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ABSTRACT

Climate extremes, specifically floods, have posed significant challenges to several regions of the 

world. Mount Elgon in particular experiences severe flood and its’ impacts have drastically 

affected the region. Climate data used included the monthly observed data blended with Climate 

Hazards Group Infrared Precipitation with Station data (CHIRPS) for the period from 1991 to 2022 

and climate change projections for scenarios under Representative Concentration Pathways (RCP) 

2.6, RCP 4.5, and RCP 8.5 from the IGAD Climate Prediction and Application Centre (ICPAC) 

website. Rainfall trends from the Mann Kendall trend test varied across the seasons, with 

significant increases in Kapchorwa and Bukwo during the MAM season and uniform trends of 

intensified rainfall in the SON season while JJA and DJF season exhibited a non-significant 

increase in rainfall. To analyze flood susceptibility, the Analytical Hierarchy Process (AHP) model 

reveled rainfall, proximity to rivers, topography and land Use Land Cover as the most flood 

influencing factors and the weighted overlay integration generated a flood susceptibility map, 

revealing varying vulnerability levels of moderate to high with an area of 821 Sq.km and 1.6 Sq.km 

respectively. Furthermore, the study projects increased flood susceptibility in the region under 

scenarios Representative Concertation Pathways (RCP) 2.6, 4.5, and 8.5 emphasizing an escalating 

trend in flood susceptible areas, particularly in the northern region. The assessment of potential 

consequences indicates heightened flood risks in farmlands, particularly in Bukwo district, posing 

threats to agricultural activities and food production. These findings provide valuable insights into 

flood susceptibility dynamics and potential consequences considering changing climate condition. 

The findings underscore the need for proactive measures and adaptive strategies to address the 

increasing challenges posed by heightened flood risks. These measures are crucial for ensuring 

environmental resilience and promoting sustainable development in the Mount Elgon region. 
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CHAPTER ONE

INTRODUCTION 

1.1 Study Background  

One of the most prevailing and noteworthy discussions in the field of weather and climate revolves 

around extreme weather and climate events. These events increased in both occurrence of 

occurrence and severity globally (Eckstein et al., 2021; Ripple et al., 2021) with the primary 

concern being the devastating impacts evident both on human systems and disrupted sustainable 

development (Eckstein et al., 2021; Zhang et al., 2019). Globally, flooding is one of the major 

focus of this discussion mainly because of their severe potential for destruction. The World Bank 

report of 2021 estimates a 1-in-100-year flood event, and more than one-fifth of the world’s

population is exposed to flood depths exceeding 0.12 m (El-Haddad et al., 2021; Rentschler et al., 

2022). Recently, significant evidence has accumulated showing an increase in the occurrence and 

strength of floods, as well as threats to the well-being of people (Duan et al., 2022; Tabari, 2020).  

The population exposed and affected by floods has skyrocketed in the past decade with an average 

of 90,000 deaths annually and about $40 billion in damages (UNFCC, 2021). In Africa, several 

studies clearly demonstrate that low-income communities as well as areas with limited capacity to 

cope are the most vulnerable to floods (Di Baldassarre et al., 2010). Additionally, floods have 

significant negative impacts on public health, food security, and consequently on development (Di 

Baldassarre et al., 2010).  According to the World Bank, the economic cost of floods in Africa by 

2010 was estimated to be around $3.4 billion per year, and this figure is projected to rise to $7 

billion per year by 2025, and adaptation costs are projected to be about $15 billion by 2040-49 

(Ciscar et al., 2010). 

Uganda is among the low developed countries in Africa. It is recognized as one of the most 

vulnerable to flooding in Africa (WBG, 2021). Flooding is recognized as one of the deadliest 

natural disasters in the third National Development Plan (NDP) of the country, with flash floods 

and slow-onset floods commonly observed in the lowlands and along river banks (WBG, 2021). 

The highest impact of these floods is experienced among low-income communities; one such area 

is the Elgon region located in the Eastern side of Uganda (Jiang et al., 2014). This region is known 

for its diverse agricultural production, and numerous socioeconomic activities that depend on 

natural resources (Jiang et al., 2014). 
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Research in this field of extreme events has evolved as the significance of hazards’ impacts to

social, monetary, and ecological aspect continues to gain acknowledgement (Buchecker et al., 

2013; Duan et al., 2022; Rentschler et al.,2022). Other scholars have focused on the efficiency of 

various measures aimed at mitigating and adapting to floods, such as structural and non-structural 

measures, community-based approaches, and land use planning. Despite this, these studies have 

largely neglected the specific context of Uganda, yet the increasing influence of increased 

precipitation due to climate change on floods is anticipated to have substantial implications to the 

food security of the local community who rely on farmlands as a source of food (Kansiime et al., 

2013a; Resilience, 2010). Many vulnerable communities in the Elgon lowlands remain unprepared 

for the current and projected increase in flood frequency and intensity, posing significant risks to 

food security (Crawford et al., 2016). 

While the study area has long recognized floods as one of the most destructive extreme event, 

recent research indicates that rising precipitation levels are expected to further escalate the 

frequency of flooding incidents (Rentschler et al., 2022). Therefore, it is fundamental to consider 

the potential influence of increased precipitation on floods and the associated impacts. Considering 

this background, the primary goal of this study was to examine the susceptibility in Uganda's most 

vulnerable region, the Elgon region, and the potential impact on farmland food security.  

The study considers the definition of flood susceptibility by the Intergovernmental Panel on 

Climate Change (IPCC), which states that flood susceptibility is the probability or chance of an 

area being flooded, considering both the natural hazards and the vulnerability of the exposed 

elements (IPCC, 2021). This study identified areas prone to flooding and quantified the degree of 

susceptibility using Geographic Information System (GIS) and Analytical Hierarchy Process 

(AHP) methods to help Uganda develop effective preparedness and mitigation measures to tackle 

the potential risks related to projected flooding. 

This study contributes to the evolving research on flood risk assessment, encompassing societal, 

economic, and ecological dimensions. It seeks to aid policymakers and stakeholders by identifying 

and prioritizing areas for effective early warning system development and strategies to mitigate 

and adapt to flood hazards, particularly in vulnerable communities in Uganda. 
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1.2 Problem Statement

Floods pose a persistent challenge globally, impacting infrastructure and threatening lives and 

livelihoods (O’Donnell & Thorne, 2020; Balgah et al., 2023). The Mount Elgon region in Uganda 

faces escalating flood occurrences due to a changing climate (WBG, 2021).  

While existing studies identify major factors contributing to floods in the region, there's a gap in 

comprehensively mapping the areas at prone to flooding in the region, both current and projected. 

Despite global recognition of floods' impacts, the Mount Elgon region lacks specific research 

addressing its impacts specifically to farmlands food security yet the communities rely on rain-fed 

rain fed agriculture to achieve food security (Weldegebriel & Amphune, 2017).  

Hence, the objective of this study is to address this gap by providing a synthesized map of flood-

prone areas, current and projected, to guide tailored mitigation strategies, ensuring the region's 

resilience and sustaining rain-fed agriculture, vital for Uganda's economy. 

 

1.3 Objectives 

General Objective 

The general objective of this study was to assess the flood susceptibility of the Elgon region of 

Uganda under a changing climate and risk implications to the farmland food security.  

The research questions are:  

1. What are the seasonal precipitation patterns changed in the Elgon region of Uganda? 

2. What is the current spatial distribution of the flood-prone areas in the Elgon region of 

Uganda? 

3. Which areas in the Elgon region will be prone to flooding in the future? 

4. What are the impacts of projected floods to farmlands food security of communities living 

in the Elgon region? 

1.3.3 Specific objectives 

1. To examine the seasonal precipitation patterns in the Mount Elgon region of Uganda. 

2. To determine the spatial distribution of current flood susceptibility of the study region. 

3. To predict and map future flood susceptible areas of the study region. 
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4. To determine the impacts of the projected floods on of farmland food security in the region.

 

1.4 Justification and Significance 

The effects of climate change are becoming increasingly evident, resulting in changes to weather 

patterns, altered precipitation, and an increase in floods. Understanding these changes is vital to 

develop effective strategies for adaptation and mitigation.  

The study therefore fills crucial knowledge gaps by providing comprehensive data on flood 

susceptibility and changing precipitation patterns in the region. Through mapping both current and 

future flood-prone areas, it aids in risk assessment and preparedness, equipping communities with 

valuable information to bolster their resilience. 

Furthermore, food security is a paramount concern for the communities residing in the Mount 

Elgon region. Flooding has the potential to disrupt agricultural activities, resulting in crop loss and 

food shortages. Investigating how floods affect farmland food security is not only academically 

significant but also directly impacts the well-being of local populations in order to maintaining a 

secure food supply in the face of climate change impacts.  
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CHAPTER TWO

LITERATURE REVIEW 

 2.1 Introduction 

This chapter presents a synthesis of past studies that have explored flood susceptibility, methods 

used for the assessment, flood conditioning factors, how climate change is affecting flood-prone 

areas and the implications of projected flood susceptibility on farmland food security globally, 

regionally and locally.  

 

2.2 Flood Susceptibility Assessment 

As discussed in section 1.1, flood susceptibility is the probability or chance of an area being 

flooded, considering both the natural hazards and the vulnerability of the exposed elements 

similarity, flood susceptibility assessment involves evaluating the likelihood of an area to 

experience flooding.  

