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Abstract

This study is on Self-Exciting Threshold Autoregressive (SETAR) modeling of the NSE
20 Share Index using the Bayesian approach. The objectives of the study are to ana-
lyze the properties of the NSE 20 Share Index data, to determine the estimates of SETAR
model parameters using the Bayesian approach, to forecast the NSE 20 Share Index for
the next 12 months using the fitted model, and to compare the forecasting performance
of the Bayesian SETAR with the frequentist SETAR and ARIMA model. A Bayesian SE-
TAR model is developed to model the NSE 20 Share Index. MCMC techniques, that is,
Gibbs sampling and the Metropolis-Hastings Algorithm, are used to estimate the model
parameters. SETAR (2;4,4) model is fitted and used to forecast the NSE 20 Share Index
for the next 12 months. The model’s forecasting precision is compared to that of a SE-
TAR model that employs the Frequentist approach and to ARIMA. The findings revealed
a downward trajectory in the NSE 20 Share Index until April 2024, followed by a gradual
upward trend. Additionally, in comparison, the Bayesian SETAR model outperformed its
frequentist counterpart in forecasting accuracy. While the ARIMA model performed bet-
ter compared to the Bayesian SETAR for a shorter forecasting horizon, Bayesian SETAR
performed better for a longer forecasting horizon.
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1 Introduction

1.1 Background Information

The analysis and interpretation of time series data hold paramount significance across
different fields, including economics, finance, and engineering, among other fields. This
kind of data, characterized by sequential observations over time, sometimes exhibits com-
plex patterns and trends that some commonly used models cannot capture. One key
challenge of modeling this data is capturing the volatility and nonlinear dynamics, which
can significantly impact the future behavior of the series. Commonly used approaches
such as linear autoregressive (AR) and simple moving average (MA) models often fail to
capture the intricate nature of volatility, characterized by time-varying patterns, regime
shifts, and nonlinear relationships.This limitation calls for the development of more so-
phisticated and flexible models that can effectively capture the complexity of time series
data.

Over the past years, nonlinear time series models have been introduced, with many
researchers aiming at capturing the dynamics and complexities of time series data, espe-
cially economic and financial data. One class of nonlinear models introduced to capture
the nonlinear dynamics in time series data and as an evolution from the linear models
is the Threshold Autoregressive (TAR) models. The TAR models were first introduced
by Tong (1978). This class of models incorporates regime shifts in time series data, di-
viding the data into distinct regimes. Each regime has a specific set of parameters that
capture the underlying dynamics. A threshold variable governs the regime transitions,
allowing the model to capture changes in market conditions. Self-Exciting Threshold Au-
toregressive (SETAR) is an extension of Tong’s TAR, which was proposed to incorporate
the concept of self-exciting behavior (Tong and Lim, 1980). These models consider the
past behavior of a series in determining the regime shifts, allowing for the number of
regimes to be specified using the data instead of being pre-specified. This feature makes
SETAR models a more promising choice in modeling the nonlinear dynamics in time se-
ries data like financial data, where the thresholds and number of regimes may change
over time.

When using SETAR models, there are typically many parameters to be estimated due
to the different regimes, and the estimation process can be challenging, especially when
the researcher is dealing with high-dimensional or noisy financial data. This requires
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sophisticated yet flexible and simple approaches, such as the Bayesian approach, to be
incorporated into the Self-Exciting Threshold Autoregressive modeling. In this study,
the strengths of SETAR models in capturing nonlinear dynamics are combined with the
Bayesian approach, which provides a flexible and robust way of parameter estimation
that also incorporates uncertainty.

1.2 Problem Statement

Accurate modeling and forecasting of time series is critical in different areas. For ex-
ample, in the financial markets, it directly impacts risk management strategies, invest-
ment decisions, and portfolio performance. While linear models like AR, MA, and ARIMA
have been used before in cases where volatility is evident, they struggle to capture the
threshold behavior and nonlinearity, which often characterize financial and economic
data. Studies that have been conducted to explore, model, and forecast Nairobi Securities
Exchange (NSE) data patterns mostly use ARIMA models despite the unique characteris-
tics of the NSE data, including nonlinearity and high volatility. This calls for models that
can capture these complex patterns. This study aims to bridge this gap by developing a
SETAR model suitable for non-linear data, essential for enhancing forecasting accuracy.

Additionally, while SETAR models have been used in different studies, parameter esti-
mation is usually through the frequentist approach. The frequentist approach in model
parameter estimation provides point estimates, which may not fully capture the uncer-
tainty inherent in the parameters. Further, the approach operates within the confines of
observed data, lacking a mechanism to incorporate prior knowledge. This is a limitation,
particularly in scenarios with limited data, where reliance solely on observed information
may lead to less reliable estimates. Therefore, the adoption of the Bayesian approach in
this study will provide a substantial improvement. By embracing Bayesian methods, this
study capitalizes on seamlessly integrating prior information into parameter estimation,
thereby overcoming the constraints posed by limited data. This integration also allows
for a more holistic and informed estimation process, offering probability distributions for
parameters comprehensively representing uncertainty. The full potential of the Bayesian
approach is yet to be exploited in the context of SETAR modeling.

1.3 Study Objectives

1.3.1 General Objective

To model the NSE 20 Share Index using Self-Exciting Threshold Autoregressive (SETAR)
model and the Bayesian approach of parameter estimation.
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1.3.2 Specific Objectives

i. To analyze the dynamics of NSE 20 Share Index data through correlation analyses as
well as linearity and stationarity tests.

ii. To determine the estimates of SETAR model parameters using the Bayesian frame-
work.

iii. To forecast the NSE 20 Share Index for the next 12 months using the model.

iv. To compare the forecasting performance of the Bayesian SETARwith the performance
of the common SETAR and ARIMA models.

1.4 ResearchQuestions

The study will investigate the following questions:

i. What are the key characteristics of the NSE 20 data? For example, does the data
portray linearity or stationarity, and are there significant correlations among lagged
values?

ii. How can Bayesian methods be applied for parameter estimation in the SETARmodel,
and what are the parameter estimates in the SETAR model?

iii. What are the projected trends and expected fluctuations in the NSE 20 Share Index
over the next 12 months, as determined by the forecasting capabilities of the em-
ployed model?

iv. How well does the Bayesian SETAR model perform in forecasting the NSE 20 Share
Index compared to the commonly used ARIMAmodels and SETAR models fitted with
the frequentist approach?

