

UNIVERSITY OF NAIROBI

FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTING AND INFORMATICS

Multi-Tenancy Environment Provisioning on a Non-Virtualized Cloud (Bare

Metal) Platform

Anthony Kibet Ng’eno

P58/70786/2008

Supervisor:

Prof. Robert Oboko

Research Project Report Submitted in Partial Fulfilment of the Requirements of the Degree

of Master of Science in Computer Science of University of Nairobi

November 2023

ACKNOWLEDGEMENT

I thank God the Almighty for sufficient grace and for the gift of life and provision and supply

To my family, I salute you for the support, encouragement and exhortation.

To my departed parents, your dream lives on…….

In a singular and profound way, I acknowledge and appreciate my esteemed Supervisor Prof.

Robert Oboko for the support and guidance throughout this project period May God bless you

abundantly

I appreciate and thank the faculty members of the Department of Computing and Informatics and

special mention goes to my panel assessors, Prof Elisha Opiyo, Prof. Peter Wagacha and Christine

Ronge for their invaluable guidance and in-depth review of my work. Be blessed beyond measure.

Finally, kudos to the University of Nairobi for remaining the premier institution and centre of

academic research excellence

ABSTRACT

Cloud computing consists of compute and security and network resources provided and maintained

by Cloud Service Providers (CSP) that enable cloud users to access and process workloads in a

remotely located compute resources.

The cloud providers offer varied services to appeal to the would-be subscribers and the fate of any

cloud provider with regard to cloud capture and market share depend on how competitively

packaged, robust and agile the CSP service offerings are.

Cloud Computing is equated to access to utilities offered by utility companies. The utility

companies pipe and terminate the utilities to points near consumers who use requisite equipment

to tap. Cloud computing is a collection of IT resources that are accessible in multiple ways viz:

via web browser or through other CSP provided remote access tools.

CSPs invest in massive infrastructure and service requestors also known as tenants are then

provided with virtual resources with ordered specifications or in increments of pre-defined

resource capacity shapes. This slicing of a big physical resource to create a sub resources and

separation of these derivative resources is achieved through virtualization technology. More

recently, isolation has been achieved at Operating System (OS) level through application of

containerization technologies.

The massive infrastructure is sliced using different technologies to allow multiple and independent

users access the resources without any data or access leaks. The main technology used is

virtualization which is either hardware or host-based. Recently, containerization technology has

been adopted but this is mostly at application layer level.

However, the existing service enablers specifically virtualization technologies provision virtual

resources based on preset configurations, compute shapes and based on inbuilt capabilities. This

means that customers choices are limited to pre-defined capacities forcing customers to purchase

excess capacity. This limitation is causing the customers to forfeit the elasticity feature that is a

defining characteristic of cloud platforms. Containerization technologies are implemented based

on a small set of features that do not guarantee complete isolation as desired.

There is need to understand how the use of current cloud multi tenancy enabling technologies and

use of Linux Kernel features to facilitate multi tenancy and resource isolation in cloud computing.

The findings will then be used to explore an alternative way that can complement or improve

current technologies or devise a better and more efficient mechanism altogether.

This study aimed at exploring the possibility of achieving multi tenancy through complete isolation

using non-virtualized approach but based on In-Kernel Linux features. The study was based on

CentOS Linux distribution. The study involved detailed understanding of the structure and

components of the Linux Kernel and configurations that can be tuned to refine, activate, or

deactivate the features and functional behaviour of the computer host. The study was based on

Linux complete Code Base downloaded from the Gitub web repository. This was used to re-affirm

the features, structure, modularity and moving parts of Linux as described in the existing literature.

This was the drilled down to Kernel sub system which was the focus area of this study.

The full set of features of the core Kernel Linux were extracted and loaded in a relational database

management system (RDBS). Each feature is supported by a module or C source code. The list of

all source code files was then extracted. This constituted 100% sampling.

To narrow down the scope as defined for the study, three more configuration files were used. Two

(2) header files that relate to resource and process management were identified as per the existing

literature. The C source files referencing these were matched and this created a smaller set of

objects to consider.

To further limit and pick key features, a Makefile which contains the build rules and compilation

entries for the Kernel was referenced.

Out of above, three (3) features were selected and subjected to further review and tweaking to

understand customize their behaviour. The corresponding source codes were then reviewed.

Out of above, a number of scripts were developed using bash or scripting languages to implement

the features identified can be used to achieve multi-tenancy provisioning.

Keywords: Linux, kernel, cloud, technologies, virtualization, MakeFile, isolation

TABLE OF CONTENTS

DECLARATION .. 2

ACKNOWLEDGEMENT ... 3

ABSTRACT .. 4

TABLE OF CONTENTS .. 6

LIST OF FIGURES ... 1

LIST OF TABLES .. 2

CHAPTER ONE: INTRODUCTION ... 3

1.1 Definition of Cloud Computing .. 3

1.2 Study Background ... 4

1.3 Problem Statement .. 5

1.4 Multi tenancy enabling technologies .. 5

1.4.1 Current Dominant technologies used for Environment Isolation .. 5

1.4.2 Alternative Potential Solution ... 6

1.5 Objectives of this Study .. 6

1.6 Research Questions ... 6

1.7 Significance of the Study .. 7

1.8 Scope of the Study .. 7

1.9 Assumptions of the Study ... 7

CHAPTER TWO: LITERATURE REVIEW ... 8

2.1 Linux Distributions ... 8

2.2 Feature Representation .. 8

2.3 Kernel Organization .. 8

2.4 Structure of Linux System and architecture components ... 8

2.4.1 Linux OS Boot Process ... 9

2.5 Multi-Tenancy Definitions .. 10

2.5.1 Layered Multi-tenancy .. 10

2.5.2 Multi-Tenancy Characteristics .. 10

2.6 Virtualization .. 11

2.6.1 Virtualization Origins ... 11

2.6.2 Virtualization Technology .. 11

2.6.3 Virtualization Architecture ... 11

2.6.4 Virtualization Advantages ... 12

2.6.5 Virtualization challenges ... 12

2.6.6 Virtualization and Cloud Computing .. 13

2.7 Containerization .. 13

2.7.1 Containerization Technology .. 13

2.7.2 Container Boot Process ... 13

2.7.3 Containerization Challenges ... 14

2.8 Cloud Delivery Models ... 14

2.8.1 Provision of Infrastructure .. 14

2.8.2 Bare Metal as a Service (BmaaS).. 15

2.8.3 Provision of Products .. 15

2.8.4 Provision of Application/Software Services ... 15

2.9 Cloud Enabling Technologies ... 15

2.9.1 The Network or Inter-Networks (Internet) .. 15

2.9.2 Computer and Data Centre Technologies ... 16

2.9.3 Virtualization Technology .. 17

2.9.4 Presentation and accessibility - Web browser based and Command Line Interface (CLI)

interfaces 17

2.10 Isolation Features in Linux ... 17

2.10.1 Chroot () .. 17

2.10.2 The Namespace Mechanism ... 18

2.10.3 Process Identification (PID): Process Isolation .. 19

2.10.4 Process Identification (PID) Namespace & PID Generation .. 19

2.10.4.1 Process Table .. 19

2.10.4.2 Process ID Generation .. 20

2.10.4.3 System Calls to Create Processes in Linux ... 20

2.10.4.3.1 Fork() .. 20

2.10.4.3.2 The Clone Method .. 20

2.10.5 NET: Network Isolation .. 20

2.10.6 MOUNT: File System Isolation .. 20

2.10.7 Other Namespaces... 21

2.10.8 Resource Utilization Capping and Limiting Kernel Features- CGroups 21

2.10.8.1 Capping Memory using cGroups .. 21

2.10.8.2 Capping Processor usage limits using CGroups ... 22

CHAPTER 3: RESEARCH METHODOLOGY .. 23

3.1 Research Method .. 23

3.2 Research Design .. 23

3.3 Research Sampling .. 23

3.4 Data Collection ... 23

3.5 Raw Data analysis ... 24

3.6 Inputs from the Linux Open-Source Development Community ... 24

3.7 Case Studies on how cloud providers use alternative multi tenancy methods 24

3.8 System Test and Validation .. 24

CHAPTER 4: RESULTS, FINDINGS & DISCUSSIONS... 26

4.1 Research Objective /Question 1 .. 26

4.1.1 Sampling the Cloud Providers - Top 3 Cloud Providers by Market Share 26

4.2 Research Objective/Question 2 ... 27

4.2.1 Namespaces ... 27

4.2.2 Control groups (cgroups) .. 27

4.3 Research Objective/Question 3 ... 28

“How should the selected top Kernel feature be configured to achieve the isolation and create a multi-

tenant environment” ... 28

4.3.1 Exploration of Linux Kernel Features... 28

4.3.1.1 Exploration Environment Tools .. 28

4.3.2 Identification of Linux Kernel Features .. 28

4.3.2.1 Extract Complete Linux Sub Systems & Code Base from Git [38] 28

4.3.2.1.1 Extraction of the features contained in the Kernel Sub System .. 30

4.3.2.1.2 Kernel Makefile .. 30

4.3.2.1.3 Identifying Key Features using Pre-Processor Directives... 31

The below Script was used to Create a Database table to store the extracted details and list as shown in

figure 13 .. 31

4.3.2.1.4 Source Code Analysis ... 32

4.3.2.1.4.1 Header Files .. 32

4.3.2.1.5 Selected Features... 33

4.3.2.1.5.1 Process ID Address Space Designation .. 33

4.3.2.1.5.1.1 Modification of the Process Identification Upper Limit ... 33

4.3.2.1.5.1.2 Code to generate Process Identification Number .. 33

4.3.2.1.5.1.3 Bash Scripts to generate PID Based on the designated PID Range 34

4.3.2.1.5.2 User Augmentation - Attributing the /etc/passwd to include tenancy information 35

4.3.2.1.5.2.1 Default Fields .. 35

4.3.2.1.5.2.2 Expanded User File Structure with an additional Attribute to Store Tenant

information 35

4.3.2.1.5.2.3 Modified UserAdd (UserAddnew) code ... 36

4.3.2.1.5.2.4 Modification of the default Home Directory... 38

4.3.2.1.5.2.5 Global Tenancy Configuration File .. 39

4.3.2.1.5.2.5.1 Global Tenancy Configuration File ... 39

4.3.2.1.5.2.6 User Provisioning Screens .. 39

4.3.2.1.5.2.6.1 Python Script to Create User .. 40

4.3.2.1.5.2.6.2 User Record in password file (passwd) & Global Configuration 43

4.3.2.1.5.2.6.3 Entries in the Cgroup ... 44

4.3.2.1.5.2.6.4 Read Scripts ... 44

4.3.2.1.5.2.6.5 Modified Terminal Login Shell – Web accessible SSH .. 45

4.3.2.1.5.2.6.6 Server5.js ... 46

4.3.2.1.5.2.6.7 Web page – index5.html .. 47

4.3.2.1.5.2.6.8 Menu .. 48

CHAPTER 5: RESULTS & DISCUSSIONS ... 51

5.1 Features selected for Isolation at Kernel ... 51

5.2 User Hierarchy .. 51

5.3 Process Identification Generation ... 51

5.4 Access to Linux Secure Shell Through Web browser .. 51

5.5 cGroup Limitations ... 51

5.6 Scripting Languages Support .. 51

CHAPTER 6: CONCLUSIONS & FUTURE WORK.. 52

6.1. Achievements ... 52

6.2 Conclusions ... 52

6.3 Future Work .. 53

GLOSSARY & ACRONYMS .. 54

REFERENCES ... 55

APPENDICES .. 59

Appendix I – Cloud Providers Market Share .. 59

Appendix II – Linux System User Namespace ... 59

Appendix III – Supported Namespaces .. 61

Appendix IV – Inputs from Linux Community .. 61

Appendix V– Results of Forked process – showing the PID numbers – for default process 64

Appendix VI – Results of Forked process – showing the PID numbers – for tenant assigned a PID

Offset of 80000 ... 72

1

LIST OF FIGURES

Figure 1: Virtualization and Containerization Stack .. 5

Figure 2: Alternative potential Solution ... 6

Figure 3: Linux Kernel Components .. 9

Figure 4: Linux Boort Process .. 9

Figure 5: Virtualization Types I & II .. 12

Figure 6: Containerization Components ... 13

Figure 7: Linux File System Default Structure ... 18

Figure 8: Linux File System with Pseudo Root .. 18

Figure 9: Linux Process Tree .. 19

Figure 10: Linux Features used in Containers .. 27

Figure 11: Supported Linux Namespaces ... 27

Figure 12: Linux Kernel MakeFile ... 30

Figure 13: Linux Kernel Source Codes .. 32

Figure 14: Modification of PID Maximum value ... 33

Figure 15: Allocation of PID Offset values .. 34

Figure 16: Python script to create a modified user ... 37

Figure 17: Home Directory for the tenant ... 38

Figure 18: User provisioning web page .. 40

Figure 19: Access Linux Shell over web browser .. 45

Figure 20: NodeJS Server code... 47

Figure 21: HTML Page to access the web console ... 47

Figure 22: Bash Menu Script and Menu screens .. 49

2

LIST OF TABLES

Table 1: Supported Namespaces in Linux .. 19
Table 2: Linux cGroup Memory capping attributes ... 21

Table 3: Processor capping attributes Supported in cGroups ... 22
Table 4: System Tests and Evaluation .. 25
Table 5: Top 3 CSPs ... 26
Table 6: Research Tools.. 28
Table 7: Linux Kernel Sub Systems ... 29

Table 8: Linux Kernel Process Header Files .. 32

3

CHAPTER ONE: INTRODUCTION

1.1 Definition of Cloud Computing

Cloud computing is a computing framework that aims to allow for fast creation and set up of

required computing services on demand and provide universal network access to a shared pool of

isolated, definable and configurable computing resources viz servers, storage, software (NIST:

Cloud Computing Definition, 2012).