Flood susceptibility assessment is significant towards effective flood risk management technique 

(Milly et al., 2002; Rentschler et al., 2022). Over several years, studies have been done to 

investigate flood susceptibility in various regions globally.(Di Baldassarre et al., 2010; 

Ekeanyanwu et al., 2022; Karmakar et al., 2010; Umaru & Adedokun, 2020; Ward et al., 2013; 

Wright, 1994; Zehra & Afsar, 2016).  

Most of these studies have utilized various techniques such as hydrological modelling, remote 

sensing, and Geographic Information System (GIS) to detect areas prone to flooding (Wright, 

1994). While hydrological models and Geographic Information System (GIS) have been widely 

used to study flood susceptibility, some critics argue that they have limitations in accurately 

predicting floods and their impacts on agricultural systems (Wright, 1994). One limitation is that 

hydrological models rely heavily on data inputs, which may be subject to errors and uncertainties. 

Additionally, the efficiency of hydrological models is highly reliant on the quality and availability 

of the contribution data needed to develop the model, which may not always be reliable or 

consistent across different regions or periods (Albano & Sole, 2018).  
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2.3 Flood conditioning factors

In an attempt to gain understanding of flood susceptibility, most studies used GIS to integrate 

various flood influencing factors. These factors are referred to as conditioning factor (Forte et al., 

2006). (Edamo et al., 2022; El-Haddad et al., 2021; Pourali et al., 2016) demonstrated that places 

with a high Topographic Wetness Index (TWI) are more prone to flooding during heavy rainfall 

events, emphasizing the significant influence of TWI on flood occurrence.  

Similarly, Ogania et al., (2019) and  Rocha et al., (2020)  studied the effect of elevation and slope 

and found that  higher elevation and slope translated to lower probability of flooding and lower 

elevation translated to higher probability of flooding. It directly impacts the speed of surface water 

runoff and consequently infiltration rate (Rocha et al., 2020). Slopes have a negative influence on 

infiltration and a positive influence on the velocity of runoff, hence high flooding, and the gentle 

slopes have a positive influence on infiltration and a negative influence on runoff velocity hence 

low flooding (Samanta et al., 2018). 

For precipitation, (Chen et al., 2022; Edamo et al., 2022; Ekeanyanwu et al., 2022; Kim et al., 

2019) show that precipitation has an inverse relationship with the probability of flooding and that 

this is a very essential factor in flood proneness analysis and modeling. This factor is considered 

as the primary and significant cause of floods (Rahman et al., 2021; Yamazaki et al., 2018). 

Extreme rainfall is positively correlated to flood occurrences (O’Donnell & Thorne, 2020). Higher 

rainfall rates considerably increase the probability to flood and lower precipitation rate decrease 

the probability to flood (Edamo et al., 2022).   

Land Use Land Cover(LULC) and Normalized Difference Vegetation Index (NDVI) influence 

flooding by affecting the amount of water runoff and infiltration in a given area (Adnan et al., 

2020; Rahman et al., 2021; Samanta et al., 2018). Land use land cover (LULC) was considered 

since it influences flooding through the hydrological parameters of runoff and infiltration as well 

as being an element that signifies the present condition of the land, its configuration, and category, 

along with its significance regarding soil steadiness (Akdeniz et al., 2023; Tariq et al., 2022). Areas 

with vegetation slow down run-off and a have high infiltration rate, reducing the probability of 

flood whereas built-up areas have a low infiltration rate, thereby increasing the probability of flood 

(Costache, 2020). 

Similarly, previous studies have examined the influence of proximity to the river and road on 

flooding (Adnan et al., 2020; Karmakar et al., 2010; Rahman et al., 2021). The proximity to the 
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road and the river are important factors in flood mapping because they significantly affect the

amount of water that reaches a particular location during a flood event. Studies have shown that 

the closeness of a location to a river or stream increases the likelihood of flooding (Janizadeh et 

al., 2019; Samanta et al., 2018; Tariq et al., 2022). Proximity to the road influences flood 

susceptibility. Roads and other impervious surfaces can increase the speed and volume of surface 

runoff during heavy rainfall events, which can result in localized flooding in low-lying 

areas(Albano & Sole, 2018; Samanta et al., 2018; Tariq et al., 2022).  

Edamo et al., (2022) and Tariq et al., (2022) showed that drainage density reflects the amount of 

water that can be accumulated in a particular area during a rainfall event by controlling the runoff 

and infiltration rate. Areas with higher drainage density tend to have more channels and tributaries, 

which can facilitate the flow of water and reduce the likelihood of flooding. On the other hand, 

areas with low drainage density are more likely to have less flow capacity, leading to water 

accumulation and flooding during heavy rainfall. 

And finally, the variable that is input into ArcGIS to accurately study the flood susceptibility of a 

place is soil type. Soil type is a crucial variable for accurately assessing flood susceptibility in 

ArcGIS. Studies by (Edamo et al., 2022; Janizadeh et al., 2019; Karmakar et al., 2010; Montz & 

Evans, 2001) have highlighted that reduced soil water absorption capacity leads to increased water 

runoff, elevating the likelihood to flood. The influence of soil on the infiltration rate and surface 

run-off is a significant factor that influences flooding. Coarse–textured soils have larger pore 

spaces and hence higher rates of infiltration, which in turn reduces flooding and the same is the 

opposite for fine-textured soils (Karmakar et al., 2010).  

 

2. 4 Climate Change and Flood Susceptibility 

Changes in climate have increased variations in the occurrence and strength of floods in most 

regions of the world as flood susceptibility and extreme rainfall are directly proportional (IPCC, 

2021). Extensive evidence indicates that global climate changes are anticipated to result in 

increased precipitation, thereby altering flood-prone areas worldwide.(Chen et al., 2022; Crawford 

et al., 2016; Dankers & Feyen, 2009; Duan et al., 2022; Karmakar et al., 2010; Kim et al., 2019; 

Zbigniew W. Kundzewicz et al., 2014; McKinney & Wright, 2021; Milly et al., 2002; Onyutha et 

al., 2021; Papalexiou &Montanari, 2019; Simonović, 2009; Tabari, 2020; Yamazaki et al., 2018). 

These studies have used various methods, including “global flood risk models, statistical analyses, 
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and hydrological approaches”, to comprehensively scrutinize the influence of climate change

precisely variations in precipitation and temperature patterns on flood-prone areas in various 

regions. 

Yamazaki et al., (2018) studied a worldwide flood risk model that incorporates the effects of 

climate change. The study showed that the impacts of climate change are anticipated to result in 

an elevated flood hazard and risk across multiple regions. Notably, the research underscored that 

this escalation is particularly pronounced in Asia. They also note that adaptation measures, such 

as improved flood protection infrastructure, may be necessary to alleviate the climate change 

impacts. Similarly, Tabari (2020) investigated the connection of extreme rainfall, flood events, 

and climate change. The study found that “there is a potential for an escalation in extreme rainfall 

and flood events across all climate zones. The magnitude of this increase is mainly distinct in 

regions categorized by higher levels of rainfall”. 

Onyutha et al., (2021) studied how climate change will affect rainfall and evaporation in different 

parts of Uganda. They found that both rainfall and evaporation will generally increase across 

Uganda, but the changes will vary from place to place. The eastern part of Uganda will get more 

rain. These changes will have important implications on water resources in Uganda, so it is 

important for people to plan and prepare for them.  

Di Baldassarre et al., (2010) reported that topography, land use changes and precipitations as the 

major factors that cause the floods in the region. However, the major factor of increased occurrence 

and strength of floods in this region are the result of increased altered precipitation patterns caused 

by a complex interplay of global and regional drivers, such as ENSO, IOD and the equatorial rain 

band oscillation (Ngoma et al., 2021) as well as local driver such as LULC changes, deforestation, 

and soil degradation (Jiang et al., 2014; Kansiime et al., 2013b). 

 

2.5 Implication of Projected Flood Susceptibility on Farmland Food Security  

Food security is one of the utmost discussed topics during and after flood events because of its 

direct negative influence on crop production particularly in the developing countries (Reed et al., 

2022; Week & Wizor, 2020). The concept of food security is complex. The World Food Summit, 

as outlined by  Shaw, (2007), described food security as the condition where individuals 

consistently possess the physical and economic means to acquire an ample supply of safe, 

nourishing food that aligns with their dietary requirements and preferences, promoting an active 
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and healthy lifestyle. This characterization of food security includes the scopes of food availability,

food accessibility, and food utilization 

In Mount Elgon region however, it is crucial to emphasize that the indigenous people rely on 

agricultural yields from the farmlands for their food and economic benefit (Uganda Investment 

Authority, 2019), FAO argues that the kind of food insecurity where there is temporary food 

shortages resulting from climate-related hazards like floods is defined as “transitory food security” 

(Pinstrup-Andersen, 2009; Uribe, Álvarez et al., 2010). The world bank on the other hand suggest 

that the term “farmland food security” should be used to define the state in which agricultural lands 

and farming systems within a region or community can consistently and sustainably produce an 

adequate quantity and quality nutritious food that satisfies the dietary requirements and food 

choices for a healthy lifestyle (Fischer & Shah, 2010), Therefore, this study adopted to investigate 

the implication of projected flood susceptibility on “farmlands food security”. 

