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ABSTRACT

The precise geoid determination is one of the main current geodetic problems in Kenya. This is 

because Global Positioning System (GPS) defined coordinates require geoid heights so as to be 

compatible to orthometric heights that are used in practice. The geoid is the reference surface 

for orthometric heights, which are the functional heights for mapping, engineering works, 

navigation, and other geophysical applications.

In this study, a local geoid has been determined by geometric approach. The geoid heights are 

derived from geodetic and orthometric heights. The geodetic and orthometric heights in this 

study are referred to the World Geodetic System 1984 (WGS84) and the local mean sea level 

respectively. Nineteen points levelled by both GPS and precise levelling techniques in the area 

of study have been used.

In order to express the local geoid as a function of the local plane coordinates, it is deemed 

necessary to determine three-dimensional transformation parameters between WGS84 and Arc- 

Datum 1960 (local datum). Seven triangulation points have been used for the determination of 

transformation parameters in the area of study.

The geoid height is expressed as a function of the local plane coordinates through a biquadratic 

surface polynomial. The coefficients of the biquadratic polynomial are determined by two 

methods: Least Squares (LS) and Least Squares Collocation (LSC) using 14 GPS/Levelling 

points. Five points have been used for testing the results. It is found that the coefficients 

determined by LS and LSC model the geoid at the same level on the test points. However, LSC 

technique provides stochastic parameters to the predicted geoid heights. Earth Gravity Model 

of 1996 (EGM96) has also been used to determine geoid heights although it compares poorly at 

the test points.

The experience with Nairobi area geoid indicates that modelling the geoid by a biquadratic 

polynomial is simple and it worl$ well. The geoid heights obtained by biquadratic polynomial 

(determ inedly LS and LSC) compare favourably on the test points with root mean square and 

standard deviation of ± lcm in the area of study.
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A MATLAB program (RUN.M) has been developed to functionalise the use of the 

transformation parameters and the polynomial. The program interacts with the user through a 

user interface. From the observed WGS84 coordinates, the local Universal Transverse Mercator 

(UTM) coordinates (N, E) on Arc-Datum 1960 are computed followed by the interpolation of 

iieoid height and subsequently the orthometric height of a given point within the area of study. 

The extents of the area of study are: latitudes (1° 8' 00" S to 1° 25' 18" S) and longitudes (36° 

38'55" E to 36° 58'24" E).

The results show that if geoid heights are accurately determined, then a biquadratic polynomial 

can be used for geoid modelling. The combination of transformation parameters and 

biquadratic polynomial is therefore a possible way of enabling the use of GPS for local survey 

work.
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CHAPTER ONE
INTRODUCTION

1.1 General Background
The geoid may be defined as the one gravity equipotential surface that best approximates 

the idealized mean sea level over the whole earth. This surface was already referred to by 

Carl Friedrich Gauss (1777 -1855) as the mathematical form of the earth and later named 

geoid by J.B. Listing (1873). The geoid can be viewed as a surface of constant potential, 

W(x y. z) = W0, where “W” is the earth's gravity potential and “W0” is the geoid potential as 

specified by the International Association of Geodesy (Moritz, 1980). If we consider the 

waters of the oceans as freely moving homogeneous matter, which is subject only to the 

force of gravity of the earth, then upon attaining a state of equilibrium, the surface of such 

idealized oceans assume a level surface of the gravity field -  extended under the continents 

(Torge, 1991). Thus the geoid is a closed and continuous level surface, which extends inside 

the solid body of the earth.

The curvature of the geoid displays discontinuities at abrupt density variations and 

consequently it is not an analytic surface to be suited as a reference surface for position 

determinations (Torge, 1980). It is well suited as a reference surface for potential or height 

differences (levelling combined with gravity measurements). To establish the geoid, one 

utilizes the mean sea level, which may deviate by about ±lm to ±2m from a level surface. 

The deviation is due to; ocean tides, meteorological nature of pressure and winds, 

oceanographic nature of currents, density differences in ocean waters (due to temperature 

and salinity), and water bulges of melt water and monsoon rains.

For better accuracies (±10 cm) the above classical definition of the geoid (as mean sea level 

and its extension) is not sufficient. The accuracy attainable through possibilities of satellite 

geodesy requires the geoid to be defined as a global reference surface (for heights) which 

best fits the mean sea level, i.e. the potential and elevation of the geoid are obtained by 

applying a minimum condition for deviations between the geoid and the mean sea level.

The method of using mean sea level as the reference surface for orthometric height has been 

widely acceptable. However, Rizos (1980) observed that the mean value of the local mean 

sea level observed at the tide gauge stations cannot be considered to coincide with the 

geoid. This therefore means that a mean sea level at one position is not on the same
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geopotential surface as that at another position. The use of mean sea level as reference 

surface may cause some problems in vertical-datum application. The first problem is related 

to the use of multiple constraints on mean sea levels in a single vertical datum. In such a 

case, heights at tide gauge sites are set to be zero in the levelling adjustments (Pan and 

Sjoberg, 1998). The other problem is that the deviation of the mean sea level from the geoid 

is of the order of ± 2m (Rapp and Balasubramania, 1992), which implies that various 

height systems based on fixing tide gauges may differ by the same order.

The shape of the mean sea level is determined from records of the instantaneous sea level at 

a chain of observational points located on coastlines and equipped with tide gauges. These 

data from all over the world are received at the headquarters of the Permanent Service for 

Mean Sea Level (PSMSL) at the Bilston Observatory (Chesire, U.K) for worldwide 

dissemination.

In essence mean sea level determined rigorously is the geoid. The geoid represents the most 

obvious mathematical formulation of a horizontal surface at sea level. This is why the use of 

the geoid simplifies geodetic problems and makes them accessible to geometrical intuition 

(Heiskanen and Moritz, 1967). The height datum is achieved by determining the mean sea 

level on the seashore. The mean sea level is believed to deviate from the location of the 

geoid by negligible amounts. To use the mean sea level to provide orthometric heights, a 

tide-gauge station is set up at the sea and next to it is set a reference benchmark (Ref.BM) 

i.e. a height datum on firm ground.

In geodetic positioning the geoid is approximated with a rotational ellipsoid (with semi

minor axis perpendicular to the equatorial plane) as conventional reference surface. This 

reference ellipsoid through its deviations from the geoid, further serves as a means of 

describing the geoid. The components of these deviations are generally known as deflection 

of the vertical and geoid undulation. The two components are referred to as geoidal 

deviations. Unlike the topographic surface, which departs from the ellipsoid by several 

kilometers at slopes of almost any amount, the geoid scarcely deviates from the ellipsoid by 

as much as a hundred meters, at slopes rarely exceeding one minute of an arc (Magnavox 

Research Laboratory Report, 197$).
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1.2 Statement of the Problem

Geodesists have for a long time carried out extensive work geared towards the 

determination of the geoid. A mathematical figure (ellipsoid of revolution) has been used to 

represent the earth for mapping purposes. To express the true relationship of points on the 

earth surface to each other or to the earth's center of mass, the separation between the geoid 

and the adopted reference ellipsoid must be known. Figure 1.2.1 below shows the 

relationship between the geoid and the reference ellipsoid.

Figure 1.2.1: Relationship between geoid and reference ellipsoid

The linear difference between the reference ellipsoid and the geoid at a point is referred to 

as geoidal undulation. Determination of the geoid therefore refers to the determination of 

geoidal undulation (N) from a reference ellipsoid (WGS84 in this case). The knowledge of 

geoid is normally required principally for practical purposes e.g. surveying, cartography, 

navigation, determination of the orbit of the artificial satellites, study of the earth's crust and 

other geophysical studies.

Both gravimetric and geometric methods have been used for geoid determination in various 

countries e.g. Turkey, Canada, Hong Kong, Belgium, Japan and many other countries. Even 

though local geoid is very fmportant for the development of a country, no serious attempt 

has ever been made to determine lljie geoid for Kenya. Gravity observations in Kenya began 

around 195*9 and observations have been carried out by various organizations, notably 

petroleum companies (Lwangcisi, 1991). These data are unfortunately seamy in format and 

distribution in addition to being not readily available for research work especially in Nairobi
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area where less or no exploration activities have been done. Hence the geometric geoid 

determination approach.

GPS is a new technology in surveying. It is fast and efficient in determination of positional 

data (coordinates) based on the WGS84. It measures heights above WGS84 reference 

ellipsoid. These heights are called ellipsoidal heights (h). However orthometric heights (H) 

are the functional heights for mapping, engineering works, navigation, and other 

geophysical applications (Ayhan, 1993). The geoid is the reference surface for orthometric 

heights. These heights are obtained via spirit levelling which is a very tedious and 

expensive process.

To exploit the capabilities of GPS tor heighting purposes, the geoidal undulations must be 

determined in an area. In this case, Nairobi province has been chosen as the study area. A 

biquadratic polynomial (determined by LS and LSC) and a gridded representation of 

EGM96 have been used to convert ellipsoidal heights into orthometric heights in the area of 

study.

For the interpolated geoid heights to be used effectively for local work, their positions 

should be known in the local coordinate system. This therefore calls for the determination 

of transformation parameters between WGS84 and the local (Arc-Datum 1960) coordinates.

It is therefore necessary that the geoid height be expressed as a function of the local 

coordinates (x, y).

1.3 Objectives of the Study

The objectives of this study include,

(i) Determination of the geoid in Nairobi area.

(ii) Determination of transformation parameters between WGS84 and 

Arc - Datum 1960 (Local) coordinates in the area of study.

(iii) Determination of a best fitting polynomial expressing the geoidal undulation as a 

function of the plane coordinates in the area of study.

(iv) Developing a computer program for converting GPS heights (h) into

orthometric heights (H)in the area of study.
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1.4 Methodology

A network of seven triangulation points in Nairobi area lias been used to determine 

transformation parameters. The local plane (UTM) coordinates are first transformed to 

<reodetic coordinates. The geodetic coordinates are then used to determine three- 

dimensional cartesian coordinates based on Arc-Datum 1960 together with the dimensions 

of modified Clarke 1880 reference ellipsoid.

The corresponding three-dimensional cartesian coordinates on WGS84 complete the 

requirement for a set of coordinates for every point in the two systems. Three dimensional 

transformation equations are then used to determine the seven transformation parameters.

A geometric approach has been used for the determination of geoid height i.e. through 

ellipsoidal and orthometric heights in the area of study. The geoid has been modelled by 

biquadratic polynomial determined by LS and LSC techniques. A gridded representation of 

EGM96 has also been used to determine geoid heights through a bilinear interpolation 

program INTPT.F.

1.5 Organization of the Report

Following this introduction is chapter two which gives the theoretical aspects of geoid 

determination and modelling. The height systems used in the study and global positioning 

system are discussed in chapter three. The local coordinate system is discussed in chapter 

four followed by the various coordinate transformations and parameter estimation models in 

chapter five.

The test data used in this study and the computations are presented in chapter six while 

chapter seven is dedicated to results and analysis. Conclusions and recommendations are 

given in chapter eight. The appendices and references are presented in that order 

immediately after chapter eight. The computer programs used in the study are given in the 

appendices.
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CHAPTER TWO
GEOID DETERMINATION AND MODELLING

2.1 Geoid Determination Methods

The ueoid is basically the physical surface of the earth. This surface can be determined via 

different methods: Astro-geodetic (Astronomic Levelling), Geometrical Astronomical 

Levelling, Gravimetric and Satellite methods. Better determination of the geoid may be 

obtained by combined evaluation. The most common combinations are; Astro -  Gravimetric 

Levelling and Gravimetric -  Satellite solution (Heiskanen and Moritz, 1967).

2.1.1 Astro-Geodetic (Astronomic Levelling)

In Astro - geodetic method we consider the problem of determination of the figure of the 

earth by use of astronomic and terrestrial geodetic methods. The data derived from the 

astronomic and terrestrial geodetic observations are the deflection of the vertical 

parameters, which imply the slope of the geoid with respect to the reference ellipsoid, so 

that from this relationship the geoidal height differences are determined. This can be given 

as.

where,

dN is the geoid height difference, 

ds is differencial change in horizontal distance, 

and

0 is the total deflection of the vertical given as,

0 = ^cosocab + psinaAB for a line AB (2.1.1-2)

dN = -0ds (2.1.1-1)

where,

£, is the deflection of the vertical in the meridian direction, 

rj is the deflection of the vertical in the prime vertical direction , 

a AB is azimuth from point A to B.

I he difference in geoid heighfmay also be given as.

(2.1.1-3)
A
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2.1.2 Geometrical Astronomic Levelling

In the geometric astronomical levelling, geometrical levelling is combined with the astro- 

geodetic data and is often incorporated into three-dimensional computations. The difference 

in szeoidal undulation is obtained from the relationship;

dh = dn + dE + dN. 

where.
dh is geodetic height difference, 

dh is orthometric height difference, 

dN is geoid height difference, 

dE is orthometric height correction, 

dn is levelled height difference.

Hence for a line AB, AhAB is given as

B B

M AB = hB- h A = jdn -  jdds.
A A

where,

AhAB is the geodetic height difference between points (A and B).

Eqn (2.1.2-3) shows that the difference in geodetic height can be obtained using levelling 

and the surface deflections of the vertical. With parallelism of axes of the geodetic (x, y, z) 

and astronomic (X, Y, Z) systems we have that;

d(&hAB) = cos <pB cos ABdXB -  cos <f>A cos XAdXA + cos <pH cos XBdYB -  cos <f>A cos XAdYA + sin (f>BdZB -  sin <j>AdZA.

(2.1.2-3)

where,

<|) is geodetic latitude,

'k is geodetic longitude.

2.1.3 Gravimetric Approach

The gravimetric determination $f the geoid is based on the solution of the geodetic 

boundary -walue problem for the disturbing potential (T). The disturbing potential gives the 

irregularities of the actual potential (W) from the modelled potential (U) of the figure of the 

earth. Known boundary-values (gravity anomalies) on the geoid are related to the

7
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disturbing potential in the gravimetric determination of the geoid. The solution to the 

problem is sought using approaches given by Stokes's ami Molodensky's concepts, with 

Stokes’s approach being the most commonly used method. The disturbing potential (I) 

satisfies Laplace's equation i.e. (Moritz, 1980; Heiskanen and Moritz, 196").

d 2J  d 2J  d 2T . 
V 'T = A T - + ^ y , + ^ z , - (2.1.3-1)

After evaluating the value of T, the geoidal undulation can be obtained via the 

Bruns's formula given by Heiskanen and Moritz (1967) as;

where,

y is normal gravity.

(2.1.3-2)

In the classical gravimetric approach, T may be obtained as (Heiskanen andMoritz, 196^)\

T(e,X)  = — 1 1  ( - ) ”[ « :_  cosmX + SS„„ sin mX]Pm (cos0). (2.1.3-3)
r S . . i  r

where,

T (0,A.) is disturbing potential at point (0,X) with 0 being co -  latitude, 

a is semi-major axis of a reference ellipsoid,

Pnm(cos0) is Legendre polynomial, 

n is degree of polynomial coefficients, 

m is order of polynomial coefficients.

The coefficients 5Cnm and 5Snm are obtained as the modified harmonic coefficients for the 

earth (geoid) and the selected geocentric ellipsoid. Substituting for T from (2.1.3-3) into 

(2.1.3-2) we obtain N (Heiskanen and Moritz, 1967) as;

cos mX -tSSnm sin mA]Pnm{cos6).
n=2 m=0

(2.I.3-4)

hus with the harmonic coefficients computed, gravimetric geoid height can be evaluated. 

The value ot N is also given by Stokes's formula as;

8



(2.1.3-5)/V =
R

4 7rym

where,
S (\\i) is Stokes’s function (Heiskanen and Moritz, 1967), 

R is mean radius of the earth,

Ag is gravity anomaly, 

da is surface element.

2.1.4 Satellite Methods

In satellite determination we use observations to and from artificial satellites. The methods 

used can be classified into dynamic and geometric. In the dynamic method, the satellite is 

taken as a sensor moving in/under the gravitational field of the earth from which the 

perturbation theory can be modelled.

2.1.4.1 Satellite Perturbed Motion

The variation in the orbit of the satellite is caused by various disturbing forces (gravitational 

and non gravitational). These (disturbing forces) cause variations with time in the orbital 

elements (orbital perturbations) of secular and long / short periodic nature. The differences 

are referred to as perturbations of the satellite orbit and can be viewed from two different 

aspects; the coordinates of the satellite are directly disturbed or changed, for which analyses 

are made to obtain the differences and in the other aspect it is assumed that the satellite is 

moving in an elliptic orbit whose elements change at each instant and analyses of the 

changes made.

The causes of perturbations are usually modelled in the form of disturbing functions (Rt), 

which are to be related to the potential function of the spherical attraction. Hence the 

potential is given as,

w GM
W = —  + R,. . .  (2.1.4.1-1 j

in which Rt is the perturbing pot^tial containing the harmonic coefficients Jn,Cnm and Srim 

o! the harmonic expansion of gravity potential (V ), i.e.

9



(2.1.4.1-2)JltPn{cos0) + Y , {C„„, cos mA + Snm sin mA] Ptm(cos6>) .
n

The solution for the perturbing force involve a determination of the unknown orbital 

parameters (or deviations of the predicted orbit parameters) and the disturbing gravitations 

and non-gravitational forces. This may include a large number (infinity, oo) of the unknown 

harmonic coefficients. To make the solution easy, usually a number of the unknowns are 

eliminated before the adjustment. With the harmonic coefficients determined the geoidal 

undulation (N) is given as.

where,

nmax is the highest degree of coefficients determination,

Jnm and Knm are spherical harmonic potential coefficients,

JNnm is normal spherical harmonic potential coefficient.

2.1.4.2 Satellite Geometric Approach

In the satellite geometrical methods, the satellite is regarded as a high flying object whose 

orbit can be determined and such information used to compute the coordinates of the ground 

stations (Vanicek, 1973). The first technique for satellite positioning was GLONASS 

followed by the current Global Positioning System. A third generation of satellite systems 

(GALILEO) is in its development stage. Global Positioning System has been used in this 

work hence discussed in details in chapter three.