Cloud Computing has some key characteristics, offer several service models, and support multiple

deployment models (NIST: Cloud Computing Definition, 2012).

On-demand self-service. Ability to independently provision computing services as needed

automatically by the consumer.

Broad network access. Should offer access capabilities across different devices and using different

access protocols (http, https, ssh, ftp, sftp etc) over the private network connections and over the

internet

Resource pooling. Implement a multi-tenant model to allow different physical and virtual

resources dynamically assigned and reassigned as requested or demanded by service subscribers.

Location Transparency: The user experience should be the same regardless of the physical location

of the compute resources or data centre. The subscribers should not even be aware where the

resources are located.

Rapid elasticity. The cloud computing framework should allow users to increase, decrease or

optimize the provisioned capacities at will or based on configured policies.

Measured service. Cloud services usage are measured using either metering consumption of

resources or set quotas or use flat rates.

Hosting and access of compute resources in the Cloud is called Cloud computing (CC). The CC

can be defined as a computing framework where resources host ran in remotely located servers in

remote or on-premises data centres. The consumers lease or rent processing and storage resources

in these environments and run their workloads in the allocated resource spaces.

The cloud providers create advanced and resilient IT infrastructures that ordinary organizations

cannot match. To ensure maximum return, the cloud providers base decisions regarding locations

and scale on different cost factors and demand and supply. Lately, legislation and compliance

requirements also play a key role as different jurisdictions impose varying compliance and legal

requirements.

Different factors drive adoption of cloud computing viz:

4

To achieve elasticity, the cloud platforms come with auto scaling and capacity on demand

capabilities. These features enable organizations to use what is required only as opposed to massive

investments that can easily be underutilized. Vendors use hypervisors to partition and isolate

environments and resource allocation are based not on say physical processor cores but on units

of the same.

Another key factor is an endeavour to drive down the costs. Aministrative overheads are offloaded

to the service provider; Insurance, physical and cyber security costs are borne by the cloud provider

Currently, the administrators spend considerable amounts of time handling administrative tasks.

In the cloud mode, Serverless Computing is achieved as Server management and administration

tasks e.g. patching, routine maintenance and operational tasks are performed by the cloud vendor

leaving the subscriber to focus on the core business.

Cloud platforms isubiquitous and these services are accessed over the internet from anywhere and

anytime. With the level of internet penetration, any interested organization is guaranteed of internet

connectivity.

There is also the option of bare metal cloud where tenants rent/lease a raw hardware platform then

decide how to use it without any limitations imposed by virtualization

1.2 Study Background

Cloud computing is viewed as an evolution of virtualization which has been a technology that has

been around for some time. Even organizations, have been using virtualization in on-prem

environments for considerable period of time

On the other anticipated benefits of CC is a shift from server focus to non-server focus. The latter

is referred to as Server-less computing. In the latter, the subscribers are relieved from the overhead

of routine maintenance of the servers. Routine administration and maintenance involve such tasks

as patching, optimization, indexing, purging and software upgrades. This remains elusive as the

subscribers ‘own’ the virtualized environments and anything required thereon is the responsibility

of the subscriber. The CSP only worries about the hardware and the hypervisor technology. The

VMMs also come with other draw backs e.g. the limitation to the available capacities to predefined

units of minimum configurations

An alternative solution that avoids virtualization will offer the prospect of a solution to overcome

the virtualization problem.

Other key concerns and begging questions that users have to consider while evaluating cloud

services are:

a. Vendor’s virtualization technology capabilities and maturity- is it heavy and chews lots of

resources making it expensive for the customers. Or is it limited to which resources it can

virtualize

5

b. Has the vendor mainstreamed virtualization technology in the product vision and public

road map or it is a pedestrian product that is not evolving in tandem with other technologies

c. Does the virtualization vendor collaborate with software vendors to ensure optimal

performance of the software products on virtualized as on non-virtualized environments?

d. Does the virtualization technology meet open standards and inter operability requirements?

1.3 Problem Statement

Virtualization technologies are not light weight but consume substantial resources forcing the

vendors to price the cost of cloud services at marked up prices which should not be the case.

The hosted software technologies sometimes do not perform optimally on virtualization

environments due to abstraction bottlenecks.

Furthermore, virtualization locks resources and forces consumers to procure idle capacity as the

virtualized environments have set minimum configurations which might be higher than what a

business wants for its workloads.

Linux Systems boast of key capabilities that can be harnessed to push the limits of this cross

platform. It should therefore incorporate capabilities and core features that can be used to set up a

bare metal multi-tenancy environment.

1.4 Multi tenancy enabling technologies

Virtualization Technology is the core of the modern Cloud computing. The success and adoption

of this new innovation is based on the robustness, capabilities and features of the virtualization

software. This is also a differentiating factor between the CSP services selling points.

1.4.1 Current Dominant technologies used for Environment Isolation

There are two dominant technologies used currently for environment/resource isolation.

Figure 1 shows the Virtualization and Containerization component Stacks.

Figure 1: Virtualization and Containerization Stack

6

1.4.2 Alternative Potential Solution

 The proposed solution avoids virtualization and Containerization and aims to implement isolation

at Kernel using features already supported in the Kernel as depicted in figure 2

Figure 2: Alternative potential Solution

1.5 Objectives of this Study

My Research goal was to understand the existing Linux features and how they have been harnessed

and identify provisioning and resource segregation features of Linux Kernel and corresponding

changes or modifications in configurations to achieve a resource isolation and overcome the

software virtualizers limitations

The specific objectives were:

1. To explore use of Linux Kernel based features currently for environment isolation for

multi-tenancy implementation in Cloud Computing

2. To investigate how Linux based features have been used for environment separation or

isolation in cloud multi tenancy set up

3. To explore a complete/integrated approach or alternative use of the Kernel features to

create and isolate Multi Tenancy environments in a non-virtualized Bare Metal cloud

4. To evaluate and simulate the multi tenancy provisioning based on the proposed approach

1.6 Research Questions

To guide this Research, the following are key formulated Research.

1. Are Linux Kernel based features currently used in cloud computing to implement multi

tenancy as an alternative to virtualization

2. Which and how are key Linux Kernel features implemented currently to create and isolate

cloud tenancies

3. How should the selected top Kernel features be configured to achieve the isolation and

create a multi tenant environments

4. What parameters can be used to assess and evaluate successful multi tenancy

7

1.7 Significance of the Study

One of the technology disruptors of the modern day is the cloud computing. The craze and rush

with which companies are raring to jump on board and embrace this makes it an area of technology

interest. The use of Information technology in foot printed in every day facet of human endeavour

(Izevbizua, 2013). There is need for deep understanding, appreciation and to identify how the

current features can be augmented or complemented to safeguard the consumers interests and

security and guarantee value for money.

The essence of the study was to explore alternative multi tenancy provisioning that does not rely

on virtualization which is an independent and resource-gobbling and limiting technology.

Conclusions from the study will help improve on cloud environments isolation technologies by

exploring alternative cloud services platform provisioning technology

1.8 Scope of the Study

The study shall be conducted on open-source Operating Systems. A normal PC shall be used as

the host physical server to mimic high end server computer. The study shall also be limited to only

two (2) Linux Kernel based features which are not currently heavily used.

1.9 Assumptions of the Study

o There are enough online materials and resources to enrich this study

o The existing technical literature is authentic

o The Open Source Operating Systems contain run time modular libraries and utilities that

can be used to achieve this envisaged solution

o This research can be concluded within the set timeframe and any pending investigations

can be continued by other scholars so that conclusive findings can be achieved.

8

CHAPTER TWO: LITERATURE REVIEW

2.1 Linux Distributions

Linux distribution is an operating system made from a software collection that includes the

Linux kernel and often a package management system (Wikipedia, Linux Distribution, 2023).

A Linux distribution comprises a Linux kernel, an init system (such as systemd etc), GNU

tools and libraries, documentation, and other software (such as IP network configuration

utilities and the getty TTY setup program, among others).

The included software is free and open-source software available both in form of compiled

binaries or source code form. It might also include proprietary software that is not publicly

available

There are well defined rules and procedures for initiating and making changes (Linux Online

Documentation)

The most common distributions are: Redhat (CentOS), Ununtu, Fedora etc

2.2 Feature Representation

Features of Linux Kernel are specified in the build rules contained in files known as Makefiles

(Leonardo Passos et. al: A Study of Feature Scattering in the Linux Kernel). Furthermore, the same

can be deduced from the C preprocessor directiveswhich are used to control full Kernel

compilation. There are varuous Linux Makefiles (Corbet et.al:Kernel makefile documentation,

2003)

2.3 Kernel Organization

The kernel is primarily organized around the core services it provides: process handling, memory

management, file system management, network access and the drivers for the hardware. These

areas correspond to the kernel source directories, kernel, mm, fs, net and drivers respectively

(Torvalds, Linus: Linux the Portable System, 1997)

2.4 Structure of Linux System and architecture components

The following are the constituent parts of Linux Operating System (Tutorial Point:

https://www.tutorialspoint.com/operating_system). The key components are depicted in figure 3:

i. Bootloader. After computer is powered on, the BIOS burned into memory chip locates a

small program that is responsible for booting. This small program is called the boot loader;

it manages the boot process and is the one that initiates the starting the Linux kernel. The

boot loader is located in the first block of about 512KB

https://www.techtarget.com/searchdatacenter/definition/boot-loader-boot-manager

9

ii. Kernel. This is the engine of the OS; it handles process management (starting, scheduling,

prioritization, termination etc), Input and Output (IO), devices and other key sub systems .

The Linux kernel provides the interface to the hardware resources through various

mechanisms

iii. Init system or Systemd etc. After Kernel has been loaded to RAM, it locates the first

program to load. This is called Init or SystemD depending on the Linux version. Other

programs are then started by the initial processes

Figure 3: Linux Kernel Components

2.4.1 Linux OS Boot Process

 Linux boot process entails a number of steps since the powering on and loading of BIOS from

the chip as shown in figure 4 (free code camp: https://www.freecodecamp.org/news/the-linux-

booting-process-6-steps-described-in-detail/)

BIOS loads and executes the Master Boot Record which is located in the first sector of bootable

disk. The Grub is then loaded; Grub is used to specify which image to load). The selected option

then locates the corresponding initial system for the selected image.

Figure 4: Linux Boort Process

10

2.5 Multi-Tenancy Definitions

A tenant is defined as an independent entity that signs up for cloud services offered by CSP. The

compartmentalizing the available resources to accommodate different organizations or entities is

what is known as Multitenancy.

The individual tenants share different classes of resources viz infrastructure, applications or

software based on their individual needs. CSP must provide and implement appropriate

mechanisms to isolate and separate the different tenants wholly or completely so that each is not

aware of the other tenants.

This also avoids issues of noisy neighbors and security lapses as both the victim and potential

attacker could be residing in adjacent environment

Multi-Tenancy utilizes different underlying technologies to share and allocate resources to the

different tenants. Multi-Tenancy is engendered when multiple compute environments assigned to

different customers are provisioned on the same resource in complete separation that ensures zero

data leakage and full control by each tenant. Traditionally, multitenancy was largely defined as a

result of Virtualization, but new innovations also achieve resource isolation without virtualization.

The equation that virtualization and resource sharing result in multi tenancy holds partially

(Hussain AlJahdali et.al: Virtua;ization, 2014)

2.5.1 Layered Multi-tenancy

At different Cloud Services layers, multi tenancy takes different forms and definitions. These are

described below:

In Software Layer -SaaS, the subscribers have no visibility of the underlying and supporting

hardware or software but can only access and use the software signed up for. When two or multiple

subscribers access the same service with no impact on the other tenant, then multi tenancy is so

created on this software as more than subscriber has been provisioned (IEEE: 2nd International

Conference on Cloud Computing ,2010).