Farmland food security aims to guarantee that the local community has reliable access to safe and 

nutritious food sources, reducing the risk of hunger, malnutrition and food-related crisis (Fischer 

& Shah, 2010). However, agricultural activities in this region rely on good climate conditions to 

thrive yet climate change/variability has been recognized as the major contributing factor for the 

decline and uncertainty the agricultural sector (Balgah et al., 2023; Gitz et al., 2016;; SHIFIDI, 

2016; Simonović, 2009; Weldegebriel & Amphune, 2017). The intricate relationship between 

floods and crop production presents a potential risk of diminishing crop yields, crop losses and 

reduced productivity, soil degradation and nutrient leaching hence vulnerable populations face 

exacerbated food insecurity stemming from limited food access. 

Several studies examined the risk implications of floods to food security across different 

geographical locations globally (Balgah et al., 2023; G.Ramakrishna et al., 2014; SHIFIDI, 2016; 

Week & Wizor, 2020; Duan et al., 2022; Resilience, 2010) and that floods have a severe impact 

on agriculture, destroying crops, washing away fertile soil, and contaminating water sources. This 

leads to a decline in agricultural productivity, food insecurity, and increased poverty. The impact 

of floods on agriculture is expected to become more severe due to the changing climate. However, 

none of these studies have focused on the Elgon region of Uganda. This presents a gap which this 

study seeks to fill. 
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2.6 Conceptual framework

This study was grounded on the fundamental concepts of impact-based forecasting. This concept 

evaluates changes in one independent variable (climate change) and the relationship to a dependent 

variable (floods) and consequently the impact on another dependent variable (food security) 

among communities in the region of study.  

Climate was conceptualized as an independent variable that includes climate variables such as 

rainfall and frequency and harshness of extreme climate events. These climate stressors are bound 

to result in increased flooding in the Elgon region. 

Flood susceptibility was conceptualized as a dependent variable, which is caused by conditioning 

factors such as extreme rainfall events, soil type, slope, LULC, distance to rivers and roads, NDVI, 

elevation, and drainage density. The increased flood susceptibility of the Elgon region would likely 

increase likelihood of food security of the people living in the region. 

The variable of farmland food security was theorized as a dependent variable that is influenced by 

flooding resulting from increased flood susceptibility caused by increased precipitation. Floods 

presents a potential risk of diminishing crop yields, crop losses and reduced productivity, soil 

degradation and nutrient leaching hence exacerbate food insecurity among vulnerable population 

in the Mount Elgon region. 
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Figure 1: Conceptual frame work (A GIS-based IBF model modified from the Uganda Risk and Vulnerability 

Atlas, (OPM, 2020) ) 
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CHAPTER THREE

DATA AND METHODOLOGY 

3.1 Introduction 

This chapter presents the data types and sources that were used in the study, detailed overview of 

the study area and its biophysical characteristics. The chapter also presents the methods that were 

used for data collection and analysis used to achieve the study objectives. 

 

3.2 Area of study 

This Study was conducted over Elgon region of Uganda. This region lies North of the equator in 

the Eastern part of Uganda within latitude 0.5383N to 1.6614N and longitude 34.0741E to 

34.9915E (Figure 2). The region occupies an approximate total area of 4,000 square kilometers 

and comprises of 8 districts (Mbale, Sironko, Manafwa, Bududa, Bulambuli, Kapchorwa, Kween 

and Bukwo).  
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Figure 2: Study area map (shaded yellow) showing the rivers (blue), roads(grey) and protected areas(green) 

prepared in ArcGIS 10.5.  

The region borders Kenya which can be accessed through Manafwa border post in Manafwa 

district and neighbors the Karamoja, Teso and Bukedi regions internally. The typographic feature 

located in this region is Elgon, this mountain is an inactive volcano and is the fourth-highest 

mountain in East Africa. Finally, the area is characterized by its significant elevation with the 

highest point reaching an altitude of 4,322 meters above sea level (Nakileza & Mugagga, 2022).  

 

3.2.1 Climate of Mount Elgon Region 

The region experiences bimodal rainfall patterns; long rains received in March, April and May 

(MAM) season followed by short rains in the September, October and November (SON) season. 

The region receives an estimated  annual mean rainfall of about 1500 mm and the annual mean air 

temperature of about 23℃ (Bonzemo, 2018). The climatology of the area of study relies deeply 

on the rainfall dynamics of Mount Elgon. 
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Rainfall distribution is influenced by several systems ranging from local to global drivers. The

local drivers including the influence from the orographic lifting of moist air masses creating local 

microclimates due to the presence of Mount Elgon as well as the changes in the urban heat island 

due to changes in land cover resulting from deforestation, urbanization and agricultural activities. 

Among the regional and global systems that influence the climate of the study are the Inter-

Tropical Convergence Zone (ITCZ), Indian Ocean Dipole (IOD) and the East African Monsoon.  

The Inter-tropical convergence zone is a major global driver of the rainy season in this region, this 

band of converging winds from both the Northern and Southern Hemispheres influences seasonal 

rainfall in the region of study.  

This convergence zone shifts northward and southward with the changing seasons, bringing 

rainfall as it moves across the equatorial region. Over the Elgon region, the movement of the ITCZ 

is a critical factor in the onset and cessation of rainy seasons, influencing both the timing and 

duration of rainfall events (Lashkari & Jafari, 2021).  

The Indian Ocean Dipole (IOD) is a sea-surface temperature anomaly in the Indian Ocean that 

affects weather and climate patterns in the surrounding regions. The IOD's positive phase is 

associated with warmer waters in the western Indian Ocean and cooler waters in the eastern Indian 

Ocean (Endris et al., 2019). This sea-surface temperature gradient influences atmospheric 

circulation patterns, impacting the Elgon region's rainfall. During a positive IOD phase, reduced 

moisture transport from the Indian Ocean can lead to decreased rainfall in the region, while a 

negative IOD phase may enhance rainfall (Endris et al., 2019).  

The East African Monsoon is another significant climate system affecting rainfall patterns in the 

Elgon region. This monsoon is characterized by the seasonal reversal of winds, with moist 

maritime air from the Indian Ocean being drawn inland during the wet season. The monsoon's 

strength and directionality help in determining the amount of moisture transported over the region, 

impacting rainfall amounts. Research by Palmer et al., (2023) highlights the strong connection 

between the East African Monsoon and precipitation variability in the region, underscoring its 

influence on the Elgon region's rainfall patterns. 
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3.2.2 Population and economic activities 

The region is home to a large population, with an estimated 3 million people residing within the 

eight districts (UBOS, 2020). Among the livelihood activities in the region include tourism and 

agriculture and  90% of this population relies on agriculture as a source of livelihood (Uganda 

Investment Authority, 2019). The most common land use type among built-up areas, bare land, 

and  forest cover is agriculture(Uganda Investment Authority, 2019). The most common 

agricultural practice carried out in this area is subsistence farming both in the low land and 

mountain slopes (Uganda Investment Authority, 2019).   

 

3.3 Data Types and Sources 

The datasets that were used in this study included historical and downscaled projected rainfall data 

as well as raster datasets of the conditioning factors. 

 

3.3.1 Rainfall Data 

The rainfall datasets that were used in this study were obtained from two sources. First, the monthly 

observed data blended with CHIRPS data in Climate Data Tools (CDT) for six observation points 

across the Elgon region as shown in table 1 below for the period from 1991 to 2022 obtained from 

Uganda National Meteorological Authority (UNMA). Similar dataset has been used by (Obubu et 

al., 2021) to assess the recent changes in climate in the Lake Kyoga Basin of Uganda.  

Table 1: Rainfall observation points used in the study and their coordinates 

station Latitude longitude 

Mbale 1.074773 34.17715 

Bududa 1.025107 34.37093 

Kapchorwa 1.397089 34.45075 

Bunginyanya 1.2833 34.35 

Bukwo 1.289369 34.73928 

Sironko 1.229645 34.24803 
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Secondly, climate change projections from Regional Climate Model - Max Planck Institute(RCA-

MPI)  for the domain that covers longitude 21.84E TO 51.39E by 0.05 N=592pnts and 11.74N to 

latitude 22.91N by 0.05 N=694pnts based on the IPCC Representative Concertation Pathways; 

RCP 2.6, RCP 4.5 and RCP 8.5 (IPCC, 2014) downloaded from Intergovernmental Authority on 

Development Climate Prediction and Applications Centre (ICPAC) website were used. This data 

was subjected to processing in Climate Data Operators (CDO) where the period of 2030 to 2050 

was cut, re-gridded using the CHIRPS’ data layer to the Elgon region grid of latitude 0.5383N to 

1.6614N and longitude 34.0741E to 34.9915E and finally units converted from kilogram per meter 

per second to millimeter per day.  

 

3.3.2 Conditioning factors data 

The flood susceptibility model utilized raster datasets acquired from various sources, as indicated 

in the table provided in table 2 below. Digital Elevation Model (DEM) was used to extract the 

information of the topographic influence on hydrology in the region to include the Topographic 

Wetness Index (TWI), slope, and elevation.  

