapping 
without side information for PAPR reduction in OFDM,” IEEE Transactions on 

Wireless Communications, vol. 8, no. 1, pp. 3320–3325, July 2009. 

[61] H. Mäuller and J. Huber, “A novel peak power reduction scheme for OFDM,” 
Proceedings of the International Symposium on Personal, Indoor and Mobile Radio 

Communications PIMRC97, September 1997, Helsinki, Finland, pp. 1090-1094. 

[62] F. Hu, Y. Lu, L. Jin, J. Liu, Z. Xia, G. Zhang and J. Xiao, “Hybrid-domain evaluation 
PTS with adaptive selection methods for PAPR reduction,” Energies, vol. 15, issue 8, 
pp. 1-21, 2022. 

[63] H. Chen and G. Pottie, “An orthogonal projection-based approach for PAR reduction in 
OFDM,” IEEE Communications Letters, vol. 6, no. 5, pp. 169-171, May 2002. 



  References  

158 
 

[64] S. Han and J. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS 
technique,” IEEE Signal Processing Letters, vol. 11, no. 11, pp. 887-890, November 
2004.  

[65] B. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation 
extension,” IEEE Transactions on Broadcasting, vol. 49, no. 3, pp. 258-268, September 
2003. 

[66] Z. Wang, X. Chen, Z. Sun and X. Ning, “On the Performance of Nonlinear Corrective 
Active Constellation Expansion in OTFS Systems,” in IEEE Communications 

Letters,2022, doi: 10.1109/LCOMM.2022.3165191. 

[67] F. Sandoval, G. Poitau and F. Gagnon, “Hybrid peak-to-average power ratio reduction 
techniques: review and performance Comparison,'' IEEE Access, vol. 5, pp. 27145-
27161, 2017. 

[68] A. Ghassemi and T. A. Gulliver, “PAPR reduction of OFDM using PTS and error-
correcting code sub-blocking ,” IEEE Transactions on Wireless Communications, vol. 
9, no. 3, pp. 980–989, March 2010.  

[69] A. Abouda, “PAPR reduction of OFDM signal using turbo coding and selective 
mapping,” in Proceedings of the 6th Nordic Signal Processing Symposium, June 2004, 
pp. 248-251.  

[70] H. Chen and H. Liang, “A modified selective mapping with PAPR reduction and error 
correction in OFDM systems,” in 2007 IEEE Wireless Communications and 

Networking Conference, March 2007, pp.1329–1333. 

[71] B. Tang, K. Qin and H. Mei, “A hybrid approach to reduce the PAPR of OFDM signals 
using clipping and companding,” IEEE Access, vol. 8, pp. 18984-18994, 2020.  

[72] Abdullah and M. Hidayat, “SCS-SLM PAPR reduction technique in STBC MIMO-
OFDM systems,” in Proc.7

th
 IEEE ICCSCE, Penang, Malaysia, 2017,  pp. 104-109. 

[73] F. Sandoval, G. Poitau and F. Gagnon, “On optimizing the PAPR of OFDM signals 
with coding, companding and MIMO,” IEEE Access, vol. 7, pp. 24132-24139, 2019.  

[74] M. Yarlequé, RF Power Amplifiers for Wireless Communications, PhD-thesis, Catholic 
University, Leuven, Belgium, 2008. 

[75] M. Kazimierczuk, RF Power Amplifiers, John Wiley & Sons Ltd, West Sussex, United 
Kingdom, 2008. 

[76] E. Dalakta, A. Dweik and C. Tsimenidis, “Efficient BER reduction technique for 
nonlinear OFDM transmission using distortion prediction,” IEEE Transactions on 

Vehicular Technology, vol. 61, no. 5, pp. 230-36, June 2012. 

[77] R. Marsalek, P. Jardin and G. Baudoin, “From post-distortion to pre-distortion for 
power amplifiers linearization,” IEEE Communications Letters, vol. 7, pp. 308-310, 
August 2003.  

[78] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd Edition, Artech 



  References  

159 
 

House, Massachusetts, USA, 2006. 

[79] W. Doherty, “A new high-efficiency power amplifier for modulated waves,” The Bell 

System Technical Journal, vol. 15, no. 3, pp. 469-475, July 1936. 

[80] L. Kahn, “Single-sideband transmission by envelope elimination and restoration,” 
Proceedings of IRE, vol. 40, pp. 803–806, July 1952. 

[81] A. Diet, C. Berland, M. Villegas and G. Baudoin, “EER architecture specifications for 
OFDM transmitter using a class E amplifier,” IEEE Microwave and Wireless 

Component Letters, vol. 14, no. 8, pp. 389-391, 2004.  

[82] T. Jiang and Y Wu, “An Overview: Peak-to-Average Power Ratio Reduction 
Techniques for OFDM signals,” IEEE Transactions on Broadcasting, vol.54, no.2, pp. 
257-268, June.2008.  

[83] S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques 
for multicarrier transmission,” IEEE Wireless Communications, vol. 12, no. 2, pp. 56–
65, 2005.  

[84] R. Prasad, OFDM for Wireless Communications Systems, Artech House, London, UK, 
2004.  

[85] R. Bahai, R. Saltzberg and M. Ergen, Multi-carrier digital communications: theory and 

applications of OFDM, Springer-Verlag Inc, New York. UK, 2004. 

[86] ETSI EN 302 755 V.1.3.1. Digital Video Broadcasting (DVB); Frame Structure 
Channel Coding and Modulation for a Second Generation Digital Terrestrial Television 
Broadcasting System (DVB-T2). Available at: https://www.dvb.org/standards. 

[87] https://www.celplan.com/technologies/2g-to-6g. 

[88] NTT DOCOMO Inc., White paper 5G Evolution and 6G, January 2020. 

[89] F. Juwono and R. Reine, “Future OFDM-based Communication Systems Towards 6G 
and Beyond: Machine Learning Approaches,” Green Intelligent Systems and 

Applications, vol. 1(1), pp. 19-25, 2021.  

[90] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, first edition, 
Cambridge University Press, 2004. 

[91] H. Rohling, OFDM: Concepts for Future Communication Systems, Signals and 
Communication Technology, Springer-Verlag, Berlin Heidelberg, Germany, 2011. 

[92] M. Viswanathan, Simulation of Digital Communication systems using Matlab, second 
Edition, Amazon Kindle, 2013.  

[93] Y. Cho, J. Kim, W. Yang and C. Kang, MIMO-OFDM Wireless Communications with 

MATLAB, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2010. 

[94] S. Rao, Engineering optimization Theory and Practice, 3rd edition, New Age 
International, 2013.  



  References  

160 
 

[95] M. Sharif, M. Gharavi-Alkhansari and B. Khalaj, “New Results on the Peak Power of 
OFDM Signals Based on Oversampling,” in Proceedings of IEEE ICC, vol. 2, 2002,  
pp. 866–871. 

[96] A. Saleh, “Frequency-independent and frequency-dependent nonlinear models for TWT 
amplifiers,” IEEE Transactions on Communications, vol. 29, pp. 1715–1720, Nov. 
1981.  

[97] A. Ghorbani and M. Sheikhan, “The effect of solid state power amplifiers (SSPAs) 
nonlinearities on MPSK and M-QAM signal transmission,” in Proceedings of the 6th 

International Conference on Digital Processing of Signals in Communications, Sept. 
1991, pp. 193–197. 

[98] C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM signal for a digital sound 
broadcasting signal,” in proceedings of 2nd European conference on satellite 

communication, Liège, Belgium, Oct. 1991, pp. 179-184.  

[99] Y. Louët and J. Palicot, “A classification of methods for efficient power amplification 
of signals,” Annals of Telecommunications, vol. 63, No. 7-8, 2008, pp. 351-368.  

[100] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second edition, 
Cambridge University Press, December 2003. 

[101] R. Gilmore and L. Besser, Practical RF Circuit Design for Modern Wireless Systems, 
vol. II, Artech House, 2003.  

[102] M. Yarlequé, RF power amplifiers for wireless communications, PhD thesis, Catholic 
University, Leuven, Belgium, June 2008.  

[103] J. Palicot, Y. Louet and S. Hussain, “Power Amplification Issues Related to Dynamic 
Spectrum Access in the Cognitive Radio Systems,” in Cognitive Radio Systems, 
London, UK, IntechOpen, 2009, https://www.intechopen.com/chapters/ 8827. 

[104] C. Forster et al, Understanding the environmental impact of communication system, 
Ofcom, UK, April 2009.  

[105] S. Haykin and M. Moher, Introduction to Analog and Digital Communications, second 
edition, John Wiley & Sons, Inc, New Jersey, USA, 2007.  

[106] J. Andrews, A. Ghosh and R. Muhamed, Fundamentals of WiMAX: Understanding 

Broadband Wireless Networking, Pearson Education, Inc., USA, 2007. 

[107] B. Sklar, Digital communications: fundamentals and applications, Second edition, 
Prentice Hall, New Jersey, USA, 2001. 

[108] J. Proakis and M. Saleh, Digital communications, Fifth edition, McGraw-Hill, New 
York, USA, 2008.  

[109] S. Alamouti, “A simple transmit diversity technique for wireless communications,” 
IEEE Journal of Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 
1998.  



  References  

161 
 

[110] I. Barhumi, G. Leus and M. Moonen, “Optimal training design for MIMO OFDM 
systems in mobile wireless channels,” IEEE Transaction on Signal Processing, vol. 51, 
no. 6, pp. 1615-1624, June 2003. 

[111] A. Zelst and T. Schenk, “Implementation of a MIMO OFDM based Wireless LAN 
system,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 
483-494, February 2004. 

[112] X. Li, H. Huang, G. Foschini and R. A. Valenzuela, “Effects of iterative detection and 
decoding on the performance of BLAST,” IEEE Proceedings of Global 

Telecommunications Conference, San Francisco, CA, USA, 2000, pp. 1061-1066. 

[113] A. Antoniou and W. Lu, Practical Optimization: Algorithms and Engineering 

Applications, Springer Science + Business Media, LLC, New York, USA, 2007. 

[114] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New 
York, USA, 2004. 

[115] S. Burrus, J. Barreto and I. Selesnick, “Iterative re-weighted least-squares design of FIR 
filters,” IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 2926-2936, 1994,  

[116] A. Messac, Optimization in Practice with MATLAB for Engineering Students and 
Professionals, Cambridge University Press, New York, USA, 2015. 

[117] B. Farhang-Boroujeny, Adaptive filters: theory and applications, Second edition, John 
Wiley & Sons Ltd, West Sussex, United Kingdom, 2013. 

[118] P. Diniz, Adaptive filtering: algorithms and practical implementation, Third edition, 
Springer, New York, USA, 2008. 

[119] S. Haykin, Adaptive filter theory, third edition, Prentice-Hall, Inc., Upper Saddle River, 
NJ, USA, 1996. 

[120] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall, Inc., NJ, USA, 
1985. 

[121] T. Bose, Digital signal and image processing, John Wiley & Sons Inc., USA, 2004. 

[122] MATLAB Version 8.1.0.604 (R2013a), Math works, February 15, 2013.  

[123] J. Tellado, Multicarrier Modulation with Low PAR: Applications to DSL and Wireless, 
first edition, Kluwer Academic Publishers, Norwell, MA (USA), 2002, ISBN: 978-0-
7923-7988-1. 

[124] M. S. Loboa, L. Vandenberghe, S. Boyd and H. Lebret, “Applications of second-order 
cone programming,” Linear Algebra and its Applications, vol. 284, Issues 1–3, pp. 
193–228, November 1998.  

[125] M. Grant and S. Boyd, CVX: MATLAB software for disciplined convex 

programming, version 2.2, http://cvxr.com/cvx, January 2020.  

[126] J. Sturm, “Using SEDUMI 1.02, a MATLAB toolbox for optimization over symmetric 



  References  

162 
 

cones,” Optimization Methods and Software, 11-12: 625–653, 1999.  

[127] R. Tütüncü, K. Toh, and M. Todd, “Solving semidefinite-quadratic-linear programs 
using SDPT3,” Mathematical Programming, Series B, 95: 189-217, 2003.  

[128] MOSEK ApS, “The MOSEK Optimization Tools,” User’s manual and reference, 2002. 

[129] S. Boyd, L. Vandenberghe and M. Grant, “Efficient convex optimization for 
engineering design,” in proceedings of IFAC Symposium on Robust Control Design, 
Rio De Janeiro, Brazil, September 1994. 

[130] R. Byrd and D. Pyne, “Convergence of the iteratively re-weighted least squares 
algorithm for robust regression,” Technical report 313, Dept. of Math. Sci, Johns 
Hopkins University, Baltimore, Maryland, 1979. 

[131] S. Kahng, “Best 𝐿𝑝 approximation,” Mathematics of Computation, vol. 26, no. 118, 
1972, pp. 505-508. 

[132] R. Fletcher, J. Grant, and M. Hebden, The calculation of linear best 𝐿𝑝 approximations, 
Computer Journal, Vol.14, 1971, pp. 27-279.  

[133] V. Stonick and S. Alexander, “Globally optimal rational approximation using homotopy 
continuation methods,” IEEE Transactions on Signal Processing, vol.40, no.9,  pp. 
2358-2361, 1992. 

[134] J. Nocedal and S. Wright, Numerical Optimization, Springer series in operations 
research, Springer-Verlag, New York, USA, 1999. 

[135] J. Song and H. Ochiai, “Performance analysis for OFDM signals with peak 
cancellation,” IEEE Transactions on Communications. vol. 64, no. 1, 2016, pp. 261–
270. 

[136] B. Li, L. Hu, F. Yang, L. Ding and T. Song, “Tone reservation ratio optimization for 
papr reduction in OFDM systems,” IEEE Wireless Communication and Networking 

Conference (WCNC), 2018, pp. 1-6.  

[137] H. Yin, R. Yang, X. Luo, L. Jiang and L. Zhu , Weighted tone reservation for OFDM 

PAPR reduction, U.S. Patent 7796498, 2008.  



 

163 
 

APPENDICES 

The appendices are organized as follows. Appendix A gives the main notations 

adopted in the thesis. In Appendix B to G, a list of publications accomplished in the 

course of the research is provided. Lastly, Appendix H presents MATLAB codes for the 

main simulations carried out during the research period including those for the methods 

proposed for PAPR reduction in OFDM systems. 

Appendix A: Notations 

The following notations are used throughout this thesis. A matrix is denoted by an 

italicised uppercase letter e.g. 𝐴, a vector by a bolded lowercase letter e.g. 𝐚, and a scalar 

by an italicised lowercase letter e.g. 𝑎.  

A matrix 𝐴 consisting of 𝑚 rows and 𝑛 columns has 𝑚 × 𝑛 elements, which can 

be real or complex numbers, is written as 

 𝐴 = [

𝑎11
𝑎21
⋮
𝑎𝑚1

   

𝑎12
𝑎22
⋮
𝑎𝑚2

   

⋯
⋯
⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛

] (A.1) 

and is said to be of size 𝑚 × 𝑛. 𝐴 is said to be a square matrix if 𝑚 = 𝑛, otherwise it is a 

rectangular matrix. A rectangular matrix is said to be tall if 𝑚 > 𝑛 and wide if 𝑚 < 𝑛. 

A vector 𝐚 consisting of 𝑚 elements (real or complex numbers) means it is a 

column vector, which can be equivalently expressed as an 𝑚× 1 matrix as follows: 

 𝐚 = [

𝑎1
𝑎2
⋮
𝑎𝑚

] = [𝑎1 𝑎2… 𝑎𝑚]
𝑇 (A.2) 

where 𝑇 is for the transpose operation. 

The set containing 𝑚× 𝑛 real or complex matrices is denoted as  ℝ𝑚×𝑛 or ℂ𝑁×𝐿. 

A matrix 𝐴 of size 𝑚 × 𝑛 having all real or all complex elements is indicated by 𝐴 ∈

ℝ𝑚×𝑛 or 𝐴 ∈ ℂ𝑁×𝐿, respectively. Similarly, a vector containing real or complex 𝑚 

elements is denoted as 𝐚 ∈ ℝ𝑚 or 𝐚 ∈ ℂ𝑚, respectively. In case of a real and complex 

scalar, the notations 𝑎 ∈ ℝ or 𝑎 ∈ ℂ are used, respectively. 
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A discrete-time signal consisting of 𝑁 samples, real or complex, is represented by 

𝑥(𝑛) or by a column vector 𝐱, where 

 𝐱 = [𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)]𝑇 (A.3) 

A sample in the discrete-time signal is referenced by specifying its index in the 

parenthesis e.g. the second sample in 𝑥(𝑛) is indicated by 𝑥(2). 

A square matrix 𝐴 is said to be a 𝑚 ×𝑚 diagonal matrix if all the elements are 

zero except the diagonal elements 𝑎𝑖𝑖, for 𝑖 = 1, 2, … ,𝑚, and is commonly written as  

 𝐴 = diag{𝑎11 𝑎22… 𝑎𝑚𝑚} (A.4) 

The complex conjugate of a matrix 𝐴 is denoted as 𝐴∗, and the transpose as 𝐴𝑇. If 

the matrix has complex elements, its conjugate transpose, denoted as 𝐴𝐻, is formed by 

first conjugating every element followed by the transpose operation or vice versa, i.e. 

 𝐴𝐻 = (𝐴∗)𝑇 = (𝐴𝑇)∗ (A.5) 

A square matrix 𝐴 of size 𝑚 ×𝑚 is said to be symmetric if 𝐴𝑇 = 𝐴. If the square 

matrix has complex elements, it is said to be Hermitian if 𝐴𝐻 = 𝐴. A square matrix 

whose diagonal elements are unity and off-diagonal elements are zero is referred to as 

identity matrix. 

The inverse (if it exists) of a square matrix is denoted by 𝐴−1 and has the property 

 𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼𝑚 (A.6) 

where 𝐼𝑚 is an 𝑚 ×𝑚 identity matrix. If the inverse of 𝐴 does not exist, A is said to be 

singular otherwise it is nonsingular. 

The trace of an 𝑚×𝑚 square matrix 𝐴 is denoted by tr(𝐴) and is the sum of the 

diagonal elements, i.e. 

 tr(𝐴) = 𝑎11 + 𝑎22 +⋯+ 𝑎𝑚𝑚 (A.7) 

If matrix A is of size 𝑚 × 𝑛, its rank is the maximum number of linearly 

independent columns or rows it has; it does not matter whether one takes rows or 

columns. A matrix is said to be of full rank if its rank is equal to the number of rows or 

columns; whichever is smaller. 
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Abstract—The problem of high ratio of peak-to-average power 
experienced in orthogonal-frequency-division-multiplexed signals 
remains a major challenge when it comes to practical realization of 
transmitters for such signals. This is mainly due to the requirement 
on high power amplifiers to operate with large input power back-
offs and thus at undesirable low power efficiency region in order to 
avoid clipping of such signals and the subsequent degradation of bit 
error rate and spectral interference to adjacent channels. In this 
paper, an efficient peak power reducing technique is first proposed, 
its performance verified, and then used to investigate the influence 
of OFDM signal structure and subcarrier modulation on the peak 
power reduction capability of peak power reduction techniques. 
The proposed technique involves carefully selecting some subcarrier 
signals that when added to information-modulated subcarriers yield 
a combined signal with an acceptable lower ratio of peak-to-average 
power. This technique is based on the application of second order 
cone convex programming to the minimization of maximum of 
norms. Simulation results show that the proposed technique reduces 
peak-to-average power ratio (PAPR) by 4.5 dB and 7.8 dB while 
utilizing 5% and 20% of subcarriers for peak power reduction. 
Real OFDM signals are found to exhibit a PAPR that is higher than 
that of complex signals by 2.4 dB. In addition, the OFDM signal 
structure and the type of subcarrier modulation are found to have 
minimal impact on the peak power reduction capability since the 
variation in PAPR reductions for the modulation schemes used in 
the research is within ±0.75 dB, and the difference in PAPR 
reduction for both real and complex signals is on average within 
±0.22 dB. 

Keywords—Complementary cumulative distribution function 
(CCDF); high power amplifier (HPA); orthogonal frequency division 
multiplexing (OFDM); peak-to-average power ratio (PAPR); bit error 
rate (BER) 

I. INTRODUCTION 
OFDM has been and still remains the multiplexing technique 

of choice for high data rate transmission in radio systems whose 
performance can get significantly limited by multipath 
interference. Such systems include Digital Audio Broadcasting 
(DAB), Digital Video Broadcasting (DVB), IEEE 802.11a 
Wireless Local Area Networks (WLAN), IEEE 802.16a Wireless 
Metropolitan Area Networks (WMAN), High Performance Radio 
Local Area Network Type-2 (HIPERLAN-2), 4G and 5G mobile 
networks. Despite its competitive advantages, OFDM generated 
signals are characterized by very high peak-to-average power 
ratio (PAPR) [1]. This makes the signals to be susceptible to 
nonlinear effects of the analogue components in the transmitter; 
of critical influence being the high power amplifier (HPA). 

In order to achieve high power efficiency, a HPA is designed 
to operate near its saturation zone.  However, in this region, the 
output is not proportional to the amplifier input. This nonlinear 
amplification gives rise to in-band, and out-of-band radiations. 
The in-band radiations degrade the bit error rate of the system, 

while the out-of-band radiations interfere with the adjacent 
channels. One simple solution to avoid the operation in the 
saturation region is to provide the amplifier with a large enough 
input power back-off (IBO) dependent on the peak power of the 
input signal. However this large IBO lowers the power efficiency 
of the amplifier, and thus raising the total cost of the system [2]. 
For these reasons, a better solution is to reduce the high ratio of 
peak-to-average power especially so for practical OFDM systems 
employing a large number of subcarriers [3] where the ratio can 
be unacceptably high. 

Many methods aimed at reducing PAPR have been proposed 
in the literature but each method has its own advantages and 
disadvantages. This then necessitates different applications to 
choose different methods that best suit them when the benefits 
outweigh the drawbacks [4]. In this regard it is then important to 
consider the OFDM signal structure as a multicarrier transmission 
technique and its expected PAPR and possible reduction 
capability if such PAPR is intolerably high. Considerations of 
PAPR level for real, and complex signals, and possible reduction 
levels while taking into account different subcarrier modulations 
will be of the main interest in this paper. 

The rest of the paper is organized as follows. Section II gives 
the statistical description of PAPR. In section III, an outline of the 
general concept of tone reservation techniques for PAPR 
reduction is presented. Section IV presents the proposed 
technique. Simulation and results analysis are presented in section 
V, while section VI gives conclusion and suggestions for future 
work.  

II. DISTRIBUTION OF PAPR 
A statistical description of PAPR can be directly obtained 

from the structure of the OFDM signal. The signal is a sum of N 
overlapping but mutually orthogonal subcarrier signals and its 
baseband representation, over one symbol duration, is given by 
the equation, 

 (1)   

where is the kth subcarrier modulated signal with 
frequency and as the modulating symbol. The 
modulating symbols come from set of symbols in the 
constellation of any of the following modulation schemes: binary 
phase-shift keying (BPSK), quadrature phase-shift keying 
(QPSK) or -ary quadrature amplitude modulation (M-QAM) 
[5]. Mutual orthogonality among the subcarriers is achieved by 
setting the frequency spacing between any two adjacent 
subcarriers to with being the symbol duration of 
interest. Equation (1) resembles that of the standard inverse 
Fourier transform (IFFT) and thus any OFDM-based system can 
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be easily implemented using the well-known fast Fourier 
transform (FFT) algorithms.  

The major concern here is to find the probability that the 
maximum instantaneous power of is out of the linear range 
of HPA. PAPR will be used to measure temporal power 
fluctuations of the signal and by definition it is the ratio of 
maximum instantaneous power to average signal power i.e. 

 
 (2)   

where E{.} denotes the expectation operation. 

The statistical distribution of amplitudes of the time-domain 
signal  is found by considering that the subcarrier signals 

are statistically independent and that N approaches 
infinity. By the central limit theorem, both the real and 
imaginary parts of  will have Gaussian distributions and 
accordingly, the amplitudes of will be Rayleigh distributed 
[6]. This in turn means that could have some high 
amplitude values that are well above the average of the signal 
amplitudes.  

Equation (2) is for the continuous-time PAPR. However, in 
practice, PAPR is calculated from the samples of the 
signal since OFDM signal processing is done in the 
discrete-time domain. Assuming that the signal is normalised 
with its root-mean-square value, its complex samples can be 
represented by the set . Let 

be a random variable representing the magnitudes of the 
complex samples. Then is a Rayleigh random variable with 
the probability density function, 

  (3) 

since due to the normalization. The maximum 
amplitude is then the crest factor and is equal to the square 
root of the discrete-time PAPR defined by the formula 

 
 

  
(4) 

and has cumulative distribution function 

  

 

 

(5) 

where   

The complementary cumulative distribution function 
of is then the probability or equivalently 

 and is therefore given by 

  (6) 

where  is power of the chosen threshold amplitude. 

Equation (4) will give a PAPR value that approaches the one 
given by (2) if the sampling rate is chosen sufficiently higher 
than the Nyquist rate in order to avoid missing the peak of the 

continuous-time signal. Since the Nyquist rate is equal to the 
occupied bandwidth, which in turn is the product of the number 
of occupied subcarriers and the subcarrier spacing, the 
oversampled signal may be described by the equation,  

  
(7) 

where 

  
(8) 

and  is an oversampling factor greater than one such that the 
product  is a power of two equal to the FFT size. Values of 

 have been found to be sufficient enough [7] for the 
discrete-time  in (4) to approximate that in (2) and 
therefore equation (4) will be used throughout in this work. 

III. TONE RESERVATION TECHNIQUES 
PAPR reduction schemes that are classified as tone 

reservation techniques employ the same basic idea: reserve and 
utilize subcarriers, out of subcarriers, to carry carefully 
selected signals that when added to the data-bearing 
subcarrier signals, through an IFFT operation, yield a combined 
signal with a lower PAPR than the original signal comprising of 
only data-bearing signals [8]. The PAPR reduction 
operation is implemented in the transmitter section and restricts 
the modulating symbols and peak-reducing signals to two disjoint 
frequency subspaces. The operation therefore, does not distort the 
modulating symbols.  At the receiver, the modulating symbols are 
extracted from the received signal by choosing the set of

subcarriers at the output of the FFT block.  

The general tone reservation model is illustrated in Fig. 1. In 
the figure,  represents the frequency domain vector of 
modulating symbols and has non-zero values in all subcarriers 
except in the reserved L subcarriers. The frequency domain vector 

 represents the set of peak-reducing signals and has non-zero 
values in all subcarriers except in the data-bearing 
subcarriers [9]. The time domain signals, and are combined to 
produce a time domain signal with a PAPR less than that of 
signal x i.e. PAPR{x + c}< PAPR{x}. The signal processing 
operation can therefore be described by the equations, 

 

 

(9) 

or in matrix notation,  

  (10) 

where and is the IFFT matrix 
with elements . By taking the advantage of

zeros in the matrix of , the computational complexity of (10) 
can be further reduced by considering that, 
  (11) 
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Figure 1: Concept of tone reservation technique 

where is a vector containing nonzero values of  
and  is a submatrix of formed by choosing  columns 
corresponding to the reserved subcarriers. The problem of finding 
elements of which will minimize the PAPR of  then reduces to 
that of searching for elements of and can be expressed as, 

  (12) 

where is the optimization variable, and
are the problem parameters, and  denotes the infinity 

norm [10].  

The reduction in PAPR will obviously increase the average 
transmit power. The search for  should therefore ensure that the 
increase in average power is minimal so as to ensure 
compatibility with the power amplifier specifications and to avoid 
transforming the signal into a deterministic one, with PAPR equal 
to one, and thus not usable for carrying user data [10]. In addition, 
since the reserved subcarriers do not carry any user information, 
the overall user data rate can be reduced, and thus the size of 

should be such that there is no significant loss in data rate. 

IV. PROPOSED TECHNIQUE 
The optimization problem in (12) is that of minimizing 

maximum-of-norms and can be formulated as a convex 
optimization problem. The proposed method formulates the 
problem as a second order cone program (SOCP) which has been 
found easier to solve than the semi-definite program or the 
quadratically-constrained quadratic program [11, 13]. Second 
order cone program falls under the class of convex optimization, 
and minimizes a linear function over the intersection of an affine 
set and the product of second-order cones. Considering (12) and 
letting 

  (13)

yields,  

  (14)

The th complex number  is given by  where 
 is the transpose of the th row vector of . Minimization 

of will have the epigraph formulation [11]: 

  

 
(15) 

where and are the optimization variables, and 
 are the problem parameters. Since the complex number  has 

a magnitude then each of the  inequality 

constraint in (15) is a second order cone of dimension three [12, 
13] represented by 

 (16) 

The formulation in (15) can be rewritten in the standard SOCP 
form by letting as: 

 

 

=  

(17) 

where and  are the 
optimization variables, denotes the Euclidean norm and  
is a column vector of 2L zeros. 

The optimization problem in (17) is still convex and can be 
solved exactly for the (2L+1) variables for both real and complex 
OFDM signals. The number of peak-reducing subcarriers can 
be set based on the OFDM system with the aim of utilizing free 
subcarriers that by system design are not used to carry any user 
information or system-related information such as pilot signals, 
and thereby avoid lowering the data rate of the whole system. 

V. RESULTS AND DISCUSSION 
The performance of the PAPR reduction technique proposed 

in section IV and the effect of signal structure and subcarrier 
modulation on peak power reduction were evaluated through 
simulations in Matlab for both real-valued and complex-valued 
time domain signals for OFDM systems with 256 subcarriers and 
modulated by BPSK, QPSK, 16QAM, 64QAM, 256QAM, 
1024QAM, and 2048QAM. All the simulations were carried out 
for 104 OFDM blocks. The simulation parameters are listed in 
Table 1. 

Table 1: OFDM Parameters 

FFT size, N 256 
Modulation BPSK, QPSK, M-ary QAM 
Number of subcarriers 256 
Number of symbols 10,000 
Structure  of time domain signal real, complex 
Number of peak-reducing subcarriers, L 12, 50 
Peak-reducing subcarriers’ positions random 

Different values of L were used during the simulation for each 
modulation scheme. The results are as illustrated in Fig. 2. In the 
figure’s legend, the labels 0% PRS, 5% PRS and 20% PRS 
indicate the percentage of peak-reducing subcarriers out of the 
total subcarriers. The peak reduction capability, for all 
modulation schemes, was evaluated at the same probability, of 

 of PAPR being greater than a given threshold. Therefore, a 
lower PAPR threshold indicates a lower PAPR.  

The ability of the proposed technique to reduce PAPR is well 
demonstrated in Fig. 2. From the figure, it can be observed that 
the higher the number of peak-reducing signals the lower is the 
PAPR. Also for both real and complex signals, with the use of 
only 5% of subcarriers to carry peak-reducing signals, the average 
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decrease in PAPR is approximately 4.5 dB, while with 20% of 
subcarriers reductions of approximately 7.8 dB are achieved 
across the seven modulation schemes. 

Another notable observation from Fig. 2 is that real-valued 
time domain OFDM signals have higher PAPR than complex-
valued ones by approximately 2.4 dB and this could be due to the 
conjugate symmetric properties of the former, thus giving limited 
magnitude and phase cancellations in the combined signal.  

 
Figure 2: PAPR reduction versus modulation bits 

Further investigation of the simulation results reveals that 
PAPR reduction capability does not strictly depend on the 
modulation scheme or on the structure (real or complex) of the 
OFDM signal. This observation is illustrated in Fig. 3 in which 
for a given number of peak-reducing subcarriers, the variation of 
CCDF reduction across the seven modulation schemes is within 

 dB while the difference in the CCDF reduction for real 
and complex signals is on average within 0.22 dB.  

 
Figure 3: PAPR reduction versus modulation bits 

The proposed method achieves better PAPR reductions than 
reported in the literature for OFDM system with the same 
parameters. In [14] the maximum PAPR reduction is derived as 
6.02 dB and the average reduction as 1.47 dB, but these values 
can be slightly changed by the number of peak-reducing signals 
employed in the system. Figure 4 illustrates PAPR reductions for 
the case of QPSK modulation on 256 subcarriers. At CCDF of 
0.01, the proposed method achieves a PAPR reduction of 4.2 dB 
with 12 peak-reducing signals, while [14] and [15] reports 
reductions of 1.4 dB and 3.8 dB respectively.  

 
Figure 4: CCDF for different number of peak-reducing signals 

The correct working of the proposed technique can be 
corroborated by considering that the formulation in (17) is a 
minimax problem and as such should yield peaks that are almost 
uniformly distributed [16]. This is evidenced by the scatter plots 
of the original signal x and the peak-reduced signal s for each 
modulation scheme, such as those depicted in Fig. 5 and Fig. 6 
for 16-QAM; therefore confirming the correct functioning of the 
proposed technique.  

From the scatter plots in Fig. 5 and Fig. 6, it is obvious that 
the technique reduces PAPR at the expense of slight increase in 
the average transmit power and this remains a challenge for all 
tone reservation techniques [17]. However, an application 
specific upper limit on the power increment can be set, 
considering the HPA specifications, and included in the 
optimisation as a constraint. 

From the foregoing analysis it is also clear that the higher the 
number (L) of reserved subcarriers the higher the PAPR reduction 
but this implies a possible decrease in data rate especially so if all 
subcarriers are already allocated for data or control information 
transmission. However, many OFDM systems have some free 
subcarriers not allocated for data or system control and can be 
utilized for peak power reduction and thus help to mitigate data 
rate loss. In addition, a target PAPR that is system specific can be 
included as a constraint in the optimisation so as to lessen data 
rate loss. 

