UNIVERSITY OF NAIROBI

EVALUATION OF PERFORMANCE OF IRON REMOVAL PLANTS FOR GROUNDWATER TREATMENT IN WESTERN KENYA

BY J. G. MURIUKI 1994

DEPARTMENT OF CIVIL ENGINEERING

BRIVERSILY OF BALLES

EVALUATION OF PERFORMANCE OF IRON REMOVAL PLANTS FOR GROUNDWATER TREATMENT IN WESTERN KENYA

s

U

A THESIS PRESENTED TO DEPARTMENT OF CIVIL ENGINEERING OF THE UNIVERSITY OF NAIROBI.

BY

J.G. MURIUKI

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE SEPTEMBER, 1994

© J.G. MURIUKI, 1994

DECLARATION

THIS THESIS IS MY ORIGINAL WORK AND HAS NOT BEEN PRESENTED FOR DEGREE IN ANY OTHER UNIVERSITY.

MR. J. G. MURIUKI

CANDIDATE

THIS THESIS HAS BEEN SUBMITTED FOR EXAMINATION WITH MY APPROVAL AS UNIVERSITY SUPERVISOR.

nip

DR. MAURICE NDEGE

SUPERVISOR

ABSTRACT

EVALUATION OF PERFORMANCE OF IRON REMOVAL PLANTS FOR GROUNDWATER TREATMENT IN WESTERN KENYA

J.G. MURIUKISUPERVISORS - 1. DR. M.M. NDEGEUNIVERSITY OF NAIROBI2. MR E.N. NYANGERI

Iron is an important constituent in industrial process and drinking water. However, the presence of Iron in excessive concentrations makes the water objectionable for drinking and other industrial applications. Techniques for Iron removal have therefore been developed and further modified over the years to suit various conditions.

The study aims at assessing the success to the Iron removal project in provision of improved quality water by use of contact filter in the Kenya-Finland western water supply programme.

The study shows that though the technical implementation was carried out successfully, the programme did not adequately train and organise the beneficiary communities to take over the running of the iron removal plants. This very much affected the sustainability of these plants.

The result of the various investigations shows that, due to its simple technology, contact filter application for iron removal in western Kenya was a good choice for a rural setting. The three models studied vary in capital, operation and maintenance costs.

The simplest and the cheapest to install was the Khayinga and Siginga model, but as explained below these plants had their own water quality and operational limitations. The major drawback was their tedious backwashing method which resulted in continuos loss of filter media.

In all cases, the construction materials e.g. sand, cement and gravel, piping material, valves and pumps were available in the project area and elsewhere in Kenya. Iron removal efficiencies for the three models were as follows:

Siginga and Khayinga	96 %
Shivanga	94.7 %
Lugusi	85.6 %.

Despite high iron removal efficiencies at Siginga and Khayinga plants. Iron could not be removed to WHO standard of 0.3 mg/l, due to the high levels of raw water iron concentration of 16.7 mg/l and 14 mg/l respectively. Considering the programme's iron concentration guideline level of 1.0 mg/l, this was a great success. Both Shivanga and Lugusi plants achieved the WHO standard but as indicated by removal efficiencies, this was due to the low concentration of iron in the raw water (0.9 and 0.59 mg/l respectively).

The average treated water Iron concentration (mg/l) from the four Iron removal plants was as follows;

Khayinga	0.58
Siginya	0.70
Shivanga	0.19
Lugusi	0.13

As mentioned earlier on, the project was technically very successful but failed due to poor community mobilisation and training approach.

ACKNOWLEDGEMENTS

This study could not have been possible without the financial assistance of the Finnish International Development Agency (FINNIDA), through Kenya-Finland Western Water Supply Programme and the Ministry of Land Reclamation, Regional and Water Development. Their support I deeply appreciate.

Heartfelt thanks go to my supervisors, Dr. M.M. Ndege and Mr. E.N. Nyangeri both of University of Nairobi. I am greatly indebted to the staff of Water Quality Section and Mr. Chaungo Barasa of Water Point Construction Section, Kenya -Finland Western Water Supply Programme for their tireless assistance both in the field and laboratory through out the study period.

I wish to thank Mr. Richard Munene of the Ministry of Land Reclamation, Regional and Water Development, for his timely encouragement and unwavering assistance without which I could not have been able to complete the study.

I owe special thanks to Mr. Lawrence Thooko and Felix Mugo both of Monitoring and Hydrology Section, Kenya-Finland Western Water Supply Programme for their exceptional assistance in data processing and typing.

Finally I wish special thanks to: my wife Nyambura and children, Njeri, Wanjiru and Muriuki; my friends, colleagues, other family members and to all those who helped me during the preparation of this thesis. Their support and encouragement are sincerely appreciated.

TABLE OF CONTENTS

RODUCTION	1
ces and occurrence of iron in groundwater	1
verview of problems of Iron in water and the performance of	
removal plants in Kenva-Finland Western Water Supply	
ramme operation area.	3
removal advances in Kenya with special reference to	
a-Finland Western Water Supply Programme	. 5
CRATURE REVIEW	. 9
hemistry of iron in groundwater	. 9
1 Playone-man al market	
Ferrous iron (Fe(II)) reactions	. 9
Ferric iron (Fe(III)) reactions	14
Oxidation of ferrous (Fe(II)) to ferric (Fe(III)) iron	15
emoval using conventional treatment plants	25
emoval by non conventional methods	26
Vyredox	26
Overland flow	29
Contact beds	30
Ion exchange	30
Diatomite filter	31
	RODUCTION ces and occurrence of iron in groundwater. verview of problems of Iron in water and the performance of removal plants in Kenya-Finland Western Water Supply ramme operation area. removal advances in Kenya with special reference to a-Finland Western Water Supply Programme. ERATURE REVIEW chemistry of iron in groundwater Ferrous iron (Fe(II)) reactions. Ferric iron (Fe(III)) reactions. Oxidation of ferrous (Fe(II)) to ferric (Fe(III)) iron removal using conventional treatment plants veroval by non conventional methods. Vyredox. Overland flow. Contact beds Ion exchange Diatomite filter

Page

	2.3.6	Biologica	Ily mediated iron removal	. 32
		2.3.6.1	Contact filters	. 32
		2.3.6.2	Biological oxidation reactions in iron	
			removal by contact filter method	. 38
		2.3.6.3	Slow sand filtration and re-infiltration	. 42
3.0	OBJE	CTIVE O	F THE STUDY	. 45
4.0	MET		CV	47
4.0		nobolo	G I	. 47
4.1	Introd	uction		47
			PINA PUTATING REPLATION	
4.2	Meth	o d s		48
	4.2.1	Laborator	y work	52
	4211	Dhusian al	amical analysis	52
	4.2.1.1	Fliysico-ci	iennear analysis	52
	4.2.2	Coliform I	Bacteria Culturing	61
4.3	Modi	fication of r	methods	62
5.0	FIELI	D INVEST	IGATIONS	65
5.1	Descri	ption of mo	odels and observations during the study	68
	511	Lugusi iro	n removal plant	68
	5.1.2	Shivanga i	ron removal plant	71
	5.1.3	Siginga an	d Khayinga iron removal plants	74
6.0	RESU	LTS AND	DISCUSSIONS	78
6.l	Water	quality tren	d in general	82
62	Siging	a Plant		91
Cr cau	Signig			

.

P	a	ze
-	-	

6.3 Khayinga P	lant	. 97
6.4 Shivanga Pl	ant	105
6.5 Lugusi Plan	ıt	110
6.6 Discussions		116
7.0 CONCLUS	SIONS AND RECOMMENDATIONS	125
7.1 Summary of	f recommendations	131
8.0 SUGGEST	IONS FOR FURTHER RESEARCH	134
9.0 REFEREN	CES	136
APPENDICES		142
	B _o - pB diagram	
	Ex + pH for it. Merent activities of subble long in a supported bouring water	
	Distorted Po ¹² , Ma ² , and precipitated Fe (OE), JunO ₂ iron and manyament as functions of the outsides pill and F ₂	
	from and man namese precipitation zone	21
	Sport-up believager of a trickling tilter and a fleeded filter	
	(ron emanal amultation of Lagas)	
	tron comoval installation of Shivonga	
	bron errowel instaliation at Signiga and Shary area	77

LIST OF FIGURES

Fig. 2.1.1	Solubility of Fe(OH) ₂ in a non-carbonate.	
	non-sulphide solution	11
Fig. 2.1.2	Solubility of Fe(II) in a carbonate containing water	12
Fig. 2.1.3	Solubility of Fe(II) in a carbonate and sulphide bearing water	13
Fig. 2.1.4	Solubility of Fe(II) in a non-carbonate, non-sulphide solution	14
Fig. 2.1.5	Comparison of Pe° (w) of different species	19
Fig. 2.1.6	Activity diagram for a carbonate and sulphide bearing water	22
Fig. 2.1.7	E _h - pH diagram	23
Fig. 2.1.8	E_h - pH for different activities of soluble iron in a carbonate bearing water	24
Fig. 2.1.9	Dissolved Fe^{2+} , Mn^{2+} and precipitated Fe (OH) ₃ , MnO_2 iron and manganese as functions of the variables pH	
	and E _h	27
Fig. 2.2.0	Iron and manganese precipitation zones	28
Fig. 2.2.1	Start-up behaviour of a trickling filter and a flooded	
	filter	35
Fig. 5.1.1	Iron removal installation at Lugusi	69
Fig. 5.1.2	Iron removal installation at Shivanga	73
Fig. 5.1.3	Iron removal installation at Siginga and Khayinga	77

Page

Fig. 6.2.1	Iron and flow rate versus time at Siginga Plant	93
Fig. 6.2.2	Iron and discharge versus time at Siginga Plant	93
Fig. 6.2.3	Turbidity and flow rate versus time at Siginga Plant	94
Fig. 6.2.4	Turbidity and discharge versus time at Siginga Plant	94
Fig. 6.2.5	Coliform versus time at Siginga Plant	95
Fig. 6.2.6	Manganese versus time at Siginga Plant	95
Fig. 6.3.1	Iron and flow rate versus time at Khayinga Plant	99
Fig. 6.3.2	Iron and discharge versus time at Khayinga Plant	99
Fig. 6.3.3	Turbidity and flow rate versus time at Khayinga Plant	100
Fig. 6.3.4	Turbidity and discharge versus time at Khayinga Plant	100
Fig. 6.3.5	Coliform versus time at Khayinga Plant	101
Fig. 6.3.6	Manganese versus time at Khayinga Plant	101
Fig. 6.4.1	Iron and flow rate versus time at Shivanga Plant	107
Fig. 6.4.2	Iron and discharge versus time at Shivanga Plant	107
Fig. 6.4.3	Turbidity and discharge versus time at Shivanga Plant	108
Fig. 6.4.4	Turbidity and flow rate versus time at Shivanga Plant	108
Fig. 6.4.5	Manganese versus time at Shivanga Plant	109

Page

		Page
Fig. 6.5.1	Iron and flow rate versus time at Lugusi Plant	113
Fig. 6.5.2	Iron and discharge versus time at Lugusi Plant	113
Fig. 6.5.3	Turbidity and flow rate versus time at Lugusi Plant	114
Fig. 6.5.4	Turbidity and discharge versus time at Lugusi Plant	114
Fig. 6.5.5	Coliform versus time at Lugusi Plant	115
Fig. 6.5.6	Manganese versus time at Lugusi Plant	115

Territory Concerned & Through D Congret Press.

I ATTACK (particular limited states) in high spectrum.

LAGI OF TABLES	L	JS	ΓΟ)F '	TA	BL	ES
----------------	---	----	----	------	----	----	----

		Page
Table 2.1	Iron equilibria in water	10
Table 2.2	Fe-redox reactions and their activity equations in a carbonate bearing water	21
Table 6.1	Mean values at steady state conditions (peak period)	78
Table 6.2	Water quality results at iron removal plants visited during field investigations	79
Table 6.3	Water quality summary for selected parameters	81
Table 6.4	Daily mean values at Khayinga plant	83
Table 6.5	Daily mean values at Siginga plant	85
Table 6.6	Daily mean values at Shivanga plant	86
Table 6.7	Daily mean values at Lugusi plant	88
Table 6.8	Average parameter removal efficiency at Siginga Plant	91
Table 6.9	Average parameter removal efficiency at Khayinga Plant	97
Table 6.10	Efficiency and cycle length at Siginga and Khayinga plants	98
Table 6.11	Parameter removal efficiencies at Shivanga Plant	105
Table 6.12	Parameter removal efficiency at Lugusi Plant	110
Table 6.13	Average quality of treated water at Siginga and	

	MICTION .	
	Khayinga plants	117
Table 6.14	Average quality of treated water at Shivanga Plant	121
Table 6.15	Treated water quality at Lugusi Plant	123

Page

Abundant sources of interview of the exist of the earth's creat. Into commute five per part of the entries error (Robinson, 1967). In its compounds, two may exist in Errors Fe(II) or firm: Fe(III) forms. It is mainly found in firm of unides, extension, and into frequenty as polyholds. The most common from celles are magnetic (Fe/O), himsing (Fe₂O₂) and firmenile (Fe₂O (FigO), FigO), Sidenice (Fe/O)) and prote (Fe/O) or converses and subplicity magnetic (Fe/O) (FigO), Sidenice (Fe/O)) and prote (Fe/O).

Doubly, high concentrations of free are madeinted with deep, will wante from while, are barne we. (Hotden, 1970), where non-mostly occurs to firm of ferrous the bonne has in some cases, it may be found as higher oxides in complex, organic ambinations or in the cases as adapted (Hotden, 1970). The organics of some in the decar is generally attributed to the action of constants and an higher oxides of our Theory's some carbonic acid could be penerous by the action of rate on anythen we see dioxide, most of the will comin as a senalt of bonterial action on appear tearre.

The description of iron-bearing contends nor take place make activity and them is the passence of malacing agence (regarily subscripts, hydrogen subshide on) equable of

1.0 INTRODUCTION

1.1 Sources and occurrence of Iron in groundwater

Abundant sources of iron exist in the earth's crust. Iron constitutes five per cent of the earth's crust (Robinson, 1967). In its compounds, iron may exist in ferrous Fe(II) or ferric Fe(III) form. It is mainly found in form of oxides, carbonates, and less frequently as sulphides. The most common iron oxides are magnetite (Fe₃O₄), hematite (Fe₂O₃) and limonite (2Fe₂O.3H₂O). Siderite (FeCO₃) and pyrite (FeS₂) are carbonate and sulphide minerals containing iron respectively (Robinson, 1967).

Usually, high concentrations of iron are associated with deep well waters from shale, sandstone etc. (Holden, 1970), where iron mostly occurs in form of ferrous bicarbonate but in some cases, it may be found as higher oxides in complex organic combinations or in rare cases as sulphide (Holden, 1970). The occurrence of iron in groundwater is generally attributed to the action of carbonic acid on higher oxides of iron. Though some carbonic acid could be generated by the action of rain on atmospheric carbon dioxide, most of the acid comes as a result of bacterial action on organic matter.

The dissolution of iron-bearing minerals may take place under aerobic conditions in the presence of reducing agents (organic substances, hydrogen sulphide etc) capable of reducing the higher oxides of iron to ferrous Fe (II) state. Soluble ferrous iron may enter groundwater through the reaction shown in Equation 1.0 (Engelbrecht et al., 1967).

$$FeCO_3 + CO_2 + H_2O -----> Fe(II) + 2HCO_3^{-2}$$
(1.1)

In an aqueous environment, both soluble and insoluble species of hydrolysed iron may be present. The concentration of iron and manganese found in solution in natural waters is frequently limited by the solubility of their carbonates e.g. siderite (FeCO₃) and rhodochlosite (MnCo₃). Water of high alkalinity often therefore has lower dissolved iron (O'Connor, 1971). For a given pH the solubility of iron carbonate in natural waters is inversely proportional to the bicarbonate ion concentration i.e the alkalinity. The same is true for carbonates of manganese. 1.2 An overview of problems of Iron in water and the performance of Iron removal plants in the Kenya-Finland Western Water Supply Programme operation area.

Iron is an essential element for plant and animal growth, but its occurrence in water in high concentrations makes it objectionable for domestic and industrial uses. Iron occurs in water in dissolved ferrous form which when exposed to air or oxygen tends to oxidize forming brown precipitates which make the water aesthetically objectionable. The deposition of precipitates on plumbing fixtures causes staining and also interfere with laundering operations. The following industries are affected by ironous waters:-

- Paper making
- Photography
- Dying
- Leather tanning
- Food processing etc (Weng, 1984)

Water for use in the industries must be treated for iron removal otherwise the quality of the final product will be seriously affected. Deposits of colloidal ferric iron precipitates accumulate in water distribution systems resulting in proliferation of iron bacteria (Crenothrix, Clonothrix) forming masses or slime which can easily block valves and meters as well as reducing the pipe carrying capacity. Sloughing off of the slime usually causes odour and taste problems. The WHO recommended standard of 0.3 mg/1 is based on taste, colour and related nuisance considerations. Tolerable Iron concentration in various areas differ depending on the overall water quality problems experienced in each particular area.

A survey on the existing plants indicated poor maintenance conditions in the majority of the iron removal plants. Details on the causes of negligence will be found in later chapters. In terms of iron removal, the plants were a great benefit to the consumers. The plants were efficiently removing iron down to 1.0 mg/l which was the guideline in the Programme area. Other benefits include reduction of manganese and turbidity further improving taste and colour of the treated water.

The technology level in all the models studied was within the reach of the rural communities. Operation and maintenance costs were affordable and the raw materials were easily available in the Programme area. All these enhanced the sustainability of the iron removal project. Then what caused the failure of the project? The cause of this was found to be poor community participation in the running and maintenance of these plants. The most important finding here is that Siginga and Khayinga plants are among the oldest plants and are still working. This is because the consumers accepted there was a water quality problem and were involved in implementation of iron removal plants. They were well trained in operation and maintenance during and after implementation.

Later, as mentioned in Section 1.3, Iron removal project aroused commercial interests by engaging contractors and the implementation was done hurriedly without consumers' involvement and training. Several Iron removal plants were installed without consumers' approval and in many cases where Iron concentration was as low as 0.3 mg/l. Such installations were hence viewed as a nuisance by the consumers and were later abandoned.

The Iron removal project in Western Kenya was a good solution to the problem in drinking water for the rural communities but was failed by the wrong implementation approach. This is a good example to show the importance of thorough preliminary studies and involvement of project beneficiaries in formulation of solutions not only in water but other development projects. As mentioned earlier, most of the plants are abandoned and the project was a failure.

1.3 Advances in Iron Removal, the Western Kenya-FinlandWater Supply Programme

Problems associated with presence of iron in water can only be solved by removing the iron before distribution. Treating for iron removal involves oxidation of dissolved iron which forms filtrable colloidal precipitates. Several treatment methods are available and the choice is mainly dictated by the investment, operation and maintenance costs and availability of skilled personnel. Conventional treatment techniques which include aeration and chemical oxidation have been applied in several treatment plants in the developed countries. Despite their relatively simple principle of operation, conventional treatment plants have proved unsuitable especially for rural areas in the developing countries. This is due to high construction costs coupled with sophisticated operation and maintenance procedures (Hatva et al., 1973).

In Kenya water treatment for Iron removal by conventional methods is confined to a few groundwater supplies e.g Njoro and Ngong water supplies where aeration is carried out. Chemical oxidation has not been tried in public water supplies in the country. Non - Conventional iron removal treatment techniques have been recently developed and are mainly geared to the reduction of cost and convenience in operation and maintenance. The details of non-conventional treatment methods are given in the literature review.

One of the methods developed recently is the application of the contact filter. The technique utilizes both physico-chemical and biological Iron removal processes where different types of iron bacteria are involved. The filter can be either dry i.e the media not submerged in water or flooded where the media is completely submerged in water. In a contact filter both biological processes and physico-chemical iron removal processes are involved and are complementary to each other.

The method has been tried in the Kenya-Finland Western Water Supply Programme area (which comprises Western Province and a part of Siaya District) since 1985. This is mainly a rural water supply programme. The water sources are shallow wells, borehole wells and protected springs. The groundwater sources are equipped with hand pumps. Each well is supposed to serve about 200-300 consumers in a one Kilometre radius.

The groundwater sources for rural supplies in this area were found to contain iron in excess of WHO recommended level of 0.3 mg/l (WHO, 1984). The most frequently reported quality problem in the programme area has been taste and colour. A study carried out in 1984, by the then project Chemist confirmed the presence of iron and one of his recommendations was the development of iron removal plant suitable for rural areas. Several designs of contact filter were tried culminating in the presently adopted flooded contact filter. The installation of the iron removal plants was mainly done by local contractors who had been trained through the programme in order to enhance the sustainability of the systems. Community beneficiaries had to be adequately trained on operation and maintenance at various stages of construction but it was later found that the contractors were only interested in finishing their work to get their payment. On whether the consumers were given enough training or not is a question to be answered later in this study.

Training on operation and maintenance was carried out together with mobilisation and participation. In most cases construction teams worked ahead and completely independent of the training groups. Thus there lacked co-ordination and continuity. The Iron removal project generated a lot of interest owing to its commercial gains while maintenance was almost forgotten. So many Iron removal plants were constructed but communities continued objecting their quality.

A bacteriological quality survey indicated an increase in contamination in the filtered water in most of the installations. The fact that excessive iron does not cause any serious health problems in humans and that water deteriorated in bacteriological quality after treatment, it was found necessary to slow the rate of construction until the consumers in the existing plants were trained in all aspects of operation and maintenance. It was established that corrosion of borehole casings, galvanised iron rising pipes in borehole and shallow wells contributed a lot to turbidity, colour and taste problems. Most corrosion related problems were later solved by use of plastic casings rising pipes and stainless steel rods.

2.0 LITERATURE REVIEW

2.1 The chemistry of Iron in groundwater

The chemical reactions involved in the solution and deposition of iron in natural groundwater are readily reversible. The amount of Fe(II) and Fe(III) present in a given water is dependent on certain conditions of the water such as alkalinity, pH, carbon dioxide, dissolved oxygen content and concentrations of other minerals present (Robinson and Dixon, 1968).

2.1.1 Ferrous Iron (Fe(II)) reactions

Fe(II) exists in natural groundwater mostly in anaerobic environment. In waters devoid of sulphides and carbonates, and when Fe(II) is dissolved under anaerobic conditions, the equilibria equations 1, 2 and 3 in Table 2.1 will take place (Stumm and Lee, 1960).