Table 2: Data sources and their resolution 

 
No Data Data source Output Resolution 

1 DEM https://dwtkns.com/srtm30m/  elevation 30m 

slope 

TWI 

2 LULC (Landsat 

8 OLI) 

https://earthexplorer.usgs.gov/  Land cover map 30m 

3 Soil  NARO Soil map 30m 

4 Road Network UNRA 2017/open street map Proximity to the road  

5 Rivers NFA 2015 Proximity to the rivers  

Drainage density 

6 NDVI https://earthexplorer.usgs.gov/  NDVI 30m 
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3.4 Methods of Data Analysis

This section describes the homogeneity test method, the methods employed to achieve the specific 

objectives of the study comprising of the examination of the seasonal precipitation patterns, 

determination of the spatial characteristics of current flood susceptibility, prediction and mapping 

of future flood susceptible areas, and determination of the impacts of the projected floods on the 

farmland food security. 

 

3.4.1 Homogeneity Test 

In this study, homogeneity testing was conducted using the single mass curve in R-software. This 

method involved plotting the cumulative climatological value of rainfall in millimeters against 

time in years. A study by Wakachala et al., (2015) as well utilized this method. A homogeneous 

data record was indicated by a straight line plot, while heterogeneity was indicated by evidence of 

shifts in the cumulative straight line plot due to mean shifts. 

 

 3.4.2 Examination of the Seasonal Temporal and Spatial Rainfall Patterns  

In this study, the methods that were used to examine the temporal and spatial rainfall patterns over 

the specified period of 1991 – 2022 over the study area included statistical analysis of trends using 

the Mann-Kendall test and Sen’s slope estimator (Adhikari et al., 2018). These methods were 

chosen because they are commonly used by researchers for trend analysis to show significant 

statistical trend time-series (Aditya et al., 2021). Furthermore, the methods do not rely on the 

normality assumption of data, they are robust against outliers and do not require the data to be 

evenly spaced (Adhikari et al., 2018; Alashan, 2020; Aswad et al., 2020; Roy & Chakravarty, 

2021).  

 

3.4.2.1 Mann-Kendall Test 

This method was employed to identify trends in time sequence data (Aditya et al., 2021). It is 

based on the ranking of the data and computing a test statistic that H0 assumed no trend and 

H1assumed existence of a trend in the data. If the p-value was less than 0.05 which is the 

significance level, the H0 was rejected, and a trend was considered to be present and if the p-value 
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was greater than the significant level, then there was no trend in the data.(Adhikari et al., 2018;

Roy & Chakravarty, 2021).  

The Mann Kendall test was calculated using equation (1.0) which involved calculating the sum of 

all pairwise differences in the data points, taking into account the signs of the differences. The 

equation calculated all combinations of data j and k from 1 to (n-1) and k+1 to “n” values

respectively within the sample, where “n” represents the length of the sample. 

S = ∑ ∑ sj − i, s  −  = {

+, f  − j > 0

0, f k −  = 0

−, f k −  < 0

.0



kj



j

 

A positive S value indicates an upward trend of rainfall in the Mt. Elgon region, while a negative 

value indicated a downward trend of rainfall over the Mount Elgon region. The variance (S) of the 

rainfall was computed using equation 2.0 in order to obtain the Z values.  

VrS =


8
{ − +  − ∑ tp

g

p

tp − tp +  .0 

Where n denotes number of data points in the dataset, g  denotes the number of tied groups and tp 

denotes the number of data points in the pth group  

 

A tied group (g) is a set of rainfall data with the same value when the sample size is n>10. A 

standardized measure of test statistics (Z), was determined using the equation (3.0). 

Z =


 


 


S − 

VrS
f S < 0

0 f S = 0
S + 

VrS
f S > 0

3.0 

A positive value of Z indicated an increasing trend of rainfall over the Mount Elgon region. While 

a negative value of Z indicated a downward trend. 
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3.4.2.2 Sen’s Slope Estimator

This method estimates the magnitude of the trend using a non-parametric method. (Aditya et al., 

2021). The estimator calculates the magnitude of any trend found in the Mann-Kendall test slope 

of each pair of observations in the data and computes the median of all the slopes. (Adhikari et al., 

2018; Alashan, 2020; Aswad et al., 2020; Roy & Chakravarty, 2021). Multiple estimates (N) were 

made of the slope using equation 4.0: 

 =
j − i

 − 
,  = ,,3, … , N .0 

xj and xi denotes data values at time j and, respectively. If there are n values of xj in the time series, 

there will be N = n(n-1)/2 slope estimates. The N value of Qi is sorted from smallest to largest, 

then Sen's Slope used median Qi (Qmed). A two-tailed test estimated the value of Qmed at a 

confidence interval of 95% calculated using equation 5.0. 

 = 
[/] ,    
[/2] [2/2] ,


   

                                                                                    (5.0) 

 

3.4.2.4 Spatial Analysis 

In this study, Climate Data Tools (CDT), an R-based software package, developed by International 

research institute for climate and society (IRI) as part of enhancing national and climate services 

(ENACTS), was used to visualize and analyze of the spatial characteristics of trends. The values 

of the formulas discussed in section 3.4.2.1 and section 3.4.2.2 were spatially visualized in maps 

to show the spatial characteristics.   

 

3.4.3 Determination of the Spatial Characteristics of Current Flood Susceptibility the Study 

Region  

To generate flood susceptibility maps, identifying the baseline factors that influence the flood 

occurrence for the study domain was the first step (Kamaraj & Rangarajan, 2022; Umaru & 

Adedokun, 2020). Therefore, the study identified 10 important factors that influence the region’s

flooding scenarios (shown in chapter 2 section 2.2).  In this study, these factors were referred to 

as conditioning/baseline factors. 
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3.4.3.1 Description and Preparation of flood conditioning factors

3.4.3.1.1 Topographic Wetness Index  

The topographic wetness index (TWI) represents the steady-state wetness index (Rocha et al., 

2020). This index was used to compute the topographic control on the hydrological process and 

terrain driven variation in soil moisture (Rocha et al., 2020). This factor was calculated from the 

DEM with the raster calculator in Arc GIS using equation 6.0 (Costache, 2020). 

TWI = l
∝

T β
6.0 

Where∝   denotes the local slope area drainage through a certain point x permeant contour length 

and β is the local slope in radians. 

 

3.4.3.1.2 Slope and Elevation  

This is calculated from the DEM of the Elgon region using the raster calculator in Arc GIS 

10.5.The equation used based on the concept of the rate of change of elevation (dZ/dY) of elevation 

from one cell to another and the lateral directions (dZ/dX) from the central cell (Ro, 2001) as given 

in equation 7.0.  

Slope (degrees) =  Arc Tan (√






+ 






) 7.0  

Where dZ is denotes the difference in elevation between cells and dX and dY represent the 

horizontal distances between the central cell and its neighboring cell in the X and Y directions, 

respectively. 

Higher elevation translated to lower probability to flood and lower elevation translated to higher 

likelihood to flood (Ogania et al., 2019; Rocha et al., 2020). This factor was derived from the DEM 

data of the Elgon region using Arc GIS 10.5. 

 

3.4.3.1.3 Drainage Density  

This factor represents the ratio of the cumulative distance of streams and rivers to the overall study 

domain area. High drainage density indicated low probability to flood and low drainage density 

indicated high probability to flood (Tariq et al., 2022). It was calculated from the Digital Elevation 



34

Model (DEM) utilizing the raster calculator in Arc GIS 10.5 and classified. The drainage density

was derived using a methodology proposed by (Hosseinzadeh, 2011) based on equation 8.0:  

Drainage density = 
 
1


                                                                                                                                (8.0) 

where, l denotes the distance of the streams and rivers, n represents the number of streams and 

rivers and F represents the contributing drainage area. 

 

3.4.3.1.4 Distance from the River  

The distance from the river helps to define flood-prone areas along the river(Rahman et al., 2021). 

The Euclidean distance tool in ArcGIS was applied to calculate the approximate distance in meters 

of village centroids to the river. The tool was used to calculate the straight-line distance between 

points using equation 9.0. 

Euclidean Distance =  − 
 +  − 

                                                                               (9.0) 

Where ( , ) represents the coordinates of the river point and ( , ) represent the coordinates 

of the centroid point. 

 

3.4.3.1.5 Distance from the Road  

Roads increase the speed and volume of surface runoff during heavy rainfall events (Tariq et al., 

2022).  The ArcGIS Euclidean distance tool was utilized to compute the approximate distance in 

meters from the road network to the Cell centroids. For each centroid, the Euclidian distance was 

calculated using equation 10.0.  

Euclidean Distance =  − 
 +  − 

                                                                        (10.0) 

where ( , ) represent the coordinates of the road network point, and ( , ) represent the 

coordinates of the centroid point. 
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3.4.3.1.6 Rainfall

For this study, the rainfall data from CHIRPS spanning the years 1991 to 2022 was utilized. The 

study employed Climate data tools (CDT) to compute the annual climatology in terms of total 

average rainfall received using equation 11.0 and the result imported to ArcGIS 10.5. 

 =
 
1


                                                                                                                                     (11.0) 

Where R is the observed rainfall, Q denoted the annual average rainfall and n is the number of 

years. 

 

3.4.3.1.7 Land Use Land Cover  

 The LULC map was classified into 12 classes, including built-up area, bushland, bulrospermum 

savanna, dry combretum savanna, farmland, forest/savanna mosaics, grass savanna, high alt forest, 

high alt moor and heath, moist combretum savanna, and seasonal wetland. 

An unsupervised image classification was performed using the K-means clustering method. This 

method entailed clustering data into a predefined number of clusters (K) (Basheer et al., 2022). 

