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ABSTRACT

Mathematical models, within the framework of integrated 

geodetic networks for localised three dimensional geodetic 

men i ter ing networks are presented. The network design aspects 
have also been considered.

The development of these mathematical models was based on the 

kinematic estimation model of geodetic network adjustment 

using the integrated geodetic approach. The network design 

aspect considered was the weight problem for each of the 

various observables used. These observables were astronomic 

latitude, astronomic longitude, astronomic azimuth, vertical 

angles, horizontal directions, spatial distances, gravity 

differences and gravity potential differences. The basic 

parameters computed were the network coordinates, the point 

velocities and accelerations of the unstable points.

In order to test the validity of these mathematical models, a 

test network consisting of six points, derived from an old 

map of Olkaria Geothermal station in Kenya, was used. One of 

these points was intentionally shifted so as to cause network 

deformation. Five epochs of observations were considered; 

with a uniform epoch interval of one year. The adjustment of 

the initial network was carried out on the basis of a free 

network, whereas the rest were computed as fixed. The 

numerical study was entirely carried out by computer 

simulation.
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Through the models adopted it was possible to estimate both 

network coordinates and point velocities of the object 

fieuwor*\ with a u least two epochs of observations while 

accelerations required at least three observation epochs. 

These requirements were in line with the theoretical aspects 

of the models. The estimated velocities were consistent with 

the shifts that were introduced into the network.

Tne results also showed that a small proportion of astronomic 

azimuth observations were needed while gravity differences 
were not required.
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CHAPTER ONE

INTRODUCTION.

It is a well known fact that certain types of terrain are not 

at rest, but are slowly moving, thereby causing positions < f 

points located on them to change. Some of the factors causing 

these movements are crustal deformations, volcanic activity 

variation of ground water level, mining activities, and 

construction of large engineering structures.

Generally, the deformation may be classified into two types: 

crustal and localised earth deformations. Crustal earth 

deformations take relatively long periods of time to show any 

appreciable ground shifts, whereas localised earth 

deformations tend to be of relatively short frequency so that 

they can be noticed in much shorter periods of time. Factors 

contributing to localised earth deformations include 

engineering construction works and mining. As a safety 

measure, and also as a guide for future planning in a given 

area suspected to be unstable, the deformation of the ground 

need to be monitored as to seek to detect any deformations 

thereof.

There are various ways of monitoring earth deformations.

These include geodetic techniques as well as photogrammetr 1 <

methods [e.g. Shortis, 1983], Of these methods, geodetic

methods of monitoring earth deformations have found wide

application because of the advantage in that they al ow

monitoring of relative movements to very high accuracie*
t- o be[Ashkenazi, 1980]. These methods have however began 

applied more extensively in the last few years as reported 

[Cooper 1987], In this study it is aimed to make a furthe
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^he neglection of the influence of certain systematic 

effects on the parameters such as deflection of the vertical, 

particularly in mountainous regions [Grafarend, 1988], 

refraction influences and effect of variation of the gravity 

field in general may significantly distort the network. Also 

the deterioration of azimuth within the network should not be 

i gnored.

To overcome these difficulties, a three-dimensional 

adjustment should be adopted to provide a system of precisely 

coordinated points in three-dimensional space, in line with 

the observational model. For a three dimensional adjustment, 

observations need not be directly transformed into the 

reference ellipsoid, and the azimuths are controlled 

implicitly.

In order to facilitate the computation of a rigorous three- 

dimensional network, the quantities that would ordinarily be 

observed comprise horizontal directions, angles, spatial 

distances, vertical angles, astronomic latitudes, astronomic 

longitudes, astronomic azimuths, gravity potential 

differences and gravity intensity differences. All these 

observations are incorporated into a single adjustment 

process within the physical gravity field in which they will 

have been measured. For each station the three coordinates, 

either in cartesian coordinate system or the curvilinear 

system, are obtained together with the deflection of the 

vertical parameters. Other auxiliary data such as the 

refraction coefficients are also estimated.

Following the above discussion, this study will principally 

aim at setting up suitable mathematical models that would be 

needed for the establishment of a three-dimensional geodetic 

network for the monitoring of localised earth deformations.
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Further, a simulated network will be designed for the 

purposes of demonstrating the pertinent mathematical models.

1.2 State of the Art.

Deformation measurements and the analysis of movements are an 

essential task in the field of engineering. Considerable work 

done so far in deformation surveys has been reported ’ in the 

'-i\.ceeJingo of the Symposia on Deformation* (Commission 

6-Engineering Surveying of the International Federation of 

Surveyors, FIG). Since the establishment of this Commission 

by FIG, the subject has received considerable contributions 

from various authors. Some of the publications which 

addressed the problem of detection of deformation were by, 

amongst others, van Mierlo ( 1975), ( 1975a), Brunner( 1979 ),

Niemeier(1931), Koch et al (1981), Chen et al (1983), van 

Mierlo(1981), Pelzer( 1977), Ashkenazi et al ( 1980), Chen et 

al (1930). A number of geodetic monitoring networks have been 

established on the basis of principles discussed in these 

papers.

Kelly (1933) reports on the monitoring surveys at Loy Yang 

(Australia) while Murnane( 1983) details the aspects of 

network design and analysis at the Winneke reservoir 

(Australia) monitoring surveys. Crosilla et al (1986) report 

on a study carried out to monitor current crustal 

deformations in a local area (Friuli) in Italy. Relative 

gravimeter observations for monitoring vertical motions along 

the Boccono Fault in Venezuela have been described by Drew 

(1989). Recently, Biacs et al (1990) prepared a PC-based 

program system for adjustment and deformation analysis of 

precise engineering and monitoring networks, which they 

successfully applied on the Paddle River surveys and the 

Olympic Oval monitoring network in Canada.
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In deformation monitoring, it is generally assumed that 

measurements can be made very quickly with respect to the 

speed of deformation and that these measurements are made at 

an epoch (instant of time). When this assumption does not 

hold, then time factor must also appear in the model as a 

fourth parameter. Papo and Perelmuter (1984) suggested 

inclusion of velocities and accelerations of points in the 

functional model. Aduol and Schaffrin (1990) extended on the 

idea of inclusion of velocities and accelerations to the 

kinematic model of deformation monitoring.

To this end, deformation is defined not only to mean change 

of shape but also to include scale changes, rotations and 

shifts. In using geodetic networks to monitor deformation, 

the deformation parameters are derived from changes of 

coordinates that might have taken place. Unfortunately, the 

coordinates are datum dependent and the choice of fixed 

reference datum may be hard to obtain. If one is able to 

identify some points as fixed and retain their coordinates at 

every epoch of observation then this is called an absolute 

monitoring network. If on the other hand, all points in the 

network are likely to undergo deformation, then this is a 

relative monitoring network. Since no points in the 

monitoring network can be said to be stable unless 

measurements confirm it, then the adjustment must be carried 

out on the basis of free network [Chen et al ,1990].

The free network adjustment has been discussed in various 

publications. These include Grafarend and Schaffrin (1974), 

Perelmuter (1979), and Mittermayer (1972). One advantage of 

free network analysis is that no point is kept fixed, and the 

datum is defined through the approximate coordinates of the 

proposed network.
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The idea of computing a geodetic network in three dimensions 

may Le attributed to Bruns, who suggested the computation of 

a triangulation net in space in 1878 [Heiskanen & Moritz, 

1967]. More studies followed later and it was shown that most 

of the problems encountered in adjusting separated networks, 

such as reduction of observations onto the reference spheroid 

could be avoided. Aduol(1981) in his study on optimal design 

of a three dimensional geodetic network based on simulated 

data observed that among the commonly observed values of 

vertical angles, distances, horizontal directions 

respectively angles, must also be included one each of 

astronomic observations of azimuth, latitude and longitude. 

Also with inclusion of gravimetric data, the number of 

astronomic positions could be reduced. Observation equations 

for computation in three dimensional in integrated networks 

are presented in [Aduol 1989].

1.3 Organisation of the report.

In Chapter Two, the theoretical aspects of the parameter 

estimation models are discussed. Presented in Chapter Three 

are the necessary observation equations that were used in the 

adjustment process. The various coordinate systems that are 

required in the study together with their transformations are 

also discussed.

The network simulation and results of simulation are 

presented in Chapter Four. In Chapter Five are presented the 

computations and the results of these computations. The 

results are discussed in Chapter Six and major conclusions 

made in Chapter Seven. The notation used here is defined in 

the text of the report.
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CHAPTER TWO

ESTIMATION MODELS FOR LOCAL DEFORMATION MONITORING.

2.1 General Models.

Hor the estimation of the unknown parameters, the linear 

least squares model is here adopted. The general basis for 

this estimation will be the simple linear model commonly 

referred to as the simple Gauss-Markov model. In the 

following sections we shall therefore consider the estimation 

of the parameters under the simple linear model as the basic 
model .

2.1.1 The Simple Gauss-Markov Model.

If A be an nxu matrix of known coefficients and of full 

column rank, x a ux1 vector of unknown parameters to be 

estimated, y an nx1 vector of observed values, then the 

simple Gauss-Markov model may be represented in the form

y = Ax + £ ; D(y) = <y2 W~1 = D(r ) = 0, (2.1)
y O yy y

for e being an nx1 vector of observational errors, W is a
y yy

known nxn positive definite weight matrix of the observed 

values in vector y and o is a variance component (also 

called variance of unit weight) of the observations. The
A

least squares estimate of x , x can be shown to be

x = (A’WA) 1A ’Wy , ( 2 .2 )

with

D(x) = o“~ ( A ’ WA ) 1 - • V (2.3)

and also

E[x] = x (2.4)

7



From (2.4), it is noted that x is an unbiased estimate of x.

In fact it can be shown that x is the best linear unbiased 
estimate of x.

Ihe simple linear model under the Gauss-Markov model requires 

that the normal equation matrix has full rank. In case of 

rank deficiency, which is usually the case with survey 

networks, it has to be overcome in some way.

2.1,2 The Simple Gauss-Markov Model with exact restrictions

One way to overcome the rank defect in the Gauss-Markov model 

defined in equation (2.1) is to set up some exact

restrictions in the form

r = R x , (2.5)

where R is a cxm design restriction matrix while r is a cx1 

vector of restrictions.

Grouping equations (2.1) and (2.5) in matrix form, one 
obtains

y A £
X + y

_ r _ _ R _ _

The next step is to minimise the quadratic norm, s'Ws under
y y

the restriction (2.5). The Lagrange function L is formulated 

thus

L = c ’Vte - 2X(Rx - r) (2.7)
y y

where X is a cx1 vector of Lagrange multipliers. The system 

of the normal equations matrix then takes the form:

8



m; therefore toThe rank of A is q < m while that of R is c 

ma^e N regular the restrictions are incorporated as

N = N + R * R . (2.9)

The inverse of the normal equation matrix is obtained from 

[e.g Schaffrin, 1984] or in [Aduol 1989] as

-1
Ni R *

t
F F 11 12

R 0 OJ
Ll_OJ
lL
___

1

with
11

r N 1- (N V ) ( R N  1

F1 2
- (N ‘r ’ h r n 'r * )'*

F2 1 = (RN*R’ ) ‘r n' 1 = F

F22 = I - (RN 'R ’) ‘

and
x = F A ’Wy + F r 11 12

D(x) : r F A ’WAF ’XX Oil 11

(2.10)

(2.11a)

(2.11b)

(2.11c)

(2.11d)

(2.12a) 

(2.12b)

In a survey network these restrictions may take the form of 

fixed control points used to coordinate new points. In this 

case the quality of the network deteriorates further away as 

the new points are separated from the control points as shown 

in Figures 2.1a and 2.1b [Niemeier, 1985], for a two 

dimensional network. From these two figures, it is noted that 

the distribution of the control points must be chosen

9



Fig. 2.1a Minimal constraint adjustment. The fixed points are 
1 and 3 (after [Niemeier, 1985])

Fig 2.1b Overconstrained adjustment. The fixed points are 1 
3 and 11 (after [Niemeier, 1985])
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2.1 .3. The J^ree network adjustment model.

The free network adjustment resulted from the principles of 

Meissl’s Inner Error Theory [Meissl, 1962, 1969] in Meissl

(1932) and also advocated by others. It is shown [e.g. 

Mittermayer, 1972] that under free network adjustment, in 

addition to the least squares condition that the quadratic 

norm ^ ’W be a minimum, that one of the conditions

carefully. The control network should also be of high
prec is ion.

x'x = minimum or (2.13)
trace(D(x ) ) = mini mum, (2.14)

be imposed on the network. From equations (2.13) and (2.14)
we have that neither the length of the correction vector nor

the sum of the variances resulting from a free network

adjustment can be improved any further by a change of origin, 

orientation or scale. One is thus justified to define a free 

adjusted network as a network with the best reference datum.

The basic linear model is of the form shown in equation (2.1) 

and a restriction of the form (2.5) is set up in the solution 

of a free network so as to overcome the rank defect. The 

choice of the restriction design matrix is made such that R 

will be a matrix whose columns are made up of the normalized 

eigenvectors of those eigenvalues in the normal equations 

matrix which have values equal to zero due to rank defect in 

N [e.g. Aduol, 1990]. Usually, R is denoted by G and has 

properties that

NG = 0 (2.15)

G ’G = 0 (2.16)

The constraint equation for adjustment of a free network is



G ’ x = 0
Various forms of the G matrix for different observation and 

network types have been listed by I liner ( 1985). For a 

three-dimensional case in which horizontal angles have been 

observed (i.e defects = 7), G is of the form

( 2 . 1 7 )

1 0 0 1 0 0 ___ 0 0
0 1 0 0 1 0 __ 1 0
0 0 1 0 0 1 ....... ....... 0 0 1
0 zl -Yi 0 zl - Y .......i zl -Y i

- zi 0 Xl -zt 0 X .......
1 . . .  -zl 0 X

i
Yi -Xi 0 Yi -Xl 0 ....... l -Xi 0
X Y z X Y z ....... Y zi i l t i 1 l i l

(2.18)

If distances be observed, the seventh row is deleted since 

observed distances control the scale of the network.

Similarly, if azimuth observations be made then the fourth, 

fifth and the sixth rows are deleted. It is here mentioned 

that the final coordinates, but not the shape of the adjusted 

network, depends upon the provisional coordinates.

Noting that the normal equation matrix N is singular, the 

problem of adjusting for free networks becomes principally 

one of overcoming the rank defect in N. Several approaches to 

the solution of N have been suggested by, among others, 

Grafarend and Schaffrin (1974), Perelmuter, (1979); Cooper, 

(1980); Brunner, (1979); Chen et al (1990) etc. The main 

approaches are through the use of generalized inverse 

matrices and the similarity transformations.

2.2 The Integrated Model

The integrated adjustment models involve both geometrical

12



observations and gravity field data. Reference to integrated 

models is made to Grafarend and Richter (1978), Grafarend 

- 3), Aduol (1989) and others. In most usual surveying 

practices, one uses the geometrical observations of

distances, horizontal directions or angles and vertical 

angles to solve for the network without regard to the 

direction of the plumbline at each network station. The 

integrated models incorporate gravity data into the

adjustment to allow computation of the directions of the 

plumbline at the network points together with other 

parameters.

The basic equation in an integrated adjustment model may be 

represented in the form

Y = f(X ) + f ’(X)£X + 6 f(X ) + t (2.19)O Y

where Y is a vector of observables, f(X ) is a vector 

representing the values computed using the model function and 

<̂ X is a vector of the corresponding parameters. The vector 

f(X) is the vector of disturbances, such as the deflection 

of the vertical parameters. The vector c is the vector of~Y
random errors in the observable vector Y.

2.3 Estimation models for Deformation Monitoring.

2.3.1 General Models

One approach to the analysis of repeatedly measured networks 

to detect movement is to estimate individual coordinate 

vectors for each epoch. The functional model of this set is

[Niemeier, 1981]

13



i<<l5. rxi £
1 11 12 .....................Ik i l

y ! A A A X £2 = | 21 22 2k 2 + 2
• • ;

y. 1 A A A X £
L kJ [Jk1 k2 kk k k

with y being an (n ,1) vector of observations, r an (n ,1)
1 «> i i

vector of residuals, A an (n ,u ) coefficient of
ij i i

configuration matrix, x is a (u ,1) vector of estimates fori i
the parameters of the network, e.g. coordinate points, n is 

the number of observations in the i-th epoch, u is thei
number of parameters in the i-th epoch and k, the number of 

epochs. The stochastic model is given by

10 Q .Q , 111 12 ik j
„ 2 2 Q Q QK -  Cf Q = a  21 22 . 2k

VC VC 0 VC VC 0

1
1 •

Q Q QCM kk

( 2.21  )

with k
yy

as the variance-covariance matrix for the

observation of all epochs; a is the variance of unit weight,c
valid for all epochs; Q is a cofactor matrix of the

yy
observations of all epochs; 0 , is a cofactor matrix

i-J
corresponding to the observation vectors y and y .

J

The main solution for each epoch is given by [e.g. Brunner, 

1 979]

x = (A’Wa T  A ’Wy

Q+ = ( A’ WA)xi

(2.22a)

(2.22b)

where + indicates the

[Bjerhammar, 1973]. This solution 

cofactor matrix of minimum trace;

Moore-Penrose inverse

has minimum norm and a 

in fact it is a free

14



To detect whether any motion has occurred between the epochs, 

the global testing is carried out by computing the variance 
of unit weight.

The estimation for the variance of unit weight o2 , which is a 

global quantity for the accuracy of the epoch is computed as

network solution as described in the previous section.

£ ’Wc2 i iO - ----n-u
(2.23)

The hypothesis,

H : E lo2 ] = E (p ] = ......... E [o'2 ]o o i o2 ok

H : E [■/ ] * E \tj ] * ......... E [</ ]
A o I o2 ok

(2.24)

(2.25)

may be set up. If the hypothesis H is accepted, then the 

conclusion may be that no movements of the station 

coordinates have occurred.

A better estimable quantity for the precision of the epochs 

being compared is obtained if one sums up the single 

quantities of each epoch [Grundig et al, 1985, Niemeier,1981]

c: ’We + £ ’We
;2 _ »• »■ j )

—  --------------
o r + r

*• J
(2.26)

with r + r being the degrees of freedom.1 2 * 2
This computed value o corresponds to a common adjustment of 

the two epochs in which the variables of one of the epochs 

are not considered identical to those of the other epoch.

A deformation vector d, for any pair of observation epochs 

consisting of coordinate differences, can be set up as

d = x.- x (2.27)
i J

15



The quadratic form d ’Wd, and the quantity Q2 

for the purpose of testing the validity 

conditions [Grundig et al , 1985].

can be computed 

of the assumed

d ’W d
Q2 = - dd (Q + Q )+

1 J (2.28)

with h = m-r^, with m being the number of conditions r , is

the rank deficiency of the variance-covariance matrix. The 
2 2

quantities 0 and o are both statistically independent 

[Grundig et al 1985] and can therefore be tested against each 

other. The test statistic given in Grundig (1985) is

If

♦
F =

the quantity F
♦

A 2
Cfo
fits the Fischer

(2.29)

distribution, i.e.

P(F*< F
l -Qt ,  f 1 , f 2 1 -a

1-a = level of significance 
fi = h and f2 = r + r̂  are degrees of freedom,

then the null hypothesis is accepted.

(2.30)

2.3.2 The Simple Kinematic Model

Reference to the simple kinematic model is made to [Aduol and 

Schaffrin 1990]. The basic concepts of this model are 

discussed here below.

Let us take G to be the function relating the geometric and

the physical parameters (x , x ....... x ) so that the1 2  k
relationship is represented as G(x , x ....... x ). For a more

1 2  k
general case, let the function G at epoch i be nonlinear soi
that linearising it about a point, one writes
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G (x , x . . ., . . x ) = G (x . x . .X 1 fx x ...x )2 ».1 2 P G L 1 2 • i

(2.31)
simplified as

Gi — G + uGO'. t (2.32)
wi th

0 G OG OG
«~G = —  Ox - L,x + r--  4-.X +. . .1 Jx 2 + -- AxOx (2.33)

i 2 iC
and

x = x + Axi O l V

x is the approximate value for x
O '.  L and ^x is the small
correction due to nonlinearity of G.

Introducing a time factor in equation (2.31), and consi dering

the initial epoch of observation to have been made at a time

t =t i.e aftert i At =t -t has elapsed,i i i then the relationship

G at the i-th epoch, may be obtained from the function G as

G G + 1 0' G

2 Otf
(2.34)

after considering up to second order terms. To estimate the 

point velocities and accelerations, one sets the partial 

derivative of the displacement with respect to time and 

manipulates the result as follows:

and

OG OG Ox. i
OG Ox . 2+ ..... ... ... + . ,. . +

OG

01 X dt Ox <>t 2 i)x
k

Ot
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d' G _ <) I dG !I —- i — ■■■ |
dt d1 ( <>t )

d f dG dx dG dx d G dx }
-  --- t --- t +-- * 2

--- + . . . + • k 1—  i
dt ( dx l dt dx2 Jt <)x

jC at J

OX
where --- represents the coordinate velocity and

dt

(2.35)

i --- i
dt ( dt J

is a coordinate acceleration.

Now,taking into consideration that G is nonlinear (for ai
general case) then (2.34) would be rewritten as

_ ^ ’ i- a +i

• >G

dx
x +i

ox
X +

2

dG

dx

f dG dX dG dx. 1 . 2

( dx dt dx c)t
2

dG dx 'j
+ . . . + --- --- ' ut

dx dt J

« f dG d x11 . i
+ 2 ( dx dt1

dG d x
+ . . . +

dx2 dt

OG d x

dx dt

(2.36)

One then considers the vector of the observation G so thatt
G. =E[G. ]. Associated with this vector is the observationali v
error e. so that E[£.]=0. These vectors can be represented

i i
as

G - G + £i i
(2.37)

using the notation

18



• *' x J X 'j

x ’  <>t • x = <Tt(Jt J

to represent the velocity and acceleration respectively 

Equations (2.36) and (2.37) may be related as,

0« _ u. ~ u . -
1 0 i

oG
—--- LA X +
O X  I

<*G

z
. + +

dG . .+ -r— ^t X +OX i 1 
1

dG .
T  at X + . . .ox ». z 2

dG . .
+ -r- iit X +

<>x i kV

1 JG .2 ..—  t X +2 i)x i l
1 OG 2  . .
-r-T ot X +2 dx i 2

1 <>G

+ £
• (2.39)

Equation (2.38) is the general linearised observation 

equation for the kinematic estimation of the parameters.

In the kinematic estimation model, one is able to estimate 

the network coordinates during the initial epoch. During the 

next epoch of observation (i.e the first epoch) this model 

can estimate both the network coordinates and the point 

velocities. A second observation epoch would enable 

estimation of network coordinates, point velocities and point 

accelerations. More observation epochs would strengthen the 

estimation of the above parameters. A diagrammatic 

representation of this hierarchical estimation of parameters 

is shown in Figure 2.2. From the theory of this estimation 

model, the network coordinates are referred to the initial 

epoch observations (i.e they do not change). Any movements 

are detected implicitly through the estimated velocities.
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2.4 Concluding remarks
The simple Gauss-Markov model of section 2.1.1 requires that 

sufficient points of the network be known a priori and 

absolutely in order to solve for the network. In a monitoring 

case, only the object network can be solved in this manner 

assuming that the reference points used are taken to be of 
fixed.

i fie estimation model 2.1.3 of free network case seems 

favourable for solution of the reference network as no 

network points need to be known a priori. It would also seem 

favourable to adjust the object network on the basis of a 

free network defining the datum over all points of the 

reference network.
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-he integrated model of adjustment discussed above seems 

favourable in those areas where the earth’s gravity vector 

(respectively plumb line) is greatly varying. Such are areas 

of varying terrain (mountainous regions) and also mining 

zones. And again for computation of heights derived from 

vertical angles, the direction of the plumb line should be 

known.

'he general models of section 2.3.1. provide information on 

whether a network has moved or not between two epochs of 

observation. If the network has moved, then one is required 

tc carry out a further analysis to detect the particular 

points that have moved and also to find the magnitude of 

displacement.

The simple kinematic model provides complete information on 

the analysis of a monitoring network: the unstable points are 

identified by the speed of movement and the acceleration is

also estimated explicitly.

Putting into consideration the above discussion, the present 

study adopts the kinematic estimation model using the 

integrated approach for the solution of a monitoring network 

for localised earth deformation monitoring.

In monitoring networks where more than one epoch of 

observations have been made, we note that we are able to 

estimate not only point positions but also the point 

velocities and accelerations. The kinematic estimation 

incorporating the integrated model therefore seems a more 

suitable estimation model where more than one epoch of 

observations are made. This approach is adopted in this 

study.
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CHAPTER THREE

THE LOCAL THREE-DIMENSIONAL GEODETIC MONITORING NETWORK MODEL

3.1 Coordinate systems.

The coordinate systems that are discussed in this section are 

those that are relevant to coordination of geodetic network 

points in three dimensional space. These are astronomic, 

geocentric and ellipsoidal coordinate systems.

3.1.1 Curvilinear physical coordinates.

This system consists of the astronomic latitude $, astronomic 

longitude A and the orthometric height, H which is a function 

of the gravity potential W. The orthometric height H is the 

geometric distance from the surface of the geoid to the point 

P^ of observation, measured along the gravity vector. The 

gravity potential W from which H is derived is expressed as

W = Gf f f— (X , Y ,2 )dX dY dZ + -o>2 (X2 + Y2 ) (3.1a)
J J J r a  a  a  a a a  2

with ________________________________

r = /[(X-X )2 + (Y-Y )2 + (Z-Z )2]' (3.1b)
a a a

where P(X ,Y ,Z ) are the coordinates of the attracting pointa a a
and P(X,Y,Z) are the coordinates of the observation point, p 

is the density of the attracting material whereas G is the 

gravitation constant and a) the angular velocity of the earth. 

The orthometric height H is obtained from

(3.2)

w r
g

in which W is the gravity potential at the geoid and W , the
g P

gravity potential at the standpoint, r is the gravity 

intensity along the vertical through point P..
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3.1.2 Local astronomic coordinate system

The observation point is the origin for this left-handed

system. Denoting the three axes by X , Y* and 1 with the
. * * «

corresponding base vectors E , E and E respectively. a
* 1 2  3

positional vector R in this system may be represented as

* * * * * * *
R = X E + Y E  + Z E1 2  3 (3.3)

3.1.3 Ellipsoidal cartesian coordinate system

The origin O of this system is the centre of the reference 

ellipsoid. The three axes, x,y,z are orthogonal and form a 

right-handed coordinate system. The corresponding base vectors

are V V V
The axis z coincides with the semi-minor axis of the ellipsoid 

and is positive in the direction of north.

The axis x is directed such that it passes through an adopted 

origin of the ellipsoidal equator. The plane xOz would be 

oriented to be as nearly parallel to the Greenwich meridian as 

possible.

The axis y completes the right-handed system and is taken 

positive eastwards.