 
Figure 5: Scatter plot for 16-QAM complex signal 
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Figure 6: Scatter plot for 16-QAM real signal 

VI. CONCLUSION 
In this research work, a PAPR reduction technique which falls 

under the group of tone reservation techniques has been proposed 
and simulated. An investigation into its peak power reducing 
capability has been carried out in a 256-subcarrier OFDM system 
and has been found that with use of only 5% and 20% of the total 
subcarriers for peak reduction, the technique achieves significant 
PAPR reduction of 4.5 dB and 7.8 dB respectively. In addition it 
has been found that real time-domain OFDM signals have a 
PAPR higher by 2.4 dB above that of complex time-domain 
signals.  

The simulations were carried out using several modulation 
schemes and with both real and complex OFDM signals. The 
results also show that the peak reducing capability is marginally 
affected by the modulation scheme or the structure of the OFDM 
signal, as for a fixed number of subcarriers the variations in 
PAPR reductions were within less than one decibel. The correct 
working of the proposed technique was verified by observation of 
scatter plots for both the original signal and the peak-reduced 
signal for each modulation scheme. 

In this research, subcarrier modulation was assumed to be the 
same for all subcarriers. A suggestion for future investigation is to 
consider PAPR level, and its reduction in the case of adaptive 
subcarrier modulation when taking into account channel quality. 

 

 

 

 

 

 

 

 

 

REFERENCES 
[1] T. Jiang, Y Wu, “An Overview: Peak-to-Average Power Ratio Reduction 

Techniques for OFDM signals,” IEEE Transactions on Broadcasting, 
Vol.54, No.2, June.2008, pp. 257-268 

[2] Y. Louët and J. Palicot, “A classification of methods for efficient power 
amplification of signals,” Annals of Telecommunications, vol. 63, no. 7-8, 
pp. 351–368, 2008 

[3] ETSI, “Digital Video Broadcasting (DVB); Implementation guidelines for 
a second digital terrestrial television broadcasting system (DVBT2),” ETSI 
TR 102 831 v0.9.6, January 2009 

[4] Z. Wang, E. Sun, Y. Zhang, “An overview of peak-to-average power ratio 
reduction techniques for OFDM Signals,” International Journal of Mobile 
Network Communications & Telematics (IJMNCT) Vol. 6, No.3, June 
2016 

[5] E. Dahlman, S. Parkvall, J. Sköld, P. Beming, “3G Evolution: HSPA and 
LTE for Mobile Broadband (first edition),” London: Elsevier Ltd, 2007 

[6] H. Rohling, “OFDM: Concepts for Future Communication Systems, 
Signals and Communication Technology,” DOI: 10.1007/978-3-642-
17496-4_3, Springer-Verlag Berlin Heidelberg, 2011. 

[7] M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, “New Results on the 
Peak Power of OFDM Signals Based on Oversampling,” in Proc. IEEE 
ICC, vol. 2, Apr. 2002, pp. 866–871. 

[8] J. Tellado, “Peak to average power reduction for multi-carrier modulation,” 
Ph.D. thesis, Stanford University, Stanford, Calif, USA, September 1999 

[9] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio 
reduction techniques for multicarrier transmission,” IEEE Wireless 
Communications, vol. 12, no. 2, pp. 56–65, 2005. 

[10] R. V. Nee, R. Prasad, “OFDM for wireless multimedia communications,” 
Artech House, 2000 

[11] S. Rao, “Engineering optimization Theory and Practice,” New Age 
International, 3rd edition 2013 

[12] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge 
University Press, 2004. 

[13] M. S. Loboa, L. Vandenberghe, S. Boyd, H. Lebret, “Applications of 
second-order cone programming, Linear Algebra and its Applications,” 
Volume 284, Issues 1–3, 15 November 1998, Pages 193–228. 

[14] S. Hu, G. Wu, Y. Guan, C. Law, S. Li, “Analysis of Tone Reservation 
Method for WiMAX System,” IEEE 2006 international symposium on 
communication and information technologies, October, 2006.  

[15] L. Amhaimar, S. Ahyoud, A. Asselman, Elkhaldi Said,  “Peak-to-Average 
Power Ratio Reduction based Varied Phase for MIMO-OFDM Systems,” 
(IJACSA) International Journal of Advanced Computer Science and 
Applications, Vol. 7, No. 9, 2016. 

[16] A. Antoniou, W. Lu, “Practical optimization: algorithms and engineering 
applications,” Springer Science and Business Media, LLC, 2007 

[17] Y. Rahmatallah,  S. Mohan, “Peak-to-average power ratio reduction in 
OFDM systems: A survey and taxonomy,” IEEE Communications Surveys 
and Tutorials, Vol. 15, No. 4, pp 1567-1592, 2013. 
 

IEEE Africon 2017 Proceedings

266

Appendix B: First Publication

169



An Iterative Re-Weighted Least-Squares Tone Reservation Method for PAPR 
Reduction in OFDM Systems 

 
STEPHEN KIAMBI, ELIJAH MWANGI, GEORGE KAMUCHA 

Department of Electrical and Information Engineering 
University of Nairobi 

P. O. Box 30197, 00100 Nairobi 
KENYA 

skiambi@students.uonbi.ac.ke  
 

Abstract: - In OFDM systems, the problems associated with a high ratio of peak-to-average power still exist. A search for 
a simple and practical method to reduce the ratio continues. In this paper, a robust sub-optimal tone reservation method 
based on iterative re-weighted least-squares minimization of infinity norm is proposed. The method is simple and has a 
fast quadratic convergence and per iteration complexity       lower than that of the FFT, where   and   are, respectively, 
the number of reserved subcarriers, and nonzero elements in the desired peak-reducing signal. In addition, the method does 
not experience peak re-growth problems and achieves high PAPR reductions of 3.9 dB and 5.6 dB for 1.6% and 5% 
reserved subcarriers respectively. For 20% reserved subcarriers, the method reaches 7.4 dB PAPR reductions. These 
reductions are at a small cost of 0.6 dB increase in the average transmitted power. The PAPR reductions from the proposed 
method compare well with the highly slow and complex optimal tone reservation methods but are far much higher than 
from sub-optimal methods reported in literature. Simulation results also show that the method has PAPR reductions that 
are linear with the binary logarithm of the number of subcarriers, and this can help to predict PAPR reductions for 
different OFDM systems with different number of reserved subcarriers. 
 
Keywords: - Orthogonal Frequency Division Multiplexing (OFDM); High Power Amplifier (HPA); Peak-to-Average 
Power Ratio (PAPR); Iterative Re-weighted Least-Squares (IRLS); Tone Reservation (TR) 
 
1 Introduction 
Multicarrier transmission techniques employ parallel low 
data rate streams to achieve high data rate on aggregation, 
and  to avoid multipath interference. OFDM is one such 
technique, which in addition, has mutually orthogonal 
subcarriers. Orthogonality of subcarriers makes OFDM 
spectrally efficient and if preserved over the radio channel, 
only a simple single-tap equalizer is required at the receiver 
to restore each of the subcarrier signals. In order to 
eliminate both inter-subcarrier and inter-symbol 
interferences, the inter-subcarrier spacing and symbol 
duration values are normally set above the maximum 
Doppler spread and multipath delay. These noble properties 
of OFDM have made it the preferred multiplexing 
technique for high data rate transmissions in many radio 
systems including Digital Audio Broadcasting (DAB), 
Digital Video Broadcasting (DVB), IEEE 802.11 Wireless 
Local Area Networks (WLAN), IEEE 802.16a Wireless 
Metropolitan Area Networks (WMAN), 4G, and 5G mobile 
communication networks. Despite the numerous 
competitive advantages, OFDM signals tend to exhibit high 
peak-to-average power ratio (PAPR) [1] . Distortionless 
processing of high PAPR signals through the transmitter 

section requires the nonlinear transmitter devices mainly 
the digital-to-analogue converter and high power amplifier 
(HPA) to have a costly wide dynamic range in order to 
accommodate all the signal amplitudes. 

In addition, the high PAPR signal affects the point of 
operation of the HPA. Ideally, the HPA should be operated 
near the saturation region in order to have high power 
efficiency. However, this will cause nonlinear amplification 
of the high signal amplitudes and in turn results to in-band 
and out-of-band radiations, and consequently the 
degradation of the bit-error rate (BER) and frequency 
interference in the adjacent channels. To avoid the 
nonlinear amplification, the HPA can be forced to operate 
deep in the linear region by providing it with an input 
power back-off as determined by the PAPR of the input 
signal. However, this will lower the power efficiency and in 
turn raise the power consumption and hence the cost of the 
transmitter in addition to reducing the lifetime of the battery 
power at the user terminals [2] . For these above reasons, it 
is desirable to reduce the PAPR to suitable levels, more so 
for OFDM systems with large number of subcarriers as 
they are more susceptible to unacceptably high PAPR. 

Recently, different methods for PAPR reduction in 
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OFDM systems have been proposed in literature. They 
include signal coding and companding [3] , [4] , selective 
mapping (SLM) [4] , signal scaling [5] , partial transmit 
sequence (PTS) [7]  and tone reservation [8] . The focus of 
the research is now more on the development of simple 
practical techniques that have low computational 
complexity, fast convergence rate, and high PAPR 
reduction. 

The tone reservation (TR) approach is quite promising 
as it involves reserving a few subcarriers, referred to as 
peak reduction tones, for use to generate and carry a peak-
reducing signal that reduces PAPR. Since the user data and 
the peak-reducing signal are on separate subcarriers, there 
is no distortion on the data and hence no degradation of 
BER. In addition, the technique does not require 
transmission of any side information because for 
demodulation, the receiver needs only the locations of the 
data-bearing subcarriers.  

Depending on the derivation of the peak-reducing 
signal, tone reservation methods are either optimal or sub-
optimal. Optimal methods such as the linear programmed 
TR (LP-TR) [8]  and second order cone programmed TR 
(SOCP-TR) [9]  have high computational complexity and 
slow convergence rate but can achieve high PAPR 
reduction that can help to benchmark the performance of 
the sub-optimal methods. The sub-optimal curve fitting TR 
(CF-TR) [11]  iteratively solves a least-squares 
approximation (LSA) problem to generate the peak-
reducing signal. However, in the CF-TR, the PAPR 
reduction depends on the clipping threshold and degrades if 
the number of reserved subcarriers is set lower than the 
number of zeros in the clipping noise. The scaling signal-
to-clipping noise ratio (S-SCR and MS-SCR) TR [12]  
methods utilizes a time-domain kernel together with LSA 
optimized scaling factor and peak regeneration constraints. 
However, the two S-SCR and MS-SCR methods are still 
prone to peak re-growth and their PAPR reduction 
performance depends on the clipping ratio in use. The sub-
optimal weighted TR (WTR) method [13]  solves a 
weighted least squares optimization to generate the peak-
reducing signal. However, the WTR method has difficulties 
finding the optimal weights, experiences peak re-growth 
and has poor PAPR reduction performance.  

In this paper, a fast iterative re-weighted least-squares 
based tone reservation (IRLS-TR) method that offers high 
PAPR reductions in OFDM systems is proposed. The 
method generates the required peak-reducing signal by 
utilizing a robust iterative re-weighted least-squares 
algorithm for minimization of the infinity norm to 
approximate the desired peak-reducing signal. This IRLS-
TR technique has low computational complexity and fast 
quadratic convergence in addition to offering better PAPR 

reductions than the CF-TR, MS-SCR and WTR methods. 
The technique has great potential for practical 
implementations in the current and future multicarrier 
transmission techniques.  

The organization of the rest of the paper is as follows. 
Section II describes the OFDM signal and statistical 
distribution of PAPR. Section III outlines the general 
concept of tone reservation techniques. Section IV 
describes the proposed technique while simulation results, 
analysis, and comparison with other techniques are in 
section V. Section VI concludes the paper and gives 
suggestion for future work.  

 
 

2 OFDM Signal and PAPR 
The OFDM signal is a superimposition of N mutually 
orthogonal subcarrier signals. At the baseband level, and 
during the symbol duration  , the signal has the following 
analytical expression: 

     
 

√ 
∑   

   

   

    
 

√ 
∑     

   

   

         (1) 

Here,       is the kth modulated subcarrier signal with 
frequency       , and      is the subcarrier-
modulating symbol. The modulating symbols are either 
binary phase-shift keying or M-ary quadrature amplitude 
modulation symbols [14] . To achieve mutual 
orthogonality between subcarriers, the subcarrier 
spacing    is set to    ⁄ . The relationship given in (1) 
conveniently ensures the same signal power in the time and 
frequency domains. Since (1) is similar to the standard 
inverse discrete Fourier transform (IDFT) equation, signal 
processing of OFDM signal is via the well-known fast 
Fourier transform algorithms. Due to the addition of N 
subcarrier signals in (1), the OFDM signal experiences 
envelope fluctuations that may have profound effect on the 
linear processing by the nonlinear devices in the 
transmitter. The nonlinear device of concern in this work is 
the high power amplifier (HPA).  

Our main interest then, is to find the probability of the 
maximum instantaneous power of      being out of the 
linear range of the HPA. A good measure of temporal 
power fluctuations of a signal is the PAPR, and is defined 
as the ratio of the maximum instantaneous power to the 
average power i.e. 

 
     {    }  

    {       }

 {       }
  (2) 
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where E {.} denotes the expectation operation.  
Considering that the subcarrier signals       are 

statistically independent and assuming that   is large, then 
from the central limit theorem, the real and imaginary parts 
of      are Gaussian distributed and accordingly, the 
amplitudes of      are Rayleigh distributed [15] . This in 
turn implies that      could have high PAPR or in other 
words, has some high amplitude values that are well above 
the average value of the signal amplitudes.  

In practice, the signal      is processed digitally. 
Therefore, there is need to approximate the continuous-
time PAPR in (2) with its discrete-time counterpart given 
by  

     { }  
   

     
{       }

 {       }
 (3) 

where   [                  ] , is the discrete-time 
signal obtained after sampling of signal     .  

The signal samples      have magnitudes that are still 
Rayleigh distributed. Equation (3) is valid if signal      is 
sampled at a rate sufficiently greater than the Nyquist rate 
by a factor of at least four in order to avoid missing the 
peak value [16] . Another important measure of PAPR is 
the complementary cumulative distribution function 
(CCDF), which is the probability that PAPR exceeds a 
certain threshold. The derivation of CCDF has been well 
treated in [9]  and is given by 

        { }                (4) 

where   is the threshold PAPR,   is the total number of 
subcarriers, and       denotes the probability operator. The 
CCDF metric is a performance tool widely used to measure 
how well a proposed method reduces the PAPR. 
 
 
3 Tone Reservation Concept 
All tone reservation methods follow the same concept of 
adding one signal, referred here to as peak-reducing signal, 
to another signal having high PAPR in order to reduce the 
PAPR. Figure 1 is an illustration of the concept and 
has      and      as the frequency-domain subcarrier 
modulating data symbols and peak-reducing coefficients 
respectively. The modulating symbols form the data 
vector   [                  ]  with all nonzero 
values except in   positions reserved for peak-reducing 
signal. Similarly, the peak-reducing coefficients form the 
vector   [                  ]  with all zero 
values except in   positions reserved for peak power 
reduction. After the IDFT operation on   and  , the 
resulting time signals   [                  ]  and 

  [                  ] , are combined to generate a 
low-PAPR signal i.e.     {   }      { }.  
 

 
Figure 1: Tone reservation concept 

 
 From the foregoing discussion, the signal processing 
operations can be described by the equation 

               
 

√ 
∑            ⁄

   

   

   
(5) 

or in matrix notation by 
           (6) 

where        is the IDFT matrix with elements 
 

√ 
         and all         . Since   has     zeros, 

the computational complexity of (6) can be reduced further 
by expressing the peak-reducing signal in the form 

    ̂ ̂  (7) 

Here  ̂     contains only the nonzero values of   
and   ̂       is a submatrix of   formed by choosing the 
  columns corresponding to the reserved subcarriers.  

The task now is to find the peak-reducing coefficients or 
vector  ̂ that minimizes the PAPR of    This problem can 
be formulated as a minimax [17]  optimization problem of 
the form 

     
 ̂

       ̂ ̂   (8) 

Here,  ̂     is the optimization variable while       and 
 ̂       are the problem parameters. To date, sub-optimal 
algorithms to solve the problem in (8) at a reduced 
computational complexity and short convergence time and 
at the same time achieve high PAPR reductions continue 
originating. 

Although tone reservation methods offer quite an 
attractive approach for reducing PAPR, they are not 
without drawbacks. First, the average power of the PAPR-
reduced signal increases. This calls for one to limit the 
increase to a minimum as the algorithm executes to ensure 
compatibility with HPA specifications. Second, the number 
of reserved subcarriers    reduces the data rate because the 
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reserved subcarriers do not carry any user data. Therefore, 
to avoid a high data rate loss,   should be small as can be 
practically possible. 

 
 

4 Proposed Method 
This paper proposes a novel sub-optimal tone reservation 
method, hereafter referred to as the iterative re-weighted 
least-squares tone reservation (IRLS-TR) method, which 
performs fast approximation of peak-power reducing 
signals. The method approximates a desired peak-reducing 
signal with a signal designed in accordance with the 
frequency allocation constraints as imposed by the tone 
reservation concept discussed in section III.  
 
 
4.1 Algorithm 
Any PAPR reducing method attempts to reduce the peak 
power to a value close to the average power. With this 
consideration, the desired peak-reducing signal that is 
required to cancel the high peaks of the OFDM signal can 
be posed as the OFDM signal amplitudes above the 
average value. Subsequently, the desired peak-reducing 
signal has the analytical equation 

     {

    

      
         ̅           ̅

                                           ̅

   

             

(9) 

Here,  ̅ is the average value of the discrete-time OFDM 
signal. The elements of   ̂ are then determined to have the 
time-domain peak-reducing signal in (7) equal to the signal 
in (9) by solving the matrix equation 

  ̂ ̂   . (10) 

However, since  ̂      ,  ̂     and     , the system 
of linear equations in (10) is rectangular and hence 
overdetermined. For such a system, there is in general no 
exact solution to  ̂ and therefore, the time-domain peak-
reducing signal    ̂ ̂  can only be determined to 
approximate the desired signal vector   i.e. 

  ̂ ̂   , (11) 

by minimizing the residual error 

    ̂ ̂    (12) 

using some norm as a measure of the error size.  
In addition to the minimization of the error in (12), for 

the problem at hand, the high peaks of the designed peak-
reducing signal    ̂ ̂  should approximate those of the 

signal   in (9) as practically as is possible in order to 
cancel all the high peaks in the original OFDM signal and 
thereby reduce the PAPR. The design of the peak-reducing 
signal will therefore involve finding the elements of  ̂ that 
minimizes the    norm of the error. This is equivalent to 
the minimization of the    norm of the error for a large 
value of   [18]  as given by the equation 

     
 ̂

   ̂ ̂                  (13) 

In practice, the solution to the    problem approximates 
that of    if (13) is solved for      [19] . However, 
there is no analytical method for finding the optimal 
approximation solution for any norm other than 
the    norm. For this reason, it is necessary to transform 
the    problem into an equivalent simple weighted least 
squares (WLS) problem that can be solved analytically. 
This WLS problem has the form 

     
 ̂

     ̂ ̂        (14) 

where   is a real     diagonal weighting matrix that 
applies large weights on the high signal peaks to 
emphasize their minimization. If the diagonal weights 
in   are known, then equation (14) can be solved by a 
simple method that has the closed form solution [20]  

  ̂  [ ̂     ̂]
  

 ̂       (15) 

Here, the superscripts T and * denote matrix transpose and 
conjugate transpose respectively.  

In order to make (14) to be equivalent to (13), there is 
need for careful selection of the diagonal weights      of 
the weighting matrix  . Rewriting the    norm of the 
weighted error,    ( ̂ ̂   )  in (14) as 

          ∑                
       , (16) 

and assigning the error to the weights according to 

                     (17) 

then (16) becomes the    norm of the error as in (13), i.e. 

         (∑                  
   

   

)

   

  (18) 

Therefore, solving the WLS problem in (14) is identical to 
solving the    problem in (13).   

However, solving problem (14) cannot be done in one-
step because one needs to find the weights that give the 
optimal approximation. To this end, this work employs a 
robust iterative re-weighted least squares (IRLS) algorithm 
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to find the solution to the WLS problem. The algorithm 
builds from the analytical solution in (15) but with per 
iteration re-weighting until convergence to the large    
norm of (13). In its most basic form, the IRLS algorithm 
starts by solving for  ̂     from (15) with all initial 
weights set to one i.e.       . Then, it computes the 
error vector from (12), followed by new weights from (17) 
that are for use in the next iteration. Using the new 
weights, the algorithm finds a new solution  ̂ and this 
process repeats until convergence when the    norm of the 
error is quite small e.g. less than      or until the number 
of iterations reaches a predetermined maximum iteration 
number.  

The basic IRLS algorithm presented above has two 
concerns that need to be addressed. Firstly, the algorithm 
may not converge and/or is numerically unstable for some 
   norms. Secondly, it has linear convergence and 
therefore if it converges and is numerically stable, it does 
so very slowly as to be of any practical use. To overcome 
these two shortcomings, the basic algorithm is transformed 
into a form of the Newton’s method [21]  in which the 
solution is only partially updated at each iteration. With 
this update, the solution at     iteration becomes 

  ̂     ̂ 
         ̂     (19) 

where             is the update parameter [22]  [23]  
and  ̂ 

     is the current WLS solution. However, as is 
common with most Newtonian methods, this modification 
makes the algorithm sensitive to initial approximations and 
this may affect the initial convergence rate. 

In order to improve on the initial convergence rate, the 
value of   is increased gradually from its initial value of 
two to the final value of the    norm that is being used to 
approximate the    norm. This modification is quite 
similar to the homotopy [24]  [25]  and is done iteratively 
by multiplying   with a convergence parameter  , of 
between one and two depending on the required rate of 
convergence. The value of   at the  -   iteration is then 
determined by 

                  (20) 
In addition, the convergence parameter is determine by the 
value of   in the    norm and the maximum iteration 
number according to 

            ⁄    (21) 
where   and   are, respectively, the    approximation 
norm and maximum iteration number. The settings in (20) 
and (21) guarantee reliable convergence of the algorithm to 
the optimal approximation solution. This is because 
as   progressively increases from the initial value, the 

difference from one    solution to the next is small, and 
when the algorithm approaches the neighbourhood of the 
desired    approximation norm it iterates several times at 
the same  . 
 
The IRLS-TR algorithm can be summarized as follows. 
Algorithm: IRLS-TR 
1. Set the     approximation norm  , initial weights to 

    and the     norm error threshold    .  
2. Set the maximum iteration number   and convergence 

parameter            ⁄  . 
3. Choose reserved subcarrier locations and compute the 

IFFT submatrix  ̂. 
4. Generate the original OFDM time-domain signal  . 
5. Calculate the desired peak-reducing signal   from the 

signal  . 
6. Initialize the iteration counter     set the initial p-

norm value     . 
7. Calculate the initial LS solution  ̂   ̂   . 
8. Calculate the error vector     ̂ ̂   . 
9. Calculate the new weighting matrix elements 

using              
        . 

10. Calculate the LS solution 
 ̂ 

  [ ̂   
    ̂]

  
 ̂   

    . 
11. Calculate the new update parameter             . 
12. Update the LS solution to  ̂     ̂ 

         ̂    . 
13. Calculate the     norm error 

          ∑        
    

       .  
14. Set      . If     or            , update the p-

norm value to                 and go to step 8.  
Otherwise, transmit     ̂ ̂  and terminate algorithm. 

15. End 
 
 
4.2 Convergence  
With the modifications in (19), (20) and (21), the algorithm 
quadratically converges in just a few iterations as 
illustrated in Fig. 2. The figure depicts a typical plot of the 
convergence curve of the error in (18) at each iteration as 
the algorithm was executed. As shown in the figure, the 
algorithm converged after about 10 iterations. 
 
 
4.3 Computational Complexity 
At each iteration, the algorithm spends most of the 
computational time to find the solution in (15) for the WLS 
problem  

   ̂ ̂      (22) 
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Since the matrices       ,  ̂        and  ̂    , the 
computational complexity of the algorithm per iteration is 
then given by      . This complexity can be reduced 
further if the algorithm computes the solution from only 
the non-zero elements in vector  . Denoting the number of 
non-zeros elements in   by  , the computational 
complexity of the algorithm will then become      . 
Now, since   is always less than    , with a few reserved 
subcarriers for PAPR reduction, the algorithm’s 
complexity of       is less than           of the fast 
Fourier transform algorithms. 
 

 
Figure 2: Convergence curve 

 
 
5 Results and Discussion 
The IRLS-TR method proposed in section IV yields the 
frequency-domain vector  ̂    . The product of this 
vector and the IDFT submatrix  ̂ is the time-domain signal 
used to reduce the PAPR of the OFDM signal. Matlab 
simulations using the OFDM parameters in Table 1 
assessed the performance of the method when applied to 
reduce the PAPR in OFDM systems comprising different 
subcarrier modulations and different numbers of reserved 
subcarriers. The locations of the reserved subcarriers were 
randomly selected in all OFDM symbols. 
 

Table 1: OFDM Parameters 

FFT size, N 
 

16, 32, 64, 128, 256, 512, 
1024, 2048 

Subcarrier modulation 
 

QPSK, 16-QAM, 64-QAM, 
256-QAM, 1024-QAM 

Number of OFDM symbols 
 10,000 

Number of reserved subcarriers, L 

 5%, 10%, 15%, and  20% of N 

Reserved subcarrier locations 
 random 

 
To achieve high PAPR reductions, the method generates 

a peak-reducing discrete-time signal with the highest peaks 

approximating those of the desired peak-reducing signal as 
illustrated in Fig. 3. For example, at       the 
magnitude of the highest peak of the generated peak-
reducing signal is 1.214 and this approximates 1.806 of the 
desired signal. Thus, subtracting the generated signal from 
the original high PAPR OFDM signal reduces the PAPR. In 
addition, the peaks of the designed signal are below all the 
major spikes of the desired signal. This then avoids the 
peak re-growth problem where the cancellation of one peak 
regenerates a new peak at a different position as reported in 
methods that utilize peak-cancelling kernels [7]  [26]  [27]  
to reduce PAPR.  

The proposed IRLS-TR method achieves high PAPR 
reduction by utilizing only a small number of reserved 
subcarriers to generate and carry the PEAK-REDUCING 
SIGNAL. The CCDF curves in Fig. 4 illustrates this point 
for the cases where out of 256 total number of subcarriers, 
2, 4, 8, 13, 20, and 52 subcarriers were reserved. For 
example, with 4 and 13 reserved subcarriers, corresponding 
to 1.6% and 5% of the total subcarriers, the method 
achieved 3.9 dB and 5.6 dB PAPR reductions at CCDF = 
    . Compared to the SOCP-TR by Kiambi et al and LP-
TR by Tellado, with 5% reserved subcarriers, the reduction 
of 5.6 dB from the proposed IRLS-TR method is better than 
the 4.6 dB and 5.3 dB from the two methods respectively.  

For the case with 20% reserved subcarriers, the IRLS-
TR method proposed here achieved a PAPR reduction of 
7.4 dB, and this again is close to the 8.0 dB from the 
optimal methods. 

 

 
Figure 3: Desired and designed peak-reducing discrete-time signals 

 
To compare the performance of the proposed IRLS-TR 

method to the sub-optimal methods, the actual results 
reported in CF-TR by Jiang et al, MS-SCR by Wang et al, 
and WTR by Xin and Yi were considered. From the results 
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for the PAPR reduction reported by Jiang et al for the CF-
TR, it is clear that the proposed IRLS-TR has a better 
performance. For example, at CCDF=     and 6.25% 
reserved subcarriers in a 16-QAM system, the CF-TR 
method achieved 4.4 dB that is lower than the 5.6 dB from 
the proposed IRLS-TR method. In addition, in the proposed 
IRLS-TR, the number of reserved subcarriers can be freely 
set unlike in the CF-TR in which PAPR reduction degrades 
if the number is set to a value lower than the number of 
zeros, which varies per iteration, in the clipping noise.  

The MS-SCR by Wang et al generates a kernel signal to 
cancel multiple peaks and has fast convergence but still can 
exhibit peak re-growth and has lower PAPR reductions than 
the proposed IRLS-TR. For example, for a 16-QAM system 
with 12.5% reserved subcarriers at CCDF=    , the MS-
SCR  could only manage 4.7 and 5.2 dB PAPR reductions 
when using high clipping ratios of 2 and 3 respectively, 
which reductions are quite low compared to the 6.6 dB 
from the proposed IRLS-TR method for the same system.  

For the new WTR method by Xin and Yi, which also 
tries to mitigate the peak re-growth problem in the 
traditional WTR method [28] , the PAPR reduction 
performance is quite poor. The WTR method reported a 
PAPR reduction of 2.7 dB at CCDF of      for 5% 
reserved subcarriers in QPSK-modulated OFDM system. 
This reduction is less than half of the 5.6 dB given by the 
proposed IRLS-TR method for the same OFDM system.  

In summary therefore, based on the results reported for 
the CF-TR, MS-SCR and new WTR methods, the proposed 
IRLS-TR method has better and improved PAPR reduction 
performance than the three methods. In addition, the 
proposed IRLS-TR method does not experience peak re-
growth problem and the required number of reserved 
subcarriers can be freely set. 
 

 
Figure 4: CCDF curves for QPSK-modulated OFDM with 256 

subcarriers 
 

On the issue of the increase in the average transmitted 
power that is expected with all tone reservation methods, 

the proposed IRLS-TR method exhibits only a small 
increase of about 0.6 dB. The sub-optimal CF-TR by Jiang 
et al method reported the same value while the optimal LP-
TR method by Tellado had an increase of 1 dB. Due to the 
high PAPR reductions achieved by the proposed IRLS-TR 
method, the small increase of 0.6 dB in the transmitted 
power is tolerable. 

Lastly, the simulation results for the same subcarrier 
modulation but with different number of OFDM 
subcarriers revealed that the PAPR reduction from the 
proposed IRLS-TR method increases almost linearly 
with       as illustrated in Fig. 5. The figure shows 
PAPR reductions for 5%, 10%, 15% and 20% reserved 
subcarriers against the binary logarithm of the number of 
OFDM subcarriers. Since all the plots resemble straight-
line graphs, each of them can be estimated analytically by 
a linear function. This makes it easier to estimate the 
PAPR reductions for different total number of OFDM 
subcarriers for a fixed number of reserved subcarriers.  

Similarly, since the lines have almost the same slope, 
one can estimate the increase in the PAPR reduction 
accruing from an increase in the number of reserved 
subcarriers. For example, for the 5% and 15% reserved 
subcarriers, the PAPR reductions are respectively given by 
the linear equations               , and            
   . The difference of 1.1 dB between the two equations is 
the PAPR reduction achieved due to the increase of the 
number of reserved subcarriers from 5% to 15%. 
 

 
Figure 5: PAPR reduction variation with number of subcarriers 

 
 
6 Conclusion 
In this paper, a new sub-optimal tone reservation technique 
for PAPR reduction in OFDM systems, referred to as IRLS-
TR, is proposed. Investigation into its PAPR reduction 
capability has found that with only 1.6% and 5% of total 
subcarriers reserved for PAPR reduction, it respectively 
achieves 3.9 dB and 5.6 dB of PAPR reduction at a small 
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cost of 0.6 dB increase in the average transmitted power. 
The method has a fast quadratic convergence and a low 
computational complexity per iteration of        which is 
less than           of FFT. Here, L is the number of 
reserved subcarriers, N is the total number of subcarriers, 
and P is the number of nonzero elements in the desired 
peak-reducing signal.  

In addition, the proposed method does not experience 
the peak re-growth problem associated with TR methods 
that cancel signal peaks using a time-domain kernel signal 
and the traditional weighted tone reservation methods. 
Further investigations revealed that the method has PAPR 
reductions that are linear with       and therefore one can 
predict PAPR reductions for different OFDM systems with 
different number of reserved subcarriers.  

The effect of the choice of the desired peak-reducing 
signal on the PAPR reduction capabilities of the proposed 
method shall be investigated in future work. 
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Abstract—In this paper, a proposed sub-optimal iterative re-weighted least-squares tone reservation method is applied to reduce PAPR in 
OFDM systems with fixed locations of reserved tones. Three ways of placing the reserved tones are investigated and compared: random, 
contiguous, and equal-spaced placements in OFDM symbols. The proposed method has a fast quadratic convergence and low per iteration 
complexity of (ࡸࡺ)ࡻ where N is the number of reserved subcarriers, and L is the number of the reserved tones. The method was found to 
achieve, respectively, high PAPR reductions of 5.3 dB for the random and 4.5 dB for both the contiguous and equal-spaced placements when 
only 5% of the total number of subcarriers is reserved for PAPR reduction. These PAPR reductions are higher than from other related 
optimal and sub-optimal methods reported in literature. 

Keywords—Orthogonal Frequency Division Multiplexing; Peak-to-Average Power Ratio; Tone Reservation 

I. INTRODUCTION 
 OFDM transmission technique utilizes parallel low data 

rate streams to achieve high data rate and reduce inter-symbol 
interference. In addition, the technique has mutually orthogonal 
subcarriers and this makes it efficient in terms of bandwidth 
utilization. These OFDM characteristics have made it the 
multiplexing and transmission technique of choice for high data 
rate transmissions in many radio systems including Digital Video 
Broadcasting (DVB), IEEE 802.11 Wireless Local Area 
Networks (WLAN), IEEE 802.16a Wireless Metropolitan Area 
Networks (WMAN), 4G, and 5G mobile communication 
networks. However, OFDM signals tend to exhibit a high ratio of 
peak power to average power abbreviated as PAPR [1]. 