We began by strategically placing K centroids, one for each cluster, ideally far apart to ensure 

distinct results. Data points were then assigned to the nearest centroid, iteratively creating early 

groupings until all points were assigned (Basheer et al., 2022). Subsequently, new centroids were 

computed as the barycenter of their respective clusters, and this process was repeated until 

centroids no longer moved significantly. Finally, the algorithm seeks to minimize an objective 

function, specifically a squared error function represented by equation 12.0 

J = ∑∑  − 
 .0



i



j

 

Where  − 
 denotes a chosen distance measure between a data point  and the cluster center 

  denotes an indicator of the distance of n data points from their respective cluster centers. 
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3.4.3.1.8 Normalized Difference Vegetation Index

NDVI was computed using equation 13.0 as the ratio of the Red band reflectance value of a pixel 

(B4) and the near-infrared band reflectance value of a pixel (B5) bands of satellite imagery. 

NDVI =  
54

54
                                                                                                                             (13.0)  

High positive NDVI values symbolize lush and healthy vegetation, whereas low or negative NDVI 

values suggest limited or no vegetation presence. 

 

3.4.3.1.9 Soil Types  

Data information about soil types in the study that was used for reclassification was acquired from 

the Food and Agriculture Organization (FAO) website (https://www.fao.org/soils-portal/data-

hub/soil-classification/en/). 

The reclassification process to categorize various soil types based on their inherent characteristics. 

This classification aimed to group similar soil types together, considering factors such as texture, 

drainage properties, and permeability 

 

3.4.3.2 Analytical Hierarchy Process  

The conditioning factors discussed in section 3.3.2.1 were ranked using the Analytical Hierarchy 

Process (AHP) methodology to identify the individual level of influence in terms of impact weight 

to the floods (Findayani et al., 2019). AHP tool, developed by (Saaty, 1987), aided the decision 

making and evaluation and prioritization of multiple factors affecting flood susceptibility by 

structuring the individual factors, performing pair-wise comparisons to define significance 

expressed as a matrix in scale of 1-9 to represent neutral all through to extreme importance(Table 

3) and calculating weights using the random Index (RI) of consistency to ensure consistency of 

the pair-wise comparisons.  
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Table 3: AHP pairwise comparison rating fundamental scale (Saaty, 1987)

Degree of 

significance 

Definition  Explanation 

1 Equal significance The two factors have the same importance 

3 Moderate significance of one over 

another 

One factor is moderately superior to 

another based on experience and judgment. 

5 Strong significance One factor is essentially or strongly 

superior to another based on experience 

and judgment 

7 Very strong significance One factor is very strongly superior to 

another based on experience and judgment. 

And its power is reflected in practice. 

9 Extremely significant One factor is extremely superior to another 

based on experience and judgment. And its 

power is reflected in practice. The 

evidence for the effectiveness of one 

criterion over another is of the greatest 

degree of confirmation 

2,4,6 and 8 Intermediately significance 

between two above adjacent 

preferences 

Used to indicate the compromises between 

the two above judgments or significance 

1,3,5,7, and 

The Consistency Ratio (CR) was identified as a ratio of consistency index (CI) to random 

consistency Index as shown in equation (14.0) whereas CI was calculated using equation (15.0). 

CR =
CI

RI
.0 

CI =
λmaxn


.0      

Fundamental components in calculating CR were the average of the consistency vector, 

represented by λ, RI which denotes the Random Consistency index, and CI is the consistency 

index.  



38

The final value of the CR of less than 0.1 was considered to validate the weights. Once the pairwise

comparison and consistency was ensured, weights were calculated for each factor reflecting its 

relative importance in contributing to flood susceptibility. 

 

3.4.3.3 Weighted overlay  

ArcGIS weighted overlay tool was used to combine multiple spatial datasets into a single layer 

using equation 16.0 (Tariq et al., 2022). This technique takes into account the relative importance 

of each conditioning factor obtained in section 3.3.2.1.2 and the reclassification according to the 

susceptibility class rating. 

Weighted overlay =   .

                                                                                            (16.0) 

Where  signifies the index representing individual flood conditioning factors ranging from 1 to n, 

each factor is denoted as  corresponding to a specific value associated with a particular cell and 

finally  represents the weight assigned to the ith factor , reflecting its relevant importance. 

Equation 16.0 was applied to compute the weighted overlay value for each cell. Following the 

computation of the weighted overlay, the generated raster file delineated areas of varying flood 

prone areas in square kilometers with response units of very low, low, moderate and high to very 

high there by generating a susceptibility map. This method was also used in studies by (Edamo et 

al., 2022; Tariq et al., 2022). 

  

3.4.4 Prediction and Mapping of Future Flood Susceptible Areas of the Study Region  

Additional adjustments and modifications on the methodology described in section 3.4.4 were 

made to address the projected flood prone areas under a climate change. To achieve this, the 

rainfall projections were used to examine the possible influences of such alterations to floods along 

with the conditional factors, including TWI, slope, elevation, distance from the road and river, soil 

type, drainage system, and NDVI discussed in section 3.4.3.1 – 3.4.3.8. 

The conditioning factors were reclassified and ranked with the AHP tool discussed in section 

3.4.3.9  to determine the individual level of influence in terms of impact weight to the floods 

(Findayani et al., 2019).  The consistency ratio (CR) was computed using equation 14.0 and 

equation 15.0 above.  
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ArcGIS weighted overlay tool was used to combine multiple spatial datasets into a single layer

using equation 17.0 (Tariq et al., 2022),  

Weighted overlay =    

                                                                                           (17.0) 

Where  signifies the index representing individual flood conditioning factors ranging from 1 to n, 

each factor is denoted as  corresponding to a specific value associated with a particular cell and 

finally  represents the weight assigned to the ith factor, reflecting its relevant importance. 

This technique takes into account the relative importance of each conditioning factor obtained in 

section 3.4.3.10 and the reclassification according to the susceptibility class rating. 

Equation 17.0 above is used to calculate the weighted overlay value for each cell. Following the 

computation of the weighted overlay, the generated raster file delineated areas of varying flood 

prone areas in square kilometers with response units of very low, low, moderate and high to very 

high there by generating a susceptibility map. This method was also used in studies by (Edamo et 

al., 2022; Tariq et al., 2022). 

 

3.4.5 Determination of the Impacts of the Projected Floods on Farmland Food Security 

3.4.5.1 Farmland Mapping 

Farmland mapping was performed by using base data of LULC of the same study domain and the 

digitizing tool provided in ArcGIS software version 10.5. This was executed using polygon 

digitization where the farmlands were outlined and extracted from the Land Use Land Cover map 

(Kamaraj & Rangarajan, 2022). This approach aligns with the methodology employed by (Chau 

et al., 2013; Dede et al., 2022). Dede et al., (2022) used the methodology to determine the changes 

in the agricultural sites while (Chau et al., 2013) used the same method to map impacts of extreme 

floods on agriculture. 

 

3.4.5.2 Mapping the Impact of flooding to Agriculture 

The digitized farmlands map was used to identify agricultural land areas prone to flooding 

(Muhammad et al., 2022). The farmland data was overlaid with the flood hazard data for each RCP 

scenario. The digitized farmland area was subjected to an intersection analysis with the flood of 

the different Representative Concertation Pathways (RCPs) in section 3.4.4.   
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The intersect analysis computes the geometric overlap between multiple feature classes and layers.

It identifies and retains the features or segments of features that are shared by all input sources. 

These common areas of overlap are then recorded in the resulting output feature class, highlighting 

only the regions where the input sources intersect to GIS-based Flood Susceptibility.  

Finally, the flood prone farmlands were constructed for the period 2030-2050 for the RCPs 2.6, 

RCP4.5, and RCP 8.5 and areas that ranged from low to very high were mapped. OPM, (2020) 

and Roopnarine et al., (2018) adopted a similar approach to perform a GIS based Risk mapping. 
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CHAPTER FOUR

RESULTS AND DISCUSION 

4.1 Introduction 

This chapter presents the results and discussion based on the methods used to analyze the specific 

objectives of the study.  

 

4.2 Homogeneity test 

Figure 3 presents plots of cumulative annual rainfall for Bududa, Kapchorwa and Mbale against 

time for the period 1991-2022. 

.  

Figure 3: Cumulative plots of annual rainfall (mm) for the year 1991 - 2022 in three representative observation 

points (Bududa, Kapchorwa and Male) illustrating homogeneity test. 

The straight line in the cumulative annual rainfall plots for the three regions (Bududa, Kapchorwa, 

and Mbale) indicates homogeneity in the used data and confirmed that the data was fit for use. 
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4.3 Seasonal Precipitation Patterns

The trends of observed rainfall data for the season of March, April, May (MAM), September, 

October, November (SON), June, July, August (JJA) and December, January, February (DJF) were 

analyzed using R software version 4.3.2 for all the six observation points and are presented and 

discussed in the following sub-sections. 