With the development of GPS positioning technique, great attention has been paid to the

precise determination of local/regional geoid with an aim to replace the spirit levelling with

GPS surveys. In a relatively small and flat area the local geoid can be determined by a

combination of GPS derived heights and levelled heights, called the geometric approach

(Yang and Chen, 2002). A plane or low order polynomial is usually used to model the geoid

(Featherstone et. al 1998). *
yv

The geometric geoid may be obtained as:

N - R . z n v . - J L  ) cos mA + Knm sin mA]Pnm(cos 0). (2.1.4.1-3)

(2.1.4.2-1)
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where h and H are the ellipsoidal and orthometric heights respectively while N is the 

geoidal undulation. Another method of computing the local geoid is by incorporating the 

geopotential model and local terrain information (Doerjlinger et.al, 1997; Yang and Chen, 

1999). This approach is similar to the remove -  restore technique used in the determination 

of gravimetric geoid. In this method the geoid height N is expressed as:

N = NlM+ N , + N r. (2.1.4.2-2)

Where Ngm is long wavelength component computed from a geopotential model 

(e.g. EGM96), NT is terrain correction evaluated from topographic information (e.g. DTM), 

and Ni is medium wavelength component obtained by an interpolation/interpretation 

technique.This refined geometric approach was used to construct the Hong Kong geoid 

(Yang and Chen 2002).

2.1.5 Combined Solutions of the Geoid

The methods of evaluating the geoid can be classified into three broad categories; astro- 

geodetic, gravimetric and satellite methods. A more detailed classification gives the 

methods as; conventional satellite techniques, satellite-to-satellite tracking, satellite 

gradiometry, satellite altimetry, aerial gradiometry, gravimetry and astro-geodesy.

Considering the characteristics of the three broad categories, with the possibilities that all 

the data needed for a given area may not be available, it is necessary that an optimal 

solution be obtained by either combining various solutions or combining different data sets 

for a determination. There are several possibilities of effectively combining the 

heterogeneous data sets. However, there are two popular/common combinations given 

below.

• Astro-Gravimetric Levelling (combination of astro-geodetic and gravimetric 

approaches).

• Gravimetric-Satellite solutions (combination of gravimetric and satellite methods).



2.2 Geoid Modelling

Many surface-modeling techniques can be used for interpolating geoidal deviations. These 

may include but not limited to; inverse distance to a power, Kriging, minimum curvature, 

nearest neighbour, polynomial surface fitting, radial basis function, Shepard's methods, 

least squares collocation and geopotential models, just to mention a few. The choice of a 

technique to use for modelling the geoid would depend on; accuracy, practicability, 

serviceability among other factors. In this research however, a biquadratic polynomial 

determined by LS and LSC has been used. A gridded representation of EGM96 has also 

been used to determine geoid height through a bilinear interpolation program 1NTPT.F.

2.2.1 Least Squares Collocation

Least squares collocation is a general method for least squares adjustment that combines 

prediction and parameter determination process. In geodetic computations, least squares 

collocation combines the calculation of station coordinates and other orientation parameters 

(harmonic coefficients, earth orientation parameters, calibration and drift coefficients etc) 

with the estimation of gravity field quantities of the unsurveyed points, utilizing many types 

of observables (Krarup 1969, Moritz 1973). Although the least squares collocation is time 

consuming, and requires additional pre-processing for the covariance function, it offers the 

possibility of combining data from heterogeneous sources related to the gravity field. Most 

of the other methods do not provide this important advantage (Lachapelle and Tscherning 

1978; Schwarz and Sideris 1985; Denker et al. 1986; Siinkel et al. 1987; Vanicek and 

Klausberg 1987; Arabelos 1989; Yang and Chen 2002).

From the conventional model in Least Squares adjustment we have that;

y = AX + c. 

where;

y is vector for n observations,

X is vector for u unknowns,

A is design matrix, 

e is vector of observational errors.

(2.2.1-1)



Equation (2.2.1-1) can be generalized to.

y = AX + s + t. (2.2.1-2)

where, s (signal) is a random quantity in addition to the noise in the observation y (Moritz 

1980) so that the measurement y consists of a systematic part AX and two random parts, s

and e.

Least Squares Collocation furnishes the parameters (X) by optimally removing the 

measuring errors, but in addition allowing for the computation of signals at unsurveyed 

points (prediction). In applying the Least Squares condition of adjustment procedure to both 

simial and the noise quantities, the problem can be interpreted as an adjustment of condition 

equations with unknown parameters (Moritz 1980).

In application to global geodesy, the vector of the observations y contains all the measured 

quantities. Disregarding the noise, which can be added easily, these quantities may be 

decomposed into systematic and irregular parts. The systematic part AX comprises the 

parameters of the ellipsoidal reference system and the station coordinates. Other systematic 

effects, such as instrument constants and drift parameters can also be included in the model. 

The random part consists of the departures of the earth's gravity field from the reference 

ellipsoid; i.e. the deflections of the vertical, the geoidal undulations, the gravity anomalies 

and the differences between the harmonic coefficients of the actual and normal gravity field.

The basic equation of LSC is given as,

y = AX + z. (2.2.1-3)

with z = s' + e; where s' and e vectors are purely random, whose expectation is zero.

If we wish to estimate the signal at an arbitrary number of computation points which may be 

different from the number of points in the data, we shall have p computation points, so that

the signal vector to be computed is p-vector, s = [si,S2 ,S3 , ...........sp]\\Ve can combine this

with the vector z = [zi,Z2 ,Z3 , .................... ,zn]T to have.

r ~ [S' ’ S2 ..............Sp’ Z|. Z , ................Z„] =  [ST, Z T ]T .J (2.2.1-4)
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the r-vector has a covariance Q given as,

where,
Css denotes the covariance of the signal, s,

Cyy denotes the covariance of the measurement, y, 

Csy denotes the cross covariances between s and y.

It should be noted that E(y) = AX from (2.2.1-3) since E(z) = 0. If we denote the covariance 

matrices of vectors s', s and y as; Csv =  C; Cee = D and Cyy= C , then C, D and C 

represent the covariance of noise in the signal part of y, covariance of measuring errors and 

covariance of observations respectively. If the signal and noise are uncorrelated as generally 

expected, since v is the result of direct measurement, then the cross covariances are zero i.e.

Ces = 0; C S'e= 0. (2.2.1-6)

hence from (2.2.1-3) we have that;

Cyy = CsV + Cee or C = C+ D. (2.2.1 -7)

If we further assume no correlation between signal and noise, then we have that,

C ,,= e {szt } = e {s(s' + et )J = e {ss,t } + e {svt } = E{ss'}. (2.2.I-8)

so that

c ,y = cov(s,s’),......... Cys = cov(s\s). (2.2.1-9)

w,th Csy and Cvs as pure signal coVariances. All these covariances are assumed to be known 

or can be approximated. Now for the vector r in (2.2.1-4) we can write (2.2.1-3) as,

14



AX + Br-y = 0. (2.2.1-10)

with B = [0 I]; Equation (2.2.1-10) has the form of condition equations with parameters

(i.e. combined case). We can proceed and apply least squares technique i.e. 

rTPr => Minimum. (2.2.1-11)

with the condition in equation (2.2.1-10) where P is the weight matrix given as Q 1 and Q 

given as in equation (2.2.1-5).

The function to be minimized for a least squares solution may be expressed as,

„ = -  rTPr - kT(AX + Ur - y). (2.2.1-12)
2

where k are Lagrange multipliers. From (2.2.1-12) we have that,

AT(BP'BT)-,AX = AT(B F1BT)-1y. (2.2.1-13)

which gives the solution for X while the solution for r is given by Moritz (1980) as,

r = P-1 Bt (BP 1 BT)’1 (y - AX). (2.2.1-14)
For a special case where B-matrix = [0 I] we readily find that,

b p 'b t = b q b t = [o (2.2.1-15)

hence equation (2.2.1-13) gives the solution for the parameters (X) as,

X = (ATC 'A)ATC 'y • (2.2.1-16)

From (2.2.1-14) we can write,

r = QBT C ' (v - AX). ^ (2.2.1-17)
v%

Now using equation (2.2.1-4) we have that.
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r =
z
s (2.2.1-18)

so that,

s = CsyC ' (y - AX). (2.2.1-19)

which gives the solution for the prediction of the signal(s). The equations (2.2.1-16 and 

(2.2.1-19) provide determination and prediction of unknown parameters and predicted 

signals respectively. The sum of predicted signals (s) and the interpolated part (AX) gives 

the geoid height at interpolation points.

The expression for the accuracy estimates of the parameters in LSC is given as,

2.2.2 Geopotential Models
The first harmonic coefficients determined at the beginning of the space age were the zonal 

terms (Kozai, 1959,1964) from optical observations. The first global models up to degree 

and order 6 were determined by Guier and Newton (1965) and Anderle (1966), who used 

numerical integration and Doppler measurements. Izsak (1966) applied analytical methods 

using optical data only. Kaula (1966b) was the first to combine satellite orbit perturbation 

analysis and gravity measurements.

By 1986, numerous models had been computed, improved from time to time principally by 

four groups. Each used its owmrtiethodology, algorithms and software, but still shared a lot 

°t common data. The groups were;

• The Naval Surface Weapons Centre (under the leadership of Anderle).

(2.2. 1-20)

while the accuracy estimates of signals are evaluated as,

Covs =ESJ =CSJ-CJyC 1 |l-A (A TC 'a)'1 ATC ' Cys. (2.2.1-21)
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• The Smithsonian Astrophysical Observatory (under the leadership of Gaposchkin).

• The Goddard Space Flight Centre [under the impulse of many people (Marsh. 

Wagner, Kiosko, Lerch, among others)].

• The Groupe de Recherches de Geodesie Spatiale (France) and the Deutsche 

Geodatisches Forschungs Institut (FRG).

A number of earth models have been computed since the 1960's. The modern models can 

provide the geoid heights of any points on the earth's surface with an accuracy ranging from 

30cm to a few meters (Rapp 1997). The more recent models consist of geocentric 

coordinates of tracking stations, a set of harmonic coefficients and the parameters of the 

geoid. A good example is the WGS84 reference system that is used for NAVSTAR/GPS 

navigation. Some of the commonly used recent earth models are: EGM96 and OSU91A. 

The EGM96 is the result of the cooperation of NASA-GSFC and NIMA. New improved 

gravity data from regions of the earth which were not available before (e.g. from China, 

former USSR, South America and Africa) together with satellite altimeter data, airborne 

gravity data over Greenland and Arctica were incorporated in the EGM96 model.

EGM96 has been used in this work. Using the latest theoretical corrections, research, 

software algorithms, extensive global satellite altimetry, and gravity data, a new model 

WGS84 (EGM96) geoid has recently been computed by NIMA and NASA. Its absolute 

accuracy is estimated as ±25cm over the ocean areas while over the land, the absolute 

accuracy varies from ±50cm and ±2m (http://www.nit11a.mil/GrandG/wsse2m/esn196. html).

The NIMA/NASA geoid height file consists of a 0.25-degree grid of point values in the 

tide-free system, using the EGM96 geopotential model to degree and order 360. The 

WGS84 constants (a, f, GM and co) have been used to define the geometry and the normal 

field of reference ellipsoid in the calculation of this geoid height file. The geoid undulation 

values are computed by applying a correction term that converts range anomaly calculated 

at a point on the reference ellipsoid to a geoid undulation value. In addition, a correction 

lcrrn of-0.53m is added to the prior result to obtain the geoid undulation with respect to the 
W(jS84 ellipsoid.

yv

e 15-minute geoid height grid is used as an input to a FORTRAN program, 1NTPT.F. 

eveloped for interpolating from the grid, a geoid undulation at any given WGS84 latitude
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and longitude. The program F477.F requires both the EGM96 spherical harmonic 

coefficient file and the correction coefficient file to calculate point geoid undulations by 

spherical harmonic synthesis (http://www. ninui. mil/GrandG/w use nin/e si in 96. hlml).

Geopotential models are being used as reference fields for local and regional geoid 

determination today. However, it should be noted that for the available models, the medium 

and short wavelength coefficients have large errors and not as reliable as the coefficients of 

the long wavelength (Rapp, 1986; Sideris and Schwarz, 1986; Schwarz et al. 1987). Precise 

determination of medium and short wavelength signals of the geoid height can be achieved 

by various strategies. One way of resolving the effects of medium and short wavelengths is 

truncation of spherical harmonic expansion to a certain low degree and extending the size of 

the area within which the data is evaluated by the LSC method (Sideris and Schwarz, 1986). 

The other method depends on a tailored geopotential model, which is tailored to the 

available gravity anomalies in a certain area (Weber and Zomorrodian, 1988; Torge et al. 

1989; Kearsley and Forsberg, 1990).

2.2.3 Interpolating Polynomial

Interpolating polynomial may be defined simply as a function that can be used to determine 

certain values where observations have not been done. A function is specified as a set of 

values at discrete set of argument points. This situation occurs when the function comes 

from physical process and is only known by measuring the value of the function at various 

argument points or equivalently, when the data values are the result of previous 

computation(s) (Pizer, 1975). Given n+1 distinct (real or complex) points

z0,zi.................... ,zn and n+1 (real or complex) values co0,coi,........... , con ; there exists a

unique polynomial, ^n(z) g p n for which ^n(z,) = coi ; i = 0,1................ ,n. ( Davis, 1975).

Several interpolating polynomials (linear and surface) exist. The linear polynomials may 

include Lagrange, Newton divided-difference, Iterated linear, Orthogonal and Remainder 

theory polynomials among others (Davis, 1975). These linear polynomials may also be 

extended into surface polynomials. The commonly used surface polynomials for DTMs 

(Digital Terrain Models) generation in a GIS (Geographic Information Systems) 

environment are; bilinear, biquadratic and bicubic polynomials. These surface polynomials 

are linear"and easy to manipulate. They require lesser computer time and are generally 

accurate depending on the surface being modelled. The three (1st, 2nd and 3rd order) surface 

Polynomials may be expressed respectively as,
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Ali =k0+klX, + k2Yl +k,X,Yr (2.2.3-!)

N, =  k0 +  * , * ,  +  ^  +  k .X X  +  * 4 * , 2 +  k t f  +  * 6 * f2 ^  +  * 7^ 2 +  M ^ 2 .
{2.23 -2)

Nl =k0 + klX l +k2Y,+ k ,X X  +  * 4 ^ 2 +  * 5> ;2 +  A6* , 2 j ;  +  * 7 A ' , * ; 2 +  /r8 2 r 2> :2 

+k9X, +kwY? +kuX,Y, +knX lYl'+k„X? Y? + k „ X X  + -

where,

N, is geoid height at point i,

X , , Yj are plane coordinates at point i, 

k0,k |.....kis are coefficients.

{2.23 -3)

The second order polynomial (2.2.3-2) has been used in this work due to the limitation of data 

and the fact that the change in gradient of geoid over a small area is generally uniform and 

gentle.
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CHAPTER THREE

HEIGHT SYSTEMS AND GLOBAL POSITIONING SYSTEM

3.1 Height Systems

It had long been recognized that the use of geocentric distances would be desirable to avoid the 

uncertain factor of the geoid, which is the reference ellipsoid separation. This is however, not 

convenient because the origin of the earth is not accessible and most if not all earth measuring 

instruments cannot be oriented to it. Hence its position must be deduced from multiple 

observations. Thus in practice elevations are generally referred to mean sea level or geoid. 

Heights provide the third dimension in geodetic positioning. Height can be basically defined as 

the measure of length along a normal to a datum surface. The datum surface depends on the 

type of height system. There are various height systems e.g. orthometric heights, geodetic 

heights, dynamic heights, normal heights, Vignal heights, Helmert’s heights, normal 

orthometric heights, bathymetric heights, barometric heights, etc. In this work, two types of 

height systems (geodetic and orthometric heights) have been used.

3.1.1 Orthometric Heights

Orthometric height is defined generally as the geometrical distance between the geoid and the 

point (on the terrain surface), measured along the plumb line at the point. The orthometric 

height may be represented geometrically as given in Figure 3.1.1.1 and mathematically as given 

in equation 3.1.1-1.

P.

'̂gure: 3.1.1.1: Orthometric height
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(3.1.1-1)H': = jdh'.
Pa

where,

H is the orthometric height of a point p, on the topographical surface.

p0  is the projection of p; on the geoid along the plumb line through p, . 

p, is a point on the topographical surface.

dh' is the height difference

The integration is along the plumb line and if we substitute for dh' = 5h given as,

Sh = -
SW

g
(3.1.1-2)

where 5W is the difference in potential for two equipotential surfaces and g is the actual 

gravity at a point pi on the topographical surface, then we have that,

h : = - }
Pn

dW

g\
(3.1.1-3)

in which we denote the gravity along the plumb line as g'. But we also have,

C: =-(WI-W a)= \gdn = \g 'd h ' = dW. (3.1.1-4)
Pa Po

where, Cj is the geopotential number at p i,

Wj is the potential at terrain point p ,,

W0 is the potential at the geoid p0. ,

The geopotential number difference between two points (p; and Pj) is practically evaluated as,

Pj
4C,J = Jgrf„ (3.1.1-5)

P,

where. vv

ACjj is the geopotential number difference between points i and j. 

dn is the orthometric height difference.
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Using (3.1.1-4) and (3.1.1-5), (3.1.1-3) may be expressed as,

(3.1.1-6 )

Now using the mean gravity (g  ) between the geoid and the terrain point we can write 

(3 . 1 . 1 -6 ) as,

then the orthometric height of a point p, is obtained from the evaluation of the integral in 

equation (3.1.1-7), which results to equation 3.1.1- 8  below (Heiskanen and Moritz, 1967).

Orthometric height correction is needed to convert measured height differences (from spirit 

leveling) into differences of orthometric heights. The correction for a levelled line from point i 

to j can be expressed as,

where, g is the actual gravity, y0 is the normal gravity at latitude 45°, 

g, and ~g, are the mean values of gravity along the plumb line at point i and j respectively,

8 n is the levelled height difference between instrument set -  ups.

3.1.2 Geodetic Heights

A geodetic height is defined as the distance of the point above a reference ellipsoid measured

along the normal at the point to the ellipsoid. Geodetic heights use reference ellipsoid as the

datum. The use of geodetic heights is becoming very crucial in three dimensional positioning in

which the geodetic coordinates ar£ expressed as the curvilinear coordinates: - latitude (q), 
■
l°ngitude (X.) and ellipsoidal height (h). Geodetic height may be represented geometrically as 

shown in Figure 3 . 1 .2 . 1 .

Pi
(3.1.1-7)

8 Pi,

H
C, (3.1.1-8)

Pi

Sn + ——— -
Yo

(3.1.1-9)
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where,

hi is the geodetic height of a point pi on the topographical surface,

p0  is the projection of pi on the reference ellipsoid along the normal through p ,.

Pi is a point on the topographical surface.

3.2 Global Positioning System

The NAVSTAR-GPS system was developed as a logical improvement on the TRANSIT 

system. The system however is commonly referred to as GPS. The NAVSTAR-GPS is a 

system for positioning on or near the surface of the earth in three-dimensional space using 

satellites. It is also used for precise timing. The NAVSTAR-GPS is an American system 

initially set up for military navigation and positioning on a programme that was started in 1969 

by the Department of Defence. The system was eventually opened up to civilians in mid 

1980's. It however became fully operational in July 1995.