For its part, in Infrastructure Layer (IaaS), Customers are responsible for monitoring and

maintaining the supporting provisioned infrastructure. At this layer, when multiple compute

instances are created and allocated to different subscribers then multi tenancy has been created on

the same physical hardware (IEEE: 2nd International Conference on Cloud Computing, 2010).

2.5.2 Multi-Tenancy Characteristics

There are different forms of cloud Multi Tenancy (Isaac Odun-Ayo et.al: Multi Tenancy, 2017).

Hardware Resources Sharing relates to different customers being allocated hardware resources to

configure and load and process their respective workloads. The resources allocated here are

hardware in nature.

11

On the other hand, the high degree of Configurability is a characteristic that is required for

applications to support multi tenancy, the applications must be highly configurable and

customizable to allow for localization and domestication and branding as may be required.

Multiplicity of instances refers to multiple instances creation must be supported and these multiple

instances must be enjoined to work seamlessly

2.6 Virtualization

Virtualization refers to slicing of a given physical resource to generate multiple smaller ‘copies’

(IBM: IBM systems virtualization‖, 2005). Virtualization technologies are specialized and can be

set up on commodity hardware (Type I) or on the host OS (Type II). This technology is the most

dominant technology today and is synonymous with hardware resource slicing.

2.6.1 Virtualization Origins

The initial approach advanced by General Electric (GE) was to explore an approach that involved

time-sharing computing (Conroy et al: Virtualization, 2018). With growing interest, IBM started

projects around time sharing computing development as well.

2.6.2 Virtualization Technology

There is no universally adopted definition of Virtualization. In most of the reviewed literature and

reference materials, there are there are large differences about the definition of virtualization (Luo,

Yang & Ma, 2011). Instead of defining virtualization in terms of what it is, most definitions relate

to virtualization types. To date no strict standards and definitions were created (Luo et al. (2011).

A more general definition based on existing literature and the objective has been coined as follows.

“Virtualization abstracts underlying hardware; it has become a de facto standard for

implementation of rresource isolation and server consolidation” (Li & Kanso et. al: Virtualization,

2015).

Extending the above definition, below are key characteristics of virtualization: Partitioning entails

slicing one physical system into multiple smaller or sub systems that can be used to host different

OSs and to contain other resources

On the other hand, Isolation is the ability to share one OS or run guest OS or only required run

times in isolated environments. This additionally improves security.

2.6.3 Virtualization Architecture

There are two (2) main types of server Virtualizations technologies as indicated in figure 2.4.3.

Each type of virtualization consists of various components as depicted. The virtualization types

are categorized into Types I and II.

12

Figure 5: Virtualization Types I & II

Type I

In this type, a special software known as Hypervisor or VMM is installed on the bare metal; This

special software is then used to create virtual servers; each of which runs an independent OS known

as guest OS. The VMM abstracts the underlying hardware for the VMs created.

Type II

Unlike Type I, in Type II architecture, the hypervisor runs atop an OS that is installed on the

physical hardware.

2.6.4 Virtualization Advantages

Virtualization provides several advantages (Carroll, Kotzé, and Van der Merwe: Virtualization

Advantages, 2010). The main virtualization benefits include reduction in total cost of Ownership

(TCO), server consolidation, and server utilization (Carroll et al: virtualization benefits, 2010).

VMMs also support other technologies that include that address business continuity in terms of

disaster recovery and services restoration. These capabilities include VM motion to another site.

2.6.5 Virtualization challenges

There are inherent security vulnerabilities in virtualization categorized as virtual machine,

hypervisor, virtual infrastructure and virtual network threats (Timur Mirzoev et. al: Securing

Virtualized Datacenters, 2010).

The virtual machine threat manifests while processing status of virtual machine, software updates,

resource contention, patching and use. Hypervisor threat rivets Virtual-Machine-Based Rootkit

(VMBR) attack and Blue Pill Attack where hypervisor plays the vital role of Virtualization (J.

Rutkowska et. al: Subverting Vista Kernel For Fun and Profit, Aug 2006).

Other challenges include hypervisor introduces a layer of resource overhead and pose constraints

in capabilities such that they do not meet all the requirements

13

2.6.6 Virtualization and Cloud Computing

The cloud domain leverages heavily on Virtualization. Virtualization is therefore regarded as a

core component in cloud computing (Carroll et al: Virtualization, 2011).

Virtualization can be applied on different cloud resources viz Storage, applications, networks,

Servers and compute. It is virtually supported across all the cloud layers. The virtualization has

enabled creation of multiple cloud services like SaaS, PaaS, IaaS etc

2.7 Containerization

Containerization was the next innovation after virtualization. Containerization is about creating

resource environments or compartments. Software images are run in the containers. Containers

harness on isolation within the same OS as opposed to VMs that are characterized by Machine

Level Isolation.

 Therefore, containers are lighter and easier to create, maintain and scale as opposed to VMs. A

small compute platform can host multiple containers and so many VMs only. A case in point is a

laptop. There is a limit to how many VMs can be spinned because of VM minimum configurations

while it is possible to spin greater number of containers.

2.7.1 Containerization Technology

This is an OS level isolation method for deploying and running distributed applications in

compartments in one VM or physical machine. The containers are ran on a single control host and

access a single kernel host OS (Kaur et al: Containerization, 2018). Containers harness Linux

kernel features to manage isolation between applications (Li & Kanso et al: Kernel Isolation

Features, 2015). Each container is name spaced and is allocated its own process and network and

other namespaces to enable it function independently. A container is a therefore a set of processes

isolated from other processes in other containers (Li & Kanso et al: Kernel Isolation Features,

2015). Containers are made up of several components as depicted in figure 6

Figure 6: Containerization Components

2.7.2 Container Boot Process

Container booting up process entails application of some defined configuration and loading of

listed dependencies and required files downloaded from the defined repository. After this

14

initialization, the policies and rules defined in cgroup and namespaces are applied (Will Wang et.

al: Demystifying Containers 101, 2018)

According to the container, only the files and binaries specified in the image are the only visible

files and is blind to any other file in the host.

2.7.3 Containerization Challenges

Containers are known to suffer security challenges (David Antonio et al: OS-level virtualization

with Linux Containers, 2020). These include Security boundary not being fully defined owing to

limited namespacing features. The container engine consumes resources. The overlapping of

process identification numbers across namespaces and permissions override arising from the same

user being assigned to different namespaces are some of the other challenges that bedevil

containers

2.8 Cloud Delivery Models

The cloud services are delivered in various forms (IBM: Topics: IaaS, PaaS & SaaS). All cloud

services are accessed online vide web browser or other remote connectivity tools depending on

what CSP provisions. These services are priced differently. The tariffs and costs are preset at a

flat rate or are paid per use. These are:

2.8.1 Provision of Infrastructure

The hardware, Input and Output (I/O), devices and network resources and capabilities and services

are grouped and classified as Infrastructure-as-a-Service (“IaaS”). The components of this ar:

The Facilities are brick and mortar facilities that house the computing facilities. These also include

power, cooling and all environmental controls and monitoring tools. It also includes physical

access devices and controls

The compute are the actual servers providing processing, memory and control features. The

compute also include resources used control devices like load balances to aid auto scaling

horizontally etc

Subscribers are provided with network capabilities that enable them to set up virtual networks,

define routing and firewall rules. All required network capabilities are contained here; the se

include IP address pools, sub netting capabilities etc

Most CSPs provide all forms of storage viz - File, Block and Object Storage. Performance

challenges bedevil Block and file with scaling. Consequently, object storage is more versatile and

dynamic; data can be accessed through various protocols viz HTTP, sftp etc

15

2.8.2 Bare Metal as a Service (BmaaS)

BMaaS facilitates lower level of control than IaaS though provisioning and consumption is similar

to IaaS.

However, BMaaS does not leverage virtualization to provision virtualized compute, network, and

storage (IBM: Topics: IaaS, PaaS & SaaS). BmaaS allocates the hardware directly allowing near

total control of the hardware; since this is not affected by the virtualization issues, it offers better

potential performance which is key for High Performance Computing and heavy workloads.

But BmaaS is limited in mechanisms to achieve scalability and elasticity that is so readily

supported in IaaS. When mechanisms are invented to allow for scalability and elasticity, BmaaS

will supercede IaaS performance-wise

2.8.3 Provision of Products

In this model, the CSP provides products and applications or resources that be used to run or

process user workloads. The products are cross cutting and range from database tools, report

analytics engines, middle ware, development frameworks; that is everything that ca be used to

build and test end user applications

It also provides the software build integration and delivery platforms and versioning. In short

anything that the customer would ordinarily run in on-prem environment

2.8.4 Provision of Application/Software Services

Under this set up, the CSP provides ready to use applications and software that only require the

customer to open an account and configure and start using.

The customers access this vide the web browser and are used to process transactions end to end

the way one would do in on-prem using the locally installed and set up software environments

2.9 Cloud Enabling Technologies

The modern clouds are an ecosystem of multiple components that together provide seamless access

to the purchased cloud services (Thomas Erl et. al: Cloud Computing Concepts, Technology and

Architecture, 2013)

. The key components are:

2.9.1 The Network or Inter-Networks (Internet)

The network connectivity provides the access layer and consists of the local area and wide

area networks and connections.

16

The LAN/WAN architecture consists of networking devices – routers, switches, cabling

and security devices.

For the cloud to be accessible, it should be hooked up onto a network. There are different

networking requirements for different deployments:

i. Private Cloud

o The cloud and corporate network are inter-connected vide LAN, VLANs or

VPN;

o The CSP connects through Internet or via VPN

The cloud networks support Software Defined Networks and devices such as load

balancers, DNS Servers etc

ii. Public Cloud, Virtual and Community Cloud

o The primary connection is over the internet.

o The connectivity involves Company networks, ISP, internet backbone

providers, Cloud provider backbone networks

o For Security considerations, some enterprises have opted for Site to Site Virtual

Private Networks(VPNs) using IPsec protocol to provision secure network

tunnels

iii. Hybrid Cloud

o The connections are a combination of both Private and Public connectivity

types.

2.9.2 Computer and Data Centre Technologies

The key technologies that enable power cloud services are:

i. Data Centre Infrastructure

These are the housing facilities, power, cooling and server closets

ii. Automation

The cloud platforms provide dashboards and other user screens for orchestrating

and undertaking user and administrative tasks e.g. provisioning, configurations,

patching, monitoring and alerting solutions

iii. Remote Operation and Management

The cloud environments are not located within physical reach. These platforms

provide capabilities and utilities that allow remote access over different protocols

iv. Computing Hardware

These real computer servers that host resources required to process user

wworkloads. They are set up in redundancy configurations for high-availability and

uptime. The cloud environments are available above 99.9999%

v. Storage Hardware

17

Storage services are provided through different technologies. Some of the

technologies involved include: Hard Disk Arrays (RAID), Hot Swappable Disks

and replication mechanisms

vi. Network Hardware

o The network components range from networking devices and storage

connectivity devices.

o These are multi-layered and clustered, or load balanced to ensure high

availability

2.9.3 Virtualization Technology

As described above, virtualization technology is the main platform and engine that is used

to create virtual or logical environments for assignment to different customers. This is

widely used in modern computing platforms.

2.9.4 Presentation and accessibility - Web browser based and Command Line

Interface (CLI) interfaces

i. Web Console & APIs

a. Web consoles and interfaces accessed via http or https protocols are

main channels for accessing cloud services.

b. APIs are also supported to allow for automation

c. User authentication and authorization can be configured in variety of

ways including single or multiple factors and Identity and Access

policies

ii. Shell/CLI/CONSOLE

a. Privileged back-end access is facilitated through secure protocols like

Secure Shell Protocol over a secure tunnel that has been configured to

support the protocols and other encryption requirements

Different security access factors can be configured: key-based, single factor etc

2.10 Isolation Features in Linux

2.10.1 Chroot ()

As Linux distributions gained popularity, a need to isolate or create partitions at different levels

gained momentum.

The chroot() system call was the first attempt and it was mainly intended to create a pseudo root

system that mimics the primary root file system as represented in Figures 7 and 8. Chroot changes

the root filesystem (Linux: Linux Manual, 2023)

18

The change root command abbreviated as Chroot creates another root file system inside the main

root system. Processes invoked and ran within the pseudo root system can only see what is

contained in the virtual root and not the main root system.