1.5 Justification of the Study

The application of a SETAR model in the context of the NSE 20 Share Index could of-
fer a robust framework for modeling the volatility and nonlinearity usually inherent in
financial time series data. By combining the flexibility of Bayesian methods with the
adaptability of SETAR models, this study aims to provide more robust, contextually en-
riched parameter estimates, enhancing the accuracy and depth of understanding within
the model’s dynamics. This, in turn, has the potential to lead to a more robust and ac-
curate model that will help with decision-making and risk management in the financial
markets.
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The studywill lead to an enhanced comprehension of themarket and, hence, better pre-
dictability. The regimes and thresholds that characterize the behavior of the NSE 20 Share
Index will be estimated, giving insights into the market conditions and price movements.
Understanding these regimes will lead to better market predictability, providing infor-
mation crucial to financial institutions, policymakers, and investors in making informed
decisions. By improving forecasting accuracy and risk management in financial markets,
the research can indirectly contribute to stability and economic growth since better fi-
nancial decision-making and risk management directly impact investments, businesses,
and overall economic prosperity.

This study will contribute to academic knowledge by extending the existing knowl-
edge on time series and econometrics analysis. It will enrich the literature on Bayesian
inference and non-linear modeling approaches, providing valuable insights for academics
and researchers interested in exploring these areas. The application of Bayesian meth-
ods in the SETAR model contributes to advancing Bayesian statistics in finance. Also,
the study’s findings can stimulate further research in Bayesian analysis and non-linear
modeling in finance.
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2 Literature Review

2.1 Introduction

Research about nonlinear time seriesmodels has been conductedwhere they have been
compared to other models, and they have been applied in many areas as well. Below are
some of the studies that have been conducted on Threshold Autoregressive models and
the Bayesian approach, and some of the comparative studies that have been conducted.

2.2 Comparative Studies of SETAR with Other Models

Gibson and Nur (2011) conducted a comparative study to investigate the efficiency
of threshold autoregressive (TAR) models in modeling in the domain of finance. Using
weekly Nikkei 225 Index data from January 2000 up to September 2010, the authors fitted
three models: SETAR model, STAR model, and AR model. The Threshold Autoregres-
sive Models provided improved fit and forecasting performance compared to the linear
model. The conclusion drawn was that threshold models, SETAR in particular, were an
improvement on linear models in regards to capturing volatility and reflecting the overall
process.

Aydin and Güneri (2015) carried out a comparative study to investigate the prediction
performance of ARM, SETAR, AR, and hybrid models AR&SETAR, AR&AAR, SETAR&AR,
AAR&SETAR, AAR&AR, and SETAR&AAR. Two datasets were used for the study, that is
Turkey’s monthly export volume index numbers for January 1997 to December 2014 and
the monthly domestic producer price index for January 2006 to December 2014 period.
The two datasets were divided into training sets, which were used to train the models,
and the forecast sets, which were used to evaluate the models’ performance. RMSE, MSE,
MAPE, and MAE were calculated as performance indicators. The findings of the study
were that the AAR-SETAR hybrid model performed the best, supporting the idea that
hybrid models perform well in forecasting problems in time series.

Boero and Lampis (2017) conducted a study to investigate the accuracy of SETARmod-
els in forecasting compared to seasonal ARMA and linear autoregressive models. The au-
thors used the monthly unadjusted Industrial Production Index (IPI) data from January
1975 to December 2011 for four EU countries: the UK, Spain, Italy, and France. Data
subsets from January 1975 to December 2005 were used to estimate the models, while
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the rest were used as forecasting samples. For every 12 months, the models were fully
re-specified, and they were also re-estimated for every new monthly observation added
to the sample. 1, 3, 6, and 12-step-ahead forecasts were calculated. While the results did
not show that the SETAR model had a homogeneous forecast superiority across all hori-
zons, sample periods, and countries, the point forecast findings suggested that SETAR
had better forecast performance, especially in the one-step-ahead forecasts, which was
linked to the re-specification. The results also showed that the performance tended to
deteriorate for longer horizons for both linear and non-linear models.

Firat (2017) investigated SETAR performance in currency modeling. The author used
Euro-US Dollar parity, Euro-Turkish Lira parity, and US Dollar-Turkish parity data for
the study. The EUR/USD parity data ran from December 1999 to February 2015. The
EUR/TRY parity data and USD/TRY parity data run from May 2010 to February 2015.
This data was used to fit SETAR, linear, NNETTs, AAR, and LSTAR, and a comparison
was made amongst these models using Akaike Information Criteria (AIC) values. The
SETAR model showed superior performance compared to the other models in regard to
the relevant parities.

Oyewale et al. (2017) carried out a study to assess the forecasting accuracy of two
time series models - the linear Seasonal ARIMA model and the non-linear SETAR model.
Nigerian inflation rate data from 1993 to 2013 was used for the study. The authors then
compared the in-sample and out-of-sample forecasting performance of the SARIMA and
SETAR models using various error measures, including MAPE, MSE, MAE, and Theil’s U
inequality coefficient. The findings showed that the SETAR model made better forecasts
than the linear SARIMA model, both for in-sample and out-of-sample predictions.

2.3 The Bayesian Approach of Parameter Estimation

Pan et al. (2017) proposed a Bayesian approach to analyzing possible threshold values
in a TAR model with several possible thresholds. Instead of assuming a fixed number of
regimes, the authors introduced a Bayesian stochastic search selection method to pick
out the threshold values in themodel. The primary concept behind the approach involved
introducing a series of random variables that took the value 1 at positions that were as-
sociated with threshold values and value 0 elsewhere. Within the Bayesian framework,
the authors estimated the threshold-dependent parameters that were unknown by uti-
lizing their posterior distributions through maximum a posteriori (MAP) estimation. To
make an estimate of the threshold-dependent variables and estimate of the remaining
model parameters, the authors employed a hybrid MCMCmethod, combining Metropo-
lis–Hastings (M–H) algorithm and Gibbs sampler. The authors then applied the method-
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ology to analyze sunspot number data for the period 1700 to 1979. The authors concluded
that the approach was effective and feasible in practice.

Agiwal and Kumar (2020) proposed a Bayesian approach to analyzing TARmodels with
multiple regimes and several structural breaks. The authors obtained the full conditional
posterior distributions for all the model parameters, assuming suitable prior information.
The threshold and breakpoint variables did not have standard form distributions, so they
used the Gibbs sampler with theMetropolis-Hastings algorithm to compute the posterior
distributions. The authors carried out a simulation study to demonstrate the performance
of the Bayesian estimators under different loss functions. The results showed that the
estimates were close to the actual values, and most parameters had minimum posterior
standard deviation under the absolute loss function. They also applied the suggested
methodology to an annual real tree ring data from China for the years 1079 to 2009 to
determine the breakpoint and estimate the model parameters. The results showed that
the Bayesian approach can appropriately determine the breakpoints and estimate the
associated parameters.