The system consists of 24 satellites, which are in near circular orbits at altitudes of 2 0 , 2 0 0  km 

above the surface of the earth (e.g. Hofmann-Wellenhof et al., 1992). The GPS system is 

divided into three “interconnected” segments. These include space, control and user segments. 

The space segment consists of 24 satellites in six orbits and inclined at an angle of 55' to the 

equatorial plane. The orbits are organized in such a way that at any instant there are twelve 

satellites above or below the horizon.
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The control segment includes the ground monitor, command and control functions. This 

segment performs the tracking, orbit determination and time synchronization functions 

(Hofmann-Wellenhof el al., 1992). It also periodically uplinks the computed ephemerides and 

time information to the satellites (Mueller, 1991). It consists of a set of five terrestrial points 

strategically located around the world for monitoring the satellites.

The user segment is perhaps the most commonly seen and used component by civilians. It 

consists of GPS receivers, calibration assemblies and navigation data-processing functions. The 

receiver consists of antenna, radio frequency unit and microprocessor, oscillator and power 

supply, memory and user interface.

3.2.1 GPS Coordinates

The GPS coordinates are divided into two categories. These include the inertial coordinate 

system and the earth - fixed coordinate system. The former refers to coordinate system fixed in 

space while the latter may be defined as the coordinate system fixed on or near the earth's 

surface and rotates with the earth. For the purposes of this research the earth fixed coordinate 

system is discussed. The earth fixed coordinate system may further be divided into two 

categories; Cartesian and geodetic (ellipsoidal) coordinates as shown in Figure 3.2.1.1 below.

Topographical surface

Greenwich meridian 

plane ^

X

Equatorial plane
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where,

X, Y and Z are the Cartesian coordinates,

(j), X and h are the geodetic coordinates,

P is a point on the topographical surface and O is the centre of mass of the earth.

The GPS satellite coordinates are defined on an ellipsoid of reference called the World 

Geodetic System 1984 (WGS84). This system is global and geocentric (has origin at the centre 

of mass of the Earth). The three dimensional position of a point on the surface of the earth is 

represented by a triplet of coordinates that refer to a particular coordinate system. For the 

coordinates to be meaningful, the system must be well defined, that is the origin of the system 

(0, 0, 0) and the coordinate axes must be fixed with respect to the solid earth {Langley, 1992).

The struggle to tie different regional datums together for military and other purposes and the 

advent of satellite-based positioning system asserted the need for a global geodetic reference 

system. The development of WGS84 may be traced to the Defence Mapping Agency of the 

United States of America. It was obtained by modifying the Naval Surface Warfare Centre by; 

lowering the origin of NSWC9Z-2 by 4.5m, rotating the NSWC9Z-2 reference meridian 

westwards by 0.814 seconds of arc to zero meridian as defined by BIH, and changing scale by 

0.6x1 O'6.

The modern practice locates the origin of the cartesian coordinates at the earth’s centre of mass 

and positions the Z-axis parallel to the CTP as defined by the BIH. The BIH was the forerunner 

of the IERS. The X- and Y-axes are orthogonal to the Z-axis, with the X-axis passing through 

the intersection of the zero (reference meridian) and the plane of CTP equator, the Y-axis 

completes a right-handed coordinate system. The rotation axis actually moves slightly with 

respect to the solid earth as a result of polar motion, so an average pole position must be 

determined in order to fix the Z-axis. This determination is time dependent and is done by 

IERS over a period of 5  years.

The geodetic coordinates are the^geodetic; - latitude, longitude and height. The geodetic 

latitude (<(>) may be defined as the angle measured in the meridian plane through a point 

between the equatorial (X, Y) plane of the ellipsoid and line perpendicular or normal to the
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surface o f a reference ellipsoid at the point. The geodetic longitude (X) is the angle measured in 

the equatorial plane between the zero meridian (defined by the X-axis) and the meridian plane 

through a point while the geodetic height (h) is the distance between a point on the topography 

and the ellipsoidal surface measured along the ellipsoidal normal, positive in the direction of 

the zenith.

3.2.2 Accuracy of GPS Surveying

The main accuracy factors (determinants) in GPS surveying are: the satellite configuration, the 

accuracy of the ephemerides, receiver analysis software and mode o f determination. The 

satellite configuration determines the accuracy from the area occupied by at least four satellites 

necessary for positioning. A measure of satellite geometry with respect to the observing station 

is referred to as the Geometric Dilution of Precision (GDOP). Another related factor is the 

Position Dilution of Precision (PDOP). Therefore it can be deduced that for higher accuracies 

to be achieved at least four satellites should occupy ‘optimum’ area in the sky. The satellites 

should also be distributed in such a way as to form well conditioned triangles and GDOP 

should be as low as possible. Both GDOP and PDOP are evaluated from the cofactor matrix of 

the observations given as,

<lxx qxy Qxz

<7vx <lyy <ty:

Vzx Q zv Hzz <lzl

<lu tfiy <h,

from which we obtain GDOP and PDOP as.

GDOP = + (3.2.2-2)

PDOP = ^ x+qyy+q:; G.2.2-3)

<4
*n GPS positioning, GPS satellites play a role of reference points in the sky. Thus accuracy o f 

stellite ephemerides is essential for quality control of GPS surveys. The accuracy of the 

broadcast ephemeris is about ±10m while that of precise ephemeris is ±0.1 m. The receiver
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analysis software hints to the ability to handle varied information relayed via the 

electromagnetic waves received at the receiver station.

The mode of positioning is also a key factor in the accuracy of GPS surveying. Absolute 

position accuracies of ±10m in the precise positioning service and ±50m in the standard 

positioning service. Much higher accuracies can be obtained if GPS is used in the differential 

mode, determining basically the relative position of a GPS receiver with respect to another at 

known station (reference station). Accuracies better than one part per million (ppm) in relative 

positions can be achieved in this mode. Differential position errors of up to lppm are resulting 

from reference station errors of ±10m (Scintere, 1989). Differential positioning is the method 

for the determination of GPS coordinates used in this study.

There are two other intentionally induced errors that affect the accuracy of GPS surveying and 

any other uses. These include and not limited to selective availability and anti-spoofing. GPS 

being a military system is prone to situational manipulation by the owners, United States in 

moments of war. Selective availability may be done via: dithering the satellite clock (5-process) 

and the manipulation of ephemeris by truncating orbital information in the navigation message 

(e-process). Antispoofing on the other hand is a designed feature, which enables the system to 

“turn o ff’ the p-code through encrypted W-code, resulting in Y-code. Selective availability may 

be a problem of the past due to the decision by the (US) government (in May, 2000) to stop any 

further degradation of GPS accuracy.

The above factors are however not complete, there are other factors such as: the orbital 

determination strategy and GPS observation system itself. The orbital determination strategy 

includes length of satellite arc and the sophistication of orbital perturbation modules. Factors 

related to the GPS observation system includes: measurement, modelling, ambiguity resolution 

and accounting for biases. Other sources of errors in GPS surveying may include signal multi- 

path effect, ionospheric and atmospheric delays, receiver clock errors, satellite visibility-, and 

receiver noise and phase ambiguity. The delay in the ionosphere can be minimized by utilizing 

the two waves, Li and Lj. The err$r due to the multi-path can be reduced by carefully selecting 

the site tor receiver setting (Leick. 1990 and Resch, 1984).
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CHAPTER FOUR

LOCAL COORDINATE SYSTEM

4.1 Definitions
A local coordinate system is defined as a two-dimensional map coordinate system based on a 

selected map projection. The main aim of a local coordinate system is to enable the plotting of 

base maps of a country, designation of horizontal control network(s), cadastral surveying, 

enuineering surveying, mining surveying and hydrographic surveying.

A map is a plane representation of a curved surface of the ellipsoid (or sphere) on which 

positions of discrete points are defined. The construction of a map will therefore require the 

transformation of the ellipsoidal coordinates into plane coordinates. The basic problem of map 

projection is therefore how to represent the curved surface of the ellipsoid onto a plane.

It should be noted without any confusion that there are varied coordinate and projection 

systems. The choice of a map coordinate system or projection system depends mainly on the 

purpose of the map, geographical location and size of the mapping area. Other minor factors 

may be class of projection by Young’s rule and choice by tradition.

For the establishment of a local coordinate system, a local geodetic datum needs to be 

determined so that the reference ellipsoid conforms as closely as possible to the geoid over the 

area or country or region to be mapped. This therefore means that grade measurements have to 

be taken over the defined area for orientation of such a local reference ellipsoid. Hence, the 

centre of a local reference ellipsoid does not coincide with the centre of the earth in most cases 

due to limitation of data for the whole earth. The axes are however made parallel by the use o f 

Laplace azimuth equation as given below.

A-a=(A-A.) sin (j) + (^sina - -qcosa) cotZc . (4.1-1)

Where,

A is astronomic azimuth, 

a  is geodetic azimuth,

ZG is geodetic zenith ang($.
V'

A is astronomic longitude.
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The above equation gives the relationship between the astronomic and geodetic azimuths as a 

function o f the deflection of the vertical. In most first order triangulation, Zg = 90° hence the 

last term in (4.1-1) is negligible. The expression (4.1-1) therefore becomes,

A - a  = (A-A.) sin <j) = q tan ({>. (4.1 -2)

4.2 Arc Datum 1960

The Arc Datum 1960 is one of the current local reference systems used in this country (Kenya). 

It is therefore necessary to briefly elaborate on its development and subsequent establishment. 

The Kenyan horizontal datum is based on the modified Clarke 1880 (for Universal Transverse 

Mercator Coordinates) biaxial ellipsoid with its origin in South Africa at Buffelsfontein (<j) = - 

3 3 ° 59' 32."000, A, =25° 30' 44."622) near port Elizabeth (Rens and Merry, 1990). Only the 

azimuth is defined for this datum, the geoidal deviation parameters at the point are by 

implication zero (Rens and Merry, 1990). The parameters are actually not zero as was later 

observed (Merry, 1978). The scale of the datum was provided by a baseline measured along the 

30th meridian and thus the name Arc Datum. Gill (1896) was aware of these deficiencies when 

fitting the datum and recommended modification for further geodetic extension.

The position of the geoid relative to the reference ellipsoid is given normally by the geoidal 

deviation parameters; N (geoidal undulation), § and r\ components (in the north-south and east - 

west directions respectively) of the deviation of the vertical. In Kenya the average undulation N 

is about 290m and the deflection of the vertical is around 14" (.Mxvakuchengwa, 1994).

Work on primary triangulation control points was first conducted in Kenya in 1902. Further 

field observations for primary control points were carried out during the period 1950 -  1960 

(Rogers, 1982). In 1950 the Directorate of Overseas Surveys of the United Kingdom in co

operation with the Government Survey Departments of Kenya, Uganda and Tanzania 

undertook to establish a comprehensive horizontal control network within the three East 

African countries (Aseno et al. 1994). Within Kenya, this was scaled by three baselines: Isiolo 

base (21km), Kisumu base (16km) and Malindi base (13km). The bases were measured and 

astronomic observations made at suitable stations in each base. Within the network in general, 

baplace stations were observed for azimuth checks and determination of the geoid -  spheroid 

SeParation.
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This network was adjusted as part of comprehensive adjustment for Eastern and Central 

African countries, based on the 30lh meridian (Rainsford, 1951). This adjustment extended from 

Southern Rhodesia (current Zimbabwe) in the south to Uganda in the north with positions in 

the former kept fixed. The results from this adjustment were labeled new (1950) Arc Datum. 

Later on in 1960 the network was readjusted holding the 30' Arc meridian stations fixed. By 

this time a gap between Uganda and Sudan networks had been surveyed. The results from this 

adjustment were termed the new (1960) Arc Datum. The values were computed on the UTM 

projection based on the Clarke 1880 modified reference ellipsoid.

4.3 Universal Transverse Mercator Coordinate System

This is a grid coordinate system introduced for North Atlantic Treaty Organization (NATO) 

maps and surveys of the early 1950’s. It is designed to cover the whole world between latitudes 

80° S and 84° N with uniform system of maps. The following are the major specifications for 

the coordinate system:

(i) Conformality (to minimize directional errors hence maintain shapes).

(ii) Continuity over sizeable areas coupled with minimum number o f zones.

(iii) Scale errors not to exceed a specified tolerance (1/2500).

(iv) Unique and identifiable referencing in a plane rectangular coordinate system for 

all zones.

(v) Transformation formulae (zone to zone) to be uniform throughout assuming the 

same reference ellipsoid.

(vi) Meridian convergence not to exceed 5°.

4.3.1 UTM Grid Coordinates

On the basis of criteria in (4.3) a modification of the Transverse Mercator projection was 

developed as the UTM grid coordinate system for worldwide application. It has the following 

features (characteristics):

f  The world is divided into 60 zones, each extending through 6 ° longitude. The zone 

numbering starts with zone one (1) from 180° W to 174° W with a central meridian of 177° 

and the numbering continues eastwards. The central meridian is given by 

/.cm = -6 ° ( $ 0  -  N) -3°, or alternatively the zone number, N, is given as 

N-30+ (X.cm+3 °)/6 . In this study the zone is 37 with central meridian being 39°E.



2. A scale distortion or grid scale constant of K0= 0.9996 along the central meridian ol each 

zone is used so as to limit the scale error to 1/2500.

A scale is to be used between latitude 84° N and 80° S with the polar regions using the 

Universal Polar Stereographic (UPS) projection system (which complements the UTM, but 

independent of it) with overlaps along the boundaries o f the two systems.

4 . A plane rectangular coordinate system is superimposed on each zone assigning the 

following values:

• East of central meridian = 500,000m (as false Easting).

• Equator is assigned 0m for points north of the equator while a value of 10,000,000m

5. Zone overlap is about 80 km at each grid junction or 40 km on either side of the zone 

boundary.

6 . Each system is to be based as far as possible on the same figure of the earth. Clarke 1866 

ellipsoid was proposed but it is not used by all countries of the world. The commonly used 

figures of the earth are Bessel 1841, Clarke 1880 (Africa), Everest (Europe) and the 

International ellipsoids.

4.3.2 UTM Mapping Equations

In the UTM, a secant cylinder is used. It intersects the sphere (ellipsoid) at about 180km east 

and west of the central meridian, so that the scale factor at the central meridian is K0  = 0.9996 

(an assigned value). The choice of this value was made so as to limit the scale error to 0.0004 

or 1/2500 within the 6 °-longitude width zone. The following are therefore the planimetric 

mapping equations for UTM incorporating the secant cylinder and maintaining the scale factor 

of 0. 9996 on the central meridian (e.g. Maling, 1973).

is assigned to the equator for points south of the equator.

{t'AT cos (f) + — (AT cos (f>y (^- — tan" </>) +
6  p

v
(AT cos ̂ ) 5 (5 -18  tan2 ^ + tan J (/>) + ..}.

120

(4.3.2-2)
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The scale factor K , , , at any point P on the map may be given as,

(4.3.2-3)

where,

EP is the easting value at point P,

p  is the radius of curvature in the prime vertical direction, 

v is the radius of curvature in the meridian direction.

For a line between two points A and B, the scale factor KAB, to be used is the mean of the scale 

factors A and B i.e.

K A is the scale factor at point A,

Kti is the scale factor at point B,

Ea is the easting value at point A,

Eb is the easting value at point B,

vm is the mean radius of curvature in the prime vertical direction, 

Pm is the mean radius of curvature in the meridian direction.

K ab= - ( K a +Kh) (4.3.2-4)

or

Kab = K0( 1 + £.4 + Ea Eb + (4 .3 .2 -5 )

where,



4.3.3 Grid to Geodetic Conversion and vice versa

The UTM grid coordinates may be transformed to geodetic coordinates via two methods:

are obtained. The latter involves interpolating the values o f (j> and X from the conventional 

UTM tables. These tables have been prepared to facilitate the Gauss-Kruger projection 

equations. They enable the conversion from geodetic to grid coordinates and vise-versa, and are 

very handy and practical, particularly where there is no access to a mainframe (or personal) 

computer.

Iterative procedure may be as summarized below,

(i) The approximate <j) and AX can be obtained from

iterative and conventional UTM tables (interpolation). The former method involves initial 

approximation of (j) and X followed by a number of iterative processes until the desired results

(b[,) = —  and 
R

(4.3.3 - 1)

where,

N ’=( 10,000,000 -  N) m in the Southern Hemisphere 

=N (m) in the northern hemisphere,

E’ = (E-500,000) m east of central meridian 

=(500,000 -  E) m west of central meridian, (4.3.3 - 2)

R is the mean radius of curvature of an equivalent sphere given as,

(4.3 .3-3)
3

where,

a is the length of the semi-major axis of the reference ellipsoid, 

b is the length of the semi-minor axis of the reference ellipsoid.

(ii) Using the above approximation for (j) and AX, values for northings and 

eastings, N(l) , are obtained. These may differ from the given values by

amounts, 8 N=N-N(1) and 8 E = E -  E (l).
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(iii) The latitudes, (j)(l) and longitude difference A \u) are now corrected by 

amounts,

S</> = ^ L  and 8AA =
P(!) y0) cos<f>{l)

(4 .3 .3 -4 )

to give better estimates.

(iv) The new estimates for <j> and AA, are used in stage (ii) above to get 

differences, 5N and 8 E between computed coordinates and given 

coordinates.

(v) The iterative processes of stages (iii) and (iv) are repeated until there is no
th

difference in the UTM coordinates i.e. 8 N = 0 and 8 E = 0. Now the i 

values of (|) (1) and 39±AA, (i) in stage (iii) will be the converted geodetic 

coordinates for the given grid coordinates.

The conversion of geodetic coordinates into grid coordinates may be done via two methods. 

The first method involves the use of equations 4.3.2-1 and 4.3.2-2 for Northing and Easting 

respectively. The second method is achieved by the use of conventional UTM tables.

* • > s * %
' -, A *
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CHAPTER FIVE

COORDINATE TRANSFORMATIONS

5.1 Introduction

The existing geodetic control networks in various parts of the world are usually rotated to 

regionally defined datums. The reference ellipsoids of some of those datums happen to be 

directly compatible with the geocentric WGS84 ellipsoid whereas sizeable differences occur for 

other datum having non-geocentric reference ellipsoids e.g. the Arc-Datum 1960. This 

therefore necessitates the determination of transformation parameters between WGS84 and 

other local systems to enable the use of GPS for local surveys.

The effect of a transformation varies from simple changes of location and direction, to a 

uniform change in scale and finally to change in shape and size of degree of linearity. There is 

therefore a whole family of transformations, some of which are applicable to two-dimensional 

space and others for use in three-dimensional space (system). The former refers to 

transformation between plane coordinates e.g. (X, Y) and (x, y), while the latter refers to the 

transformation between triplet sets of coordinates e.g. (X, Y, Z) and (x, y, z).