0

Table 2.1

No. REACTION EQUILIBRIUM CONSTANT 1 25°C REFERU REFERU 1 Fe (11) Solubility 1 Fe (0 H)_1(s) = Fe + 2+ 20 H - Fe (0 H)_1(s) = Fe + 2+ 20 H - Fe (0 H)_1(s) = Fe + 2+ 20 H - Fe CO_2(s) - Pe + 2+ 20 H - Fe CO_2(s) - Pe + 2+ 20 H - Fe CO_2(s) - Pe + 2+ 20 H - Fe CO_2(s) + De + = [Fe [0 H)_2]^- Fe CO_2(s) + De + = [Fe [0 H)_2]^- Fe CO_2(s) + De + 2 Fe [0 H)_2]^+ + CO_2^{-2} Fe CO_2(s) + De + 2 Fe [0 H)_2]^+ + S^{-2} Fe S(s) + 30 H - = [Fe [0 H)_2]^+ + S^{-2} Fe S(s) + 30 H - = [Fe [0 H)_2]^- + S^{-2} H_3S(a_2] = H + HS^- H_3S(a_2] = Fe + 3 + 30 H^- H_3S(a_2] = Fe + 3 + 30 H^- H_3S(a_2] = Fe + 3 + 30 H^- Fe (1 H) Solubility Fe (1 H) Solubility				
Fe (11) Solubility i 1 Fe (0H) (s) = Fe * 2 + 20H - 8 ± 10^{-11} [1] 2 Fe (0H) (s) = [Fe (0H)]* + 0H - 8 ± 10^{-10} [1] 3 Fe (0H) (s) = 0H - = [Fe (0H)]* + 0D - 8 ± 10^{-10} [1] 4 Fe (0A) (s) = Pe * 2 + 0O * 2 2:1 × 10^{-11} [10] 5 Fe (Oa) = Pe * 2 + 0O * 2 2:1 × 10^{-11} [10] 6 Fe (Co) (s) = DH - = [Fe (0H)]* + CO - 2 1 × 10^{-2} (anpute 6 # 10^{-12} 6 ± 10^{-11} [10] 7 Fe S(s) + 6H * = [Fe (0H)]* + S^{-2} 3 × 10^{-12} Compute 9 Fe S(s) + 30H - = [Fe (0H)]* + S^{-2} 3 × 10^{-12} Compute 9 Fe S(s) + 30H - = [Fe (0H)]* + S^{-2} 3 × 10^{-13} [39] 10b H = Fe * S^* 1 - 3X 10^{-15} [39] 10b H = S = [Fe (0H)]* + 0H^- 1 - 7x 10^{-26} Compute 11 Fe 10H]* [S] = Fe * 3 + 30 H^- -10^{-34} Compute 12 Fe (1H) Solubility -10^{-2} -10^{-3} [21] 13 Fe (1H) Solubility -10^{-2} -10^{-2}	No-	REACTION	EQUILIBRIUM CONSTANT 1) 25° C	REFERANC
1 Fe(1) H_1(s) = Fe + 2 + 20 H - 8 \$\$ 10^{-10}\$ 11 2 Fe(0) H_1(s) = F(e(0) H_1) + 0H^- 8 \$\$ 10^{-10}\$ 11 3 Fe(0) H_1(s) + 0H^- = (Fe(0) H_1)^- 83 × 10^{-10}\$ 121 4 Fe(0) H_1(s) + 0H^- = (Fe(0) H_1)^+ + 0C_2^{-1}\$ 83 × 10^{-10}\$ 101 5 Fe(0) H_1(s) + 0H^- = (Fe(0) H_1)^+ + 0C_2^{-1}\$ 1 \$\$ 10^{-10}\$ 101 7 Fe(1) H_2(s) + 0H^- = (Fe(0) H_1)^+ + 0C_2^{-1}\$ 1 \$\$ 10^{-10}\$ 101 7 Fe(1) H_2(s) + 0H^- = (Fe(0) H_1)^+ + 5^{-1}\$ 3 \$\$ 10^{-10}\$ 101 7 Fe(1) H_2(s) + 10^{-1} + 10^{-1}\$ 1 \$\$ 10^{-7}\$ 1391 Compute 9 Fe(1) H_2(s) = Fe(0) H_2(-1)^{-1} + 5^{-2}\$ 3 \$\$ 10^{-1}\$ 1391 Compute Compute Compute Compute Compute 11 \$\$ 10^{-1}\$ 1391 Compute		Fe (11) Solubility		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Edouble) E 43 com		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		re(UH)_(s) = Fe ++20H -	8 = 10-14	[1]
3 $Fe(0,H)_3(s) + 0H^{-1} = [Fe(0,H)_3]^{-1}$ 8.3 × 10^{-9} [2] 4 $Fe(C0_4(s) - Fe^{4/2} + C0_5^{-2}$ 2.1 × 10^{-11} [10] 5 $Fe(C0_4(s) - Fe^{4/2} + C0_5^{-2}$ 2.1 × 10^{-11} [10] 6 $HC0_3^{-1} + H^{+} + C0_5^{-2}$ 2.1 × 10^{-11} [10] 7 $Fe(s) + 30H^{-1} = [Fe(0,H)]^{+} + S^{-2}$ 3 × 10^{-12} Compute 8 $Fe(s) + 30H^{-1} = [Fe(0,H)]^{+} + S^{-2}$ 3 × 10^{-12} Compute 9 $Fe(s) + 30H^{-1} = [Fe(0,H)]^{-1} + S^{-2}$ 3 × 10^{-12} Compute 10 $H = Fe(0,H)^{-1} + Fe^{5/2}$ 3 × 10^{-12} Compute 10 $H = Fe(0,H)^{-1} + Fe^{5/2}$ 1 × 10^{-7} [39] 10b $H^{-1} = Fe^{5/2} + 30H^{-1}$ 1 $\cdot 3\pi 10^{-15}$ [39] 11 $Fe(0,H)_2(s) = Fe^{5/2} + 30H^{-1}$ -10^{-34} Compute 12 $Fe(0,H)_2(s) = Fe^{-1} + 0H^{-1}$ $1 \cdot 7\pi 10^{-2.6}$ Compute 13 $Fe^{-1} H^{-1} + Fe^{-1} + Fe^{-1}$ -10^{-3} Compute 14 $Fe(0,H)_2(s) + 0H^{-1} = Fe^{-1} + Fe^{-1}$ -10^{-3} [4] 15 $Fe^{-1} + Fe^{-1} = Fe^{-1} + Fe^{-1}$ <	2	FELDHIZELE [FE(OH)]*+OH	4 x 10-10	[[1]
$ \begin{cases} Fe Co_{3}(s) - Pe^{s_{2}^{2}} + Co_{2}^{-2} \\ Fe Co_{3}(s) + DH^{-2} = [Fe[0]H]^{s} + Co_{2}^{-2} \\ Fe Co_{3}(s) + DH^{-2} = [Fe[0]H]^{s} + Co_{2}^{-2} \\ 46 \times 10^{-11} \\ 1 \times 10^{-2} \\ 46 \times 10^{-11} \\ 1 \times 10^{-2} \\ 46 \times 10^{-11} \\ 1391 \\ 1391 \\ 138 \\ Fe S(s) + 6H^{-2} = [Fe[0H]]^{s} + S^{-2} \\ Fe S(s) + 30H^{-2} = [Fe[0H]]^{s} + S^{-2} \\ Fe S(s) + 30H^{-2} = [Fe[0H]]^{s} + S^{-2} \\ 1 \times 10^{-12} \\ Fe S(s) + 30H^{-2} = [Fe[0H]]^{s} + S^{-2} \\ 1 \times 10^{-12} \\ Fe S(s) + 30H^{-2} = [Fe[0H]]^{s} + S^{-2} \\ 1 \times 10^{-13} \\ 1 \times 10^$	3	Fe(OH)2(s)+ OH" = (Fe(OH)2)*	8-3 ≠ 10 - 8	[2]
5 $FeCO_3[s] + 0H^{-1} = [Fe[0 H]]^{+} + CO_2^{-2}$ 1 x 10^{-2} Compute 6 $HCO_3^{-1} + H^{+} + CO_2^{-2}$ 6 x 10^{-11} [10] 7 $FeS(s) + Fe^{+2} + S^{-2}$ 6 x 10^{-11} [39] 8 $FeS(s) + 30H^{-1} = [Fe(0H)_2]^{-1} + S^{-2}$ 3 x 10^{-12} Compute 9 $FeS(s) + 30H^{-1} = [Fe(0H)_2]^{-1} + S^{-2}$ 6 x 10^{-13} [39] 103 $H_3S(aq) = H^{+} + HS^{-1}$ 1 x 10^{-7} [39] 104 $H_3S(aq) = H^{+} + HS^{-1}$ 1 x 10^{-7} [39] 105 $H^{-1} + S^{-2}$ 1 x 10^{-7} [39] 106 $H_5^{-1} = H^{+} + S^{-2}$ 1 x 10^{-7} [39] 107 $Fe(0H)_2[S] = Fe^{+3} + 30 H^{-1}$ 1 x 10^{-2} Compute 11 $Fe(0H)_2[S] = Fe^{+3} + 30 H^{-1}$ 1 x 10^{-34} Compute 12 $Fe(0H)_2[S] = [Fe(0H) f^2 + 20H^{-1}$ 1 x 10^{-2} Compute 13 $Fe(0H)_2[S] = Fe^{+3} + 30 H^{-1}$ $-7x 10^{-34}$ Compute 14 $Fe(0H)_2[S] + 0H^{-1} = [Fe(0H)_3](d)^2$ -10^{-3} Compute 15 $Fe(0H)_2[S] + 0H^{-1} = [Fe(0H)_4]^{-1}$ $-2y x 10^{-3}$	4	$Fe CO_{2}(s) = Fe^{+2} + CO_{2}^{-2}$	2-1×10-11	[10]
6 $HCO_2^{-2} \downarrow H^+ + CO_2^{-2}$ 4.6 \neq 10-11 [10] 7 Fe S(s) + fe ⁺² + S ⁻² 6.8 \neq 10-11 [39] 8 Fe S(s) + 0H ⁻ = [Fe(0H)] ⁺ + S ⁻² 3 \neq 10-12 Compute 9 Fe S(s) + 30H ⁻ = [Fe(0H)] ⁺ + S ⁻² 3 \neq 10 ⁻¹² Compute 10a H_S(3a) = H ⁺ + HS ⁻ 1 \neq 10 ⁻⁷ [39] Compute 10b HS ⁻ = H ⁺ + S ⁻² 1 \neq 10 ⁻⁷ [39] Compute 10b HS ⁻ = H ⁺ + S ⁻² 1 \neq 10 ⁻⁷ [39] [39] 10b HS ⁻ = H ⁺ + S ⁻² 1 \neq 10 ⁻⁷ [39] [39] 10b HS ⁻ = H ⁺ + S ⁻² 1 \neq 10 ⁻⁷ [39] [39] 11 Fe(0H)_SIS = Fe ⁺⁸ + 30 H ⁻ -10 ⁻³⁴ [Compute [Compute 12 Fe(0H)_SIS = [Fe(0H)] ⁺ + 0H ⁻¹ 1 ⁻⁷ x 10 ⁻²⁶ [Compute [C	5	$FeCO_2(s) + OH^{-} = [Fe(OH)]^{+} + CO_2^{-2}$	1 × 10-2	Computed
7 $Fe S(s) + fe^{*2} + S^{*5}$ 6 $\pm 10^{-12}$ [39] 8 $Fe S(s) + 0H^{-} = [Fa(0H)_{2}]^{-} + S^{-2}$ 3 $\pm 10^{-12}$ Compute 9 $Fe S(s) + 30H^{-} = [Fa(0H)_{2}]^{-} + S^{-2}$ 3 $\pm 10^{-12}$ Compute 100 $H_{S}^{-1} = H^{+} + HS^{-}$ 1 $\pm 10^{-7}$ [39] 10b $HS^{-} = H^{+} + S^{-2}$ 1 $\pm 10^{-7}$ [39] 10b $HS^{-} = H^{+} + S^{-2}$ 1 $\pm 10^{-7}$ [39] 10b $HS^{-} = H^{+} + S^{-2}$ 1 $\pm 10^{-7}$ [39] 10b $HS^{-} = H^{+} + S^{-2}$ 1 $\pm 10^{-7}$ [39] 10b $HS^{-} = H^{+} + S^{-2}$ 1 $\pm 10^{-7}$ [39] 11 $Fe(0H)_{2} S = [Fe(0H)^{-1} + 0H^{-1}$ $1^{-7} x \pm 10^{-26}$ Compute 12 $Fe(0H)_{2} S + 0H^{-} = [Fe(0H)_{2}]^{-1}$ $2^{-9} \times 10^{-1}$ Compute 14 $Fe(0H)_{2} S + 0H^{-} = [Fe(0H)_{2}]^{-1}$ $2^{-9} \times 10^{-1}$ Compute 15 $Fe(0H)_{2} S + 0H^{-} = [Fe(0H)_{4}]^{-1}$ $2^{-9} \times 10^{-1}$ $2^{-9} \times 10^{-1}$ [21] 15 Fe^{+	6	HC01 2H++C012	4-6 ≠ 10 - 11	[10]
8 $FeS(s) + 0H^{-} = [Fe(0H)]^{+} + S^{-2}$ 3 $\pm 10^{-1/2}$ Compute 9 $FeS(s) + 30H^{-} = [Fe(0H)]_{2}]^{-} + S^{-2}$ 62×10^{-3} Compute 103 $H_{3}S(3q) = H^{+} + HS^{-}$ 1 ± 10^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 10b $HS^{-} = H^{+} + S^{-8}$ 1 ± 310^{-7} 1391 11 $Fe(1H)$ Solubility $1 \pm 72 \times 10^{-3}$ Compute 12 $Fe(0H)_{2}(S) = [Fe(0H)^{+1} + 0H^{-1}$ $1 + 72 \times 10^{-26}$ Compute 13 $Fe(0H)_{3}(S) + 0H^{-} = [Fe(0H)_{4}]^{-}$ -10^{-8} Estimate 14 $Fe(0H)_{2}(S) + 0H^{-} = [Fe(0H)_{4}]^{-}$ -2^{-3} $[61]$ 15 $Fe^{-2} + CI^{-} = [FeCl_{3}]^{2}$ -300 $[401]$ 16 $Fe^{-2} + CI^{-} = [FeCl_{3}]^{2}$ -300 $[4$	7	Fe S(s) + Fe *2 + S* F	6 +10-18	[39]
9 $Fes(s) + 30H^{-1} = [Fe(0H)_2]^{-1} + S^{-2}$ 62×10^{-3} Computer 103 $H_3S(aq) = H^+ + HS^ 1 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 10b $HS^- = H^+ + S^{-1}$ $1 \cdot 3 \times 10^{-7}$ [39] 11 $Fe(0H)_2(s) = [Fe(0H)^{1/2} + 20H^ 668 \times 10^{-3.2}$ Computer 12 $Fe(0H)_2(s) + 0H^- = [Fe(0H)_3](d^2)$ $2 \cdot 9 \times 10^{-1}$ [21] 15 $Fe(0H)_2(s) + 0H^- = [Fe(0H)_4]^+$ -10^{-8} [13] 16 $Fe^{-2} + CI^- = [Fe(C]_2]^ -2 \cdot 3$ [40] 17 $Fe^{-2} + CI^- = [Fe(C]_2]^+$ -30 [40] 18 $Fe^{-2} + CI^- = $	8	$FeS(s) + OH^{-} = (Fa(OH))^{+} + S^{-2}$	3 ×10-12	Computed
10a $H_2 S(2q) = H^2 + HS^2$ 1 × 10 ⁻⁷ [39] 10b $HS^2 = H^2 + S^2$ 1 ·3 × 10 ⁻⁷³ [39] 10b $HS^2 = H^2 + S^2$ 1 ·3 × 10 ⁻⁷³ [39] 11 Fe (1 H) Solubility 1 ·3 × 10 ⁻⁷³ [39] 12 Fe (0 H)_2 (S) = Fe ⁺⁵ + 30 H ⁻⁷ ~10 ⁻³⁴ Compute 12 Fe (0 H)_2 (S) = [Fe (0 H)]^2 + 20 H ⁻¹ 66 × 10 ⁻³ + 2 Compute 14 Fe (0 H)_3 (S) + 0 H = [Fe (0 H)_3](d)^2) 2 ·9 × 10 ⁻¹ [2] Estimate 15 Fe (0 H)_3 (S) + 0 H = [Fe (0 H)_4] ~10 ⁻⁶ Estimate 16 Fe ⁺² + vCl ⁻ = [Fe Cl_2] ² - - [13] 17 Fe ⁺² + wCl ⁻ = [Fe Cl_3] ⁴ ~2 ⁻³ [13] 18 Fe ⁺² + wCl ⁻ = [Fe Cl_3] ² - - - [13] 19 [Fe cl] ⁺² + 4Cl ⁻ = [Fe Cl_3] ⁴ - - 1 ·5 × 10 [40] 19 [Fe cl] ⁺² + 4Cl ⁻ = [Fe (SO_4]] ⁺ - 1 ·5 × 10 [41] 20 Fe ⁺² + H ⁻¹ = [Fe (O H)] ¹ + H ⁺ - 5 ·8 ·10 ⁻³ [43] 21 Fe ⁺² + H ⁻¹ = [Fe (O H)] ¹ + H ⁺ <t< td=""><td>9</td><td>FeS(s) +30H T = [Fe(OH)2] + 5-2</td><td>6·2×10* 2</td><td>Computed</td></t<>	9	FeS(s) +30H T = [Fe(OH)2] + 5-2	6·2×10* 2	Computed
10b $H S^{-} = H^{+} + S^{-2}$ 1:3 × 10 ⁻¹³ [39] 11 Fe (I H) Solubility [39] 11 Fe (O H)_{5}(S) = Fe ⁺³ + 30 H ⁻ ~10 ⁻³⁴ 12 Fe (O H)_{5}(S) = [Fe(OH)]^{+} + 0H^{-} 1.7 × 10 ⁻²⁶ Compute 13 Fe (O H)_{5}(S) = [Fe(OH)]^{+2} + 20H^{-} 6.6 × 10 ⁻³² Compute 14 Fe (O H)_{5}(S) + 0H^{-} = [Fe(O H)_{4}]^{-} ~10 ⁻³⁴ [2] 15 Fe (O H)_{3}(S) + 0H^{-} = [Fe(O H)_{4}]^{-} ~10 ⁻³⁴ [2] 15 Fe (O H)_{3}(S) + 0H^{-} = [Fe(O H)_{4}]^{-} ~10 ⁻³ [2] 16 $Fe^{+2} + uC^{1-} = [FeC_{1}]^{2-}$ ~10 ⁻³ [4] 17 Fe ⁺² + uC^{1-} = [FeC_{1}]^{2-} ~10 ⁻³ [40] 18 Fe ⁺² + uC^{1-} = [FeC_{1}]^{2-} ~30 [40] 19 [Fe ⁺² + uC^{1-} = [FeC_{1}]^{2-} .30 [40] 20 Fe ⁺³ + Cl ⁻ = [FeC_{1}]^{2} + 1 .30 [40] 21 Fe ⁺² + HC 0 ⁻ = [Fe(S_{0}])^{+} + 1 1.5 × 10 [41] 22 Fe ⁺¹ + H ₂ 0 - [Fe(O H)]^{1+} + H^{+} 5 * 10 ⁻³ [43] 23 Fe ⁺² + H ₂ 0 - [Fe(O H)]_{2}(S) +	103	H25(20)= H++H5-	1 × 10- 7	[39]
Fe {1 H} Solubility $\sim 10^{-34}$ 11 Fe {0 H}_{2} {5} = Fe^{+5} + 30 H^{-1} $\sim 10^{-34}$ 12 Fe {0 H}_{2} {5} = [Fe {0 H}]^{+} + 0H^{-1} $1 \cdot 7x \ 10^{-2} 26$ Compute 13 Fe {0 H}_{2} {5} = [Fe {0 H}]^{+} + 0H^{-1} $1 \cdot 7x \ 10^{-2} 26$ Compute 14 Fe {0 H}_{2} {5} = [Fe {0 H}]^{-1} + 20H^{-1} $1 \cdot 7x \ 10^{-2} 26$ Compute 14 Fe {0 H}_{2} {5} = [Fe {0 H}]^{-1} + 20H^{-1} $2 \cdot 9x \ 10^{-1}$ [2] 15 Fe {0 H}_{2} {5} + 0H^{-1} = [Fe (0 H)_{4}]^{-1} $\sim 10^{-8}$ Estimate 16 $Fe^{+2} + x \ 1^{-1} = [Fe \ Cl_{2}]^{2-}$ $= 10^{-8}$ [13] 18 $Fe^{+2} + x \ Cl^{-1} = [Fe \ Cl_{2}]^{2-}$ $= 30$ [40] 19 $[Fe \ Cl_{2}^{+2} + x \ Cl^{-1} = [Fe \ Cl_{2}]^{2-}$ $= 30$ [40] 20 $Fe^{+2} + Cl^{-1} = [Fe \ Cl_{2}]^{2-}$ $= 30$ [40] 21 $Fe^{+2} + Cl^{-1} = [Fe \ Cl_{2}]^{2-}$ $= 30$ [40] 22 $Fe^{+2} + HC \ 0_{4}^{-2} = [Fe \ Cl_{4}]^{+}$ $1^{-5} x \ 10$ [41] 23 $Fe^{+2} + HC \ 0_{4}^{-2} = [Fe \ (0 H)_{2}]^{+} + H^{+}$ $5 \cdot 8 \ 10^{-3}$ [43] 24	106	H S" = H" +S""	1-3 × 10-13	[39]
11 $FeIOH_{2}ISI = Fe^{+5} + 30 H^{-1}$ $\sim 10^{-34}$ 12 $FeIOH_{2}ISI = Fe(OH) ^{2} + 0H^{-1}$ 1.7×10^{-26} Compute 13 $FeIOH_{2}ISI = Fe(OH) ^{2} + 20H^{-1}$ 1.7×10^{-26} Compute 14 $FeIOH_{2}ISI = Fe(OH)_{3} (d)^{2}I$ 2.9×10^{-1} (21) 15 $Fe(OH)_{3}(S) + OH^{-1} = Fe(OH)_{4}]^{-1}$ $\sim 10^{-8}$ Estimate Complex Formation 16 $Fe^{+2} + wC1^{-1} = FeCI_{2} ^{2} - 1$ $\sim 10^{-8}$ [13] Te^{+2} + wC1^{-1} = FeCI_{2} ^{2} - 1 Te^{+2} + WC0^{-1} = FeCI_{2} ^{2} - 1 Te^{+2} + WC0^{-2} = FeCI_{2} ^{2} + 1 Te^{+2} + WC0^{-2} = Fe(OH_{2} ^{2} + 1 + 1) Te^{+2} + WC0^{-2} = Fe(OH_{2} ^{2} + 1 + 1) Te^{+2} + HC0^{-2} = Fe(OH_{2} ^{2} + 1 + 1) Te^{+2} + HC0^{-2} = Fe(OH_{2}		Fe(1 H) Solubility	-	
12 Fe(0) H_2(s) = [Fe(0H)]^+ + 0H^- f 1.7x 10^- 26 Compute 13 Fe(0) H_2(s) = [Fe(0H)]^+ + 0H^- f 1.7x 10^- 26 Compute 14 Fe(0) H_2(s) = [Fe(0H)]^1/2 + 20H^- f 1.7x 10^- 26 Compute 14 Fe(0) H_2(s) = [Fe(0H)]^1/2 + 20H^- f 2.9x 10^{-1} [2] 15 Fe(0) H_2(s) + 0H^- = [Fe(0)H_3](d)^2) 2.9x 10^{-1} [2] 15 Fe(0) H_2(s) + 0H^- = [Fe(0)H_3]^- f ~10^{-8} Estimate 16 Fe * 2 + cl^- = [Fe(c]_1^2 - f^- f^- f^- f^- f^- f^- f^- f^- f^- f	11	FalDHLKI- Fa+8+30 H-	0.10-34	1000
13 Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + 2OH - Fe (OH) (13) = (Fe (OH)) (12 + Fe (OH) (13) = (Fe (C)) (12 + Fe (12 + x (C) = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (C))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + Fe (C)) (12 + C(- = (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + H) (12 + H) (12 + Fe (OH)) (12 + H) (12 + H) (12 + Fe (OH)) (12 + H) (12 + H) (12 + Fe (OH)) (12 + H) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + H) (12 + Fe (OH)) (12 + (Fe (OH))) (12 + (Fe	12	Fe(0Hb(c) = (Fe(0H) 1t+ 0Hr	1.7 - 10 - 26	Computed
14 Fe (0 Hb (S) = [fe (0 H)_1](d)^2) 2.9 \times 10^{-7} [2] 15 Fe (0 Hb (S) = (Fe (0 H)_1)(d)^2) 2.9 \times 10^{-7} [2] 15 Fe (0 Hb (S) = (Fe (0 H)_4)^- $\sim 10^{-8}$ Estimate 16 $Fe^{+2} + G^{1-} = [Fe Cl_2]^2 -$ [13] [13] 17 $Fe^{+2} + G^{1-} = [Fe Cl_2]^2 -$ [13] [14] 18 $Fe^{+2} + G^{1-} = [Fe Cl_2]^2 -$ [13] [14] 19 $[Fe Cl_1]^{+2} + Cl^{-} = [Fe Cl_2]^{+2} -$ [14] [15] 20 $Fe^{+1} + Cl^{-} = [Fe Cl_2]^{+2} -$ [16] [16] 21 $Fe^{+2} + G^{1-} = [Fe Cl_2]^{+1} -$ [16] [16] 21 $Fe^{+2} + G^{1-} = [Fe (Cl_2]^{+1} -$ [16] [16] 21 $Fe^{+2} + G^{1-} = [Fe (S0_4)]^{+} +$ 1.5×10 [14] 22 $Fe^{+2} + Hc 0_4^{-2} = [Fe (OH)_2]^{+} + H^+$ $5 = 10^{-3}$ [11] 22 $Fe^{+2} + H_2 0 - [Fe (O H)_1]^{+} + H^+$ $5 = 10^{-3}$ [13] 23 $Fe^{+1} + H_2 0 = [Fe (O H)_2]^{+} + H^+$ $5 \cdot 8$ Computed 24 $Fe^{-1} + H_2 0 = [Fe (O H)_2]^{+} + H^+$ $5 \cdot 8$ Computed	13	Fe(0H)(s) = (Fe(0H))(2 + 20H)	6.8 × 10- 22	Computed
15 $Fe \{0H\}_2(S\} + 0H^- = Fe(0H)_4]^ \sim 10^{-8}$ Estimate 15 $Fe \{0H\}_2(S\} + 0H^- = Fe(0H)_4]^ \sim 10^{-8}$ Estimate 16 $Fe^{+2} + C1^- = FeC _1^{+2} - 1^{-1} + FeC _2^{-1} - 1^{-1} + FeC _1^{+2} - 1^{$	14	Fe (0 Hb (S) = (Fe (0H), 7(d)2)	2.9 × 10-1	121
10 $12(10)^{1}$ (10) $112(10)^{1}$ (10) $112(10)^{1}$ (10) 111110^{1} 11 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ $-2\cdot3$ 161 11 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -30 1401 12 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -30 1401 13 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -30 1401 140 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -30 1401 15 $Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -30 1401 19 $[Fe^{+2} + G1^{-} = [FeC1]^{+2}$ -50 1401 19 $Fe^{+2} + G1^{-} = [Fe(0)^{+}]^{+}$ 4.5 1401 20 $Fe^{+2} + G1^{-} = [Fe(S0_{4}]]^{+}$ $1.5x + 10$ 1411 21 $Fe^{+2} + HC_{0}^{-2} = [Fe(OH)]^{+} + H^{+}$ $5 = 10^{-3}$ 1421 22 $Fe^{+2} + HC_{0}^{-2} = [Fe(OH)]^{+} + H^{+}$ $5 = 10^{-3}$ 1431 23 $Fe^{+1} + H_{2}^{0} = [Fe(OH)]^{+} + H^{+}$ $5 \cdot 6$ Computed 24 $Fe^{+2} + H_{2}^{0} = Fe(OH)_{2}(s) + H^{+}$ $5 \cdot 6$ Computed 25 $[Fe(OH)]^{+} + H_{2}^{-} = [Fe_{1}(OH)_{2}]^{+} + H^{+}$ $5 \cdot 6$ <t< td=""><td>15</td><td>Fe(0H).(S) + 0H - = 1 Fe(0H). 3-</td><td>~10-8</td><td>Felimated</td></t<>	15	Fe(0H).(S) + 0H - = 1 Fe(0H). 3-	~10-8	Felimated
Complex Formation -2·3 [8] 16 $F_e^{+2} + Cl^{-1} = [FeCl]^{2}$ -2·3 [13] 17 $Fe^{+2} + wcl^{-1} = [FeCl]^{2}$ -113 [13] 18 $Fe^{+2} + wcl^{-1} = [FeCl]^{2}$ -113 [13] 19 $[Fe^{+2} + Cl^{-1} = [FeCl]^{+2}$ -103 [40] 20 $Fe^{+2} + Cl^{-1} = [FeCl]^{+1}$ -105 [40] 20 $Fe^{+3} + Cl^{-1} = [FeCl]^{+1}$ -105 [41] 21 $Fe^{+3} + Sl^{-1} = [Fe(SO_4)]^{+1} +$ 1.5 x 10 [41] 22 $Fe^{+2} + HCO_4^{-2} = [Fe(OH_4)]^{+1} + H^{+1} +$ 5 = 10^{-3} [42] 22 $Fe^{+2} + H_2O - [Fe(OH_1)]^{+1} + H^{+1} +$ 5 = 10^{-3} [43] 23 $Fe^{+2} + H_2O - [Fe(OH_2)]^{+1} + H^{+1} +$ 5 = 10^{-3} [43] 24 $Fe^{-4} + H_2O = [Fe(OH_2)]^{+2} + H^{+1} +$ 5 = 6 Computed 24 $Fe^{-4} + H_2O = [Fe(OH_2)]^{+2} + H^{+1} +$ 5 = 6 Computed 25 [Fe(OH_2)]^{+2} + H_2O = Fe(OH_2)]^{+2} + H^{+1} + 5 = 6 Computed 24 Fe^{-1} + H_2O = [Fe_1OH_2]^{+4} +				Commuteo
16 $F_e^{+2} + C1^- = [F_eC1]^4$ ~2·3 [8] 17 $Fe^{+2} + wC1^- = [FeC1]^{2-}$ 13] 18 $Fe^{+2} + C1^- = [FeC1]^{2-}$ 13] 19 $[FeC1]^{+2} + C1^- = [FeC1]^{+2}$ 30 [40] 19 $[FeC1]^{+2} + C1^- = [FeC1]^{+}$ 4.5 [40] 20 $Fe^{+3} + C1^- = [FeC1]^{+-}$ 1.5x 10 [41] 21 $Fe^{+2} + BC0_4^{-2} = [Fe(D_4)]^+$ 1.5x 10 [41] 22 $Fe^{+2} + BC0_4^{-2} = [Fe(D_4)]^+$ 4.5x 10 [42] Acidity 4.5x 10 [43] 1.42 23 $Fe^{+2} + H_2 0 - [Fe(O_4)]^+ + H^+$ 5 = 10^{-3} [13] 24 $Fe^{+2} + H_2 0 - [Fe(O_4)]^+ + H^+$ 5.8 10^{-3} [43] 25 $[Fe(O_4)]^{+2} + H_2 0 = [Fe(O_4)]_2]^+ + H^+$ 5.8 Computed 26 $[Fe(O_4)]_2]^{+2} + H_2 0 = Fe(O_4)_2[s) + H^+$ 5.8 Computed 26 $[Fe(O_4)]_2]^{+2} + H_2 0 = Fe(O_4)_2[s) + H^+$ 5.8 Computed 27 $2[Fe(O_4)]_1^{+2} = [Fe_1(O_4)_2]^{+4}$ 30 [43] 1.43 1.43 26 $Fe_1(O_4)_2]^{+2} = [Fe_1(O_4)_2]^{+4}$		Complex Formation	-	
17 $Fe^{+2} + wC^{1-} = [FeCl_2]^2 - [FeCl_2]^2 -$	16	Fe *2+ C1- = [FeC1]+ -	~2.3	[8]
18 $Fe^{+2} + CI^- = [FeCI]^{+2}$. 30 [40] 19 $[FeC1]^{+2} + CI^- = [FeCI]^{+}$. 4.5 [40] 20 $Fe^{+2} + CI^- = [FeCI]^{+}$. 4.5 [40] 20 $Fe^{+2} + CI^- = [FeCI]^{+}$. 4.5 [40] 21 $Fe^{+2} + SO_4^- = [Fe(SO_4)]^+$ 1.5x10 [41] 22 $Fe^{+2} + HCO_4^{-2} = [Fe(HCO_4)]^+$ 4.5x10 [42] Acidity . 4.5x10 [42] 23 $Fe^{+1} + H_2O - [Fe(OH)]^+ + H^+$ 5 = 10^{-3} [1] 24 $Fe^{+2} + H_2O - [Fe(OH)]^+ + H^+$ 5 = 10^{-3} [43] 25 $[Fe(OH)_2]^{+2} + H_2O = [Fe(OH)_2]^+ + H^+$ 5 -8 Computed 26 $[Fe(OH)_2]^{+2} + H_2O = Fe(OH)_2[s) + H^+$ 5 -8 Computed 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 28 $Po(ymerization)$ 14 30 [43] 29 $23 + DH = Fe_1(DH)_2 + 4$ 30 [43]	17	$Fe^{+2} + uC1^{-} = (FeCl_2)^{2}$	-	[13]
19 $ Fe C1 ^{+2} + C1^{-} = Fe C1 ^{+}$ 4.5 [40] 20 $Fe^{+3} + C1^{-} = FeC1 ^{+}$ 1.5x 10 [41] 21 $Fe^{+2} + SO_4^{-} = Fe(SO_4) ^{+}$ 1.5x 10 [41] 22 $Fe^{+2} + HCO_4^{-2} = Fe(IHCO_4) ^{+}$ 4.5x 10 [42] Acidity 4.5x 10 [42] Acidity 5 = 10^{-3} [1] 24 $Fe^{+3} + H_2O = Fe(OH) ^{+} + H^{+}$ 6.8x 10^{-5} [43] 25 $[Fe(OH) f^{+2} + H_2O = Fe(OH)_2 ^{+} + H^{+}$ 2.6x 10^{-3} [43] 26 $[Fe(OH) f^{+2} + H_2O = Fe(OH)_2 ^{+} + H^{+}$ 5.8 Computed 26 $[Fe(OH)_2]^{+2} + H_2O = Fe(OH)_2 ^{+} + H^{+}$ 5.8 Computed 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43]	18	Fe +2+CI- = [Fe CI]+2	30	[40]
20 Fe^{+3} ; $CI^{-} = [FeC] I^{+} \times$ [40] 21 Fe^{+3} ; $SO_4^{-} = [Fe(SO_4)]^+$ 1.5 x 10 [41] 22 Fe^{+2} ; $HCO_4^{-2} = [Fe(BO_4)]^+$ 4.5 x 10 [42] Acidity 4.5 x 10 [43] 23 Fe^{+3} ; $H_2O = [Fe(OH)]^+ + H^+$ 5 = 10^{-3} [1] 24 Fe^{+3} ; $H_2O = Fe(OH)^{+3}$; H^+ 6.8 = 10^{-5} [43] 24 Fe^{+4} ; $H_2O = Fe(OH)^{+3}$; H^+ 6.8 = 10^{-5} [43] 25 $[Fe(OH)f^{-3}$; $H_2O = [Fe(OH)_2]^+ + H^+$ 2.6 × 10^{-3} [43] 26 $[Fe(OH)_2]^{+4}$; $H_2O = Fe(OH)_2(s) + H^+$ 5.8 Computed 26 $Potymerization$ 7 $2[Fe(OH)]^{+2} = [Fe_1(OH)_3]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_3]^{+4}$ 30 [43]	19	$[FeC1]^{+2} + CI^{-} = [FeCI_{+}]^{+}$	4.5	1401
21 $Fe^{+2} + SO_4^- = [Fe(SO_4)]^+$ 1.5 x 10 [41] 22 $Fe^{+2} + HCO_4^{-2} = [Fe(BCO_4)]^+$ 4.5 x 10 [42] Acidity 4.5 x 10 [42] 23 $Fe^{+2} + H_2O - [Fe(OH)]^+ + H^+$ 5 = 10^{-3} [1] 24 $Fe^{+2} + H_2O = Fe(OH)^{+2} + H^+$ 6.8 ± 10^{-5} [43] 25 [Fe(OH)]^{1/2} + H_2O = [Fe(OH)_2]^+ + H^+ 2.6 ± 10^{-3} [43] 26 [Fe(OH)]_2]^{+2} + H_2O = Fe(OH)_2[s) + H^+ 5.8 Computed 26 [Fe(OH)]_2]^{+2} + H_2O = Fe(OH)_2[s) + H^+ 5.8 Computed 27 2[Fe(OH)] + 2 = [Fe_1(OH)_2]^{+4} 30 [43] 27 2[Fe(OH)] + 2 = [Fe_1(OH)_2]^{+4} 30 [43]	20	Fet1 CI- = [FeCI]-*	-	[40]
22 $Fe^{+2} + HCO_4^{-2} = [Fe[HCO_4]]^+$ 45 × 10 [42] Acidity 4.5 × 10 [42] 23 $Fe^{+2} + H_2O - [Fe(OH)]^+ + H^+$ 5 = 10^{-3} [1] 24 $Fe^{+2} + H_2O = Fe(OH)^{+2} + H^+$ 6 * 8 ± 10^{-3} [43] 25 $[Fe(OH)f^{+2} + H_2O = [Fe(OH)_2]^+ + H^+$ 2 * 6 × 10^{-3} [43] 26 $[Fe(OH)_2]^{+2} + H_2O = Fe(OH)_2[s) + H^+$ 5 * 8 Computed 26 $[Fe(OH)_2]^{+2} + H_2O = Fe(OH)_2[s) + H^+$ 5 * 8 Computed 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43]	21	Fe+2 + SO = Fe(SO_1)+	1-5×10	(41)
Acidity Acidity $Fe^{+1} + H_2O - [Fe(OH)]^2 + H^2$ $Fe^{+2} + H_2O = Fe(OH)^{+2} + H^+$ $Fe^{+2} + H_2O = Fe(OH)^{+2} + H^+$ $Fe^{+2} + H_2O = Fe(OH)^{-1} + H^+$ $Fe^{+2} + H^+ = Fe^{-1} + H^+$	22	$Fe^{+2} + HCO_4^{-2} = [Fe(HCO_4)]^+$	45×10	[42]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Acidity		
24 $Fe^{-4} + H_0 O = Fe(OH)^{+2} + M^+$ $6 \cdot 8 \times 10^{-5}$ [43] 25 $[Fe(OH)(f^2 + H_2 O) = [Fe(OH)_2]^+ + H^+$ $2 \cdot 6 \times 10^{-5}$ [43] 26 $[Fe(OH)_2]^{+2} + H_2 O = Fe(OH)_2]^+ + H^+$ $2 \cdot 6 \times 10^{-5}$ [43] 26 $[Fe(OH)_2]^{+2} + H_2 O = Fe(OH)_2[s) + H^+$ $5 \cdot 8$ Computed Polymerization 2 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43] 27 $2[Fe(OH)]^{+2} = [Fe_1(OH)_2]^{+4}$ 30 [43]	22	E++1, 4 0 - 15-10411" + 4+	5 - 10-3	[1]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/		6-01-0-3	1/21
$\begin{array}{c c} Fe(O H)_{2} ^{+2} + H_{2}O = Fe(O H)_{2}(s) + H^{+} & 5 \cdot 8 & Computed \\ \hline Polymerization \\ 27 & 2[Fe(O H)]^{+2} = [Fe_{1}(O H)_{2}]^{+4} & 30 & [43] \\ \hline Polymerization & 10 & 10 & 10 & 10 \\ \hline Polymerization & 10 & 10 & 10 & 10 & 10 \\ \hline Polymerization & 10 & 10 & 10 & 10 & 10 & 10 \\ \hline Polymerization & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ \hline Polymerization & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 1$		EA(0H)(*2+14-0 = EA(0H) 1++ H+	2.6 × 10-3	[43]
Polymerization 30 [43] 27 2[Fe(0H)]+ ² = [Fe_1(0H)_1]+4 30 [43]	6	$(E_{0}(0, H)) = (F_{0}(0, H)$	5.8	Computed
Polymerization 27 $2[Fe(O H)] + 2 = [Fe_1(O H)_2] + 4$ 30 [43] 10 $0 = 12^{-12}$ $0 = 12^{-12}$ 100 [43]		Treto HAT + HTO - LETO HATSIA H		
$\frac{1}{27} \frac{2[Fe(OH)] + 2 \pm [Fe_1(OH)_1] + 4}{27} 30 $ (43)		Potymerization		
	27	2[Fe(OH)]+2 = [Fe, [OH),]+4	30	[43]
(0 [2Fe T2H1U FIFe1[UH]1] T2H 16"10 [43]	28	$2Fe^{+3}+2H_{1}0 = [Fe_{1}(0H)_{2}]^{++}+2H^{+}$	1'4 × 10"	[43]
	d	etermined equilibrium constants, wh	ich differ slightly	among
determined equilibrium constants, which differ slightly among	e	ach other. Other values may be f	ound in [8]	
determined equilibrium constants, which differ slightly among each other. Other values may be found in [8]) C	omputed values have been obtained	from other equilibrium le K	rium
determined equilibrium constants, which differ slightly among each other- Other values may be found in [8] Computed values have been obtained from other equilibrium constant given in this Table. For example, Kee	fr	om the equilibrium constants of	reactions 11 an	d 24.
determined equilibrium constants, which differ slightly among each other. Other values may be found in [8]) Computed values have been obtained from other equilibrium constant given in this Table. For example, K12 can be compute from the equilibrium constants of reactions 11 and 24.	3) F.	e (OH)) (d) is dissolved motoular to	undissociated 1 fer	ric
 determined equilibrium constants, which differ slightly among each other. Other values may be found in [8]) Computed values have been obtained from other equilibrium constant given in this Table. For example, K12 can be computed from the equilibrium constants of reactions 11 and 24. 3) [Fe (0 H) 1 (d) is dissolved molecular lundissociated 1 ferric. 			indiadoutiere et l'el	
 determined equilibrium constants, which differ slightly among each other. Other values may be tound in [8]) Computed values have been obtained from other equilibrium constant given in this Table. For example, K12 can be computed from the equilibrium constants of reactions 11 and 24. 3) [Fe (OH)] (d) is dissolved molecular (undissociated) ferric bydrogude. 	113	JOT WALLE.		
determined equilibrium constants, which differ slightly among each other. Other values may be found in [8]) Computed values have been obtained from other equilibrium constant given in this Table. For example, K12 can be compute from the equilibrium constants of reactions 11 and 24. 3)[Fe(OH)] (d) is dissolved molcular (undissociated) ferric hydroxide.				