Ojo (2021) conducted a study to analyze prior sensitivity to see how the posterior es-
timates were sensitive to changes in prior assumptions using the Bayesian threshold au-
toregressive model. The inflation rate data for Nigeria from 1960 to 2019 was used for the
study. The author also tried different values of the delay parameter d. The results were
that as the prior c −→ ∞, infinite posterior estimates were obtained for the model param-
eters. However, assigning a small value to c gave an estimation that was more accurate.
The delay parameter d assigned the highest probability to d = 1 when the prior c was set
at 0.05 or 1. Conversely, when c was set to 100 (noninformative), d assigned the highest
probability to d = 4. The conclusion drawn was that posterior estimates were sensitive
to changes in the prior.

2.4 Recent Applications of SETAR Models

Tobechukwu et al. (2022) conducted a study tomodel dailyNigerianCOVID-19-confirmed
cases using the SETAR model. The data used for the study was Covid-19 daily confirmed
cases from January 2020 to September 2022. The authors identified SETAR (2, 4, 1) model
as the best-fitted model for the data based on metrics like the MSE and Akaike Infor-
mation Criteria (AIC). The specified SETAR model was used to get one-month period
predictions of daily confirmed COVID-19 cases in Nigeria. The results showed that the
cumulative number of daily confirmed COVID-19 cases was expected to rise from around
281,526 cases in 2022 to around 312,776 cases in 2023 based on the forecasts from the SE-
TAR model.
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2.5 Gaps Identified

Despite the promising results in the above studies in regard to the application of SE-
TAR models and the Bayesian framework, the application of the Bayesian approach to
parameter estimation in SETAR models is yet to be fully explored. In most studies, the
parameter estimation is done using the frequentist approach, which is limited because it
does not provide a mechanism to incorporate prior knowledge that the researcher may
have before collecting or seeing the data. Also, the estimates in the frequentist approach
are fixed estimates, not accommodating for uncertainty. These limitations can be ad-
dressed using the Bayesian approach, which is promising according to the studies above.
Additionally, the SETAR model is yet to be investigated in modelling the NSE 20 Share
index. To close these gaps, Bayesian SETAR will be used to model and forecast the NSE
20 Share index.
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3 Research Methodology

3.1 Introduction

This study focuses on TAR models, particularly SETAR models, which are non-linear
models first proposed by Tong (1978). This class of models incorporates regime shifts in
time series data, dividing the data into distinct regimes. The methodology of this study
centers on the application of Bayesian Inference to SETAR models for the purpose of
modeling the NSE 20 Share Index. This chapter will focus on the methodology of the
study.

3.2 Threshold Autoregressive (TAR) Models

Within the framework of threshold time series models, it is assumed that the process
has different regimes, determined by a threshold. The basic idea is that the process will
behave differently when a variable’s values go beyond a certain threshold, meaning that
different models apply when the values are below and above the threshold.

Suppose a series {yt} is observed at discrete time points t. TAR(p), a TAR model of order
p and two regimes can be written as

yt =

{
φ0 +∑

p
i=1 φiyt−i +a(1)t , if zt ≤ r

θ0 +∑
p
i=1 θiyt−i +a(2)t , if zt > r

(1)

where zt is the threshold variable, and a( j)
t are independent Gaussian white noise pro-

cesses with mean zero and variance σ2
j , with j = 1,2. φi and θ j are real-valued parameters

and r is the threshold.

The two-regime TAR model above can be expanded to incorporate numerous regimes
and can be formulated as:

yt = φ
j +

p

∑
i=1

θ
j

i yt−i +a( j)
t (2)
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where j ∈ {1, ...,k} is an indicator of regime switching. Each regime has it’s set of coef-
ficients {θ

j
i }′s and different regimes can also have different orders p.

3.2.1 SETAR Models

SETAR model is a type of TAR models. Consider the following TAR model with two
regimes:

yt =

{
φ0 +∑

p
i=1 φiyt−i +a(1)t , if zt ≤ r

θ0 +∑
p
i=1 θiyt−i +a(2)t , if zt > r

(3)

where r is the threshold parameter.
If the zt value is replaced with previous values of the time series yt as below, the TAR
model is then referred to as SETAR model.

yt =

{
φ0 +∑

p
i=1 φiyt−i +a(1)t , if yt−d ≤ r

θ0 +∑
p
i=1 θiyt−i +a(2)t , if yt−d > r

(4)

The switch of regimes is therefore influenced by the past values of yt , that is, yt−d , where
d represents the delay parameter.

The SETAR model can be generalised to include multiple regimes.
Let n > 1 be a positive finite integer and {r j| j = 0, ...,n} a real number sequence with
r0 =−∞ < r1 < r2 < ... < rn−1 < rn = ∞ where −∞ and ∞ are regarded as real numbers.
Then a time series yt is a m-regime SETAR(p) model if it satisfies

yt =


θ0,1 +∑

p
i=1 θi,1yt−i +a(1)t , if yt−d ≤ r1

θ0,2 +∑
p
i=1 θi,2yt−i +a(2)t , if r1 < yt−d ≤ r2

...

θ0,m +∑
p
i=1 θi,myt−i +a(m)

t , if rm−1 < yt−d

(5)

where yt−d is the threshold variable, d > 0 is the delay parameter, a( j)
t are independent

Gaussian white noise processes with mean zero and variance σ2
j , σi’s are positive real

numbers, and θi, j are real parameters.
In a compact form, equation 5 can be written as

yt = θ0, j +θ1, jyt−1 + ...+θp, jyt−p +a( j)
t if r j−1 < yt−d < r j (6)

with j = 1, ...,n. Each regime is represented by a AR(p) model, governed by a different
set of coefficients θ ( j).
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Despite the simplicity that SETAR models provide in handling non-linear time series
processes, one key challenge in using these models is the existence of many free parame-
ters that need to be chosen and approximated in building the models. These parameters
include the the number of regimes/ thresholds, threshold values, orders of the AR mod-
els, and the model coefficients. The Bayesian approach provides a promising way of es-
timating the model parameters. It allows the incorporation of prior information that the
researcher may have about variables before seeing the data, allowing sequential learning.
Additionally, the approach is a natural way of making predictions since we take account
of all parameters and the model uncertainty.

3.3 Bayesian Estimation of the Model Parameters

In the Bayesian statistical perspective, parameters are viewed as random variables to
account for uncertainty in their values. Bayesian analysis involves specifying a likelihood,
which is the conditional density of data given the parameters, together with a prior dis-
tribution for the parameters derived from past knowledge or beliefs. The joint density
of data and parameters is obtained by multiplying the prior and likelihood. To get the
marginal density of the data, the parameters have to be integrated out. The posterior
density, which represents the parameters given the data, is then derived by dividing the
joint density by the marginal density. This posterior contains all the information about
parameter values and serves as the foundation for Bayesian inference. Different point
estimators like median, mean, or mode are derived.