To pass a high PAPR signal through the high power amplifier 
(HPA) in the transmitter without any distortion, the HPA must be 
forced to operate deep into the linear region by providing it with a 
large enough input power back-off as determined by the PAPR of 
the input signal. However, this lowers the power efficiency and 
therefore raises the power consumption and hence the cost of the 
transmitter in addition to reducing the battery power lifetime at 
user terminals. It is therefore considered necessary to reduce the 
high PAPR in OFDM systems to comfortable levels especially so 
for systems with large number of subcarriers as they tend to 
exhibit unacceptably high PAPR. 

Recently, various methods for reducing PAPR in OFDM 
systems have been proposed in literature. They include signal 
coding [2], selective mapping (SLM) [3], signal scaling [4], 
partial transmit sequence (PTS) [5], and tone reservation (TR) [6]. 
The TR approach, due to the simplicity, has of late proved quite 
promising. This approach reserves a few subcarriers, called peak-
reducing tones, which are utilized to generate and carry a peak-
reducing signal that is used to reduce the PAPR of the original 
OFDM signal. Because the user data and the peak-reducing signal 
are designated to separate subcarriers, no distortion is introduced 
on the data and hence no BER degradation. In addition, the TR 
approach does not require transmission of any side information to 
the receiver if the locations of the reserved subcarriers are 
predetermined and fixed in all OFDM symbols. 

Most of the TR methods [7] [8] [9] [10] proposed in literature 
have randomly reserved the locations of the peak-reducing tones 
despite the fact that preset locations would be preferred for 
practical transmission systems. The sub-optimal kernel-based TR 
(KTR) in [11]  has utilized a contiguous and equal-spaced set of 
reserved tones but the method suffers from peak-regrowth that 
slows the convergence. In [12], a dynamic tone allocation in a 
standard optimal TR (DTA-OTR) method is proposed where a ܮଵ-norm minimization is used to find the reserved subcarriers set 
that achieves a good PAR reduction. However, in addition to the 
DTA-OTR method’s high computational complexity and slow 
convergence, side information must be transmitted or the receiver 
has to estimate in a complex way the locations of the reserved 
tones. The work in [13] explored random, block and equal-spaced 
placement of reserved tones in a standard optimal TR (OTR) 
method, but the method is again slow, has high computational 
complexity, and achieves low PAPR reductions.  

In this paper, a fast sub-optimal iterative re-weighted least-
squares based tone reservation (IRLS-TR) method that offers 
good PAPR reductions in OFDM systems with fixed locations of 
reserved tones is proposed. The method fast estimates the peak-
reducing signal by utilizing a robust iterative re-weighted least-
squares algorithm for minimization of ܮஶ-norm. This IRLS-TR 
technique has low computational complexity and converges 
quadratically in addition to achieving better PAPR reductions 
than the K-TR, DTA-OTR and OTR methods when the reserved 
subcarrier locations in OFDM symbols are fixed.   

The order of the rest of the paper is as follows. Section II 
discusses PAPR of OFDM signals. In Section III, a review of the 
tone reservation concept is given. Section IV outlines the 
proposed method while simulation results and comparison are in 
section V. In Section VI is the conclusion and suggestion for 
future work.  

II. PAPR OF OFDM SIGNAL 
The OFDM signal is an aggregation of N mutually orthogonal 

subcarrier signals. At the baseband level, and during one symbol 
duration, the discrete-time signal can be expressed as 
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[n]ݔ = 1√ܰ ෍ ܺ(݇)ேିଵ
௞ୀ଴ ݁௝ଶగ௡௞ே ,   ݊ = 0,1,2, … ܰ − 1 

(1) 

where ܺ (݇) is the subcarrier-modulating symbol. These symbols 
are derived from signal constellations of either binary phase-shift 
keying or M-ary quadrature amplitude modulations [14]. The 
normalization by √ܰ ensures that the signal power in the time-
domain is equal to that in the frequency-domain. Equation (1) is 
quite similar to the standard inverse discrete Fourier transform 
(IDFT) equation and therefore an OFDM system utilizes the fast 
Fourier transform for signal processing. Due to the addition of N 
subcarrier signals, the OFDM signal may exhibit peak power 
fluctuations that may limit the linear processing by the nonlinear 
HPA in the transmitter section especially so if some of the high 
peaks cross into the saturation region. 

The fluctuation in the signal amplitudes is measured by peak-
to-average power ratio (PAPR) given by  

PAPR{࢞} = max଴ஸ௡ழே{|ݔ(݊)|ଶ}ܧ{|ݔ(݊)|ଶ}  (2) 

where the vector ࢞ = ,(0)ݔ] ,(1)ݔ … , ܰ)ݔ − 1)]், and ܧ{. } is 
the expectation operator. 

The interest in most of the times is to determine whether the 
PAPR exceeds a predetermined threshold of the HPA. This is 
measured by the complementary cumulative distribution function 
(CCDF) of the PAPR, which is basically the probability that the 
PAPR exceeds the threshold. The derivation of CCDF has been 
well treated in [15] and is given by 

 Pr(PAPR{࢞} > (ߛ = 1 − (1 − ݁ିఊ)ே (3) 

where ߛ is the threshold PAPR, and Pr(. ) denotes the probability 
operator.  

III. TONE RESERVATION 
 All tone reservation methods add a peak-reducing signal to 
the original high-PAPR OFDM signal in order to reduce the 
PAPR. This is illustrated in Fig. 1, where ܺ(݇) and ܥ(݇) are, 
respectively, the subcarrier-modulating data symbol and peak-
reducing coefficient.  

 
Figure 1: Tone reservation concept 

 To avoid distorting the user data, the data symbols and peak-
reducing coefficients are allocated separate subcarriers i.e. the 
data vector ࢄ = [ܺ(0), ܺ(1), … , ܺ(ܰ − 1)]்  has all nonzero 
values except in ܮ positions reserved for peak-reducing signal, 
while the peak-reducing vector  ࡯ = ,(0)ܥ] ,(1)ܥ … , ܰ)ܥ − 1)]் 
has all zero values except in the ܮ reserved positions. After the 

IDFT of the frequency-domain vectors, ࢄ and ࡯, the resulting 
time-domain vectors ࢞ = ,(0)ݔ] ,(1)ݔ … , ܰ)ݔ − 1)]் and  ࢉ = [ܿ(0), ܿ(1), … , ܿ(ܰ − 1)]் are combined to generate a low-
PAPR signal i.e. PAPR{࢞ − {ࢉ < PAPR{࢞}.  

 From the foregoing, the signal processing in tone reservation 
methods can be described by the equation, 

࢞  − ࢉ = ࢞ −  (4)  ,࡯ࡽ

where ࡽ ∈ ℂே×ே is the IDFT matrix with elements  ଵ√ே ݁௝ଶగ௡௞/ே 
and all ࢞, ,ࢉ ࡯ ∈ ℂே. Considering that ࡯ has only L nonzero 
values, the peak-reducing signal is simply given by 

ࢉ  =  ෡. (5)࡯෡ࡽ

Here ࡯෡ ∈ ℂ௅  contains only the nonzero values of ࡯, and ࡽ෡ ∈ℂே୶௅ is a submatrix of ࡽ consisting of only the ܮ columns 
corresponding to the reserved subcarriers.  

 The task of the tone reservation technique is then to derive a 
peak-reducing signal vector ࡯෡ that reduces the PAPR of the 
original OFDM signal ࢞. This can be formulated as a minimax 
optimization problem of the form 

 min ࡯෡ max|࢞ −  ෡|. (6)࡯෡ࡽ

In this problem, the optimization variable is ࡯෡ ∈ ℂ௅  and the 
problem parameters are ࢞ ∈ ℂே and ࡽ෡ ∈ ℂே୶୐. To avoid high 
computational complexity and slow convergence rate in the 
optimal minimization of (6), sub-optimal techniques have 
continued originating. 

When solving the problem in (6), all tone reservation 
techniques face two major drawbacks that need to be mitigated. 
Firstly, there is an increase in the average transmission power of 
the PAPR-reduced signal. This then requires one to balance 
between the PAPR reduction and the power increase in order to 
conform to the HPA specifications. Secondly, the overall data 
rate is reduced due to the reserved subcarriers and this requires 
one to use only a practically small number of reserved subcarriers 
to efficiently reduce the PAPR. 

IV. PROPOSED IRLS-TR METHOD 
This paper proposes a robust sub-optimal tone reservation 

method, which fast approximates the peak-reducing signal in 
accordance with the frequency allocation constraints imposed by 
the tone reservation concept described in section III.  

A. Algorithm 
In order to reduce the PAPR, the signal peak power should be 

very close to the average power as much as possible. Therefore, 
the desired peak-reducing signal can analytically be described by 
the equation 

݀(݊) = ቐ |(݊)ݔ|(݊)ݔ |(݊)ݔ|) − ,((ݔ̅ |(݊)ݔ| > ,                                 0ݔ̅ |(݊)ݔ| ≤           ݔ̅
  ݊ = 0,1, … , ܰ − 1 

(7) 

where ̅ݔ is the average value of the OFDM signal. 
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However, due to the tone reservation constraints in the 
frequency-domain, the above desired peak-reducing signal ࢊ = [݀(0), ݀(1), … , ݀(ܰ − 1)]் can only be approximated by 
the peak-reducing signal ࢉ in (5) i.e.  ࡽ෡࡯෡ ≈  (8) ࢊ

by minimizing the residual error ࣕ = ෡࡯෡ࡽ −  (9) ,ࢊ

where ࣕ = [߳(0), ߳(1), … , ߳(ܰ − 1)]், by using an appropriate 
norm as a measure of the error.  

Since the interest here, is to design a signal ࢉ that 
approximates all the major high peaks in the desired peak-
reducing signal while avoiding regeneration of new ones, a 
phenomenon normally referred to as peak-regrowth, the best 
approach is to find a vector ࡯෡ that minimizes the ܮஶ-norm of the 
error by solving min࡯෡ ෡࡯෡ࡽ|| − ௣௣||ࢊ ݌      , → ∞. (10) 

In practice, it has been found that if the value of ݌ ≥ 10, the 
minimization of the ܮ௣-norm closely approximates that of the 
minimization of the ܮஶ-norm [16].  

However, no analytical method exists to solve (10) for any 
norm other than the ܮଶ-norm. For this reason, the problem is 
transformed into a simple weighted least squares (WLS) problem min࡯෡ ෡࡯෡ࡽ)ࢃ|| −  ଶଶ (11)||(ࢊ

where ࢃ is a diagonal weighting matrix that emphasizes the 
minimization of the high peaks. The problem in (11) has the 
closed form solution [17] ࡯෡ = ෡ࡽൣ ෡ࡽ෡൧ିଵࡽࢃࢀࢃ∗  (12) ࢊࢃࢀࢃ∗

where, the superscripts T and * denote matrix transpose and 
conjugate transpose respectively.  

In order to make the problem in (11) to be equivalent to (10), 
the diagonal weights in ࢃ are given by 

(݊)ݓ  = |߳(݊)|(௣ିଶ)/ଶ,       ݊ = 0, 1, … , ܰ − 1 (13) 

Therefore, solving the WLS problem in (11) is identical to 
solving the ܮ௣ minimization problem in (10).   

Because the weights that give the optimal approximation 
solution are unknown, the problem in (11) cannot be solved in 
one step, but rather iteratively using a re-weighted least squares 
algorithm. This algorithm starts by solving for ࡯෡ in (12) when all 
the diagonal weights are set to one i.e. ݓ(݊) = 1, for ݊ =0,1,2, … , ܰ − 1. Then, it finds the error in (9), followed by the 
weights in (13) for use in the next iteration. The new weights are 
then used to find a new solution. To make the algorithm stable 
and converge quadratically for all ܮ௣-norms, the actual solution 
at each iteration is only partially updated in a manner similar to 
the Newton’s method [18] i.e. 

෡௜࡯  = ࢉ࢏෡࡯௜ݍ + (1 −  ෡௜ିଵ  (14)࡯(௜ݍ

where ݍ௜ = ௜݌)/1 − 1) is the Newton’s parameter [19] [20] and ࡯෡ࢉ࢏ is the current WLS solution. This process is repeated until the ܮ௣-norm of the error is below a preset threshold. 

However, the Newtonian modification may make the 
algorithm susceptible to poor initial convergence. This is cured 
by starting with an ܮ௣-norm with ݌ = 2 and gradually increasing 
the value by multiplying it with a convergence parameter of 
between one and two until the final value of the ܮ௣-norm being 
used to approximate the ܮஶ-norm. This modification is similar to 
the homotopy [21] [22] and has ݌ at the ݅-th iteration given by ݌௜ = min(݌,  ௜ିଵ). (15)݌ߙ

The preceding algorithm is summarized here below. 

Algorithm: IRLS-TR 
1. Set initial weights to ݓ(݊) = 1, initial ݌ = 2 and the error 

threshold ߝ௧௛.  
2. Choose reserved subcarrier locations and compute the IFFT 

submatrix ࡽ෡ . 
3. Generate the original OFDM time-domain signal ࢞, and 

calculate the desired peak-reducing signal ࢊ. 
4. Initialize the iteration counter ݅ = 0 and calculate the initial 

LS solution ࡯෡଴ = ෡ࡽ ି૚ࢊ. 
5. Calculate the error vector ࣕ࢏ = ࢏෡࡯෡ࡽ −  and the new ࢊ

weights using ݓ௜(݊) = |߳௜(݊)|(௣೔ିଶ)/ଶ. 
6. Calculate the LS solution ࡯෡ࢉ࢏ = ෡ࡽൣ ෡ࡽ෡൧ିଵࡽ࢏ࢃࢀ࢏ࢃ∗  .ࢊ࢏ࢃࢀ࢏ࢃ∗
7. Calculate the new update parameter ݍ௜ = ௜ݍ)/1 − 1) and 

update the LS solution to ࡯෡௜ = ࢉ࢏෡࡯௜ݍߤ + (1 −  . ෡௜ିଵ࡯(௜ݍߤ
8. Calculate the ܮ௣-norm of the error  ||࢏ࢿ||௣  = (∑ |߳௜(݊)|௣ேିଵ௡ୀ଴ )ଵ/௣.  
9. Set ݅ = ݅ + 1. If ||࢏ࢿ||௣ > ௜݌ ௣-norm value toܮ ௧௛, update theߝ = min(݌,   .௜ିଵ) and go to step 5݌ߙ

Otherwise, transmit  ࢞ −  .and terminate algorithm ࢏෡࡯෡ࡽ
10. End 

B. Convergency  
The algorithm quadratically converges in about 10 iterations 

as illustrated in Fig. 2, which is the typical convergence curve of 
the ܮ௣-norm of the error at each iteration. 

 
Figure 2: Convergence curve 

C. Computational complexity 
At each iteration, most of the computational time is on 

solving the WLS problem in (11), here rewritten as 
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෡࡯෡ࡽࢃ  =  (16) .ࢊࢃ

Since ࢃ ∈ ℝே×ே, ࡽ෡ ∈ ℂே×௅ , and ࡯෡ ∈ ℂ௅, the computational 
complexity of the algorithm per iteration is ܱ(ܰܮ). This 
complexity can be further reduced to ܱ(ܲܮ) <  if the (2/ܰܮ)ܱ
algorithm computes the WLS solution from only the ܲ nonzero 
elements in vector ࢊ which is always less than ܰ/2. 

V. RESULTS AND DISCUSSION 
In this section, the IRLS-TR method in section IV is applied 

to reduce PAPR in OFDM systems with different placements of 
the reserved subcarriers but with a more focus on the fixed or 
non-random arrangements. Table 1 lists the OFDM system 
parameters used in the simulations. 

Table 1: OFDM Parameters 

FFT size, N 64, 256 
Subcarrier modulation 16-QAM, 64-QAM 
Number of OFDM symbols 10,000 
Number of reserved subcarriers, L 3.125%, 5%, 6.25% of N 

Reserved subcarrier locations random, contiguous,  
equal-spaced 

 
 In Fig. 3 and Fig. 4, the simulation results for the 16-QAM 
and 64-QAM OFDM systems with 5% reserved subcarriers are 
presented. For the random placement of the reserved tones, which 
acts as the lower bound for the contiguous and equal-spaced 
placements, the IRLS-TR method proposed here achieved the 
same PAPR reductions of 5.30 dB at CCDF of 10ିଷ for the two 
systems. With the contiguous tone locations at {243, 244,…, 
255} and also with equal-spaced locations of the 13 reserved 
tones, at the same CCDF of 10ିଷ, the proposed method had, for 
the two systems, the same PAPR reduction of 4.50 dB.  

 The sub-optimal kernel-based TR (KTR) by Tellado and 
Cioffi reported 3.25 dB for both the contiguous and equal-spaced 
tone reservations, which is lower than the 4.5 dB from the 
proposed IRLS-TR method. In addition, unlike the kernel-based 
TR methods including the KTR by Tellado and Cioffi [23], the 
proposed IRLS-TR method does not experience peak-regrowth 
problems that can lead to slow convergence times. 

 
Figure 3: Comparison of different tone positioning for 16-QAM OFDM 

system with N=256, L=13 

Figure 5 illustrates PAPR reductions in a 16-QAM OFDM 
system in which 3.125 % of tones out of the 256 tones were 
reserved for PAPR reduction. The set of contiguous locations 
was {248, 249,…, 255} while for the equal-spaced was {31, 63, 

95, 127, 159, 191, 223, 255}. From the figure, the IRLS-TR has 
PAPR reductions of 2.45 dB and 4.00 dB at CCDF = 10ିଷ for 
the equally spaced and contiguous tone allocations respectively.  

 
Figure 4: Comparison of different tone positioning for 64-QAM OFDM 

system with N=256, L=13 

These reductions are slightly better than the ones reported by 
Petersson et al of 2.25 dB and 3.75 dB for the same placements in 
the complex optimal OTR scheme using the same system 
parameters.  

 
Figure 5: Comparison of different tone positioning for 16-QAM OFDM 

system with N=256, and L=8 

In Fig.6, the simulation results for 16-QAM system with 6.25 
% reserved tones out of 64 tones are illustrated. The set of 
contiguous locations was {60, 61, 62, 63} while that for the 
equal-spaced was {15, 31, 47, 63}. The proposed IRLS-TR has 
PAPR reductions of 2.40 and 4.20 dB at CCDF = 10ିଷ for the 
equal-spaced and contiguous allocations respectively. The 
contiguous case, which is the better of the two schemes for 
presetting the reserved tones, has the same PAPR reduction of 
4.20 dB at CCDF of 10ିଷ as that reported for the highly complex 
DTA-OTR method by Malkin et al for the same system 
parameters. However, one major drawback of the DTA-OTR is 
that the receiver has to bear the complex burden of deciding 
which tones were reserved for PAR reduction and on which data 
was sent; a problem not experienced with the IRLS-TR method 
proposed here. 

On the increase in the average transmitted power, the 
proposed IRLS-TR method reduces PAPR at the expense of a 
small increase of about 0.6 dB in the average power. The TR 
method by Tellado and Cioffi had an increase of 1 dB. Due to 
the high PAPR reductions achieved by the proposed IRLS-TR 
method, the increase of 0.6 dB in the transmitted power is 
expected. 
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In summary therefore, and based on the simulation results, 
the proposed IRLS-TR method has better and improved PAPR 
reduction performance than the KTR and OTR methods that 
have fixed placement of the reserved subcarriers. 

 
Figure 6: Comparison of different tone positioning for 16-QAM OFDM 

system with N=64, and L=4 

VI. CONCLUSION 
In this paper, a new sub-optimal tone reservation technique, 

IRLS-TR, for PAPR reduction in OFDM systems where the 
reserved subcarriers are allocated fixed positions in all OFDM 
symbols has been proposed. Investigation into the PAPR 
reduction capability found that with 5% of total subcarriers 
reserved for PAPR reduction, the method reduces PAPR by 4.5 
dB at a small cost of 0.6 dB increase in the average transmitted 
power both equal-spaced and contiguous reserved tone locations 
respectively.  

The method offers fast estimation of the required peak-
reducing signal with a quadratic convergence and a low per 
iteration computational complexity of ܱ(ܰܮ) with L as the 
number of reserved subcarriers and N as the total number of 
subcarriers.  

Further investigation revealed that the method achieves high 
PAPR reductions for the equal-spaced and contiguous reserved 
tone locations that are only 0.8 dB lower than the per symbol 
random reserved tone allocation. This is a good property of the 
method because for practical transmission systems, fixed 
allocation of subcarriers is desired. The effect of using only the 
nonzero elements in the desired peak-reducing signal on the 
PAPR reduction capabilities of the proposed method shall be 
investigated in future work. 
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ABSTRACT 
 

OFDM remains the transmission technique of choice for communication systems 
requiring high-speed transmission of data. However, signals generated via OFDM can exhibit 
high PAPR; a problem that still needs a practical solution. This paper proposes a fast-converging 
and low-complexity signal addition method for reducing the PAPR. The resources for 
transmitting the peak-reducing signal are reserved in the time domain rather than in the 
frequency domain as is done in tone reservation methods. The method has computational 
complexity of     , where   is the number of nonzero samples in the peak-reducing signal. 
Therefore, the overall computational complexity of the transmitter is barely increased because 
     is far much less than           of the IFFT in the transmitter. The proposed method 
can achieve high PAPR reductions with only a small number of nonzero samples in the peak-
reducing signal without affecting the average power of the transmitted signal and at a small data 
rate loss. For example, with      of 256-point IFFT samples, a PAPR reduction of 5.64 dB 
can be achieved with data rate loss of 4.8%. 

 
Key words: High Power Amplifier (HPA), Orthogonal Frequency Division Multiplexing 
(OFDM), Peak-to-Average Power Ratio (PAPR), Tone Reservation (TR). 
 
 
Corresponding Author: Stephen Kiambi 
 
1. INTRODUCTION 
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier transmission technique 
that employs parallel subcarriers to achieve high data rate transmission. The subcarriers are 
mutually orthogonal and the transmission system has high spectral efficiency. In addition, the 
system has symbol duration and a guard interval that are much longer than maximum multipath 
delay in order to eliminate both inter-symbol and inter-carrier interferences, and therefore allow 
use of a simple single-tap equalizer at the receiver to recover signals. These advantages, among 
others, have made OFDM the established transmission technique in high data rate applications 
such as digital audio broadcasting (DAB), digital video broadcasting (DVB), IEEE 802.11 WLAN 
and IEEE 802.16a WMAN standards, 4th generation and 5th generation mobile communication 
networks [1].  
 However, owing to the summation of many modulated subcarrier signals, an OFDM signal 
may suffer an unacceptably high peak-to-average power ratio (PAPR) especially when the number 
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of subcarriers is large. Distortionless processing of high PAPR signals requires the high power 
amplifier (HPA) in the transmitter to be input backed-off away from the 1-dB compression point 
to avoid nonlinear amplification effects, mainly; bit-error rate (BER) degradation and out-of-band 
radiations.  
 However, an input backed-off HPA has lower power efficiency and thus high power 
consumption. This has the negative effect of increasing the cost of the device and reducing the 
lifetime of battery power at user terminals [2]. A better solution then is to reduce the PAPR to 
suitable levels before processing of the OFDM signal in the HPA. 
 Recently, different methods for reducing PAPR have been proposed in literature. These 
include signal coding [3], clipping and companding [4], selective mapping [5], partial transmit 
sequence [6] and tone reservation [7], [8]. The aim has always been to develop practically 
realisable methods with high PAPR reductions and low computational complexities. The tone 
reservation (TR) method is the most promising signal addition method because it does not distort 
the user data and hence has minimum BER degradation. Additionally, it does not require 
transmission of any side information for the demodulation process at the receiver.  
 Several tone reservation methods have been proposed. In [9], a proposed tone reservation 
(CF-TR) method designs peak cancelling signals by curve-fitting them to clipping noise signals. 
However, the method has to evaluate the highly computational intensive Moore-Penrose 
generalised matrix inversion during each iteration, and the resulting peak-reduced signal has an 
increased average power. A least-squares approximation TR (LSA-TR) method was proposed in 
[10]. Although the method has fast convergence, the PAPR reduction performance is poor, and 
has high computational complexity and leads to increased average transmit power. In [11] a TR 
method based on artificial neural networks and initial value optimisation (IVO-TR) is proposed to 
reduce runtime computational complexity by pre-generating peak-cancelling signals. At runtime, 
the method classifies an OFDM symbol and then searches for an appropriate peak-cancelling 
signal stored in the pre-work table. However, the method requires a very long pre-work time in 
order to generate near optimal peak-cancelling signals, and still has high runtime complexity, and 
results to increased average transmit power. 
 In this paper, we propose a low-complexity signal addition method with fast convergence. 
The key idea is to use the desired peak-reducing signal, which is the signal above a predetermined 
clipping level in an OFDM signal. The method avoids reservation of tones and the high 
complexity of determining the dummy weights in tone reservation methods by extending the 
peak-reduced signal by a few samples of the peak-reducing signal. Compared with CF-TR, LSA-
TR, and IVO-TR, the method achieves better PAPR reductions while minimally affecting the 
average power of OFDM signals. Due to the simplicity, reliability, and fast convergence of the 
method, it can easily be implemented in the OFDM transmitter section. 
 The rest of the paper is organized as follows: Section 2 defines PAPR and its 
measurement. Section 3 outlines the general concept of the tone reservation technique. In Section 
4, the proposed method is presented. Section 5 provides simulation results and analysis, while 
conclusions are in Section 6.  
 
2. PAPR OF OFDM 
An OFDM signal is a sum of   modulated subcarrier signals. At baseband level, over one symbol 
duration  , the continuous-time signal has the analytical equation: 

     
 

√ 
∑     

   

   

          (1) 

Here,      are the modulation symbols obtained from binary phase-shift keying or  -ary 
quadrature amplitude modulation. The subcarrier frequency    is the product of the index   and 
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the subcarrier spacing. The division by √  ensures that the average power in the time and 
frequency domains are the same. Because the above formulation is quite similar to the standard 
inverse discrete Fourier transform (IDFT), the well-known fast Fourier transform (FFT) 
algorithm is used to implement OFDM signal processing.  
 Due to the formation in (1), an OFDM signal can have high envelope fluctuations that can 
lead to nonlinear processing in the HPA. The measurement of the extent of the high power 
fluctuations is given by the probability by which the maximum instantaneous power is above the 
linear range of the HPA. For this measurement, the PAPR of the signal is needed and is given by:  

 
     {    }  

    {       }

 {       }
  (2) 

where, E {.} is the expectation operator. 
Assuming a sufficiently large number of subcarriers and that the subcarrier signals are 

statistically independent, then by the central limit theorem, both the real and imaginary parts of 
     are Gaussian distributed. Consequently, the instantaneous magnitudes of       are Rayleigh 
distributed. This in turn means that      can have high PAPR or high amplitude well above the 
average value.  

Because of the digital signal processing of OFDM signals, the continuous-time PAPR is 
usually estimated in the discrete-time as:  

     { }  
   

       
{       }

 {       }
  (3) 

where, the discrete-time signal   [                  ] . For a close estimation of the 
PAPR, the sampling rate applied on      must be sufficiently higher than the Nyquist rate, 
typically by a factor   , in order to avoid skipping the peak value [12].  

The level of PAPR is measured by the complementary cumulative distribution function 
(CCDF), which by definition is the probability that the PAPR is above a given threshold [13]  

   {    { }   }              (4) 

Here,   is a threshold value,   is the total number of subcarriers, and   {.} is the probability 
operator.  
 From the CCDF formula, if the CCDF value on the left is fixed, then for a fixed  , a 
higher value of    indicates a higher PAPR and vice versa. This implies that the difference 
between two values of   at the same CCDF value can be used to measure the level of PAPR 
reduction and to judge how well a proposed method reduces PAPR. 
 
3. CONCEPT OF TONE RESERVATION 
It is the concept of reserving a smaller number of subcarriers, previously meant for carrying user 
data to carry a peak-reducing signal for a given OFDM signal. The reserved subcarriers are 
generally referred to as peak reduction tones (PRTs). Because of the reservation, the number of 
subcarriers for transmitting user data, and hence the data rate, is reduced. Both the peak-reducing 
signal and the OFDM signal are combined to give a low PAPR transmit signal. The tone 
reservation concept is illustrated in Fig. 1, where      and      are the modulation data symbols 
and peak-reducing weights, respectively. At the receiver, only the knowledge of the locations of 
the data-bearing subcarriers is necessary for the recovery of the user data. 
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Fig. 1. Tone reservation concept 

 In order to avoid any distortion on the user data, the data bearing vector and peak-reducing 
weights must exist in two mutually exclusive frequency subspaces i.e. the data vector   
[                  ]  should have all nonzero entries except in the reserved positions and 
likewise the peak-reducing vector   [                  ]  should have all zero entries 
except in the reserved positions. When the IDFT is applied to the two vectors,   and  , it gives 
the discrete-time signals      and     , which are, respectively, represented by   
[                  ]  and   [                  ] . These two time-domain signals 
are added to give the transmit signal      as follows: 

          
 

√ 
∑            ⁄

   

   

                (5) 

Equation (5) can be given in the matrix notation as: 

       (6) 

where,        is the IDFT matrix with elements (  √              , and all the vectors 
        . If   is the number of reserved subcarriers, then vector   has   nonzero elements, and 
the peak-reducing signal     , can be rewritten in the form: 

    ̂ ̂ (7) 

where the new peak-reducing vector  ̂     contains only the nonzero elements of  , and the 
submatrix  ̂       is made of only the   columns of   corresponding to the locations of 
reserved subcarriers. 
 The generation of the required peak-reducing signal requires finding the elements  ̂ that 
minimises the PAPR of the combined signal so that PAPR{ } < PAPR{ }. To identify that there 
is reduction of the peak power in the peak-reduced signal compared to the original signal’s 
average power, PAPR{ } is defined as follows: 

     { }  
   

       
{            }

 {       }
  (8) 

The problem of finding  ̂ so that PAPR{ } < PAPR{ } can be presented in the form of a minimax 
problem [14] 

     
 ̂

       ̂ ̂  (9) 
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where  ̂ is the optimization variable, and   and  ̂ are the input parameters.  
 Solving the optimization problem in (9) is computationally intensive and can make 
implementation of the TR concept impractical especially in real-time systems. In addition, a 
system applying the concept may experience two major drawbacks. The first one is the increase in 
the average transmit power of the PAPR-reduced signal, and the second is the reduction in the 
data rate due to the use of PRTs that do not carry user data. 
 
4. PROPOSED METHOD 
This paper proposes a suboptimal PAPR reduction method that is derived from the general 
concept of tone reservations especially on the part of signal addition. The proposed method is 
referred to as “a low-complexity signal addition” method; in short LCSA method. Depending on 
the structure of the OFDM signal, and possibly the maximum allowed data rate loss, the method 
generates a desired peak-reducing signal (PRS), which it employs to reduce the PAPR. The 
reduction of PAPR is achieved by cancellation of all the highest peaks in the original OFDM 
signal. For exact cancellation of the highest peaks without introducing new ones, the ideal PRS 
should be composed of all the peaks above a threshold value called the clipping level. In 
addition, the PRS should have a phase spectrum identical to that of the OFDM signal. 
 Therefore, for a general complex discrete-time OFDM signal     , the ideal PRS can be 
represented as a vector    [                  ]  whose elements are given by 

     {

    

      
                       

                                             

               (10) 

where     is the clipping level.  
 The aim of the proposed method is to create a PRS that matches the desired one in (10). 
However, to lower the computational complexity during the process of generating the PRS, the 
proposed method uses a simplified version of (10) that contains only the nonzero entries i.e. 

  ̂  [ ̂     ̂       ̂     ]
 
 (11) 

where   is the number of nonzero entries in  . 

4.1  LCSA Algorithm 
From (7), and considering only the nonzero elements in  , the design equation for the peak-
reducing signal is simply 

  ̂   ̃ ̂ (12) 

where  ̂      ̂    and the new IFFT submatrix  ̃       has only the rows from  ̂       
corresponding to the   indices of nonzero entries in  . With  ̂ calculated, the actual peak-
reducing signal      is formed with all zero components except in   positions whose values 
are those of vector  ̂.  
 The task of designing a peak-reducing signal will then involve finding the elements of  ̂ 
by solving the system of linear simultaneous equations given by: 

  ̃ ̂   ̂ (13) 

The solution to this system of equations is strongly dependent on the dimensions of the IFFT 
submatrix. Since  ̃ has   orthogonal rows and   orthogonal columns, the IFFT submatrix can 
have either a full row or column rank and thus there are two possible solutions. For both the 
square and underdetermined cases i.e. for    , the design will give an exact solution in the 
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time domain i.e.  ̂   ̂, while for the overdetermined case of     ,  ̂ will only approximate  ̂. 
The solution to the system of equations is therefore strongly dependent on the value of   for a 
fixed value of  . The value of   depends on the clipping that is applied to the OFDM signal.  
 For a given clipping level,   can analytically be found from the distribution of the signal 
amplitudes. For this purpose, let    denote a Rayleigh random variable representing the signal 
amplitudes whose cumulative distribution function is given by 

    
       

 
  

              (14) 

where   is the scale parameter of the distribution. This distribution has a mean value given by the 
following equation:  

    √
 

 
 . (15) 

The clipping level can be defined as a function of the mean using 

        (16) 

where the clipping level parameter,  , can have any value from zero to the maximum value of 
             . 