By default, Linux file system is set up hierarchically as follows:

Figure 7: Linux File System Default Structure

Figure 8: Linux File System with Pseudo Root

Chroot syscall generates a secondary root directory, which has a similar structure that mimics the

original root as depicted below:

2.10.2 The Namespace Mechanism

In Chroot, all executables and dependencies need to be copied to the new directory. The pseudo

root directory cannot access files and executables in the main root. This requires all the run times

to be copied an duplicated in the new root. This creates inconsistencies, lack of synchronization

and security issues as the there is no synching mechanism. These are major drawbacks of this

approach.

This necessitated continued research which resulted in Namespaces feature being introduced as an

inline Linux kernel feature to isolate processes from one another. Linux namespaces enables

concurrent running of multiple applications distinctly i.e. with no cross interference or data

leakages(Toptal: A Tutorial for Isolating YourSystem with Linux Namespaces)

19

Linux kernel namespaces are defined in nsproxy data structure. The structure for this is defined in

nsproxy.h. This data structure stores details of each namespace where the current process is

assigned. The header file is located in /../nsproxy.h. Table 1 shows the supported namespaces

currently

Table 1: Supported Namespaces in Linux

2.10.3 Process Identification (PID): Process Isolation

To enable introduction of process namespace feature, Linux process trees were nested and

multi-levelled as opposed to the original one process tree. The current version of Linux allows

branching out of a process tree to multiple branches and leafs as depicted in Figure 9

Figure 9: Linux Process Tree

Linux supports CLONE and UNSHARE to create new namespace PIDs with appropriate flags

NEWPI

2.10.4 Process Identification (PID) Namespace & PID Generation

2.10.4.1 Process Table

The Linux kernel keeps track of processes initiated/created/spawned by storing relevant

information and status of each process using process table. The record inserted has the following

information;

20

2.10.4.2 Process ID Generation

Linux allocates process IDs in sequence, starting at 0 and assigns with the range from zero

to a maximum limit. The maximum limit for PIDs is a configurable parameter

When a process is launched, a PID for the process is generated to allow uniquely

identifying it. This is done simply by incrementing the current highest PID by 1.

2.10.4.3 System Calls to Create Processes in Linux

Linux provides a number of system calls to spawn new process as described below:

2.10.4.3.1 Fork()

Fork spawns another replica process called child process.

When Fork is invoked, it returns 3 values: A value less than zero – indicates failure to create child

process; Value=0, indicates the process was successful. The child PID can be obtained by calling

getpid() function while Value >0 – this is the process ID for the parent process

2.10.4.3.2 The Clone Method

The clone function uses the child stack argument, which specifies where in the stack the child

process is. The child and parent processes can share memory. However, the child process cannot

be executed in the same stack as the parent process.

2.10.5 NET: Network Isolation

Network namespace is used to isolate network groups or network namespaces; processes are added

to the network namespace by invoking the Network FLAGs in the clone or unshare system calls

2.10.6 MOUNT: File System Isolation

MOUNT namespaces are used to create mount points for file systems that can be associated with

a given processes

• PID
• Parent Process
• Environment Variables
• Elapsed Time
• Status – one of D (Uninterruptible), R (Running), S (Sleeping), T (Stopped),

or Z (Zombie)
• Memory Usage

21

2.10.7 Other Namespaces

Linux supports other namespaces as well. These are: UID, IPC, and PTS (Linux: Linux Manual).

2.10.8 Resource Utilization Capping and Limiting Kernel Features- CGroups

Resource usage in Linux can be controlled using a Linux Kernel feature known as Control

group (cgroup). Currently, cgroups controls mainly compute, I/O devices and network

resources

Cgroups has some key features:

Resource limits – This is where the usage limits are set.

Prioritization – This allows for setting of priorities for access and resource usages.

Accounting – Usage of resources are tracked using this feature

Control – Used to manage processes in a cgroup and to change their status as needed

2.10.8.1 Capping Memory using cGroups

The following Properties can be set for memory resource in the control group as depicted in table

2. These are set in the cgroups file system which is mounted on /../sys/fs/cgroup/memory/

Table 2: Linux cGroup Memory capping attributes

22

2.10.8.2 Capping Processor usage limits using CGroups

Similarly, the CGroup provides a mechanism that supports limiting usage of CPU by processes.

CPU limit can be set as a soft or hard limit, or both. The mount point for this is sys file system

but sub directory known as cpu. The attributes are shown in table 3. These are set in the cgroups

file system which is mounted on /../sys/fs/cgroup/cpu/

Table 3: Processor capping attributes Supported in cGroups

23

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Research Method

A disciplined procedure used to collect relevant data and information that will guide the

research process is presented here. Methodology is the framework used to assemble, plan

and direct the research process (Oates et. al: Research Methodology, 2005)

3.2 Research Design

The research design for this study will be based on exploratory research design.

The study shall comprises high level review and test of Linux Kernel Features that have

capabilities for access, process, memory and file system isolation as per the Kernel

organization by referencing literature on Linux.

Specifically, this shall involve identifying and testing relevant commands and currently

supported configurations for each feature.

This shall be complemented by a review and analysis of relevant source code/files for the

candidate Kernel features.

Questions shall be posed to Linux community and if promising responses are received and

if this topic appears to be a topic of interest, tailored posts shall be posted to the community.

Cloud Providers market surbey based on online materials shall be used to help answer the

first research question.

3.3 Research Sampling

Linux is a wide OS. The analysis of Kernel features and underlying source code or configs

shall be focused on those features that are contained in Kernel and which support process

and memory management.

The sample shall therefore start with the entire set of Kernel contents then drill down to the

objects that relate to process and memory management.

Three of these features shall be selected for further analysis

3.4 Data Collection

The data to be collected is mainly the entire Linux code base. This shall involve extraction

of the Linux code structure and code base from GitHub versioning System.

The code base shall be set up on the research and study environment and kernel sub systems

was identified based on the downloaded structure or based on the literature review.

24

Information collected from Literature review was used to guide on selection of features

used to isolate resources. The C preprocessor directives namely the header files and which

source code references those header files was also used to further triangulate the selection

made from the code structure.

The results collected were captured in a table for subsequent analysis.

The capabilities of the different system calls was assessed by executing the different

commands that relate to the features identified as being used to manage the resources

identified above. The supporting configs for these commands were tweaked to achieve a

different behaviour than the default behaviour.

3.5 Raw Data analysis

To segment the Linux features, the data collected was captured in a spreadsheet and

RDBMS table. The table contained different fields. The results were recorded in a matrix

indicating each feature against support for the isolation mechanisms

Filtering through an SQL query was executed and the resultant result set only showed the

items that fall within the scope of interest.

For system calls and commands executed, the output of the commands and optional

configurations that could be set were reviewed on screen and what was relevant to support

the study was captured. To address noted limitations, scripts were developed to test or

modify the system behavior. These were included in the results.

Source code and header files were analyzed and code improvements to achieve new

behaviour were tested.

3.6 Inputs from the Linux Open-Source Development Community

No positive input was received from the community. The initial responses evidently

showed that this topic appeared farfetched.

3.7 Case Studies on how cloud providers use alternative multi tenancy methods

The three major CSPs were sampled based on market share information published online

and based on industry knowledge. The three sampled were : AWS, Microsoft and Google

3.8 System Test and Validation

Testing multi tenancy comprises testing if the proposed mechanism can allocate, cap and

adjust resources in line with characteristics of metering, elasticity and accounting. The

summary of tests are shown on table 4.

25

The tenancies must be separated and another parameter used was to test if based on

proposed approach, there was a way to create and define tenancies.

The new approach will be achieved either by tweaking or modification of configurations

or system parameters. Evidence of these changes will be key to demonstrate the new

concept.

The processes separation and identification is a key feature that will define if the new

approach works. This is therefore a critical evaluation parameter.

Cloud computing is known to be ubiquitous. Accessibility of the test environment through

the web (http or https) and secure shell (ssh) protocols test confirms that this feature has

been achieved and the new approach has markings of cloud computing access capabilities.

Table 4: System Tests and Evaluation

Test Expected Result/Indicators

Resource allocation and capping/limitations and

resizing

• Resource allocation matrix per tenant

• Resource limits

Process isolation and restricted visibility • Root should see all processes

• Individual users should see own processes

only

Modified System Parameters Old Vs. New Configs matrix/listing

Remote administration/commanding • Access vide ubiquitous web

• Commands executed remotely applied on

the host

26

CHAPTER 4: RESULTS, FINDINGS & DISCUSSIONS

4.1 Research Objective /Question 1

“Are Linux Kernel based features currently used in cloud computing to implement

multi tenancy as an alternative to virtualization”

4.1.1 Sampling the Cloud Providers - Top 3 Cloud Providers by Market Share

According to Survey undertaken by Statista findings published in April 2023 are shown in

Appendix I, 80% of the cloud environments are controlled by three vendors.

Table 5: Top 3 CSPs

27

4.2 Research Objective/Question 2

 “Which and how are key Linux Kernel features implemented currently to create

and isolate cloud tenancies”

Containerization utilizes a number of Linux Kernel Features to provision multiple

application tenancies. kernel itself. The key ones are Linux namespaces which are

inlined in Linux starting with version 2.6. that was released before 2010

Namespaces, cgroups, seccomp, and SELinux are the Linux technologies that make up

the foundations of building and running a container process as depicted in figure 10.

Figure 10: Linux Features used in Containers

4.2.1 Namespaces

The currently supported namespaces are as listed in Figure 11. The system call used to display

these is lsns.

Figure 11: Supported Linux Namespaces

4.2.2 Control groups (cgroups)

Containers harness cGroups to limit resources assigned to a container as highlighted in

Tables 2.

28

4.3 Research Objective/Question 3

“How should the selected top Kernel feature be configured to achieve the isolation

and create a multi-tenant environment”

4.3.1 Exploration of Linux Kernel Features

To undertake this study, different resources were used.

4.3.1.1 Exploration Environment Tools

The following tools/platformslisted in table 4 were used for this study:

Table 6: Research Tools

Software Purpose

NASM (Netwide Assembler) Assembler

QEMU Quick Emulator

CentOS Operating System, Source Code

Phyton Scripting

Node Node

C & GCC C Compiler

4.3.2 Identification of Linux Kernel Features

The below Kernel features that support access and management of resources are potentially

candidates for isolation implementations. The features are denoted with a ‘Y’ in the last

column.

4.3.2.1 Extract Complete Linux Sub Systems & Code Base from Git [38]

The first step used was to extract the complete Linux Source Code from the version control

system, Git. The structure is shown on table 7

29

Table 7: Linux Kernel Sub Systems

30

4.3.2.1.1 Extraction of the features contained in the Kernel Sub System

The extracted Linux Code contains the different Linux Sub Systens. This

study is focused on the Kernel sub system. The contents of the Kernel sub

system were filtered for Kernel sub system only

4.3.2.1.2 Kernel Makefile

The rules for building/generating Linux Kernel are contained in Kernel Makefile and in C

preprocessor directives which control how to compile the corresponding source code (Leonardo

Passos et. al: Study of Feature Scattering in the Linux Kernel) and (

Kbuild, “The kernel build infrastructure,” www.kernel.org/doc/Documentation/kbuild, last seen: Feb. 14th,
2015.

The Linux Kernel MakeFile:). The core objects in the makefile are highlighted in the figure 12

below

Figure 12: Linux Kernel MakeFile

31

4.3.2.1.3 Identifying Key Features using Pre-Processor Directives

The below Script was used to Create a Database table to store the extracted

details and list as shown in figure 13

USE [KernelFeatures]

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Linux_Code_Base](

 [Header_File] [varchar](50) NULL,

 [Linux_Version] [varchar](50) NULL,

 [Linux_SubSystem] [varchar](50) NULL,

 [Sub_Folder] [varchar](100) NULL,

 [C_Source_Header] [varchar](100) NULL,

 [Field6] [varchar](max) NULL,

 [Field7] [varchar](max) NULL,

 [Field8] [varchar](max) NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

32

Figure 13: Linux Kernel Source Codes

4.3.2.1.4 Source Code Analysis

The Linux kernel’s code base consists mainly of C implementation and header files

numbering 43% C; 39% files for implementation and header files. The assembly files

are about 4%. The rest are other kinds of files (Code Project: Coding Kernel).