3.1.4. Ellipsoidal curvilinear coordinate system.

The three coordinates are ellipsoidal latitude , ellipsoidal 

longitude \ and ellipsoidal height h.

The ellipsoidal latitude is the acute angle formed between the

the i
ellipsoidal equatorial plane.

geodetic normal at the observation point P.. and

The longitude \ , is the angle formed between ellipsoidal
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meridian through P anc the plane containing the first and the 

third base vectors.

The ellipsoidal heignt h is the distance of the point from the 

ellipsoidal surface as taken along the ellipsoidal normal. It 

is reckoned positive towards the zenith. Refer to Figure 3.1

3.1.5 Local ellipsoidal coordinate system  *

The point of observation P is the origin with the axes x* y* 
*
z being orthogcna7 and left-handed. The corresponding base 

• • •
vectors are ê  , e , . A positional vector r, in this system

is represented as

* • •
r = x e + y e * z e  (3.4)

1 2  3

*
The axis z is taken along the geodetic normal with the 

positive direction outwards from the reference ellipsoid.

*
The axis x is in the meridian plane and points 1n the 

direction of north.

*
The y axis ccwcletes the left-handed system and points in the 

direction of east. See Figure 3.1.

3.1.6 Geocentric cartesian coordinate system.

This is a right-harded cartesian coordinate system whose 

origin 0 is at the centre of mass of the earth. The three 

axes, designated X,t,Z have the corresponding base vectors 

F ,F ,F . A positional vector R in this system is represented
1 2  3

by

R = XF + YF ZF (3.5)
1 2  2

The Z axis of this system points towards the mean north pole 

as defined by the Irtemational Polar Motion Service (IPMS).
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Figure 3.1 The geocentric cartesian and ellipsoidal coordinates



The X axis is in the plane ZOX and is parallel to the 

Greenwich Meridian. The Y axis completes the right-handed 

system and is positive eastwards. See also Figure 3 .1 .

3.2 Coordinate transformations

The transformation of these coordinates from one system to 

another is of interest in this study because of the

requirement of the various mathematical models in different 

computation systems. The transformation of the coordinates is 

facilitated by use of rotation matrices. These are discussed 

below.

3.2.1 Rotation matrices

In coordinate transformation, usually one coordinate system is 

rotated into the other through anticlockwise angular shifts ce, 

/?, y about the first, second and third axes respectively, 

through the rotation matrices

1 0 0

R 1 = 0 cos(oi) sin(o) (3.6a)

| 0 -sin(c<) cos(ot)

cos(^) 0 -sin(f3) ~

R2 = 0 1 0 (3.6b)

_ sin(/?) 0 cos(/3)

cos(y) sin(^) 0 I

X CO
II -sin(y) cos(^) 0 (3.6c)

0 0 1 J

where R ^ a )  denotes a rotation on the base vector of the first 

axis through angle a, R (f?) and R (^) respectively denoteW
similar shifts through angles (3 and y about the second and
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third base vectors.

If all the three rotations about the base vectors are carried 

out as

= r3<^ )R2<^ >r 1 (a ) (3.7)
the resulting matrix is the Cardanian rotation matrix. If on

the other hand, we carry out the following transformation,

R (3.8)o <3 £  O

then we have the Eulerian rotation matrix. The modified 

Eulerian rotation matrix in the form

R = R3(r)R2(*/2 -/?)R3(a) 

is also used.

(3.9)

3.2.2 Transformation between geodetic cartesian and 

the ellipsoidal curvilinear systems.

The relationship between these two coordinate systems are 

common [e.g .Aduol,1989]

x = ♦ h
"1

V /4 2 . 2 ,(1- e sin ?)
C OS £ > C OS \

y =
a

♦ h
“I

V, « 2 . 2 ,(1-e sin p )
cos^s ir\\

(3.10a)

(3.10b)

z =
a(1 -e" )

i , . 2 . 2 ,(1 -e sin p)

+ h ! s i np (3.10c)

l _ '  ’ --------------r  ' _J

The reverse relationship may be found in Cooper (1987).

3.2.3 Geocentric and local astronomic coordinate systems 

This transformation is given as [e.g.Aduol,1989]
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(3.11a)

r  E* " F1 l
*
E = R (A,4,0) F2 E 2
*
E
3 1

m
IL

_____
1

where

R_(A,*,0) =

L

si rtf cosA 

- s i nA 

cost cosA

sirtf sinA 

co&\

cos$s i nA

-coat

0

sirtf

(3.11b)

LI
Thus considering two points P (X* Y * Z * )  and P (X* Y * Z # ) andX X X x J J J J
defining

* * #

* * *

then the corresponding quantities in the geocentric system may 

be obtained from

X
*

__
1

r x i
♦

Y = R (A ,4 ,0) Y
♦

Z _i

E

IJ Z

(3.11d)

3.2.4 Geocentric and ellipsoidal cartesian systems

This relationship may be represented using the base vectors 

as

r f
1 1

F = R (3 ,3 ,3 ) f
2 C 1 2 3 2

F . f
L  3 J 3

The fully expanded form of R ('3 ,3 ,3 ) may be found in Aduol
c  1 2 3
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(1989). Usually the rotation angles are very small so that the 

following rotation matrix results

R . *  . *  > C 1 2 3

l~ 1 e3 2
\-e 1 &

3 1
1

L  2 1

cartesian and

J

(3.12b)

3.2.5 Ellipsoidal cartesian and the ellipsoidal local systern 

The transformation relationship between these two systems is

expressed as

—
I 

<D -k 
*

__
I

f M* i i
e | = R (\,*>,0 ) ! f0
i E j 2 j

e f
L J j r~ CO 1_

so that from equation (3 .13a)

r  x* 1i i r x l
i *

y ! = R (*,*>,0 ) y  !
1 *

£
i

L 2 J ij L Z J
with

| siivcos\ siivsirv\ 

-sin\ cos\

cos^cos\ cospsin\

-cos^

0

sinp

(3.13a)

(3.13b)

(3.13c)

3.3. The Observation Equations.

Presented in this section are the observation equations 

adopted in the establishment of the three dimensional geodetic 

monitoring network. Some of the mathematical models used are 

not linear, as required by the procedure of adjustment, and 

have therefore been linearised. The development of the 

observation equations is based on the kinematic model [Aduol 

and Schaffrin 1990], and adopts the integrated approach.
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Fhe observation equations developed are for gravity potential, 

gravity potential difference, gravity intensity, gravity 

difference, astronomic latitude, astronomic longitude, 

astronomic azimuth, vertical angle, horizontal direction and 

spatial distance. The basic deformation parameters that are to 

be related to the observations are network coordinates in 

ellipsoidal curvilinear system, <p, \, h, point velocities and 

accelerations. Deflection of the vertical parameters, are also 

estimated. The notation used in this section is the same as 

that used in the preceding sections in this chapter.

The curvilinear coordinate system is preferred because it is 

commonly used in map representation and it also relates 

distances and heights more easily than the cartesian form.

3.3.1 Gravity potential.

The gravity potential at a point may be represented as 

[e.g. Aduol,1989]

W = w + 6wi t  l
where ŵ  is the model gravity potential 

corresponding gravity potential disturbance.

(3.14a) with [Heiskanen & Moritz, 1967]

W = U + T (3.14b)

where W is the geoid potential, 1) the ellipsoidal (model) 

potential and T is the disturbing potential.

For an area of limited extent, a radial gravity model may be 

assumed. Thus

wi = —  (3.16)
r

where G is the gravitational constant, M the mass of the earth 

and r, the radial distance from the centre of the earth to the

(3.14a)

and 6w is the
i

Compare equation
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point Pj. Considering a geocentric coordinate system, r may be 

expressed as

r = (X* + Y2 + Z2 )‘ 2| (3.16)
1

Let w and £w be the approximate values at the initial 

survey epoch, of w and £w respectively. Also let W be an
a i t

observation of W at epoch i with £ . as :an observational
1 VI

error at that epoch; then the following formulation holds.

w (Aw + A£ w) + (w + 6w)At +i

+ (w ' ♦ <£ w ' )At" + eu vi (3.17)

in which w = w + Aw and <5w = 6w ♦ A£w1 Cl 1 1 Cl 1
The single and the double dot notation represent velocity and 

acceleration respectively. The A notation represents small 

corrections that are to be added to the approximate values.

Equation (3.17) is the observation equation for gravity 

potential observed at point P . The parameters are expressed 

as

Aw = aw . <?w ,x
A^ + —  ^dc

aw ,
+ a s ih (3. 18a)

a w a w  ;  a w •
w = Oil ^ 

I f ax ah h
p,

a w a w  ;* a w • •

w ’ =
d p

?  + — x + — f ax ah h
pi

where A ? f AX and Ah are the corrections to be

latitude, longitude and height respectively. , 

expressed as

(3.18b) 

(3.18c)

added to the 
• •
X, and h are
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dp 
d t ’ X dk—  and h dh 

d t

and , X and h expressed as

<P =
dp 
dt ’ and

( 3 . 18d)

( 3.18e)

The expressions necessary for the coordinate tra-^sformations 
are

dw _ <?(x,y,z) dw 
d(p,X,h) " di<p,k , h) md(x,y,z)

and

(3.19a)

dw _ d (X , Y , Z ) dw (3.19b)
1

d(x9y,z) d(xty,z) d(X,Y,Z) 

where x, y, and z are the station coordinates in local 

ellipsoidal system while X, Y, Z are the corresconding station 

coordinates in geocentric cartesian system.

The rotational elements $ ,9 ,9 , between these two coordinate1 2  3
systems relate as [Aduol, 1989]

R = ^ ( X , Y , Z )C 1 2 O — ------rd(x,y,z )

where R is the Cardanian rotation matrix. 

For '? ,$ being small, then1 2  3

(3.19c)

1 e s3 2
1 $

W 3 W 1
e 1
2 ~ 1 J

Differentiating equation (3.15) 

the following matrices result,

(3.19d)

with respect tc X, Y and Z,
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( 3 . 2 0 a )

with

and

f“
r r  n

dw a x a y a z a  w
dp i dp dp dp dx

dw ij dx a y dz a w
j d \ ! ' d x a x a x a y

dw dx a y dz a w

i— 5
I

- p i i— 51 a h 51
 

1__
_ p

i !
dz p,

a w i a x a y a z ~ a w “
a s a s a s a s a x

i i i i

a w a x a y a z a w
a s i = a s a s a s a y

2 i 2 2 2

d w
i
l
i a x a y a z a  w

a s ; « a s a s a s a z ■-k
3 p

- i  * i
3 3 3

i p 1 L  - i K i

—
r - i r -

a w a x a y a z a  w
a x a x dx dx a x

a w a x dY d l aw
a y a y a y a y a y

a w
i
i a x a y a z a w

a z 1 pJ  i

lNl*>
___

i a  z N 
1 

1__
_

p i i—
 

M
l

_

3.3.2 Gravity intensity.

The gravity intensity f at a point may be 

following expression

r
1

Decomposing

f£w)z faw]2
H  \*z\ p

r into a model component
l

and a

, then

p — y + £y i i i

(3.20b)

(3.20c)

represented by

(3.21)

disturbing part

(3.22)
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where

is the gravity intensity for the model gravity. 

Taylor series linearization, the initial values for 

are y and 6y respectively, then

If after

y and 6y1 i

(3.23)

y  = y  + A y  and 6y = 6y ♦ A 6y (3.24)
l oi l i oi i

where A y and A by are respective corrections for y and 6y .
- oi Oi

Suppose T. is an observation for gravity intensity at 

ith-epoch with an observational error c then
T

r. = r + c  (3.25)l 1 Ti
Combining equations (3.22), (3.24) and (3.25), and introducing 
velocities and accelerations, one gets

r - y - 6y = Ay + L&y + (y + 6y)At +l O i O 1 l
• • • •

+ (y + 6y)At2 + e . (3.26)
l T l

The parameters are expressed as

^  ^  + w.AX + % Ah (3.27a)

dw * dw ' <?w .
* ~ dp + d\ ' + ah h (3.18b)

aw ’ * aw ; * aw '
â > f ax ah

(3.18c)
1

after having eliminated those parameters that cannot be 

suitably evaluated in a local network [see also Aduol, 1989] 

The differentials are expressed as

dy a(x,y,z) dy
a(p,x,h) a(p,\,h) ' a(x,y,z)

(3.28a)

and
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(3.28b)9r
<?( x, y, z )

d (X , Y , Z ) 
^(x,y,z)

gr
<?( X , Y , Z ) P 1

Equation

intensity

“ V V V V - s i x r h r 1
(3.26) is the observation equation 

in the kinematic estimation model.

(3.28c) 

for gravity

3.3.3 Astronomic latitude.

The astronomic latitude, $ at a point can be expressed as

$ = f + 6<p (3.29)l l i
where ^  is the model part and 6<p̂  is the disturbing 

component. If the ellipsoidal latitude is adopted as the model 

part, then the disturbing component is the deflection of the 

vertical in the north-south direction. Thus equation (3.29) 

may be written as

$ = p + { (3.30)
„ i l l

If f . be a realization of $ and p and £ be some adopted
11 1 cl oi

initial values for p and { respectively, then the following 

relationship holds:

$ p — f ~ Ap + AI + (P At + 4? At^ + f (3.31)
l  1 o i  o i  l  l  l i  l i .  p

with c as an observational error in $ .
V  l

Thus equation (3.31) is the observation equation for 

astronomic latitude.

3.3.4 Astronomic longitude.

At a point ^ the astronomic longitude A, may be expressed as

A = X + 6X (3.32)
l i  l
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Considering X̂  as an ellipsoidal longitude, then 6X may be 

expressed as

6\ = T) seop (3.33)i i  1
where r/ is the deflection of the vertical in an east-westi
di rection.

Considering A . as an observed value of A at epoch i, X as
1 i  l  o i

an approximate value for X and r) an initial value for rj ,i Oi 1
then

A - X - T) seop = AX + Ar) seop +11 Ol 'oi 1 i  ' i  1

+ X At + X At ♦ £ k (3.34)l i l i A„
holds. is an observational error in A..A l

Equation (3.34) is the observation equation for astronomic 

longitude.

3.3.5 Astronomic azimuth.

The astronomic azimuth A from point to point may be

represented in the form

*

Decomposing A into a model part a. and a disturbing12 12
component , one gets,1 2

A„ ̂  ~ a + 6a 12 12 12
with

a = tan
12 i ¥ )

12
Suppose that is the observed value for A12i 12
a and 6a012 012

are initial values for a
12

respectively, adopted for a Taylor series

(3.36)

(3.37)

at epoch i, 

and 6a
12

linearization

37



process, then

ot = a ♦ Aa and 6a = 6a ♦ A 6a (3.38)
12 012 12 12 012 12

with A a and 6a as respective corrections for a and
12 12 012

6a . Also,
012

where c is an observational errorA
equations (3.36 ),(3.38) and (3.39) and 

and acceleration, one obtains

(3.39)

in A ^ .  Combining 

introducing velocity

A - a  -  6 a  =Aot + A6ct + a A t + 12i 012 cl2 12 12 12 i

+ a At2 + £12 v A

(3.40)

which is the observation equation for astronomic azimuth.

During the linearization process the differentiation is 

carried out with respect to the unknown parameters (i.e. 

coordinates for both points, and ). They are expressed as

6a = 
12

da
12 .— —  A p + 

d(p l l

da
— 12 AX dX il

da

da da da

12Ah +l

1 2 . t2 ̂  1 2 ,,
— —  A <p + -rr— AX + -z—  Ah d<p 2 dX 2 dh 2

(3.41a)

. da da da
12 . 12^ 12 a - — —  <p + -3r* X + h +

12 dp i  d\  i  dn i  
i i l

da
12--- P +

d<p 2

da da12 x 12 . 
-rr— X + hdX 2 dh 2 

2 2

(3.41b)
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a
12

da

d'f

da

dp

12 • •

” , +

d a
12 • •

>
d a

12-A.
1 d \

1
1 dh

i

12 • m
?2 *

d a
12 • •

x
da

12-i.
2 2 dh

2

h1

h
2

+

d6a dda
A6a = -=-12A{ + — 12Ar)

d£ i dr\ i 
i 'i

12

with

d6ct
12

__ = -sina tary?91 12 ' 12

and

dda
12 = -tarv - cose- tan,? dr; ^i 12 ’ 12

Further expressions for evaluating the coefficients 

as

da * ( V W da
d(f, A  ,h ) a(*>A ,h ) *

k k k k k k d ( x ,  , y  , z t )
k k k

k=i ,2

da

* K * v zJ>k k k

♦ ♦ ♦
d(x ,y ,z ) 

12 12 12 da
* * ♦

d(x , y ,z ) 
1 2 12 12

k=l ,2

with

= R (\ ,0 ,0)E l l

where R is the Eulerian rotation matrix.
E

♦ * *
d(x ,y ,z )

12 12 12

d (x, . y,.z, )2 2 2

♦ * *
d(x , y ,z )

12 12 12

a(Xl ,yi »Zi )

(3.41d)

(3.41e )

(3.41f ) 

are given

(3.42a)

(3.42b)

(3.42c)

(3.41c)
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3.3.6 Vertical angle

From a point to another point P^, the vertical angle B 
1 2 12

between the two points is represented as

B
12

tan - 1  12
♦ 2 *2 1 / 2(X + Y )
12 12 - *

(3.43)

The vertical angle may be further decomposed into a model

component (1 and a disturbing part 6(1 such that
12 12

B = 0 +6/?
12 12 12

(3.44)

with

(1 - tan
12

-1 12

L
, ♦2 *2 1/2
(x , + y )

12 12

(3.45)

Suppose that B is the observed value free from refraction
12

and B is the actual observed value containing effects of
12

refraction 6r, then

B = B + 6r (3.46)
12 12

with

B = B + £12 12 B

thus
- n +6/? + £' 12 12 B

B = (1 + An + 6(1 + A 6(1 + 6r + A 6r + £12 012 12 012 12 O B
(3 . 47)

on taking the approximate values, for (1 , 6̂ ? and 6r as

(1 . 6(1 and 6r respectively, for use after a Taylor
' 012 012 o 0
series linearization. On considering the observed angle B

12

and incorporating the velocity and acceleration unknowns,we 

have
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( 3 . 4 8 )

4
= A/? ♦ A6fi + A6r + 

12 12

♦ p At + (1 At2 ♦ £12 i 12 i B

and A/?i2 , A6/?^ and A6 r as respective corrections to be added

to the initial values p , 6(3 , and 6 r . £ is an012 012 o b
observational error in B .

12

Equation (3.48) represents the basic form of the observation 

equation for vertical angle. The corrections are expressed as 

differential equations in the unknown parameters (i.e. station 

coordinates for both points and and also the components 

of the deflection of the vertical at the observing point.

a  sn
12

ddp ddp
12 a ? +  12 An1 — --- 1 (3.49)

l l
having treated the rotation elements as zero. The coefficients are

ddp1 2 ddp
= -coso. and

12

12 = si no 
dT) 12

(3.50a)

Also

dp dp dp
Ap * - ^ ax * -^r^"Ah +12 dip i d\ i dh i

dp dp dp12 + 12 + 12
+ -r----A <p — --- AX -rr--- Ahd<P 2 d \  2 dh 2

r  2 2 2

(3.50b)
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dp
P --~---- Pi2 dp i

ap .
‘2> ♦

dp . 
1 2 h

dX i 1 dh i 
i

dp . ^ dp . ^  dp
12  + 12  ♦  12

dp ^2 dX 2 dh 2 
2 2 2

d/? . . dp . .  dp . .12 + 12x + ' 12lp — -—  X — ---h +12 dp ■ i i dX i dh il l

dp . .  dp . . d/?12 + 12 + 12+ -----p ----- X. ----- hdp f 2 dX 2 dh 2

with

dp
12 a(V W 1 2

* (W V  * (W V  ^ V W k=i ,2

and

dp
12

♦ * *
d( x ,y ,z ) 

12 12 12
dp1 2

a ( x k ’ yk ' z k ) ^ v w
* •

d( x ,y ,z )12 12 12 k

3.3.7 Spatial distance

The spatial distance between two points and P^ 

expressed mathematically in the form

12 ■ f
*2 *2 *2X + Y + Z
12 12 12

with the model part s expressed in the form
12

1 2 = i ♦2 *2 *2x + y + z12 12 12

Since distances are not influenced by effects of the

(3.50c)

(3.50d) 

(3.51)

1,2

(3.52) 

may be

(3.53)

(3.54) 

gravity
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field, the disturbing component becomes equal to zero so that

S = s 12 12 (3.55)

Further, let s be the approximate value for 8 , then
012 12

s = 8  ♦ As12 012 12 (3.56)

where As is a correction to be added to the initial value
12

s . Also suppose a value for spatl a 1 distance isQl2 121
observed at epoch i, with a random error in it, then

S.. . = s + £ 
1 2 i 12 s

(3.57)

Combining equations (3.56) and (3.57) and including velocity 
and acceleration one gets,

• • •
S . - s = As + sAt + s At2 + £ (3.58)
12l *12 12 i i s

which becomes the observation equation for distance. The 

parameters are expressed in the following differential 

equations,

ds ds ds12. 12. x i 2 t. +
As = — ----Ap + -~r----AX + -z—---Ah12 dp l ok l un l

ds ds ds12. 12 . 12+ — ----Ap + — ----AX + ----- Ahdp r 2 dX 2 dh 2 (3.59a)

ds . ds . ds12 + 12 -I- 12
Si2 dp ^i dX i dh i

i i i

ds . ds . . ds12 + 12 + 12+ ----- p ------x ——----n
dp f 2 dX 2 dh 2 * 2 2 2

(3.59c)

ds .. ds .. ds
12 + 1 2  ̂ + 12

S  =  ------------P   rr-------- X  —rr-------- 1! +12 dp Vi dX 1 dh 11 1 1  3

3S12 "  + aS12 "  +
* dip ^2 9\ 2 dh 2r 2 2 2

(3.59d)
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and also

ds
12

* (W V

and

* ( V W

* (W V

ds
12

* ( v w k=i ,2
(3.60a)

ds
12

* ( V W

d U l2 ' \ t ' \ z )

* ( V W

ds1 2
♦ ♦ ♦

d( x , y ,z ) 
12 12 12 k =i ,2

(3.60b)

3.3.8 Horizontal direction

Let the horizontal direction of an observation line be

T at observation point P . Further let the azimuth of this 12 1
line be A^: then,

T12 = A12 (3.61)

ter at the standpoint Pwhere is an orientation par 

Decomposing the azimuth of tnis line into a model part a 

a disturbing part do cne obtains
12

1
and

1" = a + 6a + r12 12 12 “I
(3.62)

with a defined in equation (3.36). Taking initial values for 
12

a and 6a we form equation (3.38) and incorporating r into
12 12 ^
equation (3.39) we arrive at the modified azimuth equation

T - a - 6 a  = La + _lra + a At + a At + T
1 2  i  * 12 912 12 12 12 i 12  t  U1

♦ £ (3.63)

where £ is an observational error in the direction
T
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observation T
12i

Equation (3.63) is the observation equation for an observed 

horizontal direction.

Expression for Aa and Ada are given in equations (3.41).
12 12

The final coefficients are as provided in equations (3.42). 

3.3.9 Gravity potential difference

The difference in gravity potential between two points

and is of the form2

W = W - W (3.64)
12 2 1

On considering the model and the disturbing components (see 

also section 3.3.1), we get

W = w - Aw
12 12 12

where
w = w -w and 6w - 6 w - 6w

12 2 1 12 2 1
The observation equation is of the form

W1 2 i
w - 6w = Aw + A£w + w At +c 12 012 12 12 12 i

. . , 2
+ W At + £12 l v12

(3.65)

(3.66)

(3 . 67)

The parameters are expressed as

dw dw dw
Aw = 12 A<p + i2~ AX + — -—  Ah +

12 dp  1 ok  1 dh
1 i i

dw dw dw12 . . 12 .. 12+ ---- A<p + ---  AX + — — —  Ahd̂ > ^2 dX 2 dh 2
(3.68a)

and A6w = A6w - A6w 
12 2 1

(3.68b)
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dw . , dw dw .• 12 + ___ 12 ♦ 12
12 dp î dk t dh ii i i

dw . m dw d w .12 ♦ 12 x ♦ 12 .
♦  --------------- --------------------------------- X ----------------h

dp v 2 dk 2 d h 2 
2 2 2

d w . . .  d w dw. . 12 ♦ 12 + 12.w = — --- p — ——  A. ——-— h +12 dp i dk i dh i 
i i i

dw .. d w .. d w
+  ---------------<D -----------------X  ----------------  h

dp f2 dk 2 dh 2
2 2 2

3.3.10 Gravity difference

The difference in gravity r between two points, P
12 1

(see also section 3.3.2) is

r = r -  r
12 2 1

On separating the model portion y and the disturbing 

one may write

f = y + by 
12 12 12

where
y = y - y and by - by - by 
112 { 2 fl 12 2 1

The observation equation is therefore of the form

r — y — by - A y + A by + y At +12l * c!2 ' C l2 * 12 12 #12 l

+ y At. ♦ £„i 2 v r (3

The expressions for the parameters are

(3.68d)

and P,.2

(3.69) 

part by,

(3.70) 

(3.71 )

.72)

(3.68c)
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dy dy d>

Ly i  j  =  +  d > ~  ~  1 *  “ d h ~  l h !  *i 1 l

dy dy dy
♦  —— A p  ♦  —1* a\  ♦  _ Li ih  

dp p 2 d\ 2 d h  2 (3.73a)

. _ * i2 . + ^12* ♦ ^12*
* 1 2  ”  dp  d \  i d h  i  *1 1 1

dy dy . dy' 12 . + 12 A ♦ 12 ,+ ----- 0 ----- X ------h
dp f 2 dX 2 dh 2

2 2 2

(3.73b)

d̂  d> . . dy
. . 1 2  . .  +  1 2  +  * 1 2
> r --------------- 0  ---------------A. ------------- h  +
' 1 2 dp  f i  dX 1 d h  1

i l i

dy dy .. dy*12 . . + 12 + *12+ ----- 0 ----- X ------h
dp y2 dX 2 d h  2

(3.73c)

and

A6y = A6y - A6y
12 2 1

(3.73d)
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CHAPTER FOUR

THE MONITORING NETWORK

4.1 The Test Network.

The test network was derived from an old map of Olkaria 

Geothermal station which is situated in the Rift Valley in 

Kenya, South of Lake Naivasha. A suitable network of points 

was chosen and their coordinates in the Universal Transverse 

Mercator System (UTM) scaled off. The geodetic coordinates of 

these points were then computed from the UTM coordinates by 

use of conversion tables. The sketch of the network is shown 

in Figure 4.1.

4.2 Simulation of observations.

The corresponding ellipsoidal cartesian coordinates of the 

network points were then computed according to equations 

(3.10). From these coordinates were computed the gravity- 

potential and the gravity intensity at each network point 

according to equations (3.15) and (3.21) respectively. The 

potential difference and the gravity difference for any pair 

of points were subsequently computed.