 From (14), the probability that some signal amplitudes are higher than the clipping level 
is given by:  

            
 
   

 

    (17) 

and since this is equal to    , then substituting (16) into (17) gives the number of nonzero 
entries in   as: 

      
 
 
  

 (18) 

which is simply the number of peaks above the clipping level. 
 For the purposes of PAPR reduction, the clipping level should logically be set equal to or 
greater than the average value of the OFDM signal. From (18), the number of nonzero entries 
decreases exponentially with the clipping level parameter. The maximum value of   occurs 
when the clipping level is equal to the average value which corresponds to    , and   
       or approximately 46% of the total subcarriers. This value of   is obviously much 
greater than the expected number of reserved subcarriers in any tone reservation method.  
 When   is greater than  , the designed peak-reducing signal  ̂   ̃ ̂ can only 
approximate the desired peak-reducing signal but can never be equal to it. The difference 
between the two signals is the residual error given by the equation:  

  ̂   ̃ ̂   ̂ (19) 

where the error vector  ̂  [ ̂     ̂       ̂     ] is composed of complex elements.  
 The main task of finding the elements of  ̂ can be done through least-squares 
minimisation [15], [16], [17]. The minimisation can yield a discrete-time signal that 
approximates or is equal to the desired peak-reducing signal. In the case  ̂ is not equal to  ̂, a 
good reduction of PAPR may not be achieved and there is also the possibility of having the 
average power of the PAPR-reduced signal increased. These two issues can be avoided by 
making the submatrix  ̃ square i.e. to have    , and therefore obtain a unique optimal peak-
reducing signal with the elements of   ̂ given by 

  ̂   ̃   ̂  (20) 
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 There are only two possibilities of having    . One of the options is to fix   and 
allow sufficient increase on the number of the reserved subcarriers but this has the undesirable 
effect of reducing the data rate of the system. The second, and the better, option is to fix   and 
adjust   in (18) using the clipping level parameter. For the different values of  , the optimal 
clipping level will be theoretically given by the equation: 

      √
 

 
  (

 

 
)   (21) 

 However, due to the random nature of the user data and the fixed number of reserved 
subcarriers, the theoretical clipping level in (21) may not always yield a value of   that is equal 
to   for all OFDM symbols. In addition, it is important to note that if the clipping level is 
increased to very high values,   will be less than   and thus making the system  ̃ ̂   ̂ 
underdetermined. Although for this case there are many exact peak-reducing signal solutions, 
only small PAPR reductions can be achieved. This is because the generated peak-reducing signal 
will have some few low amplitudes corresponding to a small number of the highest peaks in the 
OFDM signal.  
 Based on the above arguments, and depending on the target PAPR reduction, the clipping 
level can simply be set equal to one of the highest peak of the OFDM signal. This will ensure 
that we always have a square system of linear equations and therefore an optimal peak-reducing 
signal solution. For this setting, the peak-reduced signal is given by: 

       
         (22) 

Because    , all the high peaks will be cancelled without generating new ones, as found in 
methods that generate kernel-like peak-cancelling signals [18]. 
 After fixing the clipping level, the system can also be allowed to utilise all the designated 
data subcarriers for user data transmission without reserving any for PAPR reduction. This is 
possible if the   nonzero PRS samples are appended to the peak-reduced signal, just before the 
addition of cyclic prefix, for the recovery of the original OFDM signal at the receiver. The main 
blocks of the transmitter section of an OFDM system incorporating the PAPR reduction block 
are illustrated in Fig. 2. In the figure, X represents the modulation symbols while x, c, and s are 
the discrete-time OFDM signal, peak-reducing signal, and peak-reduced signal, respectively. The 
CP block represents the process of copying some samples from the tail end of the OFDM symbol 
to the front end for the creation of a guard interval. 
 The following is the summary of the proposed LCSA algorithm. 

LCSA Algorithm  

i) Set total number of subcarriers N, data rate loss        , and maximum allowed PAPRmax 
ii) Generate OFDM signal  , and calculate PAPR 
iii) If PAPR< PAPRmax, transmit    and terminate the program, else got to step (iv) 
iv) Set clipping level     
v) Generate desired peak-reducing signal   
vi) Calculate actual peak-reducing signal   
vii) Generate peak-reducing samples  ̂ 
viii) Generate peak-reduced signal        
ix) Append  ̂ to   and pass the composite signal  ̂ for onward processing 
x) End 

 At the receiver, after removing the cyclic prefix, the   PRS samples are removed and 
added back to the peak-reduced signal to reconstruct the original OFDM time signal, which is 
then passed to the FFT block for demodulation. 
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Fig. 2. Transmitter with PAPR reduction block 

 Considering that in a typical implementation of the algorithm,   will be much less than 
N, the waveform of the peak-reduced signal will be barely affected by the addition of   samples.  
A typical composite signal for an OFDM system with  =    and 5% data rate loss is illustrated 
in Fig. 3 where the peak-reduced signal part is in blue and the peak-reducing signal part in red. 
As can be seen, the wave pattern generally remains that of the peak-reduced signal. 
 In the composite signal, all the user data is carried in the peak-reduced signal part. 
Therefore, time-domain extension by   samples will lead to a reduction in data rate by a factor 
of: 

         
 

   
   (23) 

The data rate loss in (23) is less than the one in frequency-domain implemented tone reservation 
methods, which due to the reserved subcarriers is given by: 

         
 

 
   (24) 

 In addition to the loss in (23), there will be a small reduction in the average power that 
also increases with the number of nonzero PRS samples. This can be explained by comparing the 
power in the clipped samples and the corresponding nonzero PRS samples to the power in the 
original samples. If we let   be the index of a clipped sample, and  ̂    and      be, respectively, 
the corresponding PRS and original signal samples, then the total power in the clipped and PRS 
samples will be less than or equal to the power in the original samples i.e. 

 ∑    
   ̂     

 

   

 ∑     

 

   

 (25) 

 Equation (25) implies that if   increases, the average power reduction increases. 
However, since the sample amplitudes are between zero and one, the power reductions will be 
very small. Therefore, the power of the original OFDM signal will practically be retained. 

 
Fig. 3. Composite transmit signal 
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4.2 Computational Complexity 
The proposed LCSA algorithm has a very fast convergence rate because computing the required 
peak-reducing signal from the nonzero entries of the desired peak-reducing signal is done in a 
single step. 
 In general, the proposed algorithm has two main operations, which are the generation of 
peak-reducing signal using (10) and PAPR reduction through the addition of the OFDM signal 
and peak-reducing signal using (22). The generation of peak-reducing signal requires    real 
multiplications and   real additions while the operation of reducing PAPR requires    real 
additions.  
 Therefore, the computational complexity of the proposed algorithm     . But because 
 ≪ , the proposed algorithm will add insignificant computational complexity in OFDM 
systems in which it is deployed to reduce PAPR. 
 For comparison to IVO-TR, CF-TR and LSA-TR methods, their computational 
complexities are provided in Table 1. The IVO-TR has many pre-work computations during 
iteration process, training process and clustering. However, the iteration process, which uses the 
slow converging CC-TR [18] to generate peak reduction tones for training the self-organizing 
map of artificial neural networks, dominates the complexity. The algorithm’s main parameters 
are the number of subcarriers  , number of samples   , number of iterations     , number of 
neurons in the input layer    and number of neurons in the hidden layer   . The IVO-TR 
requires a long pre-work time in order to generate peak-reducing tones that are close to the ones 
generated by CC-TR. At runtime, the algorithm needs a process to recognise OFDM signal and 
table search for the right peak-cancelling signal. 
 For the CF-TR and LSA-TR, the number of iterations are, respectively, denoted by     
and    . These two algorithms start by calculating the clipping noise, which is the desired peak-
cancelling signal. The LSA-TR then applies least square approximation on the noise to find the 
actual peak-cancelling signal. On the other hand, the CF-TR applies a generalised matrix inverse 
approximation on the noise. The two algorithms must in addition perform IFFT/FFT and other 
computations in each iteration and therefore, have a complexity that increases with the number of 
iterations. 
 In order to compare the runtime complexities, which is the most important for real-time 
systems, we first note that both    and    for the IVO-TR are typically greater than 100. From 
the tabulated results, it can be observed that LCSA has in general a lower computational 
complexity and therefore, is more computationally efficient than the IVO-TR, CF-TR, and LSA-
TR algorithms. 

Table 1. Complexity analysis 
Algorithm Pre-work time 

complexity 
Pre-work space 
complexity 

Runtime complexity Runtime space 
complexity 

LCSA None None           

IVO-TR                                                

CF-TR None None                    

LSA-TR None None                     
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5. RESULTS AND DISCUSSION 
The proposed LCSA method was applied to different OFDM systems, which were simulated in 
MATLAB. Systems under consideration, whose main parameters are listed in Table 2, were 
chosen for the purposes of ascertaining the method’s performance and comparison with other 
promising PAPR reduction methods.  

 Table 2. Simulation inputs 

FFT size N 64, 256 
Subcarrier modulation QPSK 

Number of OFDM symbols     
Oversampling factor    4 

Data rate loss         in % diverse 
Power amplifier model Rapp model,   = 2,     = 7 dB 

  
 As indicated in the table, during the simulations an oversampling factor,   =4, was 
applied to the discrete-time OFDM signal in order to closely estimate the continuous-time PAPR. 
All subcarriers were QPSK-modulated and this is sufficient for checking performance and 
comparing the proposed method with other methods because subcarrier modulation does not 
affect PAPR reductions. Both PAPR reduction and BER performances were analysed. 
 From (22), the generated PRS should match the desired signal and this is illustrated in Fig. 
4. Without loss of generality, an OFDM system with 256 QPSK-modulated subcarriers was used 
to ascertain the PAPR reduction capability of the method. For this purpose, different low data rate 
losses, which are          1.2%, 2.3%, 4.8%, 6.9%, and 9.2% corresponding to    3, 6, 13, 19, 
and 26 nonzero PRS samples, respectively, were considered. The CCDF curves for the different 
values of   are as shown in Fig. 5, and the PAPR reductions at CCDF       are tabulated in 
Table 3.  
 From the results in Table 3, it is evident that although the proposed LCSA method has a 
PAPR reduction capability that increases with the number of nonzero PRS samples, with only a 
few samples, high PAPR reductions can be achieved. Furthermore, the results of the average 
power increase show that the method approximately retains the average power of the original 
signal. For example with   = 26, which seems quite high, the new average power is 95.3% of the 
original value before PAPR reduction. 

 
Fig. 4. Desired and designed peak-reducing signals 
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Fig. 5. CCDFs for QPSK-modulated OFDM system with   =     

Table 3. PAPR reductions for different number of PRS samples 
Number of PRS samples M 3 6 13 19 26 

Data loss rate          1.2% 2.3% 4.8% 6.9% 9.2% 
PAPR Reduction in dB at 
CCDF =     2.28 4.10 5.64 6.35 6.83 

Average power increase in dB -0.02 -0.05 -0.10 -0.15 -0.21 
 

After evaluating the accuracy of the proposed LCSA method, its performance was 
compared to CF-TR, IVO-TR, and LSA-TR methods. An OFDM system with  =64 subcarriers 
all QPSK-modulated, and of which  =4 are reserved, was used for evaluating the performance of 
each of the four systems. The simulation parameters for IVO-TR were   =100 neurons for the 
input layer,   =200 neurons for the hidden layer, and     pre-work OFDM signals. The number 
of iterations was 3 for both the LSA-TR and CF-TR. 

The CCDFs for the different methods are shown in Fig. 6 and the PAPR reductions at 
CCDF      are presented in Table 4. As can be derived from the table, the proposed method 
has a PAPR reduction that is 0.6 dB, 1.0 dB and 1.9 dB higher than that of IVO-TR, CF-TR, and 
LSA-TR, respectively. 

 
Fig. 6. CCDFs for QPSK-modulated OFDM system with N = 64 and M = 4 
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Table 4. PAPR reduction, average power increase, and data rate losses 
Algorithm PAPR 

reduction in dB 
Average 

power increase 
in dB 

Data rate loss 

LCSA 4.1 -0.12 5.88% 
IVO-TR 3.5 0.57 6.25% 
CF-TR 3.1 0.84 6.25% 

LSA-TR 2.2 0.30 6.25% 
 

Comparing the average power of the PAPR-reduced signal by the different methods, the 
results show that the proposed method is more power efficient than the rest because it has a power 
increase that is 0.42, 0.69, and 0.96 dB below that of the LSA-TR, IVO-TR, and CF-TR, 
respectively. On the data rate loss, the proposed method has the lowest loss of the four methods 

Fig. 7 illustrates the simulated BER performances of the different methods. The Rapp 
model of the solid-state power amplifier (SSPA) was used with the smoothness parameter     . 
The input power back-off (   ) was set to 7 dB, which is slightly above the proposed method’s 
PAPR of 6.56 dB at CCDF      , in order to ensure that the probability of the clipped OFDM 
symbols was less than 1%. After amplification through the HPA, the peak-reduced signal was sent 
over an additive white Gaussian noise (AWGN) channel.  

In Fig. 7, the curve labelled “Theoretical” is the lower limit as it is the BER performance 
given by BER formula for the QPSK. The curve labelled “Without PAPR Red.” is the worst case 
upper limit as it gives the BER performance when the OFDM signal is passed through the HPA 
without first reducing the PAPR. The required bit energy to noise power spectral density,      , 
at BER =      of each method is presented in Table 5. Based on the tabulated results, the 
proposed algorithm has the lowest BER degradation because the required       is 0.02, 0.05, and 
0.07 dB below that of the IVO-TR, CF-TR, and LSA-TR, respectively. 

 

Fig. 7. BER performance of different methods over AWGN channel 

Table 5. Required       for the different methods at BER=     
Algorithm LCSA IVO-TR CF-TR LSA-TR 
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6. CONCLUSION  
In this paper, we have proposed a new PAPR reduction method for OFDM systems, which we 
refer to as a low-complexity signal addition (LCSA) method. The method designs a peak-reducing 
signal in the time-domain and then appends a few samples of the signal to the transmit signal 
instead of using the traditional way of reserving data subcarriers as done in tone reservation 
methods. Because of the design approach of the transmitted waveform, the method has a lower 
data rate loss than the tone reservation methods.  
 An investigation into the ability of the proposed method to reduce PAPR showed that it could 
achieve significant PAPR reductions with very low data rate losses while practically maintaining 
the average power of OFDM signals. The method also has a low runtime computational 
complexity of      where    is far much less than  , the total number of subcarriers, in an 
OFDM system. 

 In comparison with IVO-TR, CF-TR and LSA-TR, the proposed method outperforms the three 
in terms of PAPR reduction, computational complexity, average transmit power increase, data rate 
loss and BER performances. 
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Abstract
—A MIMO-OFDM wireless communication technique 

possesses several advantages accrued from combining MIMO 
and OFDM techniques such as increased channel capacity and 
improved BER performance. This has made the technique very 
amiable to current and future generations of communication 
systems for high data-rate transmission. However, the technique 
also inherits the high PAPR problem associated with OFDM 
signals—a problem still requiring a practical solution. This work 
proposes a PAPR reduction algorithm for solving the problem of 
high PAPR in MIMO-OFDM systems. The proposed method 
uses a low-complexity signal mixing concept to combine the 
original transmit signal and a generated peak-cancelling signal. 
The computational complexity of the proposed method is 𝑂(𝑀), 
which is very much less than 𝑂(𝑁 log2 𝑁) of the FFT algorithms. 
This is because 𝑀, which denotes the number of nonzero peak-
cancelling samples, is much less than 𝑁, the FFT window size. 
The proposed method was found to achieve high PAPR 
reductions while utilizing only a few nonzero peak-cancelling 
samples and it does not significantly change the power of the 
transmitted signal. For example, with 𝑀 = 5%  of 256-point 
IFFT samples, corresponding to a data rate loss of 4.8%, a large 
PAPR reduction of 5.9 dB could be achieved at a small power 
loss of 0.09 dB. Compared with other methods proposed in 
literature, the proposed method was found to outperform them in 
terms of PAPR reductions and BER performance.  

 
Index Terms—High power amplifier, peak-to-average power 
ratio, multiple-input multiple-output, orthogonal frequency 
division multiplexing 
 

I. INTRODUCTION 

MIMO-OFDM, as the name suggests, is a technology 
that takes advantage of the benefits accruing from both 
Multiple-Input Multiple-Output (MIMO) communication 
and Orthogonal Frequency Division Multiplexing (OFDM) 
transmission to increase both data rate and reliability in in 
a communication system. On one hand, MIMO as a 
multiple-antenna technique in which multiple antennas are 
employed at both the transmitter and receiver can be used 
to bring in spatial diversity and/or spatial multiplexing to, 
respectively, boost the system reliability i.e. bit-error rate 
(BER), and increase the achievable data rate by the 
communication system. In addition, MIMO can also be 
used for beamforming, to increase coverage, and to reduce 
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transmit power [1]. On the other hand, OFDM as a 
multicarrier modulation technique that employs parallel 
subcarriers to carry user data benefits the MIMO-OFDM 
communication system mainly with high transmission 
rates, high spectral efficiency, and the suppression of 
Inter-Symbol Interference (ISI). 

The high spectral efficiency in OFDM is achieved by 
having all the parallel subcarriers mutually orthogonal to 
one another. The ISI is eliminated by using a combination 
of a symbol duration, which is much larger than the 
expected channel delay spread, and a guard interval 
between symbols that is simply larger than the delay 
spread. In addition, in every OFDM symbol, each 
subcarrier is equivalent to a subchannel. The number of 
subcarriers is chosen to ensure that each subchannel has a 
bandwidth less than the coherence bandwidth of the 
channel so that each of the subchannels experiences a 
relatively flat fading and therefore at the receiver only a 
simple single-tap equalizer is required to recover the 
transmitted data.  

The several advantages outlined above have made 
MIMO-OFDM the key technology for the  current and 
next generations of IEEE 802.16-based worldwide- 
interoperability for microwave access (WiMAX), 4G and 
5G cellular networks, IEEE 802.11-based wireless LAN, 
wireless Personal Area Network, and broadcasting 
standards (Digital Audio Broadcasting (DAB), Digital 
Video Broadcasting (DVB), and Digital Multimedia 
Broadcasting (DMB)) [1].  

Unfortunately, although all MIMO-OFDM systems 
have all the good attributes of OFDM, they also suffer 
from the drawbacks they inherit from OFDM. One of the 
major drawbacks of OFDM, and which is also passed to 
MIMO-OFDM, is the high peak-to-average power ratio 
(PAPR) that can occur in the transmit signal. The high 
PAPR can especially be at unacceptable levels when quite 
a substantial number or all of the modulated signals on the 
OFDM subchannels add constructively in a system with a 
large number of subcarriers. The processing in the High 
Power Amplifier (HPA) of such high PAPR signals will 
result to two nonlinear amplification effects, which are 
BER degradation and out-of-band radiations [2].  

In order to avoid the two nonlinear amplification effects 
and therefore achieve distortionless processing of the high 
PAPR signals, a simple solution is to input back-off the 
HPA to a linear region far away from the 1-dB 
compression point. However, the input backed-off HPA 
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will have low power efficiency and thus consume more 
input DC power. This will in turn reduce the lifetime of 
battery power at user terminals and increase the cost of the 
transmitter [3]. It is therefore more preferable to reduce 
any high PAPR in OFDM signals to suitable levels before 
the signals are passed to the HPA. 

In the recent past, different methods have been 
proposed for PAPR reduction in OFDM and MIMO-
OFDM systems. These include signal clipping [4], [5], 
companding [6], selective mapping [7], [8], partial 
transmit sequence [9], tone reservation [10], [11], hybrid 
schemes [12]-[14], etc. As can be noted, the majority of 
the methods proposed for use in OFDM systems can be 
re-designed to make them applicable in MIMO-OFDM 
systems. The proposed methods can generally be 
classified into four main categories [15]. These are signal 
distortion techniques, multiple-signalling and probabilistic 
techniques, coding techniques and hybrid techniques.  

Under the signal distortion category, the methods 
reduce PAPR by distorting the signal before passing it to 
the HPA. In the multiple-signalling and probabilistic class, 
the methods both generate numerous alternatives of the 
OFDM signal and transmit the one with minimum PAPR 
or they reduce PAPR by modifying the OFDM signal 
through introduction of phase shifts, or addition of peak 
reduction tones, or alteration of constellation points. For 
the coding category, the methods choose the codewords 
that yield the minimum PAPR while the hybrid class 
utilises the advantages of different individual techniques 
and combine two or more schemes to improve PAPR 
reduction. For all the methods, the bottom line is to 
achieve significant PAPR reductions and improved BER 
performance at a minimal change in system complexity.  

One of the simplest signal distortion technique 
employed to reduce PAPR is amplitude clipping, which is 
normally referred to as conventional clipping. However, 
the clipping operation can lead to severe BER degradation 
and high out-of-band radiations. An Adaptive Clipping 
Technique (ACT) attempting to overcome the 
shortcomings of the conventional clipping was proposed 
[16] for Alamouti space-time block code (STBC) MIMO-
OFDM systems. However, even with the adaptive clipping, 
PAPR reductions had to be limited to avoid high BER 
degradation. In [17], a hybrid technique SCS-SLM 
combining Selective Codeword Shift (SCS) and selective 
mapping (SLM) schemes, with the aim of improving 
PAPR reduction, was proposed for STBC-based MIMO-
OFDM systems. Although the hybrid scheme gave better 
performance than the individual SCS and SLM schemes, 
the PAPR reduction was still poor. Another hybrid PAPR 
reduction scheme CSC combining and optimizing three 
methods, namely convolutional code, successive sub-
optimal cross-antenna rotation and inversion, and iterative 
modified companding and filtering was proposed for 
STBC-based MIMO-OFDM systems [18]. This method 
could significantly reduce PAPR but at the expense of 
poor BER performance and increased system complexity. 

PAPR reduction methods that alter the original transmit 
signal by adding a peak-cancelling signal have been found 
the most promising because they can achieve both high 
PAPR reduction and improved BER performance [19]. 
Examples are methods based on tone reservations, where a 
subset of data subcarriers are reserved for carrying peak 
reduction coefficients which on Fourier transformation 
give the peak-cancelling signal. However, the tone 
reservation based methods suffer from three major 
drawbacks: the hard problem of finding the peak-
reduction coefficients especially for optimal schemes, data 
rate loss, and increased transmit power. A sub-optimal 
Selective Tone Reservation (STR) method [20] was 
proposed for reducing PAPR in Space-Frequency Block 
Code (SFBC) MIMO-OFDM systems. The proposed 
algorithm is based on a time domain kernel, which is 
added to the signal of the antenna with maximum PAPR 
to reduce its peak power. Although the method had low 
complexity compared with an optimal scheme, it was 
prone to peak re-growth, increased transmit power and 
had poor PAPR reduction performance. 

To overcome the drawbacks in tone reservation 
methods, in this paper, we propose a low-complexity 
additive signal mixing method for reducing PAPR in 
space-time-coded MIMO-OFDM systems. The key idea is 
to generate a peak-cancelling signal for each MIMO-
OFDM branch based on a predetermined clipping 
threshold for the system at hand. To reduce PAPR, the 
respective peak-cancelling signals are added to the branch 
signals. For mitigating the data rate loss and the increase 
in the average power, only the nonzero samples of the 
peak-cancelling signals are transmitted together with the 
PAPR-reduced signals for use to reconstruct clipped 
amplitudes. In comparison with ACT, SCS-SLM, CSC, 
and S-TR methods, the proposed method was found to 
have better performance in PAPR reduction and BER 
improvement. 

The rest of this paper is organized as follows. Section 2 
presents the space-time block-coded MIMO-OFDM 
system and the associated PAPR. In Section 4, the 
proposed PAPR reduction method is presented. Section 5 
provides simulation results and their analysis. Lastly, 
Section 6 concludes the paper.  

II. MIMO-OFDM SYSTEM AND PAPR 

A. Space-Time Block Code (STBC) 

The very first and well-known STBC that provides 
transmit diversity is the Alamouti space-time code. The 
Alamouti code is a complex orthogonal space-time code 
specialised for the case of two transmit antennas but can 
be generalised to the case of three antennas or more. In the 
Alamouti encoder, two consecutive symbols 𝑋1 and 𝑋2 are 
encoded with the following space-time codeword matrix 
[21]: 

𝑋 = [
𝑋1

𝑋2
  
−𝑋2

∗

   𝑋1
∗] (1) 
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where the ∗ denotes complex conjugate. 
The Alamouti encoded signal is transmitted from the 

two transmit antennas over two symbol periods. During 
the first symbol period, the two symbols 𝑋1  and 𝑋2  are 
simultaneously transmitted from the first and the second 
antenna, respectively. In the second symbol duration, the 
same symbols are essentially re-transmitted in the form of 
two symbols, −𝑋2

∗  and 𝑋1
∗ , which are simultaneously 

transmitted from the first and the second antenna, 
respectively. At the receiver, an Alamouti STBC decoder 
is implemented. 

Systems deploying multiple antenna techniques at the 
transmitter and the receiver are normally referred by their 
number of transmit and receive antenna configurations. 
There are two common implementations of Alamouti 
STBC receivers: one with one receive antenna and the 
other with two receive antennas corresponding to 2 × 1 
and 2 × 2  systems, respectively. The two antenna 
configurations have the same channel capacity but 
different spatial diversity gains. 

In general, the use of multiple antenna configurations in 
the transmitter and the receiver is supposed to increase the 
channel capacity of a single-input single-output (SISO) 
antenna configuration by a factor of min (𝑁𝑡 , 𝑁𝑟), where 
𝑁𝑡 and 𝑁𝑟 are the number of transmit and receive antennas, 
respectively [22]. Since for the Alamouti STBC system, 
the same symbols are transmitted during two symbol 
durations, the channel capacity is still equal to the SISO 
system capacity. However, the Alamouti schemes achieve 
a diversity gain 𝑁𝑑 = 𝑁𝑡 × 𝑁𝑟, which by definition is the 
number of independent channel paths between the 
transmitter and the receiver. The 2 × 2 antenna system has 
a diversity gain of four, which is double that of the  2 × 1 
antenna system.  

Since the probability of all the 𝑁𝑑 channel paths having 
low signal-to-noise ratio (SNR) is very small, the diversity 
gain has profound effect on the system reliability. The 
average bit-error probability,  𝑝𝑏 , of a multiple-antenna 
system decreases exponentially with the diversity gain [23] 
according to 

 𝑝𝑏 = 𝑘Υ−𝑁𝑑 (2) 

where 𝑘 is a constant that depends on the modulation type 
and Υ is the received SNR. From this equation, it is clear 
that a 2 × 2  MIMO system offers a better BER 
performance than a multiple-input single-output (MISO) 
2 × 1 system.  

The Alamouti scheme for the 2×2 system is illustrated 
in Fig. 1. The channel impulse responses ℎ11, ℎ12, ℎ21and 
ℎ22  are assumed to be time-invariant over two symbol 
durations and are of the form |ℎ𝑖𝑗|𝑒

𝜃𝑖𝑗 , where |ℎ𝑖𝑗| and 
𝑒𝜃𝑖𝑗 denote the amplitude gain and phase alteration over 
the two symbol periods, and 𝑖 and 𝑗 are equal to 1 or 2. 

The received signals at the first receive antenna (the 
upper receive antenna in Fig. 1) during the first and 
second symbol durations are, respectively, given by 

 
𝑌11 = ℎ11𝑋1 + ℎ12𝑋2 + 𝑛11 

     𝑌12 = −ℎ11𝑋2
∗ + ℎ12𝑋1

∗ + 𝑛12. 
(3) 
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Decoder

11h

21h

12h

22h
1X2X

1X
*
2X
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12Y 11Y

21Y22Y

2X


1X


Fig. 1. Alamouti scheme for 2×2 MIMO system. 

At the second antenna the received signals for the two 
symbol durations are:  

 
𝑌21 = ℎ21𝑋1 + ℎ22𝑋2 + 𝑛21 

    𝑌22 = −ℎ21𝑋2
∗ + ℎ22𝑋1

∗ + 𝑛22. 
(4) 

The four additive terms 𝑛11, 𝑛12, 𝑛21 and 𝑛22 in (3) and 
(4) represent additive white Gaussian noise. Taking the 
complex conjugate of the signals received during the 
second symbol duration, the system equation for the 
space-time-coded MIMO system can be written as follows: 

 

[

𝑌11

𝑌12
∗

𝑌21

𝑌22
∗

] =

[
 
 
 
 
ℎ11

ℎ12
∗    

   ℎ12

−ℎ11
∗

ℎ21

ℎ22
∗    

   ℎ22

−ℎ21
∗ ]

 
 
 
 

[
𝑋1

𝑋2
] + [

𝑛11

𝑛12
∗

𝑛21

𝑛22
∗

].  (5) 

This equation is of the form 

 𝑌 = 𝑯𝑋 + 𝑛 (6) 

where 𝑯 is the channel matrix given by 

𝑯 =

[
 
 
 
 
ℎ11

ℎ12
∗    

   ℎ12

−ℎ11
∗

ℎ21

ℎ22
∗    

   ℎ22

−ℎ21
∗ ]

 
 
 
 

  
(7) 

Since the two columns of the channel matrix are 
orthogonal, the system equation in  (5) can be decoded to 
obtain the estimates of the transmitted signals by 
multiplying through by the Hermitian transpose of the 
channel matrix given as  

𝑯𝐻 = [
ℎ11

∗

ℎ12
∗   

 ℎ12

−ℎ11  
  
ℎ21

∗

ℎ22
∗   

   ℎ22

−ℎ21
] (8) 

The transmitted signals are then estimated using the 
equation  

𝑋̂ = [
𝑋̂1

𝑋̂2
] =

𝑯𝐻𝑌

|ℎ11|
2 + |ℎ12|

2 + |ℎ21|
2 + |ℎ22|

2
 (9) 

B. Space-Time Block-Coded MIMO-OFDM System 

A 2 × 2 MIMO-OFDM system employing space-time 
coding is simply an extension of the 2 × 2 MIMO system 
in Fig. 1 where the blocks of OFDM signal processing are 
added after the STBC encoder as illustrated in Fig. 2. The 

©2021 Journal of Communications 470

Journal of Communications Vol. 16, No. 11, November 2021
Appendix F: Fifth Publication

200



 

main OFDM signal-processing blocks in the transmitter 
are Inverse Fast Fourier Transform (IFFT), Cyclic Prefix 
(CP) addition, Digital-to-Analogue Converter (DAC), 
HPA, and RF front-end up-converter.  

In the receiver section, the signal processing operations 
in the transmitter section are reversed. Therefore, each 
branch of a 2 × 2 MIMO-OFDM system is the same and 
experiences similar effects of high PAPR as a SISO-
OFDM system.  

C. PAPR in MIMO-OFDM System 

With the consideration that each branch of a MIMO-
OFDM system is equivalent to a SISO-OFDM system, the 
IFFT output during one-symbol duration is the baseband 
signal given by  

𝑥𝑖(𝑛) =
1

√𝑁
∑ 𝑋𝑖(𝑘)

𝑁−1

𝑘=0

𝑒
𝑗2𝜋𝑘𝑛

𝑁  (10) 

Here, 𝑋𝑖(𝑘)  is the modulation symbol from binary 
phase-shift keying (BPSK) or M-ary quadrature amplitude 
modulation (M-QAM), 𝑁  is the total number of 
subcarriers, and 𝑖 = 1 or 2 is the branch index.  

For each branch signal 𝑥𝑖(𝑛) , the ratio of the peak 
power to the average power is given by 

 PAPR{𝑥𝑖(𝑛)} =
max

0≤𝑛≤𝑁−1
{|𝑥𝑖(𝑛)|2}

𝐸{|𝑥𝑖(𝑛)|2}
 (11) 

where E{.} is the expectation operator. For the MIMO-
OFDM system, we are interested with the maximum 
PAPR among all branches, which for the 2 × 2 system is 
given by  

𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 = max (PAPR{𝑥1(𝑛)}, PAPR{𝑥2(𝑛)}) (12) 

Because the input to the HPA is a continuous-time 
signal 𝑥𝑖(𝑡) , in the calculation of PAPR, signal 𝑥𝑖(𝑛) 
should be oversampled with a factor  ≥ 4 . This avoids 
skipping the peak value of the continuous-time signal [24] 
and in turn helps to closely estimate the continuous-time 
PAPR. 

From (10), it is clear that each branch signal is a 
summation of 𝑁  signals and therefore can have large 
amplitude fluctuations resulting from constructive and 
destructive additions. These amplitude fluctuations can 
result into high PAPR and nonlinear amplification effects 
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Fig. 2. MIMO-OFDM system deploying 2×2 Alamouti STBC.  

when the signal is passed through the HPA. Analytically, 
the distribution of the magnitudes of the amplitudes, i.e. 
|𝑥𝑖(𝑛)|, can point as to whether or not a signal has high 
power fluctuations and therefore high PAPR. 

Assuming a sufficiently large 𝑁  and that the signal 
amplitudes are statistically independent and identically 
distributed, by the central limit theorem, both the real and 
imaginary parts of the amplitudes are Gaussian-distributed 
and therefore the signal magnitudes |𝑥𝑖(𝑛)| are Rayleigh-
distributed. Consequently, signal 𝑥𝑖(𝑛) can have high 
PAPR. The highness of a PAPR can be measured using 
the complementary cumulative distribution function 
(CCDF), which is the probability that PAPR is above a 
given threshold 𝛾 and is given by the equation 

 Pr{PAPR{𝑥𝑖(𝑛)} > 𝛾} = 1 − (1 − 𝑒−𝛾)𝑁 (13) 

where Pr{.} is the probability operator.  
From (13), for fixed values of CCDF and 𝑁 , a high 

value of threshold indicates a high PAPR and vice versa. 
This has the interpretation that for a given CCDF value, 
the difference between any two-threshold values can be 
used as a measure of PAPR reduction and to indicate how 
well any proposed method reduces PAPR. 