Suppose m observations y1:m are collected of a time series yt . Suppose that each data
point, yt , is associated with a probability distribution which can be expressed as a func-
tion of a parameter or many parameters φ so that the relationship between yt and φ is
described by a pdf p(yt |φ). When p(yt |φ) is considered as a function of φ instead of
yt , it is referred to as the likelihood function. By applying Bayes’ theorem, the posterior
pdf p(φ |yt) can be derived, that is, the posterior pdf of φ given yt , by multiplying the
likelihood with the prior density, p(φ). That is,

p(φ |yt) =
p(φ)p(yt |φ)

p(yt)
(7)

where p(yt) =
∫

p(φ)p(yt |φ)dφ

p(yt) defineswhat is known as predictive density function. The prior distribution provides
ameans to include researcher’s initial beliefs or assumptions regarding φ , and Bayes’ the-
orem enables the revision and updating of these assumptions once the data is observed.
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Bayes’ theorem can also be applied sequentially as follows:

• Before gathering any data, the initial beliefs on φ can be expressed in the probabilistic
form p(φ).

• After collecting the first observation y1 at time t = 1, suppose that p(φ |y1) is obtained
through Bayes’ theorem.

• When y2 is observed, p(φ |y1:2) can be obtained as p(φ |y1:2) ∝ p(φ)p(y1:2|φ) using
Bayes’ theorem.

• If y1 and y2 are conditionally independent with respect to φ , p(φ |y1:2) can be ex-
pressed as p(φ |y1:2) ∝ p(φ |y1)p(φ |y2), essentially turning the posterior of φ given y1

into a prior distribution before observing y2.

• Likewise, in a sequential manner, p(φ |y1:m) can be obtained if all the values are inde-
pendent. However, the values are not typically independent in time series analysis.
For instance, it is commonly assumed is that the value at time t relies solely on φ and
the value observed at t −1. In this scenario, we have

p(φ |y1:m) ∝ p(φ)p(y1|φ)
m

∏
t=2

p(yt |yt−1,φ) (8)

For example, consider an AR(1) process. Let the model parameters be φ = (θ ,v)′.
The conditional likelihood for every t > 1 is p(yt |yt−1,φ) = N(yt |θyt−1,v). It can also
be proved that y1 ∼ N(0,v/1−θ 2) for a stationary process. The likelihood is hence given
by

p(y1:m|φ ) =
(1−θ 2)

1
2

(2πv)
m
2

exp
{
−Q∗(θ)

2v

}
(9)

where

Q∗(θ) = y2
1(1−θ

2)+
m

∑
t=2

(yt −θyt−1)
2 (10)

Using Bayes’ rule, the posterior density is

p(θ |y1:m) ∝ p(θ)
(1−θ 2)

1
2

(2πv)
m
2

exp −Q∗(θ)

2v
(11)
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3.3.1 Obtaining Priors

For this study, conjugate priors will be used. Just as Chen and Lee (1995), the natural
conjugate priors are selected as follows; θ1 and θ2 are taken as independent and nor-
mally distributed as N(θ0i,M−1

i ), while σ2
1 and σ2

2 are taken as independent with inverse
gamma distribution inverse gamma (νi/2,νiλi/2). The hyper-parameters d and r are as-
sumed to be known. Next, following Geweke and Terui (1993) approach, r is presumed
to have a uniform distribution on (α,β ) while d is presumed to take a discrete uniform
distribution on 1,2, ...,D.

3.3.2 Obtaining Posterior Distributions

The primary interest of the analysis is to obtain the marginal posterior distributions of
the parameters θi’s, σ2s, r, and d. Determining the posterior distribution is frequently a
challenging task due to the need for complex numerical integration in high-dimensional
spaces. As a result, modern techniques for computing posteriors have emerged, such as
the Gibbs Sampler and theMetropolis-Hastings algorithm. These are the techniques that
will be used in this study to find the conditional posterior distributions of the unknown
parameters.

Gibbs Sampler

The Gibbs sampler, which is a Markov Chain Monte Carlo (MCMC) technique, is used
to estimate target posterior distributions from conditional distributions. MCMC provides
a way to draw samples from the posterior distribution, allowing the approximation of the
posterior and making inferences about the parameters and other quantities of interest.
The fundamental concept of MCMC involves creating a Markov chain with a stationary
distribution, and this distribution is the targeted posterior distribution. Through simulat-
ing a Markov chain, convergence is achieved towards the desired posterior distribution
over time. Gibbs Sampling is specifically designed to sample from multivariate distribu-
tions by sequentially updating each variable while conditioning on the current values of
the other variables.

Consider a scenario where the random variable φ can be broken down into components
φ = (φ1, ...,φr) and the conditional densities
φ j|φ1, ...,φ j−1,φ j+1, ...,φr ∼ f j(φ j|φ1, ...,φ j−1,φ j+1, ...,φr) can be simulated for j = 1, ...,r.
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Then, to sample from the joint density of (φ1, ...,φr) using Gibbs sampler, the following
algorithm is followed:

1. Given the sample (φ (m)
1 , ...,φ

(m)
r ), generate

2. φ
(m+1)
1 ∼ f1(φ1|φ

(m)
2 ,φ

(m)
3 , ...,φ

(m)
r ),

3. φ
(m+1)
2 ∼ f2(φ2|φ

(m)
1 ,φ

(m)
3 , ...,φ

(m)
r ),

...

r. φ
(m+1)
r ∼ fr(φr|φ (m)

1 ,φ
(m)
2 , ...,φ

(m)
r−1).

Gibbs Sampling is specifically designed to sample from multivariate distributions by
iteratively updating each variable conditioned on the current values of the other variables.

Chen and Lee (1995) derived the conditional posterior distributions of the parameters
θi’s, σ2s, r, and d of the SETAR (2;p1,p2) model as follows;
Considering a TAR (2;p1,p2)

yt =

{
φ
(1)
0 +∑

p1
i=1 φ

(1)
i yt−i +a(1)t , if yt−d ≤ r

φ
(2)
0 +∑

p2
i=1 φ

(2)
i yt−i +a(2)t , if yt−d > r

(12)

Consider p as the maximum among p1 and p2. Assuming that the initial p cases are
predetermined, denoted as (y1, ...,yp), and letting πi represent the index of the ith smallest
observation in (yp+1−d, ...,yn−d), the likelihood function, conditioned on the first p values,
can be expressed as follows:

L(θ1,θ2,σ
2
1 ,σ

2
2 ,r,d|Y ) ∝ σ

−s
1 σ

−(n−p−s)
2 exp

{
− 1

2σ2
1

s

∑
i=1

(
yπi+d −φ

(1)
0 −

p1

∑
k=1

φ
(1)
k yπi+d−k

)2

− 1
2σ2

2

n−p

∑
i=s+1

(
yπi+d −φ

(2)
0 −

p2

∑
k=1

φ
(2)
k yπi+d−k

)2}
(13)

where Y = (yπ1+d,yπ2+d, ...,yπn−p+d)
′

θ (1) = (θ
(1)
0 ,θ

(1)
1 , ...,θ

(1)
p1 )′

θ (2) = (θ
(2)
0 ,θ

(2)
1 , ...,θ

(2)
p2 )′
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and s satisfies yπs < r ≤ yπs+1

For the model, the parameters to be estimated are θ (1),θ (2),σ2
1 ,σ

2
2 ,d and r.