Further, the ellipsoidal cartesian coordinates were 

transformed into their corresponding local cartesian values 

(see section 3.2) from which were computed the spatial 

distances, vertical angles and the ellipsoidal azimuths for 

any chosen pair of coordinates.

Using the same notation as in Chapter Three, the various 

observations were computed as:



N
A

2

Fig 4.1 The sketch of the network
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(i) Spatial distances S
12

♦ 2 * 2 * 2
s  = ( x  + y  + z  )

12 12 12 12

i/2

(ii) Vertical angles/?
12

(4.1 )

si ry? 12

1 2
12

(4.2)

(iii) The ellipsoidal azimuth, a
12

tancx 1 2
1 2

♦ * *
with x = x - x 

12 2 1

12

0 0 0
y  = y  -  y12 2 1

(4.3)

z = z - z 
12 2 1

The elements of the deflection of the vertical were obtained 

as explained in section 4.5. These parameters were then used 

to convert the geodetic quantities of latitude <p, longitude 

X, and azimuth a, into their correspond!'ng astronomic 

quantities, $, A, A, according to the following equations 

e.g Heiskanen & Moritz, 1967,pp.187]

$ = <p + £

A = X + T)sec<p

A = a + r)tan<p

(4.4a)

(4.4b)

(4.4c)

The computed observations were perturbed each according to 

the assigned standard error. Thus,

y = }JL ± or.. z (4.5) 

where y is the perturbed observation, /j the true 

observation, o the associated standard error of that 

observation and z is a random number. The random numbers were 

generated by a function in the Mainframe Computer (VAX 6310)
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and the actual perturbations computed according to (4.5) 

using a computer program listed in appendix Cl. The weights 

were computed as explained in the next section.

4.3 Weighting of observations.

Weights are related to the variance in the following

?cro
w. - ----
1 t

where cr is the variance of unit weight, also called o
2factor or sometimes the variance component, 

variance of observation i. Using the matrix notation 

represent the weight matrix, W as

way

(4.6)

vari ance 

i s the 

we may

w -  a  T  ' (4 . 7 )
o “  y y

where T is the variance covariance matrix of the 

observations. Therefore from (4.6) we note that the problem 

of weight determination reduces to that of determining the 

standard errors for the observations.

In this section are discussed the various ways used for 

assigning standard errors to the different observations.

4.3.1 Gravity potential differences.

Gravity potential differences can be obtained from precise 

leveling observations where gravity values are also measured 

(Heiskanen & Moritz, p.160-162). The accuracy of precise 

leveling is quite high. The standard error per kilometre can 

reach r0.3 to 1.0mm [Mueller et al, 1979].

The United States standard for national vertical control for 

first order work is 3mm|k for class I, where K is the total 

leveled distance in kilometres [Mueller et al 1979]. For this 

first order work, the accuracy of the gravity potential 

requirement is stated to be ±2x10 m s . From simple
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calculation on error propagation and assuming K is not large, 

the accuracy of the geopotential number obtained is of the 

order 10 m s"

In this study the a priori standard error for the potential 

difference was adopted to be 5x10 m s .

4.2.2 Gravity differences.

The standard errors of the International Gravity

Standardisation Net 1971 (IGSN71) is quoted to be less than
-2

10.1x10 ms for some values [Torge,1930] while the global
-*5 -2

relative standard error of the network scale is *2x10 ms . 

In case of gravity difference measurement with gravimeters, a
-*5 -2

standard error of approximately ~0.01 to dO.05x10 ms can 

be obtained [Torge,1930] . This can further be improved to
— H — 215x10 ms by using LaCoste Romberg gravimeters [MaConnell 

et al, 1975]. With this wide choice of accuracy, it seems 

that one would still be within limits if he uses a value of 

*1x10 ms ' which is used in the present study.

4.3.3 Astronomic latitudes.

The standard error for astronomic latitude is estimated to be 

0".33 [e.g Robbins, 1976]. Other values quoted are 0M.25, 

and .0".2. A value of rOM.3 was used throughout the 

computations as the standard error for astronomic latitude.

4.3.4 Astronomic longitudes^

Aduol (1981) used the a priori standard error of astronomic 

longitude as ±0.5seoi>. This value had been estimated by 

Robbins (1976). In Torge (1980) an accuracy of about ±0".5 -

1".0 is attainable for longitude observations. For the 

present study the value adopted is 10".5 since the variation 

of longitudes in the network considered is very small - less 

than 1”.
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4.3.5 Astronomic azimuths

Bomford (1980) estimates the standard error for azimuth as 

T ’.O. Aduol (1981) used a value of -O'*.7 which he had found 

consistent with values from various sources [Davies et al, 

1971], Ordnance Survey, Stolz (1972), and others. The value 

of 0".7 is adopted for this study.

4.3.6 Vertical angles

The vertical angle can be observed with a standard error of 

the random component of about rOM.4 to iO.M6 [Hradilek,1984]. 

However this value may deteriorate to about z1M.2 to 3" owing 

to systematic effects.The overall standard error of a 

vertical angle can be expressed as

S; = s' + s' (4.8)
•>/ o r

where S is the standard error of observed vertical angle, S 

and S are the effects due to the random and refractional 

effects. Aduol (1931) used a value of -0.001 for standard 

error of the refraction component which he had found from the 

results of Hradilek (1973) and Ramsayer (1969). Since the 

present study is conducted using purely simulated data, it is 

free from refractional influences and it was found convenient 

to use a common value of t 1" for standard error of the 

vertical angle.

4.3.7 Spatial distances.

The most precise distances are measured with electronic 

distance measuring instruments (EDMs), such as a Mekometer ME 

3000. The standard error of these instruments consists of two 

parts, a constant part and the observational part. The 

observational part is dependent on the length of the measured 

line whereas the constant part is the same for a particular 

instrument. Rueger (1983) had estimated the Mekometer
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precision as (C. 38/r.m+0.35ppm).

In this study, distances are considered to have teen measured 

using an instrument of the Mekometer type with the constant 

part as 0.0004m and the observational part as 1 part per 

million (ppm). The standard error <r,is then given by

£T, = [0.0004* + (1 /10®)' ]' 2 (4.3)

where 1 is the length of the observation line.i

4.3.8 Horizontal directions.

Using a geodetic theodolite e.g DKM3 Theodolite, horizontal 

directions can be obtained within i0".2 to z0".4 after

station adjustment [Torge,1380]. Bomfcrd (1371) quotes a 

priori standard errors for horizontal direction range between 

0".5 to 1". C. In Aducl ( 1989) a value of 10”. 7 had been 

used.

In the present study, the standard error adopted was CM.5 

since it is easily attainable and would provide precise 

results.

4.4 The computer program for simulation of observations.

The observations generated by this program are

(1) gravity potential difference

(2) gravity difference

(3) astronomic latitude

(4) astronomic longitude

(5) astronomic azimuth

(6) vertical angles

(7) spatial distances

(8) horizontal directions
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The program was written on a mainframe computer (VAX 6310) in 

FORTRAN language. The program consists of essentially four 

parts: the first part involves reading the data from a data 

input file, the second part performs the computation of 

various observations associated with the observation lines 

read in the first part. The third part consists of a 

perturbation routine which transforms the computed data into 

"field data". The last part consists of various subroutines 

that are needed. A flow chart for the program is presented in 

appendix B.2 and the program listing in appendix C 1 .

4.5 Elements of the deflection of the vertical

The elements of the deflection of the vertical are commonly 

decomposed into two parts: the north-south component, * and 

the east-west component, 77. The mathematical models of 

Chapter three require that approximate- values of these 

elements be known before the adjustment is made.

The deflection of the vertical elements can be determined 

from astronomic and geodetic measurements [e.g. Heiskanen & 

Moritz, 1967 pp.223] as

£ = $ - <p (4.10a)

77 = (\ - A)cosp (4.10b)
or by using the gravity anomalies, Ag as given by the Vening

Meinesz formulae [e.g. Heiskanen & Moritz, 1967 pp.114]

s h r j  J A 9s1nv'
o o

dS(y)cosctdu'dad(y) (4.11a)

77 277

.[
O

The deflection of 

equations (4.11)

. . dS(̂ i') .
Agsinv' —rr2t  S1 d(y)

the vertical 

have the same s

nact y ' da

values 

i gn as

obtained 

those of

(4.11b)

by using 

equations
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equations (4.11) have the same sign as those of equations 

(4.10) but differ in that the astrogeodetic deflections are 

oriented with respect to the geodetic coordinate system. 

Computations of equations (4.11) require values of gravity 

anomaly to be known and also the computation is usually 

lengthy and difficult.

A computer program in FORTRAN for computation of gravimetric 

quantities from high degree spherical harmonic function is 

given by Rapp (1982). However this program was not used as 

the values obtained are of the type (4.11). For this study, 

the elements of the deflection of the vertical were computed 

from astronomic coordinates which have been computed from the 

gravity potential [e.g Ashkenazi 1983]. The values used are 

shown in tables 5.2.

Equations (4.10) are then applied.

4.6 The free network solution

Since distances and azimuth observations were present, the 

network needed to be controlled only in the translational 

elements namely X, Y, Z or <p, X , h. Therefore the restriction 

matrix of equation (2.18) becomes

$ = tan-1 Z (4.12a)

(4.12b)

1 0  0 1 0  0 1 0 0

G = 0 1 0 0 1 0 . .  . 0 1 0 (4.13)

0 0 1 0 0 1 0 0 1
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Z. However, in the present computations the datum was defined 

over approximate coordinates in curvilinear form, that is in 

P » *■» h * The G matrix was therefore transformed to G to 
conform with the datum coordinates as

G = GJG’

where J is a 3x3 coefficient matrix defined as

(4.14)

r

j =

L

dx/dp dy /dp dz/d'p

dx/dk dy/dk dz/dk

dx/dh dy/dh dz/dh

1

(4.15)
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CHAPTER FIVE

THE NETWORK DESIGN AND COMPUTATIONS

5.1 Introduction

The establishment of a geodetic network includes the 

following steps in order of execution:

(1) field reconnaissance

(2) design of the network

(3) marking of the points

(4) carrying out the observations

(5) network adjustment

(6) interpretation of the results.

In the second step, of network design, Grafarend (1970) has 

identified four orders in the design of a survey network.

These orders are as outlined below:

The first order, called the Zero Order Design (ZOD) is the 

search for the optimal datum. The datum is usually determined 

by the nature of the problem, for example in absolute 

networks, the reference stations provide for the datum. In 

the present study the datum is defined through the 

approximate coordinates that have been used, within the 

framework of a free network.

The First Order Design (FOD) is the next level and refers to 

the configuration of the network, where the positioning of 

the points and the observation plan are to be optimized.

The Second Order Design (SOD) is the weight problem, that is 

the distribution of various accuracies to the different 

observations.
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The Third Order Design (THOO) refers to the optimal 

improvement of an already existing network by addition or 

deletion of points and /or observations. This stage is not 

considered for the present study.

The need for network design is to minimise "over surveying" 

as this is labour and time consuming. As already indicated, 

the actual position locations will not be investigated as 

these are constrained by other factors beyond this study, 

such as area topography, geology and station access.

In the approach to the solution of this problem, one 

recognises the three general criteria [e.g Schmitt, 1990] of 

precision, reliability and economy. The ideal situation is to 

express the three criteria as an analytic function which one 

then optimises. However, owing to the difficulties involved 

in establishing this general function, particularly in three 

dimensional networks, the present study adopts a different 

but satisfactory method.

In this study, the weights that are assigned to the 

observation values are considered optimal as these are based 

on wide experiences from various reports on different 

surveys. However, the main interest in this study is to find 

the optimal number of observations for each observation type.

The procedure adopted for optimization is by computer 

simulation method through the variance component estimation 

as explained in section 5.2.1. This procedure has an 

advantage in that it permits the possibility of using 

arbitrary decision criteria for the choice of an optimal 

design without having to formulate the objective functions in 

analytic forms.
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5.2. Network simulation.

The parameter estimation model of the Gauss-Markov type is 

given in Chapter Two as

y = Ax + e with D(y) = D(^) = T (5.1)<-yy

The parameter vector is then given by

x “ (A'WA)~ 1 A ’Wy (5.2)

and the dispersion Y of x is given by
x x

r - o* (A’WA)'* (5.3a)
X  X  O

and the dispersion Y of the estimate y of y is given byyv

Y = A7 A ” (5.3b)
y y  xx

and o' is the variance of unit weight. Y is the covariance
o  *  X

matrix of parameters.

For a survey network, x is the vector of the coordinates or 

their small corrections, y the vector of observations and A 

consists of the values computed from the mathematical models 

using the approximate station locations. The precision of the 

network is then assessed by analysing £

The criterion for assessment used in this study is the size 

of the absolute error ellipsoids. The values obtained are 

shown in the tables in section 5.4

Further to the analysis of the variance-covariance matrix £xy 

, a posterior variance of unit weight o is also computed 

from [e.g. Mikhail, 1976]

o ” (n+r-u)
where n is the number of observations, r is the number of 

restrictions and u is the number of parameters. The a priori 

value of o is taken as unit.o
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5.2.1 The variance component estimation

Consider the Gauss Markov model [Aduol, 1989] 

y = Ax + c (5.5)

with E(r) = 0, D(r) = . = D(y) = £

In order to solve a survey network, one normally observes 

different types of observations such as distances, angles, 

directions, vertical angles, azimuths etc. In this case then, 

one may consider the vector y of (5.5) to consist of several 

subvectors y , with each subvector containing a differenti
observation type. Associated with each subvector y » is a

variance component for that observation type a . Equation
Or.

(5.5) would then be represented as

(5.6)
r y.l

1<1__ £1

y2
: ! *

A2
l

x + £2
----

1
1 • 

>*
____

1
I
A,Jr

mm — n
• V)
____

1

witn ** ^(0,r ) = (0%o~ w ), 

types.

1(1 )k, for k observational

The dispersion of y, D(y) is obtained as

D(y) =D( ) =

J

w 1
C l  11

O' W 
o 2 22

» r Jok kk

(5.7)



On taking u = w , (5.7) becomes

D(y) =

—  •>. Q 
• v i  1 1

i
2 Q
C 2 2 2

(5.8)

2 _
, Q  ,c k k k —

Q is the cofactor matrix of the observations while £ is 

the covariance matrix of the observational type y . Fromi
(5.6) and (5.8) it can then be shown that

Q

Q Q  . . .  Q£ 1 £ 1 £l£2 £ i r k

Q Q  . . • Q£2£t £2£2 £ 2 £ k
m

Q Q  . . .  Q£ k £ i £ k £ 2 £ k £ k

(5.9)

for which one writes

Q = Q - AQ A' (5.10a)Cm \ f •. / W W
or equivalently,

Q = w'1- A(A’WA)"'a ’ (5.10b)

The various variance components may now be estimated as in 

Aduol (1983)

T !

2f I
Cl i

* 2 • ft I
" c2 |

£ ’W £i ii i 1

£*W £
2 22 2

£ ’W £
k kk k

(5.11)
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Lne parameters. Therefore the numoer of measurements for eacn 

observation type can be altered oepending on its 

contr1Dution.

Before tne number of observations are altered, it is 

necessary to set some accuracy criteria that the system must 

achieve. In the next section some precision criteria are 

reviewed and a choice as to which criterion to use is made.

Of importance is the question of which particular observation 

should one drop out during the optimization. A possible 

solution is to ensure that the remaining observations are 

uniformly distributed as much as is possible.

In this study, the remaining observations were kept uniformly 

distributed as much as was possible. The observations whose 

residuals appeared greater, though within acceptable limits, 

were also eliminated.

With regard to the astronomic observations, namely latitude, 

longitude and azimuth, special attention was given. The 

requirement was that these quantities be observed from the 

same stations as much as possible since this could minimise 

travelling expenses and again it is sometimes possible to 

observe these quantities simultaneously.

5.3 The precision criteria.

The quality of the adjusted coordinates of the network are 

analysed via the network’s a posterior variance-covariance 

matrix according to equation (2.3)

(5.15)

where <y2 is the variance of unit weight.
o
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5.3.1 Positional standard errors.

The positional standard errors of the parameters (i.e 

coordinates) are obtained by simply taking the square roots 

of the diagonal elements of the variance-covariance matrix, 

D(x). The size of the standard errors are dependent on the 

chosen datum [e.g Cross, 1979]. For this reason, the 

positional standard errors are not quite useful as tools of 

network analysis. However, in this study, they have been 

computed since the network was adjusted on the basis of a 

free network where no coordinates had been fixed (see section 

2.1.3).

5.3.2 Spherical standard error and spherical probable error. 

Spherical standard error, a is a single measure for threeA
dimensional cases and is given by [Mikhail, 1976]

Cf --T- {a + a + O' ) (5.16a)
s 3 x y  z

where c? , <y , and a are the standard errors in X, Y, and
x y =

2 respectively.

Closely associated with a is the spherical probable error 

SPE defined as [Mikhail, 1976]

SPE = 0.513(0' + c + Cf ) (5.16b)
for 0.35< (c- /a )<1.05 yy.

5.3.3 Mean radial spherical error (MRSE)

This is defined as [Mikhail, 1976]

MRSE (5.17)y
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5.3.4 Standard error ellipsoids.

Using matrix and vector notation and simplifying, the 
function

X ’£ ”‘x = 1 (5.18)

where X is the vector of parameters and £ is the covariance 

matrix. Equation (5.18) represents the equation of the 

standard error ellipsoid. The semi axes of this error 

ellipsoid are the square roots of the eigenvalues of the 

variance-covariance matrix and their directions are computed 

from the eigenvectors of those eigenvalues [Hirvonen, 1971].

The probability of a point falling on this standard ellipsoid 

is 19.9% [Mikhail, 1976]. The advantage of using the error 

ellipsoid as a tool for network analysis is that the values 

obtained for the computation of the ellipsoid are derived 

from the whole set of the variances and covariances unlike in 

single measure criteria where only the diagonal elements are 

consi dered.

5.3.5 Concluding remarks.

From the foregoing, one notes that the single precision 

criteria uses only part of the information concerning the 

precision of the network and as such is therefore not a very 

good precision criteria to use. On the other hand, the error 

ellipsoids make full use of all information concerning the 

precision of a network.

Therefore for this study the values of the error ellipsoids 

are computed and as a single precision criteria the spherical 

standard error o is also computed. And since the
9

mathematical models being tested are required for precise 

monitoring networks we set as a general requirement that each
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of the axes of the error ellipsoids do not exceed 10mm.

5.4 The Results of computations for initial epoch.

5.4.1 Test I

Test I was the fully observed model and was considered to 

contain the highest number of observations (not necessarily 

all possible observations). The present network consisted of 

26 possible observation lines for double observations and 6 

possible observations for point observations. All possible 

observations could be used during the computations but since 

it is not always possible (owing to field conditions) to 

observe all possible lines the following choice was made: all 

six point observations and 24 double line observations were 

assumed to have been possible to observe.

The full model was considered to yield results of highest 

accuracy. The observations used for this model are shown in 

Tables 5.1 and the approximate coordinates together with the 

elements of the deflections of the vertical are shown in 

Tables 5.2. The results of the computations for this model 

are given in Tables 5.3, 5.4 and 5.5.

In Table 5.3, the trace refers to the redundant observations 

as computed according to equation (5.13). The "observations 

used”, here refers to the actual number of observations that 

were used in contributing towards the estimation of the 

unknown parameters. The rest of the other observations were 

only necessary for improving the adjusted observations and 

are here referred to as “observations left".
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Table 5.1 The simulated observations of the full model

(a)

STATION ASTRONOMIC
LATITUDE

ASTRONOMIC
LONGITUDE

1 -0
e

51 38 .330 36
0

19 18 .023
2 -0 51 13 .523 36 17 59 .570
3 -0 52 08 .561 36 19 34 .531
4 -0 52 05 .417 36 17 58 .453
5 -0 53 10 .269 36 19 32 .273
6 -0 53 03 .861 36 18 15 .211

(b)

LINE DISTANCE 
(metres)

HORIZONTAL
DIRECTION

VERTICAL
ANGLE

1 2 2550.2932
0

287 33 36.38
4

-3 -48 -39.68
1 3 1106.5828 151 20 30.06 -15 -41 -10.90
1 4 2609.1804 251 11 46.19 -4 -53 -52.32
1 5 2893.3510 171 1 1 1 .25 -5 -59 -3.52
2 1 2550.2929 107 33 37.91 a 47 17.43
2 3 3397.3061 120 6 5.88 "2 -12 -35.87
2 4 1606.9482 181 14 37.00 -54 -21.31
2 6 3448.4205 171 56 22.06 -1 -16 -48.61
3 1 1106.5826 331 20 29.88 15 40 36.66
3 2 3397.3041 300 6 4.25 2 10 46.10
3 4 2974.3997 271 52 4.44 1 28 2.67
3 5 1910.0090 182 5 50.06 0 -3 -56.02
4 1 2609.1800 71 1 1 47.25 4 52 28.37
4 2 1606.9473 1 14 37.23 1 53 29.14

1 4 3 2974.3996 91 52 5.81 -1 -29 -38.39
4 5 3528.4614 124 39 1 .75 -1 -17 -41.76
4 6 1880.7889 164 0 12.06 0 -42 -17.70
5 1 2893.3513 351 1 1 1 .38 5 57 30.30
5 3 1910.0093 2 5 49.92 0 2 53.91
5 4 3528.4620 304 39 0.25 1 15 47.57
5 6 2392.4915 274 44 40.69 1 19 41.27
6 3 2991.6447 55 6 41.52 -1 -2 -52.00
6 4 1880.7901 344 0 12.25 0 41 16.29

6
______

5 2392.4917 94 44 42.13 -1 -20 -58.32
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( C )

LINE ASTRONOMIC
AZIMUTH

1 5 171
O s 

1 1 1.25
2 3 120 6 5.88
5 3 2 5 49.82
6 5 94 44 42.28
5 4 304 38 39.25
1 2 287 33 36.25
3 5 182 5 50.06
4 1 71 1 1 46.08
4 2 1 15 28.60
4 6 163 59 24.94

(d)
I-------
LINE

;________
POTENTIAL 
DIFFERENCE ( m V ?)

GRAVITY
DIFFERENCE (ms"2)

1 2 1653.98265760 0.00051767
1 3 2929.62462040 0.00091735

I 1 4 2176.91591540 0.00068274
1 5 2950.19104020 0.00092570
2 1 -1653.98345620 -0.00051784

i 2 3 1275.64002700 0.00040046
2 4 522.93370600 0.00016442
2 6 748.62703420 0.00023547
3 1 -2929.62526580 -0.00091849
3 2 -1275.64248020 -0.00039987
3 4 -752.71028380 -0.00023611
3 5 20.56379880 0.00000642
4 1 -2176.91321700 -0.00068228

2 -522.93053260 -0.00016419
3 752.71046880 0.00023593

4 5 773.27358080 0.00024239

I 4 6 225.69636540 0.00007033

I 6 i -2950.18804320 -0.00092384
5 3' -20.56612000 -0.00000719
5 4; -773.27510320 -0.00024224
5 6 -547.58032160 -0.00017211
6 3 527.01113480 0.00016430
6 4 -225.69667800 -0.00007043

!_!_
5 547.58018520 0.00017257
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Table 5.2 Approximate coordinates

(a)

UTM COORDINATES 
X (m) Y

GEODETIC COORDINATES
X

HEIGHT 
h (m)

1 ;9904334.88 201888.29 -0J 51 59.55 36 19 18.02
h
2207.900

2 *9904890.75 199460.91 -0 51 34.56 36 17 59.58 2038.900
3 9903189.63 202400.07 -0 52 29.98 36 19 34.54 1908.800
4 9903284.36 199426.75 -0 52 26.83 36 17 58.44 1985.700
5 |9901279.96 202331.63 -0 53 32.11 36 19 32.28 1906.900
6 ;9901476.98

i_____!____________
199946.84 -0 53 25.67 36 18 15.21 1962.800

(b)
.
STN
i

ELLIPSOIDAL CARTESIAN COORDINATES
X Y Z

DEFL. OF
e

THE VERT.
r)

i 5140177.718 3778830.147 -95838.194 21.213 0.000
2 5141487.484 3776781.987 -95067.973 21.044 0.000
3 5139622.594 3779056.330 -96768.421 21.421 0.000
4 5141446.194 3776707.306 -96672.831 21.400 0.000
5 5139638.794 3778981.400 -98676.885 21.844 0.000
61 5141097.793 3777095.873

_____________
-98479.939 21.800 0.000

__________ 1

TABLE 5.3 The fully observed network.

type of 
observation

total no. 
of obser.

obser.
used

obser.
left

1 . potential
differences 24 4.962

(20.7*)
19.038

(79.3*)
2. gravi ty 

differences 24 0.0
(0.0*)

24
(100*)

3. astro
latitudes 6 5.803

(96.7*)
0.197
(3.3*)

4. astro
longitudes 6 5.775

(96.3*)
0.225
(3.7*)

5. astro
azimuths 10 0.099

(1.0*)
9.901
(99.0*)

6. vertical
angles

24 0.417
(1.7%)

23.583
(98.3*)

7. spatial
distances 24 6.447 

(26.9X)
17.553
(73.1*)

8. hori zontal 
di rections 24 9.496 

(39.6X)
14.504
(60.4*)
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Table 5.4 The estimated coordinates for the full model

STATION LATITUDE i p ) LONGTUDE (K) HEIGHT (m) h

1
0

-  0 51 59.550 36 19 18.020 2207.901
2 - 0 51 34.561 36 17 59.581 2038.899
3 - 0 52 29.982 36 19 34.541 1908.799
4 -  0 52 26.821 36 17 58.440 1985.701
5 -  0 53 32.110 36 19 32.281 1906.900
6 i - 0 53 25.676 36 18 15.211

__________
1962.799 1------------ J

Table 5.5 The parameters of the error ellipsoids for the full 

model

station az imuth (cieg; v ..ang1e (Qeg)
Sr
? (m)

0.0090 235.6 1 .6
1 0.0020 173.8 -86.6 0.0065

0.0063 145.6 3.0
0.0097 201.8 2.1

2 0.0022 164.5 -87.4 0.0069
0.0067 111.8 1.6
0.0078 215.8 2. 1

3 0.0019 178.3 -87.3 0.0056
0.0060 1 25.7 1.6
0.0079 201.1 2.1

4 0.0018 168.8 -87.5 0.0057
0.0057 111.0 1.3
0.0097 199.5 1 .7

5 0.0020 161.5 -87.6 0.0066
0.0064 109.4 1.3
0.0098 229.2 1.6

6 0.0023 163.6 -86.0 0.0072
0.0073 139.1 3.6

5.4.2 Test II

Table 5.3 shows that various observation types contributed 

differently towards the estimation of the unknown parameters. 