III. PROPOSED METHOD 

In this paper, we propose a low-complexity method that 
reduces PAPR in MIMO-OFDM systems by generating 
additive peak-cancelling signals to reduce high signal 
amplitudes in transmitted signals. The proposed method is 
referred to as “low-complexity additive signal mixing” or 
in short form ASM PAPR reduction method. In order to 
avoid BER degradation due to clipping of high signal 
amplitudes, a few samples of the peak-cancelling signals 
are appended to the transmitted signals for the restoration 
of clipped amplitudes at the receiver. The peak-cancelling 
signals are derived from MIMO-OFDM transmit signals 
considering the peak power that the HPA can handle 
without signal distortion. 

A. Proposed Algorithm  

For exact cancellation of the highest peaks in a transmit 
signal without introducing new ones, a peak-cancelling 
signal should only have samples of signal peaks exceeding 
a clipping threshold. The clipping threshold can generally 
be set based on the desired PAPR level in a system. For a 
given clipping threshold 𝑥𝑡ℎ, the desired peak-cancelling 
signal for signal 𝑥𝑖(𝑛) can be generated according to the 
equation 

𝑑𝑖(𝑛) = {

𝑥𝑖(𝑛)

|𝑥𝑖(𝑛)|
(|𝑥𝑖(𝑛)| − 𝑥𝑡ℎ),   |𝑥𝑖(𝑛)| > 𝑥𝑡ℎ

0                                        ,   |𝑥𝑖(𝑛)| ≤ 𝑥𝑡ℎ

   (14) 

In vector form this signal can be expressed as 𝒅𝑖 =
[𝑑𝑖(0), 𝑑𝑖(1), … , 𝑑𝑖(𝑁 − 1)]𝑇 . The signal has both zero 
and nonzero samples. A simplified discrete-time signal 
𝑐𝑖(𝑘) containing only the nonzero entries can be written as 
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 𝒄𝑖 = [𝑐𝑖(0), 𝑐𝑖(1), … , 𝑐𝑖(𝑀 − 1)]𝑇 (15) 

where 𝑀 is the number of nonzero samples in 𝑑𝑖(𝑛). 
The tone reservation concept in [25] can be used to 

generate a peak-cancelling signal that estimates the signal 
in (14). This can be accomplished by reserving 𝐿 
subcarriers and then solving for the frequency-domain 
peak-cancelling coefficients from the following system of 
linear equations: 

 𝑸̂𝑪𝑖 = 𝒅𝑖 (16) 

where 𝑪𝑖 ∈ ℂ𝐿  is the peak-cancelling vector with 𝐿 
coefficients, 𝑸̂𝑖 ∈ ℂ𝑁×𝐿  is the submatrix made up of 
𝐿 columns, corresponding to the locations of reserved 
subcarriers in the IDFT matrix 𝑸 ∈ ℂ𝑁×𝑁 whose elements 
are given by (1/√𝑁)exp(𝑗2𝜋𝑘𝑛/𝑁).  

Due to the reservation of  𝐿 subcarriers that do not carry 
user data, there is a loss in data rate as indicated by the 
following ratio: 

 𝑅𝑙,𝑓 =
𝐿

𝑁
 (17) 

In order to reduce the data rate loss, it is desirable to 
have a very low value of 𝐿 that is much smaller than 𝑁 but 
this may negatively affect the PAPR reduction capability 
of the tone-reservation method. 

Because 𝐿 ≪ 𝑁, the system in (16) is overdetermined 
and can only be solved through the least-squares 
minimization [26]-[28] of the residual error 

 𝝐𝒊 = 𝑸̂𝑖𝑪𝑖 − 𝒅𝑖 (18) 

resulting in the closed form solution 

 𝑪𝒊 = [𝑸̂𝑖
𝐻𝑸̂𝑖]

−1
𝑸̂𝑖

𝐻𝒅𝑖 (19) 

After finding the frequency-domain coefficients, the 
time-domain peak-cancelling signal is obtained using the 
equation 

 𝒅̂𝑖 = 𝑸̂𝑖𝑪𝑖 (20) 

and the PAPR-reduced signal is then given by 

 𝑠𝑖(𝑛) = 𝑥𝑖(𝑛) − 𝑑̂𝑖(𝑛) (21) 

Because of the over-deterministic nature of the system 
determining the peak-cancelling coefficients, the peak-
cancelling signal 𝒅̂𝑖 cannot be equal to the desired signal 
𝒅𝑖, and has nonzero elements even in positions that had 
zeros in the desired signal. This can lead to the generation 
of new signal peaks in the PAPR-reduced signal 𝑠𝑖(𝑛) and 
in turn result in poor PAPR reduction. The only way to 
improve the solution in (19), in order to have 𝒅̂𝑖 ≅ 𝒅𝑖, is 
to sufficiently increase 𝐿 towards 𝑁 but this will lead to an 
unacceptably high data rate loss.  

Therefore, the two requirements of high PAPR 
reduction and low data rate loss compete directly with 

each other, and this poses a design dilemma in the 
development of the PAPR reduction method. In order to 
achieve both a high PAPR reduction and a minimum data 
rate loss, we propose, in this work, an algorithm that 
directly employs the desired peak-cancelling signal in (14) 
to reduce PAPR. The PAPR-reduced signal in this case is 
given by 
 𝑠𝑖(𝑛) = 𝑥𝑖(𝑛) − 𝑑𝑖(𝑛) (22) 

This ensures that all the highest speaks of the signal 
𝑥𝑖(𝑛)  are cancelled out without generating new ones. 
However, the clipping of the signal amplitudes will result 
in BER degradation. To avoid this, a few samples, the 
nonzero ones, of the desired peak-cancelling signal will be 
transmitted together with the PAPR-reduced signal to 
enable the receiver reconstruct back the clipped 
amplitudes. 

However, the transmission of the nonzero peak-
cancelling samples affects the system data rate because 
they do not carry user data. This data rate loss occurs in 
the time-domain and is given by 

 𝑅𝑙,𝑡 =
𝑀

𝑁 + 𝑀
 . (23) 

But for the same number of reserved tones and nonzero 
time samples, the data rate loss in the proposed method is 
less than the one given in (17) for the tone-reservation 
based methods. However, owing to the choice of the 
clipping threshold, which must be greater than the average 
value of the signal, the number of nonzero samples in 
𝑑𝑖(𝑛)  will be in all cases very small compared to the 
length of the signal i.e. 𝑀 ≪ 𝑁 and therefore 𝑅𝑙,𝑡 ≈ 0.  

Logically, the threshold at which signal 𝑥𝑖(𝑛) is clipped 
can be expressed as a function of the average value of the 
signal using the equation: 

 𝑥𝑡ℎ = 𝜆𝜇 (24) 

where 𝜇 is the mean of the signal amplitudes |𝑥𝑖(𝑛)|, and 
𝜆  is the threshold adjustment parameter in the range 
1 < 𝜆 < max(|𝑥𝑖(𝑛)|) /𝜇.  

When for a given system, the maximum allowed PAPR 
is known, the required 𝑥𝑡ℎ , and hence 𝜆 , can be found 
directly from equation  (12). After the determination of 
the clipping threshold, 𝑀  can be obtained analytically 
from the distribution of the signal amplitudes. For such a 
derivation, let 𝑋𝑛  denote a Rayleigh random variable 
representing the distribution of the signal amplitudes that 
is given by the equation 

 𝐹𝑋𝑛
(𝑥) = 1 − 𝑒

−
𝑥2

2𝜎2 ,      𝑥 ≥ 0 (25) 

where 𝜎 is the scaling parameter of the distribution. The 
average value of the distribution is  

 𝜇 = 𝜎√
𝜋

2
 (26) 

©2021 Journal of Communications 472

Journal of Communications Vol. 16, No. 11, November 2021
Appendix F: Fifth Publication

202



 

From (25), the probability of signal amplitude being 
greater than the clipping threshold is given by:  

 𝑃(𝑋𝑛 > 𝑥𝑡ℎ) = 𝑒
−

𝑥𝑡ℎ
2

2𝜎2  (27) 

and since this is equal to the ratio 𝑀/𝑁 , then by 
substituting (24) in (27), the number of nonzero entries in 
𝑑𝑖(𝑛) is obtained as follows: 

 𝑀 = 𝑁𝑒−
𝜋
4
𝜆2

 (28) 

Equation (28) indicates that the number of nonzero 
elements in the peak-cancelling signal decreases 
exponentially with the clipping threshold. The maximum 
value of 𝑀 will occur in the trivial case when the clipping 
threshold is equal to the average value, corresponding to 
𝜆 = 1  and 𝑀 = 0.46𝑁 . The minimum value of 𝑀  will 
occur when 𝑥𝑡ℎ = max (|𝑥𝑖(𝑛)|) . Then, in all practical 
cases, 𝑀 ≪ 𝑁 and therefore the data rate loss will always 
be negligible.  

The proposed algorithm is flexible in terms of the 
inputs it can use to process peak-cancelling signals from 
original transmit signals. Either it can use the maximum 
acceptable PAPR or the maximum allowed data rate loss. 
When one of either of the two inputs is given, the 
algorithm can compute the other and determine whether it 
is within the acceptable limits. If 𝑀  or the maximum 
allowed data rate loss is known, by using (28) the clipping 
threshold can be obtained as follows: 

 𝑥𝑡ℎ = 𝜇√
4

𝜋
ln (

𝑁

𝑀
)  (29) 

After obtaining 𝑥𝑡ℎ, the peak-cancelling signal can be 
found from (14). 

Fig. 3 shows two typical peak-cancelling signals for a 
2 × 2 MIMO-OFDM system. It can be observed that for 
the second transmit antenna, the peak-cancelling signal 
has 13 nonzero samples while in the first antenna signal 
they are 10. The highest peak also occurs in the second 
antenna signal. Consequently, this means that a higher 
PAPR reduction is required on the transmit signal from 
the second antenna than on the one from the first antenna. 
Additionally, because of the oversampling by a factor of 4, 
𝑁 is equal to 1024/4 = 256 and the data rate loss 𝑅𝑙,𝑡 =

0.048.  

 
Fig. 3. Peak-cancelling signals in 2 × 2 MIMO-OFDM system. 

 
Fig. 4. Composite transmit signals in 2×2 MIMO-OFDM system. 

The corresponding composite signals from the two 
transmit antennas are shown in Fig. 4. From this figure, it 
is evident that when 𝑀 ≪ 𝑁 the waveform of the PAPR-
reduced signal is barely affected by the addition of 𝑀 
peak-cancelling signal samples. Intuitively, this also 
means that the transmission of the 𝑀  samples has no 
significant effect on the average transmit power.  

However, analytically, the effect of transmitting the 
nonzero peak-cancelling samples on the average transmit 
power can be established by considering the sum of the 
powers in the clipped samples and the peak-cancelling 
clipped samples. For this purpose, let 𝑥̃𝑖(𝑘) denote the set 
of non-clipped samples greater than the clipping threshold 
𝑥𝑡ℎ  in the 𝑖th  branch signal 𝑥𝑖(𝑛)  in the MIMO-OFDM 
system. After the amplitude-clipping of the signal 𝑥𝑖(𝑛), 
all the samples in 𝑥̃𝑖(𝑘)  will have the same signal 
magnitude equal to 𝑥𝑡ℎ . Since all the signal magnitudes 
|𝑥𝑖(𝑛)| are in the range of 0 to 1, the sum of the powers in 
the clipped and peak-cancelling samples will always be 
less than or equal to the total power in the original non-
clipped samples i.e. 

 ∑(𝑥𝑡ℎ
2 + |𝑐𝑖(𝑘)|2)

𝑀

𝑘=1

≤ ∑ |𝑥̃𝑖(𝑘)|2
𝑀

𝑘=1

 (30) 

Equation (30) may suggest that the power of the 
composite signal can decrease with the number of nonzero 
samples. However, again, because of the range of values 
occupied by the signal amplitudes, such power reductions 
are very small. Therefore, the power of the original 
transmit signal is practically maintained by the proposed 
method.  

From the foregoing description, the proposed algorithm 
can be summarized as follows: 

 

ASM Algorithm  
i. Set the number of subcarriers N, data rate loss 𝑅𝑙,𝑡 , and 

𝑃𝐴𝑃𝑅𝑚𝑎𝑥 
ii. Generate MIMO-OFDM signals 𝑥𝑖(𝑛), 𝑖 = 1,2, …𝑁𝑡 
iii. Find 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 
iv. If 𝑃𝐴𝑃𝑅𝑀𝐼𝑀𝑂 <  𝑃𝐴𝑃𝑅𝑚𝑎𝑥, transmit 𝑥𝑖(𝑛) and terminate the 

algorithm, else go to step (v) 
v. Set clipping threshold 𝑥𝑡ℎ 
vi. Generate desired peak-cancelling signals 𝑑𝑖(𝑛) 
vii. Generate peak-reduced signals 𝑠𝑖(𝑛) = 𝑥𝑖(𝑛) − 𝑑𝑖(𝑛)  
viii. Determine nonzero samples in 𝑑𝑖(𝑛)  and generate signals 

𝑐𝑖(𝑘) 
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ix. Append 𝑐𝑖(𝑘) to 𝑠𝑖(𝑛) and transmit combined signal 
x. End 

 

 

 
Fig. 5. Transmitter section integrating ASM method. 

A MIMO-OFDM system integrating the proposed 
PAPR reduction is illustrated in Fig. 5. The illustration is 
for one of the MIMO branches during the first symbol 
duration. The OFDM symbol 𝑿1  from the Alamouti 
encoder is first converted from serial to parallel (S/P) 
format and then passed to the IFFT to obtain a time-
domain signal, which is then converted back to serial 
format to produce signal 𝒙1. The proposed method is then 
applied to 𝒙1 to produce two outputs: the peak-cancelling 
signal 𝒅1 and its compressed version 𝒄1  containing only 
the nonzero samples. Signal 𝒅1 is then subtracted from 𝒙1 
to get a PAPR-reduced signal 𝒔1, which is then extended 
by 𝒄1 to yield the composite transmit signal 𝒔̂1.  

The composite transmit signal is then cyclically 
extended in the append CP block with a cyclic prefix of 
length greater than the expected channel duration. The 
extension is realized by copying some samples at the tail 
end of the signal to the front end to provide a time guard 
interval for the elimination of the ISI. After the CP 
addition, the composite transmit signal is amplified 
through the HPA and then passed on for RF transmission. 

At the receiver, after removing the cyclic prefix, the 𝑀 
peak-cancelling samples in 𝒄1 are also removed and added 
back to the clipped samples to reconstruct the original 
OFDM signal 𝒙1, which is then passed to the FFT block 
for demodulation and after decoded into binary data. 

B. High Power Amplifier Modelling 

The Rapp model [29] of the HPA is used in this work. 
The model has a constant AM/PM characteristic, which 
makes it suitable for modelling the phase distortion of the 
solid-state power amplifier (SSPA). On the other hand, the 
AM/AM characteristic of the model can be easily tuned to 
simulate various nonlinear characteristics of the HPA. In 
the model, it is assumed that the HPA has a linear 
performance up to a point near the saturation point. Near 
the saturation point, a transition towards a constant 
saturated output is applied on the input signal.  

Since the model does not introduce any phase 
distortions, the AM/PM relation can be written as 

 𝜑(𝑥(𝑛)) ≈ 0 (31) 

This means that the HPA does not introduce any phase 
changes during the amplification of the input signal.  

For the amplitude amplification, the general expression 
for the AM/AM conversion is given by 

 
𝑔(𝑥(𝑛)) =

𝑥(𝑛)

(1 + (
|𝑥(𝑛)|
𝐴𝑠𝑎𝑡

)
2𝑝

)

1
2𝑝

 
(32) 

Here,  𝑥(𝑛)  is the input signal and 𝐴𝑠𝑎𝑡  denotes the 
output at the 3-dB point and is used to set the HPA 
saturation level. The smoothness parameter 𝑝 is used to 
smoothen the amplification during the transition from the 
linear to the saturation region. Therefore, a smaller 𝑝 
means a smoother transition and vice versa. 

C. Computational Complexity 

The proposed algorithm performs two main operations, 
which are the generation of peak-cancelling signal using 
(14) and the signal addition operation in (22) to reduce 
PAPR. The operation of computing the peak-cancelling 
signal requires 2𝑀  real multiplications and 2𝑀  real 
additions while the operation for reducing PAPR requires 
2𝑀 real additions. At the receiver, the reconstruction of 
the clipped signals peaks requires 2𝑀 real additions.  

The multiplication operations are more computationally 
intensive than the additions and are the one that 
determines the overall complexity of an algorithm. 
Therefore, in the order of the number of multiplications, 
the computational complexity of the proposed method is 
𝑂(𝑀).  

Because the main part of the proposed method is to be 
implemented in the transmitter and therefore form part of 
the signal processing, there is need to consider any arising 
increase in the overall computational complexity. For the 
OFDM signal processing at the transmitter, the most 
complex operation is the IFFT, which has a computational 
complexity of 𝑂(𝑁 log2 𝑁). Since 𝑀≪𝑁, then 𝑂(𝑀) ⋘
𝑂(𝑁 log2 𝑁). This means that incorporating the proposed 
method into a MIMO-OFDM system will not change the 
overall computational complexity of the system. 

IV. RESULTS AND DISCUSSION 

The proposed ASM PAPR reduction method was 
applied to reduce PAPR in MIMO-OFDM systems. 
Simulations of MIMO-OFDM systems were carried out in 
MATLAB. The key simulation parameters are listed in 
Table I. An Alamouti space-time code was used with 2 
transmit and 2 receiver antennas over Rayleigh flat-fading 
channels. The Rapp model of the HPA was used in the 
simulations. In each simulation scenario, the proposed 
algorithm was executed for 104 symbols. 

TABLE I: SIMULATION PARAMETERS 

FFT window size 128, 256 
Modulation QPSK 
Number of OFDM symbols 104 
Oversampling factor 𝑭𝒔 4 
Power amplifier model Rapp model, 𝑝 = 2 
Guard interval 1/4 
Channel model Rayleigh flat-fading 
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As it is indicated in the table, all the subcarriers were 
modulated with QPSK data. This is sufficient for 
ascertaining the method’s performance and for 
comparison to other methods because the type of 
modulation does not affect the PAPR reduction 
performance. Both the PAPR reduction and the BER 
performances were analysed. 

The very first simulations were to help assess the PAPR 
reduction capability of the proposed method. For this task, 
a system with 𝑁 = 256 subcarriers was employed. The 
system was subjected to the following number of peak-
cancelling samples: 𝑀 =  3, 6, 13, 19, and 26. These 
values of 𝑀 correspond to the following data-rate losses: 
1.2%, 2.3%, 4.8%, 6.9%, and 9.2%, respectively. The 
reduction of PAPR was then evaluated for each case using 
the CCDF as shown in Fig. 6.  

 
Fig. 6. CCDF for MIMO-OFDM system with QPSK data and 𝑁 = 256. 

TABLE II: PAPR REDUCTIONS AT CCDF = 10-3, N = 256 
𝑴 3 6 13 19 26 
𝑹𝒍,𝒕 (%) 1.2 2.3 4.8 6.9 9.2 
PAPR Reduction (dB)  2.4 4.2 5.9 6.5 7.1 
Power Change (dB) -0.02 -0.04 -0.09 -0.13 -0.18 
 
In Table II, the results for PAPR reductions at CCDF 

= 10−3  and transmit power changes due to the use of 
different number of peak-cancelling samples are given. 
From this table, it is evident that the capability of the 
proposed method to reduce PAPR depends on the number 
of the peak-cancelling samples employed. However, it can 
also be observed that with only a small number of peak-
cancelling samples, high PAPR reductions can be 
achieved e.g. with only 6 samples a good reduction of 4.2 
dB could be achieved. 

 
Fig. 7. Power spectral densities for different PAPR-reduced signals. 

In addition, on the tabulated results for the average 
power it is clear that the transmit power of the signal is 
practically maintained before and after PAPR reduction. 

For example, for 𝑀 = 26, the average transmit power is 
99.3% of the value before the PAPR reduction. Moreover, 
from the power spectral densities plots in Fig. 7, it can be 
observed that due to the small amount of clipping on only 
a few number of signal amplitudes, the out-of-band 
radiations are negligible. 

After ascertaining the ability of the proposed ASM 
method to reduce PAPR, it was then compared with four 
other promising PAPR reduction methods proposed in 
literature, which were earlier on given the acronyms SCS-
SLM, STR, ACT and CSC. For the purpose of this 
comparison, a MIMO-OFDM system with QPSK-
modulated subcarriers and 𝑀 = 23 samples, equivalent to 
a data rate loss of 15%, was used. The results showing the 
PAPR reduction performances of the different methods 
are shown in Fig. 8 and also given in Table III for 
CCDF = 10−3.  

 
Fig. 8. PAPR reduction by different methods, N = 128. 

Apparently, the proposed method shows better PAPR 
reduction capability than the other four methods and this 
is well demonstrated in the available results. For example, 
from the results in Table III, the proposed ASM method 
gives a PAPR reduction that is higher by 0.9, 2.85, 3.35, 
and 4.4 dB than the corresponding reductions by CSC, 
ACT, STR and SCS-SLM methods.  

TABLE III: PAPR REDUCTIONS AT CCDF =10-3, N = 128 
Method ASM CSA ACT STR SCS-

SLM 
PAPR reduction (dB) 7.30 6.40 4.45 3.95 2.90 

 
The second simulations were used to evaluate the BER 

performance of MIMO-OFDM systems employing the 
proposed method. These tests matter a lot because BER 
performance is the single most important indicator of 
whether or not a receiver in a communication system can 
recover transmitted symbols. The Rapp model of HPA 
was used with an input power back-off (IBO) set just 
slightly above the PAPR value of signals at CCDF 
= 10−3. This ensured that the number of symbols clipped 
by the HPA was less than 1%.  

After amplification through the HPA, the composite 
signal was transmitted over Rayleigh flat-fading channels 
with additive white Gaussian noise. The BER degradation 
when using different number of nonzero peak-cancelling 
samples was first considered followed by a BER 
performance comparison with the other methods. 
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In Fig. 9, the BER degradations caused by the use of 
different values of 𝑀  are shown. There are two curves 
labelled “Ideal”: one for when the system was simulated 
without the use of any PAPR reduction method and HPA, 
and the other for the case without PAPR reduction method 
but with HPA backed-off by 12.5 dB—a value slightly 
above the maximum PAPR value of 11.8 dB at CCDF 
= 10−3. The two ideal cases are similar and give the best-
expected case of BER performance by the system.  

 
Fig. 9. BER performance by different M-values, N = 256. 

 
Fig. 10. BER performance by different methods, N = 128. 

The worst expected BER performance is given by the 
curve labelled “No red., IBO=0”, which corresponds to 
the case when there was no PAPR reduction and the HPA 
was not provided with input back-off. For this case, the 
HPA clipped all the signal amplitudes that had power 
greater than the average power, and thereby highly 
degrading the BER. 

For the other curves for the different values of 𝑀, it can 
be observed that the degradation of BER slightly increases 
with 𝑀. However, all the curves for the different values of 
𝑀 are tightly close to the ideal BER curves. This shows 
that the proposed method can effectively reduce PAPR, 
and thereby improving the HPA efficiency, without 
significantly degrading the BER performance of the 
MIMO-OFDM system. 

For the comparison with other methods, the BER 
performances of the various methods are depicted in Fig. 
10. In the case of SISO-OFDM system, the BER curve by 
theoretical formula and that by simulation are merged, 
thus implying the same BER performance. The simulated 
case had the proposed method modified and employed to 
reduce PAPR in the SISO-OFDM system. The curve 
labelled “MIMO-OFDM ideal” is the lower limit BER 

performance as it corresponds to the case when the HPA 
and PAPR reduction were not used. The curve labelled 
“MIMO-OFDM w/o PAPR red.” is the worst-case and the 
upper limit performance as it corresponds to the case 
when no PAPR reduction method was applied to the 
transmit signal prior to amplification in the HPA. 

As it can be observed from the BER curves, the BER 
performance of all the MIMO cases, even for the worst 
case, were by far much better than for the two SISO cases. 
This confirms the theory that was presented earlier that the 
BER falls exponentially with the diversity order. 
Additionally, it can be observed that both the proposed 
ASM method and the STR method have BER 
degradations close to the ideal case while the SCS-SLM, 
CSC, and ACT have poor performances.  

In the overall, the BER performance of the proposed 
method is the best. For example, from the results in Table 
IV of the required SNR per bit, i.e. Eb/N0, at BER = 10−3, 
the proposed method requires an Eb/N0 that is smaller by 
0.29, 2.68, 3.05, and 3.64 dB to that needed by the STR, 
SCS-SLM, CSC and ACT methods, respectively. 

TABLE IV: REQUIRED Eb/N0 BY DIFFERENT METHODS AT BER = 10-3 
Method ASM STR SCS-SLM CSC ACT 
𝐄𝐛/𝐍𝐨 (dB) 4.36 4.75 7.04 7.41 8.00 

V. CONCLUSION  

In this paper, a new PAPR reduction method for 
MIMO-OFDM systems has been proposed. The method 
utilizes a low-complexity additive signal-mixing concept 
to reduce PAPR by first designing a peak-cancelling 
signal for each MIMO diversity arm, and then adding it to 
each arm’s transmit signal. To avoid BER degradation due 
to peak reductions, a few samples of the peak-cancelling 
signal are appended to the transmit signal to be used for 
amplitude reconstructions at the receiver.  

Therefore, the method reserves peak-cancelling 
resources in the time domain rather than in the frequency 
domain. This makes the method to have a lower data rate 
loss than in a conventional tone reservation method that 
reserves peak-cancelling resources in the frequency 
domain. 

An investigation into PAPR reduction capability 
showed that the proposed method could achieve 
significant PAPR reductions with very low data rate losses 
while practically maintaining average transmission powers 
of original MIMO-OFDM signals. In addition, the method 
has a low computational complexity of 𝑂(𝑀), which is by 
far much less than the FFT complexity of 𝑂(𝑁 log2 𝑁).  

Additionally, the method does not degrade the BER of 
the initial MIMO-OFDM system. In overall, in 
comparison with four other PAPR reduction methods: 
ACT, STR, SCS-SLM and CSC, the proposed method 
gives better PAPR reduction and BER performances. 
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Reducing PAPR of OFDM signals using 
a tone reservation method based on ℓ∞‑norm 
minimization
Stephen Kiambi*   , Elijah Mwangi and George Kamucha 

Introduction
Recently, OFDM is the most widely used transmission technique in high data-rate appli-
cations. For example, the transmission technique is used in digital audio broadcasting 
(DAB), digital video broadcasting (DVB), IEEE 802.11-based wireless local area net-
work (WLAN), IEEE 802.16-based worldwide interoperability for microwave access 
(WiMAX), 4th and 5th generations of mobile communication network and is a candi-
date technology for 6G of the same [1–5].

The extensive use of OFDM technique is due to its several important advantages; 
among them are high spectral efficiency, simple receiver implementation and robustness 
against frequency-selective fading. The high spectral efficiency comes from the use of a 
large number of mutually orthogonal subcarriers. The design of the receiver is simple 
because only single-tap equalization is needed. This is made possible by the fact that 

Abstract 

Orthogonal frequency division multiplexing (OFDM) continues to be the most pre-
ferred signal-multiplexing scheme for high-speed data communication. However, 
OFDM signals are known to have the problem of high peak-to-average power ratio 
(PAPR), especially when the number of subcarriers is large, which leads to nonlinear 
amplification in the high power amplifier and consequently to bit-error rate degrada-
tion and out-of-band radiation. In this paper, we propose a new optimal tone reser-
vation method for reducing high PAPR in OFDM signals in order to avoid nonlinear 
amplification effects. The method employs Chebyshev-norm minimization to deter-
mine peak-reduction coefficients for OFDM signal. Simulation results show that the 
proposed method can achieve high PAPR reduction at the expense of a small loss in 
data rate and a slight increase in average transmit power. For example, with 4 out of 64 
subcarriers reserved for peak-reduction coefficients, which represents 6.25% data-rate 
loss, the method can achieve 4.06 dB of PAPR reduction with only a 0.46 dB increase in 
average transmit power. Similarly, when 8 subcarriers or 12.5% of the total number of 
subcarriers are reserved, a PAPR reduction of 5.75 dB is achieved with a paltry 0.19 dB 
rise in transmit power.
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transmitted signals do not experience intersymbol interferences because of the use of 
sufficiently long symbol duration in conjunction with adequate time guard interval.

However, OFDM signals tend to have high PAPR that is caused by the operation of 
multiplexing many modulated signals. In some instances, the PAPR can reach unaccep-
table levels especially when large number of subcarriers is involved. A high PAPR leads 
to nonlinear amplification of signal by the high power amplifier (HPA) in the transmitter. 
This nonlinear amplification produces in-band and out-of-band radiations. The in-band 
radiations degrade the bit-error rate (BER), while the out-of-band radiations result in 
adjacent channel interferences. A simple way to avoid nonlinear amplification and the 
associated detrimental effects is to shift the operating point of the HPA away from the 
1-dB compression point by a sufficient input back-off (IBO) depending on the expected 
PAPR of input signals.

However, when the HPA is provided with an IBO to force it to operate deep into the 
linear region, its power efficiency is reduced and thus it consumes more power. Low 
power efficiency requires a complex HPA design, which increases the cost of the trans-
mitter. On the other hand, high power consumption leads to a significant reduction in 
lifetime of battery power in user terminals [6]. Therefore, a far much better solution is to 
reduce the PAPR to a suitable level before the processing of an OFDM signal in the HPA.

Recently, several PAPR reduction methods have been proposed in literature. Among 
them are those based on signal coding [7], clipping and filtering [8], companding [9], 
selective mapping [10], partial transmit sequence [11] and tone reservation [12]. PAPR 
reduction methods that reserve some tones for peak-cancelling signal have been found 
to be the most promising because they do not affect user data, and thus, the BER of the 
underlying system is maintained. In addition, such methods do not require transmission 
of side information to the receiver to aid in the recovery of user data.

The main objective of this paper is to propose an optimal tone reservation method of 
a good PAPR reduction performance that marginally increases the average transmission 
power. The method employs Chebyshev-norm approximation to find peak-reduction 
coefficients that yield a peak-reduction signal that closely estimates the desired signal. 
The proposed method can be used to reduce PAPR of signals in the current and future 
generations of communication networks in which OFDM technique is deployed. The 
performance of the proposed method is verified via simulation by the results of PAPR 
reduction and BER of OFDM system, which are also compared to those of other relevant 
and promising PAPR reduction methods.

The following is the organization of the rest of the paper. The “Related Work” section 
gives an overview, advantages and disadvantages of existing methods, which are rele-
vant to this study. The section titled “PAPR in OFDM Signals” describes PAPR and its 
measurement. In the section “Methods”, the proposed PAPR reduction algorithm is pre-
sented, while in the section headlined “Results and Discussion”, simulation results and 
their analysis are given. Lastly, the “Conclusion” section summarises the paper.

Related work
This section gives an overview of some pertinent PAPR reduction methods and whose 
performances will be compared to that of the proposed method in this paper. Gener-
ally, tone reservation (TR) methods differ by the way the peak-reduction coefficients that 
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are used to modulate the reserved tones to produce peak-reduction signal are gener-
ated. The mode of generating peak-reduction coefficients comes with its own advan-
tages and disadvantages, with the aim being to minimize the latter to allow for practical 
realization.

In [13], a tone reservation method, CF-TR, based on curve fitting was proposed. The 
method applies curve-fitting optimization technique on a signal referred to as clipping 
noise to find peak-reduction coefficients for OFDM signal. Although the method has 
good PAPR reductions, it has to perform the computationally intensive Moore–Penrose 
matrix inversion in every iteration and the resulting peak-reduced transmit signal has its 
average power significantly increased above that of the original OFDM signal.

Another tone reservation method, LSA-TR, proposed in [14] employs least squares 
approximation to find peak-reduction coefficients. Although the method converges fast 
and the increase in average transmit power is small, its PAPR reduction performance 
is very poor. A TR method, IVO-TR, based on machine learning feedforward neural 
network and initial value optimisation is proposed in [15]. The method pre-generates 
and stores all possible peak-reduction signals in a pre-work table based on the train-
ing targets generated by CC-TR method [16]. At runtime, an OFDM symbol is classi-
fied and a search is done in the table for an appropriate peak-reduction signal. Although 
the method attempts to reduce runtime complexity, its PAPR reduction is limited by the 
performance of the CC-TR method whose convergence rate is affected by initial con-
ditions. In addition, the method requires long pre-work training time to generate near 
optimal peak-reduction signals and increases the average transmit power.

A scaling signal-to-clipping noise ratio tone-reservation method, referred to as SSCR-
TR, is proposed in [17]. The peak-reduction signal is a time-domain kernel signal 
obtained by scaling down the clipping noise signal by an optimal scaling vector. The LSA 
algorithm together with peak-regeneration constraints is employed to find the optimal 
scaling vector. Although the method has fast convergence rate, it is still prone to peak 
re-growth and the PAPR reduction performance strongly depends on the clipping ratio 
employed.