 

4.3.1 Temporal characteristics of Rainfall in MAM Season 

Table 4 presents the results of the rainfall analysis for the MAM season, unveiling diverse patterns 

across the study area. Figure 4 illustrates the trends at the six observation points, with Mbale, 

Bududa, Bunginyanya, and Sironko displaying an increasing trend, supported by positive S and Z 

values in table 4 and a rising trend line (blue) in Figure 4. Despite the upward trajectory, statistical 

significance was lacking during the MAM season, as indicated by a P-value exceeding the 0.05 

significance level in table 3. Moreover, the Sen’s slope estimator, at a 95 percent confidence

interval, reported increases of magnitude 2.616, 2.886, 3.165, and 3.405 for Mbale, Bududa, 

Bunginyanya, and Sironko, respectively. 

Table 4: Trends in MAM season (1991-2022) at various observation points in the Elgon region. 

Mann-Kendall trend test Sen’s slope 

 Z P-VALUE S VARS slope  

Mbale 1.4757         0.06          92     3802.6 2.615669 positive 

Bududa 1.7027 0.076 106 3802.6 2.8858 positive 

Kapchorwa 2.1244 0.033 132 3802.6 4.4947 positive 

Bunginyanya 1.2162 0.06 76 3802.6 3.165 positive 

Bukwo 2.1568 0.031 134          3802.6 4.2807 positive 

Sironko 1.8649 0.0622 116 3802.6 3.4058 positive 
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Figure 4: Time series of MAM Seasonal rainfall from 1991 - 2022 represented by Mbale, Bududa, kapchorwa, 

Bunginyanya, Bukwo and Sironko. The solid blue line indicates the trend line. 

On the other hand, Kapchorwa and Bukwo observation points showed an upward significant 

increasing pattern in the overall rainfall was detected during MAM season as the P-value 

associated with these areas were below the significance level of 0.05 (0.033 and 0.031) 

respectively and positive S and Z values as shown in Table 4 as well as the trend line in Figure 4.  

Furthermore, the positive values of the Sen’s slope estimator signify an increasing trend of 

magnitude range 4.4947 and 4.2807 (Table 4) at a 95 percent confidence.  

 

Overall, the MAM season rainfall analysis showed that the rainfall received in the region was 

increasing as shown by the increasing trend and these findings highlight the heightened degree to 
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which the area is prone to flooding especially areas in Bukwo and Kapchorwa where the increase

is significant. 

4.3.2 Temporal characteristics of Rainfall in SON Season  

Unlike the MAM season, the trend test conducted over the SON season indicated a statistically 

significant trend in all the six observation points, with P-values less than 0.05 significant level 

(Figure 5 and Table 5). This trend was increasing as shown by the S and Z values shown in table 

5. More to that, at the 95 percent interval, the positive values of the Sen’s slope, as illustrated in 

table 5, suggested an increasing trend of magnitude that ranged between 5.90527 and 10.30357 in 

rainfall over time during the SON season also shown by the steep slope of the trend line in Figure 

5 indicating the strength and consistency of the increasing trend.  

Table 5: Trends in SON season (1991-2022) at various observation points in the Elgon region. 

Mann-Kendall trend test Sen’s slope 

 Z P-VALUE S VARS slope  

Mbale 2.7406 0.022 179 3802 5.90527 positive 

Bududa 2.6108 0.041 162 3802 7.61479 positive 

Kapchorwa 3.2271 0.024 200 3802 8.343801 positive 

Bunginyanya 2.546 0.004 158 3802 10.30357 positive 

Bukwo 3.0649 0.051  190         3802 7.561117 positive 

Sironko 2.8054 0.034 174 3802 8.207982 positive 
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Figure 5: Time series of SON Seasonal rainfall from 1991 - 2022 in the study area represented by Mbale, 

Bududa, Kapchorwa, Bunginyanya, Bukwo and Sironko. The solid blue line indicates the trend line. 

SON season is characterized as the short rainy season of the region and these findings signify a 

potential intensification of the second rainy season in the Mount Elgon region (McKinney & 

Wright, 2021). As shown in Figure 5, the increase in rainfall observed during SON has resulted in 

higher total amounts of precipitation over the years as observed that 2001 registered the peak 

rainfall, while 2016 witnessed the lest total rainfall across of observation points. The trend line 

indicates steep slopes hence affirming a significant increasing trend in the SON season. 

The study of rainfall trends in the SON season identified the intensification of the short rainy 

season that may likely increase the area prone to flooding and consequently disrupt agricultural 

activities and food security. 
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4.3.3 Temporal characteristics of Rainfall in JJA Season

The analysis of trends in the JJA season, presented in Figure 6 and Table 6, reveals an increasing 

pattern indicated by the S and Z values. However, the trend is not statistically significant at the 

0.05 significance level for all six observation points in the region. The P values for Male, Bududa, 

Kapchorwa, Bunginyanya, Bukwo and Sironko range from 0.1084 to 0.3140 as shown in Table 6 

were all greater than 0.05 significance level. This implies that there is no definitive evidence of 

the significant trend in the rainfall during those specific seasons in the study area. However, at a 

95 percent interval, the positive values of the magnitude of the Sen’s slope estimator which ranged 

from 2.9625 to 4.271 (Table 6).  

Table 6: Trends in JJA season (1991-2022) at various observation points in the Elgon region. 

Mann-Kendall trend test Sen’s slope 

 Z P-VALUE S VARS slope  

Mbale 1.346 0.1783 84 3802 3.259796 positive 

Bududa 1.2162 0.2239 78 3802 2.962476 positive 

Kapchorwa 1.8 0.2719 112 3802 4.270972 positive 

Bunginyanya 1.2811 0.2002 80 3802 4.14875 positive 

Bukwo 1.4757 0.3140 92          3802 3.904036 positive 

Sironko 1.6054 0.1084 100 3802 4.069317 positive 
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Figure 6: Time series of JJA Seasonal rainfall from 1991 - 2022 in the study area represented by Mbale, 

Bududa, Kapchorwa, Bunginyanya, Bukwo and Sironko. The solid blue line indicates the trend line. 

The total seasonal rainfall observed in all the six points for a period of 1991 – 2021 is less than 

800mm with exception of year 2007 where the total rainfall exceeded 1000mm across the area.  

Although statistical significance was absent in the observed trends during the JJA season, it is 

worth noting that the analysis revealed an increasing pattern in the total rainfall received over the 

years. This suggests that there is a significant positive trend of rainfall that may contribute to 

changes in the flood prone areas. 
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4.3.4 Temporal characteristics of Rainfall in DJF Season

In the DJF season as shown in figure 7 and table 7, the rainfall trend was upward and increasing 

as shown by the S and Z values shown in table 7. Mbale, Bududa, and Sironko exhibited P-values 

greater than 0.05 significance level (0.423, 0.321, and 0.4655) respectively, indicating non-

significant trends in these areas. Similarly, Kapchorwa and Bukwo exhibited non-significant 

pattern as P-values of 0.543 and 1.408, respectively at 0.05 significance level were detected. 

Bunginyanya demonstrated the highest P-value of 0.567 among all observation points, further 

reinforcing the non-significant trends in rainfall during the DJF. 

Notably, the positive slopes for all observation points (ranging from 0.4621 to 1.6182) shown in 

Table 7 indicate an increasing pattern in rainfall of varying magnitude over the DJF season. 

Although not statistically significant, this rising trend suggests a tendency towards higher 

precipitation amounts during the winter months in the region 

Table 7: Trends in DJF season (1991-2022) at various observation points in the Elgon region. 

 

Mann-Kendall trend test Sen’s slope 

 Z P-VALUE S VARS slope  

Mbale 0.82704 0.423 52 3802 0.8218333 Positive 

Bududa 0.69731 0.321 44 3802 0.5425425 positive 

Kapchorwa 1.0541 0.543 66 3802 1.174981 positive 

Bunginyanya 1.4759 0.567 92 3802 1.61825 positive 

Bukwo 0.82704 1.408 52           3802 0.4621477 Positive 

Sironko 0.72974 0.4655 46 3802 0.8245107 positive 
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Figure 7: Time series of DJF Seasonal rainfall from 1991 - 2022 in the study area represented by Mbale, 

Bududa, Kapchorwa, Bunginyanya, Bukwo and Sironko. The solid blue line indicates the trend line. 

 

4.3.5 Spatial Distribution of Seasonal Rainfall Trends 

Figure 8 presents the distribution of rainfall trends in the Mount Elgon region of Uganda over the 

period 1991 – 2022.  
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Figure 8: Spatial distribution of trends in Rainfall over the period of 1991-2022, the legend describes P-values 

at a 0.05 significance level.  

During MAM season, figure 8 (a), non-significant trends with values of greater than 0.05 

significance level were detected in the south and north parts of the region. However, the rest of the 

region exhibited significant trends, indicating notable changes in the rainfall patterns during this 

season as values were greater than 0.05 significance level.  

In JJA season, figure 8 (b), the seasonal rainfall distribution has a variable pattern with high rainfall 

mostly distributed in the northern part and decreases as you move to the south. In SON season, 

figure 8(c) however, the spatial plots indicated consistent patterns of rainfall as the whole region 

experienced significant trends. In DJF season figure 8 (d), non-significant trends were observed 

throughout the entire region. However, higher values of the rainfall trends were noted in the North 
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and North-East areas compared to the central and the southern areas hence spatial gradient in

rainfall patterns during the DJF season. 

The observed spatial distribution of seasonal rainfall trends highlights the heterogeneity within the 

Elgon region. Different seasons exhibit varying patterns of rainfall trends, with notable spatial 

variations across the region.  