Clearly, gravity difference observations were not required at 

all in the adjustment since their contribution was OX. These
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were then eliminated altogether from the adjustment. A low 

percentage of astronomic azimuth observations was required 

and therefore azimuth observations were reduced to just about 

the required number which was one. For practical reasons the 

astronomic azimuth observations used in this test were two.

The vertical angle observations were not very much needed in 

the adjustment. For this reason their number was reduced to 

six. Potential differences were highly used and therefore the 

full number was considered optimum. Spatial distances and 

horizontal directions were also used in larger proportions 

and since these are not difficulty to measure, it was decided 

that the full number of the observations be used.

Test II was then carried out using the new set of 

measurements in each of the eight observation types. The 

results are shown in Tables 5.6, 5.7 and Table 5.8.

Table 5.6 The Optimised network

type of total no. obser. obser.
observation of obser. used left

1. potential O A 4.985 19.015
differences (20.8%) (79.2%)

2. gravity o
di fferences
astro 5.918 0.082

3 • latitudes o (98.6%) (1.4X)
astro 5.697 0.303

4. longitudes o (95.0%) (5.0%)
5. astro O 0.016 1.984

azimuths c (0.8%) (99.2%)
6. vertical CL 0.274 5.726

angles 0 (4.6X) (95.4%)
7. spatial O A 6.521 17.479

distances (27.2%) (72.8X)
8. horizontal 9.589 14.411

directions 24 (40.0%) (60.0%)
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Table 5.7 The estimated coordinates of the optimised network

STATION
' " —

LATITUDE LONGTUDE HEIGHT (m)

1
0

- 0 51 59.550
0

36 19 18.020 2207.900
2 - 0 51 34.561 36 17 59.580 2038.900
3 - 0 52 29.982 36 19 34.540 1908.800
4 - 0 52 26.821 36 17 58.440 1985.700
5 - 0 53 32.110 36 19 32.281 1906.900

6
- 0 53 25.676 36 18 15.211 1962.800

Table 5.8 Parameters of the error ellipsoids for the 

optimised network

station 1 S T v -(§88)e o , . s (m)
0.0057 245.4 1.6

1 0.0013 189.6 -87.2 0.0045
0.0051 155.3 2.3
0.0066 184.1 2.2

2 0.0014 182.6 i oo -j 00 0.0048
0.0049 94.0 0.1
0.0052 348.7 -2.1

3 0.0012 199.2 i 00 -̂1 cn 0.0041
0.0045 78.8 -1.2
0.0055 351.1 -2.0

4 0.0012 193.3 00r-001 0.0040
0.0041 81.1 -0.8
0.0066 183.1 1.8

5 0.0014 180.9

CVJ•
00001 0.0047

0.0046 93.1 0.1
0.0063 225.9 2.0

6 0.0016 174.7 -86.9 0.0050
0.0057 135.8 2.4

5.5 Epoch II results.

In this second epoch of observations, point 4 of the network 

was deliberately displaced by 0”.001 (about 30mm) in 

latitude, 0".001 in longitude and 15mm in height. Thus point 

4 was taken to be the only unstable point of the object 

network. The task was now to estimate the new point position 

together with the point velocity including the auxiliary
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parameters. At first the network was computed as free network 

and it was noticed that the displacements that had been 

injected into point 4 could not be recovered.

The network was then computed as a fixed one with all other 

points fixed except point 4. The results of these 

computations are shown in Table 5.9,

Table 5.9 Results of Epoch II observations

1ati tude longi tude
—  

hei ght
old coordinates -O' 52*26".820 36' 17*58".450 1985.700 m
new coordinates -0 52 26.820 36 17 58.450 1985.700
std. error for 
new coordinates 0".000712 0".000839 0.0075m

point velocity -0.00032 "/yr 
(^10mm)

0.00179 "/yr 
55mm)

-0.0150 m/yr

std. error for 
point velocity 0.00100 "/yr 0.001188 "/yr 0.0106 m/yr

5.6 Epoch III Results

This is the third epoch of observations. Here, again point 4 

of the network was purposely shifted by a further 0".001 of 

arc in both latitude and longitude and by 15mm in height. A 

different set of observations was computed and these 

observations were then used in the kinematic model to 

estimate the coordinates of point 4, the velocity of movement 

and also the acceleration.

The network was computed as a fixed one with all other points 

fixed except station 4. The results of this computation are 

shown in Table 5.10
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Table 5.10 Results of Epoch III observations

latitude longitude » height
old coordinates -O' 52*26“.820 36' 17*58".450

I
1985.700 m

new coordinates -0 52 26.820 36 17 58.450 1985.700
std. error for 
new coordinates 0“.00593

. - . -

0".00700 0.06290 m

point velocity -0.00037 “/yr 
(^11mm)

0.00175 "/yr 
54mm)

-0.0149 m/yr

std. error for 
point velocity 0.0084 “/yr 0.0099 “/yr

"" 1 1 " j 
0.0890 m/yr

point
acceleration -0.00055 "/yr 0.00040 ~/yr -0.0068m/yr?

std. error for 
accelerati on 0.00854 "/yr 0.01012 “/yr2 0.08900m/yr'j

5.7 Epoch IV Results

This epoch consisted of the fourth set of observations. 

Station 4 was again allowed to move by a further amount of 

0**.001 in longitude only. The new set of observations was 

simulated and used in the kinematic model to estimate point 4

position, velocity and acceleration.

The computation of the network is carried out on the basis of 

a fixed network. The results of this computation are shown in 

Table 5.11
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Table 5.11 Results of Epoch IV observations

latitude longitude height
old coordinates « ... ! »-0 52*26".820 36 17*58".450 1985.700 m
!new coordinates -0 52 26.820 36 17 58.450 1985.700
. std. error for 
jnew coordinates 0".006433 0".00758 0.0687 m

point velocity -0.00051 "/yr 0.00156 "/yr 
16mm) (2- 48mm)

-0.0149 m/yr

std. error for 
point velocity 0.00914 "/yr 0.01078 "/yr 0.0973 m/yr

point
acceleration -0.00006 "/yr2 0.00170 ”/yr

\

2
-0.0109 m/yr

std. error for 
acceleration 0.00809 “/yr? 0.00958 "/yr? 0.08422 m/yr2

5.8 Epoch V Results.

Station 4 was again allowed to shift further by small amounts 

of 0".003 in latitude and 10mm in height. The new set of 

observations was then computed. The kinematic model was used 

to compute the new set of parameters namely point 4 position,

it’s velocity and acceleration together with other auxiliary 

data.

Again, the computation of this network was carried out on the 

basis of a fixed network. The results of this computation are 

shown in Table 5.12
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Taole 6 . 1 4 Results of Epoch V observations

latitude____ ; longitude neignt
old coordinatfcb -0 52*26".820 36 17*58" .450 1985.700 m
new coordinates -0 52 26.820•36 17 58.450 1985.700
;sta. error for 
new coordinates

1
0" .00063

i
0 ”.00082 0.0076m

point velocity -0.00067 "/yr 0.00134 /y r -0.0148 m/yr
i i i............... i (^2 1mm) (2s 4 1 mm j
std. error for 
[point velocity 0.00099 "/yr j

i
0.00117 "/yr

1
0.0106 m/yr

point
acceleration -0.00057 "/yr2 j

1
0.0034 "

*> i
/yr 2 1-0.0181 m/yr

std. error for 
acceleration■■ —- ----— 4

0.00083 "/yr j 
... ...... . ■ *

0.00098 "/yr I
____ L

i i
0.0086 m/yr

The observations of the fifth epoch of observation were again 

computed on the basis of a free network, similar to the 

initial epoch observations. This static mode of network 

computation was made for purposes of comparison with the 

results of the initial epoch. The results obtained are snown 

in Tables 5.13, 5.14, 5.15 and 5.16.

Table 5.13 Estimated coordinates for Epoch V (fixed mode)

|STATION* LATITUDE LGNGITODc hEIGm T (m; 1
1 i

i - 0 51 59.550 36 19 18.020 2207.901
2 - 0 51 34.561 36 17 59.581 I 2038.899
2 - 0 52 29.982 36 19 34.541 1908.799

- 0 52 26.820 36 17 58.450 l 1985.700
5 - 0 53 32.110 36 19 32.281 1906.900
61________L

- 0 53 25.676
________ l

36 18 15.211
1

1962.799
____________ i



TABLE 5.14 The fifth epoch free network results

type of total no. obser. obser.
observation of obser. used left

1. potential 24 4.991 19.009
di fferences (20.8%) (79.2%)

2. gravity
differences 0 - -

o astro 6 5.964 0.036
1ati tudes (99.4%) (0.6%)

A astro 6 5.932 0.068
1ongi tudes (98.9%) (1.1%)

5. astro o 0.246 1.754
azimuths c. (12.3%) (87.7%)

6 . vertical 10 0.131 9.869
angles (1.3%) (98.7%)

7 . spatial 24 8.579 15.421
distances (35.8%) (64.2%)

8. hori zontal 24 7.158 16.842
di rections (29.8%) (70.2%)

Table 5.15 Estimated coordinates for Epoch V observations 

(free network mode)

s t a t i o n! LATITUDE LONGTUDE HEIGHT (m)
i1

0
- 0 51 59.548

0
36 19 18.022 2207.907

2 - 0 51 34.558 36 1 7 59.582 2038.907
3 - 0 52 29.981 36 19 34.543 1908.807
4 - 0 52 26.820 36 1 7 58.459 1985.667
5 - 0 53 32.110 36 1 9 32.281 1906.907
6

________L_
- 0 53 25.674 36 18 15.211 1962.607

________________
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Table 5.16 The parameters of the error ellipsoids (free

network)

station a?lsf v -(§sel

E

•

<D
0.0096 191.9 1 .2

1 0.0017 208.9 00•00001 0.0069
. 0.0069 101.9 -0.4

0.0127 245.4 0.4
2 0.0018 163.2 -86.9 0.0083

0.0065 155.4 3.1
0.0090 315.3 -0.6

3 0.0015 203.1 •00001 0.0064
0.0065 45.3 -1 .5
0.0085 310.3 -0.7

4 0.0015 198.0 -88.1 0.0062
0.0065 40.3 -1.8
0.0121 246.4 0.3

5 0.0017 163.8 -87.7 0.0081
0.0067 156.4 2.3
0.0123 191.4 1.0

6 0.0019 159.6 i CD CD CD 0.0083
0.0071 101 .4 0.6

5.9 The Main Computer Program

This section explains the program in broad terms only. The 

program listings are however given in appendix C2. A flow 

chart of the program was also prepared to aid the reader in 

understanding the program and is in appendix B2. Part of the 

results produced are listed in appendices C3 and C4.

Although separate programs were written for each epoch, these 

can be combined into one program which would consist of 

basically two controls: one for free network adjustment and 

the other for fixed network computation.

The program was written in FORTRAN 77 and prepared on a VAX 

6310 Mainframe computer. The storage capacity for this system 

was large enough to accommodate the program requirements.

VST



The program consists of 16 segments; the main segment and 15 

subroutines. The main segment controls the operation of all 

the other segments and also forms the design matrix, the 

weight matrix and the observation vector. These segments are

NETWORK: This is the main segment that controls the operation

of all other segments.

RTDMS: Converts radians into degrees, minutes and seconds. 

NORMAL: Forms the normal equation’s matrix from the design 

matrix and the weight matrix.

EULA: Forms the Eulerian rotation matrix.

MATINV: Inverts the normal equation matrix.

ELLIPSOID: Computes the parameters of the error ellipsoids 

for the network points.

RADIAN: Converts angular measurements from degrees, minutes 

and seconds into radians.

AZIMUTH: Computes the azimuth of a line from the coordinate

di fferences.

TRANSP: performs matrix transposition.

ELLOR: Computes the vertical angle for an ellipsoidal radius. 

VAR: Computes the variance components for various observation

types.

CART: Computes the geocentric coordinates from curvilinear

coordi nates.

ASSIGN: Assigns the various observation lines to their

corresponding codes.

JACCOB: Computes the elements of the matrix of differentials 

i n 4>, X. and h .
DELTA: Computes the elements of the vector of differentials 

in gravity potential.

TIMES: Premultiplies two matrices.

The time required in the central processing unit for running 

the program was within the time limit (30 cpu seconds) set by
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the Insti tute of Computer Sciencethe administration of 

University of Nairobi.

m
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CHAPTER SIX

DISCUSSIONS

This chapter discusses the various findings from the report, 

particularly the experiments and attempts to provide possible 

explanations to those findings. It is notified here that 

other discussions are also made within the report under the 

headings "concluding remarks".

During the optimisation of the network, the gravity 

difference observations were not required in the estimation 

of the parameters as shown in Table 5.3. Since these 

observations are necessary, mainly for estimation of the 

heights, it therefore meant that the potential difference 

observations contributed much more towards estimation of 

heights.

A small proportion of astronomic azimuth observations were 

"used" in the network while a relatively large proportion of 

astronomic latitude and astronomic longitude were "used" as 

seen in Tables 5.3 and 5.6. In fact less than one azimuth 

observation was needed. Noting that only one azimuth 

observation is sufficient to orient a network, it therefore 

meant that the remaining proportion to fulfill this 

requirement was contributed by the astronomic latitude and 

astronomic longitude.

A small proportion of vertical angle observations was 

required contrary to the expectations. Since vertical angles 

would mainly contribute towards estimation of heights, 

deflection of the vertical elements and refraction, it seems 

that the basic parameter, height, got a maximum contribution 

from potential difference observations. Refraction 

coefficients were not estimated and therefore this reduced
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the requirement of vertical angles. It is suggested here that 

in real situations, a maximum number of vertical angles would 

be needed, since real data has other systematic influences 

such as refraction.

The optimised network turned out to be more precise than the 

fully observed network, to the contrary. This could be due to 

the fact that during the optimisation process, those 

observations with relatively large residuals were discarded.

The proportion of observations that were required towards the 

estimation of the parameters are fairly the same for both the 

fully observed and the optimised network as shown in Tables

5.3 and 5.6. From this, one may infer that there could be a 

basic contributory requirement from each observation type 

that must go towards estimating the parameters.

Throughout the computation of the network from the second 

epoch up to the fifth epoch of measurement, the new 

coordinates of the unstable point remained significantly 

unaltered. This is in line with the mathematical models used 

for the network computation since all network coordinates for 

any epoch are referred to the initial epoch coordinates.

For the second epoch of observation, one is able to estimate 

velocity if displacement of a point has occurred. Since the 

mathematical models used estimate velocity, the displacement 

is obtained implicitly as the product of velocity and the 

time that has elapsed between the two epochs of measurement.

In order to test the mathematical models, some shifts were 

introduced as shown in section 5.5. To a fairly good 

approximation, the models of adjustment recovered these 

shifts. This was the case for both the second and the third
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epoch of observations.

The fourth epoch results were a little different, the model 

of adjustment was able to recover, to a good approximation, 

the shifts introduced in both latitude and longitude, but not 

height. The shift in height appeared exaggerated.

The fifth epoch results also showed that the model was able 

to recover, approximately, the shifts introduced in longitude 

and height but not latitude.

It is noted that there is a general trend for the model to 

slow down the movement of the point in latitude and 

compensate this movement in both longitude and height 

components. If a point is arbitrarily displaced in each of 

the three axes of a coordinate system, it is possible to 

return the point to its original position by translation on 

only two of the axes combined with suitable rotations. This 

could have happened to the adjustment of the network 

particularly during the fourth and the fifth epochs.

It is also noted that the third epoch of observation was able 

to estimate the point accelerations. This is possible since 

there are two velocities between the first and the third 

epoch of observation. In fact it was expected that the 

estimation of accelerations would improve as the number of 

epochs increased since beyond the third epoch of observation, 

redundancy in acceleration increased. This is the case as 

shown in Tables 5.9, 5.10, and 5.11.

In order to obtain very precise results for the network, the 

a priori standard errors of astronomic longitudes had to be 

improved from 0".5 to 0".3. This therefore meant that extra 

care has to be taken when making these observations. This
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includes improved methods of observing longitudes.

At the fifth epoch, the network was again computed on the 

basis of a free network, just as the initial epoch. It was 

noted that the fifth epoch free network coordinates and the 

fixed coordinates differ significantly particularly in 

longitude, and in general all free network coordinates 

shifted significantly so that one is not able to pinpoint 

which point was unstable. All the free network heights except 

for the unstable point 4 were dispalced by the same amount,

7mm while point 4 was shifted by about 3mm. This shows that

the effect of displacement on point 4 was distributed over

all the other points by the model of adjustment. This

therefore means that if the network was being computed on the 

basis of discrete epochs, the varying coordinates of the 

network (due to deformation) would not provide sufficient 

information on which points were unstable.

85



CHAPTER SEVEN

CONCLUSION

This chapter summarises the work done and gives 

recommendations arising from the findings of the work so far

reported.

7.1 Summary

Reported herein are the mathematical models for computation 

of localised three dimensional geodetic monitoring networks. 

Also considered is the network design aspect.

The mathematical models described here are based on the 

kinematic estimation model of geodetic network adjustment 

within the framework of integrated geodetic networks. The 

design aspect considered was the weight problem for each of 

the various observations used. These observations were 

astronomic latitude, astronomic longitude, astronomic 

azimuth, vertical angles, spatial distances, horizontal 

directions, gravity intensity differences and gravity 

potential differences. The main parameters computed by these 

models were the network coordinates based on the initial 

epoch observations, point velocities of the unstable network 

points together with the acceleration values where possible. 

Other auxiliary parameters were the deflection of the 

vertical elements and refraction coefficients.

A test network consisting of six points was computed based on 

the proposed mathematical models. Since the study was carried 

out by computer simulation, intentional shifts had to be 

introduced into one of the network points so as to cause some 

network deformation. Five observation epochs were made at a 

uniform interval of one year. The initial (first) epoch 

observation yielded network coordinates while the second
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observation epoch, estimated in addition, point velocities. 

Third observation epoch together with the succeeding epochs 

each estimated network coordinates, point velocities and 

accelerations. Although the velocities varied from epoch to 

epoch, the network coordinates remained the same as those 

computed with the initial epoch observations. All these 

realizations were in support of the theory of the 

mathematical models used. The displacements computed from the 

product of velocity and time reflected the magnitudes of the 

intentional shifts that had been injected into the network to 

cause deformation.

In order to determine the number of observations needed for 

each type of observation, individual contribution of each 

type of observation required in the estimation of the 

parameters was computed based on the variance component 

estimation. From this estimated contribution, one was then 

able to alter the number of observations in each type of 

observation as necessary. For the test network, it was noted 

that only few (about one) of azimuth observations was needed 

in the adjustment of the network. Gravity values were not 

required in the adjustment while the other observations were 

needed in varying proportions as shown in Chapter Five. The 

computation of the initial network was repeated with the 

optimum number of observations and the accuracy parameters of 

the network did not deteriorate; an indication that the 

discarded elements were superfluous and therefore not 

requi red.

7.2 Conclusions

In kinematic estimation model using the integrated approach, 

it is necessary to observe each of astronomic latitude and 

astronomic longitude at all stations of the network.
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Only few (about 1 %) of astronomic azimuth observations are 

necessary in a localised monitoring network when using the 

kinematic model of adjustment.

Since the optimised network was of comparable accuracy with 

the fully observed network, it is concluded that the variance 

component estimation procedure through which the optimisation 

was made is valid and therefore acceptable.

The kinematic estimation models using the integrated approach 

proposed here are capable of detecting point shifts of small 

magnitudes: in this experiment, 0".002 in either latitude or 

longitude and about 10mm in height could be detected. The 

mathematical models are thus acceptable.

The kinematic estimation models provide means for continuous 

but pointwise monitoring of ground deformations since 

velocities and accelerations are estimated. This continuous 

monitoring can also be extended to prediction of deformation 

in areas concerned.

7.2 Recommendations

Although the optimisation results require that only few 

vertical angle observations are necessary to compute the 

network, it is recommended here that a maximum number of 

vertical angle observations should be made in order to 

estimate and subsequently eliminate refractional influences 

which the test data lacked.

It is recommended that as a further test to the kinematic 

estimation models, real data should be used and the 

stochasticity of the reference network should be taken into 

account.
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APPENDIX A

THE PARTIAL DERIVATIVES USED IN THE OBSERVATION EQUATIONS

The notation used is similar to that used in the text. N and 

M are the ellipsoidal radii of curvature in the normal and in 

the meridian respectively and e is the first eccentricity of 

the reference ellipsoid.
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APPENDIX B PROGRAM FLOW CHARTS

APPENDIX B.1 The Data Simulation Program (SIMUL)

START

l

READ I N DATA

|____ ___________________

1

! • O U T P U T  O F
C O M P U T A T I O N  OF

I H U L*
T R U E

O B S E R V A T  I O N S
O B S  E h V A  T I O N S

i
1

) ' "
*

|
a

SUBROUT I NFS

PERTURBING THE 
TRUE

OBSERVATIONS

<-

F I E L D

OBSERVATIONS

END
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APPENDIX B.2 The Main Program for Adjustment (ADAN)

START

I

i

, READ
1. APPR. STATION COORDINATES AND | 

OTHER AUXILLIARY DATA 
i 2. OBSERVATIONS

a) .POTENTIAL DIFF.
b) .GRAVITY DIFF.
c) .ASTRO. LATITUDE
d) .ASTRO. LONGITUDE
e) .ASTRO. AZIMUTH
f) .VERTICAL ANGLE
g) .SPATIAL DISTANCE
h) .HORIZONTAL DIRECTION

CONVERT CURVILINEAR COORD. INTO \ 
GECCENTPIC

j

FORM THE DESIGN MATRIX, THE VECTOR 
OF OBSER. AND THE WEIGHT MATRIX

•iiiii
.

Y

I
NI-----

INITIAL EPOCH?

>Y

READ MORE 
DATA?

I N
B
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A B

PERFORM A FREE NETWORK 
COMPUTATION

VARIANCE COMPONENTS

•

—

r

ITERATE
COMPUTE

WEIGHTS AND 
PARAMETERS

1f

COMPUT E THE I

PERFORM A FIXED NETWORK 
COMPUTATION

2ND EPOCH? N

COMPUTE
.1. POINT COORDINATES 
• 2 VEL. OF OBJ. POINTS 
I 3. OTHER AUXILLIARY DATA

COMPUTE THE 
ERROP ELLIPSOIDS

COMPUTE
1.OBJECT COORD.
2.OBJECT PT. VELOCITIES 
3.OBJECT PT. ACCEL.
4.OTHER AUXILLIARY DATA l

I
COMPUTE THE ERROR 

ELLIPSOIDS OF OBJ. PTS

COMPUTE THE ADJUSTED 
OBSERVATIONS

END
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APPENDIX C PROGRAM LISTINGS AND THE RESULTS

Appendix C.1 program Listing for the data simulation program CSIMUL)

C PROGRAM COMPUTES THE OBSERVATIONS OF:
C 1. GRAVITY POTENTIAL RESPECTIVELY POTENTIAL DIFFERENCE
C 2. GRAVITY RESPECTIVELY GRAVITY DIFFERENCE
C 3. ASTRONOMIC LATITUDE
C 4. " LONGITUDE
C 5. " AZIMUTH
C 6. VERTICAL ANGLES

7. SPATIAL DISTANCES
8. HORIZONTAL BEARINGS.

C FROM APPROXIMATE U.T.M. COORDINATES OF A NETWORK 
C

PROGRAM OBSERVATION 
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION PSEC(9),H(9),ETA(9),SAI(9),GR(9)
DIMENSION GX(3,1),RG(3,1),GPT(54),GD(54)
INTEGER STN(9),IPD(9),LD(9),IPM(9),LM(9),KN(54),KF(54)
REAL*8 LSEC(9),ALAT(9),ALON(9),AZIM(58)f LAT(9),LON(9)
DOUBLE PRECISION X(9),Y(9),Z(9),UX(9),UY(9)
DOUBLE PRECISION R(3,3),AZI(9),S(54),GP(9 )
DOUBLE PRECISION AZ(54),B(54 ) ,E,C1,C2 

C ==========
C INPUT CONSTANTS

A=6378249.145 
E=0.082483399 
P=206264.8063 
GPOT=3.9860047D14 
N=24

C A. READ IN DATA
C --------------------------------------------------------------

WRITE(12,4)
NP=6
DO 1 1=1,NP
READ(15,2)STN(I),UX(I),UY(I),ETA(I),SAI(I)

1 WRITE(12,2)STN(I),UX(I),UY(I)
4 FORMAT(//IX,*STATION \  2X,’NORTH *,2X,*U.T.M*,2X, * EAST’,

</50(*=’))
2 FORMAT(2X,I2,3X,F10.2,3XfF9.2,2X,F5.3f2X,F6.4)

WRITE(12,3)
DO 5 1=1,NP
READ(15,10)STN(I),IPD(I),IPM(I),PSEC(I),LD(I),LM(I),LSEC(I),H(I) 

10 FORMAT(2X,I2,2X,I2,2XII3,2X,F7.3,2X,I2I2X,I2P2X,
<F6.3,2X,F8.3)
WRITE(12,10)STN(I),IPD(I),IPM(I),PSEC(I),LD( I),LM(I),LSEC(I),H(I) 
CALL RADIAN(IPD(I),IPM(I),PSEC(I),LAT(I))
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 o

CALL RADIAN(LD(I),LM(I),LSEC(I),LON(I))
C CONVERT FROM CURVILINEAR GEODETIC TO GEODETIC CARTESIAN.