4.3.2.1.4.1 Header Files

Two (2) header files referenced for process and namespace management were

identified. These were used to identify the source code files as shown on Table 8

Table 8: Linux Kernel Process Header Files

Header File version SubSystem Feature/Code Code

nsproxy.h linux-6.2.9 kernel bpf offload.c

proc_ns.h linux-6.2.9 kernel bpf offload.c

nsproxy.h linux-6.2.9 kernel bpf net_namespace.c

nsproxy.h linux-6.2.9 kernel cgroup namespace.c

nsproxy.h linux-6.2.9 kernel time namespace.c

proc_ns.h linux-6.2.9 kernel cgroup namespace.c

proc_ns.h linux-6.2.9 kernel time namespace.c

nsproxy.h linux-6.2.9 kernel cgroup namespace - Copy.c

proc_ns.h linux-6.2.9 kernel cgroup namespace - Copy.c

proc_ns.h linux-6.2.9 kernel bpf helpers.c

nsproxy.h linux-6.2.9 kernel bpf devmap.c

nsproxy.h linux-6.2.9 kernel cgroup cpuset.c

proc_ns.h linux-6.2.9 kernel events core.c

nsproxy.h linux-6.2.9 kernel cgroup cgroup-v1.c

nsproxy.h linux-6.2.9 kernel bpf cgroup_iter.c

nsproxy.h linux-6.2.9 kernel cgroup cgroup.c

proc_ns.h linux-6.2.9 kernel cgroup cgroup.c

nsproxy.h linux-6.2.9 kernel cgroup cgroup - Copy.c

proc_ns.h linux-6.2.9 kernel cgroup cgroup - Copy.c

nsproxy.h linux-6.2.9 kernel exit.c

nsproxy.h linux-6.2.9 kernel fork.c

nsproxy.h linux-6.2.9 kernel nsproxy.c

nsproxy.h linux-6.2.9 kernel pid_namespace - Copy.c

nsproxy.h linux-6.2.9 kernel pid_namespace.c

nsproxy.h linux-6.2.9 kernel signal.c

nsproxy.h linux-6.2.9 kernel sys.c

nsproxy.h linux-6.2.9 kernel user_namespace.c

nsproxy.h linux-6.2.9 kernel utsname.c

33

Header File version SubSystem Feature/Code Code

nsproxy.h linux-6.2.9 kernel utsname_sysctl.c

proc_ns.h linux-6.2.9 kernel nsproxy.c

proc_ns.h linux-6.2.9 kernel pid - Copy.c

proc_ns.h linux-6.2.9 kernel pid.c

proc_ns.h linux-6.2.9 kernel pid_namespace - Copy.c

proc_ns.h linux-6.2.9 kernel pid_namespace.c

proc_ns.h linux-6.2.9 kernel user.c

proc_ns.h linux-6.2.9 kernel user_namespace.c

proc_ns.h linux-6.2.9 kernel utsname.c

4.3.2.1.5 Selected Features

4.3.2.1.5.1 Process ID Address Space Designation

Currently, processes are grouped into namespaces as away of isolating them.

In the current set up, the maximum number of process identifications might

not be as critical as the proposed approach where process address spaces are

designated during onboarding process. The maximum limit of process

identification can be set as shown in Figure 14.

4.3.2.1.5.1.1 Modification of the Process Identification Upper

Limit

Figure 14: Modification of PID Maximum value

4.3.2.1.5.1.2 Code to generate Process Identification Number

The C code to generate is shown below in figure 15

34

Figure 15: Allocation of PID Offset values

4.3.2.1.5.1.3 Bash Scripts to generate PID Based on the designated

PID Range

Currently, the next process ID is the next number from the last number

assigned to the last request.

The idea was to create an offset or a range of PID number space which is then

ranged and designated to the individual tenants. This proved complex and

#!/bin/bash
This script is used to get PID Offset or range for a user
lowest=400000
echo "Enter Your Tenancy Name"
read name
if [[($name=="msc1")]]; then
 lowest=200000
fi
if [[($name=="msc2")]]; then
 lowest=300000
fi
 pid=lowest + echo "$!" " #(" ${pid##*/} + lowest") # Extract PID

35

requires more time to scour through the source code and header files to see

how best to implement this

4.3.2.1.5.2 User Augmentation - Attributing the /etc/passwd to

include tenancy information

The Kernel as indicated above provides for User Namespace that allows to map users

in the container to different users in the host.

4.3.2.1.5.2.1 Default Fields

User details are stored in /…/passwd file. The file is used to store the user’s information

The Linux user management/creation system call , the useradd syscall in Linux, contains a

set of seven colon-separated fields, each field has its own meaning. The fields are:

Username, Password, User ID, Group ID, User Info, Home Directory & Shell

4.3.2.1.5.2.2 Expanded User File Structure with an additional

Attribute to Store Tenant information

The above fields were expanded to include tenancy as shown below:

Tenancy: This is to store Tenancy Information

testuser1:x:1509:1515::/home/testuser1:/bin/bash:tenant1

testuser2:x:1510:1516::/home/testuser2:/bin/bash:tenant2

36

4.3.2.1.5.2.3 Modified UserAdd (UserAddnew) code

A python script to create a user with a modified structure is shown in figure 16

37

Figure 16: Python script to create a modified user

38

4.3.2.1.5.2.4 Modification of the default Home Directory

Figure 17 shows inclusion of an home directory defined per tenant. Within this home directory,

the individual users of the tenant are assigned own home directories

import paramiko

import sys

hostname = "19.176.244.103"

username = "root"

password = "xxxxxxx"

client = paramiko.SSHClient()

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

try:

 client.connect(hostname=hostname, username=username,

password=password)

except:

 print("[!] Cannot connect to the SSH Server")

 exit()

 # execute the commands

tenantname = input("Type Tenant Name ")

timezzone= input("Type Time Zone Offset in hours ")

txtipaddress= input("IP Address ")

txtactivationdate=input("Activation Date ")

txtdeactivationdate=input("De-activation Date ")

txtmemorysoftlimit=input("Memory Lower Limit ")

txtmemoryhardlimit=input("Memory Max Limit ")

txtprocessorunitsmin=input("Processor units Lower Limit ")

txtprocessorunitsmax=input("Processor units max Limit ")

commands = [

 "mkdir /home/" + tenantname,

 "mkdir /sys/fs/cgroup/memory/" + tenantname,

 "mkdir /sys/fs/cgroup/cpu/" + tenantname,

 "useradd " + tenantname + "001 -d /home/" + tenantname

]

prints inp

for command in commands:

 print("="*50, command, "="*50)

 stdin, stdout, stderr = client.exec_command(command)

 #stdin, stdout, stderr = con.exec_command('echo "test\ntest2" |

bash test.sh')

 print(stdout.read().decode())

 err = stderr.read().decode()

 if err:

 print(err)
Figure 17: Home Directory for the tenant

39

4.3.2.1.5.2.5 Global Tenancy Configuration File

4.3.2.1.5.2.5.1 Global Tenancy Configuration File

Tenant Configuration File is created and below is a snapshot of

this file:

[root@hqlinuxdev etc]# vi tenants.conf

[root@hqlinuxdev etc]# cat tenants.conf

|tenant1|192.168.100.166|tenant 1| GMT+1|01-01-2023| 31-

12-2099| memory| swapfile| proc| diskspace|

|tenant2|10.176.190.190|tent 2|GMT+3|04-09-2023|31-12-

2023|100|swapfiletenant2|proc|1000|

[root@hqlinuxdev etc]#

4.3.2.1.5.2.6 User Provisioning Screens

Figure 18 is a snippet of web console for provisioning tenants; web consoles are a defining

characteristic of cloud computing

40

Figure 18: User provisioning web page

4.3.2.1.5.2.6.1 Python Script to Create User

This script is used to create a tenant/user

import paramiko

import sys

import string

hostname = "192.168.43.20"

username = "root"

password = "Password@04"

initialize the SSH client

client = paramiko.SSHClient()

add to known hosts

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

try:

 client.connect(hostname=hostname, username=username, password=password)

except:

 print("[!] Cannot connect to the SSH Server")

 exit()

 # execute the commands

tenantname = input("Type Tenant Name ")

timezzone= input("Type Time Zone Offset in hours ")

txtipaddress= input("IP Address ")

txtactivationdate=input("Activation Date ")

txtdeactivationdate=input("De-activation Date ")

41

txtmemorysoftlimit=input("Memory Lower Limit ")

txtmemoryhardlimit=input("Memory Max Limit ")

txtprocessorunitsmin=input("Processor units Lower Limit ")

txtprocessorunitsmax=input("Processor units max Limit ")

txtpidsrange=input("Enter PIDs list......valid at least 10000")

txtrootuser=input("Enter root User for the tenant")

commands = [

 "mkdir /home/" + tenantname,

 "mkdir /sys/fs/cgroup/memory/" + tenantname,

 "mkdir /sys/fs/cgroup/cpu/" + tenantname,

 "cd /sys/fs/cgroup/memory/" + tenantname,

 #"useradd " + tenantname + "001 -d /home/" + tenantname

 "echo " + txtmemorysoftlimit + " >> memory.limit_in_bytes",

 "echo " + txtpidsrange + " >> cgroup.procs",

 "cd /sys/fs/cgroup/cpu/" + tenantname,

 "echo " + txtprocessorunitsmin + " >> cpu_shares",

 "echo " + txtpidsrange + " >> cgroup.procs",

 "cd ",

 "useradd " + txtrootuser + "001 -d /home/" + tenantname,

 "cd /etc",

 #vals = 'Tenant',

 #vals = "|" + tenantname +"|" + timezzone + "|" + txtipaddress +"|" + txtactivationdate + "|" +

txtmemorysoftlimit + "|" +

 #txtmemoryhardlimit + "|" + txtprocessorunitsmin +"|" + txtprocessorunitsmax + "|" +

txtpidsrange + "|" + txtrootuser + "|",

 "echo " + str("'|" + tenantname +"|" + timezzone + "|" + txtipaddress +"|" + txtactivationdate +

"|" + txtmemorysoftlimit + "|" +

 txtmemoryhardlimit + "|" + txtprocessorunitsmin +"|" + txtprocessorunitsmax + "|" +

txtpidsrange + "|" + txtrootuser + "|'") + " >> tenantsfile.conf"

]

prints inp

for command in commands:

 print("="*50, command, "="*50)

 stdin, stdout, stderr = client.exec_command(command)

 #stdin, stdout, stderr = con.exec_command('echo "test\ntest2" | bash test.sh')

 print(stdout.read().decode())

 err = stderr.read().decode()

 if err:

 print(err)

42

C:\Users\ngenoka>python C:\Users\ngenoka\nodeprojs\createtenantswithPIDs.py

Type Tenant Name Client1

Type Time Zone Offset in hours 2

IP Address 10.176.56.100

Activation Date 20-11-2023

De-activation Date

Memory Lower Limit 500000

Memory Max Limit 1000000

Processor units Lower Limit 5

Processor units max Limit 10

Enter PIDs list......valid at least 1000098100

Enter root User for the tenantclient1admin

== mkdir /home/Client1

==

== mkdir

/sys/fs/cgroup/memory/Client1

==

== mkdir

/sys/fs/cgroup/cpu/Client1

==

== cd

/sys/fs/cgroup/memory/Client1 ============================ echo 500000 >>

memory.limit_in_bytes ==

43

== echo 98100 >>

cgroup.procs ==

== cd

/sys/fs/cgroup/cpu/Client1

==

== echo 5 >> cpu_shares

==

== echo 98100 >>

cgroup.procs ==

== cd

==

== useradd client1admin001

-d /home/Client1 ==

useradd: warning: the home directory already exists.

Not copying any file from skel directory into it.

== cd /etc

==

== echo

'|Client1|2|10.176.56.100|20-11-2023|500000|1000000|5|10|98100|client1admin|' >>

tenantsfile.conf ==

4.3.2.1.5.2.6.2 User Record in password file (passwd) &

Global Configuration

To view the contents of the user file, the following commands can be executed

[root@localhost ~]# cat /etc/passwd | grep client1

client1admin001:x:1014:1014::/home/Client1:/bin/bash

[root@localhost ~]#

44

4.3.2.1.5.2.6.3 Entries in the Cgroup

4.3.2.1.5.2.6.4 Read Scripts

[root@hqlinuxdev bin]# vi readglobal

#!/bin/bash

cat /etc/tenants.conf

chmod +x readglobal

[root@hqlinuxdev bin]# readglobal

|tenant1|192.168.100.166|tenant 1| GMT+1|01-01-2023| 31-12-

2099| memory| swapfile| proc| diskspace|

45

|tenant2|10.176.190.190|tent 2|GMT+3|04-09-2023|31-12-

2023|100|swapfiletenant2|proc|1000|

[root@hqlinuxdev bin]#

Python Script

pswd = file("/etc/tenants.conf", "r")

for aLine in pswd:

 fields= aLine.split(":")

 print fields[0], fields[1], fields[2], fields[3], fields[5]

pswd.close()

4.3.2.1.5.2.6.5 Modified Terminal Login Shell – Web

accessible SSH

One of the key distinguishing features of Cloud Computing is access over the internet.

As part of this study, a node web server and web page as shown in figure 19

Figure 19: Access Linux Shell over web browser

46

4.3.2.1.5.2.6.6 Server5.js

The Nodejs code for creating a web server to listen on port 8700 is shown in figure 20.