The common models used for transformation are: Bursa-Wolf, Molodensky, Differential 

Projective and Molodenskii Badekas. This study concentrates on Bursa-Wolf and Molodensky 

models for three-dimensional transformation.

5.2 Transformation between Geodetic and Cartesian Coordinates

Geodetic coordinates can be converted / transformed to cartesian coordinates (X, Y, Z) via the 

equations below (e.g. Heiskanen and Moritz, J967).

X = (v + h) cost}) cosZ,

Y = (v + h) cos (jisinZ,

Z = [v ( I-e2) + h] sincj). (5.2-1)

the reverse process of determining (({h A., h) from (X, Y, Z) may be as follows.

A = tan f -
< x ;

V tf iv tf t t ifY  • r i A i n O T i
V m  AfMCAMA COiilCTtfHI (5.2-2)

jQ ^ D
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The geodetic latitude may be obtained by two methods; iterative and non iterative given in eqns 

(5 2-3) and (3.2-4) respectively (Bowring, 1978).

, Z + Ze2vsm</) 
()> = t a n ------------------ (5.2-3)

(5.2-4)

while geodetic height is given as,

(5.2-5)
cos-^

where,

(X, Y, Z) are cartesian coordinates,

(<j),Z, h) are geodetic coordinates, 

e is the first eccentricity, 

e' is the second eccentricity, 

v is the radius in the prime vertical,

a is the length of the semi-major axis of the reference ellipsoid, 

b is the length of the semi minor axis of the reference ellipsoid.

and also

P = ( X 2 + Y2y~. (5.2-6)

Pb
(5.2-7)
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5.3 Datum Transformation

Datum may be defined as any conventional framework into which observations are referred in a 

iiiven locality or globally. A geodetic datum therefore refers to a specifically oriented reference 

ellipsoid upon which geodetic observations are carried out or based. Eight parameters are 

required to define a geodetic datum: two to specify the dimensions ei the ellipsoid, three to 

specify the location of its centre with respect to the centre of the earth and three to specify the 

orientation o f the ellipsoid.

Datum transformation then refers to the determination of parameters that relate two reference 

systems. In the specific case of GPS positioning, the interest is always in the transformation of 

coordinates of points between WGS84 system and other systems. Usually in such case (s), the 

WGS84 system is considered as the reference with respect to which the transformation of the 

other system would be taken.

5.3.1 Three Dimensional Transformation

A similarity three dimensional coordinate transformation between X, Y, Z and x, y, z 

coordinate frames is the seven parameter transformation which allows for three rotations, three 

translations and one uniform scale change. The seven parameters are required to rigorously 

transform coordinates from one three dimensional cartesian system with a different origin, scale 

and spatial orientation. The expression for the three dimensional transformation is given as;

X V X "

y, = qRc y, + n
x x

The reverse transformation being

V
l

i-----01

1___

y , Y - Y
7 ̂ i _

q l oN
 

1 __
_

(5.3.1-2)
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where,

q is a uniform scale change,

Rc is a 3 x 3 orthogonal cardanian rotation matrix,

Xo, Yo, Z<) are the translation components,

X ,, Y j, Zi are the WGS84 coordinates, 

x , , y , , Zj are the Arc Datum 1960 coordinates.

If the coordinates of three stations are known exactly in both systems then the values of the 

seven parameters may be calculated exactly. In geodesy this is not the case as the station 

coordinates are the result of an adjustment of observations and thus more stations are required 

and the parameters are found by a least squares solution (Allman and Veenstra, 1982). Hence 

the use of seven stations in this work. In this study the Gauss Markov model has been used to 

obtain the desired solution (s).

5.3.1.1 Rotation Matrices

In coordinate transformations we generally have to rotate one cartesian coordinate frame into 

another, including scaling and translating the frame being transformed into the other. For such 

orthogonal frames, one frame is rotated into the other through anti-clockwise angular rotations 

0i, 0 2  and 0 3  about the First, second and the third axes respectively. There are therefore three 

rotations given as,

1 0  0  

R\{6 \)= 0  cos0i sin
0  - s in  0 i cos0 i

(5.3.1.1-1)

cos 0 2  0  -s in  0 2

* 2(0 2 ) = 0 0

COS 0 2

(5.3.1.1-2)

sin 0 2  0
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/?3(<9.0 = (5.3.1.1-3)
cos 0 2 sin 0 2 0

-s in  0 2 cos 0 2 0 . 
0  0  1

r ,(Qi) denotes the rotation on the base vector of the first axis through an angle 0|. R2(02) and 

1^3 (6 3 ) denote similar rotations through angles 02 and 0 3  about second and third base vectors 

respectively.

A cardanian rotation matrix has been used in this research. In this approach all the three 

rotations about the base vectors are taken in the order of first, second and third base vectors. 

The resultant rotation matrix is given as.

Rc ( 0,, 02 , 03) = R3 (03) R2 (02) Ri (0i). (5.3.1.1-4)

Therefore expanding (5.3.1.1-4) we have that,

- cos # 3  sin 6 2  cos 0\ + sin # 3  sin 0\ 

sin 02 sin 62 cos 0\ + cos # 3  sin 0\ .

cos 61 cos 0\
Rc(0\,6i,6i) =

cos 0 2 cos 62 cos 62 sin 2 sin 0 \ + sin 62 cos 0 \
-  sin 62 cos 62 -  sin 62 sin 62 sin 0 \ + cos 62 cos G\

sin # 2  -co s  62 sin 6 \

(5.3.1.1-5)

In the special case that the rotation angles are very small then (5.3.1.1-5) is simplified as.

Rc{G\,02,O2)

1 02 -0 2

-02 1 01

02 - 0 \ 1

(5 .3 . 1 . 1 -6 )

where,

0 i, 0 2 and 0 3 are the rotation angles about x-, y- and z- axes respectively.
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5.3.1.2 Bursa-W olf Model

The Bursa - Wolf model is given by (5.3.1-1). Expanding (5.3.1-1) and incorporating (5.3.1-6) 

we obtain (5.3.1.2-1).

1 03 —02_ ~xd

y, = <7 -03 1 01 y, + Yo (5.3.1.2-1)
2,. _ 62 -01 1 _~i _Zo_

The above equations are non-linear. For a solution with least squares, we must then linearise 

the equations. Taylor series linearisation is used and the linearisation is performed about the 

approximate values: X0‘, Y0', Z0‘, q 1, 0 / ,  0 2 1 and 03'. Usually the approximate values for scale 

and the angles of rotation are taken as q 1 = 1 and 0 /  = 02‘ = 03' = 0. This is because the 

rotation angles are usually very small while the scale only deviates slightly from unit (1). The 

approximate values for the shifts (X0l, Y0’, Z0‘) are obtained from the cartesian coordinates on 

the two systems (WGS84 and Arc-Datum 1960). The linearised Bursa - Wolf model is given as,

X \
Y \
Z\

1 0 0 X, 0 —z,. y,

0  1 0  y, z, 0

0  0  1 z, - y ,  x, 0

AXo 

A Yo 
AZo

A q 
A0i 
A02 

A03

+
Vxt
Vr,
Vz

(5.3.1.2-2)

5.3.1.3 Molodensky Model

In this approach the rotation parameters are assumed to be zero or of such small magnitudes 

that they are insignificant. The scale factor is assumed to be unity. Hence only the translation 

parameters are considered. Equations for this model are given as,
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(5.3.1.3-1)

[p + h)d<j) = -A ^ s in ^ c o s^  -  },; sin /lcos^ + Z0 cos^ + 

+ sin^cos^( 2 t>> + e'~ psiiT 4 ' - f W

(u + h)cos(/fdX = - X () sin X + Y0 cos A

dh = X () cos<j>cosX + Y() cos<f>sin X + ZG sin^ — (l — e 2 sin 2 <ẑ ) 2 da +
q 0  ~ ./ )sin: (j> j j -

where,

d(j>, dX and dh are differences in geodetic coordinates between the two datums, 

da and df are the differences between the parameters of the reference ellipsoids used in 

the two datums,

X0, Y0 and Z0 are the shift parameters.

5.4 Estimation Model

To solve for the transformation parameters an adjustment approach for parameter estimation 

has been adopted on a simple linear model of C.F. Gauss (1777-1855) and A.A. Markov (1856- 

1922). This model is commonly referred to as the Gauss Markov Model (GMM). The simple 

GMM is normally expressed as,

y = Ax + Vy. (5.4-1)

From which we obtain that,

D(y) = o^W - 1 (5.4-2)

and

£(V ) = 0 (5.4 -2a)

where.

y is an n x (^vector of observations,

A is an n x u full rank matrix of design coefficients, 

x is an n x 1 vector of unknown parameters.
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w is an n x n positive definite weight matrix of the observational vector y, 

V is an n x 1 vector of observation residuals,

n is the number of equations,

c r  is the apriori variance of unit weight,

u is the number of unknown parameters.

The expression for the solution of the unknown parameters ( x ) is given as.

5.5 Accuracy Estimation

Even though there are many measures of accuracy estimation of evaluated parameters in 

geodetic networks, standard errors have been used for analysis in this study for convenience. 

The standard errors of the computed parameters can be obtained by taking the square root of 

the individual diagonal elements in the dispersion matrix. It should be noted that, this is only 

true if the correlation is assumed to be insignificant (corr=0). The dispersion matrix is given as

x = (AtW A)'' ATWy. (5.4-3)

D(x) = aJ(A TW A)-\ (5.5-1)

where,

D(x) is the dispersion matrix for the estimated parameters, 

6 (2, is the a posteriori variance of unit weight.

also

,2 _ vyTwvy (5.5-2)

where,

V. is the vector of observational errors given as,

(5.5-3)
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CHAPTER SIX
TEST DATA AND COMPUTATIONS

6.1 Triangulation Stations

The description of the triangulation points used for the determination of the transformation 

parameters are given in fable 6.1.1 and spatial distribution in Figure 6.1.1.

Table 6.1.1: Description of the triangulation points

Station name (pillar) Station number Location
Githingure 148s l Kiambu
Ndaru 149s2 Thika
Lukeriya 149s3 Nairobit
Olepelos I48st5 Maasailand

- I48st6 Maasailand
Kanunga I48s2 Kiambu
Marulais I48s4 Nairobi

Figure 6.1.1: Spatial distribution of the triangulation points
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6.2 WGS84 and Arc—Datum 1960 Coordinates

Geodetic GPS receivers (Leica CH - 9435) were used for the observations to determine WGS84 

coordinates. Post processing was done by Leica ski-pro software. KISM was used as a 

reference point and the accuracies of its coordinates assumed to be zero. KISM is tied to MALI 

(at Malindi in Kenya) which is an International Terrestrial Reference Frame (ITRF) point. The 

horizontal coordinates (geodetic; latitudes and longitudes) were obtained at accuracies between 

1 mm to lcm while the vertical coordinates (geodetic heights) were determined to accuracies 

ranging between lcm to 8 cm.

The WGS84 ellipsoidal curvilinear coordinates are given in Table 6.2.1 while the computed 

WGS84 ellipsoidal cartesian coordinates are given in Table 6.2.2. The plane UTM coordinates 

on Arc-Datum 1960 and orthometric heights are given in Table 6.2.3 while the computed 

geodetic coordinates on the local system are given in Table 6.2.4.Three dimensional cartesian 

coordinates on the local system have been computed from the geodetic coordinates and are 

given in Table 6.2.5.

The computation of cartesian coordinates has been done at the surface o f the reference ellipsoid 

in both cases (Arc-Datum 1960 and WGS84). This is because;

• The orthometric heights given are only approximate (obtained by trigonometric 

heighting).

• The GPS heights were taken from different points due to vandalism of some pillars.

• The orthometric heights cannot be taken as the ellipsoidal heights for the local datum 

because the average geoidal undulation in Kenya is 290m (Mwcikuchengwa, 1994).

It should be noted however that the local datum referred to here is based on modified Clarke 

1880 reference ellipsoid.

44



Table 6.2.1: VVGS84 ellipsoidal curvilinear coordinates of the triangulation

points

Point code ■i) <° / ")(S) X (° / "HE) h (m)

148 si 0 1 03 13.8872 36 46 21.2925 1983.0923

149 s2 0 1 06 10.8720 37 06 47.4987 1485.4813

149 s3 0 1 28 16.3236 37 03 47.6416 1822.6452

148 st5 0 1 29 26.9309 36 37 04.903 1847.1834

148 st6 0 1 19 05.1201 36 33 00.3459 1861.6813

148 s2 0 1 1 0 00.9150 36 46 38.2578 1889.9532

148 s4 0 1 13 32.4980 36 54 54.3169 1571.6542

Table 6.2.2: WGS84 ellipsoidal cartesian coordinates of the triangulation

points

Point

code
X (m) ox  (m) Y(m ) 0 \  (m) Z(m ) oz  (m)

148S1 si 5108143.752 ±0.0036 3817568.580 ±0.0056 -1165 23.098 ±0.0013

149S2 s2 5085277.292 ±0.0032 3847806.180 ±0.0031 -121985.256 ±0 . 0 0 1 0

149 s3 5087900.809 ±0.0026 3842819.347 ±0.0025 -162659.467 ±0 . 0 0 1 2

148 st5 5117561.776 ±0.0016 3083135.798 ±0.0013 -164827.466 ±0.0005

148 st6 5107635.686 ±0.0027 3817843.664 ±0 . 0 0 2 2 -129022.686 ±0.0008

148 s2 5122443.397 ±0.0060 3797344.290 ±0.0093 -145734.130 ±0 . 0 0 2 2

148 s4 5098330.672 ~ ±0.0038 3830034.787 ±0.0059 -135520.083 ±0.0016

T
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Table 6.2.3: Local UTM plane coordinates and orthomctric heights of the triangulation

points

Point code N (m) E (m) H (m)

148 si 9 883 726. 885 252 026. 265 1999.3970

149 s2 9 878 315.023 289 949. 592 1501.0181

149 s3 9 837 592. 787 284 419. 100 1838.3710

148 st5 9 835 375. 070 234 861.940 1860.1942

148 st6 9 854 475. 770 227 278. 510 1874.5200

148 s2 9 871 220. 857 252 560.376 1906.6915

148 s4 9 864 732. 064 267 906. 109 1588.5143

Table 6.2.4: Local geodetic coordinates of the triangulation points

Point code (° "MS) X (° 9 ") (E)

148 si 0 1 03 04.5161 36 46 18.3166

149 s2 0 1 06 01.5155 37 06 44.4997

149s3 0 1 28 07.0888 37 03 44.6476

148 st5
0 1 29 17.7046 36 37 01.9396

148 st6 0 1 18 55.8374 36 32 57.3869

148 s2 01 ... 09 51.5812 36 46 35.2822

148 s4 0 1 13V' 23.1828 36 54 51.3321
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The local geodetic coordinates in Table 6.2.4 have been computed via the iterative method as 

discussed in section (4.3.3). It was in the interest of this research to check the above results by 

determining the geodetic coordinates of one of the points (148 st5) by the use of conventional 

UTM tables. The following results were obtained, <|>= -01° 29 ' 17.7045 " and 36° 37 ' 

01.9322 ". It can be seen that the differences between the iterated values and the values 

determined via UTM tables are not significant. However, it should be noted that the absolute 

difference in the values of (j) is 0".0001 while that of X is 0. "0074. This shows that the 

conventional UTM tables may equally be useful though tedious.

Table 6.2.5: Local ellipsoidal cartesian coordinates of the triangulation points

Point X(m) Y (m) Z(m )

148 si 5 108 292.975 3 817 565.238 -116 224.587

149 s2 5 085 427.160 3 847 807.307 -121 659.695

149 s3 5 088 052.037 3 842 817.583 -162 360.932

148 st5 5 117 712.488 3 803 133.685 -164 528.995

148 st6 5 107 785.356 3 817 840.684 -128 724.177

148 s2 5 122 593.351 3 797 341.582 - 145 435.665

148s4 5 098 480.741 3 830 032.213 -135 221.576

6.3 Determination of Transformation Parameters

The determination of seven transformation parameters between WGS84 and Arc-Datum 1960 

coordinates is accomplished by thfee dimensional similarity transformation equations (Bursa- 

Wolf model). ̂ In this case the axes of the local and global systems are taken to be non parallel, 

hence a requirement to bring them into parallelism via rotations 0 i, 0 2  and 6 3  about X-, Y- and
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Z- axes respectively. Xo, Yo and Zo are the datum shifts while q is the uniform scale change. 

Figure 6.3.1 below shows the procedure(s) involved in this determination.

Figure 6.3.1: Flow chart showing determination of seven transformation parameters

6.4 GPS/Lev Points

The GPS/Lev points are within the triangulation network used for the determination ot 

transformation parameters. The GPS coordinates (geodetic: — latitudes and longitudes) are 

given in Table 6.4.1 while GPS heights (geodetic heights), orthometric heights and geoidal 

adulations of die same points are given in Table 6.4.2.The spatial distribution of the GPS/Lev 

Points is given in Figure 6.4.1.
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Table 6.4.1: GPS coordinates (geodetic: - latitudes and longitudes) of the GPS/Lev

points

Point name/code (° ' ")(S) X ( ° / f ) (E)

V/33 0 1 1 0 43.64460 36 38 54.95361

Vet farm X 0 1 2 0 10.46989 36 39 38.93290

V/20 0 1 17 20.70609 36 41 08.23685

VA/9 0 1 14 18.04136 36 40 29.02277

IN37 0 1 17 55.51984 36 45 37.97528

148tl9 0 1 23 29.20534 36 46 24.34763

V/6 0 1 18 11.59437 36 49 24.79764

148 s3 0 1 07 59.58027 36 58 23.87527

IV/13 0 1 25 17.72190 36 56 51.22002

37 0 1 14 38.65885 36 52 03.27169

Kism 7X 0 1 09 33.56783 36 52 53.83311

LXI 14 0 1 15 29.00837 36 54 03.12382

IV/10 0 1 2 1 01.37710 36 53 37.41441

Marulais 0 1 13 32.49800 36 54 54.31690

Kism 0 1 15 00.77709 36 51 24.03884

V/7 0 1 18 23.95868 36 48 44.86614

MT3 0 1 ’ 13 34.97585 36 53 00.23718

Stigands X
------_ _ _ ____________

0 1 24 07.26869
---- ^ ------------------L

36 56 40.17275
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Table 6.4.1: GPS coordinates (geodetic: - latitudes and longitudes) of the GPS/Lev

points

Point namc/code $ (° ' ”)(S) X (° 9 f/H E )

V/33 0 1 1 0 43.64460 36 38 54.95361

Vet farm X 0 1 2 0 10.46989 36 39 38.93290

V/20 0 1 17 20.70609 36 41 08.23685

VA/9 0 1 14 18.04136 36 40 29.02277

IN37 0 1 17 55.51984 36 45 37.97528

148tl9 0 1 23 29.20534 36 46 24.34763

V/6 0 1 18 11.59437 36 49 24.79764

148 s3 0 1 07 59.58027 36 58 23.87527

IV/13 0 1 25 17.72190 36 56 51.22002

37 0 1 14 38.65885 36 52 03.27169

Kism 7X 0 1 09 33.56783 36 52 53.83311

LXI 14 0 1 15 29.00837 36 54 03.12382

IV/10 0 1 2 1 01.37710 36 53 37.41441

Marulais 0 1 13 32.49800 36 54 54.31690

Kism 0 1 15 00.77709 36 51 24.03884

V/7 0 1 18 23.95868 36 48 44.86614
___

MT3 0 1 ' 13 34.97585 36 53 00.23718
*«.__

S,'gands X 0 1 24 07.26869
* A

36 56 40.17275



Tabic 6.4.2: Geodetic heights, orthomctric heights and geoidal undulations of

the GPS/Lcv points.