C1=A/SQRT(1.-(E**2*SIN(LAT(I)) **2))
C2 = C1+H(I)
X(I)=C2*COS(LAT(I))*COS(LON(I))
Y(I)=C2*COS(LAT(I))*SIN(LON(I))
Z(I)=(C2-C1*E**2)*SIN(LAT(I) )
ALAT(I)=(ATAN(Z(I)/DSQRT(X(I)**2+Y(I)**2)))*P
ALON(I)=(ATAN(Y(I)/X(I)))*P
SAI(I)=ALAT(I)-LAT(I )*P
ETA(I)=(ALON(I)-LON(I )*P)/COS(LAT(I))
GR(I)=GPOT/(X(I)**2+Y(I) **2 + Z(I)**2)
GP(I)=GPOT/DSQRT(X(I)**2+Y(I)**2+Z(I)**2)

5 CONTINUE 
WRITE(12,8)
DO 21 1=1,NP

21 WRITE( 1 2,1 5 )STN(I),X(I),Y(I),Z(I)fGR(I),GP(I)
WRITEC12,100)
DO 101 1=1,NP
CALL RTDMS(ALAT(I),MD,MM,SE1 )
CALL RTDMS(ALON(I),NL,NM,SE2 )
WRITE(12,104)STN(I),MD,MM,SE1,NL,NM,SE2 

101 CONTINUE
104 FORMAT(2X,I2f3X,I2,2XfI3,F8.3,3X,I2,2X,I2,2X,F8.3)
100 FORMAT(//2X,* STN’,5X,’ASTRO. LAT ' , 9X,’ASTRO. LON’,/50(’ = ’)) 

C READ IN OBSERVATION LINES.
C ------------------------------------------------------------

DO 20 1 = 1 , N
READ(15,27)KN(I),KF(I)

20 CONTINUE 
C
C C. VERTICAL ANGLES, GEODETIC AZIMUTH AND DISTANCE.
C ---------------------------------------------------

DO 50 1=1,N 
K1=KN(I)
K2=KF(I)
GX C1 ,1) = X(K2)-X(K1)
GX(2,1)=Y(K2)-Y(K1)
GX(3,1)=Z(K2)-Z(K1)
CALL ROT AT(LAT(K1),LON(K1 ) , R )
CALL TIMES(R ,GX,RG,3,3,1)
S(I)=DSQRT(RG(1,1)**2+RG(2,1)**2+RG(3,1)**2)
B(I)=(ASIN(RG(3,1)/S(I)))*P
CALL AZIMUTH(RG(2,1),RG(1,1),AZ(I))
AZIM(I)=AZ(I)+ETA(I)*TAN(LAT(I))
GPT(I)=GP(K2)-GP(K1 )
GD(I)=GR(K2)—GR(K1 )

50 CONTINUE
OUTPUT RESULTS

WRITE(12,85)



DO 90 1=1,N
CALL RTDMSC AZ(I),IA,IM,SECS)
CALL RTDMSCAZIM(I),NI,MA,SX)
CALL RTDMSCB(I),IB,MB,SE)
WRITEC12,88)KN(I),KF(I),S(I),IA,IM,SECS,IB,MB,SE.GPT(I)
<,GD(I)

88 FORMATC1X,12,1X,I2,1X.F9.4,1X,I3,1X,I2,1X.F6.3 
<,2X,I3,1X,13,1X,F7.3,2X,F10.3,2X,F9.7)

90 CONTINUE
85 FORMATC//2X,’LINE*,2X,’DISTANCE’ ,4X,* AZIMUTH’,5X,

<7X,*V. ANGLE ’,2X,’P.DIFF’,2X,’G .DIFF’,/70(* = *))
55 FORMAT C2X,I2,2X,I2,3X,I3,2X,I2,2X,F6.3,3X,I3,2X,I2,2X,F6.3)
45 FORMAT(2X,I2,2X,I2,4X,I3,2X,I2,2X,F6.3)
35 FORMAT(2X,12,2X,12,4X,F15.4)
27 FORMAT(2X,I2,2X,I2)
15 FORMAT(2X,I2,2X,F12.3,2X,F12.3,2X,F12.3,2X,F9.7,2X,F14.3)
8 FORMAT(//1X,* STATION’ ,4X,* X *,12X,*Y ’,1 OX,*Z*,3X,’GRAVITY* ,

<2X,*G. POTEN.*,/70C’ = '))
3 FORMATC//2X,* STATION *,4X,* LATITUDE *,5X,* LONGITUDE *,5X,’HEIGHT*,/ 

<60(* = ’ ))
WRITEC12,1001 ) •

1001 FORMATC/5X,*STN*,1 OX,’ETA’,1 OX,*SAI’,/5X,40C’ = ’))
DO 1002 1=1,NP

1002 WRITEC12,1003)I,ETA(I),SAI(I)
1003 FORMAT(3X,I2,3X,F15.5I2X,F15.5)

STOP
END
SUBROUTINE RTDMSCANG,IDEG,IMIN,SEC)

C CONVERTS RADIANS INTO DEGREES, RADIANS AND SECONDS 
IMPLICIT REAL*8(A-H,0-Z)
INTEGER IDEG,IMIN 
IDEG=ANG/3600.
IMIN=(ANG-(IDEG*3600))/60.
SEC= C ANG-(IDEG*3600 + IMIN*60))
RETURN
END
SUBROUTINE ROTATCPI,DL,R )

C FORMS THE EULERIAN ROTATION MATRIX
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION RC3.3)
R(1,1)=-1.0*SIN(PI)*C0S(DL)
R(1,2)=-1.0*SIN(PI)*SIN(DL)
R(1,3)=COSC PI)
R(2,1)=-1.0*SIN(DL)
R(2,2)=COSCDL)
R(2,3) =0.0
R(3,1)=COSC PI)*COSC DL)
R(3,2)=COSCPI)*SINCDL)
R(3,3)=SINCPI)
RETURN
END



c

SUBROUTINE AZIMUTH(DY,DX,AZ)
C COMPUTES THE CORRECT AZIMUTH FOR A GEODETIC LINE 

IMPLICIT REAL*8(A-H,O-Z)
P=206264.8063 
PI=3.141592654
IF(ABS(DY).GT.ABS(DX))GOTO 2 
AZ=ATAN(DY/DX)
IF(DX.LT.0.0) GOTO 3 
IF(AZ.GT.O.O) GOTO 8 
AZ=((2.0*PI)+AZ)*P 
GOTO 1

3 AZ =(PI+AZ) *P 
GOTO 1

2 AZ=ATAN(DX/DY)
IFCDY.LT.0.0) GOTO 4 
AZ=(CPI/2.0)-AZ)*P 
GOTO 1

4 AZ=C(3.0*PI/2.0)-AZ)*P
1 RETURN
8 AZ=AZ*P

RETURN 
END
SUBROUTINE TIMES(A,B,C,II,KK,JJ)

C PREMULTIPLIES TWO MATRICES
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(II,1),B(KK,1),C(II,1)
DO 10 1=1,11 
DO 10 J=1,JJ 

10 C(I,J)=0.0
DO 30 1=1,11 
DO 30 K=1,KK 
AA=A(I,K)
IF(AA.EQ.0.0)GOTO 30 
DO 20 J=1,JJ

20 C(I,J)=C(I,J)+AA*BCK,J)
30 CONTINUE

RETURN 
END
SUBROUTINE RADIAN(IDEG,IMIN,SEC,RAD)

C CONVERTS DEGREES,MINUTES AND SECONDS INTO RADIANS
IMPLICIT REAL*8(A-H,0-Z)
TERM1=IMIN/60.0 
TERM2=SEC/3600.0 
RDEG=IDEG
DEG=RDEG+TERM1+TERM2 
RAD=3.1415926536*DEG/180.0 
RETURN 
END
SUBROUTINE ATRANCA,B,M,N )

C MATRIX TRANSPOSITION
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REAL A(M,N ),B(N,M) 
DO 30 1=1fN 
DO 30 J=1 ,M 

30 B(I,J) = A(J , I) 
RETURN 
END

n 2



APPENDIX C.2 Program Hating for tha main program (AOAN)

PROGRAM NETWORK 
IMPLICIT REAL»8(A-H,0-Z)
DIMENSION AT(17,550),ATW(17,550),W(550,550),ER( 550,1) 
DIMENSION ETW(1,1 7 ), ADX(550, 17),A(550,1 7)
DIMENSION AAT(550.550),YC(550),P(550),AX(560,1)
DIMENSION ERR(550,1 ),SW(550,550),SET(550,550) ,STD(550) 
DIMENSION PN(550),SEY(550),SEE(550),YL(550)
DIMENSION HT(6),HT1(6),EZ(3,1),RZ(3,1),OX1(6),OY1(0),OZ1(6) 
DIMENSION DW(3,1),RC(3,3),RW(3,1),DJ(3,3)
DIMENSION ATWA(17,17),AINV(17,17),ATY(17,1)
DIMENSION 0X(17,1),COVX(17,17 ) ,CC(17,17)
DIMENSION G(3,19),WEIN(48)
DIMENSION BB(17,17),F11 ( 1 7,17),BV(17,17),WEN(3,3)
DIMENSION FT(17,17),FF(17,17)
DIMENSION Q(3,3),D(3,3),VAL(3),R(3),F1T(17,17)
DIMENSION Rl(3,1),01(3,1),DA(3,1),EC(3,1),OT(3,3)
DIMENSION RA(3,1),DS(3,1),DB(3,1),T(3),RJ(3,1),GPD1(24) 
DIMENSION GP0(24),DIST1 ( 24),EH 1(24),ESI(24),GE01(24),BR1(6) 
DIMENSION RL1(24)tA81(4)9VIN1(24),SPT1(24),DIR1(24)
DIMENSION DIST(24),RE(3,3),ETWE(1,1),EP1(24),EG1(24),EB1(6) 
DIMENSION EH(24),ES(24),WCO(3,3),WE(3,3),WET(3,3),OX(3,3) 
DIMENSION EA1(4)
DIMENSION GEO(24),GRAV( 24),BR(6),RL(10),AS(4),VIN(24),SPT(24) 
DIMENSION 0IR(24),EP(24),EG(24),EB(6),EL(10),EA(4),EV(24 ) 
DIMENSION OEE(24),SE(24),WP(24,24),XE(6),YE(6),ZE(6)
DIMENSION ZX(6),ZY(6),ZZ(6),OX(6),OY(6),OZ(6),DFX(6)
DIMENSION DFY(6),YLO(6),0FZ(6)
DIMENSION ZR(6),ZU(6),ZJ(6),WG(3,18),YP(24),YG(24),YB(24) 
DIMENSION YA(4)tYV(24),Y0(24),YH(24),PS(24),GS(24),BS(10) 
DIMENSION TS(10),AST(4),SVE(24),SOP(24),SHD(24)
DIMENSION HT3(6),BLAT3( 6),BLON3(6),ETA3(6),SAI3(6),DIST3(24) 
DIMENSION HOR3(24),VER3(24),AZ3(6),GPD3(24)
DIMENSION HOR4(24),VER4(24),BLAT4(6),BLON4(6),GPD4(24),AZ4(6 ) 
DIMENSION OIST4(24)
INTEGER KH(24) ,JH(24),JV(24) ,KV(24) ,KH1 (24 ), JHK24)
INTEGER KVI(24),KII(24),KJ(24),HDEG,HMIN,VDEG,VMIN 
INTEGER KI(6),JP(24),KN(24),KF(24),AD,AM,J9(10),KK(6),NZ1(6) 
INTEGER NZ(6 ),NC(6),KG(24),JG(24),K11(6),KA(2),KA1(2),NC1(6) 
INTEGER KN1(6) ,KF1(6),J91(6),KK1(6),JP1(24),KV1(24),KII1(24) 
INTEGER JV1(24),KI2(6),NC2(6),NZ2(6),KII2(24),JP2(24),KH2(24 ) 
INTEGER JH2(24),KV2(24),JV2(24),J92(2),KA2(2),KA3(6 ),J93(6 ) 
DIMENSION BLAT1(6),BLON1(6),ETA1(6),SA11(6),HOR1(24 ),VER1(24 ) 
DIMENSION HT2(6),0X2(6),OY2(6),OZ2(6),XAC(6),YAC(6 ),ZAC(6 ) 
DIMENSION BLAT2(6),BLON2(6),SAI2(6),ETA2(6),DIST2(24),HOR2(24) 
DIMENSION VER2(24),GPD2(24),AZ2(2)
REAL*8 LONSEC,LATSEC,LATI(6),LONG(6),LATI2(6),LONG2(6)
REAL*8 TE1,T1,T3,SXYZ,LATII(6),LONG1(6),LONG3(6),LATI3(6)
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DOUBLE PRECISION X( 6 ), Y( 6 ), Z(6 ) ,HOR( 24 ) , VER( 24 ), AZ( 2 ) , AZ1 ( 6 ) 
DOUBLE PRECISION GP,S1,S2,BLAT(6),BLON( 6),ETA(6),SAI ( 6)

C INPUT THE CONSTANT VALUE
C -------------------------
C 1. THE EARTH * S RADIUS, R 
C 2. THE PRODUCT GM
C 3. FACTOR THAT TRANSFORMS RADIANS INTO ARC SECONDS, P 
C 5. SEMI-MAJOR RADIUS OF THE REF. ELLIPSOID,R1
C 6. " MINOR ............. " ,R2
C 7. FIRST ECCENTRICITY, E 

GM=3.9860047E+14 
R1=6378249.145 
R2=6356514.870 
E=0.082483399 
RHO=206264.8063 
READ IN DATA

NP=6
NW=2*NP
NG=0
LP=24
NH-24
ND=24
NV=24
NA=2
NB=6
NL=6
K0R = 5
LN= 1 1
LU=3
LA= 1 4
TIME=1.0
TIM=TIME**2
NU=(3+2+NP+3+3)
NT=5*(LP+NG+NH+ND+NV+NA+NB+NL)
SIG2=1.
KOUNTA=0 
ICOUNT=0 
WRITE(4,6170)

6170 FORMAT(//I OX,’THE FIFTH OBSERVATION EPOCH *,/1OX,27(’ = ’))
WRITE(*,4000)

4000 FORMAT(//4X,60(*=*))
WRITE(*,4001)NG,LP,NB,NL,NA,NV,NH,ND

4001 FORMAT(//15X,’NETWORK DESIGN PROGRAM//4X,*BY MUSYOKA S.M.’f 
<//15X,
<’WELCOME *,/4X,’GRAVITY DIFFERENCE= *,110,/4X’POTENTIAL DIFFERENCE 
<=’,I8,/4X,*ASTR. LATITUDES=*,I13,/6X,*" LONGITUDES^’,I14,/6X,’
<" AZIMUTHS=*,I16,/4X,’VERTCAL ANGLES=’,I14,/4X,’HORIZONTAL ANGLE 
<=’,I12,/4X,’SPATIAL DISTANCES=’,I11,//4X,60(’=’),//20X,’PROGRAM
< IS NOW RUNNING’,//20X, ’ !------ WAIT------!’,//)
WRITE(*,7540)
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7540 FORMAT(//20X,* INPUT ITERATION’)
READ(*,7541)LEE

7541 FORMAT(11)
WRITE(4,36)

36 FORMAT(//2X,*STN*,4X,’LATITUDE * ,8X,* LONGITUDE*,5X,’HEIGHT’)
WRITE(4,37)

37 FORMAT*6X,’DEG MIN SEC’f4Xt’DEG MIN SEC’,9Xf’m ’,
</2X,70(* = ’ ))
DO 5 1=1,NP
READ(27,6)IP,LATDEG,LATMIN,LATSEC,LONDEG,LONMIN,LONSEC, H 
HT(I ) =H 
KI(I ) = IP
WRITE(4,6)KI(I),LATDEG,LATMIN,LATSEC,LONDEG,LONMIN,LONSEC,HT(I) 
CALL RADIAN(LATDEG,LATMIN,LATSEC,LATI(I))
CALL RADIAN(LONDEG,LONMIN,LONSEC,LONG(I))

CONVERT SPHERICAL COORD. INTO EQUIVALENT GEODETIC ONES.
CALL CART(LATI(I),LONG(I),HT(I),X(I),Y(I),Z(I))
OX(I)=X(KI(I))
OY(I)=Y(KI(I))
OZ(I ) = Z(KI(I))

5 CONTINUE
DO 1115 1=1,NP
READ(27,6)IP,LATDEG,LATMIN,LATSEC,LONDEG,LONMIN,LONSEC,H 
HT1(I )=H 
K11(I ) = IP
CALL RADIAN(LATDEG,LATMIN,LATSEC,LATI1(1))
CALL RADIAN(LONDEG,LONMIN,LONSEC,LONG1(I))

6 FORMAT(3X,11,3X,12,2X,13,2X,F7.3,3X,12,2X,12,2X,F6.3,
<2X,F8.3)

C CONVERT SPHERICAL COORD. INTO EQUIVALENT GEODETIC ONES.
CALL CART(LATI1(I),LONG1(I),HT1(I),XE(I),YE(I),ZE(I))
0X1(1 )=XE(K11(I))
OY1(I) = YE(K11(I))
OZ1 ( I ) = ZE(KI 1(D)

1115 CONTINUE
DO 7801 1=1,NP
READ(27,6)IP,LATDEG,LATMIN,LATSEC,LONDEG,LONMIN,LONSEC, H
HT2(I )=H
KI2(I)=IP
WRITE(4,6)KI2(I),LATDEG,LATMIN.LATSEC.LONDEG,LONMIN,LONSEC,HT2(I) 
CALL RADIAN(LATDEG,LATMIN,LATSEC,LATI2(I))
CALL RADIAN(LONDEG,LONMIN,LONSEC,LONG2(I))

C CONVERT SPHERICAL COORD. INTO EQUIVALENT GEODETIC ONES.
CALL CART(LATI2(I),LONG2(I),HT2(I),XAC(I),YAC(I),ZAC(I))
0X2(1 )=XAC(K12(I))
0Y2(I)=YAC(KI2(I))
0Z2(I ) = ZAC(KI2(I))

7801 CONTINUE
DO 8300 1=1,NP
READ(27,6)IP,LATDEG,LATMIN,LATSEC,LONDEG,LONMIN,LONSEC,H



HT3(I)=H 
KI2(I ) = IP
WRITE(4,6)KI2(I),LATDEG,LATMIN,LATSECfLONDEG,LONMIN,LONSEC,HT3(I) 
CALL RADIAN(LATDEG,LATMIN,LATSEC,LATI3(I))
CALL RADIAN(LONDEG,LONMIN,LONSEC,LONG3(I))

C CONVERT SPHERICAL COORD. INTO EQUIVALENT GEODETIC ONES.
CALL CART(LATI3(I),LONG3(I),HT3(I ),XAC(I),YAC(I),ZAC(I))
0X2(I)=XAC(KI2(I))
O Y 2 ( I) = Y AC(K12(I))
0Z2(I)=ZAC(KI2(I) )

6300 CONTINUE
DO 63 1=1,NB
READ(27,916)NC(I),LATD,LATM,TSEC 
CALL RADIAN(LATD,LATM,TSEC,BLAT(I ) )

63 CONTINUE
DO 1163 1=1,NB
READ(27,916)NC1(I),LATD,LATM,TSEC 
CALL RADIAN(LATD,LATM,TSEC,BLAT1(I))

1163 CONTINUE
DO 6802 1=1,NB
READ(27,916)NC2(I),LATD,LATM,TSEC 
CALL RADIAN(LATD,LATM,TSEC,BLAT2(I))

6802 CONTINUE
DO 6301 1=1,NB
READ(27,916)NC2(I),LATD,LATM,TSEC 
CALL RADIAN(LATD,LATM,TSEC,BLAT3(I))

8301 CONTINUE
DO 8401 1=1,NB
R£AD(27,916)NC2(I),LATD,LATM,TSEC 
CALL RADIAN(LATD,LATM,TSEC,BLAT4(I))

8401 CONTINUE
C

DO 3070 1=1,NP
READ(27,3071)NC(I),SAI(I),ETA(I)

3071 FORMAT(2X,11,2X,F6.3,2X,F6.3 )
3070 CONTINUE

DO 307 1=1,NP
READ(27,3071 )NC1(I),SA11 ( I),ETA1 (I)

307 CONTINUE
DO 7803 1=1,NP
READ(27,3071)NC2(I),SAI2(I),ETA2(I)

7803 CONTINUE
DO 8302 1=1,NP
READ(27,3071 )NC2(I),SA13(1) ,ETA3(I)

8302 CONTINUE 
C

DO 3023 1=1,NL
READ(27,917)NZ(I),LOND,LONM,DSEC 

917 FORMAT!3X,11,3X,12,2X,12,2X,F6.3)
CALL RADIAN(LOND,LONM,DSEC,BLON(I))

3023 CONTINUE



DO 302 1=1,NL
READ(27,917)NZ1(I),LOND,LONM,OSEC 
CALL RADIAN(LOND,LONM,OSEC,BLON1(1))

302 CONTINUE
DO 7804 1=1,NL
READ(2 7,917)N22(I),LOND,LONM,DSEC 
CALL RADIAN(LOND,LONM,DSEC,BLON2(I))

7804 CONTINUE
DO 8303 1=1,NL
READ(27,917)NZ2(I),LOND,LONM,DSEC 
CALL RADIAN(LOND,LONM,DSEC,BLON3(I))

8303 CONTINUE
DO 8403 1=1,NL
READ(27,917)NZ2(I),LOND,LONM,DSEC 
CALL RADIAN(LOND,LONM,DSEC,BLON4(I))

8403 CONTINUE 
C
91 6 FORMAT(3X,11,3X,12,2X,13,2X,F 7.3)

WRITE(4,29)
29 FORMAT(//2X,*STN’,12X,*X*,16X,*Y*,17X,’ Z',/2X,55( *

DO 14 1=1,NP
WRITE(4,27)KI(I) ,X(I),Y(I),Z(I)

14 CONTINUE
DO 1411 1=1,NP
WRITE(4,27)KI1(I),XE(I),YE(I),ZE(I)

1411 CONTINUE
DO 7805 1=1,NP
WRITE(4,27)KI2(I),XAC(I),YAC(I),ZAC(I)

7805 CONTINUE
27 FORMAT(2X,I2,3(2X,F16.3))
1 8 FORMAT(2X,11,2X,11,2X,F11.3)

DO 11 1=1,ND
READ(27,9)KII(I),JP(I),DIST(I)

1 1 CONTINUE
DO 1111 1=1,ND
READ(27 f9)KII1(I),JP1(I),DIST1(I)

1111 CONTINUE
DO 7806 1=1,ND
READ(27,9)KII2(I),JP2(I),DIST2(I)

7806 CONTINUE
DO 8305 1=1,ND
READ(27,9)KII2(I),JP2(I),DIST3(I)

8305 CONTINUE
DO 8405 1=1,ND
READ(27,9)KII2(I),JP2(I),DIST4(I)

8405 CONTINUE
9 FORMAT(3X,11,3X,11,4X,F9.4)

C
DO 3001 1=1,NH
READ(27,3002)KH(I),JH(I),HDEG,HMIN,HSEC 
CALL RADIAN(HDEG,HMIN,HSEC,HOR(I))
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3002 FORMAT(3X,11,3X,11,3X,13,2X,12,2X,F5.2) 
3001 CONTINUE

DO 301 1=1,NH
READ(2 7,3002)KH1(1),JH1(1),HDEG,HMIN,HSEC 
CALL RADIAN(HDEG,HMIN,HSEC,HOR1(I))

301 CONTINUE
DO 7807 1=1,NH
READ(27,3002)KH2(I),JH2(I ),HDEG,HMIN,HSEC 
CALL RADIAN(HDEG,HMIN,HSEC,HOR2(I))

7807 CONTINUE
DO 8306 1=1,NH
READ(27,3002 )KH2(I),JH2(I ),HDEG,HMIN,HSEC 
CALL RADIAN(HDEG,HMIN,HSEC,HOR3(I))

8306 CONTINUE
DO 8406 1=1,NH
READ( 27,3002)KH2(I),JH2(I),HDEG,HMIN,HSEC 
CALL RADIAN(HDEG,HMIN,HSEC,H0R4(I))

8406 CONTINUE
IF(NV.EQ.0)GOTO 5120 
DO 3003 1 = 1 ,NV
READ(27,3004 )KV(I),JV(I),VDEG,VMIN,VSEC 
CALL RADIAN(VDEG,VMIN,VSEC,VER(I))

3004 FORMAT(3X,I1,3X,I1,3X,13,2X,13,2X,F6.2)
3003 CONTINUE

DO 303 1=1,NV
READ(27,3004 )KV1(I),JV1(I),VDEG,VMIN , VSEC 
CALL RADIAN(VDEG,VMIN,VSEC,VER1 (I))

303 CONTINUE
DO 7808 1=1,NV
READ(27,3004)KV2(I),JV2(I),VDEG,VMIN,VSEC 
CALL RADIAN(VDEG,VMIN,VSEC,VER2( I))

7808 CONTINUE
DO 8307 1=1,NV
READ(27,3004 )KV2(I ) ,JV2(I),VDEG,VMIN,VSEC 
CALL RADIAN(VDEG,VMIN,VSEC,VER3( I))

8307 CONTINUE
DO 8407 1=1,NV
READ(27,3004 )KV2(I),JV2(I),VDEG,VMIN,VSEC 
CALL RADIAN(VDEG,VMIN,VSEC,VER4(I))

8407 CONTINUE
C
5120 DO 2390 1=1,LP

READ(27,679)KII(I),JP(I),GPD(I)
2390 CONTINUE

DO 239 1=1 LP
READ(27,679)KII1(I),JP1(I),GPD1 (I)

239 CONTINUE
DO 8308 1=1,LP
READ(27,679)KII2(I),JP2(I),GPD2(I)

8308 CONTINUE
DO 6160 1=1,LP
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REA0(27,679)KII2(I),JP2(I),GPD3( I)
6160 CONTINUE

DO 8408 1=1,LP
READ(27,679)KII2(I),JP2(I),GPD4(I)

8408 CONTINUE
679 FORMAT ( 2X,11,2X,11,6X,F14.8)

3801 FORMAT(2X,11,2X,11,9X,F11.8)
00 2345 11=1,NA
READC27,1234)J9(II ) ,KA(II),JJ.MM.SS 
CALL RADIAN(JJ,MM,SS,AZ(II))

2345 CONTINUE
DO 234 11=1,NA
READ(27,1234)J91(11),KA1(11),JJ,MM,SS 
CALL RADIAN(JJ,MM,SS,A21(II))

234 CONTINUE
DO 7810 11=1,NA
READ(27,1234)J92(II),KA2(II),JJ,MM,SS 
CALL RADIAN(JJ,MM,SS,AZ2(II))

7810 CONTINUE
DO 8309 11=1,NA
READC27,1234)J93(II),KA3(II),JJ,MM,SS 
CALL RADIAN(JJ,MM,SS,AZ3(II))

8309 CONTINUE
DO 8409 11=1,NA
READ(27,1234)J93(II),KA3(II),JJ.MM.SS 
CALL RADIAN(JJ,MM,SS,AZ4(II))

8403 CONTINUE
1234 FORMAT(2X,11,2X,11,2X,13,2X,12,2X,F6.3)

C LET THE NUMBER OF POINTS IN THE NETWORK BE ’NP* AND
C THE NUMBER OF UNKNOWNS BE ,NU
C 1. NO. OF DISTANCE OBSERVATIONS,ND 
C 2. NO. OF VERTICAL ANGLE OBSERVATIONS, NV 
C 3. NO. OF AZIMUTH OBSERVATIONS,NA

c ------------------------------------------------------
C INITIALIZE THE DESIGN MATRIX,A.
C -------------------------------
1000 DO 100 1=1,NT 

DO 100 J=1,NU 
A(I,J ) = 0 .0 

100 CONTINUE 
C
C FORMING THE DESIGN MATRIX AND THE VECTOR OF OBSERVATIONS ’ Y*

1. COEFFICIENTS FOR GRAVITY POTENTIAL DIFFERENCE

IF(KOUN TA.EQ.0)GOTO 1001 
DO 98 1=1,NP
CALL CART(LATI(I),LONG(I),HT(I),X(I),Y(I),Z(I)) 