Another tone-reservation scheme, ELM-TR, based on online sequential extreme learn-
ing machine with a single-hidden layer feedforward neural network is proposed in [18]. 
The method is trained on peak-cancelling signals generated by the CC-TR scheme. Due 
to the use of a single hidden layer, the training time is significantly reduced. However, its 
PAPR reduction capability depends on the performance of the CC-TR method. Further-
more, the training of the neural network is computationally intensive and requires big 
storage capacity due to massive input data and numerous trainable parameters.

PAPR in OFDM signals
The OFDM signal arises from the summation of N  modulated signals. Each modulated 
signal is basically a subcarrier signal ej2π fk t modulated by a data symbol X(k) . In the dis-
crete-time domain, the complex baseband OFDM signal in one symbol duration can be 
expressed in the form:
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The modulation symbols are obtained from binary phase-shift keying (BPSK) modula-
tion or any M-ary quadrature amplitude modulation (M-QAM). Because (1) is similar to 
the inverse discrete Fourier transform (IDFT), OFDM is easily implemented using the 
well-known fast Fourier transform (FFT) algorithm.

Assuming a large N  and that the modulated signals are statistically independent and 
identically distributed, then from the central limit theorem, both the real and imaginary 
parts of x(n) have Gaussian distribution. Accordingly, the signal magnitudes |x(n)| are 
Rayleigh-distributed, which implies that x(n) can have large amplitudes well above the 
average value. This can in turn lead to nonlinear amplification of the large amplitudes in 
the HPA, thus giving rise to in-band and out-of-band radiations.

The level of peak power with reference to average power of the continuous-time 
OFDM signal can be estimated by the peak-to-average power ratio defined as

where E {·} denotes the expectation operator. In order to avoid missing the highest peak 
of the continuous-time signal and, therefore, wrongly estimating the PAPR using (2), the 
discrete-time signal x(n) should be sufficiently oversampled typically by a factor greater 
than 4 above the Nyquist rate [19].

The level of PAPR is indicated by the complementary cumulative distribution func-
tion (CCDF) [20], which is defined as the probability that the PAPR is above a specified 
threshold γ , i.e.

where Pr{.} represents the probability operator. The CCDF is normally plotted against 
different threshold values and this produces a curve with a waterfall-like characteris-
tic. Since the number of subcarriers, N, in (3) is known, when considering more than 
one plots of CCDFs, the difference between any two thresholds at the same CCDF value 
measures the level of PAPR reduction. Therefore, this measurement can be used to judge 
how well a proposed method reduces PAPR.

Methods
The proposed method utilises the concept of tone reservation [21] in which a smaller 
number of OFDM subcarriers, which were previously intended for the transportation 
of user data, are reserved to carry PAPR reduction coefficients. The reserved subcarriers 
are referred to as peak-reduction tones. Because the reserved subcarriers do not carry 
user data, a data-rate loss expressed as

(1)x(n) =
1

√

N

N−1
∑

k=0

X(k)ej2π
kn
N , n = 0, 1, . . . ,N − 1

(2)PAPR{x(n)} =

max
0≤n≤N−1

{

|x(n)|2
}

E{|x(n)|2}

(3)Pr
{

PAPR{x(n)} > γ
}

= 1−
(

1− e−γ
)N

(4)Rf =
L

N
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is expected in a commrununication system employing a PAPR reduction method based 
on the tone reservation concept. In (4), L and N  denote the number of reserved subcar-
riers and total number of subcarriers in one OFDM symbol, respectively.

In order to minimize the data-rate loss in (4), the number of reserved subcarriers 
should be set much smaller than the total numbers of subcarriers, i.e. L ≪ N  . In addi-
tion, to avoid distorting the user data due to the introduction of peak-reduction coef-
ficients, the peak reduction tones and the data-bearing subcarriers are made to occupy 
two disjoint frequency subspaces in every OFDM symbol. Thus, in the reserved subcar-
rier positions, there are no modulating data symbols, i.e. they are set to zero. Likewise, 
in the locations allocated for subcarriers for user data, the peak-reduction coefficients 
are set to zero. At the receiver, the disjoint frequency subspaces allow the transmitted 
symbols to be recovered from the FFT output without distortion by considering only the 
locations of data-bearing subcarriers.

The tone reservation concept that has just been described is illustrated in Fig. 1, where 
X(k) and C(k) are the modulating data symbols and peak-reduction coefficients, respec-
tively. As shown in the figure, after the inverse FFT (IFFT) operation, the resulting com-
bined signal  s = x − c has a reduced peak amplitude and hence lower PAPR than the 
original time signal x . After reduction in PAPR, the combined signal is converted into 
an analogue signal by a digital-to-analogue converter (DAC) then up-converted to radio 
frequency fc before being passed to HPA for power amplification.

The generation of a low PAPR transmit signal s(n) using the tone reservation concept 
can be described by the equation

or in matrix notation as

Here, Q ∈ C
N×N is the IDFT matrix and contains the elements given by 

( 1/
√

N )exp
(

j2πkn/N
)

 , s = [s(0), s(1), . . . , s(N − 1)]T is the peak-reduced signal vec-
tor, x = [x(0), x(1), . . . , x(N − 1)]T contains samples of original OFDM signal and 
C = [C(0),C(1), . . . ,C(N − 1)]T is a frequency-domain vector of the peak-reduction 
coefficients.

If we let ˆC ∈ C
L denote the vector containing the L nonzero elements of C , the peak-

reduction signal c can be expressed as

where the IFFT submatrix Q̂ ∈ C
N×L is made up of L columns of Q corresponding to the 

locations of the reserved subcarriers.

Proposed method

Ideally, the peak-reduction signal can be considered to consist of samples of 
the difference signal between the original OFDM samples and the clipped 

(5)

s(n) = x(n)− c(n)

= x(n)−
1

√

N

N−1
∑

k=0

C(k)ej2π
kn
N

(6)s = x − QC

(7)c = Q̂ ˆC
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version. The clipped signal is derived by clipping the OFDM signal at a thresh-
old xth . Analytically, the desired peak-reduction signal can be expressed as a vector 
d = [d(0), d(1), . . . , d(N − 1)]T with components given by

The saturation point of the HPA can be used to determine the clipping threshold. 
Given the maximum PAPR allowed in an OFDM-based communication system, the 
clipping threshold can be found from (2) as follows:

For effective reduction in PAPR, the actual peak-reduction signal should be close or 
equal to the desired signal. In other words, the residual error

between the two signals should be as small as possible if not equal to zero. This can be 
achieved through the minimization of the residual error using an appropriate norm to 
measure the error level. Noting that the highest peak in d is the main cause of high PAPR 
in signal x , it is preferable to minimize the Chebyshev ( ℓ∞ ) norm of the residual error in 
order to ensure that the largest error magnitude is minimized.

From the foregoing discussion, the problem of minimizing the residual error can be 
formulated as the following Chebyshev approximation problem [22]:

where ||.||∞ denotes the ℓ∞-norm.
The Chebyshev approximation problem (11) has no closed form solution but can be 

solved after casting it into the following linear program:

in which t ∈ R and ˆC ∈ C
L are the optimization variables and Q̂n ∈ C

L and d(n) ∈ C , 
for n = 0, 1, 2, . . . ,N − 1 , are the problem parameters. Note that, Q̂n is a column vector 
equal to the transpose of the n th row of matrix Q̂.

After solving (12), the time-domain peak-reduction signal and the transmit signal 
are obtained using (7) and (6), respectively. The main steps of the proposed algorithm 
are listed in Table 1.

The effectiveness of the proposed method in terms of peak-power reduction can 
be measured by comparing the level of the maximum power of the peak-reduced sig-
nal to that of the average power of the original OFDM signal. In order to do such a 
comparison, the peak-to-average power ratio of the peak-reduced signal is defined as 
follows:

(8)d(n) =

{

x(n)
|x(n)| (

|x(n)| − xth), |x(n)| > xth
0, |x(n)| ≤ xth

(9)xth =

√

PAPRmaxE
{

|x(n)|2
}

(10)r = Q̂ ˆC− d

(11)minimize ||Q̂ ˆC− d||∞

(12)
minimize t

subject to Q̂T
n
ˆC− t ≤ d(n)

−Q̂T
n
ˆC− t ≤ −d(n)
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One drawback of the just proposed method is that it increases the transmit power, i.e. 
the average power of signal s will be higher than the average power of signal x —a problem 
that is inherent to all methods based on the tone reservation concept. However, because 
the desired peak-reduction signal has most of the components equal to zero, the peak-
reduction signal resulting from the Chebyshev approximation is expected to have most of 
its samples very small, close zero, and thus the increase in the average power will be small.

Computational complexity

Depending on the size of the problem in (12), it can be solved using one of the three linear 
programming algorithms [23], namely interior-point, active-set and simplex algorithms to 
find the peak-reduction coefficients. The proposed method will employ the interior-point 
method to solve (12). Since there is no simple analytical formula for the solution to a linear 
program, the required number of arithmetic operations cannot exactly be established.

However, in practice, the interior-point method is known to have a complexity O
(

NL2
)

 , 
where N  and L are number of rows and columns of matrix Q̂ , respectively [22]. Addition-
ally, since Q̂ is a submatrix of the well-structured IDFT matrix, the linear program in (12) 
can be solved with complexity O

(

N log2N
)

 [24].
The complexity of the proposed method and those in the related work section are listed 

in Table 2. In the table, I , Isscr , Icf and Ils denote the respective number of iterations required 
to find the peak-reduction coefficients at runtime for the proposed method, SSCR-TR, 
CF-TR and LSA-TR methods. For the ELM-TR and IVO-TR methods, Ns , Ni , N1 and No 
denote the size of the training-data set and the number of neurons in the input, hidden and 
output layers, respectively.

Results and discussion
The proposed method was employed to reduce PAPR in OFDM systems with N = 64 
subcarriers. The simulation parameters, which are listed in Table 3, were purposely cho-
sen to help ascertain the performance of the method in terms of PAPR reduction and 
BER degradation and to allow for comparison with other methods. The problem in (12) 

(13)PAPR{s(n)} =

max
0≤n≤N−1

{

|x(n)− c(n)|2
}

E{|x(n)|2}

Table 1  Proposed TR algorithm

i Set number of subcarriers N , allowed data rate loss Rf  and maximum allowed PAPRmax

ii Generate OFDM signal x and calculate PAPR

iii If calculated PAPR < PAPRmax , transmit x and terminate program, else got to step (iv)

iv Calculate clipping threshold xth =

√

PAPRmaxE
{

|x(n)|2
}

v Generate desired peak-reduction signal d

vi Generate IFFT submatrix Q̂ ∈ C
N×L

vii Use interior-point method to minimize ||Q̂Ĉ− d||∞ and solve for PRCs vector Ĉ

viii Compute peak-reduction vector c = Q̂Ĉ

ix Compute s = x − c and transmit

x End
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was first re-formulated in MATLAB to take into account the real and imaginary parts 
of the inequality constrains. The interior-point method was then employed to solve the 
linear program for the peak-reduction coefficients.

To have a good estimate of the continuous-time PAPR, all the discrete-time signals 
were oversampled by a factor of 4. In addition, the Rapp’s model of HPA [25] was used 
with the smoothness parameter p set at 2 and the IBO at 8 dB, which is approximately 
1 dB above the PAPR of peak-reduced signals at the CCDF   =  10−3. This IBO setting 
ensures that the percentage of signal amplitudes clipped by HPA is less than 1%. Addi-
tionally, since the type of subcarrier modulation does not affect the level of PAPR reduc-
tion, only the QPSK modulation was used during the simulations.

In Fig. 2, the PAPR reduction performance of the proposed method is shown for two 
cases of 4 and 8 reserved subcarriers out of the 64 subcarriers. The two cases give a data-
rate loss of 6.25% and 12.5%, respectively. The PAPR reduction at CCDF = 10–3 is 4.06 dB 
and 5.75 dB for 4 and 8 reserved subcarriers, respectively. This shows that the proposed 
method can achieve high PAPR reductions with only a small percentage of the total 
number of subcarriers reserved for peak-reduction coefficients. It can also be observed 
that the reduction in PAPR increases with the number of reserved subcarriers. However, 
since the PAPR reduction is at the expense of a data-rate loss due to the reserved subcar-
riers, a compromise between the two is necessary depending on the requirements of the 
communication system.

The PAPR reduction for the case of 4 reserved subcarriers was used to compare the 
performance of the proposed method to ELM-TR, SSCR-TR, IVO-TR, CF-TR and LSA-
TR methods. For the IVO-TR and ELM-TR methods, NO = 400, N1 = 1000, NS = 105 and 
the size of the test-data set is 104. In addition, the training target is 100 iterations of 
CC-TR method. The number of iterations for the CF-TR, LSA-TR and SSCR-TR meth-
ods is 2, 3 and 5, respectively.

Table 2  Computational complexity comparison

Method Training complexity Runtime complexity

Proposed method None I × O
(

N log2 N
)

ELM-TR O(NiN1 + NsN1No) O(NiN1 + N1No)

SSCR-TR None Isscr × O
(

N + N log2 (N)
)

IVO-TR Ns × O(NiN1 + N1No +MNo) O(NiN1 + N1No)

CF-TR None Icf × O
(

N log2 N
)

LSA-TR None 2Ils × O
(

N log2 N
)

Table 3  Simulation parameters

Total subcarriers, N 64

Subcarrier modulation QPSK

Number of OFDM symbols 104

Oversampling factor 4

Number of reserved subcarriers, L 4, 8

Power amplifier model Rapp model, 
p = 2, 
IBO = 8 dB
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The CCDF curves for the six methods are depicted in Fig. 3, and the results for PAPR 
reductions at CCDF = 10–3 and the average power increase are summarized in Table 4. 
From these results, it can be observed that the proposed method has better PAPR reduc-
tion performance than the rest. At the CCDF = 10–3, the proposed method exhibits a 
higher PAPR reduction than the ELM-TR, SSCR-TR, IVO-TR, CF-TR and LSA-TR 
method by 0.21, 0.87, 0.51, 0.90 and 1.75 dB, respectively.

For the BER performance, the results for the six methods are given in Fig. 4. The BER 
performances are for the cases of transmission of amplified peak-reduced signals over 
additive white Gaussian noise (AWGN) channels. The curve labelled Theoretical gives 
the lower limit or the best-expected performance as it corresponds to the performance 
given by the BER formula of the QPSK modulation. The curve labelled Without PAPR 
Reduction is for the case when the OFDM signals were amplified through the HPA with 
the IBO = 0 dB and therefore is the worst expected BER performance.

The required SNR per bit, i.e. Eb/No , at BER = 10−3 for the methods is presented in 
Table  5. As it is expected of methods based on tone-reservation concept, all the six 
methods have approximately the same BER performance. However, due to the setting of 
the IBO and the level of PAPR reduction, the proposed LP-TR method has a slightly bet-
ter BER performance than ELM-TR, SSCR-TR, IVO-TR, CF-TR and LSA-TR method by 
0.02, 0.06, 0.03, 0.08 and 0.11 dB, respectively.

Conclusions
In this work, we have proposed a new optimal tone reservation method for reducing 
PAPR of OFDM signals. The method first generates a desired peak-reduction signal, and 
then, using linear programming of the Chebyshev approximation problem, it designs the 
actual peak-reduction signal, while utilising only a small number of reserved subcarriers 
for peak-reduction coefficients.

Table 4  PAPR reduction and average power increase

Method PAPR reduction [dB] Power 
increase 
[dB]

Proposed LP-TR 4.06 0.46

ELM-TR 3.85 0.59

SSCR-TR 3.19 0.25

IVO-TR 3.55 0.57

CF-TR 3.16 0.84

LSA-TR 2.31 0.30

Table 5  Required Eb/No at BER = 10−3

Method Eb/No (dB)

Proposed method 7.21

ELM-TR 7.23

SSCR-TR 7.27

IVO-TR 7.24

CF-TR 7.29

LSA-TR 7.32
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With a small number of reserved subcarriers, the proposed method achieves signifi-
cant PAPR reductions, e.g. with 4 and 8 reserved subcarriers out of a total of 64, 4.06 
and 5.75 dB of PAPR reductions are attained, respectively. In addition, the method only 
causes only a small increase in transmit power, e.g. for the case of 4 reserved subcarriers, 
the power increase is 0.46 dB. Additionally, the method does not affect the BER of the 
underlying OFDM system.

In comparison with five other methods, namely ELM-TR, SSCR-TR, IVO-TR, CF-TR 
and LSA-TR method, the proposed method has better PAPR reduction performance. 
At CCDF = 10–3 for the case of 4 reserved subcarriers out of 64, the proposed method 
achieves 0.21, 0.87, 0.51, 0.90 and 1.75 dB of PAPR reduction above the ELM-TR, SSCR-
TR, IVO-TR, CF-TR and LSA-TR method, respectively.

In future work, the proposed method can be employed to reduce PAPR in an OFDM 
system employing adaptive modulation and coding during one symbol duration. Addi-
tionally, the peak-reduction signals generated by the proposed method can be used 
as training targets for a PAPR reduction method based on machine learning. Another 
future research is to develop a faster algorithm than the interior-point algorithm to solve 
the formulated Chebyshev approximation problem in this paper and thereby reduce 
convergence time and computational complexity.
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Appendix H: MATLAB Programs 

This appendix presents the programs that were developed in MATLAB for 

generating some of the figures in this thesis and for the simulation of the proposed 

methods. The following are the main functions of the programs: 

i) The OFDMSignalDistribution.m function that generates OFDM signal, computes 

and plots the probability density function of the amplitudes. 

ii) The plotCCDF_Diff_N.m function that generates OFDM signals with different 

number of subcarriers and for each signal computes and plots the CCDF of 

PAPR. 

iii) The trSOCP.m function that implements the proposed SCOP-TR method for 

reduction of PAPR of OFDM signals. 

iv) The trLpCheby.m function that implements the proposed LP-TR method for 

reduction of PAPR of OFDM signals. 

v) The trIRLS.m function that implements the proposed IRLS-TR method for 

reduction of PAPR of OFDM signals. 

vi) The lcsaMethod().m function that realizes the proposed LCSA method for 

reduction of PAPR of OFDM signals. 

vii) The lcasmMIMO.m function that implements the proposed LCASM method for 

reducing PAPR of MIMO-OFDM signals. 

H.1 Program to Illustrate Distribution of OFDM Signal Amplitudes  
% -----------------------------------------------------------------------% 

% Purpose: To plot the distribution of OFDM signal amplitudes; real and  % 

%          imaginary part, and the combination                           % 

% Author:  Stephen Kiambi                                                % 

% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)     % 

%------------------------------------------------------------------------% 

  

function OFDMSignalDistribution_new() 

    clc; clear all; close all; clf; 

    %% Parameters 

    Nfft=16; %FFT size 

    nBit=2; %No. of bits per symbol 

    Fs=16; %oversampling factor 

    NF=Nfft*Fs; %Length of oversampled signal 

    T=1/NF; %Plot time interval 
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    t = 0:T:1-T; %time-variable 

    nHists=1e3;%No. of histograms 

    nBins=30; %No. of bins 

  

    %% Generate OFDM time-signal 

    [X,modTyp] = mapperSymb(nBit,Nfft); %Generate 16 QPSK modulation symbols 

    X(1) = 0; %Set DC subcarrier to zero 

    for kk = 1 : Nfft % Generate 16 subcarrier time-signals 

        if kk <= Nfft/2,  

            x_sig = ifft([zeros(1, kk-1) X(kk) zeros(1, NF-kk+1)],NF); 

        else 

            x_sig = ifft([zeros(1,NF-Nfft + kk-1) X(kk) zeros(1,Nfft-kk)],NF); 

        end 

        xRe(kk, :) = real(x_sig); % Real parts of the 16 signals 

        xIm(kk,:) = imag(x_sig); % Imaginary part of the 16 signals 

    end 

    sumxRe = sum(xRe); %Combine the real parts of the 16 signals 

    sumxIm = sum(xIm); %Combine the imaginary parts of the 16 signals 

  

    %% Plotting the real, imaginary and their combination 

    figure(1)  

    subplot(3,1,1) 

    plot(t,xRe,'k:') 

  

    hold on;  

    fig_1=plot(t,sumxRe,'b'); 

    ylabel('x_{R}(t)','FontSize',14,'FontWeight','bold'); 

    set(fig_1,'LineWidth',2.5); 

    title([modTyp ', N=' num2str(Nfft)]);  

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    subplot(3,1,2)  

    plot(t,xIm,'k:');  

    hold on,  

    fig_2=plot(t,sumxIm,'b'); 

    ylabel('x_{I}(t)','FontSize',14,'FontWeight','bold'); 

    set(fig_2,'LineWidth',2.5); 

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    subplot(3,1,3)  

    fig_3 = plot(t, abs(sumxRe+1i*sumxIm),'b');  

    set(fig_3,'LineWidth',2.5); 

    hold on; 

    ylabel('|x(t)|','FontSize',14,'FontWeight','bold');  

    xlabel('t','FontSize',14,'FontWeight','bold'); 
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    fig_d = plot (t, ones(1,length(t))*mean(abs(sumxRe+1i*sumxIm)),'r-'); 

    set(fig_d,'LineWidth',2.5); 

    hold off 

    legend('|x(t)|','Average of |x(t)|') 

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    clear('xI'), clear('xQ') 

  

    %% Generate the distribution of the real, imaginary and combined amplitudes  

    for m = 1:nHists 

        [X,modTyp] = mapperSymb(nBit,Nfft); %Generate 16 QPSK symbols 

        X(1)=0; %Set DC subcarrier to zero 

        for kk = 1:Nfft 

            if (kk<= Nfft/2)  

                x_sig=ifft([zeros(1,kk-1) X(kk) zeros(1,NF-kk+1)],NF); 

            else 

               x_sig=ifft([zeros(1,NF-Nfft/2+kk-Nfft/2-1) X(kk) zeros(1,Nfft-kk)],NF); 

            end 

            xRe(kk,:) = real(x_sig);  

            xIm(kk,:) = imag(x_sig); 

        end 

         

        histRe(NF*(m-1)+1:NF*m)=sum(xRe); %Histogram for real part 

        histIm(NF*(m-1)+1:NF*m)=sum(xIm); %Histogram for imaginary part 

    end 

  

    %% Plot the distributions of the real, imaginary and combined amplitudes 

    figure(2) 

    subplot(3,1,1)  

    [xRd,bins]=hist(histRe,nBins); 

    bar(bins,xRd/sum(xRd),'k'); 

    title([modTyp ', N=' num2str(Nfft)]);  

    ylabel('pdf of x_{R}(t)','FontSize',14,'FontWeight','bold'); 

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    subplot(3,1,2)  

    [xId,bins]=hist(histIm,nBins); 

    bar(bins,xId/sum(xId),'k'); 

    ylabel('pdf of x_{I}(t)','FontSize',14,'FontWeight','bold'); 

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    subplot(3,1,3)  

    [x_combd,bins]=hist(abs(histRe+1i*histIm),nBins); 

    bar(bins,x_combd/sum(x_combd),'k');  
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    ylabel('pdf of |x(t)|','FontSize',14,'FontWeight','bold');  

    xlabel('x_{0}','FontSize',14,'FontWeight','bold'); 

    set(gca,'FontSize',14,'FontWeight','bold'); 

end  

 

%Generate Modulation Symbols 

function [modSymbols,modTyp] = mapperSymb(nBit,N) 

    modOrder=2^nBit; % Number Symbols digital Modulation 

     

    if nBit == 1  

        modTyp='BPSK'; 

         

        normEs=1;  

        modObject=modem.pskmod('M',modOrder); 

         

    elseif nBit == 2  

        modTyp='QPSK';  

         

        normEs=1; 

         

        %Create QPSK modulator 

        modObject=modem.pskmod('M',modOrder, 'PhaseOffset',pi/4,'SymbolOrder','gray');  

         

    else 

        modTyp=[num2str(2^nBit) 'QAM']; 

         

        %Es is the average energy of modulation symbols 

        Esym=1;    

         

         %factor to normalize symbols 

        normEs=sqrt(3*Esym/(2*(modOrder-1)));      

         

        %Create M-ary QAM Gray encoded modulator 

        modObject=modem.qammod('M',modOrder,'SymbolOrder','gray'); 

    end 

  

    %Generate N random symbols 

    mod_int= randi([0,modOrder-1],1,N); 

    modSymbols = normEs*modulate(modObject,mod_int); 

end 
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H.2 Program to Illustrate Increase of PAPR with Number of Subcarriers 
% -----------------------------------------------------------------------% 
% Purpose: To plot the PAPR CCDF of OFDM signal for different number     % 
%          of subcarriers                                                % 
% Author: Stephen Kiambi                                                 % 
% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)     % 
%------------------------------------------------------------------------% 

  
function plotCCDF_Diff_N() 

    clc; clear all; close all; clf; 

    %% Parameters 

    Nsub=2.^(6:10); %No. of subcarriers 

    nBits=2; %No. of bits per symbol 

    M=2^nBits; %Modulation size 

    Nsym=1e4; %Frame size or number of OFDM symbols  

    ydB=4:0.1:12; % PAPR threshold variable 

    n_ydB=length(ydB);%No. of points on the horizontal axis 

    % 

    %% CCDF equation (3.43) 

    formulaCCDF=inline('1-((1-exp(-y.^2/(2*sigma))).^N)','N','sigma','y');  

  

    %% Generation of CCDFs 

    for k = 1:length(Nsub) 

        Ns = Nsub(k);  

        xSig = zeros(Nsym,Ns); 

        for i=1:Nsym 

            X=mapperSymb(nBits,Ns);  

            xSig(i,:)=ifft(X,Ns)*sqrt(Ns);  

            PAR(i)=paprSig(xSig(i,:)); %Store PAPR values 

        end 

        sigma = mean(mean(abs(xSig)))^2/(pi/2); %Standard deviation 

        formulatedCCDF=formulaCCDF(Ns,sigma,10.^(ydB/20)); 

  

        for n=1:n_ydB,  

            simulatedCCDF(n)=sum(PAR>ydB(n))/Nsym;  

        end 

  

        % Plot CCDFs from the formula and simulation 

        fig_a=semilogy(ydB,formulatedCCDF,'r-'); hold on; grid on; 

        set(fig_a,'LineWidth',2.0) 

        fig_b=semilogy(ydB(1:3:end),simulatedCCDF(1:3:end),'b:*'); 

        set(fig_b,'LineWidth',2.0) 

    end 

    axis([ydB([1 length(ydB)]) 1e-3 1]);  

    title('Simulation of CCDF for OFDM Signals with Different Numbers of Subs'); 

    xlabel('\gamma [dB]','FontSize',14,'FontWeight','bold');  

    ylabel('CCDF','FontSize',14,'FontWeight','bold');  

228



Appendix H: MATLAB Programs  
 

    legend('By CCDF formula','By simulation'); 

    set(gca,'FontSize',14,'FontWeight','bold'); 

end 

 

%Calculate and return the PAPR of signal x in dB 

function paprdB = paprSig(xSig) 

lenSig=length(xSig);  

xRe=real(xSig);  

xIm=imag(xSig);  

pwrSig = xRe.*xRe + xIm.*xIm; 

avgPwr = sum(pwrSig)/lenSig;  

peakPwr = max(pwrSig);  

paprdB = 10*log10(peakPwr/avgPwr); 

 

H.3 Program for SOCP-TR Method 
% -----------------------------------------------------------------------------% 
% Purpose: To reduce the PAPR of OFDM signals using the proposed SOCP-TR method% 
% Author:  Stephen Kiambi                                                      % 
% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)           % 
%------------------------------------------------------------------------------% 

  
% The proposed method employs second-order cone programming (SOCP) to minimize  

% the infinity norm, i.e., min max |Q_hat*C_hat+x|                                  % 

% The trSOCP.m function generates the peak-reduction coefficient vector C  

% for OFDM signal (x) by calling the cOptSocp.m function.  

% The function cOptSocp.m is formulated in CVX (a MATLAB software for  

% disciplined convex programming) syntax. 

% C is converted to peak-reduction time-domain signal c. 

% The data vetor, X, and peak-reduction coefficient vector, C, occupy  

% disjoint frequency subspaces.  

% X has N-L nonzero values while C has L nonzero values. 

% The PAPR-reduced signal is s=x+c. 

  

%% main function 

function [PAR_sdB, Avg_p_inc]=trSOCP() 

clear all; clc; close all; clf; 

  

startDate=date; %Store date 

tic;        %start stopwatch timer 

  

%% Parameters 

N=64;%FFT size 

nBits=2; %Number of bits per symbol                

Nsym=1e0; %frame size 

Fs=4; %oversampling factor 
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NF=N*Fs; %length of oversampled signal 

% 

ydB=0:0.1:16; % PAPR threshold variable 

N_ydB=length(ydB); 

  

%% Initialize container objects 

PAR_sdB={zeros(1,Nsym); zeros(1,Nsym);zeros(1,Nsym)}; %PAPR container object 

CCDFbySimulation={zeros(1,N_ydB); zeros(1,N_ydB);zeros(1,N_ydB)}; %CCDF container 

object 

  

%% Set the number of reserved subcarriers 

Lprt=4;%ceil([0.05*N 0.2*N]); %5% and 20% reservation      

  

for n=1:length(Lprt)  

    if mod(Lprt(n),2)==1  

        Lprt(n)=Lprt(n)-1; %number of reserved subcarriers 

    end  

end 

  

%% File for storing PAPR 

file_name=['OFDM_PAPR_SOCP_TR', num2str(N), '_L' num2str(Lprt), '_' ... 

    datestr(now,'dd-mmm-yy_HH_MM') '.dat']; 

fid=fopen(file_name, 'w+'); 

% 

%% 

Avg_p_inc=zeros(length(Lprt),1); %initialise placeholder for average power increase                                    

  

for p=1:Nsym  

    count=p %#ok<NASGU,NOPRT> 

    % 

    [X,Mod] = mapperSymb(nBits,N);    %Generate modulation symbols               

      

    % Frequency domain oversampling 

    X=[X(1 : N/2) zeros(1, N*(Fs-1)) X(N/2+1 : end)]; 

     

    x=ifft(X,NF)*sqrt(NF)/sqrt(N);          %Convert the output of IFFT to OFDM signal 

    %x=resample(x,Fs,1);        % oversampling  

  

    [PeakPx,AvgPx] = paprSig(x); %Return peak and average power of x 

    PAR_sdB{1}(p)=10*log10(PeakPx/AvgPx); %Calculate PAPR 

    pwr_x_dB=10*log10(mean(abs(x).^2)); %peak power of x 

   

    for n=1%:length(Lprt) 

        X_os=X; 
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        L=Lprt(n); 

        out=randperm(N); m=sort(out(1:L));   %Generate L random PRT locations 

         

        %positions of PRT in oversampled sig. 

        m(m>N/2)=m(m>N/2)+N*(Fs-1); 

        %             

        X_os(m)=0;                         %reserve L subcarriers 

        % 

        C=zeros(1,NF);                      %initialize PRC vector 

        C(m)=cOptSocp(m,NF,X_os);             %generate peak-reduction coefficients 

        

        s=ifft(X_os+C,NF)*sqrt(NF)/sqrt(N);   %transmit signal s=x+c      

         

        [PeakPs] = paprSocpTr(s);           %peak power of transmit signal 

  

        PAR_sdB{n+1}(p)=10*log10(PeakPs/AvgPx);  %PAPR of the transmit signal 

         

        % Power increase calculation        

        pwr_s_dB=10*log10(mean(abs(s).^2)); 

        p_inc=pwr_s_dB-pwr_x_dB; 

        Avg_p_inc(n)=(Avg_p_inc(n)*(p-1)+p_inc)/p;  

    end; 

end; 

  

%% CCDF data and plotting 

linColr={('r-'), ('b:'),('g--')}; %colour for the plots 

% 

for k=1:length(Lprt)+1 

    for i=1:N_ydB,  

        CCDFbySimulation{k}(i)=sum(PAR_sdB{k}>ydB(i))/Nsym; %generate CCDF 

    end 

    semilogy(ydB(1:3:end),CCDFbySimulation{k}(1:3:end),linColr{k});%plot the CCDFs 

    grid on;  

    hold on; 

end; 

% 

toc %end stopwatch timer 

execTime=round(100*toc/3600)/100;     %display the duration of execution on the 

screen. 

% 

%CCDF plot labels 

axis([ydB([1 end]) 1e-5 1]);  

title(['PAPR of Signal for N = ',  num2str(N),' subcarriers, ','Mod. = ', 

num2str(Mod), ', NBlk =', num2str(Nsym),... 