Using these equilibria equations and Equation 2.2,

$$H_2O \rightleftharpoons H^+ + OH^-$$
 (2.2)
where $Kw = [OH^-] [H^+]$

the activities of the different Fe(II) compounds can be plotted as a function of pH by taking the logarithms of Equation 2.1 and the equilibria equations in Table 2.2. Figure 2.1.2 shows the solubility of $Fe(OH)_2(S)$ in waters devoid of any carbonate or sulphur species (Stumm and Lee, 1960).

Fig. 2.1.1 Solubility of Fc(OII)₂ in a non-carbonate, non-sulphide solution (Stumm and Lee, 1960)

The solubility of Fc(II) cannot exceed the limits of the boundary defined by the shaded area in Figure 2.1.1. Figure 2.1.1 however, will not give a correct picture of the conditions in anaerobic groundwater where there are carbonate species and often sulphur compounds. Fe(II) reacts with carbonates and sulphides and form new compounds.

In natural water, where only Fe(II) and carbonates are present the equilibria equations 4, 5 and 6 in Table 2.1 will take place in addition to the equilibria equations 1, 2 and 3. Figure 2.1.2 shows the solubility of Fe(II) in a carbonate containing waters (Stumm and Lee, 1960).

Fig. 2.1.2 Solubility of Fe(II) in a carbonate containing water (alkalinity = 2x10⁺³ Eq/I) (Stumm and Lee, 1960)

From Figure 2.1.2, it can be seen that at pH = 10.5, FeCO₃ determines the solubility of Fe(II) while Fe(OH)₂ determines the solubility of Fe(II) for pH < 10.5 (Snoeyink and Jenkins, 1980). The other principal equilibria associated with Fe(II) in groundwater are sulphur compounds and the formation of complex ions and chelation (Robinson and Dixon, 1968). Equilibria equations 7 to 10 in Table 2.1 will occur between Fe(II) and species of sulphide system if available in groundwater. Figure 2.1.3 shows the solubility of Fe(II) in a carbonate and sulphide bearing water (Stumm and Lee, 1960).

Fig. 2.1.3 Solubility of Fe(II) in a carbonate and sulphide bearing water (Alkalinity = $2x10^{-3}$ Eq/1; S(II) 10^{-4} mol/l) (Stumm and Lee, 1960)

2.1.2 Ferric Iron (Fc(III)) reactions

On acration or by the addition of oxidising agents Iron Fe(II) oxidizes to Fe(III) form and the Fe(III) form an equilibria with H_2O . The most common species in the Fe(II) system is Fe(OH)₃(S) which has a low solubility over pH range of 6 to 9, the most common cases in natural waters. The reactions which Fe(III) forms with H_2O are shown in equilibria equations 11 to 15 in Table 2.1. The solubility curves of Fe(III) in a non-carbonate, non-sulphide solutions is shown in Figure 2.1.4 (Stumm and Lee, 1960).

Fig. 2.1.4 Solubility of Fe(11) in a non-carbonate, non-sulphide solution (Stumm and Lee, 1960)

The low solubility of Fe(OH)₃ over the wide range of pH is an advantage in conventional water treatment plants, where the precipitated Fe(OH)₃ may be removed by filtration and/or sedimentation. However, Fe(III) can form complex compounds with hydroxides, orthophosphate, many organic bases etc causing iron to remain in solution. The extent of complex formation is pH dependent. Within pH range of natural waters, soluble or insoluble mixed Fe(III) complexes that may contain OH⁻ ions as well as other ligands can be formed (Stumm and Morgan, 1970). Equilibria equations 16 to 22 in Table 2.1 show some examples of complex formation. The complex formations bring higher concentration of dissolved Fe(III) than indicated in Figure 2.1.4.

The incorporation of coordinating anions into basic precipitates not only alters the solubility relations but also strongly affects the colloid chemical properties of the dispersed phase. The complex formation will strengthen the colloid form, instead of combining as larger particles. Hence Figure 2.1.4 does not precisely show the condition in natural waters but it gives a hint of the solubilities at different pH values.

2.1.3 Oxidation of ferrous (Fe(II)) to ferric (Fe(III)) iron

Iron exists in natural groundwater in the soluble Fe(II) state where the water is devoid of oxygen. To remove this form of iron, Fe(II) must be oxidized to Fe(III) form. This phenomenon occurs by a redox process where the oxidizing agents can be oxygen (O_2) , permanganate (Mn0₄), chlorine (Cl₂) or equivalent. Stoichiometrically, 1 mg/l of oxygen will oxidise 7 mg/l of Fe(II) (Engelbrecht et al., 1967). The reaction is as follows

$$V_4 O_2 + H^+ + e^- \implies V_2 H_2 O$$
 reduction (2.2)

 $Fe (II) \longrightarrow Fe(III) + e^{-1} \qquad Oxidation.....(2.3)$

 $2.2+2.3 = \frac{1}{4}O_2 + Fe(II) + H^+ \implies Fe(III) + \frac{1}{2}H_2O$ redox reaction ... (2.4)

As can be seen from the above reactions, oxygen is reduced while Fe(II) is oxidized. If Equation (2.4) is considered as reduction

$$Fe(III) \rightleftharpoons Fe(II) - e^{-1}$$
 (2.5)

which by mass action law gives

 $[Fe(II)] [e^-] = K \qquad (2.6)$ [Fe(III)]

which is equal to

$$-\log [e^{\cdot}] = \log K + \log [Fe(III)] \dots (2.7)$$
[Fe(II)]

and Equation (2.7) can also be written as

 $Pe = Pe^{0} + \log \left[\frac{Fe(III)}{Fe(II)}\right] \dots (2.8)$ [Fe(II)]

where pe = the electron activity and is defined as -log [e-]

 pe° = the standard electron activity is equal to log K.

In order to relate p to log K, K is defined in terms of the equilibrium constant of the reduction reaction (Stumm and Morgan, 1970). Pe is a measure of the oxidizing or reducing intensity of a solution, i.e how strong the solution is to oxidize or reduce other species. For instance, large positive values of pe (low electron activity) represent strongly oxidizing conditions and small or negative values (high electron activity) correspond to strongly reducing condition (Stumm and Morgan, 1970).

 Pe° is the electron activity at [(Fe(II)] = [(Fe(III)] or generally when the activity of the oxidant and the reductant are equal. Therefore, it can be said that Pe° is a comparative expression of the redox properties of the species. However, many redox equilibria are pH dependent as can be seen from the half reaction Equation 2.9 (reduction reaction).

$$FeOH^{2+} + H^{+} + e^{-} \implies Fe^{2+} + H_2O$$
(2.9)

Pe is calculated as

$$Pe = Pe^{\circ} + \log \frac{[FeOH^{2+}][H^{+}]}{[Fe^{2+}]} \dots (2.10)$$

a human to strait < 7. Any species and Appl in me

Equation 2.10 can be simplified as

$$Pe = Pe^{\circ} - pH + \log \frac{[FeOH^{2+}]}{[Fe^{2+}]}$$
(2.11)

 Pe° will not necessarily give a correct expression of the oxidizing or reducing intensities of the single species for most of the reactions in natural waters carried out at pH values around 7. Therefore, a constant Pe° (w) analogous to Pe° is introduced in which (H⁺) and (OH⁻) in the redox equilibrium equations are assigned their activities in neutral water. Values for Pe° (w) for 25° C thus apply to unit activity of oxidant and reductant at pH = 7 (Stumm and Morgan, 1970). $Pe^{\circ}(w) = P^{\circ} + nH \log kw$ (2.12)

where nH = the number of the moles of the protons exchanged per mole of electrons. nH = -1 at pH = 7 in Equation (2.12)

 Pe° (w) of different species can be compared directly and permits grading of different species in order of their oxidizing intensity at pH = 7. Any species will tend to oxidize equimolar concentration of any other species having a lower Pe^o (w) value. Figure

Fig. 2.1.5 Comparison of Pe^o (w) of different species. Example; Fe³⁺ can in principle oxidize all the reduced species at left i.e Hs. Fe²⁺ can in principle reduce all oxidized species at right, i.e CH₃OH, Mn⁴⁺, NO₃⁻, 0₂ (Herremöes et al., 1980/cited by Viegand, 1984)

The quantity of Pe[°] (w) is a relative expression for the electron activity when all species other than the electrons are at unit activity. The electron activity can also be expressed in redox potential E_h . Pe is related to E_h by

$$Pe = \frac{1}{2,3RT} E_{h}$$
 (2.13)

Where F = Faraday's constant

R = gas constant

T = temperature is Kelvin scale

By application of the redox potential Equation (2.8) can be written as

$$E_{h} = E_{h}^{\circ} + \underbrace{2.3RT}_{F} \quad \log [\underline{Fe(III)}] \qquad (2.14)$$

 E_h can be measured in a well defined redox reaction in equilibria and together within pH give valuable information about the condition of the system. However, difficulties might occur with attempts to measure oxidation-reduction potentials in natural waters, where many redox systems are involved and often the systems are out of equilibria. In this kind of natural waters the measurement of the redox potential must be done with care (Stumm and Morgan, 1970).

A theoretical model useful in illustrating the various redox equilibria for iron is the E_h pH diagram also known as the solubility-field diagram, which is computed from chemical equilibria data (Ghosh et al., 1966). In Table 2.2 the redox reactions of iron in a carbonate water are shown together with the activity equations. The activity equations in Table 2.2 can for a fixed pH be plotted in an activity diagram as shown in Figure 2.1.6 (Stumm an Morgan, 1970).

Fig. 2.1.6

Activity diagram for a carbonate and sulphide bearing water. (pII = 7; $CT = 10^{-3}M$, $SO_4^{-2} = 10^{-3}M$) (Stumm and Morgan, 1970)

For a fixed Fe^{2+} activity the equation in Table 2.2 can be plotted in an E_h -pH diagram also known as stability field diagram. Care must be taken in the application of equilibrium data and E_h - pH diagrams for the interpretation of the behaviour of materials like in natural waters due to comments given earlier about E_h measurement. Figure 2.1.7 shows the E_h - pH diagram (Stumm and Lee, 1960).

Fig. 2.1.7

 E_h - pH diagram. The shaded areas show the solid Fe - species. The lines denote the points at which the activities of soluble iron is 10⁻⁵ mol/l; alkalinity = 2x10⁻³ mg/l. (Stumm and Lee, 1960).

Lf.F. E_k, pill for millirent with the advaluable how to a command how requires, CE = 1.0, 112 ¹M (three, 1994).
E_h - pH diagram can be made for different activities of Fe²⁺ but the purpose of the diagram is primarily to give a general view of the adjacent relations between iron species. Figure 2.1.8 shows E_h - pH diagram for activities of soluble iron in the presence of carbonate species (Hem, 1961).

Fig. 2.1.8 E_h - pH for different activities of soluble iron in a carbonate bearing water, $CT = 1.6 \times 10^{-3} M$ (Hem, 1961)

2.2 Iron removal using conventional treatment plants

Iron removal by conventional treatment involves oxidation of iron Fe(II) to iron Fe(III) which is insoluble followed by sedimentation and filtration. The oxidation process can be accomplished by the use of the following;

- (i) Aeration
- (ii) Chemical oxidation using potassium permanganate, chlorine and its compounds (Cheremisinoff et al., 1976).

Cox (1969) has indicated the most common combinations of different iron removal processes using the aeration method for different water characteristics. Chemical oxidation using chlorine, hypochlorite, chlorine dioxide and potassium permanganate is more effective than aeration especially where iron is bound to organic compounds. The high cost of chemicals and handling problems in chemical oxidation makes it unfavourable in most treatment systems where high efficiency is not desired (Cheremisinoff et al., 1976; Shrode, 1972).

2.3 Iron removal by non conventional methods.

2.3.1 Vyredox

This is an underground treatment of water for iron removal. The technique involves raising pH and redox potential (E_h) in the aquifer by injection of oxygen saturated water. This causes precipitation of iron and manganese at different redox potential zones in the aquifer owing to their different potential requirement. The principles involved in the Vyredox method of iron removal has been explained by Hallberg and Martinell (1976) and later confirmed by Techlinger et al. (1985).

The operation of Vyredox system involves injection of the oxygen saturated iron free water through injection wells around the abstraction point or through the abstraction well itself. This achieves a high degree of oxidation in the aquifer around the well. E_h and pH are kept so high that the iron is precipitated and retained in the strata. A contact time of 4 hours is allowed after which iron free water can be pumped. The supply of iron free water lasts for 2 - 4 weeks depending on the rate of pumping after which the oxygenation cycle is repeated.

conventional treatment plants

nal treatment involves oxidation of iron Fe(II) to iron followed by sedimentation and filtration. The oxidation I by the use of the following;

Aeration

Chemical oxidation using potassium permanganate, chlorine and its compounds (Cheremisinoff et al., 1976).

ne most common combinations of different iron removal n method for different water characteristics. Chemical pochlorite, chlorine dioxide and potassium permanganate on especially where iron is bound to organic compounds.

and handling problems in chemical oxidation makes it tment systems where high efficiency is not desired Shrode, 1972).

2.3 Iron removal by non conventional methods.

2.3.1 Vyredox

This is an underground treatment of water for iron removal. The technique involves raising pH and redox potential (E_h) in the aquifer by injection of oxygen saturated water. This causes precipitation of iron and manganese at different redox potential zones in the aquifer owing to their different potential requirement. The principles involved in the Vyredox method of iron removal has been explained by Hallberg and Martinell (1976) and later confirmed by Techlinger et al. (1985).

The operation of Vyredox system involves injection of the oxygen saturated iron free water through injection wells around the abstraction point or through the abstraction well itself. This achieves a high degree of oxidation in the aquifer around the well. E_h and pH are kept so high that the iron is precipitated and retained in the strata. A contact time of 4 hours is allowed after which iron free water can be pumped. The supply of iron free water lasts for 2 - 4 weeks depending on the rate of pumping after which the oxygenation cycle is repeated.

2.3.2 Overland flow

Overland flow is normally practised in waste water treatment. The technique has been utilized in iron removal with good removal efficiencies. Overland flow involves application of water containing iron over a vegetated slope where the flow facilitates oxidation of Ferrous to Ferric iron. To maximize iron removal the following conditions must be fulfilled:-

- 1. The dissolved oxygen of water must be increased.
- 2. The pH must be raised to the appropriate level.
- 3. Sedimentation of the resulting iron precipitate.

(Zirschky and Carlson, 1984)

Overland flow provides a large area through which gas transfer can occur. Therefore there is a large potential for increase in dissolved oxygen and dissolution of carbon dioxide resulting in pH elevation. Due to its shallow depth, overland flow is very effective in clarification. The vegetative cover provides additional suspended solids removal by intercepting many of settling particles.

An example of overland flow treatment for iron removal is Salo treatment plant in Finland. The following removal efficiencies have been achieved for manganese and iron.

Iron - over 97%

Manganese - 92%

Dissolved oxygen increased from 13 to 97% and carbon dioxide decreased from 62 to 13 mg/l. The pH increased from 7.2 to 7.9.

2.3.3 Contact beds

Iron oxidation occurs by catalytic oxidation on the surfaces of the bed media. Normally the bed is made of gravel on to which oxides of minerals have previously been precipitated. Pyrolusite is an example of an oxide commonly used in catalytic oxidation. The oxide provides both oxygen and a surface area for the reaction. The function of the bed depend on the catalytic action of the absorbed oxides of manganese and iron and therefore the bed should never be washed clean (Leher et al., 1980). To maintain an adequate supply of the manganese oxides coating on the bed, periodic regeneration using potassium permanganate is necessary (Leher et al., 1980).

2.3.4 Ion exchange

This method should be considered for hard waters containing iron or manganese provided that the raw water is devoid of dissolved oxygen as the process removes only soluble iron only or manganese together with calcium and magnesium (Cox, 1969). The precipitates tend to physically bind to the resin so firmly that regeneration by conventional processes is difficult. Due to this clogging problem, iron and manganese concentration should be 0.5 mg/l for each 17 mg/l of hardness up to a maximum of 10 mg/l. Hence for 10 mg/l, the maximum allowable hardness is 340 mg/l (Cox, 1969). The water should be clear and free of iron bacteria (Leher et al., 1980).

2.3.5 Diatomite filter

This filter is mainly used in turbidity removal in potable water treatment. When used for iron and manganese removal, calcined magnesite (MgO) and diatomaceous earth are fed into a rapid mixing tank where manganese (II) and iron (II) are oxidised to Mn(IV) and Fe(III) in a residence time of 5 - 10 minutes. The water is then filtered through a diatomaceous earth filter. Maintenance of the filter consists of adding new diatomaceous earth when the efficiency decreases until that time no improvement is found on further addition. This marks the end of the filter cycle. On exhaustion, the filter cake is removed and cleaning carried out before fresh media recharge (Baumann, 1971).

2.3.6 Biologically mediated iron removal

2.3.6.1 Contact filters

Both submerged and dry filters are discussed in this topic. Details of reactions involved in iron removal by dry filter were studied in advance of submerged filter but were later found to be similar in mechanism except for maturation period.

Dry contact filter

Dry filter is similar to gravity (rapid sand) filter but the filter media is not submerged in water. Removal of iron occurs by oxidation of soluble iron to iron Fe(III) by various types of iron bacteria which develop on the media surface and the precipitate is consequently filtered off (Huisman, 1977).

The principle of iron removal by dry filter was first explained as due to formation of a double ion layer around the media surface with the negative layer formed first. The electric double layer which surrounds every grain may then lose a lot of positive ions as the water trickles through the media bed. According to the rate of flow, an equilibrium is set up between the number of ions carried with the stream and those removed by the double ion layer. Thus, Fe(II) and Mn(II) will be bound more strongly than single charged ions. The higher valency ions will gradually replace the low valency ones. The reaction rate is directly proportional to the concentration of the

reacting ions. Reaction at the boundary of solid and liquid phase is higher for turbulent than for laminar flow (Kooijmans, 1955).

Later, iron removal was revealed to be more of a biological nature. Micro-organisms naturally occurring or purposely introduced in the raw water are absorbed on the filter material, where they multiply selectively using available iron and manganese. In dry filter the water is not completely saturated with oxygen, therefore there exists a favourable environment for iron and manganese bacteria (Grombach, 1985). Under conditions of low oxygen concentration, microbes that obtain their metabolic energy from the oxidation of dissolved iron and manganese to insoluble salts develop. It is notorious for clogging of borehole screens and groundwater filters (Grombach, 1985).

Due to presence of air in the filter media voids, the water velocity downward increases thereby increasing the strength of cross-currents. Hence Fe(II), Mn(II) ions and suspended particles come into contact with the filter media where the micro-organisms and catalytic surface action promotes filtration efficiency. This is the reason why dry filtration is preferred when the presence of organic matter presents problems in defferisation (Huisman, 1977).

The biological nature of iron removal by dry filter was confirmed in a pilot plant in Austria (Frischherz et al., 1985). The study revealed that the micro-organisms contained in raw water developed and occupied the void space in the filter bed within a short time after the start of the operation. Microbiological investigations lead to isolation of extracelluar polymer structures in pure culture. The micro-organisms responsible for extracelluar polymers were found to be time dependent and hence the maturation of the filter.

Manganese oxidizing bacteria were found only sporadically at the beginning of the filtration run. Their number rose along with increasing age of the dry filter to form certain regular percentage (5-12%) of the biological slime (Frischherz et al., 1985). It was felt that the manganese bacteria activity is strongly affected in the upper portions of the filter where heavy iron precipitation occurs.

The iron removal process in the pilot plant was mainly determined by three factors (Frischherz et al., 1985).

- Configuration and area of the filter surface as held fast for a biocenosis.