98 CONTINUE 
KOUNTA=0
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1001 K=1

PRINT*,’POTENTIAL COEFFICIENTS*
LAC=0
KAY=0
MAC=0
ICODE=0

6002 DO 105 1=1,LP
IF(LAC.EO.1)GOTO 6150 
IF(MAC.EO.1)GOTO 8501 
IF(ICODE.EO.1)GOTO 6005 
K1=KI1(1)
K2=JP(I)
CALL ASSIGN(K1,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(K2,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
S1=DSQRT(XR**2+YR**2+ZC**2 )
S2=DSQRT(XR2**2+YR2**2+ZC2**2)
GPS=GPD(I)
GOTO 6004 

6005 K1=KII1(1)
K2 = JP1(I )
CALL ASSIGN(K1,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(K2,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,
< ZC2,PAR2,CIR2,H2)
S1=DSQRT(XR**2+YR**2+ZC**2 )
S2=DSQRT(XR2**2+YR2**2+ZC2**2)
GPS=GPD1(I)
GOTO 6004 

8501 K1=KII2(I )
K2=JP2(I)
CALL ASSIGN(K1,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(K2,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
S1=DSQRT(XR**2+YR**2+ZC**2)
S2=DSQRT(XR2**2+YR2**2+ZC2**2)
GPS=GPD2(I)
GOTO 6004 

6150 K1=KII2(I)
K2=JP2(I)
CALL ASSIGN(K1,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H)
CALL ASSIGN(K2,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
S1=DSQRT(XR**2+YR**2+ZC**2)
S2=DSQRT(XR2**2+YR2**2+ZC2**2)
GPS=GPD3(I)

6004 CALL DELTA(XR,YR,ZC,1,DW)
DO 111 IN=1 ,3 

111 DW(IN,1)=-1.0*DW(IN,1)
CALL JACCOB(PAR,H,CIR,DJ)
CALL TIMES(DJ,DW,RW,3,3,1 )
IF(K1.NE.4)GOTO 6006 
J = 1
A(K,J)=RW(1,1)/RHO 
J=2
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A(K,J)=Rw(2,1 )/RHO 
J=3
A( K,J)=RW(3,1)
IF (ICODE.NE.1)GOTO 6006 
J = LN+1
A(K,J ) =RW(1,1) *TIME/RHO 
J=LN+2
A(K,J)=RW(2,1 )*TIME/RHO 
J=LN+3
A(K,J )=RW(3,1)*TIME 
IF(MAC.NE.1)GOTO 6006 
J = LA+1
A(K,J)=RW(1 , 1 )*TIM/RH0 
J=LA+2
A(K,J)=RW(2,1 )*TIM/RHO 
J=LA+3
A(K,J)=RW(3,1 )*TIM 

6006 IF(K2.NE.4 ) GOTO 6001
CALL DELTA(XR2fYR2,ZC2,1,DW) 
CALL JACCOB(PAR2,H2,CIR2>DJ) 
CALL TIMESCDJ.DW.RW.S.S,1)
J-1
A(K,J )=RW(1 , 1 )/RHO 
J=2
A(K , J)=RW(2,1 )/RHO 
J-3
A( K,J)=RW(3,1)

7501 IF(ICODE.NE.1)GOTO 6001 
J=LN+1
A(K,J)=RW(1,1 ) *TIME/RHO 
J=LN+2
A(K,J )=RW(2,1 )*TIME/RHO 
J=LN+3
A(K,J)=Rw(3,1 ) *TIME 
IF(MAC.NE.1)GOTO 6001 
J=LA+1
A(K,J)=RW(1,1)*TIM/RHO 
J=LA+2
A(K,J)=RW(2,1)*TIM/RHO 
J=LA+3
A(K,J)=RW(3,1)*TIM 

6001 YC(K)=GM*(S1-S2)/(S1»S2)
YL(K)=(GPS-GM*(S1-S2)/(S1*S2)) 
P(K)=0.005 
K=K+1

105 CONTINUE
IF(KAY.EQ.1)GOTO 6003 
IF(LAC.EQ.1)GOTO 6341 
IF(MAC.EQ.1 ) GOTO 6100 
IF(ICODE.EQ.1)GOTO 8502 
ICODE=1
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K=LP+1 
GOTO 6002 

8602 MAC=1
K=2*LP+1 
GOTO 6002 

6100 LAC=1
K=3*LP+1 
GOTO 6002

6341 K=4*LP+1 
KAY= 1
DO 6342 1=1,LP

6342 GP03(I)=GPD4(I)
GOTO 6002

C 3. COEFFICIENTS FOR LATITUDE OBSERVATIONS.
C ------------------------------------------
6003 PRINT*,’LATITUDE COEFFICIENTS’

ICODE=0 
MAC=0 
LAC=0 
KAY=0 
K=5*LP+1

6013 DO 115 1=1,NB
IF(LAC.EO.1) GOTO 6151 
IF(MAC.EQ.1) GOTO 8503 
IF(ICODE.EQ.1)GOTO 6010 
M=NC(I)
YC(K) = LATI(I)*RHO-SAI(I)
YL(K)=BLAT(I)*RHO-LATI(I)*RHO-SAI(I)
IF(M.NE.4 ) GOTO 6900 
GOTO 6011

6010 M=NC1(I)
YC(K)=LATI(I)*RHO-SAI(I)
VL(K)=BLAT1(I)*RHO-LATI(I)*RHO-SAI(I)
IF(M.NE.4) GOTO 6900 
GOTO 6011 

8503 M=NC1(I)
YC(K)=LATI(I)*RHO-SAI(I)
YL(K)=BLAT2(I)*RHO-LATI(I)*RHO-SAI(I) 
IF(M.NE.4 ) GOTO 6900 
GOTO 6011 

6151 M=NC1(I)
YC(K) = LATI(I)*RHO-SAI( I)
YL(K)=BLAT3(I)*RHO-LATI( I)*RHO-SAI(I) 
IF(M.NE.4 ) GOTO 6900

6011 J=1
A(K, J) = 1 .0

7503 IF(ICODE.NE.1)GOTO 6012 
J=LN+1 
A(K,J)=TIME 
IF(MAC.NE.1)GOTO 6012 
J=LA+1



a u .j m t i n
2 J = LUO

A(K,J)s1.0
0 P<M=O.J 

KsK+1 
CONTlNOi
IF(KAY.EQ.1)GUlO 6014 
IHLAC.EU. 1 )GOTO 6343 
IF(MAC.EQ.I) GOTO 6101 
IF(1COOE.EQ.1)QOTO 6604 
1COOE = 1 
LU=3
K = 5*LP4NB«>1
GOTO 6013 

4 HACsl
K=b*LP*2*NB^1
GOTO 6013

1 LAC=1
K = b»LP-f3*NB^1 
GOTO 6013

3 KAY =1 
K=6*LP+4«NB+1 
DO 7330 1=1,NB

) BLAT3(1)=BLAT4(I)
GOTO 6013
COEFFICIENTS FOR LONGITUDE OBSERVATIONS.

I PR IN i * , ’ LON( > i T UUT COEFFICIENTS’
ICODE=0 
LAC=0 
MAC=0 
K A Y=0 
LU=3
K = 5*(LP+NB)♦1 

I DO 120 1=1,NL 
IF(LAC.EQ.1)GOTO 6162 
IF(MAC.EO.1) GOTO 8605 
IF(ICODE.EO.1)GOTO 6016 
H=NZ(I )
YC ( K ) = LONG (N ) * RHO- E T A (M ) /COS ( L A TI (M ) ) 
YL(K)s(BLON(M)-LONG(M))*RHO-ETA(M)/COS(LATI(M)) 
IF(M.NE.4)QOTO 6051 
GOTO 6016 
M=NZ (I )
YC(K) = LONG(H)*RMO-ETA(M)/COS(LATI(H) )
YL( K ) = ( BLON1 ( H )-LONG( M ) )»RHO“ETA( M )/COS( LATI(M)) 
IF(H .NE.4)QOTO 6051 
GOTO 6016 
M=NZ2(I)
YC(K)=LONG(M)*RMO-ETA(H)/COS(LATI(M))
IYL(K)=(BLON2(H)-LONG(M))*RHO-ETA(M)/COS(LATI(H))
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IF(M .NE.4)GOT0 6051 
GOTO 6016 

6162 M=NZ2(I)
YC(K)=LONG(M)*RHO-ETA(M)/COS(LATI(M)) 
YL(K)=(BLON3(M)-LONG(M))*RHO-ETA(M)/COS(LATI(M))
IF(M.NE.4)GOTO 6051 

6016 J=2
A(K,J ) = 1.0 
J=LU+2
A(K,J ) = 1.0/COS(LATI(M ))

7504 IF(ICODE.NE.1)GOTO 6051 
J=LN+2 
A(K,J)=TIME 
J=LU+2
A(K,J ) = 1.0/COS(LATI(M ) )
IF(MAC.NE.1)GOTO 6051
J = LA+1
A(K,J)=TIM
J=LU+2
A(K,J )=1.0/COS(LATI(M ))

6051 P(K)=0.3 
K = K+1

120 CONTINUE
IF(KAY.EQ.1)GOTO 6018 
IF(LAC.EQ.1)GOTO 6345 
IF(MAC.EQ.1) GOTO 6102 
IF(ICODE.EQ.1)GOTO 8506 
LU = 3
K = 5*(LP+NB)+NL+1 
ICODE=1 
GOTO 6019 

8506 MAC=1
K=5*(LP+NB)+2*NL+1 
GOTO 6019 

6102 LAC=1
K=5*(LP+NB)+3*NL+1 
GOTO 6019 

6345 KAY=1
K=5*(LP+NB)+4*NL+1 
DO 7331 1=1,NL 

7331 BL0N3(I)=BL0N4(I)
GOTO 6019

6018 PRINT*,’AZIMUTH COEFFICIENTS’
IC0DE=0 
LAC=0 
MAC=0 
KAY = 0 
LU = 3

C 5. COEFFICIENTS FOR OBSERVED AZIMUTH.
C ---------------------------------------
C LET ’NA’ BE THE NO. OF OBSERVED LINES FOR ASTRONOMIC AZIMUTH.
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K=5*(LP+NG+NL+NB)+1 
6024 00 125 1=1,NA

IF(LAC.EQ.1)GOTO 6153 
IF(MAC.EQ.1) GOTO 8507 
IF(ICODE.EQ.1)GOT0 6020 
L1 =J9(I)
L2 = KA(I)
CALL ASSIGN(L1,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(L2,X,Y,Z,LATI,LONG, HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
SAA=SA1(1)
TEE=ETA(I)
AZIM=AZ(I)
GOTO 6021 

6020 L1=J91(I)
L2=KA1(1)
CALL ASSIGN(L1,X ,Y,Z ,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(L2,X,Y,Z,LATI.LONG,HT,6,XR2 ,

< YR2,ZC2,PAR2,CIR2,H2)
SAA=SAI(I)
TEE = ETA(I)
AZIM=AZ1(I )
GOTO 6021 

8507 L1=J92(I)
L2=KA2(I)
CALL ASSIGN( L1 ,X ,Y ,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(L2,X,Y,Z,LATI,LONG,HT,6,XR2, 

<YR2,ZC2,PAR2,CIR2,H2)
SAA = SAI(I)
TEE=ETA(I)
AZIM=AZ2(I )
GOTO 6021 

6153 L1=J93(I)
L2 = KA3(I)
CALL ASSIGN(L1,X ,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(L2,X ,Y,Z,LATI,LONG,HT,6,XR2,

<YR2,ZC2,PAR2,CIR2,H2)
SAA=SA1(1)
TEE=ETA(I)
AZIM=AZ3(I)

6021 RZ(1,1)=XR2-XR 
RZ(2,1)=YR2-YR 
RZ(3,1)=ZC2-ZC 
CALL EULA(PAR,CIR,RE)
CALL TIMES(RE,RZ,EZ,3,3,1)

C MATRIX OF DIFFERENTIALS OF AZIMUTH, DA
S2=EZ(1,1)**2+EZ(2,1)**2 
SP2=DSQRT(S2+EZ(3,1)**2)
DA(1,1)=-1.0*EZ(2,1)/S2 
DA(2,1)=EZ(1,1)/S2 
DA(3,1)=0.0
CALL EULA(PAR,CIR,RE,2 )



DO 131 IC=1,3 
DO 131 JC=1,3

131 RE(IC,JC)=-1.0*RE(IC,JC)
CALL TIMES (RE,DA,RA,3,3,1) 
CALL JACCOB(PAR, H , CIR , D J ) 
CALL TIMES(DJ,RA,RJ,3,3,1) 
IF(LI.NE.4)GOTO 6022 
J = 1
A(K,J)=RJ(1,1)
J = 2
A(K,J )=RJ(2,1)
J = 3
A(K,J)=RJ(3,1)*RHO

7505 IF(ICODE.NE.1)GOTO 6022 
J=LN+1
A(K,J)=RJ(1,1)*TIME 
J=LN+2
A(K,J)=RJ(2,1 )*TIME 
J=LN+3
A(K,J ) =RJ(3,1 )*TIME*RHO 
IF(MAC.NE.1) GOTO 6022 
J=LA+1
A(K,J)=RJ(1,1)*TIM 
J=LA+2
A(K,J)=RJ(2,1)*TIM
J=LA+3
A(K,J ) =RJ(3,1)«TIM*RHO 

6022 IF(L2.NE.4)GOTO 6023
CALL EULA(PAR,CIR,RE,2)
CALL TIMES(RE,DA,RA,3,3,1) 
CALL JACCOB(PAR2,H2,CIR2,DJ) 
CALL TIMES(DJ,RA,RJ,3,3,1 ) 
J-1
A(K,J ) =RJ(1,1)
J = 2
A(K,J )=RJ(2,1 )
J = 3
A( K , J ) =RJ (3,1 )*RHO

7506 IF(ICODE.NE.1)GOTO 6023 
J=LN+1
A(K,J)=RJ(1,1)*TIME
J=LN+2
A(K,J ) =RJ(2,1)*TIME 
J=LN+3
A(K,J ) =RJ(3,1)*TIME*RHO 
IF(MAC.NE.1) GOTO 6023 
J=LA+1
A(K,J )=RJ(1,1)*TIM 
J=LA+2
A(K,J)=RJ(2,1)*TIM 
J=LA+3
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A(K,J ) =R J(3,1 )*TIM*RHO 
6023 IF(L1.EQ.4 ) GOTO 6700 

IF(L2.NE.4 ) GOTO 6901 
6700 J=LU+1

A(K,J )=-1.0*SIN(AZIM)*TAN(ASIN(EZ(3,1)/SP2))
T2=A(K,J )
J=LU+2
A(K,J )=(-1.0*TAN(PAR)-COS(AZIM)*TAN(ASIN(EZ(3,1)/SP2))) 
T3 = A(K, J )

6901 T2 = -1.0*SIN(AZIM)*TAN(ASIN(EZ(3,1)/SP2))
T3=(-1.0*TAN(PAR)-COS(AZIM)*TAN(ASIN(EZ(3,1)/SP2)))
CALL AZIMUTH(EZ(2,1),EZ(1,1),BRG)
YC( K )=BRG-T2*SAA-T3*TEE 
YL(K)=(AZIM*RHO-BRG)-T2*SAA-T3*TEE 
P(K)=0.7 
K=K+1

125 CONTINUE
IF(KAY.EQ.1) GOTO 6025 
IF(LAC.EQ.1) GOTO 6346 
IF(MAC.EQ.1) GOTO 6103 
IF(ICODE.EO.1)GOT0 8508 
ICODE=1 
LU=3
K=5*(LP+NB+NL)+NA+1 
GOTO 6024 

8508 MAC=1
K=5*(LP+NB+NL)+2*NA+1
LU = 3
GOTO 6024 

6103 LAC=1
K=5*(LP+NB+NL)+3*NA+1
GOTO 6024 

6346 KAY=1
K=5*CLP+NB+NL)+4*NA+1
00 7332 1=1,NA 

7332 AZ3(I)=AZ4(I)
GOTO 6024

6025 PRINT*,’VERTICAL ANGLE COEFFICIENTS’
IC0DE=0
LAC=0
MAC=0
KAY=0
LU=3

C 6. COEFFICIENTS FOR VERTICAL ANGLES.
C --------------------------------------

K=5*(LP+NA+NL+NB)+1 
6034 DO 130 1=1,NV

IF(LAC.EQ.1)GOTO 6154 
IF(MAC.EQ.1) GOTO 8509 
IF(ICODE.EQ.1)GOTO 6030 
MI=KV(I)
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MJ=JV(I)
CALL ASSIGN(MI,X,Y ,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ.X.Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
VERT = VER(I)
HORIZ=HOR(MI)
GOTO 6031

6030 MI = KV1(1)
MJ=JV1(I)
CALL ASSIGN(MIfX,Y ,2,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,
< ZC2,PAR2,CIR2,H2)
VERT = VER1(I)
GOTO 6031

8509 MI=KV2(I)
MJ=JV2(I)
CALL ASSIGN(MI,X,Y,Z ,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y ,Z,LATI,LONG,HT,6,XR2,YR2,
< ZC2,PAR2,CIR2,H2)
VERT = VER2(I)
GOTO 6031

6154 MI=KV2(I)
MJ=JV2(I)
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y ,Z,LATI,LONG,HT,6,XR2,YR2,
< ZC2,PAR2,CIR2,H2)
VERT=VER3(I)

6031 RZ(1,1)=XR2-XR 
RZ(2,1)=YR2-YR 
RZ(3,1)=ZC2-ZC
CALL EULA(PAR,CIR,RE,2)
CALL TIMES(RE,RZ,EZ,3,3,1)
MATRIX OF DIFFERENTIALS OF VERTICAL ANGLES,DB 
SP2=EZ(1,1)**2+EZ(2,1)**2+EZ(3,1)**2 
S2=DSORT(EZ(1,1)**2+EZ(2,1)**2)
DB(1,1)=-1.0*EZ(3,1)*EZ(1,1)/(SP2*S2 )
DB(2,1)=-1.0*EZ(3,1) *EZ(2,1)/(SP2*S2)
DB(3,1)=S2/SP2
CALL EULA(PAR,CIR,RE,2)
DO 141 IC=1 ,3 
DO 141 JC=1,3

141 RE(IC,JC)=-1.0*RE(IC,JC)
CALL TIMES(RE,DB,RA,3,3,1)
CALL JACCOB(PAR,H ,CIR,DJ)
CALL TIMES(DJ,RA,RJ,3,3,1)
IF(MI.NE.4)GOTO 6032 
J = 1
A( K,J)=RJ( 1 ,1 )
J=2
A(K,J)=RJ(2,1 )
J=3
A( K, J )=RJ (3,1 )*RHO



7507 IF(ICODE.NE.1)GOTO 6032 
J=LN+1
A(K,J )=RJ(1,1 )*TIME 
J=LN+2
Af K , J ) =RJ(2,1)*TIME 
J=LN+3
A(K,J )=RJ(3,1 )*TIME*RHO 
IF(MAC.NE.1) GOTO 6032 
J = LA +1
A(K,J )=RJ(1,1)*TIM 
J=LA+2
A(K,J)=RJ(2,1 )*TIM 
J=LA+3
A(K,J)=RJ(3,1)*TIM*RHO

6032 IF(MJ.NE.4)GOTO 6033 
CALL EULA(PAR,CIR,RE,2)
CALL TIMES(RE,DB,RA,3,3,1)
CALL JACCOB(PAR2,H2,CIR2,DJ)
CALL TIMES(DJ,RA,RJ,3,3,1)
J = 1
A( K , J )=RJ ( 1 , 1 )
J = 2
A( K ,J)=RJ(2,1 )
J-3
A(K , J )=RJ (3,1 )»RHO

7508 IF(ICODE.NE.1)GOTO 6033 
J=LN+1
A(K,J )=RJ(1 ,1 )*TIME 
J=LN+2
A(K,J)=RJ(2,1)*TIME 
J=LN+3
A(K,J )=RJ(3,1)*TIME*RHO 
IF(MAC.NE.1)GOTO 6033 
J=LA+1
A(K,J)=RJ(1,1)*TIM 
J=LA+2
A(K,J) = RJ(2,1 )*TIM 
J=LA+3
A(K, J)=RJ( 3,1)*TIM*RHO

6033 IF(MI.EQ.4) GOTO 6701 
IF(MJ.NE.4) GOTO 6902

6701 J=LU+1
A(K ,J )=-COS(HORIZ)
J=J+1
A(K,J)=SIN(HORIZ)

6902 YC(K)=ASIN((EZ(3,1)/DSQRT(SP2)))
YL(K)=VERT-ASIN((EZ(3,1)/DSORT(SP2)))
P(K) = 1 .0
K=K+1

130 CONTINUE
IFCKAY.EQ.1)GOTO 6035
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IF(LAC.EQ.1 ) GOTO 6346 
IF(MAC.EQ.1) GOTO 6104 
IF(ICODE.EO.1)GOT0 8510 
ICODE=1 
LU=3
K=5* (LP+NA+NL+NB)+NV+1 
GOTO 6034

8510 MAC=1
K=5*(LP+NA+NL+NB)+2*NV+1
LU=3
GOTO 6034 

6104 LAC=1
K=5*(LP+NA+NL+NB)+3*NV+1 
GOTO 6034 

6348 KAY=1
K=5*(LP+NA+NL+NB)+4*NV+1 
DO 7333 1=1,NV 

7333 VER3(I)=VER4(I)
GOTO 6034

6035 PRINT*,‘SPATIAL DISTANCE COEFFICIENTS’
ICODE=0
LAC=0
MAC=0
KAY=0

C 7. COEFFICIENTS FOR SPATIAL DISTANCE.
C --------------------------------------
C LET NO. OF DISTANCE OBSERVATIONS BE ’ND*
6043 K=5*(LP+NA+NL+NB+NV+NG)+1 
6041 DO 135 1=1,ND

IF(LAC.EO.1) GOTO 6155 
IF(MAC.EO.1)GOTO 8511 
IF(ICODE.EO.1)GOTO 6036 
MI = KII(I)
MJ=JP(I)
CALL ASSIGN(MI,X,Y,Z ,LATI,LONG,HT,6,XR,YR,2C,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
STE=DIST(I )
GOTO 6037

6036 MI = KII(I)
MJ=JP(I)
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y,Z,LATI,LONG.HT,6,XR2,
< YR2,2C2,PAR2,CIR2,H2)
STE=DIST1(1)
GOTO 6037

8511 MI = KII2(I)
MJ=JP2(I)
CALL ASSIGN!MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y,Z,LATI,LONG,HT,6,XR2,
< YR2,ZC2,PAR2,CIR2,H2)
STE=DIST2(I)
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GOTO 6037 
6155 MI=KII2(I )

MJ = JP2(I )
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H ) 
CALL ASSIGN(MJ,X,Y ,Z,LATI,LONG,HT,6,XR2,
< YR2,ZC2,PAR2,CIR2,H2)
STE = DIST3(I)

6037 RZ(1,1)=XR2-XR 
RZ(2,1)=YR2-YR 
RZ(3,1)=ZC2-ZC 
CALL EULA(PAR,CIR,RE)
CALL TIMES(RE,RZ,EZ,3,3,1)

C MATRIX OF DIFFERENTIALS OF SPATIAL DISTANCE 
S2=DSQRT(EZ(1,1)**2+EZ(2,1)**2+EZ(3,1)**2)
DS(1,1)=EZ(1,1)/S2 
DS(2,1)=EZ(2,1)/S2 
DS(3,1)=EZ(3,1)/S2 
CALL EULA(PAR,CIR,RE)
DO 142 IC-1,3 
DO 142 JC=1,3

142 RE(IC,JC)=-1.0*RE(IC,JC)
CALL TIMES(RE,DS,RA,3,3,1)
CALL JACCOB(PAR,H ,CIR,DJ)
CALL TIMES(DJ,RA,RJ,3,3,1)
IF(MI.NE.4)GOT0 6038 
J-1
A(K,J)=RJ(1 , 1 )/RHO
J=2
A(K,J )=RJ(2,1 )/RHO 
J = 3
A(K,J)=RJ(3,1)

7509 IF(ICODE.NE.1)GOTO 6038 
J = LN+1
A(K,J)=RJ(1,1 )*TIME/RHO 
J=LN+2
A(K,J )=RJ(2,1)*TIME/RHO 
J=LN+3
A(K,J )=RJ(3,1 )*TIME 
IF(MAC.NE.1) GOTO 6038 
J=LA+1
A(K,J)=RJ(1,1)*TIM/RHO 
J=LA+2
A(K,J ) =RJ(2,1 )*TIM/RHO 
J=LA+3
A(K,J)=RJ(3,1)*TIM 

6038 IF(MJ.NE.4 ) GOTO 6039 
CALL EULA(PAR,CIR,RE)
CALL TIMES(RE,DS,RA,3,3,1)
CALL JACCOB(PAR2,H2,CIR2,DJ)
CALL TIMES(DJ,RA,RJ,3,3,1)
J=1



A(K,J)=RJ(1,1)/RHO 
J = 2
A( K , J)=RJ(2,1)/RHO 
J = 3
A(K, J)=RJ(3,1)

7510 IF(ICODE.NE.1)GOTO 6039 
J=LN+1
A(K,J)=RJ(1,1)*TIME/RHO 
J=LN+2
A(K,J ) =RJ(2,1)*TIME/RHO 
J=LN+3
A( K,J )=RJ(3,1)*TIME 
IF(MAC.NE.1) GOTO 6039 
J = LA+1
A(K,J)=RJ(1,1)*TIM/RHO 
J=LA+2
A(K,J )=RJ(2,1)*TIM/RHO 
J=LA+3
A(K,J)=RJ(3,1)*TIM 

6039 YC(K )=S2
YL(K )=(STE-S2)
P(K)=DSQRT((0.0004«*2)+(STE*0.40D-06)**2) 
K = K+1

135 CONTINUE
IF(KAY.EQ.1)GOTO 6040 
IF( LAC.EQ.1)GOTO 6349 
IF(MAC.EQ.1)GOTO 6105 
IF(ICODE.EQ.1)GOTO 8512 
LU=3 
ICODE=1
K=5*(LP+NB+NL+NV+NA+NG)+ND+1 
GOTO 6041 

8512 MAC=1
K=5*(LP+NB+NL+NV+NA+NG)+2*ND+1 
LU = 3
GOTO 6041 

6105 LAC=1
K=5*(LP+NB+NL+NV+NA+NG)+3*ND+1 
LU=3
GOTO 6041 

6349 KAY=1
K=5*(LP+NB+NL+NV+NA+NG)+4*ND+1 
DO 7334 1=1,ND 

7334 DIST3(I)=DIST4(I)
GOTO 6041

C 8. COEFFICIENTS FOR HORIZONTAL ANGLE.
C --------------------------------------
6040 PRINT*,’HORIZONTAL ANGLE COEFFICIENTS’ 

ICODE=0 
LAC=0 
KAY=0
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MAC=0
LU = 3
K=5*(LP+NG+NA+NL+NB+NV+ND)+1 