The study results are consistent with those reported by (Kansiime et al., 2013), emphasizing the 

diverse rainfall trends within the Elgon region. Various seasons display distinct patterns of 

significance and non-significance. 

Areas experiencing significant trends in rainfall may be more prone to floods, with negative 

implications for food security. Finally, the presence of significant trends in certain seasons 

suggests that these seasons may be associated with the increased flood risks in the region of study. 

 

4.4 Spatial Characteristics of Current Flood Susceptibility  

To map the  spatial characteristics of current flood susceptibility in ArcGIS, the study employed a 

set of ten conditioning factors as discussed below (Costache, 2020; Edamo et al., 2022; Tariq et 

al., 2022). 

4.4.1 Flood Conditioning Factors 

As presented in chapter two section 2.3, the flood susceptibility in this study was mapped using 

10 conditioning factors to include; topographic Wetness Index, elevation, slope, rainfall, land use 

land cover, Normalized Difference vegetation index, distance from the river and road, drainage 

density and soil type. All these factors were collected from various sources projected to WGS 1984 

projected coordinate system in ArcGIS 10.5 as discussed below. 

 

4.4.1.1 Topographic Wetness Index 

The calculated TWI from Equation 6.0 values were spatially represented across the study area with 

values that ranged from -21.3 to 12.5 as shown in Figure 9. The TWI was clustered into five classes 

((-21.3) – (-17.0)), ((-17.1) – (-13.8)), ((-13.9) – (-6.8)), ((-6.9) – (2.2)), (2.3 – 12.5) and classified 

as very low (1), low (2), moderate (3), high (4), very high (5) respectively. The Map depicts 
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variations in terrain wetness, with low values indicating well-drained areas with efficient water

flow and the higher values indicate areas with higher potential for water accumulation (Rocha et 

al., 2020). This map indicates that low lying areas of the mount Elgon region is highly susceptible 

to flooding compared to the high slopes. 

Figure 9: Map of Mount Elgon region showing Spatial distribution of TWI. 
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4.4.1.2 Elevation

Figure 10 revealed that the study area elevation ranged from 1044m to 4320m above sea level. It 

was classified into clases depending on the influence of terrain on flooding. Areas of low elevation 

(1,044 -1,326) were classified as very highly prone to flood followed by 1,37 -1,789 as high, 1790 

– 2392 as moderate, 2,393-3,150 as low and high elevation areas of 3,151 -4320 as very low flood 

areas. This agrees with results that were presented by O’Donnell & Thorne, (2020) which indicated 

the low elevation at the downstream as areas prone to flooding and higher elevation in the upstream 

as areas of low flood susceptibility. 

 

Figure 10: Map of Mount Elgon region showing Spatial distribution of Elevation (b) 
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4.4.1.3 Slope 

The slope values in the mount Elgon region ranged from 0 to 54 degrees and fell into five classes 

of 0 – 6, 7-15, 16 – 26, 27 – 39 and 40 – 54, as very high (5), high (4), moderate (3), low (2), very 

low (1) respectively. It indicates that areas with lower slope values increase the risk of water 

accumulation have greater risk of the area being highly prone to flooding than areas with higher 

values of the slope. This aligns with the previous studies (Kamaraj & Rangarajan, 2022; Rocha et 

al., 2020; Tariq et al., 2022) whose findings correlate that lower slope are associated with flood 

susceptibility and high slope areas with low flood susceptibility. 
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Figure 11: Map Mount Elgon region showing Spatial distribution of slope. 

4.4.1.4 Drainage Density 

The drainage density generated from the spatial analyst tool of “line density” analysis of flow

accumulation represented by figure 12 ranged from 13 to 229 and was classified as (13 - 56), (57 

– 99), (100 -142), (143 – 185), (185 – 229) and classified as very low (1), low (2), moderate (3), 

high (4) and very high (5) respectively. Areas with higher drainage density were in the low land 

of the region and are highly prone to flooding and area of low drainage density are in the highlands 
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of the region and less prone to flood and previous studies support this (Rocha et al., 2020; Tariq et

al., 2022). 

 

Figure 12: Map Mount Elgon region showing Spatial distribution of drainage density. 

4.4.1.5 Distance from the River 

Figure 13 considered areas between 0-3,302 meters are high flood prone areas as compared to 

other areas because its distance considers the river’s floodplain width and the potential for lateral 

flow during extreme events. Areas at (3,303-6,605), (6,606-9907), (9,907-13,210), and (13,210-

16,513) were classified as high, moderate, low, and very low respectively. 
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Figure 13: Map of Mount Elgon region showing Spatial distribution of  distance from the river. 

The interplay between proximity to the river and floodplain dynamics is a crucial factor. Scholars 

acknowledge that the flood-plain area extends to a distance that is directly influenced by the river’s

natural variability in water levels during flood events. This study identifies that in the Elgon region, 

floods are common in areas about 3km from the river. More to that, (Umaru & Adedokun, 2020) 

considered an distance above 3000 meters to be the more susceptible to flooding, especially during 

periods of heavy rainfall or river overflow. 
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4.4.1.6 Distance from the Road

As shown in figure 14, the study found that distance from the road had a small influence on the 

areas prone to flood in the region as compared to distance from the river.  None the less, the study 

considered that areas located within 4,510 meters from the road were Very High flood-prone areas, 

areas situated between 4,510 - 9,021 meters from roads fell within the High flood-prone category, 

indicating a significant risk of flooding in these regions.  

 

Figure 14: Map of Mount Elgon region showing Spatial distribution of distance from the road. 

Moderate flood susceptibility was observed in areas located between 9,021 to 13,532 meters from 

roads, signifying the potential for flood-related challenges. Meanwhile, areas extending from 

13,532 to 18,043 meters from roads are considered Low flood-prone regions, indicating a 

comparatively reduced flood risk. Areas positioned at a distance of 18,043 to 22,554 meters from 
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roads are characterized as Very Low flood-prone zones, suggesting a lower susceptibility to

flooding. 

 

4.4.1.7 Land Use Land Cover 

LULC data was obtained from 2019 Landsat 8 OLI imagery from the USGS website. Figure 15 

presents the different categories of the LULC of the Elgon region classified into 12 classes as built-

up area, bushland, bulrospermum savanna, dry combretum savanna, farm land, forest/savvana 

mosaics, grass savanna, high alt forest, high alt moor and heath, moist combretum savanna and 

seasonal wetland. 

Figure 15: Map of Mount Elgon region showing Spatial distribution of LULC. 
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4.4.1.8 Normalized Difference Vegetation Index 

The NDVI the ranged from -1.0 to 1.0 (Figure 16), signifying vegetation density and vitality. 

Negative values predominantly arise from elements such as clouds, water, and snow, while values 

close to zero primarily result from rock and exposed soil. Very low NDVI values (0.1 and below) 

correspond to areas devoid of vegetation, such as rocky, sandy, or snowy terrains. Moderate values 

(0.2 to 0.3) are characteristic of shrub and grassland regions, while high values (0.6 to 0.8) are 

indicative of temperate and tropical rainforests areas with low NDVI suggested that the area has 

limited vegetation making them more susceptible to flooding where as higher NDVI values 

indicate areas with denser and healthier vegetation cover, which are likely to be less flood-prone 

due to better water retention and reduced surface runoff. 

 

Figure 16: Map of Mount Elgon region showing Spatial distribution of NDVI. 
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4.4.1.9 Rainfall

From figure 17, rainfall plays a critical role in flood susceptibility given it’s a primary conditioning 

factor of flood events (IPCC, 2021). Based on the rainfall analysis for this study, the results were 

categorized into distinct classes based on the magnitude of annual rainfall. The classification 

ranges from Very Low to Very High. Climate thresholds for GIS based flood suitability mapping 

for this study included above 1,774mm as very high, 1641 -1773 as high, 1460 – 1640 as moderate, 

1259 -1456 as low and 1060 mm – 1,257mm as very low as shown in Figure 17. 

Figure 17: Map of Mount Elgon region showing Spatial distribution of rainfall. 
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4.4.1.10 Soil Type

Soil type is highly important indicating areas that are prone to flooding because it directly affects 

the drainage process because of the soil characteristics (Samanta et al., 2018). The study identified 

five soil types based on the FAO soil classifications scheme (figure 18). These include sandy clay 

loam, clay loam, grey clay, sandy grey and brown clay soils.  

 

Figure 18: Map of Mount Elgon region showing Spatial distribution of soil type. 

 

4.4.2 Analytical Hierarchy Process Modeling 

The AHP modeling generated a Consistency Ration (CR) of 0.046 was obtained which is less than 

0.1 which confirmed that the expert opinions provided consistent and reliable judgment in the AHP 

process. 
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Table 8: AHP Modelling results 
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  1 2 3 4 5 6 7 8 9 10    

TWI 1 1    1     2     1     3     5     1     5     1     4     

 

  16%

Elevation 2 1    1     1     2     3     1     0.33     3     1     3       10%

Slope 3 0.50    1     1     0.25     2     2     0.50 2     1     4        8% 

Rainfall 4 1    5     4     1     5  5    3     5     2     4       25%

LULC 5 0.33 0.33 0.50 0.20 1 1 0.50 1 1 2   5% 

NDVI 6 0.20 1 0.50 0.20 1 1 0.33 2 0.33 1   4% 

Distance from 

river 7 
1 3 2 0.33 2 3 1 5 1 4 

  
14%

Distance from 

road 8 
0.2 0.33 0.50 0.20 1 0.50 0.20 1 0.33 3 

  
4% 

Drainage 

density 9 
1 1 1 0.5 1 3 1 3 1 3 

  
10%

Soil type 10 0.23 0.33 0.25 0.25 0.50 1 0.33 0.33 1    4% 

                             

As illustrated in Table 8, the results reveal that rainfall, distance from the river, and TWI are most 

influential factors determining flood susceptibility in the Mount Elgon region. Rainfall factor with 

25% indicates that areas with elevated rainfall amount are prone to frequent and severe flooding. 