- residence time of the water

- usable volume of voids for iron removal

The filtration rate applied was 3 - 10 m/hr depending on the concentration of iron in the raw water. In waters with low iron concentrations (eg 0.2 mg/1 Fe), matured dry filters can operate at higher filtration rates of up to 60 m/hr without any breakthrough (Frischherz et al., 1985). Frischherz et al. (1985) studied the start up behaviour of the filter and found that at a filtration rate of 3 m/hr, iron removal occurred immediately

after the beginning of the operation. This initial removal was suggested to be of a chemical nature. At the same time micro-aerophilics were found in practically all the samples observed. Manganese removal or ammonium oxidation did not take place at the same time with iron. There was a time lag between ammonium oxidation and manganese removal (See Fig. 2.2.2).

The study on the start up behaviour of the pilot plant by Frischherz et al. (1985) found that:-

Oxidation of iron started after about a day

Ammonium oxidation to nitrite and nitrate occurred after six weeks and continued for the next three weeks.

Start-up behaviour of a trickling filter and a flooded filter (Frischherz et al., 1985)

BAIVERSITY OF NALAOM

Manganese oxidation began after ten weeks and continued steadily for four weeks after which the rate of oxidation of the filter remained unchanged.

Further investigations at different filtration rate showed that, the rate had no effect on the time pattern but the quality of the treated water as concerns iron, manganese and ammonium concentrations was greatly affected. Dry filter has been widely used in Finland where it is often combined with slow sand filter. Efficiencies of over 80% have been achieved (Ashenafi Kibret, 1986). A modified model of a dry filter (contact filter followed by a matrix filter) was studied on a laboratory scale by Joshi in 1989 and was found to have an iron removal efficiency of 85-90%. The manganese removal varied from 80-100% and coliform removal 93-97%.

Flooded contact filter

In this filter the media is always in contact with water and it can be upward flow or downward flow. Frischherz (1985) ran a pilot flooded filter which in terms of development of microorganism was found to behave just like the dry filter. The particle surfaces were rapidly colonised by washed in microorganisms. After a three hour filter run the bacteria count was $6-9 \times 10^3$ colonies per cubic centimetre of filter material. The bacteria colony count steadily rose to 2-3 x 10^6 colonies per cubic centimetre which was maintained for a major period. The quantitative change was also accompanied by a qualitative change. The manganese oxidising bacteria count rose from 1-3% in the raw water to about 35% at the end of maturation phase.

Though a great number of different heterotrophic iron and manganese depositing bacteria were isolated from various different sites, their role in the environment has not been thoroughly explained and their metal depositing mechanisms are not well understood. It is assumed as a hypothesis that there is a close relationship between oxide deposition and extracelluar polymers. In this mechanism free Mn²⁺ would bind to negatively charged polymer matrix. While the succession of development stages in the flooded filter was more or less the same as that of the dry filter, it took place at a faster rate than that of the dry filter. The performance of the flooded filter was however found to be highly affected in cases of high iron concentrations at high filtration rates.

second the line description of Preparation of Preparation of the Prepa

At high concentration the rate had to be kept at about 2 m/h. Iron deposits in the top layer led to clogging hence shortening the filter runs. Even minor pressure variations in the filter led to breakthrough of the iron and backwashing was followed by relatively long start-up time. Upward flow flooded filter has been used in Orissa, India where efficiency of iron removal has been shown to range between 90 and 100 percent (Patnaik, 1991). It has also been tried successfully in levelled region of Northerm Transvaal in South Africa. A six month observation indicated that efficiency in excess of 90% was achieved with respect to iron and turbidity removal (Cecil Chibi, 1991). A

form of downward flow flooded filter has been used in Kano, Nigeria with efficiency of 99.4 - 99.7% (Kwame Ofori-Tutu, 1989).

2.3.6.2 Biological oxidation reactions in iron removal by contact filter method

The method utilizes the presence of aerobic and anaerobic bacteria usually present in most aquifers. In reduced aquifers, nitrate, sulphate, manganese (IV) and iron (III) reducing bacteria are more abundant than bacteria with a potential to oxidize ammonia, sulphide, iron (II) and manganese (II). Both reducing and oxidizing bacteria can exist in a reduced aquifer (Gottfreund et al., 1985). The amount of aerobic or anaerobic iron bacteria does not depend on the aquifer depth (Rott, 1985). The development of these bacteria is supposed to be favoured whenever there is a change in redox potential in the aquifer (Gottfreund et al., 1985).

Development of different types of iron bacteria has been found to be dependent on the redox potential, pH and chemical characteristics of the aquifer. Due to their alkaline cell surface, iron bacteria are capable of oxidation of iron (II) to iron (III), an observation common in water works filters (Rott, 1985). Autotrophic bacteria oxidize Fe(II) to Fe (III) at pH 0.5 - 3.0 and gain energy for metabolism.

At pH above 4.0 and depending on the conditions, iron oxidation could be organically or chemically mediated. At higher pH values, iron oxidation is chemically mediated and aerobic bacteria gain energy from the reaction only if they anticipate chemical oxidation. Frischherz et al. (1985) revealed that Fe (II) can be biologically oxidized at pH 5 - 6 in presence of aerobic bacteria. Investigations by Richard (1978) in a biological pilot plant showed defferisation development at pH values of 6.0 - 6.3.

Pure culture observations showed gallionella ferrugiena development in the pH range 6.3 - 6.6 (Kucera and Wolfe, 1957). The identified aerobic iron oxidizing bacteria are gallionella, crenothrix, siderocapsa, leptothrix and sphaerofilus. Leptothrix and sphaerofilus are heterotrophic and require organic energy source. Crenothrix is facultative autotrophic. Gallionella is strictly autotrophic (Richard, 1978). The autotrophic bacteria derive their energy from the exothermic reaction shown in Equation 2.15 (Richard, 1978).

 $4Fe(HCO_3)_2 + O_2 + 2H_2O ----> 4Fe(OH)_3 + 8CO_2(2.15)$

Lundgren and Dean (1979) developed a relationship showing the domains of some iron compounds and the main groups of iron bacteria involved in oxidation. According to their findings, iron carbonates and sulphates are substrates for leptothrix and gallionella organisms. Other conditions necessary for growth of these organisms are low oxygen partial pressure, low redox potential, neutral pH and continuous supply of iron. Siderocapsa organisms function near Fe(II) - Fe (III) border line and mainly oxidizes organically bound iron which resist oxidation to ferric hydroxide. Siderocapsa liberates Fe (II) from the organic chelate and utilizes the organic part for nutrition. Oxidation of the liberated Fe(II) to form ferric hydroxide results in precipitates which accumulate on the cell surface (Lundgren and Dean, 1979).

Czekella et al. (1985) carried out a study on 21 groundwater treatment plants in West Germany which revealed that iron bacteria was responsible for the oxidation of iron Fe (II) to iron Fe(III). In the study, identification and photography of iron oxides in particular with biological structures was made by analyzing backwashing material and microbial settlement on the filter sand using scanning electron microscope in particular with the aid of in site time on growth experiments which show the formation of the oxides. The water in different plants varied in chemical quality with iron concentration ranging from 0.05 to 16.5 mg/l and pH values of 6.5 to 7.9

From the study the following bacteria were identified:-

(i) Slime depositing rod shaped bacteria. The slime (extracelluar polymeric substances) termed as E.P.S. exhibited a high adsorption and oxidation of Fe(II). The slime contained equal proportions of Fe (II) and Fe (III) ions.

- (ii) Gallionella bacteria which was characterized by formation of fine ferric iron fibres. The fibres were formed by intracellular iron oxidation whereby iron produced by the cell was excreted in form of these fibres. The stock length as observed in 1 cm³ of aqueous backwashing material was 46 km long which was found to be within the range of iron stalk production in pure culture (Czekella et al., 1985).
- (iii) Leptothrix ochracea bacteria which was characterized by thick mesh of ferric iron sheaths. This bacteria developed in low hardness water in comparison to gallionella. Gallionella required a higher calcium concentration (about 70 mg/l) than leptothrix ochracea (Czekella et al., 1985). The requirement of calcium by gallionella was confirmed by pure culture bacteria cultivation (Wolfe, 1958).
- (iv) Torothrix trichogenes bacteria was characterized by typical curved oxide structures which formed extremely fine, hair pin-like fibres (Czekella et al., 1985).

The principal regarding biological oxidation and precipitation has not been very definite. This is due to little experience in the field of biological water treatment.

2.3.6.3 Slow sand filtration and re-infiltration

Slow sand filtration offers a cost effective method for removal of dissolved iron and manganese from groundwater in comparison to conventional physical - chemical methods. The technique has been extensively applied in Finland with promising results. According to Hatva and Seppānen (1983), a slow sand filtration plant was successfully made by Placenta Limited whose results encouraged the Finnish National Fund for Research and Development to provide financial assistance for research in other several plants.

A slow sand filter for iron removal consists of a pretreatment unit and a filtration unit. The pretreatment unit is a contact filter which reduces iron content by oxidation and consequent sedimentation in a clarifier to avoid fast clogging of the treatment unit. In the filtration unit, the filtered water can either be taken to distribution or infiltrated into the aquifer.

Bacteriological analysis revealed the participation of micro-organisms in iron oxidation in the system (leptothrix and gallionella etc). According to a study by Hatva et al. (1985):-

- (a) Manganese remained in solution at E_h of + 500 mV and pH 6.5 7.0
- (b) At E_h of 600 mV and pH 6.5 7.0 manganese precipitated.
- (c) Oligotrophic conditions of raw water supported the growth of gallionella only.

(d) Leptothrix, siderocapsa and ochrobium thrived in the infiltration basin.

Other studies have come up with the following observations:-

- (i) Iron is generally precipitated when the pH is high and E_h is over + 230 mV (Hatva et al., 1971).
- (ii) Small amounts of oxygen (0.2mg/l) can rapidly change E_h increasing it by more than 250 mV (Richard, 1979).
- (iii) Chemical oxidation of manganese could be achieved only by raising the pH to 9 or over (Hem, 1963;).
- (iv) Both the E_h and pH are important environmental factors for iron and manganese bacteria and each type has its own optimum E_h and pH environment (Lundgren and Dean, 1979). Manganese bacteria require a higher level of E_h than iron precipitating bacteria.

The biological processes prevailing in iron and manganese oxidation is not clearly understood. According to the classical theory, bacteria are able to exploit the energy derived from the oxidation of iron and manganese. The processes can be explained by Equations 2.16 and 2.17 (Beger, 1966).

$$2\text{Feo} + \frac{1}{2}\text{O}_2 + 3\text{H}_2\text{O} \rightarrow 2\text{Fe}(\text{OH})_3 + 1058.6 \text{ KJ/mol} \dots (2.16)$$

 $2Mno + O_2 + 2H_2O \rightarrow 2Mn(OH)_2 + 167.4 \text{ KJ/mol}$ (2.17)

The sheaths of capsules of iron and manganese bacteria are formed of polysaccharide molecules and their pH is high. It is on these sheaths where adsorption and autocatalytic oxidation occurs. Manganese oxidation reach a significant rate at ph = 8.5 (Hem, 1963). Studies have revealed that precipitation of iron and manganese is a result of the sum of different mechanisms, including the active bacterial oxidation and pure chemical oxidation of reduced iron and manganese. According to the study:-

- (a) Pretreatment reduces iron concentration of the raw water by 40 60%
- (b) Manganese reduction was 20%
- (c) Oxidation of ammonium compounds to nitrates and organic matter in general also seemed to affect the purification process. Iron and manganese oxidation was decreased in the presence of organic matter. Organic matter reduction was 82%.

3.0 OBJECTIVE OF THE STUDY

Development of iron removal plants in the Kenya - Finland Western Supply Programme area was meant to improve the quality of water in rural groundwater supplies where consumers complained of bad taste and colour. Consumers from areas with wells installed with iron removal plants have often complained of taste, colour and odour. This could have been caused by;

a. Poor performance of the iron removal systems

b. Lack of operation and maintenance technical skills required in the plants.

Several iron removal plants appear neglected and some have been abandoned. The overall objective is therefore to assess the success of iron removal plant development project in provision of improved quality water and their future sustainability. Thus the results will form the basis for future design development.

In achieving the overall objective the following will be determined.

 (i) The effectiveness of the various models in water quality improvement in terms of iron concentration without affecting the other parameters. (ii) Comparative cost of producing the desired standard of treated water in terms of capital investment and operation and maintenance.

(iii) Assessment of the effect of technological sophistication in sustainability of iron removal plants. This includes availability of necessary technical skills.

(iv) How far the locally available material can be used in development of desired iron removal systems without compromising the standard of the treated water.

4.0 METHODOLOGY

4.1 Introduction

Iron removal by contact filters has been in progress in the programme area since 1985. Thus some background information is available. Performance evaluation of iron removal installation meant for the rural area is mainly geared to evaluation of water quality improvement in those parameters that cause objection of the water by the consumers e.g colour, turbidity and taste. In addition to those parameters which are mainly associated with aesthetic qualities of the water improvement in other parameters that can cause health problems should also be monitored. This would ensure that there is no deterioration of the quality in other parameters. This is especially important where the water could leach out other chemical contaminations from the filter media. Monitoring of bacteriological quality variations was carried out to determine any improvement or deterioration. Though groundwater is expected to be free of bacteriological contamination shallow wells have occasionally shown some contamination. This was monitored by examination of coliform organisms. In the programme area, groundwater is free from contaminating minerals apart from excessive iron concentration in isolated cases.

4.2 Methods

The study started with a general survey of the existing iron removal plants. During the survey, operation and maintenance conditions were assessed. Raw and treated water samples from the plants were analyzed for chemical and physical qualities as is normally done during routine work. This provided preliminary data for site selection. The following parameters were analyzed.

- Colour	- Turbidity	- Conductivity
- Total Hardness	- Total Alkalinity	- Chloride
- Sulphate	- Nitrite	- Nitrate
- Ammonia	- Manganese	

- Permanganate Value (PV) - Iron

Site selection was based on; (i) general water quality variation, (ii) variation in iron concentration and (iii) operation and maintenance conditions. Therefore the selected sites were to be preferably located in different water quality zones.

In rural community water supplies, water demand vary widely during the cause of the day. This meant that the study had to be designed to cover both peak and off peak hours. Thus the initial step was to identify the two periods. During the two periods the retention time of the plant varied which consequently affected the filter performance and hence the quality of the treated water. If peak hours seemed to fluctuate, the study

was spread over the day at appropriate intervals so that there was no risk of missing peak hours.

Initially each plant was cleaned by the consumers as they do during routine operations. The volume of water drawn from the plant at peak hours was determined using a calibrated pail. The flow rate was also determined from the average of the discharge rates when the water level in the filter was constant.

The following parameters were analyzed in raw and treated water.

- pH	- Total Iron (Fe Total)	
- Ferrous Iron (Fe ⁺⁺)	- Dissolved oxygen - Ammonia	
- Nitrite	- Nitrate	
- Permanganate Value (PV)	- Total Coliform	

- Manganese

Dissolved oxygen, redox potential and pH are important parameters affecting the occurrence of soluble manganese and iron in groundwater. Monitoring of variations in these parameters during iron removal process can yield information valuable for design improvement. Redox potential E_b was not measured due to lack of appropriate equipment. More details on modification of methodology are found in Chapter 6.0. Bacterially medicated iron removal is also associated with ammonia removal through nitrification reactions. Nitrification processes tend to compete with iron removal

processes and occur in late stages of the filter cycle. Monitoring of relative reduction of ammonia in relation to iron removal is therefore important and can provide important information for future plant development.

Relative reduction in permanganate value in relation to iron can also yield information on the chemical relationship between iron and organic matter. That is whether the iron is present in form of organo metallic complex or not. Iron in this form is difficult to remove and calls for careful design consideration. Most of the parameters were analyzed in the field. Permanganate value and coliform determination were carried out at Kakamega Water quality laboratory. Iron and turbidity are the most important performance parameters. Due to their close association with iron and turbidity respectively, colour and manganese variations were closely monitored. The plants were left to run until the consumers themselves were not satisfied with the quality or the flow rate decreased due to clogging.

Previous studies in iron removal by contact filtration have confirmed involvement of various types of iron bacteria. Therefore the study was initially designed to include isolation and characterization of the various types of iron bacteria which could be involved. The following type of bacteria have been identified in various contact filter pilot plants.

- (i) Gallionella
- (ii) Torothrix

(iii) E.P.S. producing bacteria (Extra cellular polymer structures)

- (iv) Crenothrix
- (v) Metallogenium
- (vi) Leptothrix

The iron removal plants were also expected to reduce bacteriological contamination especially in shallow wells. Therefore iron removal plants were also monitored for effectiveness in coliform removal.

The effect of disinfection of the wells with iron removal installation is an important preliminary step in the confirmation of the bacterial involvement in iron removal. Disinfection with chlorine is known to produce chlorinous tastes especially in turbid water which could cause objection of a well. Also the resultant reduction in iron removal efficiency can cause abandonment of a well. Therefore this can be tried in a pilot plant but not a well in use.

4.2.1 Laboratory work

4.2.1.1 Physico-chemical analysis

The following parameters were analyzed on site using HACH DR 2000 portable environmental laboratory and HACH digital titrator.

- Turbidity	- Colour	- Iron
- Manganese	- Ammonia	-Nitrite
- Nitrates	- Sulphate	- Total
Total Hardness	- Chlorides	

- Total Alkalinity

- Conductivity, measured with a portable conductivity meter

- Oxygen, measured with a dissolved oxygen meter

- pH, measured with a portable pH meter
- Total coliform, measured by membrane filter technique.
- Turbidity, measured with a portable turbiditimeter Hach model 16800.

The Hach methods are derived from "Standard Methods For Examination Of Water And Waste Water, " but modified to fit application in the field by packing various reagents into adequate quantities in form of powder pillows which are convenient for use in the field. In determination of Alkalinity, Chlorides and Hardness, the Hach methods are the same as standard methods for water and waste water analysis but again modified to use a digital titrator where the titrating solution is packed in a cartridge which can be fitted into the titrator in the field. The solid reagents are in form of powder pillows.

Oxygen

Method - Oxygen Electrode

Dissolved oxygen concentration was measured using an oxygen electrode. The electrode comprises of platinum cathode and a silver anode forming a cell. The cell is normally covered with gas permeable membrane to shield it from contamination with liquids and solids.

Principle

When 0.5 - 0.8 volt is applied across the anode and cathode, any oxygen which passes through the membrane will be reduced at the cathode causing a current to flow. The magnitude of the current will depend on the oxygen concentration in the sample.

Turbidity

Method - Nephelometer method

Principle

The sample is illuminated from the light source through a slit to form a parallel beam. The scattered light is detected by a phototube placed at right angle to the light source. Therefore, nephelometer measures the amount of scattering unlike a turbidimeter which measures the transmitted light at 180° to the light source. Measurement of turbidity involves calibration using known standards within particular ranges of turbidity.

Iron

Phenanthroline Method

Principle

The method depends on the fact that 1, 10 - phenanthroline combines with Fe^{++} to form a complex ion which orange in colour. The colour produced conforms to Beers Law and is readily measured by Photometric or Visual comparison. To measure the total iron i.e Ferric (Fe^{+++}) and Ferrous (Fe^{++}), Ferric Iron is first reduced to Ferrous state. Ferric iron precipitates are dissolved using hydrochloric acid and then reduced using hydroxylamine.

Manganese

Method - Periodate Oxidation

Oxidation of manganese from its lower valence state to the highly coloured permanganate ion makes it possible to determine manganese concentration using a spectrophotometer. The colour produced is directly proportional to the concentration of manganese present over a considerable range of concentration in accordance to Beer's Law.

Ammonia

Method - Nesslerization

Principle

Treatment of Ammonia nitrogen with Nessler reagent or Potassium Mercuric Iodide in alkaline solution forms a yellowish-brown colloidal dispersion whose intensity of colour is directly proportional to the amount of ammonia originally present. The colour intensity can be matched by visual comparison or by photometric methods.

Sulphate

Method - Turbidimetric

Principle

Barium Sulphate tends to precipitate in a colloidal form and this tendency is enhanced in the presence of a Sodium Chloride - hydrochloric acid solution containing glycerol and other organic compounds. The turbidity level depends on the concentration of sulphate ions and above 10 mg/l the sample can be analyzed by taking smaller samples and diluting them to the recommended 50 ml size. The level of turbidity is detected by photometric methods.

Nitrate

Method - Phenoldisulphonic Acid

Principle

Nitrates react with phenoldisulphonic acid to produce a nitro derivative that in Alkaline solution rearranges its structure to form a yellow coloured compound with characteristics that conform to Beer's Law. The colour produced can best be measured by photometric methods.

56

Nitrite

Method - Modified Griess - Ilosvay diazotization

Principle

Under acid conditions, nitrite ion as nitrous acid reacts with the amino group of sulphanilic acid to form a dazonium salt that combines with I-naphthylamine hydrochloride to form a bright coloured pinkish red azo dye. The colour produced is directly proportional to the amount of nitrite present in the sample and determination of the amount can be done either visually using standards or by photometric means.

Colour

Method - Potassium Chloroplatinate colour standards

Principle

Solutions of Potassium Chloroplatinate tinted with small amounts of cobalt chloride yield colours very close to natural colours. The colour produced by 1 mg/l of platinum (as K₂PtCl₆) is taken as the standard unit of colour. Colour matching can be done visually using Nessler tubes or by photometric methods.

Titrations

Total hardness, total alkalinity and chlorides are determined by volumetric methods.

Hardness

Method - EDTA Titrimetric

Principle

The hardness forming ions, Calcium and Magnesium, react with EDTA by chelation to form stable complexes. During titration, the excess EDTA react with the indicator Eriochrome T dye to produce a blue colour marking the end point. Therefore, the wine red colour due to reaction of Eriochrome T dye with the divalent ions, Calcium and Magnesium, at pH 10 slowly turns blue at the end of titration. The amount of hardness can be calculated from the volume and concentration of EDTA.

Alkalinity

Method - Titration with N/50 Sulphuric Acid

Principle

Dilute sulphuric acid reacts with the hydroxide, bicarbonate and carbonate alkalinities of the water neutralizing it and converting to carbon dioxide. In normal practice, total alkalinity is usually determined and represents all the acid consumed by all three types of alkalinity. Total alkalinity determination involves acid titration using methyl orange indicator which marks the end point by colour change at pH 4.5.

Caustic and carbonate alkalinity is be determined by using phenolphthalein indicator which marks the end point at pH 8.3 when the solution turns from pink to colourless. The amount of alkalinity can hence be calculated from the volume and concentration of the acid.

Chlorides

Method - Mercuric Nitrate

Principle

At pH 2.5, mercuric ions combine with chloride ions to form poorly ionized mercurics chloride. As the mercuric nitrate is added the chloride concentration approaches ionic the mercuric ions concentration increases to a level where it becomes significant in the mercuric nitrate is added. The indicator used is diphenylcarbazone which combines with mercuric ions to form distinct purple colour. A pH indicator, xylene cynol 11, which is blue-green at pH 2.5 is also included to improve the end point. The concentration of chlorides can be calculated from the titration volume and the concentration of mercuric nitrate.

In Hach method of titration, no calculations are required. The concentration of the parameter in question is read directly on the digital titrator making it suitable for field work.

Conductivity

Method - Conductivity Meter

Principle

An electrical current can flow through a solution of an electrolyte where the current is carried by ions which move towards the electrodes immersed in the
Conductivity of a solution is a measure of its ability to carry an electrical current and varies both with the number and type of ions the solution contains. Conductivity can be measured in a conductivity cell (solution) by connecting it to a wheatstone bridge which allows the measurement of the electrical resistance provided by the solution. A conductivity meter is designed to interpret resistance in terms of reciprocal value of the conductance. Dissolved solids concentrations can be approximated by multiplying the value of conductivity by an empirical factor varying from 0.55 to 0.9.

pH

Method - Glass Electrode

Principle

A glass electrode is used in conjunction with a standard calomel reference electrode. The single electrode potential established on the glass electrode is determined by the concentration of hydrogen ions in the solution in relation to the concentration in the electrolyte within the electrode. The potential is determined by the relative concentrations of adsorbed hydrogen ions on the two sides of the glass membrane. Since the glass electrode is in essence a calomel electrode, its inherent electromotive force cancels that of a calomel reference electrode and the potential established on a glass electrode is equal to that generated by the difference in hydrogen ion activities on the two sides of the glass membrane. The potential developed by a glass electrode is so small that measurements cannot be made by ordinary galvanometers. Hence a vacuum tube (pH meter) is commonly employed and calibrated to read pH directly.

4.2.2 Coliform Bacteria Culturing

Method - Membrane Filtration

Procedure

Using a sterile bottle a sample was taken during the afternoon high peak demand period and transported to Kakamega laboratory for incubation. The most distant study sites were Siginga and Khayinga and the trip took about two hours. In the laboratory, 100 ml of the sample was filtered using a vacuum pump through a nitrocellulose membrane of 0.45 mm pore size that allows water through while retaining the bacteria. The filter was then placed on a ready to use wet nutrient(mackonky broth) pad on a petri-dish. The petri-dish was then placed in an incubator regulated to maintain 35 - 37°C for 24 hours. After 24 hours the petri-dish was observed for bacteria colony development. The colonies were then counted and expressed as coliform per 100 ml. Bacterial enumeration in this technique assumes that each colony originated from a single bacterium.

4.3 Modification of methods

Due to unavoidable circumstances, the methodology was modified as follows:

- 1. In the iron removal systems developed by Finnish expatriates in Kenya-Finland Western Water Supply Programme, iron bacteria and related organisms were thought to play a more important role in ferrous iron oxidation than physicochemical mechanisms. It is for this reason that it was initially thought necessary to isolate and characterize the microorganisms. Bacteria growth is known to be influenced by environmental factors eg. availability of nutrients, pH, temperature etc. Investigations on the variation of the types of bacteria in different environments and their rates of activity would be a step forward in further development of the existing systems. This work was not done due to lack of funds for hiring the services of an experienced microbiologist.
- 2. Redox potential, E_h variation at various stages of filtration was not monitored due to lack of equipment. Redox potential measurement in the field required special equipment. The sponsor experienced an unexpected shortage of funds and was unable to purchase the equipment. Redox potential is an important parameter in the design of groundwater differisation plant.

On further consideration and discussion with the supervisors, it was agreed that the two parameters, redox potential and iron bacteria are mainly important in the determination of mechanisms and processes but not primarily necessary for performance evaluation. Initially, study in variations of the following factors in various models was thought necessary in provision of additional information for further improvement of the iron removal plants.

- (i) hydraulic loading
- (ii) filter depth
- (iii) water distribution over the surface
- (iv) size of the media and
- (vi) mode of filter ventilation.

Since there was no time the filters exceeded the hand pump discharge, it was found unnecessary to try performance under higher loads. Parameters (ii) to (vi) could not be studied for the following reasons:

- a) These parameters had very little variation if any in the adopted model (Siginga and Khayinga). Most of the existing plants of this model were situated in areas of differing water quality characteristics especially in terms of iron.
- b) The other two existing models (Shivanga and Lugusi) were completely different in design and only one unit of each model existed and were situated in different water quality zones in terms of iron concentration.

As mentioned earlier, most of water quality complaints in rural water supplies in western Kenya were mainly aesthetic in nature. These were mostly associated with physical qualities though in certain cases could also be due to chemical causes.

Taste, colour and turbidity problems were the most frequently reported cases. Later, these problems came to be associated with iron content of the groundwater. Due to its low concentration relative to iron, there were no cases where manganese caused a serious concern. Manganese is usually associated with iron and that is why its removal by these plants was also considered important. The presence of manganese and its removal efficiency yields important information in the improvement of design of the existing models. Emphasis was laid on the performance in iron and turbidity removal. The corresponding bacteriological improvement has also been shown.

5.0 FIELD INVESTIGATIONS

Field investigations started with survey on the existing iron removal plants. During the survey it was established that most of the plants had broken down and disconnected from the hand pumps. According to Operation and Maintenance Department this was caused by poor maintenance whereby the plants got clogged up with Iron precipitates (Ferric hydroxide, Fe(OH)₃) forcing the consumers to draw raw water by disconnecting the pumps. The Community and Training Department did not adequately to train the consumers on participation in maintenance of their water supplies. Some iron removal plants were deliberately disconnected from the well when it was realised that change of types of pumps resulted in water quality improvement. Corrosion of galvanised iron rising pipes in shallow wells contributed to increased iron concentrations. Use of Nira AF 85 pumps in shallow wells solved the corrosion problem. Nira AF 85 has plastic rising pipes. Corrosion problem in boreholes was solved by use of Afridev pump (which has a plastic rising pipe) instead of India Mark II. Earlier corrosion problems in boreholes wells were due to use of black steel casings which were later changed to plastic.