//node js server
var fs = require('fs');
var path = require('path');
var server = require('http').createServer(onRequest);
var io = require('socket.io')(server);
var SSHClient = require('ssh2').Client;

// Load static files into memory
var staticFiles = {};
var basePath = path.join(require.resolve('xterm'), '..');
staticFiles['/xterm.css'] = fs.readFileSync(path.join(basePath,
'../css/xterm.css'));
staticFiles['/xterm.js'] = fs.readFileSync(path.join(basePath,
'xterm.js'));
basePath = path.join(require.resolve('xterm-addon-fit'), '..');
staticFiles['/xterm-addon-fit.js'] =
fs.readFileSync(path.join(basePath, 'xterm-addon-fit.js'));
//staticFiles['/'] = fs.readFileSync(ba, '../index5.html'));

staticFiles['/index5.html'] = fs.readFileSync(path.join(__dirname,
'/index5.html'));

// Handle static file serving
function onRequest(req, res) {
 var file;
 if (req.method === 'GET' && (file = staticFiles[req.url])) {
 res.writeHead(200, {
 'Content-Type': 'text/'
 + (/css$/.test(req.url)
 ? 'css'
 : (/js$/.test(req.url) ? 'javascript' : 'html'))
 });
 return res.end(file);
 }
 res.writeHead(404);
 res.end();
}

io.on('connection', function(socket) {
 var conn = new SSHClient();
 conn.on('ready', function() {
 socket.emit('data', '\r\n*** SSH CONNECTION
ESTABLISHED ***\r\n');
 conn.shell(function(err, stream) {
 if (err)
 return socket.emit('data', '\r\n*** SSH SHELL ERROR: ' +
err.message + ' ***\r\n');
 socket.on('data', function(data) {
 stream.write(data);
 });
 stream.on('data', function(d) {
 socket.emit('data', d.toString('binary'));
 }).on('close', function() {
 conn.end();
 });
 });
 }).on('close', function() {

47

Figure 20: NodeJS Server code

4.3.2.1.5.2.6.7 Web page – index5.html

HTML code to render the web page used to access ssh session over browser on http port 8700 is

highlighted in figure 21

Figure 21: HTML Page to access the web console

 socket.emit('data', '\r\n*** SSH CONNECTION CLOSED
***\r\n');
 }).on('error', function(err) {
 socket.emit('data', '\r\n*** SSH CONNECTION ERROR: ' +
err.message + ' ***\r\n');
 }).connect({
 host: '***************',
 port: 22,
 username: '********',
 password: *********
 //privateKey: require('fs').readFileSync('path/to/keyfile')
 });
});

let port = 8700;
console.log('Listening on port', port)
server.listen(port);

<html>
 <head>
 <h1>
 <title>SSH Terminal - Masters Project</title>
 <link rel="stylesheet" href="/xterm.css" />
 <script src="/xterm.js"></script>
 <script src="/xterm-addon-fit.js"></script>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 window.addEventListener('load', function() {
 var terminalContainer = document.getElementById('terminal-
container');
 const term = new Terminal({ cursorBlink: true });
 const fitAddon = new FitAddon.FitAddon();
 term.loadAddon(fitAddon);
 term.open(terminalContainer);
 fitAddon.fit();

 var socket = io() //.connect();
 socket.on('connect', function() {
 term.write('\r\n*** Connected to backend ***\r\n');
 });

 // Browser -> Backend
 term.onKey(function (ev) {
 socket.emit('data', ev.key);
 });

 // Backend -> Browser
 socket.on('data', function(data) {
 term.write(data);
 });

 socket.on('disconnect', function() {
 term.write('\r\n*** Disconnected from backend ***\r\n');
 });
 }, false);
 </script>
 <style>
 body {
 font-family: helvetica, sans-serif, arial;
 font-size: 1em;
 color: #111;
 }
 h1 {
 text-align: center;
 }
 #terminal-container {
 width: 960px;
 height: 600px;
 margin: 0 auto;
 padding: 2px;
 }
 #terminal-container .terminal {
 background-color: #111;
 color: #fafafa;
 padding: 2px;
 }

48

4.3.2.1.5.2.6.8 Menu

A menu was created via bash script for accessing the different menu options as shown in figure

22

#!/bin/bash

PS3="Select your menu option please: "

select opt in Start_NodeServer Login Tenants Tenants-New users resources-Memory resources-

CPU Quit

do

 case $opt in

 "Start_NodeServer")

 node /var/www/cgi-bin/server5.js;;

 "Login")

 curl http://192.168.100.193:8700/index5.html ;;

 "Tenants")

 cat /etc/tenants.conf;;

 "Tenants-New")

 python createtenantswithPIDs.py;;

 "users")

 read -p "Enter tenant name: " tenant

 cat /etc/passwd | grep $tenant;;

 "resources-Memory")

 read -t "Enter tenant name: " tenant

 tenant2="/sys/fs/cgroup/memory/$tenant"

 ls $tenant2;;

 "resources-CPU")

 read -u "Enter tenant name: " client

 client2="/sys/fs/cgroup/cpu/$client"

 ls $client2;;

 "Quit")

 echo "We're done"

 break;;

 }
 #terminal-container .terminal:focus .terminal-cursor {
 background-color: #fafafa;
 }
 </style>
 </head>
 <body>
 <h3>Connect to SSH Over Browser- Multi Tenant Provisioning in
Cloud Computing </h3>
 <div id="terminal-container"></div>
 </body>
</html>

49

 *)

 echo "Ooops";;

 esac

done

Figure 22: Bash Menu Script and Menu screens

50

51

CHAPTER 5: RESULTS & DISCUSSIONS

5.1 Features selected for Isolation at Kernel

Three key features were selected and tested. These are the user and process numbering.

A new approach to process identification that is based on designated address space as

opposed to using process namespaces to cluster processes was simulated and once

perfected, this can achieve more than isolation as it can also be used to forestall cyber

attacks. In the simulation, an offset to be added to generated Process number was used.

5.2 User Hierarchy

Linux CentOS supports creation of users and assignment of default home directories.

The users can be grouped into groups for management of permissions. The current user

hierarchy cannot support multi tenancy as all users are created at the same level but

can be assigned to different groups.

To cluster users at a higher level, a new root node for users is required. This was

achieved by creating a tenant configuration file; the high level was called tenancies.

5.3 Process Identification Generation
Without affecting any of the current kernel processes, it was simulated that the process

number generation can be stepped and the step value is the value assigned to a tenant.

The designated address or number space can as well also be a resource that can be used

to limit resources a user can use in the system. Once the address space is depleted, the

system cannot spawn additional processes until current processes are released

5.4 Access to Linux Secure Shell Through Web browser
Using the scripting languages libraries, packages and modules, a web client was

developed that could connect to the Linux host using some socket connections and web

containers and elements to render the secure shell session on the web browser.

5.5 cGroup Limitations
The cGroup only limits the namespaced features. Any feature that is not currently

namespaced, is not supported by the cGroups.

5.6 Scripting Languages Support
Scripting languages are comparable to bash scripts in terms of performing the same

functions that can be performed on the shell prompt. The cloud services use these

scripting platforms to provision accessibility and control to cloud services.

52

CHAPTER 6: CONCLUSIONS & FUTURE WORK

6.1. Achievements

In this Study, inter alia, the following were achieved

Understanding of the Linux kernel structure and how to identify the key features of

Linux; Identification of the Kernel features that are already inlined that can be used

to support process and resource Isolation and impose usage control.

A new approach to process isolation based on pre-allocated and pre designated

Process IDs (PIDs) as opposed to relying on random PIDs that require tracking

mechanism and consumes resources.

Using Nodejs and Python packages to implement web access to Linux Shell prompt

and to automate execution of the various Linux commands and system calls

Automation of user management through use of scripting languages and mainly

node and Python

6.2 Conclusions

The isolation and multi tenancy concepts date back to many decades. There have been

several attempts, initiatives, and technologies to comprehensively address this

technology requirement. Virtualization at hardware level has been widely used to date.

For other cases, OS-Based virtualization has been adopted.

However, research findings have revealed that the above two technologies come up

with an overhead and hog critical resources that would otherwise go to data processing.

There are also concerns around security isolation to ensure that isolated environments

are secure and not ‘porous’

Isolation at the Linux Kernel level for Linux environments seems to present a promise

to resolve the challenge

In this study, it has been demonstrated that isolation can be implemented at different

levels by changing the Kernel in a number of ways:

i. Tweaking the system configurations

ii. Reconfiguration of Kernel Primitives for example the user file structure and

Process ID Generation by modifying the PID generation source code

53

6.3 Future Work

In this study, comprehensive implications of using predesignated PIDs as opposed to

random PIDs for process tracking was not explored. Further work is required in the

following areas:

i. Research to determine the performance and optimality tradeoff between

using predesignated PIs for ease of process identification and the ease and

flexibility of using random PIDs as is currently implemented.

ii. cGroups for Resource control is limited to below resources. These are not

the only resources that need to be controlled in terms of usage. There is need

for further studies to identify and incorporate additional control features that

can be used to support multi tenancy

iii. The main limitation is how to define a range of PIDs defined in the cgroup.

In this study, only sample PIDs were used. A way needs to be devised to

allow for definition of a range of PIDs as opposed to listing individual PIDs.

iv. The number of allocated PIDs is a potential resource metric that can be

applied in future. This is a recommended area for further research

54

GLOSSARY & ACRONYMS

Server: It is any combination of hardware or software designed to provide services to clients.

Client: It requests and consumes the services provided by another having the role of server.

Virtualization: It is the ability to separate the OS from the hardware that operates it.

Private Cloud: It is an approach for designing, implementing and managing servers, applications

and data center resources by reducing complexity, increasing standardization and automation, and

provide elasticity.

VM (Virtual Machine): this is a virtual server

VMM – Virtual Machine Monitor

OS – Operating System

LAN Local Area Network

WAN : Wide Area Network

API – Application Programming Interface

VM- Virtual Machine

BIOS – Basic Input /Output System

GNU – Group Not Unix

55

REFERENCES

1. Thomas Erl with Zaigham Mahmood and Ricado Puttini: Cloud Computing Concepts,

Technology and Architecture

2. Evi Nemeth.Garth Synder.Trent R Hein.Dan Mackin: Unix and Linux Administration

Handbook

3. Connor, D. (2004). Server virtualization is on the rise. Network World Canada, 14(23), 18.

4. Conroy, S. (2018, January 25).

5. History of virtualization: https://www.idkrtm.com/history-of-virtualization/.

6. Dawson, P., & Bittman, T. J. (2008). Virtualization changes virtually everything. Gartner

Special Report.

7. Dua, R., Raja, A. R., & Kakadia, D. (2014, March). Virtualization vs containerization to

support paas. In Cloud Engineering

8. Politecnico Di Torino: OS-level virtualization with Linux containers: process isolation

mechanisms and performance analysis of last generation container runtimes

9. (IC2E), 2014 IEEE International Conference on(pp. 610-614). IEEE.

10. Firesmith. (2017, September 25). Virtualization via Containers. Retrieved from

https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html.