6047 DO 145 1=1,NH
IF(LAC.EQ.1)GOTO 6156 
IF(MAC.EQ.1)GOTO 8513 
IF(ICOOE.EQ.1)GOTO 6042 
MI=KH(I )
MJ = JH(I )
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X ,Y,Z,LATI,LONG, HT,6,XR2 ,YR2,ZC2,PAR2,CIR2,H2) 
SAA=SAI(I)
TEE=ETA(I)
HORIZ=HOR(I)
GOTO 6043

6042 MI=KH1(I)
MJ = JH1(I)
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X ,Y ,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
SAA=SAI(I)
TEE=ETA(I)
HORIZ=HOR1(I)
GOTO 6043 

8513 MI = KH2(I)
MJ = JH2(I)
CALL ASSIGN(MI,X,Y,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X f Y,Z,LATI,LONG, HT,6 ,XR2,YR2,ZC2,PAR2,CIR2,H2)
SAA=SAI(I)
TEE=ETA(I)
HORIZ=HOR2(I)
GOTO 6043 

6156 MI = KH2(I)
MJ = JH2(I)
CALL ASSIGN(MI,X ,Y ,Z,LATI,LONG,HT,6,XR,YR,ZC,PAR,CIR,H )
CALL ASSIGN(MJ,X,Y,Z,LATI,LONG,HT,6,XR2,YR2,ZC2,PAR2,CIR2,H2) 
SAA=SAI(I)
TEE=ETA(I)
HCRIZ=HOR3(I)

6043 RZ(1,1)=XR2-XR 
RZ(2,1)=YR2-YR 
RZ(3,1)=ZC2-ZC
CALL EULA(PAR,CIR,RE)
CALL TIMES(RE,RZ,EZ,3,3,1)
S2=EZ(1,1)**2+EZ(2,1)**2 
SP2=DSQRT(S2+EZ(3,1)**2)
DA(1,1)=EZ(2,1)/S2 
DA(2,1)=EZ(1,1)/S2 
DA(3,1)=0.0
CALL EULA(PAR,CIR,RE,2)
DO 146 IC=1,3 
DO 146 JC=1,3
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<46 RE(IC,JC)=-1. 0*RE(IC,JC) 
CALL TIMES(RE,DA,RA,3,3,1) 
CALL JACCOB(PAR,H ,CIR,DJ) 
CALL TIMESCDJ.RA.RJ.S.S,1) 
IF(MI.NE.4)G0T0 6044 
J=1
A(K,J)=RJ(1,1)
J = 2
A(K,J)=RJ(2,1)
J=3
A(K,J)=RJ(3,1)*RHO 

7511 IF(ICODE.NE.1)GOTO 6044 
J=LN+1
A(K,J)=RJ(1,1)*TIME 
J=LN+2
A(K,J)=RJ(2,1)*TIME 
J=LN+3
A(K,J)=RJ(3,1)*TIME*RHO 
IF(MAC.NE.1 ) GOTO 6044 
J=LA+1
A(K,J)=RJ(1 ,1 )*TIM 
J=LA+2
A(K,J)=RJ(2,1 )*TIM 
J=LA+3
A(K,J)=RJ(3,1)*TIM»RHO 

6044 IF(MJ.NE.4 )GOTO 6045
CALL EULA(PARfCIR,RE,2)
CALL JACCOB(PAR2,H2,CIR2,DJ) 
CALL TIMES(DJ,RA,RJ,3,3,1) 
IF(ICODE.EQ.1)GOTO 7512 
J = 1
A(K,J)=RJ(1,1)
J = 2
A(K,J)=RJ(2,1)
J-3
A(K,J)=RJ(3,1)*RHO 

7512 IF(ICODE.NE.1)GOTO 6045 
J=LN+1
A(K,J)=RJ(1,1)*TIME 
J=LN+2
A(K,J)=RJ(2,1)*TIME 
J=LN+3
A(K,J)=RJ(3,1)*TIME*RHO 
IF(MAC.NE.1)GOTO 6045 
J=LA+1
A(K,J)=RJ(1 , 1 )*TIM 
J=LA+2
A(K,J)=RJ(2,1 )*TIM 
J=LA+3
A(K,J)=RJ(3,1 )*TIM*RHO 

6045 IF(HI.EQ.4) GOTO 6702
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IF (M J .NE.4) GOTO 6903 
6702 J=LUM

A(> ,J ) = (-1.0*SIN(HORIZ)*TAN(ASIN(EZ(3,1)/SP2))) 
I6=A(K,J)
A(K,J4 1 )=(-1.0*TAN(PAR)-COS(HORIZ)*TAN 
<(ASlN(£2(3i1)/SP2)))
T 7=A(K,J)

6903 J=KOR*MI
ORIENTATION PARAMETER

A(K,J)=1.0
6705 T6=(-1.0*SIN(HORIZ)»TAN(A3IN(EZ(3,1)/SP2))) 

T7=(-1.0*TAN(PAR)-COS(HORIZ)*TAN 
<(ASIN(EZ(3.1)/SP2)))
CALL AZIMUTH(EZ(2,1).EZ(1,1),ANG)
YC(K)=ANG-T6*SAA-T7*TEE
YL(K)=(HORIZ)*RHO-ANG-T6*SAA-T 7*TEE
P(K)=0.5
K=K+1

145 CONTINUE
IF(KAY.EQ.1) GOTO 6046 
IF(LAC.EQ.1)GOTO 7335 
IF(MAC.EQ.1)GOTO 6106 
IFCICOOE.EQ.1)GOTO 8514 
ICODE=1 
LU=3 
NOR=5
K = 5* (LP+NB+NA+NV+NG+ND+NL)♦NM^1
GOTO 6047 

8514 MAC=1
K = 6*(LP4NB+NA+NV4NG4ND4NL)42*NH41 
GOTO 6047 

6106 LAC-1
K=5*(LP+NB4NA+NV4NG4ND4NL)43*NH41 
GOTO 6047

7335 KAY=1
K=5*(LP4NB4NA4NV4NG4ND4NL)44*NH41 
DO 7336 1=1,NH

7336 HOR3(I)=HOR4(I)
GOTO 6047

6046 IF(KOUNTA.GT.0)GOTO 1002 
DO 123 1=1,NT 
P(I)=P(I)**2 

7000 FORMAT(3X,13,E25.9)
123 CONTINUE

PRINT*,* THE WEIGHT MATRIX*
6911 FORMAT(2X,I3t2X,E25.9)
1009 KOUNTA=0

DO 222 11=1,NT 
DO 222 J1=1,NT 
IF(11.EQ.J1)G0T0 81
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W(11,J1)=0.0 
GOTO 222
IF(KOT.NE.1)GOTO 212 
P(11) = PN(11 )

212 W( 11 ,11 )=SIG2/(P(I1 )+ER( 11,0**2) 
PN(11)=W(I1,11)

222 CONTINUE 
KOT = 0 
GOTO 109 

1004 L=2
1002 DO 101 1=1,NT 

DO 102 J=1,NT 
IF(J.EQ.I)GOTO 103 
W(I,J)=0.
GOTO 102

103 W(I,I)=PN(I)
102 CONTINUE 
101 CONTINUE

C PARAMETER ESTIMATION
C --------------------

109 CALL NORMAL(A,W ,ATW,ATWA,NU,NT) 
CALL MATINV(ATWA,AINV,NU)
CALL TIMES(ATW,YL,ATY,NU,NT,1) 
CALL TIMES(AINV,ATY,DX,NU,NU,1) 
CALL TIMES(A,DX,AX,NT,NU,1)
DO 522 1=1,NT
ER(I,1)=YL(I)-AX(I,1)

522 CONTINUE
545 FORMAT(3X,I3,2X,F25.6,2X,F25.6) 

CALL NORMAL(ER,W ,ETW,ETWE,1,NT) 
SIG02=ETWE(1,1)/(NT-NU)
IF(KOT.NE.1)GOTO 2222 
WRITE(4,887)KOUNTA

887 F0RMAT(/5X,’ITERATION N0.V,4X,I2) 
WRITE(4,530)SIG02 

2222 SIG2=SIG02
C COMPUTE THE COVARIANCE MATRIX
C -------------------------------

DO 528 1=1,NU 
DO 528 J=1,NU

528 COVX(I,J )=SIG02*AINV(I,J )
C SCALING THE NEW WEIGHTS
C -----------------------

DO 192 1=1,NT 
PN(I)=PN(I)/SIG2 
SEY(I)=1./PN(I)
SEE(I)=SIG2*(SEY(I))
ER(I,1)=ER(I,1)*PN(I)*SEE(I)

192 CONTINUE 
KOT = 1
KOUNTA=KOUNTA+1
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IF (KOUNTA. NE. 2 )GOTO 1002 
C INCREMENT OLD VALUES
C --------------------

LATI(4) = (DX(1, 1)/RHO)+LATI(4) 
LONG(4)=(DX(2,1)/RHO)+LONG(4) 
HT(4)=DX(3,1)+HT(4)
SAI(4)=SAI(4)+DX(4,1 )
NUM=NUM+1
ETA(4)=ETA(4)+DX(5,1 )
NUM=NUM+1 
DO 797 1=1,NH 
MI=KII(I)
J=5+MI
HOR(MI)=HOR(MI)+DX(J,1)/RHO 

797 CONTINUE
c -----------------------

ICOUNT =ICOUNT+1 
WRITE(4,6897)

6897 FORMAT(//4X,* THE PARAMETER MATRIX’)
WRITE(4,9000)(DX(I,1),I=1,NU)

9000 FORMAT(E25.6)
C OUTPUT RESULTS
c ------------------

C POINT COVARIANCE MATRIX
c ------------------------------

1=4 
LI =1 
L2 = 2 
L3 = 3
Q(1,1)=COVX(L1,L1)
Q(1,2)=COVX(L1,L2)
Q(1,3)=COVX(L1,L3)
Q( 2,1)=COVX(L2,L1)
Q(2,2)=COVX(L2,L2)
0(2,3)=COVX(L2,L3)
Q(3,1)=COVX(L3,L1)
Q(3,2)=COVX(L3,L2)
Q(3,3)=COVX(L3,L3)
CALL JACCOBC LATI(4),HT(4),LONG(4),WE)
WE(1,1)=WE(1,1)/RHO
WE(1,2)=WE(1,2)/RHO
WE(1,3)=WE(1,3)/RHO
WE(2,1)=WE(2,1)/RHO
WE(2,2)=WE(2,2)/RHO
WE(2,3)=WE(2,3)/RHO
CALL TRANSP(WE,WET,3,3)
CALL TIMES(WET,Q ,QX,3,3,3)
CALL TIMES(QX,WE,WCO,3,3,3)
WRITE(4,333)1

333 FORMAT(/4X#'STATION NO.*,I,/4X,40(' = ' )) 
WRITE(4,1028)
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1028 FORMAT(3X,*Q IN LOCAL ELLIPSOIDAL SYSTEM’) 
WRITE(4,334)((WCO(N,M),M=1,3),N =1,3)

334 FORMAT(3F16.9)
CALL ELLIPSOID(WCO,LATI(4 ) ,LONG(4))

C
530 FORMAT(//2X,’THE COMPUTED VARIANCE OF UNIT WEIGHT= *,F20.4 )

C THE NEW COORDINATES
C -----------------------

WRITE(4,656 )
656 F0RMAT(/10X, ’THE COMPUTED COORDINATES’,/1OX,40(' = *)t/3X,’STN’ 

C.4X, ’LATITUDE’,7X,*LONGITUDE’,10X,* HEIGHT * ,/3X,60(*-’)) 
WRITE(4,37)
1 = 4
2R(4)=LATI(4)
ZU(4) = LONG( 4)
Z J (4)=HT(4)
CALL RTDMS(LATI(4),LA,LM,SL)
CALL RTDMS(LONG(4) , LO,LOM,SLO)
WRITE(4,767)1,LAfLM,SL,LO,LOM,SLO,HT(I)
SL=DSQRT(COVX(1,1))
SLO=DSQRT(COVX(2,2))
SH=DSQRT(COVX(3,3))
WRITE(4,8547 )

8547 FORMAT(//5X,’THE STANDARD ERRORS*,/5X,30(’ = ’)) 
WRITE(4,8549)SL,SLO,SH

8543 FORMAT(/4X,F15.6,*"’,/4X,F15.6,’"’,/4X,F15.6,’m ’)
76 7 FORMAT(2X,11,2(3X,13,2X,13,2X,F7.3),3X,F10.3)

WRITE(4,401 )
401 FORMAT(/6X,’THE FINAL CARTESIAN COORDINATES’,/2X,’STN*,7X,’X’ , 

<12X,’Y*,8X,*Z*,12X,* DX’,9X, ’DY’,9X,*DZ*,/70(’ = *))
1 = 4
CALL CART(ZR(I),ZU(I),ZJ(I),ZX(I),ZY(I),ZZ(I))
DFX(4)=ZX(4)-OX(4)
DFY(4)=ZY(4)-0Y(4)
DFZ(4)=ZZ(4)-OZ(4)
WRITE(4,399)4,ZX(4),ZY(4),ZZ(4),DFX(4),DFY(4),DFZ(4)

399 FORMAT(1X ,11,1X,F12.2,1X,F12.2,1X,F12.2,1X,3F10.3)
5457 FORMAT(4X,F7.3,8X,F9.4,8X,F7.3,8X,F9.4)

WRITE(4,7560)
7560 F0RMATC/10X, ’THE POINT VELOCITIES’,/1OX,20(*=*),/ 1 X S T N ’,2X, 

<’ "/year’,3X,’ "/year’,2X,’m/year’,7X,’STANDARD ERRORS’, 
</1X,70(’- ’))
J = 12
DO 7561 1 = 1 , 1 
BE1=DX(J , 1 )
SER1=DSQRT(COVX(J,J ))
J=J + 1
BE2=DX(J , 1 )
SER2=DSQRT(COVX(J,J ))
J=J + 1
BE3=DX(J,1 )
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SER3=DSQRT(C0VX(J,J))
J=J+1
WRITE(4,7562)I,8E1,BE2,BE3,SER1,SER2,SER3 

7561 CONTINUE
7 562 FORMAT(2X,I2,3F10.5,3X,3F10.5)

WRITE(4,8560)
8560 FORMAT(/10X,’THE POINT ACCELERATIONS*,/1OX,20(’ = ’),/ 1 X S T N ’,2X , 

<’"/year sq.*,3X,’"/year sq.’,2X,’m/year s q . 7 X ,’STANDARD ERRORS 
<,/1X,70(’ - * ) )
J = 1 5
DO 8561 1=1,1 
BE1=DX(J,1)
SER1=DSQRT(COVX(J ,J ))
J = J + 1
BE2=DX(J,1)
SER2=DSQRT(COVX(J,J ))
J = J + 1
BE3=DX(J,1)
SER3=DSQRT(COVX(J,J ))
J = J + 1
WRITE(4,8562)1,BE1,BE2,BE3,SER1,SER2,SER3

8561 CONTINUE
8562 FORMAT(2X,I2,3F10.5,3X,3F10.5)
444 STOP

END
C
c  = = = = = = = = = = =

C
SUBROUTINE DELTA(X,Y,Z,NTERM,DW)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION DW(3,1)

C SUBROUTINE FOR FORMING THE VECTOR OF DIFFERENTIALS IN GRAVITY
C POTENTIAL.
C 1. ’GM’ IS THE PRODUCT OF GRAVITATIONAL CONSTANT AND EARTH’S
C MASS

GM=3.9860047E14 
RHO=206264.8063 
R=(X**2+Y**2+Z**2)**0.5 
IF(NTERM.NE.1)GOTO 30 
DW(1,1)=-1.0*(GM/R**3)*X 
DW(2,1)=-1.0*(GM/R**3)*Y 
DW(3,1)=-1.0*(GM/R**3)*Z 
GOTO 40

30 DW(1,1)=-2.0*(GM/R**4)*X 
DW(2,1)=(-2.0*GM/R**4)*Y 
DW(3,1)=-2.0*(GM/R*»4)*Z 

40 RETURN 
END 

C
SUBROUTINE JACC0B(PI,H ,DL,DJ)
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IMPLICIT REAL*8(A-H,0-Z)
DIMENSION DJ(3,3)

C SUBROUTINE FOR FORMING THE DERIVATIVES IN PI,LABDA AND h 
C 1. ’A* IS THE SEMI MAJOR RADIUS OF THE EARTH.
C 2. * E * IS THE ECCENTRICITY OF THE EARTH.
C 3. * TN * AND * TM * RADII OF CURVATURE OF THE ELLIPSOID.
C 4. fH* IS THE ELLIPSOIDAL HEIGHT.

A=6378243.145 
E=0.082483399
TN=A/(1.G-(E*SIN(PI))**2)**0.5
TM=A*(1.U-E**2)/(1.0-(E*SIN(PI))**2)**1.5
SM=TM+H
SN=TN+H
DJ(1,1)=— 1.0*SM*SIN(PI)*COS(DL)
DJ(1,2)=-1.0*SM*SIN(PI)*SIN(DL)
DJ(1,3)=SM*COS(PI)
DJ(2,1)=-1.0*SN*COS(PI)*SIN(DL)
DJ(2,2)=SN*COS(PI)*COS(DL)
DJ(2,3)=0.0
DJ ( 3,1)=COS(PI)*COS(DL)
DJ(3,2)=COS(PI)*SIN(DL)
DJ(3,3)=SIN(PI)
RETURN
END

C----- ------------------------------------------------------
SUBROUTINE NORMAL(A , ST,ATK,FK,NN,MM)
IMPLICIT REAL*8(A-H,O-Z)

C FORMS THE NORMAL EQUATIONS MATRIX
DIMENSION FK(NN,1),A(MM,1),ST(MM,1),ATK(NN,1)
DO 10 1=1, NN 
DO 10 J = 1,MM 

10 ATK(I,J)=0.0 
DO 30 K=1,MM 
DO 30 1=1,NN 
AA=A(KiI)
IF(AA.EG.O.)GOTO 30 
DO 20 J=1,MM

20 ATK(I,J)=ATK(I,J)+AA*ST(K ,J )
30 CONTINUE

DO 40 1=1,NN 
DO 40 J=1,NN 

40 FK(I,J)=0.0 
C

DO 60 K=1,MM 
DO 60 J=1,NN 
AA=A(K,J )
IF(AA.EQ.0.0)GOTO 60 
DO 50 I=J,NN

50 FK(I,J)=FK(I,J)+ATK(I,K)*AA 
60 CONTINUE

C
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DO 70 1 = 1 ,NN 
DO 70 J = 1 ,NN 
FK(I,J)=FK(J 11)
RETURN 
END

C----------------------------------------------------------
C

SUBROUTINE RTDMS(ANG,IDEG,IMIN,SEC)
C CONVERTS RADIANS TO DEGREES MINUTES AND SECONDS 

IMPLICIT REAL*8(A-H,0-Z)
ANG=ANG*206264.8063 
IDEG=ANG/3600 
IMIN=(ANG-(IDEG*3600))/60 
SEC=(ANG-(IDEG*3600+IMIN*60))
RETURN
END

C
SUBROUTINE EULA(PI,DL,RE,ITY)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION RE(3,3)

C SUBROUTINE CONSTRUCTS THE EULERIAN ROTATION MATRIX. 
RE(1,1)=-1.*SIN(PI)*C0S(DL)
RE(1,2)=-1.*SIN(PI)*SIN(DL)
RE(1,3)=C0S(PI)
RE(2,1)=-1.0*SIN(DL)
RE(2,2)=COS(DL)
RE(2,3)=0.0
RE(3,1)=C0S(PI)*COS(DL)
RE(3,2)=COS(PI)*SIN(DL)
RE(3,3)=SIN(PI)
RETURN
END

C
SUBROUTINE RADIAN(IDEG,IMIN,SEC,RAD)

C CONVERTS DEGREES,MINUTES AND SECONDS INTO RADIANS 
TERM1=IMIN/60.0 
TERM2=SEC/3600.0 
RDEG=IDEG
DEG=RDEG+TERM1+TERM2 
RAD=3.1415926536*DEG/180.0 
RETURN 
END

C
SUBROUTINE TIMES(A,B,C ,II,KK,JJ)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(11,1),B(KK,1 ),C(II,1)
DO 10 1=1,11 
DO 10 J=1,JJ 

10 C(I,J)=0.0
DO 30 1=1,11 
DO 30 K=1,KK
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AA=A(I,K)
IF(AA.EQ.0. )GOTO 30 
DO 20 J = 1,JJ

20 C(I,J)=C(I,J)+AA*B(K,J)
30 CONTINUE 

RETURN 
END

C
SUBROUTINE AZIMUTH(DY,DX,AZ)

C SUBROUTINE TO FIT AZIMUTH IN THE CORECT QUADRANT 
IMPLICIT REAL*8(A-H,O-Z)
P=206264.8063 
PI=3.141592654
IF(ABS(DY).GT.ABS(DX))GOTO 2 
AZ=ATAN(DY/DX)
IF(DY.LT.0.0) GOTO 3 
IF(AZ.GT.0.0) GOTO 8 
AZ=(PI+AZ)*P 
GOTO 1

3 IFCDY.LT.0.)GOTO 5 
AZ=(PI+AZ)*P 
GOTO 1

5 IF(AZ.GT.0.0) GOTO 10
AZ=(2*PI+AZ)*P 
GOTO 1

10 AZ=(PI+AZ)*P 
GOTO 1

2 AZ=ATAN(DX/DY)
IFCDY.LT.0.0) GOTO 4 
AZ=((PI/2.0)-AZ)*P 
GOTO 1

4 AZ= C(3.0*PI/2.0)-AZ)*P
1 RETURN
8 AZ=AZ*P 

RETURN 
END

SUBROUTINE TRANSPCA,B ,M ,N )
C PERFORMS MATRIX TRANSPOSITION

REAL*8 ACM,N),B(N,M)
DO 30 1=1,N 
DO 30 J=1,M 

30 BCI,J)=A(J,I)
RETURN
END

C
SUBROUTINE MATINVCA,AINV,N)

C INVERTS A SQUARE SYMMETRIC MATRIX
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(N,N),AINV(N,N),B(80,160)
DO 11 1=1,N
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DO 11 J = 1 ,N 
11 B(I,J)=A(I,J)

J1=N+1 
J2=2*N 
DO 12 1 = 1 ,N 
DO 12 J=J1,J2

12 B(I,J)=0.0 
DO 13 1 = 1 , N 
J= I+N

13 B( I, J ) = 1 .0 
DO 610 K = 1 , N 
KP1=K+1
IF(K.EQ.N)GOTO 500 
L=K
DO 400 I=KP1,N

400 IF(AB$(B(I,K )).GT.ABS(B(L,K)))L=I 
IF(L.EQ.K)GOTO 500 
DO 410 J=K,J2 
TEMP=B(K,J)
B(K,J)=B(L,J)

410 B( L, J)=TEMP
500 DO 501 J=KP1,J2
501 B(K,J)=B(K,J)/B(K,K)

IF(K.EQ.1)GOTO 600 
KM 1=K-1
DO 510 1 = 1,KM 1 
DO 510 J=KP1,J2

510 B(I,J) = B(I,J)-B( I,K)*B(K,J)
IF(K.EQ.N)GOTO 700 

600 DC 610 I=KP1,N 
DO 610 J=KP1,J2

610 B(I,J)=8(I,J)-B(I,K)*B(K,J)
700 DO 701 1 = 1 ,N 

DO 701 J = 1 ,N 
K = J + N

701 AINV(I,J)=B(I,K)
RETURN
END

C
SUBROUTINE ELLIPSOID(Q,LAT,LON)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION Q(3,3),D(3,3),VAL(3)fR(3)
REAL LAT,LON

C COMPUTES THE ELEMENTS OF THE POSITIONAL ELLIPSOIDS 
RK4(C1,C3,AL)=C1+(2.0*C3*COS(AL))
PI=3.1415926536
D(1,1)=(Q(2,2)*Q(3,3))-(Q(3,2)*Q(2,3))
D(1,2)=(Q(3,1)*Q(2,3))-(Q(2,1)*Q(3,3))
DO,3)=(Q(2,1)*Q(3,2))-(Q(3,1)*Q(2a2))
D(2,2)=(Q(1,1)*Q(3,3))-(Q(3,1)*Q(1,3)) 
D(2,3)=(Q(3,1)*Q(1,2))-(Q(1,1)*Q(3,2))
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0(3,3)=(Q(1,1)*Q(2,2))-(Q(2,1)*Q(1,2))
DET=(C(1,1)*D(1,1))+(Q(1,2)*D(1,2))*(G(1.35*0(1,3))
RK1=(Q(1,1 )+Q(2,2)+Q(3,3))/3.0 
Rl2-(C(1.15+0(2,25+0(3.3)5/3.0 
Rfv3 = DSGRT((RK1**2)-RK2)
CGSPHI=(DET+(2.0*(RK1**3) )-(3.0*RK1*RK2))/(2.0*(RK3**3))
PH I = ACOS(COSPHI)
ALPHA=PH1/3.0
VAL(1)=RK4(RK1,RK3,ALPHA)
PHI=PHI+(2.0*PI)
ALPHA=PHI/3.0
VAL(2)=RK4(RK1,RK3,ALPHA)
PHI=PHI-(4.0*PI)
ALPHA=PHI/3.0
VAL(3)=RK4(RK1,RK3,ALPHA)
DO 1 1=1,3.1 
R(I)=DSQRT(VAL(I))
U=D(2,3)+(VAL(I)*Q(2,3))
V=D(1,3)+(VAL(I)*Q(1,3))
W=D(1,2)+(VAL(I)*Q(1,2))
USQI=1./(U**2)
VSQI=1./(V**2)
WSQI=1./(W**2)
G=DSQRT(USQI+VSQI+WSQI)
VECTX=1.0/(G*U)
VECTY=1.0/(G*V)
VECTZ=1.0/(G*W)
SINLAT=SIN(LAT)
COSLAT=COS(LAT)
SIN LON = SIN ( LON)
COS LON=COS(LON)
ETA=-(SINLON*VECTX)+(COSLON*VECTY)
XI=-(SINLAT*COSLON*VECTX)-(SINLAT*SINLON*VECTY)+(COSLAT*VECTZ) 
ZETA = (COSLAT *COSLON*VECTX) + (COSLAT *SINLON*VECTY)+(SINLAT*VECTZ) 
CALL £LLOR(ETA,XI,ZETA,AZ,DIST,VA)
AZER=AZ/360G.0 
VAER=180.0*VA/PI 
WRITEC4,11 )R(I)

1 1 FORMAT(11X.F7.4)
WRITE(4,12 )ETA 
WRITE(4,12)XI 
WRITE(4,12 )ZETA 

12 FORMAT(17X,2F8.3)
WRITE(4,14)DIST,AZER,VAER 

14 FORMAT(34X t F5.3,2F7.1)
1 CONTINUE

ERSQ=(VAL(1)+VAL(2)+VAL(3))/3.0 
ER=DSQRT(ERSQ)
WRITE(4,11)ER
RETURN
END
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SUBROUT INE ELLOR(OU,DV,DW,AZ,DIST,VA)
IMPLICIT REAL*8(A-H,0-Z)
COMPUTES THE DISTANCE AND VERTICAL ANGLE FOR AN ELLIPSOIDAL
RADIUS 
DX = DU 
DY=DV
CALL AZIMUTH(DY,DX,AZ)
DUSQ=DU**2 
DVSQ=DV**2 
DWSQ=DW**2
DIST = DSQRT(DUSQ+DVSQ+DWSQ)
VA=ASIN(DW/DIST)
RETURN 
END
SUBROUTINE CART(LATI,LONG,HT,X,Y ,Z )