In total twenty four iron removal plants were visited. At the time of the study only five plants were in operation. Three of these five plants were very poorly maintained and urgently needed rehabilitation. In order to start the study the necessary rehabilitation was carried out in Lugusi and Shivanga.

Summary of Field Survey

The total number of Iron removal plants = 24

Survey results

Encountered Cases	No. in Category	%	Comments
1. Operating	5	22.5	Well maintained, good community participation and trained maintenance team
2. Disconnected deliberately	8	30	Iron concentration decreased after changing pump and or well structures
3. Clogged and abandoned	6	25	Poor maintenance due to lack of implementation-training co- ordination and closeness to alternative sources
4. Clogged up but the well used through bypass	5	22.5	Poor maintenance due to lack of training-implementation co- ordination and community paticipation

Khayinga and Siginga models Fig.5.1.3 dominated with a total number of twenty two plants while one of each models, Lugusi Fig.5.1.1 and Shivanga Fig.5.1.2 existed.

Lugusi model was the oldest in the area but had been dismantled in three sites due to some of the reasons given above.

The model shown in Figure 5.1.3 was the dominant and therefore found in most places. The reason given for adoption of this model was low capital investment coupled with simple technology.

5.1 Description of models and observations during the study

Designs of the existing models are shown in Figures 5.1.1 5.1.2, and 5.1.3.

5.1.1 Lugusi Iron removal plant

This plant is situated at Lugusi, East Isukha location in Kakamega district. This model was developed by Juhani Heinanen (1985) the then Project Chemist. As shown in Figure 5.1.1 and Plate 9, the plant consists of two concrete tanks interconnected by a pipe at the bottom. The first tank is for aeration followed by a filtration unit. The filter is provided with a backwash drain pipe at the bottom.

Operation and Maintenance

Water is pumped into the aeration tank where it is spray aerated from the top. From this tank it flows into the filtration unit through the interconnecting pipe at the base. Oxidation of iron starts at the aeration tank and continues into the filtration unit. The filtration is upward flow and the treated water is drawn from the top. After some period of operation the filter is expected to clog and must be backwashed.

Applicated and the symmetric thread that we assume

Backwashing is carried out by opening the drain valve at the bottom of the filter. Unless there are leaking valves, this is the only routine maintenance expected in this plant.

The plant was initially rehabilitated and backwashed on 11th July 1993. The plant was ran from 12th July to 29th October 1993. Two peak periods were identified i.e one in the morning and the other in the afternoon. The morning peak was not well defined and seemed to oscillate between 11.00 a.m and 2.00 p.m. The afternoon peak was well defined and occurred at 4.00 - 6.30 p.m. The consumers of this plant never seemed to be concerned with its maintenance. There is no well committee and nobody is incharge of the operation and maintenance. Reasons for the mismanagement as given from the water programme were:-

- (i) The water quality was initially very poor and there was an alternative source quite close.
- (ii) The owner of the land where the well is situated was very uncooperative

The same reasons were given by the consumers but when the well was rehabilitated the number of consumers rose tremendously. The communities appreciated the improved quality of their water in terms of physical characteristics and it was felt that they only require mobilisation to start a committee to maintain the well. Throughout the operation period the flow rate and quality of the treated water remained fairly constant. Therefore the filter was never backwashed.

5.1.2 Shivanga Iron removal plant

This plant is situated at Shivanga, Central Kabras location, Kakamega district. The model was developed from a prototype developed earlier by DANNIDA in India. In India it was shown to have an iron removal efficiency of 97-99.0% (S. Viegand, 1984). The plant is made up of an aeration unit resting on an upward flow filter (see Figure 5.1.2 and Plate 10). Both units are made of concrete. The aeration unit is connected to the filter through a PVC pipe. The filter is provided with a backwash drain valve at the base.

Operation & Maintenance

Water is pumped and sprayed from the top into the aeration chamber. The water trickles over the gravel into the PVC pipe and finally into the filter through the sieve at the bottom. The filtered water is drawn from the top. The clogging of the filter is marked by overflow in the aeration chamber and is followed by backwashing. Backwashing is done by opening the backwash drain valve at the bottom. The plant was backwashed and operation started on 6th July 1993. It operated until 2nd

September when it was due for backwashing. During the operation period it was noticed that the high peak period fell between 4.00 - 5.30 p.m. There were two low peaks early in the morning, 6.00 - 8.00 a.m and 12.00 -2.00 p.m. The consumer communities were not keen to participate in maintenance and there was no existing well committee. Before the study began, the well had clogged up and the consumers had resulted in drawing water at the aeration spray. It was found that if the plant was left to clog completely, it become very difficult to backwash and required emptying the media to remove the slimy masses manually. Throughout the operation period the consumers appreciated water quality improvement but were not committed to its maintenance. Discussion with the consumers revealed that the main reason for not participating in maintenance of this plant was availability of alternative sources. There is a spring only 300 m away. During the study a teacher from a nearby primary school was trained in backwashing and it is hoped that he will be able to convince the community on the importance of availability of clean water before the well is abandoned.

Fig. 5.1.2 Iron removal installation at Shivanga

5.1.3 Siginga and Khayinga iron removal plants

Siginga and Khayinga plants are situated in southern Busia at the shores of L. Victoria in West and South Bunyala locations respectively. These two plants are identical and consist of a single concrete ring partitioned into two units. This model comprises a pre-filtration unit followed by a filtration unit (see Figure 5.1.3 and Plates 1 to 8). The water enters at the bottom of the pre-filtration unit and infiltrates through the gravel upwards and over the dividing wall into the filtration chamber. Water is filtered downwards through sand media and finally drains through a perforated collection hose which feeds the treated water tap. This model is a prototype of plants developed by Finnish expatriates in Kandy Water Supply and sanitation project in Sri-Lanka in 1983-1984 (unpublished reports). According to the implementation experts from this project the plants had an efficiency exceeding 99%.

The design of iron removal plants in Sri-Lanka were based on studies carried out in Finland in 1973-1975. The studies were aimed at development of large scale plants but during the trials it was noticed that the method was also useful in small scale water supplies e.g for a single household. The method can be described as modified slow sand filtration. According to studies carried out in Finland, a slow sand filtration plant for iron removal requires pre-filtration (Contact filter) retention time of 5 - 20 minutes and a hydraulic load of 0.1 - 0.4 m/h (Hatva, 1989).

Operation and Maintenance

The water from the hand pump enters the pre-filtration chamber at the base and infiltrates upwards over the gravel. From this chamber it overflows the dividing wall into the filtration unit. The filtered water collects into a perforated hose at the bottom and is fed into the treated water tap. Clogging of the filter is followed by reduced well discharge and the filter is filled with floating masses of ferric hydroxide (see Plates 1 to 8). Backwashing of this model involves removing all the sand media, cleaning it manually and then replacing it. The procedure normally used in washing a slow sand filter is raking the top layer to remove mud and precipitates without disturbing the whole filter. The manual cleaning of the filter sand was not only found to increase the contamination but also resulted in poor physio-chemical quality at the beginning of the filter cycle. This backwashing technique was found to be a great operation and maintenance inconvenience in this plant model.

Siginga plant was backwashed on 28th February, 1993 and operation started on 1st March, 1993. The operation continued uninterrupted until 6th April, 1993 when it was backwashed. Data collection then continued until 21st April, 1993. The consumers of this plant were quite committed to the maintenance of their water supply. There was a very active committee which collected money for the maintenance and any breakdown was rectified without delay. During the study the plant broke down and was repaired the following day. It was surprising that the well is quite close to alternative sources like

Nzoia river and irrigation canals, but the consumers are quite committed to the maintenance of this plant. It was understood that the initial mobilisation and training was done very well and also availability of funds from the flourishing fishing industry contributed to its success. The activities and the level of maintenance in both Siginga and Khayinga plants were quite similar. There was a well committee in charge of collection of well maintenance funds and repairs were carried out promptly. Siginga plant was backwashed in the morning of 2nd June, 1993. Operation and data collection continued until 22nd June, 1993 when it was backwashed and left to run until 29th June, 1993 when the data collected was found adequate. In both wells there were two peak periods. The low peak was at 11.00 - 2.00 p.m while the high peak was at 3.00 - 6.00 p.m.

Fig. 5.1.3 Iron removal installation at Siginga and Khayinga

6.0 RESULTS AND DISCUSSIONS

The data was collected as outlined in the methodology and is discussed in this chapter.

Detailed results are shown in Appendices A1 to A4. Performance results are shown in

Tables 6.1 and 6.2.

Water quality summary for selected parameters is shown in Table 6.3.

PLANT	REDUCTION /EFFICIENCY EVALUATION	IRON (mg/l)	MANGANES E (mg/l)	TURBIDITY (mg/l)
SIGINGA	R	16.7	1.66	64.00
	F	0.7	1.31	2.72
	% Remaining	4.2	78.2	4.25
	% Reduction	95.8	21.08	95.75
KHAYINGA	R	14.08	1.48	165
	F	0.58	1.01	7.0
	% Remaining	3.9	68.24	4.24
	% Reduction	96.1	31.76	95.76
SHIVANGA	R	0.59	0.44	25
	F	0.19	0.14	1.27
	% Remaining	5.29	31.82	5.1
	% Reduction	94.71	68.18	94.9
LUGUSI	R	0.9	0.30	43.5
	F	0.13	0.13	2.22
	% Remaining	14.44	43.33	5.1
	% Reduction	85.56	56.67	94.9

Table 6.1 Mean values at steady state conditions (peak period)

POINT SOURCE	Cohur mg IVI	Eurbidits N.T.U	Perm. No. mg Kmao 1	Conduct. JS/cm	Total Lron mg Fe/l	Manganese mg Ma/l	pH Units	Total Hardness mg CaCoy/I	Total Alkalinity mg CaCo _y A	Chloride mg CVI	Fluoride mg F/I	Nitrite mg NO ₂ /I	Nitrate mg NO _y 1	Ammonia mg NIL/I	Sulphate mg SO _g (1
C-5150 R	25	5	-	103	0.74	0.00	6.55	79	74	9	0.12	0.03	0.16	0.80	0.00
C-6119 R	6	2.0	-	114	0.02	0.00	6.35	67	80	4	0.19	0.003	0.25	0.00	0.00
C-6188 R	6	1.5	8,90	107	2.03	0.00	6.23	66	12	7	0.30	0.002	0.28	0.00	0.00
C-6108 R	19	3	4.7	138	0.09	0.00	7.67	106	60	10	-	0.002	0.06	0.11	0.00
KA-331 R	39	3	7.9	145	0.00	0.00	6.53	63	64	47	-	0.004	0.08	0.13	0.00
C-5481 R	6	0.8	3.16	.56	0.09	0.00	6.20	26	29	1.0	_	0.003	0.220	0.21	0.30
C-6177 R	8	10	19641	160	0.04	0.00	6.21	75	79	4	-	0.01	1.06	0.12	0.00
C-5462 R	3	0.5	1.7	68	0.05	0.1	6.03	48	33	1	-	0.001	0.308	0.6	0.12
KA-69 R F	120 58	6 15	-	136 137	1.33 0.37	0.31 0.28	6.38 6.9	70 76	82 92	8.0 8.0	0.19 0.2	0.36 1.2	2.2 3.4	2.16 1.10	0.00 0.00
C-5157 R	2	0.3		110	0.14	0.2 -	6.10	51	56	4	0.20	0.05	1.1	0.01	1.3
C-5654 R F	115 4	1 0.8	9.48 1.3	66 144	0.75 0.10	1.30 0.2	6.3 6.3	75 48	110 70	5 2	0.09 0.1	0.01 0.1	2.7 4	0.04 0.2	1 0
C-5152 R	48	7	3.16	124	1.04	0.1	6.18	65	70	13		0.00	0.132	0.20	1.00
KA-223 R F	29 6	4 2	0	106 133	2.28 0.60	0.01 0.30	6.4 6.8	52 35	126 90	5.0 5.0	0.0 0.0	3.1	2.3 2.8	3.3 1.5	26 23
BS-12 R F	125 20	77 13	88	1750 1725	14.7 4.3	1.3 1.0	6.0 5.92	296 290	450 406	16 16_3	0.3 0.3	0.02 0.6	0.14 0.2	0.12 0.04	0.00 0.00
IIS-9 R F	150 45	56 8	9.8	550 498	15.6 6.7	12.3 1.9	6.3 6.21	167 154	251 240	13 12.8	0 0	0 0.42	0 2.4	3.9 1.4	0.00 0.00
C-5933 R	20	12		120	1.9	0.60	72	43	63	4	0.45	0.06	2.6	0.12	0.00
BS-17 R	300	130	11.7	840	17.6	2.4	6.5	136	97	31	0.5	0.27	5.1	3.6	120

Table 6.2 Water quality results at some iron removal plants visited during field investigations

POINT SOURCE	Colour mg PM	Turhididaty N.T.U	Perm No mg Kmao A	Conduct. #S/cm	Total Iron mg Fe/1	Manganese mg Mn/l	pH Units	Total Hardness mg CaCo, /I	Total Alkalinity mg CaCo, /l	Chloride mg Cl/I	Fluoride mg F/1	Nitrate mg NO ₂ /1	Nitrate mg NO _y 1	Ammonia mg Nil,/I	Sulphate mg SO ₀ /1
BS-102 R	100	8.5	11.06	182	1.6	0.00	6.6	62	88	6.5	0.2	0.09	7.48	0.87	24
BS-103 R	45	54	10.4	115	2.5	0.00	6.8	50	64	3.0	0.2	0.00	4.4	0.73	0.00
C-6152 R	15	8	2.8	114	1.4	0.4	6.1	28	50	1.0	0.2	0.01	4.4	0.06	0.00
BS-517 R	15	2	0.0	717	0.16	0.0	6.9	181	-	34	-	-	0.5	0.2	14.0
BS-15 R	100	28	2.53	122	0.64	0.0	6.2	36	50	1.0	0	0.03	0	0.0	5
BS-14 R	70	22	11.3	300	2.0	1.6	6.5	82	141	3.0	0.15	0	0	2.0	14
BS-10 R	150	98	16.43	950	6.1	1.9	6.9	214	307	93	0.41	0.63	0	0.83	30

Table 6.2 (Cont.) Water quality results at some iron removal plants visited during field investigations

KEY

ĸ 2

F F

law w	aler		1		
ittered	or treated water				

Table 6.3	Water qualit	v summary fo	or selected	parameters
-----------	--------------	--------------	-------------	------------

SOURCE	PARAMETER	MINIMUM R F 0.00 0.00 1.5 0.00 1.7 0.00		MAX	IMUM	MEA! VALU	N VE
	0	R	F	R	F	R	F
SHIVANGA	Manganese, mg/l	0.00	0.00	2.1	0.61	0.4	0.2
	Iron, mg/l	1.5	0.00	8.4	0.18	3.6	0.1
	Colour, mgPt/l	1.7	0.00	239	61.0	64	1.9
	Turbidity, NTU	1.5	0.00	58	3.0	24	1.0
	pH, units	5.5	5.95	6.84	7.82	6.3	6.7
KHAYINGA	Manganese, mg/l	1.1	0.07	1.95	1.84	1.5	1.0
	Iron, mg/l	11.5	0.00	17.2	1.65	15.4	0.46
	Colour, mgPt/l	110	2.0	290	75	160	8.9
	Turbidity, NTU	51	0.5	190	15	163	5.0
	pH, units	6.1	5.73	6.63	6.85	6.4	6.3
SIGINGA	Manganese, mg/l	0.5	0.3	3.0	2.0	1.5	1.1
	Iron, mg/l	18	0.05	14.3	10	17	1.0
	Colour, mgPt/l	90	9	250	60	162	3.7
	Turbidity, NTU	43	1.0	75	11.5	56	2.5
	pH, units	5.5	5.2	6.9	6.65	6.0	6.3
LUGUSI	Manganese, mg/l	0.00	0.00	0.42	0.2	0.2	0.1
	Iron, mg/l	1.0	0.00	2.2	1.1	1.6	0.1
	Colour, mgPt/l	40	1.0	190	20	79	4.1
	Turbidity, NTU	8	0.5	62	3.2	33	1.4
	pH, units	5.35	6.17	6.4	7.2	5.3	6.7

As shown in Table 6.3 above, Appendices A1 and A2, it is clear that in all iron removal plants, filtration resulted in water quality improvement in terms of iron, manganese, turbidity and colour. The variation of these parameters through the filter cycle is shown in Table 6.4.

and the second se		the second se			and the second se			and the second s
DATE	Fe TOT mg/l	COL. mgPt/l	TURB. NTU	COND + ms cm ⁻ 1	T/ALK mgCaCO ₃ /l	T/HARD. mgCaCO ₃ /l	pH units	MANG. mg/l
1.3.93	R 15.7 F 0.56	6.3	2.8	1643	450	345	6.4	1.4
3.3.93	R 16.6 F 0.47	4.6	4.3	1497	-	-127	6.0	1.4
5.3.93	R 157 F 0.47	6.7	4.1	-	-100 -134	-00	6.0	1.4
8.3.93	R 13.2 F 0.19	6.5	3.0	1655	440	401	6.2	1.2
10.3.93	R 15 F 0.34	6.3	4.6	10010	447	384	6.3	0.9
12.3.93	R 14.7 F 0.45	7.0	4.2	1667	421	 	6.3	0.6
15.3.93	R 15.5 F 0.56	9.6	5.4	1715	405	395	6.2	0.6
17.3.93	R 14.7 F 0.6	10	4.6	1597	390	376	6.3	0.5
19.3.93	R 14.7 F 0.6	10.1	5.2	1674	359	376	6.3	
22.3.93	R 15.4 F 0.53	24.8	6.4	1637	467	418	6.3	0.8
24.3.93	R 14.6 F 1.0	12.8	4.6	1677	397	383	6.3	0.7
26.3.93	R 15.4 F 1.2	169 15.8	122 9.2	1651 1640	424 408	409 368	6.3 6.2	1.4 0.72
27.3.93	R 16 F 0 41	117.4	102 5.1	1637 1592	475 439	415 393	6.3 6.1	1.7 1.4

 Table 6.4
 Daily mean values at Khayinga plant

DATE	Fe TOT	COL.	TURB.	COND	T/ALK	T/HARD.	pH	MANG.
	mg/l	mgPt/l	NTU	ms cm ⁻	mgCaCO ₃ /l	mgCaCO ₃ /l	units	mg/l
30.3.93	R 16	117.8	96	1665	469	422	6.3	1.8
	F 0.41	14	5.6	1637	440	392	6.1	1.7
3.4.93	R 16.2	121	85	1619	470	427	6.4	1.7
	F 0.43	12.2	5.4	1579	436	394	6.3	1.5
6.4.93	R 13.7	115.8	77	1681	460	406	6.4	1.7
	F 0.4	9	3.6	1593	454	331	6.4	1.6
8.4.93	R 14.4	212	87	1548	458	343	6.3	1.5
	F 0.3	5	6.9	1534	452	316	6.3	1.4
13.4.93	R 15	156	76	1633	448	392	6.4	1.5
	F 0.2	3.8	2	1597	405	367	6.3	1.2
14.4.93	R 15	170	109	1612	432	389	6.4	1.3
	F 0.34	5	4.2	1583	437	300	6.3	0.8
15.4.93	R 15.6	148	25	1609	488	385	6.3	1.6
	F 0.33	4.4	5.4	1580	438	352	6.2	0.8
16.4.93	R 15	163	88	1688	453	409	6.4	1.5
	0.32	6.4	5.3	1636	382	410	6.3	0.8
19.4.93	R 15.5	133	123	1599	485	406	6.4	1.4
	0.32	7.1	5.4	1574	434	396	6.3	0.7
21.4.93	R 14.4	162	114	1606	460	439	6.4	1.6
	F 0.28	7.7	5.2	1565	384	404	6.3	0.6

 Table 6.4 (Cont.)
 Daily mean values at Khayinga plant

Table 6.5	Daily	mean	values	at	Siginga	plant	
-----------	-------	------	--------	----	---------	-------	--

DATE	Fe TOT mg/l	COL. mgPt/l	TURB. NTU	COND. ms cm ⁻ l	T/ALK mgCaCO ₃ /l	T/HARD. mgCaCO ₃ /l	pH units	MANO mg/l
2.6.93	R 17.2	210	55	563	231	200	6.4	2.5
	F 6.5	3.5	10.75	478	248	208	6.5	1.0
3.6.93	R 17.1	125	54	466	262	204	6.66.	1.4
	F 0.79	3.8	1.54	383	262	200	5	1.4
4.6.93	R 16.4	118	40	477	262	195	6.5	1.4
	F 0.4	4	1.1	393	262	191	6.4	1.4
7.6.93	R 16.7	105	53	467	257	200	6.5	1.2
	F 0.14	4	1.8	458	253	193	6.4	1.3
9.6.93	R 17	129	60	469	260	198	6.5	1.5
	F 0.2	1.7	1.8	468	256	192	6.4	1.1
10.6.93/	R 17.2	125	57.3	459	266	202	6.0	1.5
	F 0.27	1.15	1.4	378	211	198	6.3	1.3
11.6.93	R 17	160	55	469	264	202	6.4	1.4
	F 0.3	4	1.5	462	259	197	6.2	1.3
14.6.93	R 17.1	184	58	476	265	208	6.5	1.3
	F 0.14	2.5	1.4	472	260	198	6.4	0.86
17.6.93	R 17	181	57	490	290	208	6.5	1.4
	F 0.12	2	1.7	473	267	194	6.4	0.9
18.6.93	R 16.7	244	49	459	281	195	6.5	1.7
	F 0.15	1.8	1.1	465	263	175	6.4	1.1
21.6.93	R 15.8	161	56	447	290	219	6.5	1.5
	F 0.13	5	2.0	440	265	207	6.4	0.92
22.6.93	R 16.1	162	61	462	296	212	6.4	1.7
	F 0.4	4.4	1.3	429	273	190	6.3	0.8
23.6.93	R 15.4	219	61	451	293	224	6.6	1.4
	F 1.15	1.8	4.8	437	268	212	6.4	1.4
25.6.93	R 16.1	131	63	463	260	199	6.5	1
	F 0.55	3.1	2.1	449	249	188	6.2	0.93
29.6.93	R 16 F 0.4	176 3.3	62 2.7	473 451	276 264	- 264	6.5 6.3	1.1 0.8

Table 6.6	Daily m	iean values	at Shivanga	plant
-----------	---------	-------------	-------------	-------

DATE	Fe TOT. mg/l	COL. mgPt/l	TURB. NTU	COND ms cm ⁻	T/ALK mgCaCO ₃ /l	T/HARD. mgCaCO ₃ /l	pH units	MAN(mg/l
28.6.93	R 3.2	57	17	203	128	121	6.1	0.22
	F 0.12	2	1.03	217.5	144	119.5	6.8	0.18
6.7.93	R 3.3	71	30	174	118	125	6.3	0.69
	F 0.14	1.84	1.1	213	140	151	6.7	0.35
7.7.93	R 3.3 F 0.09	43 3.2	29 1.2	214 242	155 159	125 143.5	6.3 6.6	0.16 0.3
8.7.93	R 3.3	65	27	84	129	101	6.5	0.71
	F 0.1	2.6	1.7	109.7	134.7	132	6.8	0.7
14.7.93	R 3.9	81	41	148	135	111	6.6	0.15
	F 0.1	2.8	1.2	173	152.6	118	7.2	0.1
19.7.93	R 2.1	99	19	169	118	102	6.4	1.2
	F 0.09	3.3	1.0	201.7	144	107	6.9	0.03
22.7.93	R 4.0	65	17	131	123	167	6.5	0.16
	F 0.08	2.3	1.3	164	143	126	5.9	0.01
23.7.93	R 3.2	58	17	116	130	113	6.4	0.6
	F 0.1	1.3	0.6	127	144	130	6.9	0.12
24.7.93	R 4.0	53	26	101	109	111	6.2	0.71
	F 0.1	1.0	0.8	111	148	130	7.0	0.59
25.7.93	R 3.6	50	30	66	75	89	6.3	0.53
	F 0.07	0.9	0.9	75	97	91	6.7	0.36
27.7.93	R 4.8 F 0.12	77 1.6	24 0.7	184 200	106 140	3		
28.7.93	R 3.1 F 0.1	64 1.8	23 0.8	-	111 152	97 99	6.4 6.5	0.31 0.165
29.7.93	R 4.5 F 0.08	53 1.3	30 0.8	212 230		-	6.3 6.9	0.1 0.02

Table 0.0 (Cont.) Daily mean values at Shivanga pla	values at Shivanga plant	nean value	Daily	(Cont.)	0.0	able
---	--------------------------	------------	-------	---------	-----	------

DATE	Fe TOT. mg/l	COL. mgPt/l	TURB. NTU	COND ms cm ⁻ 1	T/ALK mgCaCO ₃ /l	T/HARD. mgCaCO ₃ /1	pH units	MAN mg/l
30.7.93	R 4.1	102	29	251	204	69	5.9	0.2
	F 0.01	2.1	0.5	229	138	99	6.4	0.05
31.7.93	R 3.2	56	23	219	155	155	6.0	0.4
	F 0.09	2.7	0.8	212	159	118	6.6	0.20
1.8.93	R 4.7 F 0.13	123 3.4	28 1.1	219 199	123 123	- 82	6.0 6.9	0.3 0.23
2.8.93	R 4.8	103	25	223	168	124	6.6	0.4
	F 0.1	1.8	1.1	214	138	96	6.9	0.05
3.8.93	R 3.0	54	16	210	111	168	6.4	0.5
	F 0.07	1.4	1.4	222	150	100	6.7	0.35
5.8.93	R 4 F 0.09	57 1.3	20 0.7	204 223		81	6.1 6.6	0.54 0.03
10.8.93	R 4.2 F 0.16	42 1.4	19 0.7	210 219	127 145	14 T		
11.8.93	R 3.2 F 0.13	40 1.6	20 0.9	194 211	134 140	a. ç.		
12.8.93	R 3.9	65	16	200	144	88	6.4	0.58
	F 0.15	1.2	0.7	221	154	123	6.8	0.2
16.8.93	R 2.6	54	50	201	128	117	6.3	0.32
	F 0.17	1.7	5.0	223	154	155	6.9	0.17
17.8.93	R 2.2	34	13	197	180	138	5.9	0.27
	F 2.24	2.7	1.2	223	205	-	6.5	0.16
20.8.93	R 3.6 F 0.19	42 1.1	25 0.6	208 216	133 153	- 192	5.9 6.6	0.35 0.14
2.9.93	R 3.4	55	20	215	138	136	6.4	R 0.5
	F 0.13	1.2	0.7	224	129	131	6.5	0.3

DATE	Fe TOT	COL.	TURB.	COND.	T/ALK	T/HARD.	pH	MANG.
	mg/l	mgPt/l	NTU	ms cm ⁻¹	mgCaCO ₃ /1	mgCaCO ₃ /1	units	mg/l
12.7.93	R 123	126	41	109	74	54	6	0.3
	F 0.128	13.2	1.32	152	102	82	6.6	0.18
15.7.93	R 1.5 F 0.075	75 6.25	22 1.5	111 165	70 69	52 73	6 6.35	0.3 0.23
21.7.93	R 1.1	88	23	100	64	62	6.3	0.3
	F 0.12	6.2	1.46	135	98	90	6.9	0.18
28.7.93	R 2.1	86	33	121	66	53	6.3	0.2
	F 0.112	4.1	1.16	162.7	88.7	75.3	6.8	0.11
2.8.93	R 1.5	82	35	125	82	58	6	0.2
	F 0.09	2.2	0.98	140.7	105.8	80.8	6.7	0.09
10.8.93	R 1.7	96	38	115	78	56	6	0.3
	F 0.13	2.95	1.43	149.5	123.3	87.3	6.7	0.28
16.8.93	R 1.6	76	43	137	69	56	6	0.2
	F 0.1	1.9	1.2	170	82	74	6.9	0.08
24.8.93	R 1.6 F 0.1	76 2.6	44 1.5	94 122	81 102	63 91	6 6.8	0.3 0.1
30.8.93	R 2	88	43	118	72	53	6	0.3
	F 0.1	2.7	1.2	142	108	88	6.5	0.5
6.9.93	R 1.5	62	18	79	77	61	6	0.3
	F 0.09	2.7	1.42	139	111.5	84	6.6	0.08
14.9.93	R 1.8	67	26	86	63	70	6	0.3
	F 0.09	3.8	2.15	129	86.7	99.5	6.6	0.04
21.9.93	R 1.3	67	30	90	74	59	6	0.3
	F 0.09	2.2	1.45	145	104.9	93.8	6.5	0.00
29.9.93	R 1.5	63	22	79	54	81	6	0.2
	F 0.11	1.9	1.47	130	79	128	6.6	0.04
4.10.93	R 1.8	58	26	76	73	65	6	0.2
	F 0.09	2.6	1.4	128	94	87	6.7	0.05
13.10.93	R 1.5 F 0.05	73 4.25	36 1.5	- 120.5	- 87.5	- 76.5	6 6.8	- 0.075
19.10.93	R 1.5 F 0.11	77 4.9	40 1.1	- 114	- 133	- 85	6 6.6	- 0.055
29.10.93	R 1.3 F 0.13	78 4.6	37 1.5	- 126	- 110	- 103.5	6 6.8	- 0.10

Table 6.7Daily mean values at Lugusi plant

In Siginga and Khayinga plants, pH decreased after filtration but was still within a tolerable range for drinking water standards. The pH decrease could be attributed to the following reactions:

$$4 \operatorname{Fe}(\operatorname{HCO}_3)_2 + O_2 + H_2O \longrightarrow 4 \operatorname{Fe}(OH)_3 + 8CO_2 \dots (6.1)$$

The resultant release of Carbon Dioxide raises the pH of the water especially if the water is well aerated. Nitrafication reaction depresses the pH by production of Carbonic Acid (as shown below) and therefore if both reactions (6.1) and (6.2) are occuring in the same water, then the pH of the treated water could be slightly lower than expected. This explains the importance of good ventillation in biological iron removal systems for waters of high organic matter.

$$55NH_4 + 76O_2 + 109HCO_3$$
.
Bacteria > More bacteria + $54NO_2 + 57H_2O + 104H_2CO_3$ (6.2)
(C₅ H₇ NO₂)

 $C_5 H_7 NO_2$ represent bacteria cells. The production of carbonic acid results in pH depression. This reaction results from autotrophic metabolism by Iron bacteria. In these two plants there was also a marked decrease in conductivity after filtration. This is expected due to removal of ferrous ions.