Point

name/code

Ellipsoidal

height

Orthomctric

height
Geoid height Plotting code

V/33 2127.7173 2144.1857 -16.4684 1

Vet farm 1918.1333 1934.5859 -16.4526 2

V/20 1877.9951 1894.6856 -16.6905 3

VA/9 1979.6083 1996.1291 -16.5208 4

IN37 1777.9858 1794.6261 -16.6403 5

148tl9 1699.5543 1716.2024 -16.6481 6

V/6 1645.0073 1661.8351 -16.8278 7

148s2 1889.9532 1906.6915 -16.7383 148s2

148s3 1517.4503 1534.3873 -16.9370 8

IV/13 1532.5783 1549.5392 -16.9609 9

37 1603.7949 1620.7161 -16.9212 10

Kism 7X 1573.7616 1590.4891 -16.7275 11

LXI 14 1580.1454 1596.9813 -16.8359 12

IV/10 1619.8719 1636.6663 -16.7944 13

Marulais 1571.6542 1588.5143 -16.8601 148s4

Kism 1628.4483 1645.2696 -16.8213 14

V/7 1663.3580 . 1680.1003 -16.7423 15

MT3 1594.5000 1611.3359 -16.8359 16

Stigands X 1573.3818 1590.1980 -16.8162 17
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Figure 6.4.1: Spatial distribution of the GPS/Lev points within the triangulation 

network
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From the diagram above, points l- 13 and I48s2 have been used for the computation of the 

biquadratic polynomial while points 14 to 17 and I48s4 have been used for testing the 

polynomial. The plotting codes in Table 6.4.2 have been used to represent point names/codes in 

Figure 6.4.1.

6.5 Polynomial Determination

The biquadratic polynomial equation (2.2.3-2) has been used in this study. The coefficients 

have been determined via the Least Squares and Least Squares Collocation techniques. 

Fourteen GPS/Lev points have been used for the determination o f nine coefficients of the 

Polynomial. The general computation procedure is given in Figure 6.5.1.
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Figure 6.5.1: Flow chart showing determination of the coefficients of the polynomial

In the above flow chart, the observed WGS84 geodetic coordinates are transformed into 

WGS84 cartesian coordinates. The cartesian coordinates on WGS84 are transformed into the 

local cartesian coordinates via the seven transformation parameters. The local cartesian 

coordinates are transformed into the local geodetic coordinates, which are then projected onto a 

Plane via UTM projection equations to obtain the local plane coordinates. The local plane 

coordinates together with geoid heights (h-H) a*e then used in the quadratic polynomial 

R ation to obtain coefficierfts through either Least Squares or Least Squares Collocation 

echniques. The coefficients obtained by the two techniques are given in chapter seven.



6.5.1 Determination of Coefficients by Least Squares

The simple Gauss Markov model has been used to determine the nine coefficients of the 

polynomial. The model is given in equation 5.4-3. The accuracies of the approximated 

parameters have been evaluated using equation 5.5-1.

6.5.2 Determination of Coefficients by Least Squares Collocation

In Least Squares Collocation equation (2.2.1-16) has been used for the determination of the 

nine coefficients of the quadratic polynomial. The interpolation of geoidal heights is 

accomplished by equation (2.2.1-19). The covariance matrix Cnn is obtained from the accuracy 

of the observations with the assumption of no correlation. The covariance of the signal part of 

the observation is obtained by equation (6.5.2-1) while the covariance for the random part at 

the interpolation points is evaluated via equation (6.5.2-2). The constants (C0 and a) of the 

covariance function are approximated from the accuracy of the signal data.

CsV is covariance of noise in the signal part of the observation 

Css is covariance of the random part

r is distance between observation points (6.5.2-1) or distance between 

interpolation points (6.5.2-2)

C0 and a are constants.

The cross covariance between observations and signals is given as;

(6 .5 .2 - 1)

(6 .5 .2 -2 )

where,

(6 .5 .2 -3 )

where,

CyS is cross covariance from signal to observation points 

r is distance between observation and signal points 

C0 and a -  are constants

Now

(6.5 .2-4)
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and C j^ C y s 1. (6.5.2 - 5)

The covariance C is used for the determination of coefficients and their accuracies in equations 

(2.2.1-16) and (2.2.1-20) respectively. Both C and Csy are used in the determination of signals

(interpolation) in equation (2.2.1-19) while all the covariances C , Csy and Css are exploited in 

the computation of the accuracy estimates of signals in equation (2.2.1-21).

6.6 Interpolation of Geoid Heights

Having obtained transformation parameters and coefficients of the biquadratic polynomial in 

the area of study, it is now possible to obtain geoid height o f a point in the area covered by the 

polynomial. Three methods have been used for the interpolation of geoid heights, these include; 

biquadratic polynomial (determined by LS and LSC) and a gridded representation of EGM96 

through a bilinear interpolation program INTPT.F as given in Figure (6.6.1). From the geoid 

heights and the geodetic heights, orthometric heights can be derived.

Figure 6.6.1: Flow chart showing interpolation of geoid heights
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CHAPTER SEVEN

RESULTS AND ANALYSIS

7.1 Transformation Parameters

The computed transformation parameters and their accuracies are given in Table 7.1.1.

Table 7.1.1: Transformation parameters

Bursa-Wolf model Molodensky model

Parameter Value Accuracy Value Accuracy Units

Xo -150.105 - -150.104 ±0.001 m

Yo 2.634 - 2.635 ±0.001 m

Zo -298.512 - -298.512 ± 0.000 m

q 0.999999948 + 2.4920 x 10'8 -

01 0.257596 ±0.4461 n

02 0.192634 ±0.3334 n

03 -0.004647 ±0.0140 n

7.2 Polynomial Coefficients by Least Squares

The evaluated coefficients of the biquadratic polynomial by Least Squares are given in Table 

7.2.1.

Table 7.2.1: Coefficients by Least Squares.

Coefficient Value Accuracy Units

K 0.000000 ±0.000000 m

k, -7.600000 x 10'29 ±8.700000 x 10'32 -

k2 0.000000 ±0.000000 -

k3 -1.244425 x I0'25 ±1.261432 x 10'27 -im

k4 -9.551580 x 10‘24 ±9.682114 x 10'26 m-' j

k5 -4.120000 x 10'29 ±4.180000 x 10'31 m-‘ j

-1.219639 x 10'18 ±1.236307x 10'2° -2m

k7 -2.034024 x 10'22 ±2.0618216 x 10'24 m-2

k# 2.136800 x 10'24 ±4.864115 x 10'26 m'3



7.2.1 Application of Polynomial coefficients by LS on Test Data

The determined coefficients of the biquadratic polynomial given in Table 7.2.1 were used to 

interpolate for the geoid heights at five test points. The results are given in Table 7.2.1.1.

Table 7.2.1.1: Interpolated geoid heights by polynomial (LS) at the test points

Test Point Geoid Height (m) Plotting code

Marulais -16.8725 148s4

Kism -16.8072 14

V/7 -16.7319 15

MT3 -16.8440 16

Stigands X -16.8275 17

7.3 Polynomial Coefficients by Least Squares Collocation

The evaluated coefficients of the biquadratic polynomial by Least Squares Collocation are 

given in Table 7.3.1.

Table 7.3.1: Coefficients by Least Squares Collocation

Coefficient Value Accuracy Units

ko 0.000000 ±0.000000 m

ki -9.670000 x 10'29 ±6.890000 x 10'32 -

k2 0.000000 ±0.000000 -

k3 -1.244303 x 10'25 ±8.847746 x 10'27 IT71m

k4 -9.551006 x 10'24 ±6.791344 x 10'26 m

k5 -4.090000x 10‘29 ±2.897000 x 10'JI -im

k* -1.219612 x 10',s ±8.672177 x 10‘21
-2m

k7 -2.010083 x 10‘22 ±1.429291 x 10'24 m*2

ks 2.136739 x 10‘24 ±3.074353 x 10'26 m'3

.j
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7.3.1 Application of polynomial coefficients by LSC on Test Data

The determined coefficients o f the biquadratic polynomial given in Table 7.3.1 were used to 

interpolate for the signals (geoid heights) at the five test points. Least Squares Collocation 

technique was used for the interpolation and the results are given in Table 7.3.1.1.

Table 7.3.1.1: Interpolated geoid heights by polynomial (LSC) at the test points.

Test Point Geoid Height (m) Accuracy (m) Plotting code

Marulais -16.8724 ± 0.0536 148s4

Kisni -16.8072 ± 0.0536 14

V/7 -16.7320 ± 0.0536 15

MT3 -16.8439 ± 0.0536 16

Stigands X -16.8278 ±0.0536 17

7.4 Application of EGM96 on Test Data

The EGM96 was used to obtain geoidal undulations at the test points. The results are given in 

Table 7.4.1.

Table 7.4.1: Interpolated geoid heights by EGM96 at the test points

Test Point Geoid Height (m) Plotting code

Marulais -15.90 148s4

Kism -15.94 14

V/7 -16.08 15

MT3 -15.90 16

Stigands X -15.90 17

7.5 The Nairobi Area Geoid

The Nairobi area geoid was interpolated by the biquadratic polynomial on a 2 km square grid. 

Contours of geoid heights were then interpolated at 2 cm vertical interval via Professional - 

Surveyor Plus software. The resulting Nairobi area geoid with respect to WGS84 reference 

ellipsoid is shown in Figure 7.5.1. It should be noted that the geoid heights are in metres.
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7.6 Analysis

The computed transformation parameters (Xo, Yo, Zo) obtained by Bursa-Wolf model are 

reasonable but their accuracies are unrealistically small while the scale factor (q) does not 

deviate significantly from unity. However, the rotation parameters (9i. 02 and 9.-0 are very small 

and further smaller than their standard errors. This scenario can be attributed to either the size 

of the area used (difficulty in detecting the curvature of the earth on a small fraction of the 

earth) or parallelism of the axes of the two datums (Arc- Datum 1960 and WGSS4). That being 

the case then the three translations alone are enough to model the transformation. Molodensky 

model is therefore adopted.

The coefficients o f the biquadratic polynomial determined by LS and LSC have almost the 

same values and accuracies. This may be attributed to the low quality of the covariance 

function used due to lack of sufficient data in Least Squares Collocation otherwise LSC is 

expected to perform better than LS. The computed residuals at data points show no significant 

difference between LS and LSC fit at the 14 data points as given in Table 7.6.1 although data 

points 3, 9,10, and 11 are found to have larger residuals. This is however consistent with the 

low accuracy (6 -  8cm) of height determination at the same points (3, 9,10, and 11),

Table 7.6.1: Residuals obtained by LS and LSC at the data points

Data point Residual (m) Difference (m)

LS LSC

1 0.0225 0.0221 0.0001

2 0.0067 0.0063 0.0004

3 -0.1629 -0.1633 0.0004

4 0.0035 0.0031 0.0004

5 0.0183 0.0179 0.0004

6 -0.0038 -0.0042 0.0004

7 -0.0801 -0.0804 0.0003

148s2 -0.0043 -0.0047 0.0004

8 . 0 .0090 0.0087 0.0003

9 -0.1388 -0.1391 0.0003

10 -0.0999 -0.1002 0.0004
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Continuation of residuals obtained by LS and LSC at the data points
Data point Residual (m) Difference (m)

11 0.1401 0.1397 0.0004

12 0.0124 0.0120 0.0004

13 0.0126 0.0123 0.0003

To analyse geoid heights obtained by the three methods, orthometric and geodetic heights of 

test points have been used to obtain the ‘best’ approximated geoid heights (h -  H) upon which 

the interpolated geoid heights by the three methods are assessed. The differences between the 

4best’ approximated geoid height (h -  H) and the other geoid heights for every test point are 

given in Table 7.6.2.

Table 7.6.2: Differences of geoid heights

Test Point / 

Plotting code
Nceo - NLs (m) Nceo - Nlsc (m) Ngco - N eg M96 (m)

Marulais / (148s4) +0.0124 +0.0123 -0.9601

Kism / (14) -0.0141 -0.0141 -0.8813

V/7 / (15) -0.0104 -0.0103 -0.6623

MT3 / (16) +0.0081 +0.0080 -0.9359

Stigands X / (17) +0.0113 +0.0116 -0.9162

Min abs diff 0.0081 0.0080 0.6623

Max abs diff 0.0141 0.0141 0.9601

Mean of diff +0.0015 +0.0015 -0.8712

RMS ±0.0114 ±0.0114 ± 0.8778

Sd ±0.0113 ±0.0113 ±0.1075

where,

NGco is the geoid height obtained as (h -  H),

Nls is the geoid height obtained by biquadratic polynomial determined by LS technique, 

Nlsc is the geoid height obtained by biquadratic polynomial determined by LSC technique, 

^ egm9 6  is the geoid height obtained by EGM96 (a bilinear interpolation program INTPT.F),
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Stl is standard deviation, and RMS is root mean square.

From Table 7.6.2 it is observed that the geoid heights obtained by polynomial (coefficients 

determined by LS and LSC) compare favourably on the test points with root mean square of ± 

lcm, mean difference value of 1.5 mm and standard deviation of ± 1cm. This accuracy is good 

enough for most levelling applications (engineering surveying, topographic surveying and other 

related fields). It is mentioned in Uren and Price (1994) that for longitudinal sections, it is 

sufficiently accurate to record levelling readings to the nearest lcm. The geoid heights 

approximated by EGM96 are however found to compare poorly on the test points with root 

mean square of ± 88cm, mean difference value of-87cm  and standard deviation of ± 1 lcm.

It must be noted however that the interpolated geoid heights obtained by Least Squares 

Collocation have stochastic parameters (standard errors). Hence for data integration, Least 

Squares Collocation gives a better format of the geoid height solution although LS technique is 

easier to use and relatively accurate when using one set of data. The EGM96 is suitable only for 

rough approximation of the geoid height at any point of the earth surface.

The biquadratic polynomial can therefore be used for geoid interpolation in a small area. 

However for a large area (country or continent) a bicubic polynomial should be considered. 

This is because the change in slope of the geoid to the reference ellipsoid in a small area is 

generally uniform and gentle as opposed to a larger area. The biquadratic polynomial is also 

found to perform better than bilinear polynomial in the area of study.
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CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The Nairobi area geoid has been determined through the orthometric and ellipsoidal heights. 

The geoid heights increase eastwards in the area ot study. I*or the interpolation of geoid heights 

in the area of study, a biquadratic polynomial has been used. It is observed that the biquadratic 

polynomial (determined via LS and LSC) gives a better prediction of geoid heights than 

EGM96 (a bilinear interpolation program INTPT.F). RMS and Sd for the differences between 

observed and predicted values at the test points are equal i.e. ± 1cm for the biquadratic 

polynomial (obtained by LS and LSC).

The geoid height has been expressed as a function of the plane local coordinates for easier 

integration into the local applications. It is found that the local geoid in Nairobi is below the 

reference ellipsoid (WGS84) with a mean height of-16.75m . This is better than the local 

datum, which on average deviates from the geoid by as much as 290m over the entire country 

(Kenya). The WGS84 reference ellipsoid therefore approximates the geoid over Nairobi area 

better than the local datum (Arc-Datum 1960) based on the modified Clarke 1880 reference 

ellipsoid.

It is noted that the geoid as determined is a local geoid. It may deviate from the global geoid 

(actual geoid) by as much as ± 2m. This is because the mean value of the local mean sea level 

has been used as the reference surface for orthometric heights. The local mean sea level has 

however been and is still being used for most if not all survey work the world over. The 

determined geoid is therefore good enough for local survey work.

It was also in the interest of this research to make the use of the determined geoid possible for 

local topographic and engineering surveying. It is appreciated that most if not all of the survey 

work in Nairobi area have been done in the local coordinate system (Arc -  Datum 1960). 

Hence the need for the determination of transformation parameters between WGS84 and Arc -  

Datum 1960. The transformation^arameters determined by Molodensky model are adequate 

while the parameters obtained by Bursa-Wolf model are found to be unstable. This may be 

attributed to either the size of the area used (difficulty in detecting the curvature of the earth on
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a small fraction of the earth) or parallelism of the axes of the two datums (Arc-Datum 1960 and 

WGS84). The application of the transformation parameters determined by Molodensky model 

was found to be satisfactory as they give local coordinates to sub-meter level compared to the 

local values determined by conventional methods.

A MATLAB program (RUN.M) has been developed to convert the GPS heights into 

orthometric heights in Nairobi area. The program can also facilitate the use of GPS for local 

surveying and engineering work in the area of study. The program is made user friendly via the 

user interface. The user is only required to give the observed GPS data (geodetic -  latitude, 

longitude and height on WGS 84 system). The program then uses the transformation 

parameters and the polynomial to determine the local plane coordinates (Northing and Easting), 

geoid height and orthometric height. It is however useful to note that both transformation 

parameters and the polynomial can only be used for interpolation within the area of coverage. 

However, with little modifications this program can be used in any other area with a different 

set of data. GPS survey for local work is now possible in Nairobi area. It will however be 

interesting to find out how a GPS traverse and levelling networks perform in the area of study.

8.2 Recommendations.

The following are the recommendations arising from this research.

• The accuracy of the determined local geoid may be improved by incorporating a geo

potential model and local terrain information. This would require a digital terrain model 

of the area of study.

• A combination of gravimetric and geometric geoid determination is proposed as a 

possible method that can lead to precise geoid determination in the Nairobi area.