11. KamyabKhajehei “Role of virtualization in cloud computing,”International Journal of

Advance Research

12. Bovet . Daniel P. AND Marco Cesati: Understanding the Linux Kernel (3rd Edition),

13. Love. Robert: Linux Kernel Development (3rd Edition)

14. Linux Online Community: LWN.net

15. International Journal Of Scientific & Technology Research Volume 3, Issue 11, November

2014: A Study On Virtualization Techniques And Challenges In Cloud Computing:

http://www.ijstr.org/final-print/nov2014/A-Study-On-Virtualization-Techniques-And-

Challenges-In-Cloud-Computing.pdf

16. A-Study-On-Virtualization-Techniques-And-Challenges-In-Cloud-Computing.pdf (ijstr.org)

17. Developers: Separation Anxiety: A Tutorial for Isolating Your System with Linux

Namespaces: https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-

linux-namespaces

18. Mr Akshay Ghanashyam Sawant , Prof. Prasanna Rajaram Rasal: Research on the

Virtualization Technology in Cloud Computing Environment:

https://www.jetir.org/papers/JETIR2106731.pdf

19. TechTarget: bare-metal cloud: https://www.techtarget.com/searchstorage/definition/bare-

metal-cloud

20. Leonardo Passos, Rodrigo QueirozLeonardo Passos, Rodrigo Queiroz et. al: A Study of

Feature Scattering in the Linux Kernel

21. Joshua S. White, Adam W. Pilbeam, 2010 “A Survey of Virtualization Technologies

With Performance Testing“

22. Padhy, Rabi & Patra, Manas & Satapathy, Suresh. (2020). "virtualization techniques

& technologies: state-of-the-art"

23. [16] Glenn Willen, Mike Cui, 15-410 Fall 2006 "Virtualization"

http://www.cs.cmu.edu/~410-f06/lectures/L31_Virtualization.pdf

https://www.idkrtm.com/history-of-virtualization/
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html
http://www.ijstr.org/final-print/nov2014/A-Study-On-Virtualization-Techniques-And-Challenges-In-Cloud-Computing.pdf
http://www.ijstr.org/final-print/nov2014/A-Study-On-Virtualization-Techniques-And-Challenges-In-Cloud-Computing.pdf
https://www.ijstr.org/final-print/nov2014/A-Study-On-Virtualization-Techniques-And-Challenges-In-Cloud-Computing.pdf
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.jetir.org/papers/JETIR2106731.pdf
https://www.techtarget.com/searchstorage/definition/bare-metal-cloud
https://www.techtarget.com/searchstorage/definition/bare-metal-cloud

56

24. Mount namespace

https://man7.org/linux/man-pages/man7/mount_namespaces.7.html

25. IPC namespace

https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html

26. Time namespace

https://man7.org/linux/man-pages/man7/time_namespaces.7.html

27. Paul Menage, “Cgroups“, Linux Kernel documentation

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

28. Tejun Heo, “Control Group v2“, Linux Kernel documentation

https://www.kernel.org/doc/Documentation/cgroup-v2.txt

29. Michael Barcarella, 2002, “Taking advantage of Linux capabilities “, Linux Journal

30. Adrian Mouat, 2019, “Linux Capabilities: Why They Exist and How They Work“

31. Chroot jail escape example

https://filippo.io/escaping-a-chroot-jail-slash-1/

32. getpid, Linux manual

https://man7.org/linux/man-pages/man2/getpid.2.html

33. Namespaces

https://man7.org/linux/man-pages/man7/namespaces.7.html

34. PID namespace

https://man7.org/linux/man-pages/man7/pid_namespaces.7.html

35. "Linux Kernel Namespace Implementation: Introduction to namespace API"

https://titanwolf.org/Network/Articles/Article?AID=740fc46c-d325-

4c22-a720-b5c259551c87#gsc.tab=0

36. Nsproxy reference count

https://github.com/torvalds/linux/blob/master/include/linux/

nsproxy.h

37. Process Namespace, Mahmud Ridwan

https://www.toptal.com/linux/separation-anxiety-isolating-yoursystem-

with-linux-namespaces

38. Linux kernel

https://github.com/torvalds/linux

39. Clone Linux man

40. https://man7.org/linux/man-pages/man2/clone.2.html

41. Net Solutions: 7 Challenges in Multi-Tenancy Testing and Their Solutions:

https://www.netsolutions.com/insights/multi-tenancy-testing-top-challenges-and-solutions/

42. Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven Apel,

Krzysztof Czarnecki, and Jesus Alejandro Padilla: A Study of Feature Scattering in the Linux

Kernel: https://www.infosun.fim.uni-passau.de/publications/docs/PQM+18.pdf

43. NginX: What Are Namespaces and cgroups, and How Do They Work?:

https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/

44. TutorialsPoint: Linux Admin - Resource Mgmt with crgoups:

https://www.tutorialspoint.com/linux_admin/linux_admin_resource_mgmt_with_crgoups.ht

m

45. TutorialsPoint: How to run a script on startup in Linux:

https://filippo.io/escaping-a-chroot-jail-slash-1/
https://www.netsolutions.com/insights/multi-tenancy-testing-top-challenges-and-solutions/
https://www.infosun.fim.uni-passau.de/publications/docs/PQM+18.pdf
https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/
https://www.tutorialspoint.com/linux_admin/linux_admin_resource_mgmt_with_crgoups.htm
https://www.tutorialspoint.com/linux_admin/linux_admin_resource_mgmt_with_crgoups.htm

57

https://www.tutorialspoint.com/run-a-script-on-startup-in-

linux#:~:text=Make%20the%20script%20file%20executable,scriptname%20defaults%22%2

0in%20the%20terminal.

46. Engineers Garage: How to run a python code on boot- (Part 7/12):

https://www.engineersgarage.com/how-to-run-a-python-code-on-boot-part-7-12/

47. Github: Python Script to automatically generate a bootable Image file with a specifiable

partition table for embedded Linux distributions:

https://github.com/robseb/LinuxBootImageFileGenerator

48. Linux HandBook: How to create a systemd service in Linux:

https://linuxhandbook.com/create-systemd-services/

49. WikiPedia: Kernel (operating system)

https://en.wikipedia.org/wiki/Kernel_(operating_system)#:~:text=The%20kernel%20perform

s%20its%20tasks,area%20of%20memory%2C%20user%20space.

50. Science Direct: Computer Science Resource Isolation:

https://www.sciencedirect.com/topics/computer-science/resource-isolation

51. Linux Questions Organization: https://www.linuxquestions.org/linux/answers ;

https://www.linuxquestions.org/questions/showthread.php?p=6443994#post6443994

52. The Python Code: How to Execute Shell Commands in a Remote Machine in Python

https://www.thepythoncode.com/article/executing-bash-commands-remotely-in-python

53. Digital Ocean: How to Connect to a Linux terminal from Web browser:

https://www.digitalocean.com/community/tutorials/how-to-connect-to-a-terminal-from-your-

browser-using-python-webssh

54. Educative: How to run a Python script in Linux:

https://www.educative.io/answers/how-to-run-a-python-script-in-linux

55. Wikipedia: Linux Namespaces:

 https://en.wikipedia.org/wiki/Linux_namespaces

56. Wikipedia: Linux Kernel Features:

https://en.wikipedia.org/wiki/Category:Linux_kernel_features

57. Kir Kolyshkin: Containers and Namespaces in Linux Kernel:

https://events.static.linuxfound.org/slides/lfcs2010_kolyshkin.pdf

58. Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-

12th 2016. Seville, Spain):

 https://www.netdevconf.org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf

59. Rami Rosen: Resource management: Linux kernel Namespaces and cgroups:

http://www.haifux.org/lectures/299/netLec7.pdf

60. CloudFare: Using Go as a scripting language in Linux: https://blog.cloudflare.com/using-go-

as-a-scripting-language-in-linux/

61. Wikipedia: Category: Interfaces of the Linux Kernel:

 https://en.wikipedia.org/wiki/Category:Interfaces_of_the_Linux_kernel

https://www.tutorialspoint.com/run-a-script-on-startup-in-linux#:~:text=Make%20the%20script%20file%20executable,scriptname%20defaults%22%20in%20the%20terminal
https://www.tutorialspoint.com/run-a-script-on-startup-in-linux#:~:text=Make%20the%20script%20file%20executable,scriptname%20defaults%22%20in%20the%20terminal
https://www.tutorialspoint.com/run-a-script-on-startup-in-linux#:~:text=Make%20the%20script%20file%20executable,scriptname%20defaults%22%20in%20the%20terminal
https://www.engineersgarage.com/how-to-run-a-python-code-on-boot-part-7-12/
https://github.com/robseb/LinuxBootImageFileGenerator#python-script-to-automatically-generate-a-bootable-image-file-with-a-specifiable-partition-table-for-embedded-linux-distributions
https://github.com/robseb/LinuxBootImageFileGenerator#python-script-to-automatically-generate-a-bootable-image-file-with-a-specifiable-partition-table-for-embedded-linux-distributions
https://github.com/robseb/LinuxBootImageFileGenerator
https://linuxhandbook.com/create-systemd-services/
https://en.wikipedia.org/wiki/Kernel_(operating_system)#:~:text=The%20kernel%20performs%20its%20tasks,area%20of%20memory%2C%20user%20space
https://en.wikipedia.org/wiki/Kernel_(operating_system)#:~:text=The%20kernel%20performs%20its%20tasks,area%20of%20memory%2C%20user%20space
https://www.sciencedirect.com/topics/computer-science/resource-isolation
https://www.linuxquestions.org/linux/answers
https://www.linuxquestions.org/questions/showthread.php?p=6443994#post6443994
https://www.thepythoncode.com/article/executing-bash-commands-remotely-in-python
https://www.digitalocean.com/community/tutorials/how-to-connect-to-a-terminal-from-your-browser-using-python-webssh
https://www.digitalocean.com/community/tutorials/how-to-connect-to-a-terminal-from-your-browser-using-python-webssh
https://www.educative.io/answers/how-to-run-a-python-script-in-linux
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Category:Linux_kernel_features
https://events.static.linuxfound.org/slides/lfcs2010_kolyshkin.pdf
https://www.netdevconf.org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf
http://www.haifux.org/lectures/299/netLec7.pdf
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://en.wikipedia.org/wiki/Category:Interfaces_of_the_Linux_kernel

58

62. Geeksforgeeks: Add a User in Linux using Python Script:

https://www.geeksforgeeks.org/add-a-user-in-linux-using-python-script/

63. IBM: Enforcing IBM® Spectrum LSF job memory and swap with Linux cgroups:

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=tips-enforcing-job-memory-swap-

linux-cgroups

64. Selectel: Containerization Mechanisms: Namespaces:

https://selectel.ru/blog/en/2017/03/09/containerization-mechanisms-namespaces/

65. IBM: “Topics: IaaS, PaaS & SaaS”: https://www.ibm.com/topics/iaas-paas-saas

66. IBM: “What is cloud computing?.” https://www.ibm.com/cloud/learn/cloud-computing

67. Politecnico Di Torino: Masters Thesis: OS-level virtualization with Linux containers: process

isolation mechanisms and performance analysis of last generation container runtimes: 2019-

2020

68. Leonardo Passos et. al: Study of Feature Scattering in the Linux Kernel

69. Linux Kernel Documentation:

Namespaces compatibility list — The Linux Kernel documentation

70. Cloud Multi-Tenancy: Issues and Developments: Session: UCIoT 2017 Workshop

Presentation

71. Hussain Al-Jahdali, Abdulaziz Albatli, Peter Garraghan, Paul Townend, Lydia Lau, and

JieXu (2014). “Multi-tenancy in cloud computing,” In proceedings of the 8th IEEE

International symposium on service-oriented system engineering.

72. Multi Tenancy in Cloud Computing: 2014 IEEE 8th International Symposium on Service

Oriented System Engineering

73. NIST Definition of Cloud Computing

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

74. Kbuild, “The kernel build infrastructure,” www.kernel.org/doc/Documentation/kbuild, last seen: Feb.
14th, 2015.

75. The Linux Kernel MakeFile:

https://lwn.net/Articles/21835/

https://www.geeksforgeeks.org/add-a-user-in-linux-using-python-script/
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=tips-enforcing-job-memory-swap-linux-cgroups
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=tips-enforcing-job-memory-swap-linux-cgroups
https://selectel.ru/blog/en/2017/03/09/containerization-mechanisms-namespaces/
https://www.ibm.com/topics/iaas-paas-saas
https://www.ibm.com/cloud/learn/cloud-computing
https://www.kernel.org/doc/html/v5.7/admin-guide/namespaces/compatibility-list.html

59

APPENDICES

Appendix I – Cloud Providers Market Share

Appendix II – Linux System User Namespace

60

61

Appendix III – Supported Namespaces

Appendix IV – Inputs from Linux Community

There was not much help from Linux community because the community seems to primarily

focus on extensions and improvements but re-devising things perhaps in fidelity to the mantra “if

ain’t broken, do not fix it”

Welcome to the most active Linux Forum on the web.

1.

Home Forums Tutorials Articles Search Quick Links My LQ

LinuxQuestions.org > Forums > Linux

Forums > Linux - Software > Linux - Kernel

 Linux Features to Create full isolation

Welcome, arapngenoka1. [Log Out]

You last visited: 08-08-23 at 12:24 PM

Linux - Kernel This forum is for all discussion relating to the Linux kernel.

https://www.linuxquestions.org/questions/
https://www.linuxquestions.org/
https://www.linuxquestions.org/questions/
https://www.linuxquestions.org/linux/answers/
https://www.linuxquestions.org/linux/articles/
https://www.linuxquestions.org/questions/search.php
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/?nojs=1#usercptools
https://www.linuxquestions.org/questions/usercp.php
https://www.linuxquestions.org/
https://www.linuxquestions.org/questions/
https://www.linuxquestions.org/questions/linux-forums-50/
https://www.linuxquestions.org/questions/linux-forums-50/
https://www.linuxquestions.org/questions/linux-software-2/
https://www.linuxquestions.org/questions/linux-kernel-70/
https://www.linuxquestions.org/questions/login.php?do=logout&logouthash=1693291758-a358141737f08c8a65b1ec9f3ab643ace853040e
https://www.linuxquestions.org/questions/
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/

62

Please Mark this thread as solved if you feel a solution has been provided.

 Thread Tools Search this Thread Rate Thread

 07-24-23, 08:58 AM #1

arapngenoka1

LQ Newbie

Registered: Jul 2023

Posts: 2

Rep:

Linux Features to Create full isolation

I have 2 questions:

1. Where in cgroups.c do I modify to create another field/flag for

maximum allowed size so that I provide for a range?