In Lugusi and Shivanga plants, pH and conductivity levels increased after filtration but fell within the acceptable standards. The release of carbon dioxide from deep waters results in pH elevation. Increase of conductivity in Shivanga and Lugusi plants could be explained as due to possible ion exchange as the water passes over the media surface. In Siginga and Khayinga plants, filtered water quality varies all over the day. The variation has been shown to follow the demand pattern.

The best quality water is drawn very early in the morning. The reason is that this water has stayed in the plant overnight and whatever the reactions involved in iron removal tend to be favoured by retention time. Decrease in water quality is noted as more and more water is drawn in the course of the day. The maximum amount of water in each day is drawn in the late afternoon followed by another low peak in the late morning hours. Continuous operation of the plants is required for performance evaluation. It was observed that a steady state condition was established only in the afternoon peak. The peak in different wells oscillated between 3.00 and 6.30 pm. Therefore, only the afternoon peak was used in the performance evaluation. Performance evaluation for the four iron removal plants concentrated mainly on iron and turbidity. Emphasis has been on efficiency rather than processes and mechanisms.

6.2 Siginga Plant

1.	Iron	95.80%
2.	Turbidity	95.75%
3.	Manganese	21.10%

Table 6.8	Average pa	rameter remo	oval efficienc	y at S	iginga	Plant
-----------	------------	--------------	----------------	--------	--------	-------

From Figure 6.2.1, the following is evident:

i. Immediately after backwashing the well both the iron content of filtered water and the average flow increased sharply.

ii. The iron content of the filtered water decreased after approximately 2 days and stabilised at a low level for the following 14 days.

- iii. The filter cycle is 20 days. The method of backwashing as mentioned earlier destabilizes the clogged filter and therefore takes two days to stabilise.
- As indicated by the flow rate and filtered water iron levels, backwashing is necessitated by clogging rather than deterioration of filtered water quality.

Figures 6.2.2 and 6.2.3 show that iron removal efficiency does not vary with discharge and that both raw and filtered water turbidities vary with the rate of discharge. Immediately before the end of the filter cycle, turbidity of the filtered water becomes independent of the discharge. Figure 6.2.4 shows that the efficiency of turbidity removal increases with the age of the filter. It also shows that at the initial stages, the turbidity of the filtered water is dependent on the raw water turbidity.

Fig 6.2.1 Iron and Flow rate versus Time at Siginga Plant

Fig 6.2.3 Turbidity and Flow rate versus Time at Siginga Plant

The most important inferences from Figures 6.2.1 to 6.2.4 are;

- (i). After a certain age, the filter becomes more efficient in turbidity and iron removal.
- (ii). Drawing excess amounts of water disturbs the well and turbidity consequently increases. Increase in raw water turbidity results in an increase in turbidity of filtered water. Clogging increases efficiency of turbidity removal.
- (iii). Though iron and turbidity removal capacity increases with age, clogging reduces the flow such that consumers end up wasting most of the day at the well.

Figure 6.2.5 shows that there is baceteriological quality improvement after filtration. Immediately after backwashing, treated water is more contaminated than the raw water. The quality of the filtered water improves with time and reaches a maximum at the end of the filter cycle. Note that there is no time the treated water is free from Coliform Bacteria hence the need to consider a means of disinfection in these Iron removal plants. From the trend of raw and treated water quality it is evident that the method of backwashing results in increased contamination. This is a case where treatment to remove one pollutant results in introduction of other quality problems. In figure 6.2.6 Manganese removal efficiency is relatively low at the start of filter cycle and increases with time. Though Manganese has not caused any quality complaints it is an important parameter to consider during development of Iron removal systems. This is because the consumers become sensitive to a wide range of parameters with time.

6.3 Khayinga Plant

Table 6.9 Average parameter removal efficiency at Khayinga Plant

1.	Iron	96.10%
2.	Turbidity	95.76%
3.	Manganese	31.76%

This plant is similar in design to the Siginga one and they are both situated in the same water quality zone. Raw water iron concentrations were also quite close. The size of filter media in the plants was slightly different and it was found necessary to

determine the effect of the media size on efficiency and the length of the cycles. The results of comparison of efficiency and cycle length are as shown in Table 6.10.

Parameters	SIGINGA	KHAYINGA
Iron	95.8	96.1
Turbidity	95.75	95.76
Length of the cycle (days)	20	26
Media size (mm)	0.60 - 3.55	0.85 - 3.55

Table 6.10 Efficiency and cycle length at Siginga and Khayinga plants

Iron removal efficiency in both plants is almost the same (Table 6.10). This is in agreement with the findings by Hatva (1989). In his work with slow sand filters, he found that the media grain size does not affect removal efficiency. The slight decrease in grain size only affected the flow which resulted in longer queues during peak periods. Fig. 6.3.1 and 6.3.2 indicate that;

i. Initially after backwashing, flow rate increases rapidly and decreases with time.

Fig 6.3.1 Iron and Flow Rate versus Time at Khayinga Plant

Fig 6.3.2 Iron and Discharge versus Time at Khayinga Plant

Fig 6.3.3 Turbidity and Flow Rate versus Time at Khayinga Plant

Fig 6.3.4 Turbidity and Discharge versus Time at Khayinga Plant

- ii. As the flow rate decreases, iron removal efficiency increases.
- iii. Raw and treated water iron content does not depend on the amount of water drawn from the plant.

Raw and treated water turbidity vary with the amount of water drawn, (Fig. 6.3.2). As indicated in Fig. 6.3.3, flow rate has no effect on the turbidity of treated water.

From Fig. 6.3.1, it is clear that the initial filtered iron concentration values after backwashing are far much lower than those of Siginga Plant. However, time of stabilising appears quite similar. It should be noted that the quality of backwashing in these plants can affect initial filtered water iron concentration values. The rate of recovery to the optimum efficiency can be affected by haphazard introduction of contaminants in the systems. The communities easily wash the media on a surface which could have previously contained some detergents or other toxicants. This is in view and consideration that some bacteriological activity is involved in these systems. Theoretically, iron bacteria exists in marshlands similar to the location of these two particular plants.

Siginga and Khayinga plants lie in a marshland near the Lake Victoria and beside Nzoia River flood zone. The wells are therefore very shallow and continuous operation causes a disturbance in the well which results in turbidity increase of the raw water (Fig.6.3.4, 46th - 48th day). The designs of the plants should have taken turbidity into consideration.

Being a flood zone and a marshland, the water is high in organic content which could have formed organometallic combinations with iron. Though the designers were trying a system that has been shown to work elsewhere, difference in quality characteristics should have been considered. The high efficiency in presence of high organic matter content could only be attributed to bacterial activity.

From figure 6.3.5 just like in Siginga plant Coliform bacteria contamination occured in both raw and treated water. Backwashing of the well increased contamination of the filtered water and as shown at the start of the filter cycle the bacteria count in the filtered water is higher than in raw water. As mentioned earlier, this arises from backwashing technique and unless it is modified a means of disinfection in shallow well water points should be sought.

Figrue 6.3.6 shows that the concentration of Manganese in the raw water varies closely with that of treated water. The Manganese removal efficiency increases with time and reaches a maximum at the end of the filter cycle. The high increase in both raw and filtered water Manganese concentration after backwashing can be attributed to the Well disturbance due to the increased water demand at this time. The trend of

Manganese removal is similar to that of Iron but the efficiency differs due to high pH and redox potential requirement.

Figures 6.2.5 and 6.3.3 show the trend of Coliform organisms in raw and filtered water in Siginga and Khayinga plants. The reduction of Coliform bacteria in the filtered water is an important factor in water quality in the shallow wells. The efficiency of the plant in bacteria removal increases with time and reaches a maximum at the end of the filter cycle when the filtration efficiency is also at maximum.

Immediately after backwashing, the filtered water becomes more contaminated than the raw water. As mentioned earlier this is due to poor backwashing methods involving complete removal of filtration media and cleaning manually. This is one area where improvement is required in this Iron removal plant model. Among the four plants, only this plant has a borehole source. The water is therefore better in physico-chemical and bacteriological quality. The only problem has been taste and coloration on storage due to elevated iron concentrations. The removal efficiencies for the three parameters are as shown in Table 6.11.

 Table 6.11
 Parameter removal efficiencies at Shivanga Plant

PARAMETER	PERCENTAGE	
IRON	94.71	
MANGANESE	68.2	
TURBIDITY	94.9	

Manganese and turbidity of the raw water was relatively low and had not caused any complaints. Their concentrations were close to World Health Organization guideline values for drinking water. The quality of treated water from this plant met the WHO standards.

Raw and treated water was free of bacteriological contamination. Operation procedures in this plant do not allow for contamination at all. In Fig. 6.4.1, it is shown that filtered water iron concentration increases as the flow rate decreases.

Concentration of iron in the raw water has no effect on the filtered water iron concentration. This is an indication that the plant is not overloaded at the prevailing raw water iron concentrations.

The amount of water drawn (discharge) does not appear to have a significant effect on the filtered water iron concentrations (Fig. 6.4.2). The middle region of Figure 6.4.2, where the demand fluctuation is high, shows a dependence of filtered water iron concentration on discharge. This results from system disturbance. Variation of turbidity with discharge and the flow rate are shown on Figures 6.4.3 and 6.4.5. To a good extent, filtered water turbidity is dependent on the amount of water drawn (Fig. 6.4.3) due to continuous disturbance of the well.

Removal of iron involves oxidation of ferrous iron to ferric hydroxide which is trapped in the media and thereby removed from upward moving water (Equation 2). As the discharge increases, the increased pumping produces turbulence in the system disturbing the settling floc particles which result in increased turbidity in the filtered water. The increase in turbidity of the filtered water with time can also be explained as follows: There are several forces involved in floc formation which are chemical in nature. Saturation of these forces produces repulsion among various particles which are finally dislodged by upward moving water to constitute turbidity. Figure 6.4.1 shows how clogging affects the flow rate.

Fig 6.4.1 Iron and Flow Rate versus Time at Shivanga Plant

Fig 6.4.3 Turbidity and Discharge versus Time at Shivanga Plant

Fig 6.4.4 Turbidity and Flow Rate versus Time at Shivanga Plant

Fig 6.4.5 Manganese versus Time at Shivanga Plant

Action of nitrifying bacteria which occurs at late stages of filter cycle can result in oxygen depletion thereby reversing the ferric hydroxide formation reactions hence destabilizing the floc into smaller colloidal particles. The same can happen when clogging lowers oxygen concentration in the filter in the presence of sulphate reducing bacteria where hydrogen sulphide generated reverses the formation of ferric compounds.

6.5 Lugusi Plant

Removal efficiency for the three parameters is shown in Table 6.12.

PARAMETER	PERCENTAGE
Iron	85.56
Turbidity	48.97
Manganese	56.67

 Table 6.12
 Parameter removal efficiency at Lugusi Plant

Though the plant is efficient enough, it is the lowest among the four. This was highly surprising considering that this plant has a better aeration system than all the others. Due to its dual tank system, it is bound to have the highest retention time. The raw water in this plant is fair in quality in comparison to the other shallow well plants. The well has been at a possible spring outcrop and therefore the physicochemical qualities are similar to borehole well.

The plant is situated at the bottom of the Nandi Escarpment where there are plenty of good quality springs. From comparison with the other wells it appears that the quality complaint in this particular village is mainly due to availability of alternative sources. The treated water quality meets the WHO standard for drinking water.

In Figure 6.5.1, iron concentration in the treated water is almost constant and is independent of raw water iron concentration. This can be attributed to the high capacity of the plant at the present demand and the prevailing iron concentrations. The two tank system also ensures minimum turbulence in the filtration unit. The flow rate was almost constant during the $3\frac{1}{2}$ month operation. Due to this uniformity in treated water quality and flow rate, it was not found necessary to sample at a high frequency, samples were taken once a week.

For the $3\frac{1}{2}$ month operation, the plant had not shown any signs of clogging (Fig.6.5.1) and therefore was never backwashed. The amount of water drawn from this plant at the high peak period is far much lower than its capacity. This is shown in Figure 6.5.2 where filtered water iron concentration does not vary with the amount of water drawn. Flow rate is a measure of the rate of clogging. This plant did

not clog throughout the study period and therefore the flow rate was almost constant. Continuous operation of shallow wells results in a disturbance of water underground which increases turbidity. The increased turbidity is reflected in the treated water. In Fig. 6.5.3, it is shown that the raw water turbidity varies with that of treated water. Increase in the amount of water drawn during the peak hours affects the treated water turbidity. This is evident in Fig. 6.5.4 where discharge, raw and treated water turbidity vary uniformly. As mentioned above, turbidity increase in the well is a local effect created by turbulence as water is sucked during pumping.

In both Shivanga and Lugusi plants, manganese removal efficiency is far much higher than at the other two plants i.e 68 and 57% respectively. Manganese removal efficiency in these plants is low immediately after backwashing but increases with time (Fig. 6.5.3 and 6.5.6).

Coliform removal in Lugusi plant is evident (Fig. 6.5.5) and appears to follow a pattern. The filtered total coliform number varies with that of the raw water. Owing to rapid multiplication of bacteria, this plant cannot be considered very effective. A few bacteria colonies can multiply into vast colonies in a very short time and therefore a secondary means of disinfection should be considered for production of improved quality bacteria free water.

112

Fig 6.5.4 Turbidity and Discharge versus Time at Lugusi Plant

Fig 6.5.6 Manganese versus Time at Lugusi Plant

The primary concern for iron removal plant installation was water quality improvement. The cost, (capital and operation and maintenance), operation and maintenance convenience and availability of material are important parameters to consider to ensure sustainability of these plants.

Siginga and Khayinga plants are similar in design and represent the simplest model. This model can be installed by one artisan and two helpers in a single day. Among the three models, the cost of installation of this model is the lowest. The cost of installation is Ksh. 11,000 with estimated annual maintenance fee of 5% or Ksh. 550. Operation and maintenance activities include cleaning the filter media, replacing filter media and occasional pump repairs. 100% operation and maintenance needs and skills are met by the consumers themselves. The consumer representatives have been trained in all aspects of operation and maintenance of the installations and the type of pumps commonly used. NIRA AF 85 is the pump most commonly used in shallow wells.

The two plants are situated in the same water quality zone, but the salinity in Khayinga plant is higher. Also, raw water iron concentration in Siginga is slightly higher than Khayinga (Appendix A1-A4). The size of the media in Siginga (0.60-

3.55) is slightly lower than in Khayinga (0.85-3.55). Due to the similarity of design and raw water quality the iron removal mechanisms in these two plants are expected to be quite similar. The iron removal efficiency for Siginga (95.8%) was almost the same with that of Khayinga plant (96.1%). The slight effective media size difference only affected the filter cycle which was shortened in Siginga plant by six days. The standard originally set by the water Programme was 1.0 mg/l (Appendix B).

 Table 6.13
 Average quality of treated water at Siginga and Khayinga plants

PARAMETER	SIGINGA	KHAYINGA
Iron, mg/l	0.70	0.58
Manganese, mg/l	1.31	1.01
Turbidity, NTU	2.72	7.00

The mean filtered water iron concentration for Siginga and Khayinga were 0.7 and 0.58 mg/l respectively. Therefore the plants achieved the programme's anticipated quality of less than 1.0 mg/l. Though the efficiencies of these plants were the highest, it was not possible to achieve the World Health Organization standard (0.3 mg/l) for drinking water. According to the consumers, there has been occasional complaints. This indicates the requirement for redesigning or modification of the existing works.

There is no variation of filtered iron concentration with discharge (Fig.6.2.2 and 6.3.2). The general water quality trend in appendix A1-A4 shows that water quality improved when the time interval between successive consumers was increased (indicated by low discharge). This is an indication that iron removal efficiency is a function of retention time.

Turbidity removal efficiency in both plants is quite high (96%) with residual levels of 2.72 and 7.0 NTU for Siginga and Khayinga respectively. Filtered water turbidity is a function of discharge (Fig.6.2.3 and 6.3.3). Lowering discharge resulted in increased clarity (low turbidity) in the filtered water. Thus increase of dimensions of the plant, and/or modification to increase the retention time, will be necessary. This is in agreement with results of pilot studies by Frischherz et al., 1985.

Manganese removal efficiency in this plant model was lower than Lugusi and Shivanga with Khayinga plant (31.76%) being higher than Siginga (21.08%). Physico-chemical removal of manganese by aeration and settling is minimal at pH values lower than 9.5. Bacterially mediated removal of manganese has been shown to compete with nitrification (organic oxidation processes) and occur at late stages of the filter cycle.(Appendix A1-A4). Reduction of ammonia through filtration is evidence of nitrification processes. In both Khayinga and Siginga plants, manganese removal has been shown to begin at a low efficiency and increasing towards the end of the cycle. This finding, together with the low pH values prevailing in the removal systems, shows that microbiological or other processes other than physico-chemical might be involved in the removal processes. The effect of manganese on water quality has been masked by excessive iron concentrations and therefore, there has been no direct manganese related quality complaints.

As mentioned above, this plant model is easy to install and maintain, and the cost is affordable by the rural communities. The study site's good maintenance conditions were manifestations of sustainability of the systems. During the study, the hand pump broke down but was repaired overnight. The trained pump attendants for this particular model (Nira AF 85) are easy to reach at village level. Throughout the study period, backwashing of the plants was carried out by the consumers themselves. The greatest disadvantage in operation and maintenance of this plant model was the fact that backwashing had to be done by removing the media completely, washing on the slab, and then replacing it. This is a very inconvenient backwashing method. After a few filter cycles, there is substantial loss of media which must be made up. This does not only result in increased bacteriological contamination but also maintenance cost due to sand loss. To avoid contamination and filter media loss, either the method of backwashing is changed or a different design should be developed.

The method of backwashing has also been associated with the system disturbances and water quality deterioration. Raking or scrapping the top media as done in slow sand filtration is a better alternative. Raking can also introduce some contamination in these water supplies but is a good temporary measure pending design improvement. These measures would make the operation very convenient for the consumers.

Shivanga Plant has iron and turbidity removal efficiencies of 94.7% and 94.9% respectively and therefore close to that of Khayinga and Siginga plants. Among the four plants, Shivanga showed the highest manganese removal efficiency (68.2%). The average concentration values for the three performance parameters in the filtered water are as shown in Table 6.14.

WHIVERSITY OF HALLOW

120

PARAMETER	CONCENTRATION (mg/l)
Iron	0.19
Manganese	0.14
Turbidity	1.27

 Table 6.14
 Average quality of treated water at Shivanga Plant

Therefore, this plant met the WHO standards for drinking water. At an average raw water iron concentration of 3.59 mg/l, the plant had a filter cycle of seven weeks. This model is moderately sophisticated for the rural communities and therefore its installation requires experienced plumbers and masons. It also requires limited modification to an already installed hand pump but involves extensive pipe work.

Experienced artisans who were laid off by the Programme in the process of staff reduction usually became contractors within the communities and this has gone a long way in solving the technical skills requirement for installation of water treatment facilities. Information from the Programme's training section rates the consumer operation and maintenance participation at 75%. The basic construction materials, e.g., sand, gravel, piping and fittings are readily available in the programme area. The total cost of installing this model is Ksh. 16,000 with an annual maintenance fee of Ksh. 1,000.

As mentioned earlier, the main routine maintenance work is backwashing. Backwashing in this plant is carried out by opening the drain valve at the bottom. During the study, it was found that failure to backwash at the right time (after 7-8 weeks) can make the operation very inconvenient. The system clogs up to the extent that opening of the drain valve does not dislodge the precipitates. This results in the complicated work of removing the media and washing it manually. Therefore, though very convenient to operate and maintain, negligence can lead to complicated and time consuming procedures.

As mentioned in Section 6.4, the plant's capacity in terms of iron concentration and discharge is not yet exhausted, there is no need for any other design changes at present apart from mobilization of communities to participate in operation and maintenance.

Though Lugusi Plant has the lowest iron removal efficiency, the filtered water meets the WHO standards for drinking water. This is due to the low raw water iron concentration involved. The quality of the treated water is shown in Table 6.15.

PARAMETER	CONCENTRATION
Iron	0.13 mg/l
Manganese	0.13 mg/l
Turbidity	2.2 NTU

Table 6.15 Treated water quality at Lugusi Plant

In comparison with the other plants having shallow well sources (Siginga and Khayinga) the raw water at this plant is far much better and the water demand at present allows reduction of iron concentration to acceptable level. The fact that raw water iron concentration does not affect the removal efficiency of iron is an indication that this plant can also cope with higher hydraulic load than the hand pump discharge. The variation in discharge does not affect the filtered water iron concentration. The plant operated for $3\frac{1}{2}$ months without clogging and this shows that its capacity to remove iron is too high for the current population. Since the plants are designed to serve 200 to 300 consumers, this plant's high capacity ensures good quality water and extended filter cycles even at maximum consumer population. The plant has a high manganese removal efficiency (56.67%) which has been explained as due to a good aeration system and the resultant high pH. This finding can be useful where the groundwater contains excessive manganese.

Alkalization and modification to increase aeration efficiency has lead to improvement in manganese removal in Finland (Hatva, 1989). The plant was also meant to remove bacteriological contamination. The results indicate inadequacy and other techniques have to be used if the water is to be free of bacteria. Since installation of this plant, maintenance has been carried out by the Programme. Initially, there was a dispute over the well ownership and this prevented participation by consumers and training of attendants.

The plant is the most sophisticated of the three models and takes seven to ten days to install. The total cost of installation has been given as Ksh.27,000. Installation involves a lot of pipe work which requires elaborate maintenance procedures. This system involves pumping of water over a delivery head into the aeration tank. An ordinary India Mark II pump has to be modified and this leads to technological sophistication. Leaks through valves and the hose pipe have frequently caused shutdown over long periods. Backwashing of the plant is quite convenient and is the main routine maintenance. This is made even better by the long filter cycles (3¹/₂ months).

7.0 CONCLUSIONS AND RECOMMENDATIONS

Observations from the survey casts a dull image of operation and maintenance conditions of the existing plants (Table 6.2 and Plates 11 and 12).

Information from the field survey indicates that most of the existing plants are Siginga and Khayinga models. Most of the plants were found to have been either abandoned or poorly maintained. Examples are shown in Plates 11 and 12. The main reason for poor maintenance of most of them can be given as poor community participation in operation and maintenance. Backwashing technique has also resulted in bacteriological quality deterioration. The solution to the problem would be to change to the raking method to remove the top mud and iron hydroxide precipitates or to redesign the plant into an upward flow filter in the final stage. By doing this, backwashing would only involve opening a drain valve. To achieve treated water iron concentration of 0.3 mg/l would require design modifications. Increasing the detention time by extending the plant to include a pretreatment unit would increase the efficiency to achieve iron concentration levels below 0.3 mg/l. Concentration of iron at which different communities respond to iron and hence raise objections vary depending on the past water quality problems and experiences. Therefore the fact that there is high iron concentration in a certain area will not

automatically desire removal systems. Iron removal considerations should be guided by complaints which have to be confirmed by laboratory before any action is taken. For the consumers to appreciate and hence become committed to maintenance, the iron removal plant installation should follow a demand driven approach. The consumers should also be thoroughly trained on all aspects of operation and maintenance. Poor community participation was caused by poor mobilisation and training coupled with availability of alternative sources and tedious backwashing techniques.

Various categories of artisans e.g. plumbers, masons etc., who can be utilized for installation, have been trained and are easily available all over the programme area. This, coupled with the fact that all the raw material required can be found within the programme area, will make future developments quite sustainable. From the results and discussions, it can be concluded that in all the plant models, treatment resulted in water quality improvement. Efficiencies of iron and turbidity removal was highest in Khayinga and Siginga plants, followed by Shivanga plant.

Khayinga and Siginga plants are efficient enough to remove Iron to levels below 1.0 mg/l which is the programme guideline concentration but could not achieve WHO standard of 0.3 mg/l.

The present reduction from 14 mg/l to 0.50 mg/l and from 17 mg/l to 0.7 mg/l in Khayinga and Siginga respectively is a drastic improvement which was highly appreciated by the consumers. Colour and turbidity are very important quality parameters to rural communities. The plants have been quite efficient in turbidity removal and hence, the resultant reduction in staining of fabrics and discoloration of tea. Coliform removal in these plants is not very effective and thus, appropriate disinfection technique should be formulated.

Khayinga and Siginga plants are good examples of successful technical implementation and sustainability. The quality of water produced is highly improved and acceptable. The communities are adequately maintaining the plants and the technology level is to the tune of rural communities. In most cases where this model has failed, it can be blamed mainly on community mobilization and operation and maintenance training. Shivanga and Lugusi plants produce water of high quality which always met WHO standards. The consumers of these plants are not organized to manage them. As mentioned before in discussions, due to:

(i) lack of mobilization,

(ii) availability of alternative sources and

(iii) well and land ownership disputes,

these plants will not be sustainable. As per technical implementation, the plants were quite successful and represent models convenient to operate and maintain.

The primary concern of initiating the Iron removal project was to develop a technologically simple and affordable system for Iron removal using the locally available material. As highlighted in earlier chapter the Iron removal plants were designed to suit the available rural technology. The details of routine maintenance as described in cahpter 5 are simple and have been practised by the consumers successfully since 1985. Now that the programme's final implementation phase is almost complete the beneficiaries will be required to meet the cost of maintenance of their water supplies and where possible initiate development of new ones. The local office of the Ministry of Land Reclamation, Regional and Water Development will provide the necessary technical assistance required by the communities. The reduction of implementation activities by the water programme has left a lot of trained artisans available for maintenance assignment in various water points within the communities. The availability of maintenance funds is ensured by water committees who are directly in charge of the running of the water points.

Experience from Siginga and Khayinga water points where active water committee exist show that the communities are capable of funding operation and maintenance of Iron removal plants comfortably.

The water committees have opened accounts in the local banks and financial institutions where the money collected from the consumers is deposited and withdrawn when need arises. Simple routine maintainance of the water points is usually carried out by a few members of the consumers who have been trained through the programme's community training and development department. Iron removal construction materials (sand, cement and gravel) and hand pumps are readily available in the programme area at affordable cost.

Handpumps and their spares are available at the programme's offices at Kakamega. All the pump models are also available from the dealers in Nairobi. Plans are underway to have the pump spares stocked at selected handware shops in the divisional centres. Details on the installation cost are shown Appendix C as follows:-

Khayinga and Siginga-KShs. 11,000.00Shivanga-KShs. 16,000.00

Lugusi

Basing the choice on cost, Khayinga and Siginga models would be the most acceptable. The main draw back on this model has been inconvenient operation and maintenance procedures which as described earlier can be modified at no extra cost. The second choice is Shivanga model and the most expensive is Lugusi. Lugusi model was also found to be least efficient of the three models and would be least favoured.