• The difficulty in determining the rotational parameters by Bursa-Wolf model may be 

attributed to either the small size of the area used or parallelism of the axes in the two 

datums. It is proposed that the area be increased so as to obtain a more comprehensive 

conclusion about the axes of the two datums.

• The standard errors of Arc Datum 1960 coordinates have been unrealistically assumed 

to be zero. This is not true becdtise coordinates are computed from observations that are 

stochastic m nature. The triangulation network should be recomputed from the original 

observations to enable the determination of stochastic parameters of the coordinates.
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A further study should then be carried out to consider an estimation mc>de| ^  

incorporates stochastic parameters of coordinates in the two systems for better So|u(jon 

of the transformation parameters.
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APPENDICES

A P P E N D I X  A :  P R E L I M I N A R Y  C O M P U T A T IO N  P R O G R A M

' * T h i s  p r o g r a m  c o m p u t e s  l o c a l  g e o d e t i c  c o o r d i n a t e s  f r o m  t h e  

% l o c a l  p l a n e  U T M  c o o r d i n a t e s .

% E l e m e n t s  o f  m o d i f i e d  C l a r k e l S S O  r e f e r e n c e  e l l i p s o i d .

N = i n p u t ( '  N o r t h i n g  V a l u e  ' )  ;  

E = i n p u t ( '  E a s i n g  V a l u e  ' ) ;

e 2 = ( 2 * f 1 - f l * f 1 ) ;

K =0.9 9 9 6 ;

d n = 1 0 0 0 0 0 0 0 -N ;

d e = 5 0 0 0 0 0 -E ;

R= 6 3 710 0 0 ;

L a = d n / R ;

V O = a l / ( s q r t ( l - e 2 * s i n ( L a ) A 2 )  ) ;  

L o = d e / ( V O * c o s ( L a ) ) ;

n=f1/(2-f1) ; 
c o = l + n A 2 / 4 + n A 4 / 6 4 ;  

c l 2 = 3 / 2 * ( n - n A 3 / 8 ) ;  

c l 4 = 1 5 / 1 6 * ( n A 2 - n A 4 / 4 ) ;  

c l 6 = 3 5 / 4 8 * n A 3 ;  

c 1 8 = 3 1 5 / 5 1 2 * n A 4 ;

a l = 6 3 7 8 2 4 9 . 1 4 5 ;  

f l = l / 2 9 3 . 4 6 5 ;  

e l = s q r t ( 2 * f l - f l A 2 )  ;

% s e m i  m a j o r  a x i s ,  

' • s e l l i p t i c i t y . 

% f i r s t  e c c e n t r i t y .
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f o r  i = l : 1 5 ;

V O = a l / ( s q r t ( l - e 2 * s i n ( L a ) A 2 )  ) ;  % r a d i u s  i n  t h e  p r i m e  v e r t i c a l .  

s o = a l / ( 1 + n ) * ( c o * L a - c l 2 * s i n ( 2 * L a ) + c l 4 * s i n ( 4 * L a ) -  

c l 6 * s i n ( 6 * L a ) + c l 8 * s i n ( 8 * L a ) ) ;

% s o  i s  t h e  m e r i d i o n a l  d i s t a n c e .

r o = a l * ( l - e 2 ) / ( l - e 2 * ( s i n ( L a ) ) A 2 ) A 1 . 5 ;  % r a d i u s  i n  t h e  m e r i d i a n .  

Nl=( ( V O / 2 ) * ( L o * c o s ( L a ) ) A 2 * t a n ( L a ) ) + ( ( V O / 2 4 ) * ( L o * c o s ( L a ) ) A 4 * t a n ( 

L a ) * ( 5 - ( t a n ( L a ) ) A 2 ) ) ;

N L = K * ( s o + N l ) ;

E L = K * ( ( V O * L o * c o s ( L a ) ) +  ( ( ( V O / 6 ) * ( L o * c o s ( L a )  ) A 3 )  *  ( ( V O / r o )  -  

( t a n ( L a ) ) A 2 ) ) + ( ( V O / 1 2 0 ) * ( L o * c o s ( L a ) ) A 5 * ( 5 -  

1 8 * ( t a n ( L a ) ) A 2 + ( t a n ( L a ) ) A 4 ) ) )  ;

d N = d n - N L ;

d E = d e - E L ;

d L a = d N / r o ;

d L o = d E / ( V O * c o s ( L a ) ) ;

L a = ( d L a + L a ) ;

L o = ( d L o + L o ) ;  

e n d ;

d i s p  ( ' ' )

d i s p ( '  ' )

d i s p ( ' L a t i t u d e  a n d  L o n g i t u d e  i n  d e g r e e s ' ) ;

L a t i t u d e  = - ( L a * 1 8 0 / p i )  % C o m p u t e d  l a t i t u d e  i n  d e g r e e s .  

L o n g i t u d e = 3 9 - L o * 1 8 0 / p i  . % C o m p u t e d  l o n g i t u d e  i n  d e g r e e s .
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APPENDIX B MAIN PROGRAM (RUN.M)
disp(' ');
disp(' ');
d i s p ( ' T h i s  p r o g r a m  d e t e r m i n e s :  t r a n s f o r m a t i o n  p a r a m e t e r s ,  

p o l y n o m i a l  c o e f f i c i e n t s , ' )

d i s p ( ' g e o i d  h e i g h t s , l o c a l  p l a n e  c o o r d i n a t e s  a n d  o r t h o m e t r i c  

h e i g h t s ' )

d i s p ( '  ' ) ;

d i s p ( ' B y  P a t r o b a  A  O d e r a . ' )

d i s p ( '  ' ) ;

d i s p ( '  ' ) ;

d i s p ( ' U S E R  I N T E R F A C E ' ) ;
 ̂ i *****  + * + * + * + * + * + *** + * + * + * + * + * i,r*** + *** + *'lr*'Jc* + *****  + '*,lr*''t ** 

* * * ’ ) ;
d i s p ( ' P L E A S E  E N J O Y  T H E  P R O G R A M ' ) ;

d i s p  ( ' *■*■*-*■ + • * • * • * ■ ' * ' ' * ■ * * * * * ' * ' * ' * ■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

d i s p ( ' T H E  U S E R  I S  R E Q U I R E D  T O  I N P U T  T H E  R I G H T  D A T A  A T  T H E  

P R O M P T ' ) ;

d i s p ( ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

*  *  *  • ) •

d i s p ( ' P L E A S E  U S E  T H E  R I G H T  F O R M A T  A S  I N D I C A T E D ' ) ;  

d i s p ( ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

*  *  *  » ) •

d i s p ( ' I N P U T - L A T I T U D E ( - v e  i f  S ) , L O N G I T U D E  A N D  E L L I P S O I D A L  

H E I G H T  O N  W G S 8 4 ' ) ;

d i s p  ( ' * * * - * - * * * * * ' * ' * " * " * " ’lr* ' * " * ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

d i s p ( ’ O U T P U T - N , E  O N  A R C  D A T U M 1 9 6 0 , G E O I D  H E I G H T  A N D  O R T H O M E T R I C

H E I G H T ' ) ;

d i s p  ( '  ’ ) ;

d i s p  ( '  ' )  ;

d i s p ( ' I N P U T  D A T A ' ) ;

d i s p  ( '  ' ) ;

c l e a r  a l l

% D E T E R M I N A T I O N  O F  T R A N S F O R M A T I O N  P A R A M E T E R S

% E l e m e n t s  o f  W G S 8 4  

a w = 6 3 7 8 1 3 7 ;  

f w = l / 2 9 8 . 2 5 7 2 2 3 5 6 ;  

e w = s q r t ( 2 * f w - f w A 2 )

r e f e r e n c e  e l l i p s o i d

% s e m i  m a j o r  a x i s  

% e l l i p t i c i t y  

;  % f i r s t  e c c e n t r i t y

^ E l e m e n t s  o f  C l a r k e l 8 8 0  

a l = 6 3 7 8 2 4 9 . 1 4 5 ;  

f  1 = 1 / 2 9 3 . 4 ^ 6 5 ;  

e l = s q r t ( 2 * f l - f l A 2 ) ;

r e f e r e n c e  e l l i p s o i d  

v ^ s e m i  m a j o r  a x i s  

% e l l i p t i c i t y  

% f i r s t  e c c e n t r i t y
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% C o n s t a n t

r = 2 0 6 2 6 4 . 8 0 6 2 4 9 ;

^ R e a d i n g  g e o d e t i c  c o o r d i n a t e s  o n  t h e  g l o b a l  r e f e r e n c e

e l l i p s o i d  i . e  W G S 8 4

% f r o m  d a t a  f i l e  d a t a l . t x t .

% t l = m a t i n ( ' a : \ d a t a l . t x t ' , 1 4 , 3 ) ;  

t l = m a t i n  ( ' a : \ d a t a l . t x t ' , 1 4 , 3 ) ;

N 0 = s i z e  ( t l ) ;

N = N 0  ( 1 ) ;

P = N 0  ( 2 ) ;

% R e a d i n g  g e o d e t i c  c o o r d i n a t e s  o n  t h e  l o c a l  r e f e r e n c e  e l l i p s o i d

i . e .  C l a r k e  1 8 8 0

% f r o m  d a t a  f i l e  d a t a 2 . t x t .

t 2 = m a t i n ( ' a : \ d a t a 2 . t x t ' , N , P ) ;

G = t  1 ;  

g = t 2 ;

% C h a n g i n g  d e g r e e s  t o  r a d i a n s  

f o r  i = l : N

g r ( i )  =  ( g ( i , l ) + g ( i , 2 ) / 6 0 + g ( i , 3 ) / 3 6 0 0 ) * p i / 1 8 0 ;

G r ( i )  =  ( G ( i , l ) + G ( i , 2 ) / 6 0 + G ( i ,  3 ) / 3 6 0 0 ) * p i / 1 8 0 ;  

e n d ;

g l = g r ' ;  

g w = G r ' ;

f o r  i = l : N / 2

V w ( i ) = a w /  ( s q r t ( l - e w A 2 * s i n ( g w ( 2 * i - l ) ) A 2 ) ) ;  % r a d i u s  i n  t h e

p r i m e  v e r t i c a l  o n  W G S 8 4

V I ( i ) = a l / ( s q r t ( l - e l A 2 * s i n ( g l ( 2 * i - l ) ) A 2 ) ) ;  % r a d i u s  i n  t h e

p r i m e  v e r t i c a l  o n  C l a r k e l 8 8 0

e n d ;

v = V l ' ;

V = V w ' ;

% C o m p u t i n g  t h e  t h r e e - d i m e n s i o n a l  c a r t e s i a n  c o o r d i n a t e s  f o r  t h e

s e v e n  p o i n t s  i n  t h e

^ g l o b a l  a n d  l o c a l  s y s t e m s  *

f o r  i = l : N / 2 ;

L l ( i ) =  V ( i ) * c o s ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i ) ) ;  % X  o n  W G S 8 4  

L 2 ( i ) =  V ( i ) * c o s ( g w ( 2 * i - l ) ) * s i n ( g w ( 2 * i ) ) ;  % Y  o n  W G S 8 4
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L 3 ( i ) =  V ( i ) * ( l - e w A 2 ) * s i n ( g w ( 2 * i - l ) ) ; % Z o n  W G S 8 4

L 4  ( i ) =  v ( i ) * c o s ( g l ( 2 * i - l ) ) * c o s ( g l ( 2 * i )  ) ;  

L 5 ( i ) =  v ( i ) * c o s ( g l ( 2 * i - l ) ) * s i n ( g l ( 2 * i ) )  ;  

L 6 ( i ) =  v ( i ) * ( 1 - e l A 2 ) * s i n ( g l ( 2 * i - l ) ) ;

% x  o n  C l a r k e 1 3 8 0  

% y  o n  C l a r k e l 8 8 0  

% z  o n  C l a r k e l 8 8 0

e n d ;

L=[LI';L2';L3'];
1=[L4';L5';L6'];
% R e a r r a n c r i n g  t h e  t h r e e  d i m e n s i o n a l  c o o r d i n a t e s  i n  t h e  g l o b a l  

a n d  l o c a l  s y s t e m s  

f o r  i = l : N / 2 ;

j = i + N / 2 ;  

k = i + N ;

c l = 3 * i - 2 ;  

c 2 = 3 * i - l ;  

c 3 = 3 * i ;

c  ( c l )  = 1  ( i ) , ;  

c ( c 2 ) = 1  ( j  ) ;  

c ( c 3 ) = 1  ( k )  ;

C ( c l ) = L ( i )  ;

C ( c 2 ) = L ( j )  ;

C ( c 3 ) = L ( k )  ;

e n d ;

y l = C ' ;  % v e c t o r  o f  X , Y , Z  c o o r d i n a t e s  o n  t h e  g l o b a l  

s y s t e m ( W G S 8 4 )

y 2 = c ' ;  % v e c t o r  o f  x , y r z  c o o r d i n a t e s  o n  t h e  l o c a l

s y s t e m ( C l a r k e l 8 8 0 )

% C o m p u t i n g  t h e  a p p r o x i m a t e  p a r a m e t e r s ( X 0 , Y 0 , Z 0 ) u s i n g  t h e  

s e v e n  p o i n t s

t = y l - y 2 ;  % g l o b a l - l o c a l

X0= ( t  (1) + t  (4) + t  (7J + t  (10)  + t  (13) + t  (16)  + t  (19) ) / 7 ;
Y0= ( t  (2) + t  (5) + t  (8) + t  ( H )  + t  (14) + t  (17)  + t  (20) ) / 7 ;
Z0= ( t  (3) + t  (6) + t  (9) + t  (12)  + t  (15) + t  (18)  + t  (21) ) /  7;
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g d = g w - g l ;  

d f = f w - f 1 ;  

d a = a w - a l ;

f o r  i = l : N / 2

Vpv(i)=aw/(sqrt(l-ewA2*sin(gw(2*i — 1))A2)) ; ^radius in the
prime vertical

Vmd(i)=aw*(l-ewA2)/(l-ewA2*(sin(gw(2*i-l)))A2)A1.5;%radius
in the meridian direction

e n d ;

•MOLODENSKY MODEL ( 3 - PARAMETERS)

r p = V p v ' ;  

r m = V m d ' ;  

b = a w * ( 1 - f w ) ;

e l = s q r t (( a w A 2 - b A 2 )/ b A 2 ); ^second eccentricity

^Computing misclosure and design matrix 
f o r  i = l : N / 2 ;

ml (i)=-sin(gw(2*i-l))*cos(gw(2*i-l))*X0/rp(i); 
m2 (i) = (-sin(gw(2*i))*cos(gw(2*i-l))*Y0+Z0*cos(gw(2*i- 

1)) )/rp(i) ;
m 3 ( i ) = e w A 2 * s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) * d a / r p ( i ) *  ( s q r t ( 1 -  

e w A 2 * s i n ( g w ( 2 * i - l ) ) A 2 ) ) ;

m 4  ( i ) = s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i -  

l ) ) * ( 2 / r p ( i ) ) * r m ( i ) + e l A 2 * ( s i n ( g w ( 2 * i - l ) ) ) A 2 * ( l - f w ) * d f ;

m 5 ( i ) = ( - X 0 * s i n ( g w ( 2 * i ) ) + Y 0 * c o s ( g w ( 2 * i ) ) ) / ( r m ( i ) * c o s ( g w ( 2 * i -  

1 ) ) ) ;

A A ( 2 * i - l , 1 ) = - s i n ( g w ( 2 * i - l ) ) * c o s ( g w (2 * i  — 1 ) ) / r p ( i ) ; 
A A ( 2 * i - l , 2 ) = ( - s i n ( g w ( 2 * i ) ) * c o s ( g w ( 2 * i - l ) ) + c o s ( g w ( 2 * i -  

1) ) ) / r p (i ) ;
A A ( 2 * 1 — 1 , 3 ) = c o s ( g w ( 2 * i - » l ) ) / r p ( i ) ;

AA(2*i,1)=-sin(gw( 2 * i ) )/ r m (i)* c o s ( g w (2 * i —1));
A A  ( 2 * i ,  2 )  = c o s  ( g w  ( 2 * i )  ) . / r m  ( i )  * c o s  ( g w  ( 2 * i  — 1 )  ) ;

e n d

A A = A A * r ;

r T l =  ( m l ' + m 2  ' + m 3  ' + m 4  ' / r )  ;

r T 2 = m 5 ' ;

f o r  i = l : N / 2 ; .

r T ( 2 * i - l ) = r T l ( i ) ;  

r T  ( 2 * i ) = r T 2  ( i - > ;

end
yy=gd-rT'; *
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g d = g w - g l ;  

d f  =  f w - f 1  ;  

d a = a w - a l ;

f o r  i = l : N / 2

V p v ( i ) = a w / ( s q r t ( l - e w A 2 * s i n ( g w ( 2 * i  — 1 ) ) A 2 ) ) ;  % r a d i u s  i n  t h e

p r i m e  v e r t i c a l

V m d ( i ) = a w * ( l - e w A 2 ) / ( l - e w A 2 * ( s i n ( g w ( 2 * i - l ) ) ) A 2 ) A 1 . 5 ; % r a d i u s

i n  t h e  m e r i d i a n  d i r e c t i o n

e n d ;

■jMOLODENSKY MODEL (.3-PARAMETERS )

r p = V p v ' ;  

r m = V m d ' ;  

b = a w * ( 1 - f w ) ;

e l = s q r t ( ( a w A 2 - b A 2 ) / b A 2 ) ;  ^ s e c o n d  e c c e n t r i c i t y

% C o m p u t i n g  m i s c l o s u r e  a n d  d e s i g n  m a t r i x  

f o r  i = l : N / 2 ;

m l  ( i ) = - s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) * X 0 / r p ( i ) ;  

m 2 ( i )  =  ( - s i n ( g w ( 2  *  i ) ) * c o s ( g w ( 2 * i - l ) ) * Y 0  +  Z 0 * c o s ( g w ( 2 * i -  

1 ) )  ) / r p ( i )  ;

m 3 ( i ) = e w A 2 * s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) * d a / r p ( i ) * ( s q r t ( 1 -  

e w A 2 * s i n ( g w ( 2 * i - l ) ) A 2 ) ) ;

m 4 ( i ) = s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i -  

l ) ) * ( 2 / r p ( i ) ) * r m ( i ) + e l A 2 * ( s i n ( g w ( 2 * i - l ) ) ) A 2 * ( l - f w ) * d f ;

m 5 ( i ) = ( - X 0 * s i n ( g w ( 2 * i ) ) + Y 0 * c o s ( g w ( 2 * i ) ) ) / ( r m ( i ) * c o s ( g w ( 2 * i -  

1 ) ) ) ;