LetY ∗
1 = (yπ1+d,yπ2+d, ...,yπs+d)

′ andY ∗
2 = (yπs+1+d, ...,yπn−p+d)

′ be observations that are
generated by regimes I and II, respectively.
Additionally, let
x1,t = (1,yπi+d−1, ...,yπi+d−p1)

′

x2,t = (1,yπi+d−1, ...,yπi+d−p2)
′

X∗
1 = (x1,π1+d,,x1,π2+d,, ...,x1,πs+d,)

′

X∗
2 = (x2,πs+1+d,,x2,πs+2+d,, ...,x2,πn−p+d,)

′

These represents an arranged auto-regression where the first s observations of Y are in
the first regime while the other n-p-s cases are in the second regime.

The conditional posterior distributions for the unknown parameters conditioned on all
the other parameters were derived as follows;

• The conditional posterior distribution of θi is

p(θi|Y,σ2
1 ,σ

2
2 ,r,d)∼ N(θ ∗

i ,V
∗−1
i ) (14)

where for i ̸= j, the conditional probability of θi is independent of θ j.

θ ∗
i = (

X∗′
i X∗

i
σ2

i
+Vi)

−1(
X∗′

i X∗
i

σ2
i

θ̂i +V θ0i) where θ̂i = (X∗′
i X∗

i )
−1X∗′

i Y ∗
i .

V ∗
i =

X∗′
i X∗

i
σ2

i
+Vi

• The conditional posterior distribution of σ2
i is

p(σ2
i |Y,θ1,θ2,r,d)∼ inverse gamma(

νi +ni

2
,
νiλi +nis2

i
2

) (15)

where for i ̸= j, the conditional probability of σ2
i is independent of σ2

j .

νiλi+nis2
i

σ2
i

∼ χ2
νi+ni

, where i = 1,2

s2
i = n−1

i (Y ∗
i − Ŷi)

′(Y ∗
i − Ŷi), where Ŷi = X∗′

i θi

n1 = ∑
n−p
t=1 I{yπi≤r}, n2 = ∑

n−p
t=1 I{yπi>r}
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• For d, the conditional posterior probability function is a multinomial distribution
whose probability is given by

p(d|Y,θ1,θ2,σ
2
1 ,σ

2
2 ,r) =

L(θ1,θ2,σ
2
1 ,σ

2
2 ,r,d|Y )

∑
D
d=1 L(θ1,θ2,σ

2
1 ,σ

2
2 ,r,d|Y )

(16)

with d = 1,2,...,D and

L(θ1,θ2,σ
2
1 ,σ

2
2 ,r,d|Y ) =

exp{−∑
2
i=1(1/2σ2

i )(Y
∗
i −X∗′

i θi)
′(Y ∗

i −X∗′
i θi)}

σ
n1
1 σ

n2
2

• For r, the conditional posterior probability function is

p(r|Y,θ1,θ2,σ
2
1 ,σ

2
2 ,d) ∝

exp{−∑
2
i=1(1/2σ2

i )(Y
∗
i −X∗′

i θi)
′(Y ∗

i −X∗′
i θi)}

σ
n1
1 σ

n2
2

(17)

with n1 and n2 being functions of r.

The conditional densities of the unknown parameters have been identified above ex-
cept for the conditional density of r. Therefore, these conditional distributions will be
used alongside the Gibbs sampling technique described above to obtain the marginal
posterior distributions for the unknown parameters. Regarding r, the Metropolis algo-
rithm will be used.

The Metropolis-Hastings Algorithm

Let the conditional density in equation 17 be denoted by f(k), and as before, the assump-
tion that k’s prior distribution is uniform over (α,β ) is made. Hence, a transition kernel
h(k,k∗) with k∗ = log(k−α)/(β − k) can be utilized to map (α,β ) into (−∞,∞). The
Metropolis algorithm will then work in the following manner;

• Begin with an initial value, k(0) drawn from the prior U(α,β ) and set the indicator j
to 0.

• Utilizing the transition kernel h(k( j),k∗), generate a new point k∗.

• With a probability of p = min1, f (k∗)/ f (k( j)), update k( j) to k( j+1) = k∗ and remain
at k( j) with a probability of (1− p).

• By increasing the indicator, repeat steps 2 and 3 until a stationary distribution is
attained.
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3.4 Test for Linearity

SETARmodels were introduced to handle non-linear time series data, and hence, before
proceeding with modeling, it is essential to check for non-linearity to ensure the model
selected is appropriate. The non-linearity tests that will be used are Tsay’s F test and BDS
test.

3.4.1 Tsay’s F Test

Tsay’s F test will be utilised to examine the existence of threshold-type non-linearity. In
testing for non-linearity, the null hypothesis of linearity is tested against the alternative
hypothesis that there exists a threshold model.
Considering a TAR(p) process with two regimes, the test is,

H0 : yt = φ0 +
p

∑
i=1

φiyt−i + εt (18)

H1 : yt =

{
φ0 +∑

p
i=1 φiyt−i + εt , if yt−d ≤ r

θ0 +∑
p
i=1 θiyt−i + εt , if yt−d > r

(19)

3.4.2 BDS Test for Nonlinearity

The BDS test, introduced in 1987 by Brock, Dechert and Scheinkman as part of chaos
theory, stands out as a widely used assessment for detecting nonlinearity. Originally
conceived as a nonparametric test to examine independence and identical distribution
(iid), it has proven to be effective in identifying both linear and nonlinear patterns. The
BDS test investigates the spatial dependence of a time series. The series is represented in
amulti-dimensional space (m-space), and the dependence of x is investigated by counting
close points, which are data points that are within a distance of ’eps’ from each other.

H0: The data is independently and identically distributed (iid).

H1: The residuals exhibit an underlying structure, potentially of a non-linear nature.

3.5 Test for Stationarity

It is also important to test for stationarity. Stationarity tests assess whether the time
series is stationary, i.e, whether it exhibits stable statistical properties over time, includ-



18

ing the mean, variance, and autocorrelation. Many time series models, Autoregressive
models included, assume stationarity as it simplifies the analysis and allows for more
reliable forecasts. The stationarity tests that will be employed are the ADF Test and the
Zivot and Andrews (1992) test.