    ', Date: ', num2str(startDate), ', Exec. time=', num2str(execTime), ' hours']); 
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xlabel('\gamma(dB)'); ylabel('Pr(PAPR > \gamma)');legend('Original PAPR','PRC=6.25%'); 

hold off 

  

%% Scatter/bubble plot  

r=max(max(abs(real(x))),max(abs(imag(x))))+0.5; 

figure 

scatter(real(x),imag(x)), hold on, 

scatter(real(s),imag(s),[],'filled'), hold off, 

axis([-r, r, -r, r]),  

axis square,  

xlabel('Re'); ylabel('Im');legend('x','s=x+c'); 

title(['Scatter plots of time-domain signals x and s, ','N = ',  num2str(N),', Mod. = 

', num2str(Mod)]); 

end  

  

%%Calculate PAPR of signal 

function [peakPwr,avgPwr] = paprSocpTr(xSig) 

lenSig=length(xSig);  

xRe=real(xSig);  

xIm=imag(xSig);  

pwrSig = xRe.*xRe + xIm.*xIm; 

avgPwr = sum(pwrSig)/lenSig;  

peakPwr = max(pwrSig);  

paprdB = 10*log10(peakPwr/avgPwr); 

 

%Returns peak-reduction coefficients 

function C_hat=cOptSocp(m,N,X) 

%This function generates peak-reduction coefficients in the frequency     % 

%domain by minimizing max |Q_hat*C_hat+x|                                 % 

%Utilizes the complex number multiplication (a+jb)(y+jz)=(ay-bz)+j(az+by) %  

%for the matrix multiplication Q_hat*C_hat.                               % 

  

%% inputs        

L=length(m); %Number of peak-reduction coefficients 

x=(ifft(X,N)*sqrt(N)).'; %time-domain signal 

Q_N=ifftmatSocp(N); %generate IFFT matrix, Q_hat, of size N x N 

Q_hat=Q_N(:,m);    %generate sub-ifft matrix, Q_hat, of size N x L 

  

%% Matrix A=[A1;A2; ... Ap]; p=N 

Ar=real(Q_hat); 

Ai=imag(Q_hat); 

A = Ar + 1i*Ai; 

  

%% Matrix b=[b1; b2; ... bp]; p=N 

br=real(x); 
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bi=imag(x); 

b = br + 1i*bi; 

  

%% minimize     max(abs(Q_hat*C_hat)+x) 

cvx_begin quiet 

    variable y(L) complex 

    minimize    (norm(A*y+b,inf)) 

cvx_end 

%% Optimal y 

C_hat = y;     %Peak-reduction coefficient vector of size L x 1 of complex numbers 

echo off 

 

H.4 Program for LP-based TR Method 
%----------------------------------------------------------------------------------% 

% Purpose: To reduce the PAPR of OFDM signals using the proposed LP-based TR method% 

% Author:  Stephen Kiambi                                                         % 

% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)               % 

%----------------------------------------------------------------------------------% 

 

% The proposed method employs linear programming (LP) to minimize the infinity norm, 

% i.e. min max |Q_hut*C_hut - d|                                   

% The trLpCheby.m function generates the peak-reduction coefficient vector C 

% for OFDM signal x by calling the linprogChebyNorm.m function with the  

% desired peak-reduction signal. 

% C is converted to a peak-reduction time-domain signal c. 

% The data vetor, X, and peak-reduction coefficient vector, C, occupy  

% disjoint frequency subspaces.  

% X has N-L nonzero values, while C has L nonzero values. 

% The peak-reduced signal is s=x-c. 

  

%main function 

%----------------------------------------------------------------------------------% 

% Purpose: To reduce the PAPR of OFDM signals using the proposed LP-based TR method% 

% Author:  Stephen Kiambi                                                         % 

% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)               % 

%----------------------------------------------------------------------------------% 

  

% The proposed method employs linear programming (LP) to minimize the infinity norm, 

% i.e. min max |Q_hut*C_hut - d|                                   

% The trLpCheby.m function generates the peak-reduction coefficient vector C 

% for OFDM signal x by calling the linprogChebyNorm.m function with the  

% desired peak reduction signal. 

% C is converted to a peak-reduction time-domain signal c. 

% The data vetor, X, and peak-reduction coefficient vector, C, occupy  
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% disjoint frequency subspaces.  

% X has N-L nonzero values, while C has L nonzero values. 

% The PAPR-reduced signal is s=x-c. 

  

%% 

function [PAR_sdB, Avg_p_inc]=trLpCheby() 

    clear all; clc; close all; clf; 

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    startDate=date; %store date 

    tic %start stopwatch         

     

%% Global parameters and initialization 

    N=64;   %FFT window size 

    b=2;  %bits per symbol  

    Nsym=1e3; %frame size 

    Fs=4; %oversampling factor 

    NF=N*Fs; %length of oversampled signal 

    Lprt=[4, 8];     %number of subcarriers reserved for PRT 

    % 

    ydB=0:0.1:16; % PAPR threshold variable 

    N_ydB=length(ydB); 

     

    for k=1:length(Lprt)+1, 

        PAR_sdB{k}=zeros(1,Nsym); %initialize PAPR container object 

    end; 

     

    PAR_sdB=PAR_sdB.'; 

    CCDFbySimulation={zeros(1,N_ydB); zeros(1,N_ydB)};%CCDF container object 

  

%% File for storing PAPR 

    fileName=['OFDM_PAPR_LpTR_oversampled', num2str(N), '_L' num2str(Lprt), '_' 

datestr(now,'dd-mmm-yy_HH_MM') '.dat']; 

    fileId=fopen(fileName, 'w+'); 

    % 

    %% 

  

    Avg_p_inc=zeros(length(Lprt),1); %initialize placeholder for increases in average 

power   

    %% 

    for p=1:Nsym  

        count=p %#ok<NASGU,NOPRT> 

        % 

        [X,Mod] = mapperLpTR(b,N);   % generate data vector X                
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        x=ifft(X.',N)*sqrt(N);     % converts ifft sig. to OFDM sig. 

        x=resample(x,Fs,1);        % oversampling  

         

        par_dB=paprSig(x); %PAPR of x 

        PAR_sdB{1}(p)=par_dB;                

        pwr_x_dB=10*log10(mean(abs(x).^2)); %power of x 

      

        %if par_dB>=targetPapr; 

        for n=1:length(Lprt)    

            Xr=X.'; 

  

            L=Lprt(n); %number of reserved subcarriers 

  

            out=randperm(N); m=sort(out(1:L));  %random L positions of PRT 

            Xr(m)=0;         %reserve positions of PRT in the freq. domain  

            xr=ifft(Xr,N)*sqrt(N); 

            xr=resample(xr,Fs,1);  

            

            %% clipping level 

            x_clip=mean(abs(xr)); 

             

            %% Generation of desired peak-reducing signal  

            d=zeros(NF,1); 

            for i=1:NF 

                if abs(xr(i))>x_clip 

                    d(i)=xr(i)/abs(xr(i))*(abs(xr(i))-x_clip); 

                end 

            end 

            %% forming IFFT submatrix 

            Q_N=conj(dftmtx(NF))/sqrt(N);  

             

            m(m>N/2)=m(m>N/2)+N*(Fs-1);%positions of PRT in oversampled sig. 

             

            Q_hat=Q_N(:,m); %generate sub-ifft matrix, Q_hat of size NF x L 

  

            %% Generating Peak-reducing signal coefficients             

            C_hat=linprogChebyNorm(m,NF,Q_hat,d); %peak-reduction coefficients         

  

            c=Q_hat*C_hat; %peak-reducing signal    

             

            %% Peak-reduced signal 

            s=xr-c; 
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           %% PAPR calculation            

            PAR_sdB{n+1}(p) = max(abs(s).^2)/mean(abs(x).^2); 

            

           % Power increase calculation        

            pwr_s_dB=10*log10(mean(abs(s).^2)); 

            p_inc=pwr_s_dB-pwr_x_dB; 

            Avg_p_inc(n)=(Avg_p_inc(n)*(p-1)+p_inc)/p; 

        end; 

    end; 

    %% CCDF data and plot 

    linColr={('k-'), ('m-o'),('b-x')}; 

    % 

  

    for k=1:length(Lprt)+1 

        for i=1:N_ydB,  

            CCDFbySimulation{k}(i)=sum(PAR_sdB{k}>ydB(i))/Nsym;%CCDF values  

        end; 

        %plotting of CCDF 

        fig_a=semilogy(ydB(1:3:end),CCDFbySimulation{k}(1:3:end),linColr{k}); 

         

        grid on;  

        hold on; 

    end; 

     

   set(gca,'FontSize',14,'FontWeight','bold'); 

   set(fig_a,'LineWidth',2.5,'MarkerSize',10); 

  

    %% print CCDF values to file 

    for kk=1:N_ydB,  

        fprintf(fileId, '%d\t %11.3e %11.3e\n', ydB(kk).', 

(CCDFbySimulation{1}(kk)).', (CCDFbySimulation{2}(kk)).'); 

    end 

    %  %% Plotting CCDF from file 

    % if (fileId~=0),  

    %     fclose(fileId);  

    % end 

    % plot_CCDF(fileName); 

    %grid on  

    % 

    toc %stop timer 

    execTime=round(100*toc/3600)/100;     %displays the execution time. 

    % 

    %CCDF plot labels 

    axis([ydB([2 length(ydB)]) 1e-3 1]);  
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    title(['PAPR of OFDM with N = ',num2str(N),' subcarriers, ','L = ',... 

        num2str(Lprt),', Mod. = ', num2str(Mod), ', Nsym =', num2str(Nsym),... 

        ', PwrInc =', num2str(Avg_p_inc.'), ', Date: ', num2str(startDate), ... 

        ', Exec. time=', num2str(execTime), ' hours']); 

     

    xlabel('\gamma(dB)'); ylabel('Pr(PAPR > \gamma)');legend('Original 

PAPR','PRC=6.25%','PRC=12.50%'); 

     

    hold off 

    % 

    disp('  ') 

    disp('End of program') 

end 

 

 

%% Function for finding peak-reduction coefficients 

function [C_hat]=linprogChebyNorm(m,N,Q_hat,d)        

%--------------------------------------------------------------------------  

% Aim:find the value of x that minimizes the Chebyshev norm ||Ax - b||_inf, 

% i.e % min max |Ax - b| by% employing the linprog command with default  

% options (see: optimoptions(@linprog) in the Matlab Optimization Toolbox: 

% f = [ zeros(n,1); 1 ]; 

% Ane = [ +A, -ones(m,1) ; ... 

%         -A, -ones(m,1) ]; 

% bne = [ +b; -b ]; 

% xt = linprog(f,Ane,bne); 

% x_cheb = xt(1:n,:); 

%  

% With CVX, the same problem can be specified as follows: 

% cvx_begin 

%  variable x(n) 

%  minimize( norm(A*x-b,Inf) ) 

% cvx_end 

%% 

L=length(m); 

  

%Matrix A=[a1;a2; ... ap]; p=N vectors 

Ar=real(Q_hat); 

Ai=imag(Q_hat); 

A = [Ar -Ai;Ai Ar]; 

  

b=[real(d);imag(d)]; 
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n=2*L; m=2*N; 

%% 

f = [ zeros(n,1); 1 ]; 

Ane = [ +A, -ones(m,1) ; ... 

        -A, -ones(m,1) ]; 

bne = [ +b; -b ]; 

xt = linprog(f,Ane,bne); 

x_cheb = xt(1:n,:); 

  

C_hat=x_cheb(1:L)+1i*x_cheb(L+1:2*L);%peak-reduction coefficients 

  

echo off 

 

 

% Calculates and plots the BER when the LP-TR Method is used to reduce PAPR 

function trLpCheby_BER() 

    % Generates OFDM signal x and peak-reduction c using TR method based  

    % on linear programming to solve min max |Q_hut*C_hut - d|. 

    % Transmits the peak-reduced signal s=x-c over AWGN channel 

    % Then calculates the BER at the receiver 

     

    %% 

    clear all; clc; close all; clf; 

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    tic  % start stopwatch timer 

 

    %% Global parameters and initialization 

    N=64;   %FFT window size 

    b=2;    % no. of bits per symbol  

    Nsym=1e4; % number of OFDM symbols 

    Fs=4;     % Oversampling factor 

    NF=N*Fs;   % FFT size for the oversampled signal 

    EbN0dB=0:2:18; % SNR per bit (Eb/N0) in dB 

    L =4; %no.of reserved subcarriers  

     

    %% HPA parameters 

    p_HPA=2; %smoothness parameter 

    IBO = 8; %IBO sets the saturation level: Psat = Pav x 10^(IBO/10) 

     

    %% initialize average symbol power 

    sigPow=0;    
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    %% File for storing BER 

    fileName=['OFDM_BER_LpCheby_AWGN_N', num2str(N), '_L' num2str(L),'_b' ... 

        num2str(b), '_IBO',num2str(IBO), '_' datestr(now,'dd-mmm-yy_HH_MM') '.dat']; 

    fileId=fopen(fileName, 'w+'); 

     

 

    %% Monte Carlo Simulations: Outer loop 

    for k=0:length(EbN0dB) 

        counter_EbN0=k  %#ok<NASGU,NOPRT> 

         

        % Initialize the number of bit errors, and total bits 

        nBErrors=0; nBits=0;   

  

        %Inner loop 

        for p=1:Nsym  

            symb=p     %#ok<NASGU,NOPRT> 

  

           [X,~] = mapperSymb(b,N); %generate data symbols and corresponding integers  

  

           %% Reserve subcarriers 

           Xr=X.'; 

           out=randperm(N);  

           m=sort(out(1:L));      % random L positions of PRT 

           Xr(m)=0;               % positions of PRT in the freq. domain 

           xr=ifft(Xr,N)*sqrt(N); 

           xr=resample(xr,Fs,1);  

             

           % clipping level 

           x_clip=mean(abs(xr)); 

  

           % Generation of desired peak-reducing signal 

           d=zeros(NF,1); 

           for i=1:NF 

               if abs(xr(i))>x_clip 

                   d(i)=xr(i)/abs(xr(i))*(abs(xr(i))-x_clip); 

               end 

           end 

           %% forming IFFT submatrix 

           Q_N=conj(dftmtx(NF))/sqrt(N);  

           m_ext=m; 

           m_ext(m_ext>N/2)=m_ext(m_ext>N/2)+N*(Fs-1);%PRT in the oversampled signal 

             

           Q_hat=Q_N(:,m_ext); %generate sub-ifft matrix, Q_hat, of size N x L 
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           % Generating Peak-reducing coefficients             

           C_hat=linprogChebyNorm(m_ext,NF,Q_hat,d);        

           c=Q_hat*C_hat; 

    %              

           % Peak-reduced signal 

           s=xr-c; 

  

           %% Channel: add AWGN noise_______________ 

           if k==0 % measure power for use to add AWGN 

               sigPow = sigPow + mean(abs(s).^2); % average sample(symbol) power 

               continue;% jump to the next iteration in the current for loop 

           end 

             

           %% pass signal to HPA: p=2, and a given IBO in dB 

           % Create memoryless nonlinear HPA using Rapp model and apply signal    

           Asat=sqrt(sigPow*10^(IBO/10));%setting the saturation 

           y = s./(1+(abs(s)/Asat).^(2*p_HPA)).^(1/(2*p_HPA));%Rapp HPA model          

                                   

           %% calculate noise and pass to AWGN 

           EsN0dB = EbN0dB(k)+10*log10(b); %  Eb/N0 conversion to Es/N0 

           %c1:EsN0_num = 10^(EsN0dB/10);% EsN0 in numeral 

           %c2:var_noise = sigPow/(2*EsN0_num);% noise variance 

           %c3:sigma_noise = sqrt(var_noise); % noise standard deviation; 

           %c4:noise=sigma_noise*(randn(size(y))+1i*randn(size(y)));% AWGN noise 

           %c5:y_noise = y + noise; %noise plus signal 

           y_noise = awgn(y,EsN0dB,10*log10(sigPow));%c1-5 above replaced by this. 

             

           %% Receiver____________________________________________________ 

           r = downsample(y_noise,Fs); %downsampling to recover input time samples 

             

           %% demodulation  

           %find data indices 

           a = 1:N; %all indices 

           inA = 1-ismember(a,m); 

           data_ind = find(inA); %data subcarrier positions 

             

           %Tx symbols 

           X_data = Xr(data_ind); 

           [X_int,~] = demapperLS(b,X_data); % demodulated tx integers 

           txBits = reshape(de2bi(X_int,b,'left-msb'),1,[]);%transmitted bits 

             

           %Rx symbols; 

           R = fft(r)/sqrt(N); 

           R_data = R(data_ind); 
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           [R_int,~] = demapperLS(b,R_data); % demodulated rx integers 

           rxBits = reshape(de2bi(R_int,b,'left-msb'),1,[]);%received bits 

  

           %BER computation  

           nBerrors=nBerrors+biterr(txBits,rxBits);%total bit-errors 

           tBits=tBerror+length(R_int)*b; %total number of bits in received symbols; 

        end; 

  

        %% Storage of BER results in a file 

        if k==0 

            sigPow = sigPow/Nsym; %average symbol power over total OFDM symbols 

        else 

            BER = nBerrors/tBits; 

            

            %print on screen  

            fprintf('EbN0=%3d[dB],BER=%6d/%8d =%11.3e\n',EbN0dB(k),nBerror,tBits,BER)  

             

     %print to file 

            fprintf(fileId, '%d\t%11.3e\n', EbN0dB(k), BER); 

        end 

    end 

   

    %% Plotting BER 

    if (fileId~=0)  

fclose(fileId);  

    end 

    plotBER(fileName,b,EbN0dB); 

  

    %% display the execution time. 

    toc 

    execTime=round(100*toc/3600)/100;  

  

    disp('  ') 

    disp('End of program') 

  

end 

 

H.5 Program for IRLS-TR Method 
% ------------------------------------------------------------------------------% 

% Purpose: To reduce the PAPR of OFDM signals using the proposed IRLS-TR method % 

% Author:  Stephen Kiambi                                                       % 

% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)            % 

%-------------------------------------------------------------------------------%  

 

% The proposed method utilises iterative re-weighted least-squares (IRLS) algorithm  

% to minimize the infinity norm, i.e., min max |Q_hut*C_hut - d|    
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% The trIRLS.m function generates the peak-reduction coefficients vector C 
% for OFDM signal x by calling the irlsOpt.m function with the desired peak- 
% reduction signal. 
% C is converted to a peak-reduction time-domain signal c. 
% The data vector, X, and peak-reduction coefficient vector, C, occupy  
% disjoint frequency subspaces.  
% X has N-L nonzero values, while C has L nonzero values. 
% The peak-reduced signal is s=x-c. 

  
%% Main function 

function [PAR_sdB, Avg_p_inc]=trIRLS() 

clear all; clc; close all; clf; 

  

disp('Program running, please wait ...') 

disp('  ') 

%  

startDate=date; 

tic %start stopwatch timer 

%% Global parameters and initialization 

N=64; %FFT window size 

b=2; %number of bits per symbol                                                                         

Nsym=1e4; %frame size                                                                     

Fs=4; %oversampling factor 

NF=N*Fs; %length of oversampled signal 

  

Lprt=4; %number of reserved subcarriers 

  

ydB=0:0.1:16; % PAPR threshold variable                                                               

N_ydB=length(ydB); 

for k=1:length(Lprt)+1, 

    PAR_sdB{k}=zeros(1,Nsym); %initialize PAPR container object 

end; 

PAR_sdB=PAR_sdB.'; %transpose 

  

CCDFbySimulation={zeros(1,N_ydB);zeros(1,N_ydB);zeros(1,N_ydB)};%CCDF container object 

% 

%% File for storing PAPR 

file_name=['OFDM_PAPR_IRLS-TR_N', num2str(N), '_L' num2str(Lprt), '_' datestr(now,'dd-

mmm-yy_HH_MM') '.dat']; 

fid=fopen(file_name, 'w+'); 

  

%% 

Avg_p_inc=zeros(length(Lprt),1); %initialize placeholder for changes in transmit power  

  

for p=1:Nsym  

    symb=p  %#ok<NASGU,NOPRT>                                                                

    % 

    [X,Mod] = mapperSymb(b,N);  % generate data vector X  
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    x = ifft(X)*sqrt(N);       %OFDM signal 

    x=resample(x,Fs,1);        % oversampling by 4 

  

    PAR_sdB{1}(p) = paprSig(x); %PAPR of x 

     

    pwr_x=10*log10(mean(abs(x).^2)); %power of x 

     

    for n=1:length(Lprt)    

        Xr=X; 

         

        L=Lprt(n); %number of reserved subcarriers    

        out=randperm(N); m=sort(out(1:L)); % random positions of PRT 

  

        Xr(m) = 0;  % Reservation of PRT locations 

         

        xr = ifft(Xr,N)*sqrt(N);  % convert IFFT signal to OFDM signal 

        xr = resample(xr,Fs,1); 

                

        %% clipping level 

         x_clip = mean(abs(xr)); 

         

        %%Generation of desired peak-reducing signal 

        d=zeros(NF,1); 

        for i=1:NF       

            if abs(xr(i))>x_clip 

                d(i)=xr(i)/abs(xr(i))*(abs(xr(i))-x_clip); 

            end 

        end 

  

        %% Generation of peak-reduction signal 

        Q_N=conj(dftmtx(NF))/sqrt(N);%IFFT matrix 

        m(m>N/2)=m(m>N/2)+N*(Fs-1);%reserved locations in the oversampled signal 

        Q_hut=Q_N(:,m); %sub-IFFT matrix, Q_hut, of size NF x L 

         

        C_hut = irlsOpt(Q_hut,d); %generate peak-reduction coefficients  

         

        c=Q_hut*C_hut; %peak-reduction signal     

          

        %% Generate peak-reduced signal 

        s=xr.'-c; 

        

        %% PAPR of the transmit signal 
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         PAR_sdB{n+1}(p) = max(abs(s).^2)/mean(abs(x).^2); 

     

        %% Calculate increase in the transmit power   

        pwr_s_dB=10*log10(mean(abs(s).^2)); 

        p_inc=pwr_s_dB - pwr_x; 

         

        Avg_p_inc(n)=(Avg_p_inc(n)*(p-1)+p_inc)/p; 

    end; 

end; 

% 

%% display the duration of execution 

toc %end stopwatch timer 

execTime=round(100*toc/3600)/100;  

  

%% CCDF data and plots 

linColr={('r-'), ('b:'),('g-'),('r-.'), ('b-'),('r-*'),('g:'),('r--'),('m-.')}; 

% 

for k=1:length(Lprt)+1 

    for i=1:N_ydB,  

        CCDFbySimulation{k}(i)=sum(PAR_sdB{k}>ydB(i))/Nsym; %CCDFs 

    end; 

     

    fig_a = semilogy(ydB(1:1:end),CCDFbySimulation{k}(1:1:end),linColr{k}); %plotting 

CCDFs 

    set(fig_a,'LineWidth',2.5,'MarkerSize',10); 

    grid on;  

    hold on; 

end; 

  

set(gca,'FontSize',14,'FontWeight','bold'); 

   

%% print CDDF values to file 

for kk=1:N_ydB,  

    fprintf(fid, '%d\t %11.3e %11.3e\n', ydB(kk).', (CCDFbySimulation{1}(kk)).',...  

           (CCDFbySimulation{2}(kk)).'); 

end 

                           

%% labels for CCDF plots  

axis([ydB([2 end]) 1e-3 1]);  

  

title(['PAPR Red: N = ',  num2str(N),', L = ', num2str(Lprt),', Mod. = ', ... 

       num2str(Mod), ', Nsym =', num2str(Nsym),', PwrInc =', num2str(Avg_p_inc.') ...   

       ,',Date: ', num2str(startDate), ', Exec. time=', num2str(execTime), ' hours']); 

  

244



Appendix H: MATLAB Programs  
 

xlabel('\gamma(dB)'); ylabel('Pr(PAPR > \gamma)'); 

  

legend('Without PAPR reduction', 'L = 13 (5%) PRCs'); 

  

hold off 

  

disp('  ') 

disp('End of program') 

  

 

%-------------------------------------------------------------------------- 

% Function irlsOpt.m finds the solution to Ax=b where  

% A=Q_hut, x=C_hut and b=d 

% It minimizes the L_p norm ||Ax-b||_p, with large p to approximate the  

% infinity norm, using IRLS with Newtonian iterative update of the solution x 

% For 2<p<infinity, use the homotopy parameter, 1.01<a<2 

% For 0<p<2, 0.7 <a<0.9 

%-------------------------------------------------------------------------- 

function C_hut = irlsOpt(Q_hut,d) 

%Parameters and initialization 

norm_p = 20;                    %target p-norm to approximate infinity-norm 

K = 15;                         %maximum number of iterations  

a =10^(log10(norm_p)/K);        %homotopy variation parameter 

pk = 2;                         %Initial homotopy value 

  

C_hut = Q_hut\d;                %Initial least-squares solution 

  

%% 

k=1; 

e = Q_hut*C_hut - d;     

%                                              

while k<K+1 && max(abs(e))>1e-4  

    pk = min(norm_p,a*pk);       % Homotopic change of p 

         

    e = Q_hut*C_hut - d;         % error vector 

  

    w = abs(e).^((pk-2)/2);      % weights for the errors  

    W = diag(w/sum(w));          % normalize the weights for proportionate weighting 

     

    WQ = W*Q_hut;                % apply the weights 

     

    C_h = WQ\(W*d);              % weighted least-squares solution 
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    u = 1/(pk-1);                 % Newton parameter 

    C_hut = C_hut + u*(C_h - C_hut);  % partial update of solution 

%   ep = norm(e,norm_p); E = [E ep];  % p-norm error at each iteration 

 k=k+1; 

end 

 

H.6 Program for LCSA Method 
% ------------------------------------------------------------------------------% 
% Purpose: To reduce the PAPR of OFDM signals using the proposed LCSA method    % 
% Author:  Stephen Kiambi                                                       % 
% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)            % 
%-------------------------------------------------------------------------------%  

  
% The proposed method generates a peak-reduction signal, c, that is similar to  
% the desired signal, d.  
% The peak-reduced signal is x-c. 
% Nonzero samples of PRC are appended to one end of the peak-reduced signal 

% to form what is called a composite transmit signal  

  
%% Main function 

function [PAR_sdB, Avg_p_inc]=lcsaMethod() 

    clear all; clc; close all; clf; 

     

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    startDate=date; 

    tic  % start stopwatch timer 

    %% Global parameters and initialization 

    N=64; %FFT window size 

    b=2;  % number of bits per symbol  

    Nsym=1e4; % frame size 

    Fs=4; % Oversampling factor 

    NF=N*Fs;  % size of oversampled signal 

    Lsamp=4; % number of nonzero PRS samples 

  

    ydB=0:0.1:16;    % PAPR threshold variable 

    N_ydB=length(ydB); 

     

    for k=1:length(Lsamp)+1, 

        PAR_sdB{k}=zeros(1,Nsym); %initialize PAPR container object  

    end; 

    PAR_sdB=PAR_sdB.'; 

    CCDFbySimulation={zeros(1,N_ydB); zeros(1,N_ydB)};%initialize CCDF container  

  

    %% File for storing PAPR 

    fileName=['OFDM_PAPR_FLCTR', num2str(N), '_L' num2str(Lsamp), '_' ... 

        datestr(now,'dd-mmm-yy_HH_MM') '.dat']; 
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    fileId=fopen(fileName, 'w+'); 

     

    %% 

    Avg_p_inc=zeros(length(Lsamp),1); %initialise average power increase                                    

  

    for p=1:Nsym 

        symb=p  %#ok<NASGU,NOPRT> 

  

        [X,Mod] = mapperSymb(b,N); % generate data vector X  

  

        x = ifft(X.'); %original time signal with no reduction     

  

        x = resample(x,Fs,1);  %oversampled signal 

        PAR_sdB{1}(p) = paprSig(x);  %PAPR calculation 

        pwr_x_dB=10*log10(mean(abs(x).^2)); %peak power of x 

         

        for n=1:length(Lsamp) 

            M=Lsamp(n);     

  

            %% clipping level 

            x_dsc=sort(abs(x),'descend'); 

            x_clip=x_dsc(M+1); 

  

            %% Generation of desired peak-reducing signal 

            d=zeros(NF,1); 

            for i=1:NF       

                if abs(x(i))>x_clip 

                    d(i)=x(i)/abs(x(i))*(abs(x(i)) - x_clip); 

                end 

            end 

            %                   

            d_hut=d(d~=0);%returns nonzero elements in d 

            % 

            c=d;       % peak-reducing signal 

            c_hut=d_hut;  % nonzero samples vector 

            

            %% Generation of peak-reduced signal and its PAPR 

            s=[x-c; c_hut]; %composite transmit signal 

             

            %% PAPR calculation 

            PAR_sdB{n+1}(p) = max(abs(s).^2)/mean(abs(x).^2); 

  

            % Power increase calculation        
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            pwr_s_dB=10*log10(mean(abs(s).^2)); 

            p_inc=pwr_s_dB-pwr_x_dB; 

            Avg_p_inc(n)=(Avg_p_inc(n)*(p-1)+p_inc)/p;                                                      

        end; 

    end; 

  

    % 

    %% display execution time. 

    toc %stop the timer 

    execTime=round(100*toc/3600)/100;  

     

    %% CCDF data and plots 

    linColr={('k-'), ('m:+'),('b->'), ('g-o'),('y-x'),('r-*')}; 

    % 

  

    % Generate CCDF 

    for k=1:length(Lsamp)+1 

        for i=1:N_ydB,  

            CCDFbySimulation{k}(i)=sum(PAR_sdB{k}>ydB(i))/Nsym; 

        end; 

        fig=semilogy(ydB(1:1:end),CCDFbySimulation{k}(1:1:end),linColr{k}); 

        hold on; 

        set(fig,'LineWidth',1.5); 

    end; 

    set(gca,'FontSize',14,'FontWeight','bold'); 

  

    %% print CCDF values to file 

    for kk=1:N_ydB,  

        fprintf(fileId, '%d\t %11.3e %11.3e\n', ydB(kk).',(CCDFbySimulation{1}(kk)).'… 

                , (CCDFbySimulation{2}(kk)).'); 

    end 

    %  

    %  %% Plotting CCDF from file 

    % if (fileId~=0),  

    %     fclose(fileId);  

    % end 

    % plot_CCDF(fileName); 

    grid on  

  

    %% CCDF plot labels 

    axis([ydB([1 end]) 1e-4 1]);  

    title(['PAPR of OFDM with N = ',num2str(N),' subcarriers, ','Lsamp = '… 

          , num2str(Lsamp),', Mod. = ', num2str(Mod), ', Nsym =', num2str(Nsym),… 

          ', PwrInc =', num2str(Avg_p_inc.'), ', Date: ', num2str(startDate), … 

          ', Exec. time=', num2str(execTime), ' hours']); 
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    xlabel('\gamma_0(dB)','FontSize',14,'FontWeight','bold');  

    ylabel('Pr(PAPR > \gamma_0)','FontSize',14,'FontWeight','bold'); 

    legend({'Original','5.88% loss'},'FontSize',14,'FontWeight','bold');  

end 

 

 

% Calculate and plot BER performance when LCSA Method is used to reduce PAPR 

function lcsaBER() 

    % Generates OFDM signal and peak-reduction using LCSA method 

    % Transmits the composite transmit signal s=[x-c; c_hut] over AWGN channel 

    % Then calculates the BER at the receiver 

    % 

    clear all; clc; close all; clf; 

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    tic % start stopwatch timer 

    %% Global parameters and initialization 

    N=64; %FFT window 

    b=2;  % no. of bits per symbol  

    Nsym=1e4; % frame size 

    Fs=4; % Oversampling factor 

    NF=N*Fs;  % size of oversampled signal 

    Lsamp=4; % number of nonzero PRS samples 

    EbN0dB=0:2:18; % SNR per bit (Eb/N0) in dB 

    

    %% HPA parameters 

    p_HPA=2; %smoothness parameter 

    IBO = 7; %IBO to set saturation level: Psat = Pav x 10^(IBO/10) 

     

    %% initialise average symbol power 

    sigPow=0;    

         

    %% File for storing BER 

    fileNname=['OFDM_BER_TR_AWGN_N', num2str(N), '_L' num2str(Lsamp),'_b'…     

              num2str(b),'_IBO',num2str(IBO), '_' datestr(now,'dd-mmm-yy_HH_MM')  

              '.dat']; 

    fileId=fopen(fileName, 'w+'); 

    % 

    %% Monte Carlo Simulations: Outer loop 

    for k=0:length(EbN0dB) 

        counter_EbN0=k  %#ok<NASGU,NOPRT> 

         

        % Initialize the number of bit errors, and total bits 
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        nBErrors=0; tBits=0;   

  

        %Inner loop 

        for p=1:Nsym  

            %symb=p  %#ok<NASGU,NOPRT> 

  

            [X_int,X] = mapperSymb(b,N); %data symbols and corresponding integers  

  

            %Generate transmit bits 

            transmittedBits = reshape(de2bi(X_int,b,'left-msb'),1,[]);     

  

            x = ifft(X.')*sqrt(N);   %original time signal  

  

            x = resample(x,Fs,1);   %oversampling 

  

            %% signal clipping level 

            x_dsc=sort(abs(x),'descend'); 

            x_clip=x_dsc(Lsamp+1); 

  

            %% Generation of desired peak-reducing signal 

            d=zeros(NF,1); 

            for i=1:NF       

                if abs(x(i))>x_clip 

                    d(i)=x(i)/abs(x(i))*(abs(x(i))-x_clip); 

                end 

            end 

            %nz_indices=find(d); %indices nonzero elments in d      

            d_hut=d(d~=0);%returns nonzero elements in d 

            nz_ind=find(d); 

            c=d;  % peak-reduction signal 

            c_hut=d_hut; %nonzero samples of peak-reduction signal 

  

            %% Generation of peak-reduced signal and its PAPR 

            s=[x-c; c_hut];%composite transmit signal 

  

            %% Channel: add AWGN noise_______________ 

            if k==0 % Find signal power to help adding AWGN  

               sigPow = sigPow + mean(abs(s).^2); %mean(abs(s).^2)= the average power 

               continue;% jump the code lines below to the next iteration of for loop; 

            end 

             

            %% pass signal to HPA: p=2, and a given IBO in dB 

            % Create memoryless nonlinear HPA using Rapp model and apply signal    
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            Asat=sqrt(sigPow*10^(IBO/10));%setting the saturation point 

            y = s./(1+(abs(s)/Asat).^(2*p_HPA)).^(1/(2*p_HPA));%Rapp HPA model          

             

            %% Boosted signal.Because of adding samples of signal c_hut to s,  

            % SNR is reduced, therefore the signal from the P/S converter  

            % has to be boosted before adding noise 

            y=sqrt((NF+Lsamp)/(NF))*y; 

             

            %% calculate noise and pass to AWGN 

            %Eb/N0 conversion to Es/N0 to include the effect of extension by L samples  

            EsN0dB = EbN0dB(k)+10*log10(b)+10*log10(NF/(NF+Lsamp));  

             

            %c1:EsN0_num = 10^(EsN0dB/10);% EsN0 in numeral 

            %c2:var_noise = sigPow/(2*EsN0_num);% noise variance 

            %c3:sigma_noise = sqrt(var_noise); % noise standard deviation; 

            %c4:noise=sigma_noise*(randn(size(y))+1i*randn(size(y)));% AWGN noise 

            %c5:y_noise = y + noise; %noise plus signal 

            y_noise = awgn(y,EsN0dB,10*log10(sigPow));%c1-5 above replaced by this. 