Distance from the river had a weighting of 14% suggesting that proximity to rivers significantly 

influenced flood susceptibility, the influence of topography on flooding had a weighting of 16%, 

implying that TWI has a greater influence on flooding compared to the other conditioning factors. 
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4.4.3 Weighted Overlay

The conditioning factors were overlaid based on the assigned weighed generated from the AHP 

model (Table 8). 

Figure 19 illustrates that rainfall has the greatest influence, followed by TWI, distance from the 

river, drainage density, elevation, slope, land use and land cover (LULC), NDVI, distance from 

the road, and lastly, soil type. 

 

Figure 19: A graph showing weighted overlay ranks (labeled in blue) for each conditioning factor  

The overlay tool assigned the score to each pixel of the Mount Elgon region with high scores 

indicated areas with high susceptibility to floods while low scores indicated areas less prone to 

flooding. Susceptibility map was generated representing the total area in square kilometers prone 

to the corresponding response unit as shown in figure 20. The area of mount Elgon that is 

moderately susceptible to flooding is approximately 900 sq.km (Table 9) and the area that is highly 

susceptible to flooding is approximately 2 sq.km (Table 9). Collectively, these areas are mostly 

located in the low lands where accumulation of rainfall occurs. 
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Figure 20: A map showing current flood susceptibility map in mount elgon region showing moderate to high 

flood susceptible areas. 

Table 9: Area in Sq.km that is currently susceptible to flooding 

Response Units Total area in Sq.km 

Moderate 821 

High 1.6 
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4.5 Future Flood Susceptibility

To predict and map the flood susceptibility of the Elgon region under a changing climate scenario, 

the rainfall layer in the GIS model used in 4.3 above was replaced with the climate change scenario 

rainfall layer, then the rainfall layer was weighted along with other conditioning factors. The 

susceptibility was generated in the period of 2030 to 2050 across the scenarios that included RCP 

2.6, RCP 4.5 (median global emission scenario), and RCP 8.5 (high global emission scenario) as 

shown in Figure 16 (low emission scenario). Finally, the area of each response unit in each climate 

scenario were calculated and represented in table 10. 

As illustrated in Figure 21, the derived flood susceptibility showed that under RCP 2.6, most of 

the North, North Eastern and parts of the Elgon region is likely to become prone to floods with an 

area of about 9.2 square kilometers being highly flood susceptible and an area of 153.53 square 

kilometers will be very highly susceptible to flood during the 2030 to 2050 period. The climate 

scenario of RCP 4.5 indicated the same response classes of high and very high. An area of about 

9.01 sq.km highly affected by flood and about 148.29 sq.km very highly affected by flood. Finally, 

scenario RCP 8.5 showed the same classes of changes as 2.6 and 4.5 with about 9.28 Sq.km highly 

susceptible to flooding and 154.67 very highly prone to flooding. The study observed a slight 

increase in the area that are highly susceptible to flooding as compared to scenario RCP 4.5. 
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Figure 21: The flood susceptibility maps of the Elgon region in  2030 -2050 under three climate change 

scenarios. 

Comparing the area of flood susceptibility classes in all the scenarios to the current flood 

susceptibility in section 4.3, the study concluded that the Elgon region flood susceptibility ranged 

from moderate to very high in all analyzed climate excluding the low and very low. This showed 
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that the region experiences high floods (Resilience, 2010). The current flood susceptible areas

range from moderate to high. High flood susceptible areas increase across all the RCP scenarios 

and areas located in the lowlands which are the catchment areas of mount Elgon are likely to 

become very highly susceptible to flooding events in the year 2030 to 2050. 

Overall, it's clear that the flood susceptibility is expected to increase under the RCP 2.6, RCP 4.5, 

and RCP 8.5 scenarios for both High and Very High flood susceptibility levels compared to the 

"Current" scenario. This clearly shows that climate change will bring about increase in rainfall 

which will change the areas susceptible to flood.  

Table 10: A comparison area in Sq.km of current and future climate scenarios (RCP 2.6, RCP 4.5, and RCP 

8.5) that is susceptible to floods. 

Flood 

susceptibility 

Response units 

Current flood 

prone area 

(Km2) 

RCP 2.6 flood 

prone area 

(Km2)  

RCP 4.5 flood 

prone area 

(Km2) 

RCP 8.5 flood 

prone area 

(Km2) 

Moderate 821 0 0 0 

High 1.6 9.2 9.01 9.28 

Very High 0 153.63 148.63 154.67 

 

4.6 Impacts of Projected Floods on the Farmland Food Security 

The study observed that under RCP 2.6 (figure 22), most of the farmlands in the south of the Elgon 

region will not be affected by the floods however, the high flood prone farmlands are located in 

the northern areas around Bukwo district with and approximate area of 128 square kilometers 

highly affected.  

Similarity, under RCP 4.5, the farmlands that are likely to be exposed and prone to very high 

flooding lie in the northern area of the region in places around Bukwo district, the total farmland 

area that will be affected under this scenario is around 118.5 sq.km for both high and very high 

flood response units as shown in Table 11. 
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Table 11: Farmland Area Exposed to Future Flood Susceptibility under Different Climate Change Scenarios 

(RCP 2.6, RCP 4.5, RCP 8.5). 

 Farmland area exposed under 

RCP 2.6 (Km2) 

Farmland area exposed under 

RCP 4.5(Km2) 

Farmland area exposed 

under RCP 8.5(Km2) 

High 3.8 3.5 4.0 

Very High 127 115 131 

 

Lastly, under RCP 8.5 as shown in Figure 22, this study observed that there is an increase in the 

area of the farm land affected by floods. Furthermore, there is an increase in the farmland area 

affected by flood under this climate change scenario. 
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Figure 22: The flood impact maps on the Farmlands of the Elgon region in the years 2030 -2050 under three 

climate change scenarios. 

Over all, there is no significant changes in the areas of farmlands affected by flood in among the 

three climate scenarios. However, all scenarios showed that the farmlands in the northern part of 

the study domain, particularly in Bukwo and bulambuli district will be the most affected for the 

period of 2030 to 2050. This is attributed to the significant trend and positive increase in rainfall 

received in that region especially in the MAM season as shown in section 4.3.1. This therefore 

concludes that climate change poses additional challenges to farmland and food security in general.  
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The study has successfully examined flood susceptibility in the Mount Elgon region over the 

period of 1991 to 2022. The analysis of seasonal rainfall patterns identified significant trends, as 

indicated by Z, S, and P values, highlighting the likelihood of increased flood risks in specific 

seasons and observation points.  

To examine the spatial distribution of flood susceptibility, the study concludes that rainfall, 

distance from the river, and topographic wetness index were the most influencing conditional 

factors and the flood susceptibility map, indicated moderate and high flood-prone areas primarily 

in the North region of the study area. 

Furthermore, the study projected future flood susceptibility under different climate change 

scenarios (RCP 2.6, RCP 4.5, RCP 8.5). The study concluded that there is an increasing trend in 

highly flood-prone areas, in line with observed intensifying rainfall trends.  

The potential impact of projected floods on the agricultural sector, a vital component of food 

security, was also assessed. Results highlighted the vulnerability of farmlands in the northern 

areas, particularly around Bukwo district, to flooding, posing potential disruptions to agricultural 

activities and food production. 

In response to the stated objectives, this study successfully examined seasonal precipitation 

patterns, determined current flood susceptibility characteristics, predicted future flood-susceptible 

areas, and assessed the implication of projected floods on farmland food security. The finding in 

the study suggest that there are changes in the flood-susceptible areas in the Elgon region of 

Uganda and its implication to food security are evident.  

 

5.2 Recommendations 

This section indicates recommendations generated from the results to planners and scientist. 

5.2.1 Recommendations to Planners 

The findings of this study are intended to inform and guide the planners in key ways of  
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• Policy maker should use this data to implement more effective and targeted early warning

systems, land use planning, and infrastructure planning and investment.  

• Policy makers should use this information from this study to put in place necessary 

contingency measures to build community resilience programs as well as develop and 

climate change adaptation strategies.  

• The planners can also use the flood susceptibility information from this study to empower 

farmers to navigate the changing flood patterns and devise agricultural practices to cope 

with the changes. 

 

5.2.2 Recommendations to Scientists 

• Given the dynamic nature of climate patterns and flood susceptibility, scientists should 

continue monitoring and researching the Mount Elgon region while refining the models. 

• The study recommends future studies to be done on analyzing the seasonal flood 

susceptibility both for the current and future climate scenarios in Elgon region as it is 

necessary for the farmers.  

• Scientists should as well conduct in-depth studies that model the impact of various flood 

scenarios on agricultural systems for example transportation and crop types so as to insights 

crucial for devising scenario-specific strategies to mitigate flood insecurity. 
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