3.5.1 ADF Test

ADF is a commonly utilised statistical test that tests for the existence of unit roots
in the data, which are indicators of non-stationarity. The ADF test’s null hypothesis
suggests that the time series possesses unit roots, rendering it non-stationary, while the
alternative hypothesis suggests the absence of unit roots, indicating stationarity.

H0 : ρ = 1 (has unit roots)
H1 : ρ < 1 (no unit roots)
If the p-value obtained from the test is below a selected significance level, the null hy-
pothesis is rejected, indicating stationarity.

3.5.2 Zivot-Andrews Unit Root Test

This is a unit root test that was introduced to incorporate an endogenous structural
break. The null hypothesis is that the time series represents an integrated process devoid
of structural changes. Conversely, the alternative hypothesis proposes that the process is
trend-stationary, characterized by a singular break occurring at an unspecified moment
in time.

H0 : θi = 1 series has a unit root with drift
H1 : θi < 1 series is stationary with break(s)
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4 Data Analysis and Results

4.1 Introduction

In this chapter, the NSE20 time series data will be explored and the Bayesian SETAR
model will be developed. The data will be explored for attributes including stationarity,
linearity, and correlation, which will, in turn, lay the groundwork for fitting of a SETAR
model. The model, once established, will serve as a predictive tool, offering insights into
future trends. Furthermore, the performance of the SETAR model will be evaluated to
assess the predictive power of the employed methodologies.

4.2 Data

The data that is utilized in this study was obtained from the Nairobi Securities Ex-
change (NSE), the leading securities exchange in Kenya, serving as a marketplace for
buying and selling different financial instruments, which include stocks, exchange-traded
funds (ETFs), bonds, and other securities. The exact data is the NSE 20 Share Index his-
torical data from December 1997 to August 2023. The NSE 20 Share Index is basically
a price-weighted Index, which is calculated as the mean of the top 20 best-performing
companies. The basis of the selection of the companies is their weighted market perfor-
mance during the review period. The criteria for selection of the constituent companies
are that: The company should have at least 20 percent of its shares quoted on theNSE, the
primary listing of the company’s shares must be on the NSE, the company should meet
the Kes.20 million minimum market capitalization, the company must have been quoted
continuously for at least one year, and it should be a ’blue chip’ company, portraying a
superior record of profits and dividends.

TheNSE20 Index generally tracks the performance of the 20 largest and best-performing
companies listed on theNSE in Kenya. It is one of themain indices used to gauge the over-
all health and performance of the Kenyan stock market. It is often seen as a barometer
for the broader Kenyan economy and investor sentiment, and analyzing and forecasting
this index can yield valuable insights for investors and shareholders.

Figure 1 shows the NSE 20 Share Index data from December 1997 to August 2023. The
time series is asymmetrical, and this insinuates a lack of stable statistical properties in
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the up and down phases, which is a challenge when doing estimation with both linear
and non-linear models.

Figure 1. Time Series of NSE 20 share index monthly: Dec 1997 - Aug 2023

4.3 Non-Linearity Test

4.3.1 Tsay’s F-Test

Tsay’s threshold non-linearity test is conducted using different working orders ( 1 to
10). The following table shows the results of the tests showing the order of the model
used for testing, the F test statistic, and the p-value obtained.

Table 1. Test for Threshold Non-Linearity using Tsay’s F-Test

Working Orders test statistic p-value

6 2.249 0.001699
7 2.408 0.0001683
8 2.221 0.0001926
9 2.131 0.0001425
10 2.205 2.511e-05
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The results support threshold non-linearity when orders 6,7,8, and 10 are used. Therefore,
at 5% level of significance, the null hypothesis that suggests linearity is rejected.

4.3.2 BDS Test

To confirm the above results, the BDS test is run. The results obtained from running
the BDS test are as shown below.

Table 2. Test for Non-Linearity using BDS Test

P-Values

Embedding
Dimen-
sion

ε(standard deviation)

0.5 1.0 1.5 2.0
2 2.2 e-16 2.2 e-16 2.2 e-16 2.2 e-16
3 2.2 e-16 2.2 e-16 2.2 e-16 2.2 e-16

For the output above, the test employs default values of ε = (0.5,1.0,1.5,2.0), which
are then transformed into the original data’s units. From the results, the null hypothesis,
stating that the data is i.i.d is rejected for all m and ε combinations at the standard
significance levels. Given the lack of apparent linear patterns in the data, the outcomes
of the BDS test indicate nonlinear structures within the data.

4.4 Test for Stationarity

4.4.1 ADF Test

The test yields a p-value of 0.73, leading to the retention of the null hypothesis as the
obtained p-value exceeds the 0.05 significance level. Consequently, it can be inferred that
the time series is characterized by non-stationary behavior.

4.4.2 Zivot-Andrews Unit Root Test

To confirm these results, the Zivot and Andrews Test is run.
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Table 3. Test for Stationarity using Zivot-Andrews Unit Root Test

Test Statistic Critical Values

0.01 0.05 0.1
-3.0983 -5.34 -4.8 -4.58

Based on these findings, the t-statistic of the Z-A test exceeds the critical values, leading
to the retention of the null hypothesis, signifying the presence of a unit root in the time
series. This implies that the time series is non-stationary.

The time series data is non-stationary and hence it will be transformed to stationarity
by logarithmic transformation of the series and then differencing. Obtaining stationarity
in non-stationary time series is crucial for ensuring that the underlying assumptions of
time series models and various statistical tests are met, leading to more accurate and
reliable analyses, predictions, and interpretations. Logarithmic transformation is used to
stabilize the variance of a time series.

Figure 2. Time Series after Logarithmic Transformation

Differencing involves subtracting consecutive observations from each other. Figure 3
shows the transformed time series.
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Figure 3. Time Series of Change in NSE 20 Share Index

Next, stationarity of the series is tested again to ensure that stationarity has been at-
tained. The results of ADF test show that the series is now stationary, with a p-value
of smaller than 0.01. Testing for stationarity using the Zivot and Andrews Test, these
following results are obtained.

Table 4. Test for Stationarity using Zivot-Andrews Unit Root Test

Test Statistic Critical Values

0.01 0.05 0.1
-11.7046 -5.34 -4.8 -4.58

From the table above, t-statistic of the test falls below the critical values, and therefore
the null hypothesis supporting the existence of a unit root is rejected.

4.5 Identification of Regimes

Looking at figure 3, positive values indicate growth in the NSE20 Index, which can
be interpreted as good health or performance of the Kenyan stock market, while nega-
tive values and values close to zero indicate poor performance or stagnation. Seasons of
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good performance are characterized by sharp rises, while those of poor performance are
indicated by sharp drops and stagnation around the zero line.