Combining all the factors, e.g., treatment efficiency, technological level, operation and maintenance convenience and acceptability, Khayinga and Siginga models would be the choice. Though most of the plants have been neglected, the Programme has spent most of the time training the communities on this model. Success of any rural project depends on technical implementation and acceptability and hence, participation by the beneficiaries. The Iron removal project was a technical success. The technology used in these plants is within the level of the rural communities and the materials used are available locally and within the project area. Despite the technical success the Iron removal project did not proceed as intended due to problems related to community participation as follows:

- (a). The plants were not acceptable in most communities. The plants were installed without the knowledge of the consumers who were not aware of the problem the Programme was trying to solve.
- (b). Where implementation was prompted by water quality complaints, installation was not done concurrently with operation and maintenance training. Implementation was done by contractors whose main interest was to finish the work and get paid.
- (c). To some extent, the adopted model (Khayinga and Siginga) was inconvenient to backwash and clogging was often followed by abandonment.

7.1 Summary of Recommendations

 Design modification in high iron and turbidity waters (e.g. Siginga and Khayinga) should include pre-treatment and/or pre-settling units. Taking all factors to be constant, the cut-off raw water iron concentration requirement in order to achieve 0.3 mg/l in filtered water at a removal efficiency of 96% would be about 8 mg/l. Raw water iron concentration beyond this value would require increase in efficiency.
As mentioned in Chapter 5, Siginga and Khayinga models are modified slow sand filtration. Experience gained in Finland led to the following design guidelines:

- a. Pre-filtration contact time of 30 minutes
- b. Hydraulic load 0.1 0.4 mh⁻¹

These guidelines have not been closely followed and the current contact time and hydraulic load are completely out of this range e.g

Pre-filtration contact time - 1 Min

System retention time - 5 Min

Hydraulic load - 7.5 m/h

This is for a filter surface area of 0.4 m² and an average flow of 50 l/min

2. Shivanga and Lugusi models should be tried in high iron concentration waters in different quality zones.

- 3. Rehabilitation of the existing plants should be done concurrently with 'on the job' training for consumers. A follow up programme should be formulated and its frequency to be determined by the consumers response and hence the effectiveness of the training.
- 4. Where the communities response is poor and the plants' maintenance conditions continue to deteriorate, the only solution would be to dismantle the installations. This will save the communities from drinking heavily contaminated water.
- 5. Installation of new plants should follow a demand driven approach. The communities should present their water quality problems first and formulation of solutions should involve them. Training should start before the iron removal plant installation and continue during the construction until completion. Operation and maintenance training and follow-up should be carried out until the community is fully conversant.

8.0 SUGGESTIONS FOR FURTHER RESEARCH

Design and development of any water treatment plant requires that thorough investigations on the actual mechanisms involved are carried out in the laboratory and pilot plants. Physico-chemical and microbiological processes are involved in iron removal by contact filtration and their relative contributions varies from place to place. Knowledge of relative contributions in different water quality regions would yield invaluable information for design development and modifications.

In biological systems, favourable conditions must be created to enhance bacterial growth. In physico-chemical iron removal systems, optimization of chemical dosages, contact time, air supply etc, must be considered for efficient removal. Preliminary information on the bacteriological contribution in the iron removal systems can be obtained by observing the effect of disinfection on the removal efficiencies in a pilot plants. If disinfection is shown to affect the removal efficiency, it will be a confirmation of bacteria participation and hence characterization of various types of bacteria should follow. The efficiency of iron removal in biological systems depend on growth rate of micro-organisms which has been found to be influenced by environmental factors eg. salinity, pH, oxygen content, organic matter and nutrients. The optimal Carbon: Nitrogen: Phosphorous

ratio has been found to be 125: 11: 1 (Hatva et al., 1985). In Finland it has been shown that clogging of filters varied with the kind of bacteria present. Introduction of gallionella and leptothrix extended the filter cycle to one year as opposed to a few weeks when chrobium and metallegenum were utilized (Mellyvirta, personal communications, 1987).

Generally, bacterially mediated iron removal has not been thoroughly studied in Kenya. Knowledge of various types of bacteria involved in iron removal and their rates of growth in various environments should be extensively studied. The effect of variation in redox conditions, oxygen concentration and pH, nutrient level, ammonia etc on the removal efficiency will yield important information to supplement the existing literature which has mainly been obtained in the temperate lands. The studies can be carried out in and outside Western Province.

and i provide the problem of the state of th

Hamilpubl, M.S. (Wilcowski, J.T. and Constraint, 1997, Ivan second, by method and filterate, Journal Wester and George Wome, Int. UR and R.P. (22-17).

9.0 REFERENCES

- Baumann, E.R. 1971 Diatomite filtration of potable water. American Water Works Association (AWWA). Water quality and treatment, A handbook of public water supplies, 3rd ed. McGraw-Hill book company, New York, U.S.A. p. 280 - 294.
- 2. Beger, H. 1966 Introduction to the biology of water and domestic sewage, Gustav Fischer, Stuttgart, Germany. 360P.
- Cecil Chibi, 1991 Design and performance of a community level iron removal plant, water lines Vol. 10. No.2, p. 9 - 10.
- Cheremisinoff, P.Valent.J.and Wright.D. 1976 Potable water treatment, technical and economical analysis, chapter 2, Journal Water and Sewage Works, vol. 123 no. 4, p. 66 - 68.
- Cox, R.C.1969 Operation and control of water treatment processes, WHO monograph series, no. 49. Geneva, Switzerland.
- Czekella, C.Mevius, W. and Harnet.H. 1985. Quantitative removal of iron and manganese by micro-organisms in rapid sand filters (in situ investigations), Specialized conference on contamination of groundwater and groundwater treatment I.W. S.A., Water Supply, vol. 3, Berlin 'B',p. 111 -123.
- Engelbrecht, R.S. O'Connor.J.T. and Ghosh.M. 1967. Iron removal by aeration and filtration, Journal Water and Sewage Works, vol. 114 no. 4, p. 123 - 128.

- Frischherz, M. ,Zibuschka F., Jung H. and Zerobin W. 1985 Biological elimination of iron and manganese, Specialized conference on contamination of groundwater and groundwater treatment, I.W.S.A., Water Supply vol. 3, Berlin B', p. 125 - 136.
- Gottfreund E. Gottfreund J., Gerber I., Schmitt G. and Schweisfurth R. 1985. Occurrence and activities of bacteria in the unsaturated and saturated underground in relation to the removal of iron and manganese, Specialized conference on groundwater management, I.W.S.A. Water Supply vol. 3, Berlin, 'A', p. 109 - 115.
- Grombach P. 1985 Groundwater treatment in situ in the aquifer, Specialized conference on contamination of groundwater and groundwater treatment, I.W.S.A, Water Supply vol.3 Berlin 'B', p. 13 - 18.
- 11. Hallberg O.R. and Martinell R. 1976 Vyredox In situ purification of groundwater Journal, Groundwater, vol. 14 no. 2, p. 88 93.
- 12. Hatva, T. 1989 Iron and manganese in groundwater Finland. Occurrence in glacifluvial aquifers and removal by biofiltration. p. 14 & 221.
- Hatva T., Niemistro L.and Seppanen H. 1973 Examination and removal of iron in groundwater. AQUA FENNICA Vol. 3. p. 82 -94.
- 14. Hatva T., Niemistro L. and Seppanen H. 1971 Some aspects on the retention of groundwater iron in the soil. Vesitalous, vol. 12, no. 5, p. 1-8.
- Hatva T. Seppanen H., Vuorinen A. and Carlson L. 1985 Removal of iron and manganese from groundwater by re-infiltration and slow sand filtration, AQUA FENNICA 15, 2: p. 211 -225.

- 16. Hatva T. and Seppänen H. 1983 Treatment of groundwater with slow sand filtration method. 109P.
- Ghosh M.M., O'connor J. and Engelbrecht R.S 1966. Precipitation of iron in aerated ground waters. Journal of Sanitary Engineering Division. Proceedings of the American Society of Civil Engineering, Vol. 92 No. SA, p. 199 - 213.
- Hem, J.D. 1963 Chemical equilibria and rates of manganese oxidation. Geological Survey, water supply paper. paper 1667B.
- 19. Hem, J.D. 1961 Stability field diagrams as aids in iron chemistry study, Journal of American Water Works Association, vol. 53, no. 2, p. 211 - 232.
- 20. Holden, W.S. 1970 Water treatment and examination, Longman Group Ltd, London, Great Britain. p. 7.
- Huisman, L. 1977 Rapid filtration, Part 1, Delft University of Technology, Department of Civil Engineering, Division of Sanitary Engineering, Netherlands.
- Joshi, D.L. 1989 Removal of iron by matrix filtration. Thesis paper No. EV 89-12, Asian Institute of Technology, Bangkok, Thailand.
- Juhani Heinanen. 1985 A study on groundwater iron and its removal in Kenya-Finland Rural Water Supply Programme area. p.50 - unpublished report.

- Kibret, A. 1986 Dry filter application in water treatment for iron removal. Tampere, Tampere University of Technology. 108 p. Masters thesis, Department of Civil Engineering.
- 25. Kooijmans, L.H.L. 1955 Aeration and differisation, international Water Supply Association 3rd Congress. London, U.K.
- 26. Kucera, S. and Wolfe, R.S. 1957 A selective enrichment method for Gallionella Ferruginea, Journal of Bacteriology, vol. 74, p. 344 349.
- Kwame Ofori-Tutu, 1989 Removal of iron from Groundwaters, 15th WEDC Conference. Kano, Nigeria,
- 28. Leher, H.J., Gass E. T., PettyJohn A. W. and Demarre J. 1980 Domestic water treatment, McGraw-Hill. Inc., New York, U.S.A., p. 172 178.
- 29. Lundgren, D.G. and Dean, W. 1979 Biogeochemistry of iron, Studies in environmental science, 3, Amsterdam, the Netherlands. p. 211 251.
- 30. Mellyvirta, 1987 Personal communications.
- O'Connor J.T. 1971 Iron and manganese. American Water Works Association (AWWA). Water quality and treatment, A handbook of public water supplies, 3rd ed. McGraw-Hill book company, New York, U.S.A., p. 378 - 396.
- Patnaik S.M. 1991 Small Iron Removal Plants, Developing World Water.
 p. 218 219.

- Richard, Y. 1978 Biological methods for the treatment of groundwater, E.P.A. Conference on oxidation techniques in drinking water treatment, Karlsruhe, p. 560 - 585.
- Robinson, Jr. L.R. 1967 The effect of organic materials on iron removal in groundwater, Journal, Water and Sewage Works, Vol. 114, no. 10, p. 317 -382.
- Robinson, Jr. L.R. and Dixon, R.F. 1968 Iron and manganese precipitation in low alkalinity groundwater, Journal, Water and Sewage Works, Vol. 115, No. 11, p. 514 - 518.
- Rott, V. 1985 Physical, chemical and biological aspects of the removal of iron and manganese underground, Specialized conference on groundwater management I.W.S.A., Water Supply vol. 3, Berlin 'A', p. 143-150.
- Shrode, L.D. 1972 Potassium permanganate: Use in potable water treatment, Journal, Water and Sewage Works. Reference no. 1972, p. R10 - R19.
- Snoeyink, V.L. and Jenkins, D. 1980 Water chemistry. John Wily and Sons, New York, U.S.A. 453P.
- Standard methods. Examination of water and waste water. 14 ed. 1975
 American Public Health Association, Washington, U.S.A.
- 40. Stumm, W. and Lee, G.F. 1960 The chemistry of aquaous iron Vol. 22, p. 295 319.

- 41. Stumm, W. and Morgan, J.J. 1970 Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. Second Edition. New York, John Willy and sons. 780 P.
- 42. Techlinger, G., Kasper W., Scholler and Seidelberg F. 1985 The removal of iron and manganese in groundwaters through aeration underground, Specialized conference on contamination of groundwater and groundwater treatment, I.W.S.A. Water Supply, vol.3 Berlin 'B', p. 19 - 25.
- 43. Viegand, S. 1984 Iron removal from groundwater Iron removal plants for hand pump installations in India, Master thesis, Department of Environmental Engineering, Technical University of Denmark.
- 44. Weng, J.M. 1984 Chlorination Filtration for iron and manganese removal. Journal of American Water Works Association, vol. 76, no. 1, p. 76-79.
- 45. Wolfe, R.S. 1958 Cultivation, Morphology and classification of the iron bacteria, Journal of American Water Works Association, vol. 50, p. 1241-1249.
- 46. World Health Organization (WHO). Guidelines for drinking water quality, 1984 vol. 1, recommendations, Geneva.
- Zirschky, J. and Carlson, L. 1984 Overland flow for iron removal from potable water, journal of American Water Works Association, vol, 76, no. 1, p. 80 - 83.

Contraction of the second

APPENDICES

1.15											
					ΞŶ.						
				11	APP	END	DIX A	86			
	'e g.										
					28				2.8		
								22			

APPENDIX A1 SIGINGA PLANT (BS-9)

Date	-	Sangie	Feitum Inna ing Fe ^{ta} A	Total tron mg Fa/l	Pares.No reg KaseOyl	Hitesta mg MOyA	Mitris mg N13yl	Antercula ing NH ₂ A	Dissolved Oxyges mg Q/I	Colour ug PM	Turbidity N.T.U	Carbon Dice ide mg CO ₂ /I	Total Alkalinity mg CaCO_A	Total Hardness mg CaCOA	Prod.	pH Unite	Confect, anton	Magazar ng Ma1	Pion	Total Cotiform ppr 100 ml
02.06.45	8.00- 2.00pm	3	•	c	K		w	^	S	н	1	N	G							
N	200-	RAW	51	17.4					1.1	340		170	30	100						
	Allipe	PILT	2.31	10,5					1.5	60	10	85	250	215		6.65	480	1.0		
	1.00-	RAW	515	17.0	19.5	0.09	0.33	2.85	l u	100	22		200	700		-		10		
	6.00pm	FILT	2.25	2.5	9.6	0.12	0.32	2.66	2.5	10	11.5	178	245	200		6.5	476	1.0	0.18	25
01-01-05	705-	RAW	5.5	18.0					15	120	50	152	258	200	-	6.62	467	1.0		
	K/Ohm	FILT	00	10					5.0	3.0	1.0	140	260	200		6.55	467	1.3		
	L.00-	RAW	SD	16.5					12	120	52	_	256	220	60		460	1.14		
	11.00mm	FULT	002	0.22	100		1.00	_	4.3	5.0	1.2	-	255	200		10.1	457	1.6		1.0
	11.00-	RAW	51	17.0					1.54	150	55	175	275	201	120		449	1.3		-
	2.00pm	PILT	0.04	0.35					0.9	4.0	1.5	177	270	196		1.1	458	1.3		
	2.00-	RAW	5.4	17.0					27	110	90	-	261	198	50	6.55	476			
	100pm	FILT	0.02	0.2					2.0	3.0	1.0		250	200		6.5	460			
	3.00-	RAW	50	17.0	18.50	0.19	0.26	3.10	3.5		65	195	260	200	260		460			
	6.00pm	FULT	0.04	0.7	8.9	0.30	0.24	3.08	1.9		3	185	275	200	-		458		0.18	17
04.0645	7.00-	RAW	50	17.0					1.95	100	53	170	275	196	30		489			
	LOCIM	PILT	0.00	0.13					5.30	3.0	1.5	135	263	189	-		480			
	8.00-	RAW	50	16.3					3.30	100	90		250	196	70	6.45	470	1.4		
	11 Chain	PULL	002	0.26				111	5.8	4.0	1.4	-	265	198	-	6.4	460	1.5		
	11 00-	RAW	4 50	14.5					2.2	155	55	182	260	198	100	6.5	462	1.3	-	
_	2.00pm	PRLT.	0.04	0.10				1.1	0.65	5.0	1.6	176	247	197		6.50	476	1.3		
	2.00-	RAW	50	170					3.6				275	200	140	64	485	1.5		
	3.00pm	PILT	001	0.94					2.0				277	195		6.3	462	13		
	3.00-	RAW	5.7	17.0	19.2	0.16	0.52	3.6	2.9		40	165	250	180	160	6.5	460	1.0		10
	6.000	PILL	U.U.	0.	6.2	0.105	0.48	3.65	2.0	<u> </u>	1.8	164	257	178		6.4	457	1.3	0.13	15
07-06-95	8.00-	RAW	50	170					1.70	120	58	120	246	189	50	6.38	460	1.2		
	11.000	Fill.	003	0.07					5.0	20	1.0	70	250	183		6.5	470	1.3		
	11.00-	RAW	5.0	17.0					2.8			174	260	200	120	6.44	453			
	1 UUpin	PILI	0.07	0.15					4.9	_	1.1	123	248	200		6.40	450			
	1.00-	RAW	5.2	17.2					23				248	204	30	6.5	448			
	200pm	FUT	0.0%	01					0.75	1.1			248	187		6.4	448			
	200-	RAW	5.8	15.2					3.50	90	50		250	205	60	647	497			-
	3.00pm	PUT	0.05	0.10					2.20	5	2		248	199		6.46	462			
	3.00-	RAW	5.0	17.0	18.80	0.15	0.00	0.33	2.7	105	52	154	277	204	240	6.6	478			17
	6.00pm	FILT	01	03	8.5	0.155	0.09	0.20	2.10	5	25	175	270	195		64	459		0.10	9

the second se

APPENDIX AI (Cont.) SIGINGA PLANT (BS-9)

Dan	Time	Sample	Propus loss sug Po ^{te} d	Total Imu Hg Part	Perm. No. mg KanaO ₂ A	Minute ang NO ₄ A	Nizrik mg NO ₄ 4	Ammonia mg NHL/1	Dissolved Daygen mg Oyl	Ostawer mit PM	Turbidhy N.T.U	Carbos Dios ids mg COyl	Total Alkalishy ung CaCO ₂ A	Total Hardson mg CaCO ₂ A	Prod is is	pi i Unita	Combust. #6/cm	Marganese mg Mart	Flow Rate Ve	Total Coliform Per 100 ml
-	100-	RAW	5.0	17.2		0.320	0.43	243	1.5	110	10	210	262	300	10		430	1.1		
	A.Diper	PLT	0.05	0.1		0.8	0.40	24	5.8	2	1.0	158	250	168		-	473	1.4		
	8.00-	RAW	50	17.0					21		50	1.00	240	178		4.5	473	1		
	31.00pm	FILT	0.08	0.18					4.1		1.3		255	200		6.36	473	1.2		
	11 00-	RAW	50	15.0					25		70		777	300	120	6.5	470	1.1		
	1.00pm	FILT	0.5	0.25					1.13	-	1.7		258	200		6.4	462	1.3		
	1.00-	RAW	50	170						130				100				1.5	1	
	2.00	FH T	0.07	015					2.6	1.0	1.2		253	200	30	64	467			
	2.00-	RAW	53	16.7					230	1.74		1.96		100	100					
	3.00pm	FU.T.	01	0.34		1			1.73	2	1.8	194	255	168	100	6.4	467			
	100-	RAW	5.0	17.2	13.6	0.72	0.66	5.60	1 31		75	185	250	210	280	1 63	467	20	0.00	
	6.00	FILT	0 Di	0.35	6.4	0.90	0.90	5.10	2.70		3.5	167	252	198	-	6.5	468	1.4		3
10-06-95	7.30-	RAW	50	170	-				2.60	130	50	190	270	200	10	65	453	11	1.000	
	8.30mm	FILT	0.02	0.15					6.4	0.8	0.5	150	248	200	-	13	450			
	110-	BAW	50	17.5						1.00										
	11.10mm	FILT	0.09	0 25					1.9	1.5	1.4		250	193 *		6.2	454			
	11.30-	BAW	\$.7	17.3					1.70	-	1		260							
	2.00pm	FILT	0.15	0.3					2.40			156	248	193	100	6.3	450			
	2 00-	TAW		170		1											1			
	3.00pm	FU.T	10	0.25				_	1.30		1.4	1	257	167	100	6.2	467			
	100-			17.5			0.00													
	6.00pm	FILT	0.2	0.4	1.7	0.22	0.21	4.72	1.93		2.2	165	273	220	240		470	1.5	0.06	15
11.06/95	7.00-	RAW	5.0	17.0		0.06	0.34	145	16	110	-	167	170	-					-	1
	8.00pm	FILT	0.05	0.1		0.53	0.12	3.20	5.3	3	1.0	148	266	200		64	465			
	6.00-	RAW	5.3	17.5	100			1.1	1	1.00		_						1.5	1	
	11 (Dam	FILT	0.07	0.2		-		-	3.2	3	1.2	-	250	199	15	6.0	478		1	
1000	11.00-	RAW	52	17.0					1.000	-						1		-		
	1.00pm	FILT	0.25	04					1.25	s	1.5	183	250	204	200	60 5.2	450			
_	1.00-	PAN		17.0			-	-												
	2.00pm	FILT	0.2	0.35					1.6	4	1.3		272	200	50	6.5	468	12.5		
	2.00-	RAW	50	120							-									
	LUOpm	คเา	0.2	0.3					20	5	20		270 270	200	150	6.55 6.4	478 462			
	3.00-	RAW	5.7	15.2	19.5	0.15	1.13	5.2	2.65	130	65	194	262	200	250	66	470	1.4		1
	6.00pm	FILT	0.25	0.43	1.9	0.38	1.40	44	1.95	4	2	198	258	196		6.3	470	1.3	0.06	1

APPENDIX A1 (Cont.) SIGINGA PLANT (BS-9)

-	Tax	Sample	Ferrous tron mg Fe _p A	Total Lon ng Fe/1	Perm. No. ng KmaQy1	Nitrate ang NOyA	Nitrite mg NOy1	Ammonia mg NH ₂ 1	Dimolved Oxygen mg Oyl	Colour mg PM	Turbidity N.T.U	Carbos Dioxide mg COyA	Total Alkalinity mg CaCO ₂ A	Total Hardness mg CaCO ₂ A	Prod. in Its	pH Units	Conduct.	Manganose mg Mn/I	Flow Rate Us	Total Coliform Per 100 ml
14:06:93	7.00- 8.00pm	RAW FILT.	5.4 0.04	17.5 0.098		0.24 0.26	1.56 1.57	0.04 3.00	1.6 4.6	220 3	50 0.7	153 76	250 247	-	60	6.55 6.5	472 470	14		
	8.00- 11.00pm	RAW FILT.	5.4 0.05	1.7 0.12					1.3 3.8	200 2	55 1.0		273 270		80	6.4 6.35	470 470	1.3 1.3		
	11.00- 1.00pm	RAW FILT.	5.2 0.055	17.0 0.11					21 1.1	178 2.2	64 1.3	145	270 263	215 192	150	6.5 6.3	474 468	1.4		
	1.00- 2.00pm	RAW FILT.	5.3 0.05	17.0 0.09					1.13 6.53	134 2.0	47		270 263	212 208	•	6.5	477 474			
	2.00- 3.00pm	RAW FILT.		-					-	-	-	-	2	-		-	1	1		
	3.00- 6.00	RAW FILT.	5.0 0.056	17.0 0.36	15.8 9.0	0.12 0.16	0.88	2.20 1.93	2.80 1.7	186 3.3	74 2.7	173 197	260 258	198 195	260	6.55	488 476	1.13	0.06	19 10
17/06/95	7.00- 8.00mm	RAW FILT.	5.6 0.026	16.0 0.08					2.30 5.6		-	192 74	295 253	250 201	40	6.6 6.5	453	1.4		
	8.00- 11.00am	RAW FILT.	5.6 0.03	16.8 0.06		Dir	-	-	1.2 6.75	200 3	60 2		290 282		90	6.43 6.4	540 501	1.4		
	11.00- 1.00pm	RAW FILT.	5.0 0.04	17.8 0.089			. 1		3.40 2.70	1	P	153 123	279 281	200 190	120	6.5 6.3	486 471	1.3 1.0	-	
	1.00- 2.00pm	RAW FILT.	5.0 0.05	16.8 0.10		-			1.70 0.60	-	-	12	288 253	195 200	20	6.4 6.4	489 480	1.3 0.9		
	2.00- 3.00pm	RAW FILT.	50 0.06	17.4 0.115		- 1	11. 11	-	2.70 1.58	162 1	48 0.8		290 278	195 190	NO	6.5 6.45	508 480	1.3 1.2		
	3.00- 6.00pm	RAW FILT.	5.0 0.062	17.0 0.30	16.40 11.1	0.07 0.17	0.65 0.64	1.30 1.12	2.9 2.0		53 2.4	169 173	295 254	201 140	200	6.5 6.3	463 465	1.4 0.6	0.06	15 7
18.06/93	8.00- 11.00am	RAW FILT.	5.60 0.022	16.5 0.078	2.42 5.78	ing G	102	1	1.55	180 1.5	48 0.6	187 125	270 268	200	200	6.6	470		(1)	
-	11.00- 1.00pm	RAW FILT.	4.3 0.03	16.3 0.08		10.0	101 113	251	2.20 1.30	-		168 132	290 268	182 190	180	6.5	420 463	20		
	2.00- 3.00pm	RAW FILT.	4.5 0.036	16.9 0.11		ane i	101-1	10	5.2 2.3	-	-		268 260	195 167	60	6.5	482 463	1		
	3.00- 6.00pm	RAW FILT.	5.0 0.063	17.0 0.35	17.1 12.7	0.056 0.160	0.63	3.35 2.95	2.6 2.10	128 2.0	50 1.6	194 170	295 254	201 140	200	6.5	463	1.4	0.05	

APPENDIX AI (Cont.) SIGINGA PLANT (BS-9)

Den	Tax	Sample	Ferrous Iron mg Fe ^b /l	Total Iron mg Fe/1	Perm. No. mg KmnOy1	Nitomic mg NOyA	Nikrike mg NO ₂ 1	Ammonia mg NH ₄ 1	Dissolved Oxygen mg Oyl	Colour mg PM	Turbidity N.T.U	Carbon Dioxide mg COy1	Total Alkaliaity mg CaCO ₂ /	Total Hardness mg CaCOyl	Prod. in Ju	pH Units	Conduct. #5/cm	Manganese mg Mn/l	Flow Rate VSec	Total Coliform Per 100 ml
21.06.93	7.00-	RAW FILT	4.58	15.7		0.13	0.2	434	1.6	153	56	235	299	232	20	6.5	366	13	-15-0	Pro set of
and the second second	1.00	2.5.8	4.1	1.000			1	100	1	1 million		1 "	205	145	1.0	0.44	308	0.6		
	8.00- 11.00pm	FILT.	5.0 0.06	16.5 0.059		12		1	1.9 1.1	162 3	48 2.5	1	300 254	205 191	60	6.6 6.4	443 437	1.3 1.0		
	11.00- 1.00pm	RAW FILT.	4.8	14.5 0.07		6176	100	-68	2.2 1.7	188	67 3	198 176	280 266	224 210	130	6.6 6.45	501 478	1.9 1.3		
	1.00- 2.00pm	RAW FU.T.	4.8 0.05	15.5 0.09		1.744		1.11	1.9 0.9	15	1		300 266	219 211	60	6.3 6.2	468 470	1	-	
	2.00- 3.00pm	RAW FILT.	5.6 0.05	17.0 0.08		0.1%	=		3.10 2.5	124	53 2.0		268 255	240 228	80	6.3	482	1.4	1	
	100-	PAW	50	160					1.10	1.11	1.00	129		10	1.00	14	473	1.0	1	1.1
_	6.00	FILT.	0.05	0.45	12.9	0.85	0.06	0.96	20	178	56 1.5	184	290 281	193 179	200	6.56 6.57	422 423	1.6 0.9	0.05	6 2
22/06/93	7.00- 8.00mm	RAW FILT.	4.8	16.5 0.2	1.22		1		1.50 5.7	180	52 1.0	212 165	290 279	238 209	50	5.8 6.0	463 421			1
	8.00- 11.00am	RAW FILT.	5.2 0.07	16.0 0.51	17.5 8.7	0.13 0.54	0.35 0.00	3.35 2.42	1.9 2.20	150 5.4	65 1.5		302 284	190 175 -	100	6.88 6.39	486 494	1.2 0.4		
	11.00- 1.00pm	RAW FILT.	4.76 0.08	16.0 0.51					2.70 1.75	157	65 1.5	168 174	295 255	208 187	160	6.58	436	21	0.05	1:
	2.00pm	в	•	с	ĸ		w		s	н	1	N	G							
23/07/93	9.00- 11.00am	RAW FILT.	5.6 0.7	14.85 1.06		0.0 0.013	0 0.516	3 233	0.5 0.8	244 20	46	152 39			54	6.62 6.51	434 403	1.6 2.0		
-	11.00-	RAW	5.4	15.0		0.0	0.06	30	11	220	50	180				1			1	
	1.00pm	FILT.	0.75	1.16		0.044	0.71	21	0.7	18	5	73			1 200	6.46	450	0.8		
	1.00- 3.00pm	RAW FILT.	5.4 0.73	16.0 1.08		0.22 0.88	0.003 0.08	3.50 2.14	2.5 0.8	230 20	55 4				67			1.3		
	100- 6.00pm	RAW FILT.	4.4 0.9	15.9 1.3	23.40 8.96	0.80	0.92 1.2	4.2	3.0 1.45	180 15	94	179 195	293 268	224	325	6.4	465	20	0.22	8
25.07.93	7.00- 8.00mm	RAW FILT.	4.0 0.1	17.4 0.3		0.33	0.00 0.12	2.83 2.72	2.5	138 2.0	60 1	193 62	256 247	195 187	25	6.2		1.55		
	100-		1.75				0.004									-				
	11.00am	FU.T.	0.3	0.35		0.044	0.029	2.49	0.60	3.5	2		250	203	60	6.9 6.4	472 460	0.5		
	11.00-	RAW	4.5	15.3		0.26	0.015	45	3.30	140	75	167			150	6.7		13		
	1.00pm	FILT.	0.4	0.80		0.44	0.033	2.6	1.20	3.0	25	89				6.3		1.5		
	1.00- 3.00pm	FILT.	6.95 0.25	16.8 0.40		0.26	0.017 0.033	2.35 1.60	1.90 0.4	110 3.0	55 2.0				70	6.00 5.85				
	3.00-	RAW	5.5	16.6	17.4	0.15	0.08	3.65	2.64	135	60	200			230	6.5	453	0.8	0.16	1,
	6.00pm	FILT.	0.5	0.9	9.2	0.20	0.12	1 353	1 10	1.4	1 10	1 186	1	1	1	6.00	1		1	1