C COMPUTES EQUIVALENT CARTESIAN COORDINATES FROM GEODETIC COORD. 
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 LATI,LONG 
E=0.032483399 
R1 =6378249.145
CONST =R1/(1.0-E**2*SIN(LATI)**2)**0.5
CONST1=CONST+HT
X=CONST1*COS(LATI)*COS(LONG)
Y=C0NST1*C0S(LATI)*SIN(LONG)
Z=((1.0-E**2)*CONST+HT)*SIN(LATI)
RETURN
END
SUBROUTINE ASSIGN(K ,X,Y,Z,LATI,LONG,HT,I,X1,Y1,Z1,P1,C1,H1 )

C ASSIGNS OBSERVATION VALUES TO CORRESPONDING OBSERVATION LINES 
IMPLICIT REAL*8(A-H,0-Z)
dimension xcej.YCej.zcej.HTCe)
REALMS LAT1(6),LONG(6)
X1=X(K)
Y1=Y(K)
Z1=Z(K)
P1 = LATI(K )
C1=LONG(K)
H1=HT(K)
RETURN
END
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Appendix C.3 Results of program ADAN for 2nd to 5th epochs

THE SECOND OBSERVATION EPOCH SHIFT POINT 4: +0".001 +0”.001 -0.01 

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC IDEG IMIN SEC m

1 0 -51 -59.550 36 19 18.020 2207.900
2 0 -51 -34.560 36 1 7 59.580 2038.900
3 0 -52 -23.980 36 19 34.540 1908.800
4 0 -52 -26.820 36 17 58.450 1985.700
5 0 -53 -32.110 36 19 32.280 1906.900
6 0 -53 -25.670 36 18 15.210 1962.800

STN X Y Z

1 5140177.718 3778830.147 -95838.194
2 5141487.484 3776781.987 -95067.973
3 5139622.594 3779056.330 -96768.421
4 5141445.748 3776707.922 -96672.519
5 5139638.794 3778981.400 -98676.885
6 5141097.793 3777095.873 -98479.939

ITERATION NO. 1

THE COMPUTED VARIANCE OF UNIT WEIGHT= 1.0000

THE PARAMETER MATRIX 
-0.162414E-03 
0.194043E-02 
0.213237E-04 
0.240054E+01 

-0.256511E+01 
0.520936E+01 
0.176306E+01 
0.456964E+01 
0.402373E+01 

-0.693091E+00 
0.141810E+02 

-0.317134E-03 
0.179296E-02 

-0.149987E-01 
STATION NO. 4

Q IN LOCAL ELLIPSOIDAL SYSTEM
0.000308710 -0.000305877 -0.000100939

-0.000305877 0.000421543 0.000142844
-0.000100939 0.000142844 0.000478788

0.0279
-0.863
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0.0073

-0.503
0.050

1.000 210.3 2.9

-0.071
0.021

-0.997

0.0194
1.000

-0.501
0.864
0.054

1 .000
0 .0201

THE COMPUTED COORDINATES

163. 1

120.1

-85.8

3.1

STN LATITUDE LONGITUDE HEIGHT

DEG MIN SEC DEG MIN SEC m

4 0 -52 -26.820 36 17 58.450 1985.700

THE STANDARD ERRORS

0.000712"
0.000839"
0.007508m

THE FINAL CARTESIAN COORDINATES
STN X V Z >- 

i
Q
 
1

X 
1 

Q
 
I

DZ

4 5141445.71 3776707.97 -96672.52 0.036 0.048 -0.005
THE POINT VELOCITIES

STN "/year "/year m/year STANDARD ERRORS

1 -0.00032 0.00179 -0.01500 0.00100 0.00118 0.01062

THE THIRD OBSERVATION EPOCH SHIFT POINT 4 BY 0”.001 0".001 0.015m

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC DEG MIN SEC m

1 0 -51 -59.550 36 19 18.020 2207.900
2 0 -51 -34.560 36 17 59.580 2038.900
3 0 -52 -29.980 36 19 34.540 1908.800
4 0 -52 -26.820 36 17 58.450 1985.700
5 0 -53 -32.110 36 19 32.280 1906.900
6 0 -53 -25.670 36 18 15.210 1962.800
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STN X Y 2

1 5140177.718 3778830.147 -95838.194
2 51414 8 7 . 4 8 4 3776781.987 -95067.973
3 5139622.594 3779056.330 -96768.421
4 5141445.748 3776707.922 -96672.519
5 5139638.794 3778981.400 -98676.885
6 5141097.793 3777095.873 -98479.939

ITERATION NO. 1

THE COMPUTED VARIANCE OF UNIT WEIGHT = 1.0000

THE PARAMETER MATRIX 
-0.937652E-04 
0.203636E-02 

-0.681441E-04 
-0.939907E+00 
-0.157634E+01 
0.474522E+01 
0.106830E+01 
0.438625E+01 
0.142885E+01 

-0.760663E+00 
0.146292E+02 

-0.373867E-03 
0.174512E-02 

-0.148478E-01 
-0.549882E-03 
0.398151E-03 

-0.675480E-02 
STATION NO. 4

O IN LOCAL ELLIPSOIDAL SYSTEM 
0.021502968 -0.021245828

-0.021245828 0.029286165
-0.006897009 0.009815166

0.2322
-0.865
-0.500
0.051

0.0613
-0.072
0.022

-0.997

0.1623
-0.497
0.866
0.055

-0.006897009
0.009815166
0.033210669

1.000 210.0 2.9

1.000 162.6 -85.7

1.000 119.9 3.2
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0.1673
THE COMPUTED COORDINATES

STN LATITUDE LONGITUDE HEIGHT

DEG MIN SEC DEG MIN SEC m

4 0 -62 -26.820 36 17 58.450 1985.700

THE STANDARD ERRORS

0.005932"
0.006997"
0.062900m

THE FINAL CARTESIAN COORDINATES
STN X Y Z DX DY DZ

4 5141445.71 3776707 .97 -96672.52 -0.037 0.051 -0.00
THE POINT VELOCITIES

STN "/year "/year m/year STANDARD ERRORS

1 -0.00037 0.00175 -0.01485 0,.00839 0.00990 0.08895
THE POINT ACCELERATIONS

STN "/year sq "/year sq. m/year sq. STANDARD ERRORS

1 -0.00055 0.00040 -0.00675 0. 00854 0.01012 0.08895

THE FOURTH OBSERVATION EPOCH shift 0.000 0.001 0.000

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC DEG MIN SEC m

1 0 -51 -59.550 36 19 18.020 2207.900
2 0 -51 -34.560 36 17 59.580 2038.900
3 0 -52 -29.980 36 19 34.540 1908.800
4 0 -52 -26.820 36 17 58.450 1985.700
5 0 -53 -32.110 36 19 32.280 1906.900
6 0 -53 -25.670 36 18 15.210 1962.800

STN X Y Z

n ii ii n m ii ii n ii ii n n ii ■ iiiniinniiniinn nniinniinniiniiniiniiii ii ii ii n n n n n ii n n ii n ii ii

1 5140177.718 3778830.147 -95838.194
2 5141487.484 3776781.987 -95067.973
3 5139622.594 3779056.330 -96768.421
4 5141445.748 3776707.922 -96672.519
5 5139638.794 3778981.400 -98676.885
6 5141097.793 3777095.873 -98479.939

ITERATION NO. 1
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THE COMPUTED VARIANCE OF UNIT WEIGHT= 1 .0 0 0 0
THE PARAMETER MATRIX 

0.495913E-04 
0.223514E-02 

-0.133901E-04 
0.673132E+01 
0.129610E+02 
0.4 74246E+01 
0.288008E+00 
0.427240E+01 
0.799852E+00 

-0.600489E+00 
0.155249E+02 

-0.510793E-03 
0.156058E-02 

-0.149020E-01 
-0.593583E-04 
0.169835E-02 

-0.109419E-01 
STATION NO. 4

Q IN LOCAL ELLIPSOIDAL SYSTEM
0.025347779 -0.024903745 -0.007902752

-0.024903745 0.034325268 0.011254923
-0.007902752 0.011254923 0.039062729

0.2510
- 0.866
-0.496
0.052

1.000 209.8 3.0
0.0670

-0.073
0.022

-0.997
1.000 163.0 -85.6

0.1768
-0.494
0.868
0.055

1.000 119.6 3.2
0.1814

THE COMPUTED COORDINATES

STN LATITUDE LONGITUDE HEIGHT

DEG MIN SEC DEG MIN SEC m

0 -52 -26.820 36 17 58.450 1985.700
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THE STANDARD ERRORS

0.006433"
0.007579"
0.068769m

THE FINAL CARTESIAN COORDINATES
STN X Y 2 DX DY DZ

4 5141445.71 
THE

3776707.98 -96672 
POINT VELOCITIES

.52 0.041 0.056

STN "/year "/year rn/year STANDARD ERRORS

1 -C.00051 
THE

0.00156 -0.01490 
POINT ACCELERATIONS

0.00914 0.01078 0.09725

STN "/year sq . "/year sq. m/year sq. STANDARD ERRORS

1 -0.00006 0.00170 -0.01094 0.00809 0.00958 0.08422

THE FIFTH OBSERVATION EPOCH -0 52 26.825 36 17 58.453 1985.66C

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC DEG MIN SEC m

1 0 -51 -59.550 36 19 18.C2C 2207.900
2 C _ C 1 -34.560 36 17 59.530 2033.900

r* _ C 9yJ 4. -29.980 36 13 34.540 1908.800
4 0 -52 -26.820 36 17 58.450 1985.700
5 0 -53 -32.110 36 19 32.280 1906.900
6 0 -53 -25.670 36 18 15.210 1962.800

STN X Y Z

1 5140177.718 3778830.147 -95838.194
2 5141487.484 3776781.987 -95067.973
3 5139622.594 3779056.330 -96768.421
4 5141445.748 3776707.922 -96672.519
5 5139638.794 3778981.400 -98676.885
6 5141097.793 3777095.873 -98479.939

ITERATION NO. 1

THE COMPUTED VARIANCE OF UNIT WEIGHT = 1.0000

THE PARAMETER MATRIX 
0.205463E-03 
0.247809E-02 

-0.721011E-04 
0.326110E-01 
0.814623E-01
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THE STANDARD ERRORS

0.006433"
0.007579"
0.068769m

THE FINAL CARTESIAN COORDINATES
STN X Y 2 DX DY DZ

4 5141445.71
THE

3776707.98 -96672 
POINT VELOCITIES

.52 0.041 0.056

STN "/year "/year m/year STANDARD ERRORS

1 -C.00051 
THE

0.00156 -0.01490 
POINT ACCELERATIONS

0.00914 0.01078 0.09725

STN "/year sq . "/year sq. m/year sq. STANDARD ERRORS

1 -0.00006 0.00170 -0.01094 0.00809 0.00958 0.08422

THE FIFTH OBSERVATION EPOCH -0 52 26.825 36 17 58.453 1985.66C

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC DEG MIN SEC m

1 0 -51 -59.550 36 19 18.020 2207.900
2 C -Cl -04.560 36 17 59.530 2033.900
•y o _ c o

sJ -29.980 36 19 34.540 1908.800
4 0 -52 -26.820 36 17 58.450 1985.700
5 0 -53 -32.110 36 19 32.280 1906.900
6 0 -53 -25.670 36 18 15.210 1962.800

STN X Y 2

1 5140177.718 3778830.147 -95838.194
2 5141487.484 3776781.987 -95067.973
3 5139622.594 3779056.330 -96768.421
4 5141445.748 3776707.922 -96672.519
5 5139638.794 3778981.400 -98676.885
6 5141097.793 3777095.873 -98479.939

ITERATION NO. 1

THE COMPUTED VARIANCE OF UNIT WEIGHT= 1.0000

THE PARAMETER MATRIX 
0.205463E-03 
0.247809E-02 

-0.721011E-04 
0.326110E-01 
0.814623E-01
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0.44634 7 E+01 
-0.3673C4E+00 
0.438317E+01 

-0.142869E+01 
-0.396087E+00 
0.162211E+02 

-0.66 7 329E-03 
0.133612E-02 

-0.148415E-01 
-0.572049E-03 
0.339013E-02 

-0.181030E-01 
STATION NO. 4

Q IN LOCAL ELLIPSOIDAL SYSTEM
0.000295420 -0.000288706 -0.000089633

-0.000288706 0.000397893 0.000127748
-0.000089633 0.000127748 0.000454313

0.0270
- 0.868
-0.493
0.053

1.000 209.6 3.1
0.0073

-0.074
0.022

-0.997
1.000 163.5 -85.6

0.0191
-0.491
0.870
0.055

1.000 119.4 3.2
0.0196

THE COMPUTED COORDINATES

STN LATITUDE LONGITUDE HEIGHT

DEG MIN SEC DEG MIN SEC m

4 0 -52 -26.820 36 17 58.450 1985.700

THE STANDARD ERRORS

0.000694”
0.000816”
0.007472m

THE FINAL CARTESIAN COORDINATES 
STN X Y Z DX

4 5141445.70 3776707.98 -96672.51 -0.045

DY

.062



THE POINT VELOCITIES

STN "/year "/year m/year STANDARO ERRORS

1 -0.00067 0.00134 -0.01484 0.00099 0.00117 0.01057
THE POINT ACCELERATIONS

STN "/year sq. "/year sq. m/year sq. STANDARD ERRORS

1 -0.00057 0.00339 -0.01810 0.00083 0.00098 0.00863
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Appendix C.4 Results for the 5th epoch observations -static mode

APPROX. COORDINATES

STN LATITUDE LONGITUDE HEIGHT
DEG MIN SEC DEG MIN SEC m

1 -51 -59 .550 36 19 18..020 2207..900
4* 0 -51 -34 .560 36 17 59..580 2038..900
3 0 -52 -29 . 980 36 19 34 ..540 1908., 800
4 0 -52 -26 .820 36 1 7 58..450 1985.,700
5 0 -53 -32 .110 36 19 32.,280 1906.,900
6 0 -53 -25 .670 36 18 15.,210 1962.,800

STN X Y Z

1 5140 177. 718 3778830. 147 -95838
2 5141 487.-484 3776781. 987 -95067,
3 5139622.594
4 5141445.748
5 5139638.794
6 5141097.793 

ITERATION NO.

3779056
3776707
3778981

330
922
400

3777095.873

-96768.421
-96672.519
-98676.885
-98479.939

THE COMPUTED VARIANCE OF UNIT WEIGHT=
ITERATION NO. 1

THE COMPUTED VARIANCE OF UNIT WEIGHT= 
ITERATION NO. 2

THE COMPUTED VARIANCE OF UNIT WEIGHT= 
POTENTIAL DIFFERENCE

RESIDUAL SCALED WEIGHTS

-0.002141112 0.292826 7E+06
-0.002798314 0.2928267E+06
-0.000376274 0.2928267E+06
-0.000327732 0.2928267E+06
0.001515449 0.2928267E+06

-0.002112975 0.2928267E+06
0.002170707 0.2928267E+06

-0.000288810 0.2928267E+06
0.002276538 0.2928267E+06
0.000167338 0.2928267E+06
0.001170601 0.2928267E+06
0.000341433 0.2928267E+06
0.002566614 0.2928267E+06
0.000364097 0.2928267E+06

119.2633 

1.0002 

1.0000
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-0.C01017982 0.2928267E+06
-0.001214829 0.292826 7E+06
-0.000065728 0.292826 7E+06
0.002692556 0.2928267E+06

-0.002206315 0.2928267E+06
-0.000021611 0.2928267E+06
-0.001298766 0.2928267E+06
-0.003082253 0.2928267E+06
-0.000178538 0.2928267E+06
0.0011y4223 0.2928267E+06

VTVP TRACE SIG USED % LEFT % TOTAL 08S

19.00967 19.00967 1.000000 20.79 79.21 24
4.99 19.01

GRAVITY DIFFERENCE

LATITUDE

RESIDUAL SCALED WEIGHTS

0.000433501 0.5916228E+05
0.000097484 0.5916238E+05

-0.000150904 0.5916238E+05
0.000621908 0.5916238E+05
0.000006709 0.5916238E+05

-0.000000554 0.5916238E+05
VTVP TRACE SIG USED % LEFT % TOTAL OBS

0.03591 0.03591 1.000000 99.40 0.60 6
5.96 0.04

LONGITUDE

RESIDUAL SCALED WEIGHTS

-0.001619188 0.2331721E+05
-0.000142556 0.2331721E+05
0.000486859 0.2331721E+05
0.000017785 0.2331721E+05

-0.000207360 0.2331721E+05
0.000000108 0.2331721E+05

VTVP TRACE SIG USED % LEFT % TOTAL OBS

0.06814 0.06814 1.000000 98.86 1.14 6
5.93 0.07

AZIMUTH

RESIDUAL SCALED WEIGHTS

iiiiniiiinniiniiniiniiniiniiiiiiii n n ii ii ii n ii ii n ii ii ii n =====
-3.349599301 0.6928144E-01
-3.755113928 0.6928144E-01

VTVP TRACE SIG USED % LEFT * TOTAL OBS
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1.75425 1.75425 1.000000 12.29 87.71 2
0.25 1.75

VERTICAL ANGLES

RESIDUAL SCALED WEIGHTS

-3.286040215 0.6820665E-01
6.871615350 0.6820665E-01

-2.774655704 0.6820665E-01
3.367876561 0.6820665E-01

-1.254831247 0.6820665E-01
1.363452839 0.6820665E-01
2.213275561 0.6820665E-01

-6.633695116 0.6820665E-01
3.224673771 0.6820665E-01

-2.211899384 0.6820665E-01
VTVP TRACE SIG USED % LEFT % TOTAL CBS

9.86867 9.86867 1.000000 1.31 98.69 10
0.13 9.87

SPATIAL DISTANCES

RESIDUAL SCALED WEIGHTS

0.005110717 0.8287340E+05
0.002220210 0.27955 70E+U6

-0.001069531 0.7964854E+05
-0.001695841 0.6635895E+U5
0.004833152 0.8287342E+05

-0.004243007 0.4958516E+05
0.001598575 0.1735993E+06
0.002355428 0.4823927E+05
0.002108212 0.2795570E+06

-0.005737938 0.4958521E+05
-0.000081456 0.6315408E+05
0.002455046 0.1337917E+06

-0.001257973 0.7964856E+05
0.001099738 0.1735994E+06

-0.000060191 0.6315408E+05
-0.002615317 0.4623641E+05
-0.003199296 0.1370578E+06
-0.001468222 0.6635894E+05
0.002644871 0.1337916E+06

-0.002256245 0.4623640E+05
0.000663130 0.9248664E+05
0.000446361 0.6250105E+05

-0.002495673 0.1370577E+06
0.000732916 0.9248663E+05
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VTVP TRACE SIG USED % LEFT * TOTAL 082

15.42075 15.42075 1.000000 35.75 64.25 24
8.58 15.42

HORIZONTAL ANGLES

RESIDUAL SCALED WEIGHTS

3.887806217 0.3267808E-01
5.988433892 0.3267808E-01

-11.282736542 0.3267808E-01
1 .240950812 0.3267808E-01
2.476789219 0.3267808E-01
1.730231188 0.3267808E-01

-2.428832706 0.3267808E-01
-1.720254942 0.3267808E-01
0.877918862 0.3267808E-01
5.474905426 0.3267808E-01

-7.935941697 0.326 7 808E-01
1.790696897 0.3267808E-01

-5.354395844 0.3267808E-01
6.431937560 0.326 7 808E-01

-3.143935201 0.3267808E-01
0.275145846 0.3267808E-01
1.096713229 0.3267808E-01
0.747392590 0.3267808E-01

-0.287696825 0.3267808E-01
-6.906005938 0.326 7 808E-01
5.902223708 0.326 7 808E-01
1.931485871 0.3267808E-01

-5.863235880 0.3267808E-01
4.265538065 0.3267808E-01

VTVP TRACE SIG USED % LEFT % TOTAL OBS

16.84261 16.84261 1.000000 29.82
7.16

70.18
16.84

24

TOTAL DEGREES OF FREEDOM = 63.000

THE PARAMETER MATRIX 
0.220787E-02 
0.251431E-02 
0.686813E-02 
0.213882E-02 
0.199689E-03 
0.658815E-02 

-0.555428E-03 
-0.873539E-03 
0.650018E-02 
0.290186E-03
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0.780316E-02 
-0.333338E-01 
-0.5 75273E-04 
0.172115E-03 
0.668253E-02 

-0.400984E-02 
-0.97 3674E-02 
0.669465E-02 

-0.990954E-01 
0.573519E-01 

-0.126818E-01 
0.294236E-01 
0.318926E-01 

-0.510808E-01 
-0.549894E-01 
-0.308006E-01 
0.259972E-02 

-0.762330E-03 
0.319878E-01 

-0.702656E-03 
-0.273208E+01 
-0.105534E+01 
-0.668494E+01 
-0.134454E+02 
-0.375114E+01 
-0.161323E+01 

STATION NO. 1

Q FOR PHI, LAMBDAfH 
0.000000053 0.000000009
0.000000009 0.000000093

-0.000000021 -0.000000055
0 IN LOCAL ELLIPSOIDAL SYSTEM 

0.000034695 -0.000041765
-0.000041765 0.000057488
-0.000005095 0.000007036

0.0096
-0.978
-0.207
0.020

0 . 0017
-0.019
- 0 .0 1 0
-1.000

- 0.000000021
-0.000000055
0.000002837

-0.000005095
0.000007036
0.000050133

1.000 191.9

1.000 208.9

-0.207
0.978

-0.006

0 . 0 0 6 9

1 .0 0 0  1 0 1 .9

144

1.2

8 8 . 8

- 0 . 4



0.0069
STATION NO. 2

0 FOR PHI, LAMBDA,H 
0.000000149 0.000000047
0.000000047 0.000000066

-0.000000006 -0.000000077
0 IN LOCAL ELLIPSOIDAL SYSTEM

0.000025744
-0.000028902
-0.000025121

0.0127

0.0018

0.0065

0.0083 
STATION NO.

-0.000028902
0.000040290
0.000037371

-0.416
-0.909
0.007

-0.052
0.016

-0.999

-0.908
0.416
0.053

-0.000000006
-0.000000077
0.000003237

-0.000025121
0.000037371
0.000140384

1.000 245.4

1.000 163.2

1.000 155.4

Q FOR PHI, LAMBDA,H 
0.000000065 -0.000000020

-0.000000020 0.000000064
-0.000000005 -0.000000042

Q IN LOCAL ELLIPSOIDAL SYSTEM 
0.000024612 -0.000028561

-0.000028561 0.000039091
0.000012114 -0.000015212

0.0090
0.711

-0.703
- 0 . 011

-0.000000005
-0.000000042
0.000002421

0.000012114
-0.000015212
0.000060867

1.000 315.3
0.0015

-0.026 
- 0 . 0 1 1  
- 1 .0 0 0

1.000 203.1

0.703
0.711

-0.026

0 .0 0 6 5
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1.000 45.3 -1.5
0.0064

. - I O N  NO. 4

^  PHI, LAMBDA ,H 
U  * , .ju 0 00063 -0.000000015

^ g O O O O 0 1 5 0.000000057
j J 0 0 0 0 0 0 4  -0.000000049

-V< u O C A L  ELLIPSOIDAL SYSTEM
___'62 -0.000025609

’ j J O O 2 5 6 0 9  0.000034654
* j j u 0 0 9 1 9 3  -0.000011260

O .0085
0.647

-0.763
-0.013

O .0015
-0.032
- 0 .0 1 0
-0.999

O .0065
0.762
0.647

-0.031

-0.000000004
-0.000000049
0.000002159

0.000009193
-0.000011260
0.000059604

1.000 310.3

1.000 198.0

1.000 40.3

^  » j . O H

O .0062 
NO. 5

I- O R  PHI, LAMBDA,H 
. 0 0 0 0 0 0 1 3 8  0.000000039

u . U O O U G 0 0 3 9  0.000000064
J - O U U O O O O O O  -0.000000061
1 l o c a l  ellipsoidal system 
u  - 0 0 0 0 2 4 5 5 9  -0.000028237
°  • 0 0 0 0 2 8 2 3 7  0.000039501
<J * O 0 0 0 2 0 5 9 4  0.000031337

O.0121
-0.401
-0.916
0.005

O.0017
-0.039

0.011
-0.999

-0.915
0.401

0.0067

0.000000000
-0.000000061
0.000002820

-0.000020594
0.000031337
0.000130358

1.000 246.4

1.000 163.8 -

-0.7

88.1

- 1.8

0.3

87.7
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0.041

0.0081 
STATION NO.

1.000 156.4 2.3

O FOR PHI, LAMBDA,H 
0.000000058 0.000000021
0.000000021 0.000000154
0.000000000 -0.000000086

Q IN LOCAL ELLIPSOIDAL SYSTEM 
0.000056472 -0.000069359

-0.000069359 0.000094991
-0.000010949 0.000016224

0.0123
-0.980
-0.198
0.018

0.0019
-0.019
0.007

- 1 .000

0.0071
-0.197
0.980
0.011

0.000000000
-0.000000086
0.000003775

-0.000010949
0.000016224
0.000054792

1.000 191.4 1.0

1.000 159.6 -88.8

1.000 101.4 0.6
0.0083

THE COMPUTED COORDINATES

STN LATITUDE LONGITUDE HEIGHT

DEG MIN SEC DEG MIN SEC m
— ======= n i i z i =============== ============= ============ Z Z Z Z Z Z

1 0 -51 -59.548 36 19 18.022 2207.907
2 0 -51 -34.558 36 17 59.582 2038.907
3 0 -52 -29.981 36 19 34.543 1908.807
4 0 -52 -26.820 36 17 58.459 1985.667
5 0 -53 -32.110 36 19 32.281 1906.907
6 0 -53 -25.674 36 18 15.211 1962.807

THE FINAL CARTESIAN COORDINATES
STN X Y Z DX DY

1 5140177.68 3778830.21 -95838.13 -0.040 0.067

2 5141487.49 3776782.00 -95067.91 0.002 0.009

3 5139622.61 3779056.31 -96768.44 0.021 -0.018

4 5141445.58 3776708.10 -96672.51 -0.170 0.175

5 5139638.80 3778981.41 -98676.89 0.002 0.008

6 5141097.98 3777095.63 -98480.06 0.182 -0.240

DZ

0.062
0.066

-0.017
0.009

- 0.00
-0.12
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