With these observations of growth and drops, a two-regime model will be suitable
for modeling these growths and declines. This translates to just one r value, which
can informally be envisioned as a horizontal line separating the growth from the drop
seasons. Therefore, our SETAR model will have two regimes and will take the form
SETAR(2; p1, p2). Further, using an alternative method of non-parametric approach of
local polynomial fitting where we plot xt against its lags, visual inspection of the lagged
plot below show regression curve that do not appear fairly straight. The selection of two
regimes is also supported by the lagged plot where the fitted line seems to change around
xt−1 = 0.

Figure 4. Scatter Plots of xt against its Lags

4.6 Selection of the Orders for the Regimes and the Delay Parameter

To develop the SETAR model, we need to find the orders of the two models, for the two
identified regimes. That is, p1 and p2. We also need to find the lag parameter d. We use
ACF and PACF to get the lag order. From the ACF and PACF plots figure 5 and figure 6
below, an order of 4 will be used for both models.
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Figure 5. ACF Plot

Figure 6. PACF Plot

To get the delay parameter, Tsay’s threshold non-linearity test together with the p
value obtained is first tried, and later the Bayesian approach will be utilised. The delay
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parameter d is assumed to satisfy 1 ≤ d ≤ p. Next, with p = 4 and d taking values from
the set {1,2,3,4}, Tsay’s threshold nonlinearity test for SETAR models is applied. The
test statistics and the corresponding p values are as follows;

Table 5. Test for Threshold Non-Linearity using (p,d) Pairs

(p,d) F-Stat p-value

(4,1) 2.796836 0.01764542
(4,2) 2.74101 0.01965312
(4,3) 0.9194889 0.4688014
(4,4) 0.4189912 0.8353437

Tsay suggests a way of selecting d for a particular AR order p such that,

d =i∈D F(p, i)

where D is a set of all d values being considered, and F(p,I) is the F-statistic obtained for
the auxiliary regression with delay parameter equal to I and AR order p. Following this
rule and considering output obtained above for threshold nonlinearity test, d is set to be
d = 1. From this analysis, SETAR(2;4,4) with d=1 is obtained.

4.7 Bayesian Parameter Estimation

Next, the unknown parameters θ (1),θ (2),σ2
1 ,σ

2
2 ,d and r are estimated using the Bayesian

approach. The Gibbs sampling technique is used to find marginal posterior distributions
of θ (1),θ (2),σ2

1 ,σ
2
2 ,d by working with conditional distributions obtained in Chapter 3.

To find the marginal posterior distribution of r, the Metropolis algorithm is used.

The Gibbs sampler was executed for 1,000 iterations, and the initial 500 iterations were
disregarded as the burn-in sample. N = 1000 is the total MCMC sample. The estimates
of the parameters alongside their standard errors are as shown in the table below;
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Table 6. Parameter Estimation for the SETAR Model

Parameter Mean Median Standard
Deviation

θ
(1)
0 -0.0341 -0.0338 0.0108

θ
(1)
1 -0.2903 -0.2889 0.1542

θ
(1)
2 0.0550 0.0529 0.1410

θ
(1)
3 -0.0955 -0.0960 0.1397

θ
(1)
4 0.3342 0.3368 0.1248

θ
(2)
0 0.0016 0.0016 0.0044

θ
(2)
1 0.1581 0.1577 0.1000

θ
(2)
2 0.0420 0.0434 0.0570

θ
(2)
3 0.1270 0.1216 0.0646

θ
(2)
4 0.0567 0.0572 0.0638

σ2
1 0.0034 0.0034 0.0005

σ2
2 0.0023 0.0023 0.0002

r -0.0216 -0.0211 0.0037

d 1 1 0.0000

Using the above results, the following model is obtained;

yt =

{
−0.0341−0.2903yt−1 +0.0550yt−2 −0.0955yt−3 +0.3342yt−4 +a(1)t , if yt−1 ≤−0.0216

0.0016+0.1581yt−1 +0.0420yt−2 +0.1270yt−3 +0.0567yt−4 +a(2)t , if yt−1 >−0.0216
(20)

where σ̂2
1 = 0.0034 and σ̂2

2 = 0.0023. The estimated value of d is 1, similar to the value
previously estimated.
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4.8 Forecasting

After estimating the SETAR model to capture the intricate patterns and nonlinear re-
lationships within the NSE 20 Share Index, the focus of this study naturally extends to
generating forecasts. Forecasting future values of the time series is paramount for in-
formed decision-making in financial markets. In the forthcoming sections, we will em-
ploy the Bayesian SETAR (2;4,4) model to predict future values of the NSE20. To gauge
the effectiveness of the Bayesian SETAR model, its forecasting performance is compared
with that of a SETAR model estimated through a frequentist approach and an ARIMA
model. This comparative analysis will shed light on the advantages and potential gains
in accuracy and reliability offered by Bayesian SETAR modeling in the context of stock
market forecasting.

4.8.1 Forecasting with the Bayesian SETAR (2;4,4) Model

For the forecasting process, the one-step-ahead recursive method was employed. This
method involves a step-by-step prediction process, where the first forecast is initiated
by estimating the next value using our Bayesian SETAR (2;4,4) model. Subsequently, this
predicted value is integrated into the existing data, and the model is re-estimated. This
cycle continues, step by step, to predict future values.

First is to forecast the NSE 20 Share Index values for the next 12 months starting from
September 2023 to August 2024. Themodeling data spanned from January 1998 to August
2023, and the forecasts were generated for the subsequent period from September 2023
onward. Table 7 and figure 7 and below show the predictions for the next 12 months
using the Bayesian SETAR model.
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Table 7. Predicted Values of the NSE 20 Share Index for September 2023 to
August 2024

Predictions

Month/Year Mean Lower Upper
Sep 2023 1479.60 1442.50 1509.65
Oct 2023 1434.30 1363.80 1499.86
Nov 2023 1384.13 1286.95 1477.09
Dec 2023 1334.12 1214.67 1455.83
Jan 2024 1310.46 1154.62 1450.02
Feb 2024 1312.03 1138.23 1469.58
Mar 2024 1294.95 1092.29 1464.44
Apr 2024 1278.36 1048.83 1459.33
May 2024 1280.79 1034.87 1482.12
Jun 2024 1282.58 1021.09 1503.62
Jul 2024 1285.41 1008.21 1528.02
Aug 2024 1288.24 994.29 1551.43
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Figure 7. Predicted Future Changes of the NSE20 Index are Indicated by the Red
line

Figure 8. Predictions of the NSE20 Index for the Next 12 Months are Indicated by
the Red line
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4.8.2 Evaluation of the Model’s Forecasting Ability

In evaluating the forecasting precision of the model, the Bayesian SETAR model, de-
veloped with data spanning from January 1998 to December 2022, was compared with
a SETAR model estimated using the frequentist approach and an ARIMA model. The
primary interest was forecasting the NSE 20 Share Index changes for January 2023 to
August 2023. To assess the accuracy of these forecasts, Root Mean Square Errors (RMSE)
were calculated for the three models. The RMSE provides a quantitative measure of the
forecast error, with smaller values indicating better predictive accuracy. The results are
as shown in the following table 8.