2. I am looking to achieve full isolation without virtualization. I

have explored that this can be achieved with namespaces. How Can

I merge all namespaces to create one global setting.

 07-24-23, 10:41 AM #2

pan64

LQ Addict

Registered: Mar 2012

Location: Hungary

Distribution:

debian/ubuntu/suse ...

Posts: 20,640

Rep:

Hi,

where are these questions coming from?

see LQ rules: https://www.linuxquestions.org/linux/rules.html

Quote:

We're happy to assist if you have specific questions or have hit a

stumbling point, however. Let us know what you've already tried

and what references you have used (including class notes, books,

and searches) and we'll do our best to help. Keep in mind that your

instructor might also be an LQ member.

Otherwise would be nice to define what kind of size and range do

you mean?

What do you mean by full isolation?

What do you mean by merging namespaces?

https://www.linuxquestions.org/questions/solved.php?do=marksolved&t=4175727294
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/?nojs=1#goto_threadtools
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/?nojs=1#goto_threadsearch
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/?nojs=1#goto_threadrating
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/#post6443994
https://www.linuxquestions.org/questions/user/arapngenoka1-1265276/
https://www.linuxquestions.org/questions/reputation.php?p=6443994
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/#post6444011
https://www.linuxquestions.org/questions/user/pan64-642915/
https://www.linuxquestions.org/questions/reputation.php?p=6444011
https://www.linuxquestions.org/linux/rules.html
https://www.linuxquestions.org/questions/newreply.php?do=newreply&noquote=1&p=6443994
https://www.linuxquestions.org/questions/reputation.php?p=6443994
https://www.linuxquestions.org/questions/report.php?p=6443994
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6443994
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6443994

63

A program will never do what you wish but what was implemented!

Happy with solution ... mark as [SOLVED]

If you really want to say thanks => click on Yes (bottom right

corner).

Did you find this post helpful? Yes

 08-02-23, 12:54 PM #3

arapngenoka1

LQ Newbie

Registered: Jul 2023

Posts: 2

Original Poster

Rep:

Thanks for your response.

I am sorry, my asks may have been unclear. Allow me to reframe

the questions. What I am looking to achieve is to extend kernel

features in more ways than a namespacing tool -e.g. containerization

tool. Currently, in cgroups, only a hard limit is set. I wish to set a

low and highest limit and define some scaling rules so that a process

can scale resources to a maximum limit subject to available

resources and without suffocating other processes

I will appreciate your guidance

 08-03-23, 01:28 AM #4

pan64

LQ Addict

Registered: Mar 2012

Location: Hungary

Distribution:

debian/ubuntu/suse ...

Posts: 20,640

that sounds good. The usual question is what have you done so far,

where did you stuck, what kind of help do you need at all?

A program will never do what you wish but what was implemented!

Happy with solution ... mark as [SOLVED]

If you really want to say thanks => click on Yes (bottom right

corner).

https://www.linuxquestions.org/questions/helpfulanswers.php?do=rate&postid=6444011&rank=1
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/#post6445858
https://www.linuxquestions.org/questions/user/arapngenoka1-1265276/
https://www.linuxquestions.org/questions/reputation.php?p=6445858
https://www.linuxquestions.org/questions/linux-kernel-70/linux-features-to-create-full-isolation-4175727294/#post6445934
https://www.linuxquestions.org/questions/user/pan64-642915/
https://www.linuxquestions.org/questions/reputation.php?p=6444011
https://www.linuxquestions.org/questions/report.php?p=6444011
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6444011
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6444011
https://www.linuxquestions.org/questions/reputation.php?p=6445858
https://www.linuxquestions.org/questions/report.php?p=6445858
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6445858
https://www.linuxquestions.org/questions/newreply.php?do=newreply&p=6445858

64

Rep:

Appendix V– Results of Forked process – showing the PID numbers – for default process

Process ID: 6771

Parent Process ID: 1

Process ID for Process: 8 PID Is: 6831

Process ID for Process: 9 PID Is: 6837

Process ID for Process: 9 PID Is: 6839

Process ID for Process: 9 PID Is: 6891

https://www.linuxquestions.org/questions/reputation.php?p=6445934
https://www.linuxquestions.org/questions/reputation.php?p=6445934

65

Process ID for Process: 10 PID Is: 6892

Process ID for Process: 10 PID Is: 6894

Process ID for Process: 10 PID Is: 6893

Process ID: 6761

Parent Process ID: 1

Process ID: 6755

Parent Process ID: 1

Process ID: 6555

Parent Process ID: 1

Process ID: 6765

Parent Process ID: 6608

Parent Process ID: 1

Process ID: 6892

Parent Process ID: 1

Process ID: 6893

Process ID: 6772

Process ID: 6783

Parent Process ID: 6606

Parent Process ID: 1

Parent Process ID: 6654

Process ID: 6775

Parent Process ID: 1

Parent Process ID: 1

66

Parent Process ID: 6660

Parent Process ID: 6662

Process ID for Process: 10 PID Is: 6895

Process ID: 6891

Process ID: 6798

Parent Process ID: 1

Parent Process ID: 6660

Parent Process ID: 6605

Process ID: 6803

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6860

Process ID: 6806

Parent Process ID: 6708

Process ID: 6894

Parent Process ID: 1

Process ID: 6895

Parent Process ID: 6743

Parent Process ID: 1

Parent Process ID: 6685

Process ID for Process: 10 PID Is: 6861

Process ID: 6565

Parent Process ID: 1

Parent Process ID: 1

67

Parent Process ID: 1

Process ID: 6818

Process ID: 6770

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 6751

Parent Process ID: 6425

Process ID: 6829

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 6695

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 6555

Process ID: 6847

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 1

Process ID for Process: 9 PID Is: 6882

Process ID: 6865

Parent Process ID: 6814

68

Process ID for Process: 10 PID Is: 6896

Process ID: 6859

Parent Process ID: 1

Process ID for Process: 9 PID Is: 6878

Process ID: 6845

Parent Process ID: 6772

Process ID: 6830

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6897

Process ID: 6852

Parent Process ID: 1

Process ID: 6897

Parent Process ID: 6852

Process ID: 6896

Parent Process ID: 1

Process ID: 6868

Process ID: 6849

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6883

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6884

Process ID: 6833

Parent Process ID: 1

69

Process ID: 6866

Parent Process ID: 1

Process ID: 6869

Process ID: 6835

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6885

Parent Process ID: 1

Process ID: 6857

Parent Process ID: 1

Process ID: 6867

Parent Process ID: 1

Process ID: 6875

Process ID: 6861

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6886

Parent Process ID: 6565

Process ID: 6840

Parent Process ID: 1

Process ID: 6877

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6887

Process ID: 6864

Process ID: 6842

70

Process ID: 6871

Parent Process ID: 1

Parent Process ID: 1

Parent Process ID: 1

Process ID: 6872

Parent Process ID: 1

Process ID for Process: 10 PID Is: 6888

Process ID: 6876

Process ID: 6843

Parent Process ID: 1

Process ID: 6879

Parent Process ID: 1

Parent Process ID: 1

Process ID: 6878

Parent Process ID: 1

Process ID: 6881

Parent Process ID: 1

Process ID: 6846

Process ID for Process: 10 PID Is: 6889

Parent Process ID: 1

Process ID: 6880

Parent Process ID: 1

Process ID: 6873

71

Parent Process ID: 1

Process ID: 6887

Process ID: 6851

Parent Process ID: 6871

Parent Process ID: 1

Process ID: 6874

Process ID: 6884

Parent Process ID: 1

Parent Process ID: 6866

Process ID: 6885

Process ID: 6886

Parent Process ID: 6857

Parent Process ID: 6840

Process ID for Process: 10 PID Is: 6890

Process ID: 6882

Parent Process ID: 1

Process ID: 6889

Process ID: 6888

Parent Process ID: 6873

Parent Process ID: 6878

Process ID: 6883

Parent Process ID: 6833

Process ID: 6863

72

Parent Process ID: 1

Process ID: 6890

Process ID: 6870

Parent Process ID: 6882

Parent Process ID: 1

Appendix VI – Results of Forked process – showing the PID numbers – for tenant assigned a PID

Offset of 80000

Process ID for Process: 10 PID Is: 80000

Parent Process ID: 1

Process ID: 8298

Parent Process ID: 1

Process ID: 8302

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8238

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 8 PID Is: 80000

Process ID for Process: 10 PID Is: 88456

Process ID for Process: 8 PID Is: 80000

Process ID for Process: 9 PID Is: 88457

Process ID: 8300

73

Parent Process ID: 1

Process ID for Process: 9 PID Is: 88458

Process ID for Process: 10 PID Is: 88459

Process ID: 8295

Parent Process ID: 1

Process ID: 8453

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88460

Process ID: 8433

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8242

Parent Process ID: 1

Process ID: 8301

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88461

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8304

Parent Process ID: 1

74

Process ID: 8459

Parent Process ID: 8295

Process ID: 8303

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8454

Process ID: 8456

Process ID for Process: 10 PID Is: 80000

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

Process ID: 8245

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88462

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8458

Parent Process ID: 1

Process ID: 8308

Process ID: 8306

Parent Process ID: 1

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88463

75

Process ID: 8305

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8248

Parent Process ID: 1

Process ID: 8462

Parent Process ID: 1

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8311

Parent Process ID: 1

Process ID: 8310

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 10 PID Is: 88464

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 10 PID Is: 88466

Process ID for Process: 10 PID Is: 88465

Process ID for Process: 10 PID Is: 80000

Process ID: 8257

76

Parent Process ID: 1

Process ID: 8307

Parent Process ID: 1

Process ID: 8463

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 9 PID Is: 80000

Process ID: 8312

Parent Process ID: 1

Process ID: 8266

Parent Process ID: 1

Process ID: 8309

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88467

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 8 PID Is: 80000

Process ID: 8264

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8313

Parent Process ID: 1

77

Process ID: 8299

Parent Process ID: 1

Process ID for Process: 9 PID Is: 88468

Process ID: 8457

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88315

Process ID for Process: 10 PID Is: 88469

Process ID: 7963

Parent Process ID: 1

Process ID: 8280

Process ID for Process: 10 PID Is: 80000

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8467

Parent Process ID: 1

Process ID: 8469

Parent Process ID: 8280

Process ID for Process: 9 PID Is: 88314

Process ID for Process: 10 PID Is: 88470

Process ID: 7980

Process ID: 8327

Parent Process ID: 1

Parent Process ID: 1

78

Process ID: 7956

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 88336

Process ID for Process: 10 PID Is: 88357

Process ID: 8326

Process ID: 8350

Parent Process ID: 1

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8466

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88361

Process ID: 8197

Process ID: 8410

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

Parent Process ID: 1

Process ID: 7759

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88471

Process ID for Process: 8 PID Is: 80000

Process ID: 8378

79

Parent Process ID: 1

Process ID for Process: 9 PID Is: 88472

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 88473

Process ID for Process: 10 PID Is: 80000

Process ID: 8465

Parent Process ID: 1

Process ID: 8412

Parent Process ID: 1

Process ID: 8471

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8379

Parent Process ID: 1

Process ID: 8473

Process ID: 8418

Parent Process ID: 1

Parent Process ID: 1

Process ID: 8417

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

80

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 9 PID Is: 80000

Process ID: 8357

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88474

Process ID for Process: 10 PID Is: 88475

Process ID for Process: 9 PID Is: 80000

Process ID: 8413

Parent Process ID: 1

Process ID: 8416

Parent Process ID: 1

Process ID for Process: 10 PID Is: 88476

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID: 8414

Parent Process ID: 1

Process ID: 8338

Parent Process ID: 1

Process ID: 8422

Parent Process ID: 1

Process ID: 8464

Parent Process ID: 1

81

Process ID: 8420

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8472

Parent Process ID: 1

Process ID: 8424

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8225

Process ID: 8470

Parent Process ID: 1

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID: 8475

Parent Process ID: 1

Process ID: 8284

Process ID for Process: 10 PID Is: 80000

Parent Process ID: 1

Process ID: 8460

Parent Process ID: 1

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

Process ID for Process: 10 PID Is: 80000

82

Process ID: 8476

Parent Process ID: 1

Process ID: 8461

Parent Process ID: 1

Process ID: 8474

Parent Process ID: 1

Process ID for Process: 9 PID Is: 80000

Process ID for Process: 10 PID Is: 88477

Process ID for Process: 10 PID Is: 80000

Process ID: 8468

Parent Process ID: 1

Process ID: 8477

Parent Process ID: 8468

Process ID for Process: 10 PID Is: 80000

Process ID: 8455

Parent Process ID: 1