A A ( 2 * i - l , 1 ) = - s i n ( g w ( 2 * i - l ) ) * c o s ( g w (2 * i  — 1 ) ) / r p ( i ) ; 
A A ( 2 * i - l , 2 ) = ( - s i n ( g w ( 2 * i ) ) * c o s ( g w ( 2 * i - l ) ) + c o s ( g w ( 2 * i -  

1) ) ) / r p (i ) ;
A A ( 2 * i - l , 3 ) = c o s ( g w ( 2 * i - l ) ) / r p ( i ) ;

A A ( 2 * i , 1 ) = - s i n ( g w ( 2 * i ) ) / r m ( i ) * c o s ( g w ( 2 * i - l ) ) ;

A A  ( 2 * i ,  2 )  = c o s  ( g w  ( 2 * i )  ) , / r m ( i )  * c o s  ( g w  ( 2 * i  — 1 )  ) ;

e n d

A A = A A * r ;

r T l =  ( m l ' + m 2  ' + m 3  ' + m 4  ' / r )  ;

r T 2 = m 5 ' ;

f o r  i = l : N / 2 ; .

r T ( 2 * i - l ) = r T l  ( i ) ;  

r T  ( 2 * i )  = r T 2  ( i ~ > ;

end
yy=gd-rT'; ^
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g d = g w - g l ;  

d f = f w - f l ;  

d a = a w - a l ;

f o r  i = l : N / 2

V p v ( i ) = a w / ( s q r t ( l - e w A 2 * s i n ( g w ( 2 * i  — 1 ) ) A 2 ) ) ;  ^ r a d i u s  i n  t h e

p r i m e  v e r t i c a l

V m d ( i ) = a w * ( l - e w A 2 ) / ( l - e w A 2 * ( s i n ( g w ( 2 * i - l ) ) ) A 2 ) A 1 . 5 ; % r a d i u s

i n  t h e  m e r i d i a n  d i r e c t i o n

e n d ;

•MOLODENSKY MODEL (3-PARAMETERS)

r p = V p v ' ;  

r m = V m d ' ;  

b = a w * ( 1 - f w )  ;

e l = s q r t ( ( a w A 2 - b A 2 ) / b A 2 ) ;  % s e c o n d  e c c e n t r i c i t y

% C o m p u t i n g  m i s c l o s u r e  a n d  d e s i g n  m a t r i x  

f o r  i = l : N / 2 ;

m l ( i ) = - s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) * X 0 / r p ( i ) ;  

m 2 ( i ) = ( - s i n ( g w ( 2 * i ) ) * c o s ( g w ( 2 * i - l ) ) * Y 0 + Z 0 * c o s ( g w ( 2 * i -  

1 )  ) ) / r p ( i )  ;

m 3 ( i ) = e w A 2 * s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) * d a / r p ( i ) * ( s q r t ( 1 -  

e w A 2 * s i n ( g w ( 2 * i - l ) ) A 2 ) ) ;

m 4  ( i ) = s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i -  

l ) ) * ( 2 / r p ( i ) ) * r m ( i ) + e l A 2 * ( s i n ( g w ( 2 * i - l ) ) ) A 2 * ( l - f w ) * d f ;

m 5 ( i )  =  ( - X 0 * s i n ( g w ( 2 * i ) ) + Y 0 * c o s ( g w ( 2 * i ) ) ) / ( r m ( i ) * c o s  ( g w ( 2 * i -  

1 )  ) ) ;

A A ( 2 * i - l , 1 ) = - s i n ( g w ( 2 * i - l ) ) * c o s ( g w ( 2 * i - l ) ) / r p ( i ) ;  

A A ( 2 * i - l , 2 ) = ( - s i n ( g w ( 2 * i ) ) * c o s ( g w ( 2 * i - l ) ) + c o s ( g w ( 2 * i -  

1 )  ) ) / r p  ( i ) ;

A A  ( 2 * i - l ,  3 )  = c o s  ( g w  ( 2 * i - f l )  ) / r p  ( i )  ;

A A ( 2 * i , 1 ) = - s i n ( g w ( 2 * i ) ) / r m ( i ) * c o s ( g w ( 2 * i - l ) ) ;

A A  ( 2 * i ,  2 )  = c o s  ( g w  ( 2 * i ) ) . / r m  ( i )  * c o s  ( g w  ( 2 * i - l )  ) ;

e n d

A A = A A * r ;

r T l =  ( m l ' + m 2  ' + m 3  ' + m 4  ' / r )  ;

r T 2 = m 5 ' ;

f o r  i = l : N / 2 ; .

r T ( 2 * i  — 1 ) = r T l ( i )  ;  

r T  ( 2 * i )  = r T 2  ( i - > ;

end
yy=gd-rT'; ^
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% C o m p u t i n g  t h e  t h r e e - d i m e n s i o n a l  c a r t e s i a n  c o o r d i n a t e s  f o r  t h e  

s e v e n  p o i n t s  i n  t h e  g l o b a l  a n d  l o c a l  s y s t e m s

s l = m a t i n ( ' a : \ d a t a 3 m . t x t 1 , N , 1 ) ;  

s l = s l / r ;

^ C o m p u t i n g  t h e  w e i g h t  m a t r i x  

f o r  i = l : N ;

j = i ;
W W ( i ,  j  ) =  1  / ( s l ( i ) A 2 ) ;  

end;

D 3 P = i n v ( A A ' * W W * A A ) * A A ' * W W * y y ;

X 0 1 = X 0 + D 3 P ( 1 ) ;  % s h i f t  i n  X

Y 0 1 = Y 0 + D 3 P ( 2 ) ;  % s h i f t  i n  Y

Z 0 1 = Z 0 + D 3 P ( 3 ) ;  % s h i f t  i n  Z

d i i i = y y - ( A A * D 3 P ) ;

S 0 0 0 = ( d i i i ' * W W * d i i i ) / ( N / 2 - 3 ) ;  

d p o o = S O O O * i n v ( A A ' * W W * A A ) ;

Dpoo=sqrt(diag(dpoo));

d X 0 = D p o o ( 1 ) ;  

d Y 0 = D p o o ( 2 ) ;  

d Z 0 = D p o o ( 3 ) ;

P T T = [ X 0 1 ; Y 0 1 ; Z 0 1 ] ;

% B U R S A - W O L F  M O D E L  ( 7 - P A R A M E T R S ) 

f o r  i = l : 7

c l l = 3 * i - 2 ;  

c l 2 = 3 * i - l ;  

c l 3 = 3 * i ;

y 3 ( e l l ) = X 0 ;  

y 3 ( c l 2 ) = Y 0 ;  

y 3 ( c l 3 ) = Z 0 ;

e n d ;

y 3 = y 3 1 ;

% c o m p u t i n g  t h e  m i s c l o s u r s ( y )  

y = t - y 3 ;
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' . ^ C o m p u t i n g  D e s i g n  m a t r i x  

f o r  i = l : 7 ;

A ( 3 * i - 2 , 1 ) = 1 ;

A ( 3 * i - 2 , 4 ) = y 2 ( 3 * i —2 ) ;

A ( 3 * i — 2 , 6 ) = - y 2  ( 3 * i ) ;  

A ( 3 * i - 2 , 7 ) = y 2 ( 3 * i - l ) ;  

A ( 3 * i - l , 2 ) = l ;  

A ( 3 * i - l , 4 ) = y 2 ( 3 * i - l ) ;  

A ( 3 * i - 1 , 5 ) = y 2 ( 3 * i ) ;  

A ( 3 * i - 1 , 7 ) = - y 2 ( 3 * i - 2 )  ;  

A ( 3 * i , 3 ) = l ;

A  ( 3 * i , 4 ) = y 2 ( 3 * i ) ;  

A ( 3 * i , 5 ) = - y 2 ( 3 * i - l )  ;

A ( 3 * i , 6 ) = y 2 ( 3 * i - 2 ) ;  

e n d ;

s = m a t i n ( ' a : \ d a t a 3 . t x t '  , 2 1 , 1 )  ;

^ C o m p u t i n g  t h e  w e i g h t  m a t r i x  

f o r  i = l : 2 1 ;

j = i ;

W ( i ,  j ) = 1 / ( s  ( i ) A 2 ) ;  

e n d ;

f o r  j = 1 : 3 ;  

y = t - y 3 ;

e n d

D = i n v ( A ' * W * A ) * A ' ^ W * y ;

X 0 = X 0 + D ( 1 ) ;  
Y 0 = Y 0 + D ( 2 ) ;  
Z 0 = Z 0 + D ( 3 ) ;  
q = l + D ( 4 ) ;  

THETA1 = D (5)  
THETA2=D( 6 ) ;  
THETA3=D( 7 ) ;  
y 4 = [ X O ; Y O ; Z O ] ;

% s h i f t  i n  X ;

% s h i f t  i n  Y ;

% s h i f t  i n  Z ;

% s c a l e  f a c t o r ;

% r o t a t i o n  a b o u t  t h e  X - a x i s ;  

% r o t a t i o n  a b o u t  t h e  Y - a x i s ;  

% r o t a t i o n  a b o u t  t h e  Z - a x i s ;

y 3 =  [ y 4  ;  y 4  ;  y 4  ;  y 4  ;  y 4  ;  y 4  ;  y 4  ] ;

d i = y - ( A * D ) ;  

s o o = ( d i ' * W * d i ) / 2 1 - 7 ;  

' d p = s o o * i n v ( A ' * W * A ) ;

D p = s q r t ( d i a g ( d p ) ) ;

r o t a t i o n l = T H E T A l * r ;  

r o t a t i o n 2 = T H E T A 2 * r  ;  

r o t a t i o n 3 = T H E T A 3 * r  ;

v
7 2



d X O = D p ( 1 ) ;  

d Y O = D p ( 2 ) ;  

d Z O = D p ( 3 ) ;  

d q = D p ( 4 ) ;  

d r o t l = D p ( 5 ) * r ;  

d r o t 2 = D p ( 6 ) * r ;  

d r o t 3 = D p ( 7 ) * r ;

'•■^Standard errors of the parameters

X=[XO;YO;ZO;q;THETAl;THETA2;THETA3];
R C = [ 1  T H E T A 3  - T H E T A 2 ; - T H E T A 3  1  T H E T A l ; T H E T A 2  - T H E T A l  1 ] ;

^ r o t a t i o n  m a t r i x

% C o m p u t a t i n g  L o c a l  3 - D  C o o r d i n a t e s  f r o m  W G S 8 4  ( g e o d e t i c )  

C o o r d i n a t e s

disp(' ');
disp(' ' ) !
disp('ENTER LATITUDE IN DEGREES,MINUTES AND SECONDS AT THE 
PROMPT');
disp (' ') / 1
disp(' ' ) ' !
Latl=input('Enter Degrees '); f
Lat2=input('Enter Minutes ');
Lat3=input('Enter Seconds ');
disp(' ' ) ;
disp(' ' ) ;
disp('ENTER LONGITUDE IN DEGREES,MINUTES AND SECONDS AT THE 
PROMPT');
disp ( ' ' ) /’
disp ( ' ' ) i
Longl=input('Enter Degrees ');
Long2=input('Enter Minutes ');
Long3=input ('Enter Seconds '); •.
disp (' ' ) ;
disp ( ' ' ) ;
r l = [ L a t l  L a t 2  L a t 3 ; L o n g l  L o n g 2  L o n g 3 ] ;

% r l = i n p u t ( ' E n t e r  l a t i t u d e  a n d  l o n g i t u d e  o n  W G 5 - 8 4  r e f e r e n c e  

e l l i p s o i d  ' ) ;  [ ]

^ C h a n g i n g  f r o m  d e g r e e s  t o  r a d i a n s
* A

for i=l:^
r l r ( i )  =  ( r l ( i ,  1 ) + r l ( i , 2 ) / 6 0  +  r l ( i , 3 ) / 3 6 0 0 ) * p i / 1 8  0 ;  

e n d ;
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g w w = r l r ' ;

V w w = a w /  ( s q r t  ( l - e w A 2 * s i n  ( g w w  ( 1 )  ) A 2 )  ) ;  '.' r a d i u s  i n  t h e  p r i m e  

v e r t i c a l

L W X =  V w w * c o s  ( g w w ( 1 ) ) * c o s ( g w w ( 2 )  ) ;  - X  

L W Y =  V w w * c o s ( g w w ( 1 ) ) * s i n ( g w w ( 2 )  ) ;  i i  
L W Z =  V w w * ( l - e w A 2 ) * s i n ( g w w ( 1 ) )  ;  Z

S = [ L W X - X O ; L W Y - Y O ; L W Z - Z O ]  ;

A S = 1 / q * R C ' * S ;

% C o m p u t a t i o n  o f  l o c a l  3 - d  c a r t e s i a n  c o o r d i n a t e s  u s i n g  3  

p a r a m e t e r s

S L = [ L W X - P T T ( 1 ) ; L W Y - P T T ( 2 ) ; L W Z - P T T ( 3 ) ] ;

A S L = S L ;

% C o m p u t i n g  t h e  g e o d e t i c  c o o r d i n a t e s  f r o m  t h e  c a r t e s i a n  

c o o r d i n a t e s

b = a l * (1 — f 1 ) ;

e l = s q r t ( ( a l A 2 - b A 2 ) / b A 2 )  ;  

e 2 = ( 2 * f 1 - f l * f 1 ) ;

K = 0 . 9 9 9 6 ;  % U T - M P r o j e c t i o n  S c a l e  f a c t o r

p = s q r t ( ( A S L ( l ) ) A 2 + ( A S L ( 2 ) ) A 2 ) ;  

t h e t a = a t a n ( A S L ( 3 ) * a l / ( p * b ) ) ;  

l a b d a = a t a n ( A S L ( 2 ) / A S L ( 1 ) ) ;

P H I = ( A S L ( 3 ) + ( e l A 2 * b * ( s i n ( t h e t a ) ) A 3 ) ) ;

P H I 1 = ( p - ( e l A 2 * a l * ( c o s ( t h e t a ) ) A 3 ) ) ;

P H = a t a n ( P H I / P H I I ) ;

L A B D A = l a b d a ;

h = - P H ;

H = 3 9 * p i / 1 8 0 - L A B D A ;

V O = a l / ( s q r t ( 1 - ( e 2 * ( s i n ( h ) ) ) A 2 )  ) ;  

r o = a l *  ( l - e 2 )  /  ( s q r t  ( l - e 2 *  ( s i n ( h )  ) A 2 )  ) . A 3 ;

n = f l / ( 2 — f 1 ) ;  

c o = l + n A 2 / 4 + n A 4 / 6 4 ;  

c l 2 = 3 / 2 * ( n - n A 3 / 8 ) ;  

c l 4 = 1 5 / 1 6 * ( n A 2 - n A 4 / 4 ) ;  

c l 6 = 3 5 / 4 8 * n A 3 ;  

c l 8 = 3 1 5 / 5 1 2 * n A 4 ;

s o = a l / ( l + n ) * ( c o * h - c l 2 * s i n ( 2 * h ) + c l 4 * s i n ( 4 * h ) -  

c l 6 * s i n ( 6 * h ) + c l 8 * s i n ( 8 * h )  ) ;
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N 1 1 = ( ( V O / 2 ) * ( H * c o s ( h ) ) A 2 * t a n ( h ) ) + ( ( V O / 2 4 ) * ( H * c o s ( h ) ) A 4 * t a n ( h ) *  

( 5 - ( t a n ( h ) ) A 2 ) ) ;

N L 1 = 1 0 0 0 0 0 0 0 - K * ( s o + N l l ) ;

E L 1 = 5 0 0 0 0 0 - K * ( ( V O * H * c o s ( h ) ) +  ( ( ( V O / 6 ) * ( H * c o s ( h )  ) A 3 )  * ( ( V O / r o ) -  

( t a n ( h ) ) A 2 ) ) + ( ( V O / 1 2 0 ) * ( H * c o s ( h ) ) A 5 * ( 5 -  

1 8 * ( t a n ( h ) ) A 2 +  ( t a n ( h ) ) A 4 ) ) ) ;

e h = i n p u t ( ' E n t e r  e l l i p s o i d a l  h e i g h t  ' ) ;

Lc=[NL1;ELI;eh];

%Reading plane coordinates on the local grid(Arc-Datum,1960) 
and Orthometric height from %data file data4.txt.

p = m a t i n ( , a : \ d a t a 4 . t x t ' / 1 4 , 3 ) ;  

n 0 = s i z e ( p ) ;

K K = n O ( 1 ) ;

P P = n O ( 2 ) ;  

n = K K ;

% C o m p u t i n g  d e s i g n  m a t r i x  

f o r  i = l : K K ;

A 1 ( i , 1 ) = 1 ;

A 1  ( i ,  2 )  = p  ( i ,  1 )  v*

A 1 ( i , 3 ) =p ( i , 2 ) ;

A 1 ( i , 4 ) =p ( i , 1 ) *p ( i , 2 ) ;

A l ( i , 5 )  =  ( p ( i , l )  ) A 2 ;

A 1 ( i ,  6 ) = p ( i , 2 ) A 2 ;

A l ( i , 7 )  =  ( p ( i / 1 )  ) A 2 * p ( i , 2 )  ;

A l ( i , 8 ) = p ( i , l ) * ( p ( i , 2 ) ) A 2 ;

A 1 ( i , 9 ) = ( p ( i , 1 ) ) A 2 * (p ( i/ 2 ) ) A 2 ;

H T ( i , 1 ) =p ( i , P P ) ;

e n d ;

%Reading standard errors from data file (data5.txt) 
s2=matin('a:\data5.txt' , 14,1);

%Computing the weight matrix 
C01=0; 

f o r  i = l : 1 4 ;

j = i ;

W l ( i , j ) = 1 /  ( s 2 ( i ) A 2 ) ;

C 0 1 = C 0 1  +  s 2  ( i ) A 2 ;

j
e n d ;  >■'

k = i n v  ( A 1 ' * W 1  * <A 1 )  *  ( A 1 ' * W 1 * H T )  ;  

k0=k(l);
k l = k ( 2 ) ; k 2  =  k ( 3 ) ; k 3 = k ( 4 ) ; k 4  =  k ( 5 ) ; k 5 = k ( 6 ) ; k 6 = k ( 7 )  ; k 7  =  k ( 8 ) ;  

k 8 = k ( 9 ) ;

V
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' ^ C o m p u t a t i o n  o f  g e o i d a l  u n d u l a t i o n  a t  a  g i v e n  p o i n t

N = k O + k l * L c ( 1 ) + k 2 * L c ( 2 ) + k 3 * L c ( 1 ) * L c ( 2 ) +  k 4 * ( L c ( 1 ) ) A 2 + k 5 * ( L c ( 2 ) ) A 