             

            %% Receiver 

            %form peak-reducing signal 

            c_noise=zeros(NF,1); 

            c_noise(nz_ind)=y_noise(NF+1:end); %#ok<*FNDSB>  

             

            %Remove L peak-reducing samples from the received signal 

            y_noise = y_noise(1:NF); 

  

            %Recovery of transmitted data samples by adding the formed  

            %peak-reducing signal to the received signal 

            r = y_noise+c_noise; %reconstruct data samples 

            r = downsample(r,Fs); %downsampling to recover input time samples 

             

            %% demodulation  

            Y = fft(r)/sqrt(N);%Received symbols; 

            [Y_int,~] = demapperLS(b,Y); % demodulated integers 

            receivedBits = reshape(de2bi(Y_int,b,'left-msb'),1,[]);%received bits 

  

            %BER calculations  

            nBErrors =nBErrors +biterr(transmittedBits,receivedBits);%total bit-errors  

            tBits=tBits+length(Y)*b; %total number of bits in received symbols; 

        end; 

  

        %% Storage of BER results 

        if k==0 
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            sigPow = sigPow/Nsym; %average symbol power for the OFDM frame 

        else 

            BER = nBErrors/tBits; 

     

     %print on screen 

            fprintf('EbN0=%3d[dB], BER=%6d/%8d =%11.3e\n', EbN0dB(k), …   

                    nBErrors, tBits, BER)  

             

            %print to file 

            fprintf(fileId, '%d\t%11.3e\n', EbN0dB(k), BER); 

        end 

    end 

   

    %% Plotting BER 

    if (fileId~=0)  

       fclose(fileId);  

    end 

    plotBER(fileName,b,EbN0dB); 

  

    % 

    %% display the execution time. 

    toc 

    execTime=round(100*toc/3600)/100  

  

    disp('  ') 

    disp('End of program') 

  

end 

 

%% function for Plotting BER 

function plotBER(fileName,b,EbN0dB) 

M=2^b; 

sqM=sqrt(M); 

EbN0_num = 10.^(EbN0dB/10); 

  

%% Theoretical BER calculations 

if b == 1 %BPSK  

    BER = qfunc(sqrt(2*EbN0_num)); 

elseif b==2 %QPSK 

    SER = 2*qfunc(sqrt(2*EbN0_num)).*(1-1/2*qfunc(sqrt(2*EbN0_num)));%SER by formula 

for QPSK 

    BER = SER/b;%BER=SER/b 

else %M-QAM, M>4 

    BER_sqM = 2*(1-1/sqM)*qfunc(sqrt(6*log2(sqM)/(M-1).*EbN0_num));%SER by formula for 

sqM-PAM 
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    SER = (1-(1-BER_sqM).^2);%SER by formula for M-QAM 

    BER = SER/b; %BER=SER/b 

end 

  

% load BER file 

a= load(fileName); 

  

%plotting 

fig=semilogy(EbN0dB,BER,'g-', a(:,1),a(:,2),'r-');  

axis([EbN0dB(1) EbN0dB(end) 1e-7 1]); 

xlabel('E_b/N_0 [dB]');  

ylabel('BER'); 

set(fig,'LineWidth',2.0); 

legend('BER by formula', 'BER by simulation'); 

title(['SNR per bit for M = ', num2str(M), ' Constellation']); 

grid on, 

% 

end 

  

H.7 Program for LCASM Method 
% ---------------------------------------------------------------------------------% 
% Purpose: To reduce the PAPR of MIMO-OFDM signals using the proposed LCASM method % 
% Author:  Stephen Kiambi                                                          % 
% Research Work: PAPR reduction in OFDM Systems (for PhD at EIE-UoN)               % 
%----------------------------------------------------------------------------------%  

  
% The proposed method generates a peak-reduction signal, c, that is similar to  
% the desired signal, d.  
% The peak-reduced signal is x-c. 
% Nonzero samples of PRC are appended to one end of the peak-reduced signal 

% to form what is called a composite transmit signal  

  
function lcasmMIMO() 

    clear all; clc; close all; clf; 

    % 

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    startDate=date; 

    tic   % start stopwatch timer 

    

    %% Global parameters  

    N = 64;                 %FFT window size 

    Nt = 2;                 %Number of transmit antennas 

    b = 4;                  %Number of bits per symbol  

    Nsym = 1e4;             %Number of OFDM symbols per frame 

    Fs = 4;                 %Oversampling factor 

    NF = N*Fs;              %FFT size for the oversampled signal 
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    Lsamp = 4;              %no of extension samples  

    linColr={('k-'), ('m:+'),('b->'), ('g-o'),('y-x'),('r-*')};%colours for BER plots 

     

    %% plotting parameters and initialization 

    ydB=0:0.1:16;           %PAPR thresholds 

    N_ydB=length(ydB); 

    for k=1:length(Lsamp)+1, 

        PAR_sdB{k}=zeros(1,Nsym);  

    end; 

    PAR_sdB=PAR_sdB.'; 

    CCDFbySimulation={zeros(1,N_ydB); zeros(1,N_ydB)}; 

  

    %% File for storing CCDF 

    fileName=['OFDM_PAPR_MIMO_LCSA', num2str(N), '_L' num2str(Lsamp), '_' ... 

        datestr(now,'dd-mmm-yy_HH_MM') '.dat']; 

    fileId=fopen(fileName, 'w+'); 

    % 

    %% 

    Avg_p_inc = zeros(length(Lsamp),1); %initialize average power increase 

  

    %% File for storing BER 

        fileName = ['MIMO_OFDM_BER_LCSA_FLAT-FADE_N', num2str(N), '_L' … 

                     num2str(L), '_IBO',num2str(IBO), '_' datestr(now, … 

                     'dd-mmm-yy_HH_MM')'.dat']; 

        fileId = fopen(fileName, 'w+'); 

         

    %% Outer loop 

    for p = 1:Nsym  

        symb=p %#ok<NASGU,NOPRT> 

  

        %---------------------------TRANSMITTER------------------------------------ 

        % generate transmit symbols and corresponding integers 

        [X,Mod] = mapper_mimo(b,N,Nt); 

  

        %For antenna 1 and 2 

        X1 = X(:,1); 

        X2 = X(:,2); 

  

        %% ----Pass X1 and X2 through the Space-Time Block Encoder:   

        % We will only consider transmission during the 1st symbol duration 

        X11 = X1; %1st antenna 

        X21 = X2; %2nd antenna 

  

       %% ----Convert to time domain via IFFT for antenna 1 and 2      
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        % for the 1st symbol duration 

        x11 = ifft(X11);  

        x21 = ifft(X21);  

         

        %%Digital-to-analogue conversion (DAC) => oversampled signals for antenna 1&2  

        % for the 1st symbol duration 

        x11 = resample(x11,Fs,1);    

        x21 = resample(x21,Fs,1); 

         

%         figure(1) 

%         plot_PSD(x11,Fs,linColr{1}) 

%         hold on; 

         

        PAR_sdB{1}(p) = max(paprSig(x11), paprSig(x21)); %effective PAPR 

        pwr_x_dB = 10*log10(max(mean(abs(x11).^2), mean(abs(x21).^2)));%peak power 

         

        %% inner loop 

        for n = 1:length(Lsamp) 

            M = Lsamp(n); 

            %% ----signal clipping level 

            %for the 1st symbol duration 

            x11_dsc = sort(abs(x11),'descend'); %sort in descending order 

            x11_CL = x11_dsc(M+1);% clipping level 

                         

            x21_dsc = sort(abs(x21),'descend'); %sort in descending order 

            x21_CL = x21_dsc(M+1);% clipping level 

  

            % Effective clipping level for the 1st symbol duration 

            x_CL1 = max(x11_CL, x21_CL); 

  

            %% ----Generation of desired peak-reducing signal for antenna 1 and 2 

            %for the 1st symbol duration 

            d11 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x11(i)) > x_CL1 

                    d11(i) = x11(i)/abs(x11(i))*(abs(x11(i))-x_CL1); 

                end 

            end 

            % 

            d21 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x21(i)) > x_CL1 

                    d21(i)= x21(i)/abs(x21(i))*(abs(x21(i))-x_CL1); 

                end 
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            end           

             

            %% ----Signals to be appended to the transmit signal on antenna 1 and 2   

            %for the 1st symbol duration 

            c11_hut = d11(d11~=0);%returns nonzero elements in d 

            c11_hut = [c11_hut; zeros(M-length(c11_hut),1)]; %zero-pad to length L 

  

            c21_hut = d21(d21~=0); 

            c21_hut = [c21_hut; zeros(M-length(c21_hut),1)]; 

             

%             %subplot(2,1,1) 

%             stem(abs(d11)) 

%             hold on 

%             stem(abs(d21),'r-.x') 

%             axis([0 length(d11)-1 0 max(max(abs(d11)),max(abs(d21)))+0.01]);  

%             xlabel('n','FontSize',14,'FontWeight','bold');  

%             ylabel('Magnitude','FontSize',14,'FontWeight','bold'); 

%             legend({'Desired PRS-Antenna 1','Desired PRS-Antenna 2'},…  

                      'FontSize',14,'FontWeight','bold');  

%             set(gca,'FontSize',14,'FontWeight','bold'); 

%             hold off 

%             figure 

            

            %% ----Reduce PAPR and generate peak-reduced signal for antenna 1 and 2 

            %for the 1st symbol duration 

            s11 = [x11-d11; c11_hut];%length of txd signal increases by L PRS samples 

            s21 = [x21-d21; c21_hut]; 

             

%             plot_PSD(x11-d11,Fs,linColr{n+1}) 

              

            % plotting transmitted signal 

%             subplot(2,1,1) 

%             plot(abs(x11-d11)) 

%             hold on 

%             plot((NF+1:NF+M),abs(c11_hut),'r-') 

%             axis([0 length(s11) 0 max(abs(x11-d11))+0.01]);  

%             xlabel('n','FontSize',14,'FontWeight','bold');  

%             ylabel('Transmit signal-antenna 1','FontSize',14,'FontWeight','bold'); 

%             legend({'Peak-reduced signal part ','Peak-reduction signal part'},… 

%                      'FontSize',14,'FontWeight','bold');  

%             set(gca,'FontSize',14,'FontWeight','bold'); 

%             hold off 

%              

%             subplot(2,1,2) 
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%             plot(abs(x21-d21)) 

%             hold on 

%             plot((NF+1:NF+M),abs(c21_hut),'r-') 

%             axis([0 length(s11) 0 max(abs(x21-d21))+0.01]) 

%             %title('Transmitted signal'); 

%             xlabel('n','FontSize',14,'FontWeight','bold');  

%             ylabel('Transmit signal-antenna 2','FontSize',14,'FontWeight','bold'); 

%             legend({'Peak-reduced signal part ','Peak-reduction signal part'},… 

%                      'FontSize',14,'FontWeight','bold');  

%             set(gca,'FontSize',14,'FontWeight','bold'); 

%             hold off 

%             figure 

  

            %% PAPR calculation 

            %for the 1st symbol duration 

            PAR_sdB{n+1}(p) = max(max(abs(s11).^2)/mean(abs(x11).^2),... 

                max(abs(s21).^2)/mean(abs(x21).^2)); 

                        

            %% Power increase calculation  

            %for the 1st symbol duration 

            pwr_s_dB = 10*log10(max(mean(abs(s11).^2), mean(abs(s21).^2))); 

            p_inc = pwr_s_dB - pwr_x_dB; 

            Avg_p_inc(n) = (Avg_p_inc(n)*(p-1)+p_inc)/p; 

                         

        end %End of FOR loop for L  

       

    end; %end of FOR loop for Nysm 

    legend({'Original','1% loss','2.3% loss','4.8% loss','6.9% loss','9.2% loss'},... 

        'FontSize',14,'FontWeight','bold');  

     

    %% display the execution time. 

    toc 

    execTime=round(100*toc/3600)/100; 

     

    fprintf('Execution time =%2.2g\n', round(100*toc/3600)/100)%print on screen 

  

    %% CCDF data and plots 

   %figure(2) 

   for k=1:length(Lsamp)+1 

        for i=1:N_ydB,  

            CCDFbySimulation{k}(i)=sum(PAR_sdB{k}>ydB(i))/Nsym; 

        end; 

        fig=semilogy(ydB(1:1:end),CCDFbySimulation{k}(1:1:end),linColr{k}); 

        hold on; 
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        set(fig,'LineWidth',1.5); 

    end; 

    set(gca,'FontSize',14,'FontWeight','bold'); 

    grid on  

  

    %% print CDDF values to file 

    for kk=1:N_ydB,  

       fprintf(fileId, '%d\t %11.3e %11.3e\n', ydB(kk).',(CCDFbySimulation{1}(kk)).',…  

            (CCDFbySimulation{2}(kk)).'); 

    end 

     

     %% Plotting CCDF 

    if (fileId~=0)  

        fclose(fileId);  

    end 

    plot_CCDF(fileName); 

    grid on  

  

    %% CCDF plot labels 

    axis([ydB([1 end]) 1e-4 1]);  

    title(['CCDF for N = ',num2str(N),' scs, ','Res. scs = ', num2str(M),... 

        ', Mod. = ', num2str(Mod), ', Nsym =', num2str(Nsym),... 

        ', PwrInc =', num2str(Avg_p_inc.'), ', Date: ', num2str(startDate), ... 

        ', Exec. time=', num2str(execTime), ' hours']); 

    xlabel('\gamma_0(dB)','FontSize',14,'FontWeight','bold');  

    ylabel('Pr(PAPR > \gamma_0)','FontSize',14,'FontWeight','bold'); 

    legend({'Original','1% loss','2.3% loss','4.8% loss','6.9% loss',... 

        '9.2% loss'},'FontSize',14,'FontWeight','bold');  

  

    disp('  ') 

    disp('End of program') 

end %function end 

 

%generation of modulation symbols for the Nt transmit antennas 

function [modSymbols,modTyp] = mapper_mimo(nBit,N,Nt) 

    modOrder=2^nBit; % Number Symbols digital Modulation 

     

    if nBit == 1  

        modTyp='BPSK'; 

         

        normEs=1;  

        modObject=modem.pskmod('M',modOrder); 

         

    elseif nBit == 2  
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        modTyp='QPSK';  

         

        normEs=1; 

         

        %Create QPSK modulator 

        modObject=modem.pskmod('M',modOrder, 'PhaseOffset',pi/4,'SymbolOrder','gray');  

         

    else 

        modTyp=[num2str(2^nBit) 'QAM']; 

         

        %Es is the average energy of modulation symbols 

        Esym=1;    

         

         %factor to normalize symbols 

        normEs=sqrt(3*Esym/(2*(modOrder-1)));      

         

        %Create M-ary QAM Gray encoded modulator 

        modObject=modem.qammod('M',modOrder,'SymbolOrder','gray'); 

    end 

 

 

% Generate a block of N random 2^b-PSK/QAM modulation symbols 

 mod_int= randi([0,M-1],N,Nt); 

 mod_symbols = normEs*modulate(mod_object,mod_int); 

end 

 

 

% Calculate and plot BER performance when LCASM method is used to reduce PAPR 

function lcasm_MIMO_OFDM_BER() 

    % Generates OFDM signals and peak-reductions using LCASM method 

    % Transmits the composite transmit signals over Rayleigh-fading channels 

    % Then calculates the BER at the receivers 

    %% 

    clear all; clc; close all; clf; 

    disp('Program running, please wait ...') 

    disp('  ') 

    %  

    tic  % start stopwatch timer 

    %% Global parameters and initialization 

    N = 256;                 %FFT window size 

    Nt = 2;                 %Number of transmit antennas 

    b = 2;                  %No. of bits per symbol  

    Nsym = 1e4/2;           %Number of OFDM symbols 

    Fs = 4;                 %Oversampling factor 
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    NF = N*Fs;              %FFT size for the oversampled signal 

    EbN0dB = 0:2:20;        %SNR per bit (Eb/N0) in dB 

    L = 13;                  %no of added samples in the transmit signal  

    chan_len = 1;           %Number of channel taps: 1 for flat-fading Rayleigh 

Channel 

    cp_len = chan_len+1;    %length of cyclic prefix: must be > that chan_len to avoid 

ISI 

    fade_var_1D = 0.5;      %1-dimensional fade variance 

     

    %% HPA parameters 

    p_HPA = 2;              %Smoothness parameter 

    IBO = 7;                % Sets saturation level, i.e., Psat = Pav x 10^(IBO/10) 

     

    %% initialise average symbol power 

    sigPow = 0;    

         

    %% File for storing BER 

    fileName = ['MIMO_OFDM_BER_LCSA_Flat-fading_RaleighCh_N', num2str(N),... 

        '_L' num2str(L), '_IBO_',num2str(IBO), '_' datestr(now,'dd-mmm-yy_HH_MM') 

'.dat']; 

    fileId = fopen(fileName, 'w+'); 

    % 

    %% Monte Carlo simulations: Outer loop 

    for k = 0:length(EbN0dB) 

        counter_EbN0=k  %#ok<NASGU,NOPRT> 

         

        % Initialize the number of bit errors and total bits 

        nBErrors = 0;  

        tBits = 0;   

  

        %Inner loop1 

        for p = 1:Nsym  

            symb=p  %#ok<NASGU,NOPRT> 

             

            %---------------------------TRANSMITTER-----------------------------------

- 

            % generate transmit symbols and corresponding integers 

            [X_int,X] = mapper_mimo(b,N,Nt); 

             

            %Generate coresponding transmit bits 

            transmittedBits = reshape(de2bi(X_int,b,'left-msb'),1,[]);  

             

            %For antenna 1 and 2 

            X1 = X(:,1); 

            X2 = X(:,2); 
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            %% ----Pss X1 and X2 through the Space-Time Block Encoder 

            % for the 1st symbol duration 

            X11 = X1; %1st antenna 

            X21 = X2; %2nd antenna 

             

            % for the 2nd symbol duration            

            X12 = -conj(X2); %1st antenna 

            X22 =  conj(X1); %2nd antenna 

             

            %% ----Convert to time domain via IFFT for antenna 1 and 2           

            % for the 1st symbol duration 

            x11 = ifft(X11);  

            x21 = ifft(X21);  

             

            % for the 2nd symbol duration            

            x12 = ifft(X12);  

            x22 = ifft(X22);  

             

            %% ----Digital-to-Analogue Converstion (DAC) = oversampling of signals  

            % for the 1st symbol duration 

            x11 = resample(x11,Fs,1);    

            x21 = resample(x21,Fs,1); 

             

            % for the 2nd symbol duration 

            x12 = resample(x12,Fs,1);    

            x22 = resample(x22,Fs,1); 

  

            %% ----signal clipping level 

            %for the 1st symbol duration 

            x11_dsc = sort(abs(x11),'descend'); %sort in discending order 

            x11_CL = x11_dsc(L+1);% clipping level 

             

            x21_dsc = sort(abs(x21),'descend'); %sort in discending order 

            x21_CL = x21_dsc(L+1);% clipping level 

  

            % Effective clipping level for the 1st symbol duration 

            x_CL1 = max(x11_CL, x21_CL); 

             

            %% for the 2nd symbol duration 

            x12_dsc = sort(abs(x12),'descend'); %sort in discending order 

            x12_CL = x12_dsc(L+1);% clipping level 
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            x22_dsc = sort(abs(x22),'descend'); %sort in discending order 

            x22_CL = x22_dsc(L+1);% clipping level 

  

            % Effective clipping level for the 2nd symbol duration 

            x_CL2 = max(x12_CL, x22_CL); 

             

            %% ----Generation of desired peak-reducing signal for antenna 1 and 2 

            %for the 1st symbol duration 

            d11 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x11(i))>x_CL1 

                    d11(i) = x11(i)/abs(x11(i))*(abs(x11(i))-x_CL1); 

                end 

            end 

            % 

            d21 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x21(i)) > x_CL1 

                    d21(i)= x21(i)/abs(x21(i))*(abs(x21(i))-x_CL1); 

                end 

            end           

             

            %for the 2nd symbol duration 

             d12 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x12(i))>x_CL2 

                    d12(i) = x12(i)/abs(x12(i))*(abs(x12(i))-x_CL2); 

                end 

            end 

            % 

            d22 = zeros(NF,1); 

            for i = 1:NF       

                if abs(x22(i)) > x_CL2 

                    d22(i)= x22(i)/abs(x22(i))*(abs(x22(i))-x_CL2); 

                end 

            end           

             

             

            %% ----Signals to be appended to the transmit signal on antenna 1 and 2   

            %for the 1st symbol duration 

            c11_hut = d11(d11~=0);%returns nonzero elments in d 

            c11_hut = [c11_hut; zeros(L-length(c11_hut),1)]; %pad with zeros to L 

             

            c21_hut = d21(d21~=0); 
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            c21_hut = [c21_hut; zeros(L-length(c21_hut),1)]; 

             

            %for the 2nd symbol duration 

            c12_hut = d12(d12~=0); 

            c12_hut = [c12_hut; zeros(L-length(c12_hut),1)]; 

             

            c22_hut = d22(d22~=0); 

            c22_hut = [c22_hut; zeros(L-length(c22_hut),1)]; 

             

            %% ----Indices of nonzero elments in PRS d11, d21, d12, and d22  

            %for the 1st symbol duration 

            nz11 = find(d11);  

            nz21 = find(d21); 

             

            %for the 2nd symbol duration 

            nz12 = find(d12);  

            nz22 = find(d22); 

             

            %% ----Reduce PAPR and generate peak-reduced signal for antenna 1 and 2 

            %for the 1st symbol duration 

            s11 = [x11-d11; c11_hut]; 

            s21 = [x21-d21; c21_hut]; 

             

            %for the 2nd symbol duration 

            s12 = [x12-d12;c12_hut]; 

            s22 = [x22-d22;c22_hut]; 

             

            %Insert Cyclic Prefix of length cp_len 

            %for the 1st symbol duration 

            s11 = [s11(length(s11)-cp_len+1:end); s11]; 

            s21 = [s21(length(s21)-cp_len+1:end); s21]; 

             

            %for the 2nd symbol duration 

            s12 = [s12(length(s12)-cp_len+1:end); s12]; 

            s22 = [s22(length(s22)-cp_len+1:end); s22]; 

            

            %% ----Calculate average signal power 

            if k==0 % Only to measure the signal power for adding AWGN noise 

               sigPow = sigPow + mean(abs(s11).^2); %mean(.) is the av symbol power 

               continue;% continue to the next iteration (k+1) in current FOR loop; 

            end 

             

            %% ----pass signal to HPA: p=2, and a given IBO in dB for antenna 1 and 2 
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            % Create memoryless nonlinear HPA using Rapp model and apply signal    

            Asat=sqrt(sigPow*10^(IBO/10));%setting the saturation level 

             

            %for the 1st symbol duration 

            t11 = s11./(1+(abs(s11)/Asat).^(2*p_HPA)).^(1/(2*p_HPA));  

            t21 = s21./(1+(abs(s21)/Asat).^(2*p_HPA)).^(1/(2*p_HPA)); 

             

            %for the 2nd symbol duration 

            t12 = s12./(1+(abs(s12)/Asat).^(2*p_HPA)).^(1/(2*p_HPA)); 

            t22 = s22./(1+(abs(s22)/Asat).^(2*p_HPA)).^(1/(2*p_HPA)); 

             

             

            %% ----Boost signal power: because of addition of L and CP samples, 

            %SNR is reduced, therefore the signal from the P/S converter has  

            %to be boosted before being passed to the channel  

            %for antenna 1 and 2 for symbol duration 1 

            t11 = sqrt((NF+L+cp_len)/NF)*t11; 

            t21 = sqrt((NF+L+cp_len)/NF)*t21; 

                         

            %for antenna 1 and 2 for symbol duration 2 

            t12 = sqrt((NF+L+cp_len)/NF)*t12; 

            t22 = sqrt((NF+L+cp_len)/NF)*t22; 

             

            %% -------------------- RAYLEIGH CHANNEL IMPULSE RESPONSE----------------- 

            %Channel form h=1/sqrt(n)*[a1+jb1 a2+jb2 ... an+jbn)]: each of a and 

            %b are of mean = 0 and variance = 1/2 i.e 

            %h=1/sqrt(n)*1/sqrt(2)*[randn(1,n)+1i*randn(1,n)] or use normrnd as below.  

            % fade channel for transmitter 1 and receiver 1 

            h11 = normrnd(0,sqrt(fade_var_1D),1,chan_len)+1i*... 

                normrnd(0,sqrt(fade_var_1D),1,chan_len); 

            %H11 = fft(h11,N); %H11=h11 since the latter is a constant 

  

            % fade channel for transmitter 2 and receiver 1 

            h12 = normrnd(0,sqrt(fade_var_1D),1,chan_len)+1i*... 

                normrnd(0,sqrt(fade_var_1D),1,chan_len); 

            %H12 = fft(h12,N);%same comment as for H11 

  

            % fade channel for transmitter 1 and receiver 2 

            h21 = normrnd(0,sqrt(fade_var_1D),1,chan_len)+1i*... 

                normrnd(0,sqrt(fade_var_1D),1,chan_len); 

            %H21 = fft(h21,N);%same comment as for H11 

  

            % fade channel for transmitter 2 and receiver 2 

            h22 = normrnd(0,sqrt(fade_var_1D),1,chan_len)+1i*... 
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                normrnd(0,sqrt(fade_var_1D),1,chan_len); 

            %H22 = fft(h22,N);%same comment as for H11 

             

            %% Eb/N0 conversion to Es/N0 to include effect of extension by L and CP 

            EsN0dB = EbN0dB(k)+10*log10(b)+10*log10(NF/(NF+L+cp_len));   

              

            %% ----Channel output: assume quasi-static channel i.e. channel 

            %is constant during symbol duration 1 and 2 

            %First the transit signal is pass through Rayleigh channel 

            %(convolution with the impulse response) the added noise 

            %through passing it to awgn. 

            %Get channel output for first receiver (diversity arm) for symbol duration 

1 

            ch_op11 = awgn(conv(h11,t11)+conv(h12,t21),EsN0dB,10*log10(sigPow)); 

  

            % Get channel output for second receiver (diversity arm) symbol duration 1 

            ch_op21 = awgn(conv(h21,t11)+conv(h22,t21),EsN0dB,10*log10(sigPow)); 

             

            %Get channel output for first receiver (diversity arm) for symbol duration 

2 

            ch_op12 = awgn(conv(h11,t12)+conv(h12,t22),EsN0dB,10*log10(sigPow)); 

  

            % Get channel output for second receiver (diversity arm) symbol duration 2 

            ch_op22 = awgn(conv(h21,t12)+conv(h22,t22),EsN0dB,10*log10(sigPow)); 

             

            %% ---------------RECEIVER------------------------------------- 

            %Remove CP 

            start_inx = cp_len + 1; % starting index 

                         

            %for the 1st symbol duration 

            r11 = ch_op11(start_inx:end); 

            r21 = ch_op21(start_inx:end); 

             

            %for the 2nd symbol duration 

            r12 = ch_op12(start_inx:end); 

            r22 = ch_op22(start_inx:end); 

             

            %% ----forming peak-reducing signal 

            %for the 1st symbol duration 

            c11 = zeros(NF,1); 

            c11(nz11) = r11(NF+1:NF+length(nz11));  

             

            c21 = zeros(NF,1); 

            c21(nz21) = r21(NF+1:NF+length(nz21));  
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            %for the 2nd symbol duration 

            c12 = zeros(NF,1); 

            c12(nz12) = r12(NF+1:NF+length(nz12));  

             

            c22 = zeros(NF,1); 

            c22(nz22) = r22(NF+1:NF+length(nz22));  

  

            %% ----Remove L PRS samples from received signals on antenna 1 and 2 

            %for the 1st symbol duration 

            rx11 = r11(1:NF); 

            rx21 = r21(1:NF); 

             

            %for the 2nd symbol duration 

            rx12 = r12(1:NF); 

            rx22 = r22(1:NF); 

  

            %% ----Recovery of transmitted data samples by add the formed  

            %peak-reducing signal to the received signal 

            %for the 1st symbol duration 

            y11 = rx11 + c11;  

            y21 = rx21 + c21;  

             

            %for the 2nd symbol duration 

            y12 = rx12 + c12;  

            y22 = rx22 + c22;  

                         

            %% ----ADC: downsampling to recover input time samples  

            %for the 1st symbol duration 

            y11 = downsample(y11,Fs);            

            y21 = downsample(y21,Fs);  

             

            %for the 2nd symbol duration 

            y12 = downsample(y12,Fs);  

            y22 = downsample(y22,Fs);  

             

            %% ----Equalization 

            %forming matrix Y = [Y11; Y12*; Y21; Y22*] 

            Y11 = fft(y11,N); 

            Y12 = fft(y12,N); Y12_c = conj(Y12); 

            Y21 = fft(y21,N); 

            Y22 = fft(y22,N); Y22_c = conj(Y22); 

             

266



Appendix H: MATLAB Programs  
 

            % forming channel matrix and its conjugate transpose  

            %H=[h11 h12; h12* -h11*; h21 h22; h22* -h21*]  

            %Hc=[h11* h12 h21* h22; h12* -h11 h22* -h21]; 

            h11_c = conj(h11);  

            h12_c = conj(h12); 

            h21_c = conj(h21); 

            h22_c = conj(h22); 

             

            sum_h = h11*h11_c + h12*h12_c + h21*h21_c + h22*h22_c; 

             

            %estimtaes of transmitted symbols X1 and X2 

            %X_hut = Hc * Y/sum_h 

            X1_hut = (h11_c*Y11 + h12*Y12_c + h21_c*Y21 + h22*Y22_c)/sum_h; 

            X2_hut = (h12_c*Y11 - h11*Y12_c + h22_c*Y21 - h21*Y22_c)/sum_h; 

            X_hut = [X1_hut X2_hut]; 

             

            %% demodulation: demapping from symbols to binary stream  

            [X_hut_int,~] = demapper_mimo(b,X_hut); % demodulated integers 

            receivedBits = reshape(de2bi(X_hut_int,b,'left-msb'),1,[]);%received bits 

%  

            %% ----BER calculations: Counting bit errors------------------------------

----------  

            %Use biterr, a Matlab function, that computes number of bit errors and BER 

            nBErrors = nBErrors + biterr(transmittedBits,receivedBits);  

            % 

            tBits = tBits + numel(X_hut)*b; %total number of bits in received symbols; 

        end; %end of FOR loop for Nysm 

  

        %% Storage of BER results 

        if k==0 %to find the average power of the transmit signal 

            sigPow = sigPow/Nsym;  

        else 

            BER = nBErrors/tBits; 

            fprintf('EbN0 =%3d[dB], BER =%6d/%8d =%11.3e\n', EbN0dB(k), nBErrors,... 

                tBits,BER)%print on screen  

            fprintf(fileId, '%d\t%11.3e\n', EbN0dB(k), BER);%print to file 

        end 

    end %End of FOR loop for EbN0 

   

    %% Plotting BER 

    if (fileId~=0), fclose(fileId); end 

   plotBERRayleigh(fileName,b,EbN0dB); 

  

    % 

    %% display the execution time. 
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    toc 

     

    fprintf('Execution time =%2.2g\n', round(100*toc/3600)/100)%print on screen 

      

    disp('  ') 

    disp('End of program') 

  

end %fn end 

 

 

% Function for plotting BER 

function plotBERRayleigh(file_name,b,EbN0dB) 

    M=2^b; 

    sqM=sqrt(M); 

  

    %Formula for BER in Rayleigh Fading Channel 

    fBER= 2*(1-power(sqM,-1))/log2(sqM);  

    b= 6*log2(sqM)/(M-1); 

    r = b*10.^(EbN0dB/10)/2; 

    RayleighBER = 0.5*fBER*(1-sqrt(r./(r+1)));  

  

    %Rayleigh theory 2 

    % EbN0 = 10.^(EbN0dB/10); 

    % formulaBER = 0.5.*(1-sqrt(EbN0./(EbN0+1)));%same as RayleighBER. 

    % semilogy(EbN0dB,formulaBER,'g-','LineWidth',2); 

  

    %Rayleigh theory 1 

    semilogy(EbN0dB,RayleighBER,'r-','LineWidth',2) 

    hold on 

  

    fBER= load(file_name);  

  

    %plotting 

    fig = semilogy(fBER(:,1),fBER(:,2),'b-','LineWidth',2);  

  

    axis([EbN0dB(1) EbN0dB(end) 1e-7 1]); 

     

    xlabel('E_{b}/N_{0} [dB]');  

     

    ylabel('BER'); 

     

    set(fig,'LineWidth',2.0); 
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    legend('Rayleigh Theory', 'Rayleigh Simulation'); 

    title(['SNR per bit for M = ', num2str(M), ' Constellation']); 

  

    grid on 

    hold off 

  

end 
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