Table 8. RMSE for the Bayesian SETAR, Normal SETAR, and ARIMA Models

Bayesian
SETAR

Frequentist
SETAR

ARIMA

RMSE 0.0213 0.0239 0.0176

The results indicate that the Bayesian SETARmodel outperformed its frequentist coun-
terpart in forecasting the NSE20 changes. The RMSE for the Bayesian SETAR was 0.0213,
while that of the other SETAR model was 0.0239.

However, compared with ARIMA forecasts, the ARIMA model performed better. It is
important, however, to note that this comparison was for forecasts for a short period of
time (only eight months). Next, a comparison is made for a longer forecasting horizon
where structural breaks are expected. The models were fitted for data spanning from
January 1998 to Aug 2019, and forecasts were made for September 2019 and August 2023
(48 months). During this forecast period, there were periods of abrupt and high changes,
and the goal was to investigate whether the tested models captured this behavior.

The performance results are as shown in the following table 9 and the forecasts are as
shown in figure 9.
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Table 9. RMSE for the Bayesian SETAR, Normal SETAR, and ARIMA Models

Bayesian
SETAR

Frequentist
SETAR

ARIMA

RMSE 0.0388 0.0515 0.0415

Figure 9. Original Data and Forecasted Values using Bayesian SETAR and using
ARIMA

Here, the Bayesian SETAR had a better predictive power. The RMSE for Bayesian SE-
TAR model was 0.0388, while that of ARIMA was 0.0415.
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5 Summary, Conclusions, and Recommendations for
Further Research

5.1 Summary

The main goal of this research was to explore the Bayesian framework for SETARmod-
els with application toNairobi Securities Exchange (NSE) 20 Share Index data. To this end,
the four specific goals were to analyze the properties of the NSE20 Index data, to deter-
mine the estimates of SETAR model parameters using the Bayesian approach, to forecast
the NSE 20 Share Index for the next 12 months using the fitted model, and to compare
the performance of the Bayesian SETAR with the frequentist SETAR and ARIMA model
in forecasting.

SETAR modeling was used to model the changes in NSE 20 Share index. The study
began with stationarity and non-linearity tests, which confirmed the presence of non-
linearity in the NSE20 data. This justified the use of a SETAR model to grasp the behav-
ior of the data. The data was not stationary and to ensure the data had stable statistical
properties for convenience in analysis, logarithmic transformation and differencing was
conducted. The Bayesian approach of parameter estimation was used to find the esti-
mates of the model parameters.

Through an analysis of the data, SETAR(2;4,4) was the most adequate for the data.
Using the Bayesian approach, the model parameters were estimated, including autore-
gressive coefficients θ (1) and θ (2), regime switching parameter (r), error variances σ2

1 and
σ2

2 , and the delay parameter (d). The estimated Bayesian SETAR model was then used to
generate forecasts for the next 12 months of the NSE20 Index. Considering the forecasts
obtained, the NSE 20 Share Index is expected to continue in a downward trend in the
coming months till April 2024 where the NSE 20 Share Index is expected to be around
1278.36 , after which they index is expected to start going up slowly.

In terms of forecasting performance, the Bayesian SETAR model outperformed the SE-
TAR model that utilized the Frequentist approach. This highlights the advantages of in-
corporating Bayesian techniques for modelling and forecasting non-linear financial time
series. Compared to the ARIMAmodel, Bayesian SETAR performed better for longer fore-
casting horizons and during periods characterized by high fluctuations. It showed that
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Bayesian SETAR performed better where there were high changes or fluctuations, com-
pared to ARIMA. These findings underscore the Bayesian SETAR model’s resilience and
adaptability, particularly in scenarios characterized by heightened volatility.

5.2 Conclusions

In conclusion, this study has successfully applied the Bayesian framework to SETAR
model, specifically in the context of modeling the Nairobi Securities Exchange (NSE) 20
Share Index data. The study achieved its primary objectives, including the analysis of key
data properties, estimation of SETAR model parameters through Bayesian techniques,
and the generation of forecasts for the NSE20 Index over the next 12 months. The find-
ings highlight the applicability of SETAR modeling in capturing the non-linear dynamics
inherent in financial time series data, particularly observed in the NSE20 Index. The fore-
casted trends indicate a projected downward trajectory in the NSE 20 Share Index until
April 2024, followed by a gradual upward trend. The implications of these findings ex-
tend to different stakeholders in the financial market, including investors, investment
firms and policymakers.

The application of the Bayesian approach for parameter estimation proved instrumen-
tal in refining the SETARmodel, emphasizing its adaptability in handling non-linearity. In
comparison with the frequentist SETAR and ARIMA models, the Bayesian SETAR model
exhibited superior performance, particularly in scenarios marked by high volatility and
fluctuations, outperforming its counterparts. This underscores the model’s resilience and
adaptability, positioning it as a robust tool for forecasting in financial environments char-
acterized by dynamic and unpredictable changes.

In general, the Bayesian SETAR model offers a valuable tool for more accurate and
adaptive forecasting in the face of market uncertainties. Its demonstrated superior-
ity in handling non-linearities and volatile conditions suggests practical applications in
decision-making processes, risk management, and strategic planning within the financial
sector. As the Kenyan financial market continues to navigate complex and evolving con-
ditions, the Bayesian SETAR model emerges as a valuable asset for stakeholders seeking
reliable insights into market behavior and trends, and hence this model is recommended.

5.3 Recommendations for Further Research

The first recommendation is on model comparison. Future research can extend this
study’s comparison to include other non-linear time series models. Further comparison
can be done to compare the accuracy of the Bayesian SETAR model with other nonlin-
ear models such as Markov-switching models, STAR (Smooth Transition Autoregressive
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Models) and nonparametric models, such as kernel regression or neural network-based
models. This broader model comparison can provide a more comprehensive understand-
ing of which modeling approach is most suitable for NSE 20 Share Index data or similar
financial data.

Natural conjugate priors were chosen for this study. There are various methods of
obtaining the priors, including subjective priors, objective priors, empirical priors, and
conjugate priors, and in this case conjugate priors were used because of mathematical
convenience. Future studies can also investigate how variations in prior distributions for
the model parameters affect the results.

In this study, two regimes were selected for the study. However, future studies can
extend the study to incorporate more than two regimes. Expanding the scope to include
multi-regimes may lead to better capturing of the data’s underlying patterns and nonlin-
ear relationships that may not be fully revealed in a two-regime framework.
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