2  +  k 6 * ( L c ( l ) ) A 2 * L c ( 2 ) + k 7 * L c ( 1 ) * ( L c ( 2 ) ) A 2 + k 8 * ( L c ( l ) ) A 2 * ( L c ( 2 ) ) A 2

% L E A S T  S Q U A R E S  C O L L O C A T I O N  C O M P U T A T I O N S

' • ^ A p p r o x i m a t i o n  o f  t h e  c o v a r i a n c e  c o n s t a n t s

C 0 = C 0 1 / 1 4 ;

c o n t = 0 . 0 1 ;

c o n t l = c o n t A 2 ;

a l l l = c o n t l / C 0 ;

a l l l l = l o g ( a l l l )  ;

a l l l l l = s q r t ( - 1 * ( a l l l l )  ) ;

a = a l l l l l / 1 0 0 0 0 0 0 ;  ' ^ a p p r o x i m a t e d  b y  i n t e r p r e t a t i o n  a n d  s c a l e d

% C o m p u t a t i o n  o f  S i g n a l  p a r t  o f  t h e  O b s e r v a t i o n s  

f o r  i = l : n ;

d l ( i , l ) = s q r t ( ( p ( i , l ) - p ( l , l ) ) A 2 + ( p ( i , 2 ) - p ( l > 2 ) ) A 2 ) ;  

d 2  ( i d )  = s q r t  ( ( p ( i d ) “ P ( 2 d )  ) A 2 + ( p ( i , 2 ) - p ( 2 , 2 )  ) A 2 )  ;  

d 3  ( i ,  1 )  = s q r t  ( ( p ( i d ) - p ( 3 , l ) ) A 2 + ( p ( i , 2 ) - p ( 3 , 2 ) ) A 2 ) ;  

d 4  ( i ,  1 )  = s q r t  ( ( p ( i d ) - p ( 4 d ) ) A 2 + ( p ( i , 2 ) - p ( 4 , 2 ) ) A 2 ) ;  

d 5  ( i d )  = s q r t  ( ( p ( i d ) " P ( 5 / l )  ) A 2 + ( p ( i , 2 ) - p ( 5 , 2 )  ) A 2 )  ;  

d 6  ( i d )  = s q r t  ( ( p ( i d ) " P ( 6 d )  ) A 2 + ( p ( i , 2 ) - p ( 6 , 2 )  ) A 2 )  ;  

d 7 ( i d ) = s q r t  ( ( P ( i d ) - P ( 7 d )  ) A 2 + ( p ( i , 2 ) - p ( 7 , 2 )  ) A 2 )  ;  

d 8  ( i ,  1 )  = s q r t  ( ( p ( i d ) ~ p ( 8 d )  ) A 2 + ( p ( i , 2 ) - p ( 8 , 2 )  ) A 2 )  ;  

d 9  ( i ,  1 )  = s q r t  ( ( p ( i d ) “ P ( 9 d )  ) A 2 + ( p ( i , 2 ) - p ( 9 , 2 )  ) A 2 )  ;  

d l O  ( i d )  = s q r t  ( ( p  ( i d )  - p  ( 1 0 , 1 )  ) A 2 + ( p ( i , 2 ) - P ( 1 0 , 2 )  ) A 2 )  ;  

d l l  ( i d )  = s q r t  ( ( p ( i d ) “ P ( H / l )  ) A 2 + ( p ( i , 2 ) - p ( l l , 2 )  ) A 2 )  ;  

d l 2  ( i ,  1 )  = s q r t  ( ( p  ( i d )  ” P  ( 1 2 d )  ) A 2 + ( p ( i d ) “ P ( 1 2 , 2 )  ) A 2 )  ;  

d l 3  ( i d )  = s q r t  ( ( p ( i d ) - P ( 1 3 d )  ) A 2 + ( p ( i , 2 ) - p ( 1 3 , 2 )  ) A 2 )  ;  

d l 4  ( i ,  1 )  = s q r t  ( ( p ( i d ) - P ( 1 4 d )  ) A 2 + ( p ( i , 2 ) - p ( 1 4 , 2 )  ) A 2 )  ;

t l = - ( a A 2 * d l ( i d ) A 2 ) ;  

t 2 = - ( a A 2 * d 2 ( i , 1 ) A 2 ) ;  

t 3 = - ( a A 2 * d 3 ( i d )  A 2 ) ;

1 4 = -  ( a A 2 * d 4  ( i d )  A 2 )  ;  

t 5 = -  ( a A 2 * d 5  ( i d )  A 2 )  ;  

t 6 = -  ( a A 2 * d 6  ( i d )  A 2 )  ;

1 7 = -  ( a A 2  * d 7  ( i d )  A 2 )  ;  

t 8 = -  ( a A 2 * d 8  ( i d )  A 2 )  ;  . .  

t 9 = -  ( a A 2 * d 9  ( i d )  A 2 )  ;  

t l 0 = -  ( a A 2 * d l O  ( i d )  A 2 )  ;  

t l l = -  ( a A 2 * ^ l l l  ( i d )  A 2 )  ;

1 1 2 = -  ( a A 2 * d l 2  ( i d )  A 2 )  ;

1 1 3 = -  ( a A 2 * d l 3  ( i d )  A 2 )  ;  

t l 4 = - ( a A 2 * d l 4  ( i , 1 ) A 2 ) ;
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C s s l ( i , 1 ) = C O * e x p ( t l ) ;

C s s 2 ( i , 1 ) = C O * e x p ( t 2 ) ;

C s s 3  ( i , l ) = C 0 * e x p ( t 3 ) ;

C s s 4  ( i , 1 ) = C O * e x p ( 1 4  ) ;

C s s 5  ( i , 1 ) = C O * e x p ( 1 5 )  ;

C s s 6  ( i , 1 ) = C O * e x p ( 1 6 )  ;

C s s 7  ( i , 1 ) = C O * e x p ( 1 7 ) ;

C s s 8  ( i , 1 ) = C O * e x p ( 1 8 )  ;

C s s 9  ( i , 1 ) = C O * e x p ( 1 9 )  ;

C s s l O ( i , l ) = C O * e x p ( t l O )  ;

C s s 1 1 ( i , 1 ) = C O * e x p ( t i l ) ;

C s s 1 2  ( i , 1 ) = C O * e x p ( 1 1 2 )  ;

C s s 1 3 ( i , 1 ) = C O * e x p ( t 1 3 ) ;

C s s  1 4  ( i , 1 ) = C O * e x p ( 1 1 4 ) ;

e n d ;

c o v = [ C s s l ' ; C s s 2 ' ; C s s 3 ' ; C s s 4 ' ; C s s 5 ' ; C s s 6 ' ; C s s 7 ' ; C s s 8 ' ; C s s 9 ' ; C s s  

1 0 ' ; C s s l l ' ; C s s l 2 ' ;  C s s l 3 ' ;  C s s l 4 ' ] ;

% C o m p u t a t i o n  o f  C r o s s  C o v a r i a n c e  f r o m  S i g n a l  t o  O b s e r v a t i o n  

P o i n t s

% R e a d i n g  p l a n e  c o o r d i n a t e s  o f  i n t e r p o l a t i o n  p o i n t s  f r o m  d a t a  

f i l e

p l = m a t i n ( ' a : \ d a t a 6 . t x t ' ,  5 , 2 ) ;  

f o r  i = l : n ;

d l l ( i ,  1 ) = s q r t ( ( p ( i ,  1 ) - p i ( 1 , 1 ) ) A2+ ( p  ( i , 2 )  - p i  ( 1 , 2 ) ) A2) ; 
d l 2 ( i , 1 ) = s q r t ( ( p ( i , 1 ) - p i ( 2 , 1 ) ) A 2 + ( p ( i , 2 ) - p i ( 2 , 2 ) ) A 2 ) ;  

d l 3 ( i , 1 ) = s q r t ( ( p ( i , 1 ) - p i ( 3 , 1 ) ) A 2 + ( p ( i , 2 ) - p i ( 3 , 2 )  ) A 2 ) ;  

d l 4 ( i , 1 ) = s q r t ( ( p ( i , 1 ) - p i ( 4 , 1 ) ) A 2 + ( p ( i , 2 ) - p i ( 4 , 2 ) ) A 2 ) ;  

d l 5  ( i ,  1 )  = s q r t  ( ( p  ( i ,  1 )  - p i  ( 5 ,  1 )  ) A 2 +  ( p  ( i ,  2 )  - p i  ( 5 , 2 )  ) A 2 )  ;

t l l = - ( a A 2 * d l l ( i , 1 ) A 2 ) ;  

t l 2 = - ( a A 2 * d l 2 ( i , 1 ) A 2 )  ;  

t l 3 = - ( a A 2 * d l 3 ( i , 1 ) A 2 )  ;  

t l 4 = - ( a A 2 * d l 4 ( i , 1 ) A 2 ) ;  

t l 5 = - ( a A 2 * d l 5 ( i , 1 ) A 2  ) ;

C s s  1 1  ( i ,  1) = C 0 * e x * p  ( t i l )  ; 
C s s 1 2 ( i , 1 ) = C 0 * e x p ( t l 2 ) ; 
C s s l 3 ( i , l ) = C 0 * e x p ( t l 3 )  ;  

C s s l 4 ( i , 1 ) = C 0 * e x p ( t l 4  ) 

C s s l 5  ( i ,  l | = C 0 * e x p ( t l 5 )

e n d ;
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c o v l = [ C s s l l ' ; C s s 1 2 ' ; C s s l 3 ' ; C s s l 4 ' ; C s s l 5 '  ] ;

^ . C o m p u t a t i o n  o f  C o v a r i a n c e s  f o r  t h e  r a n d o m  p a r t  ( c o v 2 )  

f o r  i  =  1 : 5 ;

d i l l  ( i ,  1 )  = s q r t  ( ( p l ( i , l ) - p l ( l , l )  ) A 2 + ( p l ( i , 2 ) - p l ( l , 2 )  ) A 2 )  

d l l 2 ( i ,  1 ) = s q r t ( ( p i ( i , 1 ) - p i ( 2 , 1 ) ) A 2 + ( p i ( i , 2 ) - p i ( 2 , 2 ) ) A 2 )  

d l l 3 ( i , 1 ) = s q r t ( ( p l ( i , l ) - p 1 ( 3 , 1 ) ) A 2 + ( p l ( i , 2 ) - p l ( 3 , 2 ) ) A 2 )  

d l l 4 ( i , 1 ) = s q r t ( ( p l ( i , l ) - p 1 ( 4 , 1 ) ) A 2 + ( p l ( i , 2 ) - p l ( 4 , 2 ) ) A 2 )  

d l l 5 ( i , 1 ) = s q r t ( ( p i ( i , 1 ) - p 1 ( 5 , 1 ) ) A 2 + ( p l ( i , 2 ) - p l ( 5 , 2 ) ) A 2 )

t l l l = - ( a A 2 * d l l l ( i , 1 ) A 2 ) ;  

t 1 1 2 = - ( a A 2 * d l l 2 ( i , 1 ) A 2 ) ;  

t 1 1 3 = - ( a A 2 * d l l 3 ( i , 1 ) A 2 ) ;

1 1 1 4 = - ( a A 2 * d l l 4  ( i , 1 ) A 2 ) ;  

t l l 5 = - ( a A 2 * d l l 5 ( i , 1 ) A 2 ) ;

C s s l l l ( i , 1 ) = C 0 * e x p ( t i l l ) ;

C s s l l 2 ( i , 1 ) = C 0 * e x p ( t l l 2 ) ;

C s s l l 3 ( i , l ) = C 0 * e x p ( t l l 3 ) ;

C s s l l 4 ( i r l ) = C 0 * e x p ( t l l 4 ) ;

C s s l l 5 ( i , l ) = C 0 * e x p ( t l l 5 ) ;

e n d ;

c o v 2 = [ C s s l l l ' ; C s s 1 1 2 ' ; C s s 1 1 3 ' ; C s s l l 4 ' ; C s s 1 1 5 ' ]  ;

% C o m p u t a t i o n  o f  t h e  D i a g o n a l  M a t r i x ( C n n )  

f o r  i = l : 1 4 ;

j = i ;

C n n ( i , j ) = s 2  ( i ) A 2 ;

e n d

C l l = C n n + c o v ;

s o l = i n v ( A l ' * i n v ( C l l ) * A 1 ) ;

P s o l = s o l * A l ' * i n v ( C l l ) * H T ;

S i g = c o v l * i n v ( C l l ) * ( H T - A l ^ P s o l ) ;

% C o m p u t a t i o n  o f  D e s i g n  M a t r i x  o f  S i g n a l  P o i n t s

f o r  i = l : 5 ;

A 2 ( i , 1 ) = 1 ;

A 2 ( i , 2 ) = p l ( i , 1 ) ;

A 2 ( i , 3 ) = p l ( i , 2 ) ;  .*
A 2  ( i ,  4 )  = p l  ( i / ^ 1 )  * p l  ( i ,  2 )  ;

A 2 ( i , 5 )  =  ( p i  ( i ,  1 ) ) A 2 ;

A 2 ( i , 6 ) = p l ( i , 2 ) A 2 ;

A 2 ( i , 7 ) = ( p l ( i , 1 ) ) A 2 * p l ( i , 2 ) ;
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A 2 ( i , 8 ) = p l ( i , l ) * ( p l ( i , 2 ) ) A 2 ;

A 2 ( i , 9 )  =  ( p l ( i , l )  ) A 2 * ( p l ( i / 2 )  ) A 2 ;

e n d ;

% C O M P U T A T I O N  O F  T H E  S I G N A L S  

g h = A 2 * P s o l + S i g ;

H = e h - N ;

% C O M P U T A T I O N  O F  T H E  S T A N D A R D  E R R O R S  O F  T H E  C O I F F I C I E N T S ( L S ) 

t d = H T - ( A l * k ) ;

S O O = ( t d ' * W l * t d ) / 5 ;  

s t d c = i n v ( A 1 ' * W 1 * A 1 ) * S O O ;

s t d L S = s q r t ( d i a g ( s t d c )  ) ;

% C O M P U T A T I O N  O F  T H E  S T A N D A R D  E R R O R S  O F  T H E  C O I F F I C I E N T S ( L S C ) 

S T D C = i n v ( A 1 ' * i n v ( C l l ) * A 1 ) ;  

s t d L S C = s q r t ( d i a g ( S T D C ) ) ;

% C O M P U T A T I O N  O F  T H E  S T A N D A R D  E R R O R S  O F  T H E  S I G N A L S ( L S C )  

a c h = A l * i n v ( A 1 ' * i n v ( C l l ) * A 1 ) * A 1 ' * i n v ( C l l ) ;  

for i=l:14;
I  ( i  / i ) = 1;  

e n d ;

S T D S = c o v 2 - c o v l * i n v ( C l l ) * ( I - a c h ) * c o v l ' ;  

s t d S = s q r t ( d i a g ( S T D S ) ) ;

% D I S P L A Y I N G  R E S U L T S  

d i s p ( '  ' ) ;

d i s p C  ' ) ;

d i s p ( ' R E S U L T S ' ) ;  

d i s p ( '  ' ) ;

d i s p ( '  ' ) ;

f o r m a t  b a n k

d i s p ( ' N o r t h i n g  V a l u e  i n  m  ' ) ; L c ( l )

d i s p  ( ' -------------------------------------------------------------------------------------------------------------------------' )

d i s p ( ' E a s t i n g  V a l u e  i n  m  ' ) ; L c ( 2 )

d i s p  ( ' ------------------------------------------------------------------------------------------------------------------------ ' )

d i s p ( ' G e o i d a l  h e i g h t  i n  m  ' ) ; N

d i s p  ( ' ------------------------------------------------------------------------------------------------------------------------ ' )

d i s p ( ' O r t h o m e t r i c  h e i g h t  i n  m  ' )  ; H
 ̂ I ■k-k-k-k-k*'k-k-k-k-1c'k-tr-k-k--k-k-k-k'k-k-kie-k-k'k-ir'k-k-k-)r*-k-k-)c-k-iri(-k1'-ir-k-k-k->c*-k’'k-k'X-k-k-k-k1c-k 

■k-k i i r -k - k - k - k -k ' k -k i e - k ' k- k - k l  \

d i s p  (
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d i s p ( ' S U M M A R Y  O F  T H E  C O M P U T A T I O N S ' ) ;  

d i s p ( -----------------------------------------------------------------------

d i s p ( '  N o r t h i n g ( m )  E a s t i n g ( m )  O r t h o m e t r i c

h e i g h t ( m ) ' ) ;

[ L c ( l )  L c ( 2 )  H ]

d i s p ( .* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
^

d i s p ( ’ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ********

d i s p ( '  ' ) ;

d i s p ( ' T h a n k  y o u  O d e r a , P . A ' )

d i s p  ( ' ' ) ;

d i s p ( '  ' ) ;

d i s p ( ' P l e a s e  t y p e  t h e  w o r d  [ R U N ]  t o  c o n t i n u e  o r  [ e x i t ]  t c

d i s c o n t i n u e ' )

d i s p  ( ' ' ) ;

d i s p ( '  ' ) ;
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APPENDIX C:USER INTERFACE

» RUN

This program determines: transformation parameters, polynomial coefficients, 

geoid heights, local plane coordinates and orthometric heights.

By Patroba, A. Odera.

USER INTERFACE
***********************************************************
PLEASE ENJOY THE PROGRAM
**********************************************************

THE USER IS REQUIRED TO INPUT THE RIGHT DATA AT THE PROMPT

PLEASE USE THE RIGHT FORMAT AS INDICATED

INPUT-LATITUDE (-ve if S), LONGITUDE AND ELLIPSOIDAL HEIGHT ON WGS84 

OUTPUT-NJE ON ARC DATUM 1960,GEOID HEIGHT AND ORTHOMETRIC HEIGHT

INPUT DATA

ENTER LATITUDE IN DEGREES, MINUTES AND SECONDS AT THE PROMPT

Enter Degrees -1 
Enter Minutes -24 
Enter Seconds -7.26869

ENTER LONGITUDE IN DEGREES, MINUTES AND SECONDS AT THE PROMPT

Enter Degrees 36 
Enter Minutes 56 
Enter Seconds 40.17275

‘ A

Enter ellipsoidal height 1573.3818
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RESULTS

Northing Value in m

9845232.61

Easting Value in m 

271195.98

Geoidal height in m 

N =-16.83

Orthometric height in m 

H =1590.21

***********************************************************************
***********************************************************************

SUMMARY OF THE COMPUTATIONS

Northing (m) Easting (m) Orthometric height (m)

9845232.61 271195.98 1590.21

***********************************************************************
***********************************************************************

Thank you: Odera, P.A

Please type the word [RUN] to continue or [EXIT] to discontinue.

»

N/B: The point Stigands X has been used in this User Interface as an example.
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