APPENDIX A-1 SIGINGA PLANT (BS-9)

-	-	Sample	Forma Iona ing Fe ^{to} (Total bros mg Fc.1	Perm No. ng KasoQA		Nictic mg NOy1	Assessments ing NH ₄ 1	Dissolved Oxygen mg 0y1	Colour mg PVI	Turbidity N.T.U	Carbon Dioxide mg CO ₂ A	Total Albalinity ing CaCOyl	Total Hantacau CaCO ₂ /1	Prod. In No	pH Units	Countrast.	Mangassee ng Ma1	Plow Rate VSec	Total Cobiloren Per 100 mi
25-07/05	2(30- 6.45m) 6.45- 11.00mm	RAW PILT RAW PILT	4.8 0.10 4.5 0.15	15.0 0.2 15.2 0.56		0.0 0.13 0.0 0.176	0.0 0.14 0.005 0.01	3.7 2.43 5.1 4.6	1.8 5.8 0.8 0.3	250 2.50 130 3.0	60 1 43 2.0	168 45 175 72	292 282 214 257		40 200	65 62 66 63	470 410	1.3 0.8		
	11.00- 1.00pm 1.00- 3.00pm	RAW PILT RAW FILT	4.2 0.11 40 0.10	16.3 0.50 17.3 0.43		0.170 0.194 0.000 0.176	0.0 0.75 0.005 0.005	3.5 2.73	20 13 23 05	175 160 3	53 3 55 2		263 252		120 60	6.5 6.5 6.25 6.18	473 458	0.8 0.6		
	3.00- 6.00pm	RAW FR.T.	43	16.2 0.53	19.7 9.8	0.132 0.132	0.002 0.53	3.71 2.65	2.0 2.4	175 4	98 5.6	229 224.5			320	6.6 6.3	475 466	1.3 1.0	0.14	11 5
	-	122	1	1.1		12	-	13	121	2	-	12.1					17		-	1

APPENDIX A2 KHAYINGA PLANT (BS-12)

0	Time	Sample	Ferrous ions mg Fe*A	Total Iron mg Fe/1	Perm. No. mg KmaOy1	Nitrate mg NOyA	Nitrite mg NOy1	Ammonia mg NH,4	Dissolved Oxygen mg Oy1	Carbon Dioxida mg CO ₄ 1	Colour mg pi/l	Turbidity N.T.U	Conduct.	Total Alkalinity ms QCQ.4	Total Hardness me CaCO.4	pH Unite	Manganese mg Ma/l	Flow Rate	Prod.	Total Coliform
28,42,45 01,03,45	7.30- 8.00m	A RAW FILT.	C 6.5 0.15	K 16.5 0.38		W 0.132 0.176	A 0.001 0.042	5 45 448	H 3.0 4.93	E 145 65	D 190 12	62	1630	435	324	6.55	1.9		32	
	8.00- 9.00mm	RAW FILT.	6.8 0.1	17.2 0.28	1.0	0.01	0.003	4.43	3.3		185	51 0.7	1700	457	340	6.47	1.8		60	
	9.00- 11.00mm	RAW FILT.	64 0.13	12.5 0.15		0.123 0.135	0.02	3.96 3.85	295		160 5	85 2.2	1630 1610	490	344	6.53	1.5		120	
	11.00- 1.00pm	RAW FILT.	5.4 0.14	14.5 0.13	-	-		-	3.2 2.1	132 95	170 7	110 4.1		430 425	360 368	6.43 6.33	1.1	-	180	
	1.00- 3.00pm	RAW FILT.	6.4 0.16	17.0 0.4		6.213	0.000	4.5	3.1 1.4	104	170	120 2.4		-		6.6 6.5	14	6.78	70	
_	3.00- 6.00pm	RAW FILT.	6.3 0.18	16.3 0.85	13.30 5.40	0.14 0.16	0.007 0.035	3.54 3.51	2.85 1.6	150 90	150 8	160 6.6	3	-	-	6.40 6.25	1.45	0.28	250	5
02/02/93	8.00mm	RAW FILT.	69 0.13	15.8 0.3					3.43 4.6	90 61	180 5	165 1.2			10	6.0 5.85	1.44			
	11.00mm	RAW FILT.	4.2 0.15	16.3 0.3					2.72 2.47		170 1.0	190 5.6					1.3 1.2		200	
	1.00pm	RAW FILT.	5.5 0.17	15.4 0.5	-	-	-		2.82 2.2	160 188	160 4	140 [°] 3.4				6.25 5.73	1.5 1.5		120	
	2.00- 3.00pm	RAW FILT.	6.2 0.14	17.5 0.6	PAR .	1.341	-	1.00	3.33 1.72	140 170	250 6	165 4.2	1530 1497			6.48 6.25	14			
-	3.00- 6.00pm	RAW FILT.	5.8 0.17	18.0 0.65	9.50 5.40	0.044 0.163	0.002 0.006	3.32 3.26	2.93 1.3	120	150 7	175 7				6.53	1.6	0.23	260	5
05-03-93	7.00- 8.00mm	RAW FILT.	6.4 0.0	15.3 0.0					2.65 1.23	163 150	200	150 1.0	5000	-		6.4 6.35	1.5		30	-
	8.00- 10.00am	RAW FULT.	6.7 0.02	16.5 0.1					3.37 2.98		150 5	140 <1.0	-	-		6.52 6.4	1.7		80	
	10.00- 12.00pm	RAW FILT.	4.5 0.04	15.9 0.5					2.86 1.76	78	210 8	190 3.4				6.2 6.15	1.2		90	
	12.00- 2.00pm	RAW FILT.	5.3 0.05	15.0 0.6	14.30	AVEL	0.000	-	3.30 2.18	125 132	190 7	180 3				6.4 5.73	1.1		210	
	2.00- 3.00pm	RAW FILT.	0.2 0.05	15.6 0.7	1.70	2.141	0.1	401	3.54 1.35	104	190 6	180 3.3			-	6.13	1.6	-	60	-
	3.00- 6.00pm	RAW FILT.	6.9 0.04	17.0 0.9	15.60 8.70	0.03 0.143	0.001	4.0		138 120	180	190					1.6		300	1

5		\$1.0	20	15.9				9'1	sı	SOL	56	103	1'0	1910	05+	10	60'0	LIL	endors	T
	001		, i	59				011	002	011	3.12	81.5	60010	SSID	01.81	511	63	MVH	300-	-
	09	-	9'0	263			-	57	9		597					20	100	LIL	200bm	-
	-			,				OLI	061		967	-197	112	1000	SEE	SH	85	WAR	-007	
	091		90	P*9				25	L	86	53					10	100	TIM	1000m	
	1								061	OLI	001					L'SI	57	WAN	-00'11	
	OK		10	56.9		966 566	SOL1	32	CAL		87			-		10	100	HLL	am00'11	
	204			-						- 124						CPL	55	WAN	-00'6	
	05		51	0979	ni	200	1630	061	6 061	02 921	29°E 067					10	100	HLT.	-00%	1502021
2	~	<i>L</i> 1'0	10	6.3				9	01	011	67	95%	80'0	0810	09'1	510	80.0	TIM	undoory	-
•	on		511	.,	1.1	111.1	Area I	021	062	SSI	343	3'65	600.0	01100	14.80	9.61	65	WAN.	200-	-
	22		60	972				57	L		542					+0	100	UTH	20060	100000
	10	241	- 01	.,				091	ONE	401	0.6	100	100	110		9.01	17	WAR	-007	
	021		80 E1	643				25	L	51	651					50	100	TIR	und007	
	1.1			0.5						oci						2.21	9.8	WAN.	-00'11	
	06		1	19				ssi	240	in l	111		-			10	100	1714	um00'11	
	100		80	0079	595	-				1.11						574		Ava	-006	
	09		п	06'9	986	1 12		591	500		523					20	005	TH	-006	
	1.1		21	632	SIE	05			1.11	~						100	10			
	SL		۶ı	25'9	086	\$\$\$		041	097	HOL	IX	5	\$000	0130		511	55	MVN	-052	100242
*	_	81.0	11					TS	21	851	\$73					50	5070	1114	und0079	-
	-	100						out	340	EPI	212	1015	-110	112	112	143	15	WAN	-00%	
	230		¥0 91	2'8				S OCT	L		195					20	100	TH	20094	
	~										3.0					241		WAR	-007	
	~		51	629				091	510	1.21		-				10	900	HL	20060	
	~		21.1	63	150	81.	0691	52	s	211	57	772	90'0	410	097	800	200	TH	-0071 undoo71	
				51.9	FOR	007	0121	0/1	061		155	m	\$000	0.044	0+11	SH	57	WAN	-00'01	
			571	6.52 0.63	285	463	0+91	01	*		56'1					500	000	HT	10:00	
	-						USAL	out	USI		262	200				561	PS .	WAN	-0018	
	02		£1	302	-		1635	06	3	130	518	115		-	-	000	000	TTH WAR	-00%	66/0010
Per 100 ml	5)	*1	town the	Unite	1/0010 Bu	WOON BU	- topic -	- Bart	Mathie 1	1/00 %	1/0 M	- day be	Vou be	alou fo	diam'r a far	Voj Nu	Vana Au			
Total	bond	wold	Mangancec	Hq	Total	Total	Conduct	Vitin U.T.N	Colour	Distide	Dimolved	VHN Ma	VON Nu SHOIN	VON ME	NOWAX M	non Iron	INCHI I	adum	-	-

Dest	Time	Sample	Ferrous iron mg Fe [*] A	Total Loss mg Fe/1	Perm. No. mg KmaO ₂ A	Nitrate ing NOy1	Nitrite mg NOy1	Ammonia mg NH ₂ 1	Dissolved Oxygen mg Oyl	Carbon Dioxide mg COy1	Colour mg PVI	Turbidiky N.T.U	Conduct.	Total Alkalinity mg CaCO/1	Total Hardness mg CaCO ₂ A	pH Units	Manganese mg Mn/I	Plow Rate	Prod. in Its	Total Coliform Per 100 ml
15/03/93	7.50- 8.50mm	RAW FILT.	62 0.02	14.8 0.2				3.66 3.42	2.96 5.2	87 80	150 6	100	1680 1710	390 395	350 395	6.31 6.38	1.5 0.6		15	
-	1.50- 11.00mm	RAW FILT.	5.4 0.03	15.2 0.3			1		3.00 5.73		155 7	110	1740 1720	450 415	395 394	6.2 6.15	1.1 0.7		-0	
	11.00- 2.00pm	RAW FILT.	5.3 0.06	13.7 0.32					2.65 4.76	165 175	165 10	130 6	15		-	6.40 6.25	1.2	1	140	
	200- 3.00pm	RAW FILT.	5.7 0.05	15.5 0.30					3.36 5.0		166 10	120 5				6.21 6.02	1.6 0.6		50	
	3.00- 6.00pm	RAW FILT.	5.2 0.0%	14.3 0.37	12.20 8.10	0.09 0.14	0.02 0.11	3.93 3.87	27 4.1	130 125	180 15	184				6.45 6.18	1.3 0.8	0.14	280	11
17.03.93	7.30- 8.30pm	RAW FILT.	5.8 0.04	16.2 0.22		-	439	435	2.8 5.83	156 86	140 7	90 4	1510 1560	370 365	388 379	6.28 6.17	1.3 0.5	T	30	
	8.30- 11.00mm	RAW FILT.	4.9	15.3 0.30					3.13 4.9		140 8	95 4	1640 1634	430 415	374 372	6.33 6.26	1.5 0.7		50	
	11.00- 2.00pm	RAW FILT.	5.6 0.07	14.8 0.34		÷.,	-	1	2.9 4.88	95 178	160 10	110 5.0			1	6.41 6.25	1.2		175	
	2.00- 3.00pm	RAW FILT.	5.5 0.06	15.4 0.31					3.42 5.2		155 10	100 4.5	12	1000		6.42 6.30	0.9 0.2		•0	
	3.00- 6.00pm	RAW FILT.	4.7 0.11	15.6 0.4	8.84 5.04	0.09 0.15	0.03 0.085	4.83 4.79	2.97 5.2	108 125	190 15	134 5.7	-		1	6.35 6.45	1.1 0.5	0.140	230	12
19:01.91	7.00- 8.00mm	RAW FILT.	6.0 0.06	14.4 0.25			and a	145	3.00 5.94	129 85	120 6	90 4	1645 1639	322 320	385 381	6.5 6.35	1.35 0.4		20	
	8.00- 11.00em	RAW FILT.	5.9 0.06	15.1 0.30				-	2.25 5.7		125 6.5	105 4	1725 1710	415 398	375 371	6.51 6.25	1.4 0.6		60	
	11.00- 2.00pm	RAW FILT.	5.4 0.07	14.9 0.33					2.55 4.3	124 195	150 12	120 6.5				6.66 6.37	1.45 0.55		190	
	2.00- 3.00pm	RAW FILT.	5.65 0.07	15.3 0.8					3.2 4.8		145 11	115 4.5				6.44 6.23	1.5 0.5		40	
	3.00- 6.00pm	RAW FILT.	5.3 0.15	13.8 0.37	10.9 5.70	0.15 0.23	0.06 0.14	3.76 3.64	3.00 5.2	145 120	170 15	173 7				6.35 6.24	1.3 0.75	0.130	270	16

-	Time	Sample	Ferrous iron ng Fe [*] A	Total Iron mg Fe/1	Perm. No. ng KmsOyA	Miunie mg NOyg1	Nitrite mg NOy1	Ammonia mg NH ₄ 1	Dimolved Oxygen mg Oyl	Carbon Dioxide mg COy1	Colour mg PM	Turbididity N.T.U	Conduct.	Total Alkalinity mg CaCOy/	Total Hardness mg CaCO ₂ A	pH Units	Manganese mg Mn/1	Flow Rate Vs	Prod. in Its	Total Coliform Per 100 ml
22/03/93	7.00- 8.00am	RAW FILT.	4.85 0.07	14.3 0.22		11	81+	8	3.00 5.44	109 95	120 75	100 5	1590 1587	463 459	453 451	6.35 6.25	1.75 0.75		15	
1.1.1	8.00-	RAW	5.95	15.8		10.00	1	12 1	204	- I				1		1				
	11.00mm	FILT.	0.07	0.25					413		8	5.3	1695	475	383 384.2	6.38	0.85		35	
	11.00-	RAW	5.25	16.3				1.11	2.73	146	180	150	104		10	65	1.25		130	
	2.00pm	FILT.	0.08	0.30					4.45	163	14	7.2				6.35	0.8		-	
	2.00-	RAW	55	16.4					2.67	1	1.60	1100	1279	1	12	1.00	1		-	
	3.00pm	FILT	0.07	0.26					20		12	6.0	E 1	[6.35	0.7		30	
	3.00-	RAW	4.9	14.4	7.30	0.18	0.05	3.58	2.93	150	200	180		E		66	1.13	1	285	27
	6.00pm	FILT.	0.09	0.32	5.90	0.33	0.19	3.43	2.53	155	15	8.3		1		6.3	0.8	0.130		9
34.03.93	7.00- 8.00mm	RAW FILT.	5.2 0.07	13.7 0.20		0.17 0.30	0.33 0.16	4.75 4.65	3.15 4.74	131 58	130 7.0	90 4.0	1735 1729	465 383	429 413	6.54 6.26	1.35		25	
	8.00-	RAW	60	142				1.11		1 N			10	P	10. L	11.	100		1.1	- I
	11.00am	FILT.	0.08	0.27				E	1.94		9	100	1637	470 410	395 352	6.45	1.43 0.45		45	
	11.00- 2.00pm	RAW FILT.	5.5 0.19	15.3 0.32		1.04	824	1.05	3.5 1.5	128 185	190 15	145 5.2	111	•	-	6.35 6.30	1.22 0.7		140	
	2.00- 3.00pm	RAW FILT.	5.6 0.17	15.1 0.28				1.16	2.9 1.7	-	195 15	150 4.0	100		6	6.35	1.35		35	
	100-	PAW		14.05					100	1	1	10.1	101	40	10	24			PR	
-	6.00pm	FILT.	0.22	0.36	6.32	0.31	0.66	3.85	2.73	145	220 18	120 5.5	1028	-	-	6.30 6.30	1.55 0.75	0.1	210	5
26/03/93	7.00- 8.00pm	RAW FILT.	62 0.09	15.9 1.23		0.12 0.25	0.05 0.19	3.66 3.54	3.00 3.63	98 39	110 8.0	80 4.3	1773 1765	433 425	410 412	6.25 6.15	1.4		10	
	8.00-	RAW	\$ 75	15.2				100	105	24 E				-			125	1.1		
	11.00am	FILT.	0.09	0.22					1.38		8	43	1530	415 391	408 323	6.5 6.35	1.5		25	
	11.00-	RAW	5.4	15.5		1.0	0.161		3.00	12	195	130	12 1	1	1	6.25	113		00	1 1
1	2.00pm	FILT.	0.25	0.27			-		1.20	85	20	4.8				6.20	0.6		~	
	2.00-	RAW	5.2	14.5					3.5		190	130		1		6.4	1.45		15	
	3.00pm	FILT.	0.2	0.22					1.22		18	4.5				6.24	0.5			
	3.00-	RAW	5.8	15.9	8.30	0.095	0.006	4.23	2.93	133	230	185	1000	1	2	64	113		160	6
	6.00pm	FILT.	0.35	0.30	7.60	0.2	0.21	8.04	1.6	111	25	5.2	-	-	-	6.3	0.6	0.1	1.00	12
			B	•	c	ĸ	-	w	A	S	H	B	D				1			

-	-		Forom Son ng Pa ^b A	Total Iros ng Po1	Para Na ng EsseQ/I		Nitatia mg MOy1	America mg NHL/I	Dimetrad Dayges mg 0 ₄ 4	Carless Discillo mg CDyl	Colour mg PM	Turbididity N.T.U	Constant	Total Alkaliaity mg CaCO ₂ /I	Total Hardson	pH Usia	Manganeer ang Misil	Para Ran Ve		Total Coliform Par 100 ad
27 43/45	7.00- 6.00mm	RAW FILT	5.4 0.18	15.6 0.30		0.06 0.20	0.09 0.14	2.84 2.76	24 24	145 52	115 10	M 4.7	1632 1586	484 436	425 412	6.54 6.23	1.6 1.45		25	
	8.00-	RAW	5.9	16.2			0.07					-								
	31.0Dam	PILT	0.16	0.32		0.18	0.16	3.10	4.0	74	12	3.0	1765	433	396 372	6.40 6.36	1.2 0.65		45	
	11 00-	RAW	5.83	15.70				3.0	3.13	134	117	51	HDI	505	450	614	1 1 44		125	
•	2.00	PILT	0.175	0.15				2.62	3.90	85	13	3.0	1586	449	422	5.95	1.34			
	200-	RAW	5.2	15.0					37	-	113		1570	471		6.76				
	100pm	PILT	021	0.15					3.4	78	16	3.0	1526	428	362	6.17	1.7			
	100-	RAW	5.45	16.5	14.30	0.14	0.04	3.42	42	96	132	195	1630	450	101	6.38	1 21		360	1.1
	6.00pm	PILT	0.23	0.74	8.25	0.20	0.09	3.31	3.85	75	20	6.0	1582	431	379	6.24	1.92	14.85	201	-
30473473	7.00- 8.00mm	RAW FILT	5.71 Q.16	16.5 0.30		0.07 0.13	0.06 0.10	3.62 3.50	2.86 5.2	126 56	110	92	1585	494 463	432	6.42	172		30	
													-							
	11.00	FILT	0172	0.32				3.25	2.50	104	96 11.5	98 4.7	1663	903 462	460 439	6.35 6.18	1.82 1.59		60	
	11.00-	BAW	5.50	14.9		0.13	0.15	1.14		105										
	2.00pm	FILT	0.18	0.33		0.24	0.26	102	3.72	65	14	4.8	1710	420	362	6.52	1.54		94	
	200-	RAW	5.70	15.8				2.93	3.30	90	136	113	1688	411	-	1.00				
	3.00pm	FILT	0.183	0.16				2.76	3.70	42	16.2	62	1651	450	362	5.74	1.00		120	
	300-	RAW	5.8	15.4	15.60	0.04	0.108	3.25	3.40	91	135	or	1690	453	479	1				
	6.0Qpm	FILT	0.25	0.75	790	0.23	Q.151	3.13	2.82	72	17	7.8	1621	418	363	6.27	1.91	14.3	288	
050445	7.00-	RAW	4.95	15.8		0.0805	0.054	3.07	3.30	146	110	м	1994	476	415	4.10	1.45	-		
	8.00mm	FULT,	0.15	0.28		0.22	0.130	2.61	5.5	45	10	4.0	1568	424	406	6.27	1.30		10	
	8.00-	RAW	5.95	16.2				2.96	3.25	114	126	an l	1635	460	are	1 (20	1.4			
	11 Olaan	FILT.	0.16	0.11				2.73	3.30	65	12	4.2	1990	435	366	6.26	1.50			
	11 00-	RAW	5.43	16.50		0.170	0.063	3.72	155	116	103		1506	1						
	2.00pm	FILT	0.16	0.11		0.20	0.180	3.49	3.48	75	13	5.4	1558	457	390	6.37	1.95		106	
	2.00-	RAW																		
	100pm	FILT	1.000	-													-			
	100-	RAW	5.75	16.4	14.40	0.12	0.06	3.40	3.00	98	138	80	1664	463	433	6.30	1.64			
_	B. DOpen	FILT	0.30	0.76	6.30	0.26	0.20	3.12	3.62	78	14	8.0	1621	429	392	6.25	1.46	13.80	300	

-	Time	Sample	Ferrosa iron mg Fe ^{ta} A	Total Iron ng PeA	Perm. No. mg KaneO _A A	Mitrade mg NOyA	Nitrite ing NOy1	America ng NH ₄ 1	Dissolved Oxygen mg 0y1	Carbon Dioxide mg COy/	Colour mg PM	Turbidity N.T.U	Conduct.	Total Alkalinity mg CaCO ₂ A	Total Hardness mg CaCO ₂ A	pH Unite	Mangancac mg Ma/l	Flow Rate Us	Prod. in itu	Total Coliform Per 100 ml
06/04/93	7.00- 8.00mm	RAW FILT.	5.3 0.16	14.6 0.20		0.130 0.33	0.08 0.28	4.43 4.26	3.23 5.94	153 55	125 5	M 0.9	1605 1595	465 452	416 384	6.35 6.85	1.6 1.56		-0	
	8.00-	RAW	5.6	13.0					115		137		1687		-	1				
-	11.00mm	FILT.	0.2	0.3					4.85		6	3.0	1647	457	277	6.30	1.5		60	
	11.00-	RAW	5.2	14.5	1 1				2.70	158	189	51	1626			650	1	1.1	1 143	1 1 2
	2.00pm	FILT.	0.23	0.35					4.30	172	8	3.0	1602	191		6.30	1.8			
	2.00-	RAW	0.52	13.5					246	160			1611	÷		1			-	
	3.00pm	FILT.	0.05	0,14					3.54	120	14	3.0	1630			6.30	1.6		1	
	3.00-	RAW	5.00	13.0	12.64	0.22	0.11	3.65	3.00	162	72	195	1567	1		650			1 320	1,
	6.00pm	FILT.	0.1	0.77	K.10	0.39	0.34	3.45	3.59	80	12	8.0	1496			6.44	1.6	0.25	320	18
08.04.93	7.00-	RAW	4.65	13.3			1		3.21	112	230	67	1435	174	-	63	1.54		45	
	R.COMD	Pull.	0.00	0.1		1	1.1		3.35	60	3	2.0	1430	100	1 C C	6.25	1.48			
	8.00-	RAW	43	15.8					2.94		101	20	1500	463		6.4	1.76	1.1		
- I.	11.00mm	FILT.	0.05	0.17					277		4	2.0	1531	467	334	6.35	1.71		100	1
	11.00-	RAW	5.00	15.9						110	170	-				1.				
	2.00pm	FILT.	0.07	0.35					1.40	170	6	4.0	1593	446 *	266	6.45	1.25		205	
	2.00-	RAW	5.4	15.3					273		180	05				1				
	3.00pm	FU.T.	0.06	0.3					1.32		5	20	1467	448	335	6.4	1.58		57	
	3.00-	RAW	44	12.7	13.58	0.190	0.09	474	300	142	100		1400							
	6.00pm	FILT.	0.16	0.19	7.80	0.49	0.38	3.96	1.64	78	7	6.5	1650	450	330	6.26	1.0	0.22	276	17
13/04/93	7.00-	RAW	6.00	15.4					3.0	143	160	60	1681	465	400	6.4	14		32	
	8.00mm	FILT.	0.00	0.08					5.64	54	3	1.0	1624	367	385	6.36	0.8		-	
	8.00-	RAW	6.2	15.4					1.41		140									
	11.00aa	FILT.	0.03	0.11					4.34		3	1.0	1330	423	400	6.40	1.5		60	1
	11.00-	PAW		150																
	2.00pm	FILT.	0.07	0.2					4.15	140	4	60	1685	460 427	350 316	6.62	1.4		120	
	200-	RAW	1.58	145																
	3.00pm	FILT.	0.07	0.3		-			4.20		140	20	1650			6.30 6.20	1.6		45	
	3.00-	RAW	4.7	15.5	15.50	0.15	0.071	3.82	3.93		150	116	1635							
	6.00pm	FILT.	0.08	0.3	6.35	0.36	0.044	3.54	4.65	10	5	4.2	1605			6.30	12	0.20	200	1 11

-	-	Sample	Parma Inte Ing Pa ^b A	Total Loss mg Pu4	Parm. No. org Kana Oyl	Marata ang MOyA	Nitche mg MOyl	Ameronia mg NiLy1	Dissolved Oxyges mg 0/1	Carbon Distribu mg COyl	Colour mg PM	Turbidiky N.T.U	Conduct.	Total Alkalisity ug CaCO ₂ (1	Total Hardwass og CaCOyl	pH Umm	Marganese mg Mal	Plon Rate Us	2	Total Coliform Per 100 ml
140495	7.30- 9.00pm	RAW FILT	5.6 0.00	14.2 007					2.95 5.75	163 65	-	110 3	1590 1565	423 425	133 206	6 30 6 15	1.3		45	
	9.00-	RAW	5.30	15.7					1.00		1.00		1410							
	11.00mm	PILT	8 035	0.4					5.80		3	2	1585	430	267	6.15	1.00		30	
	11.00-	RAW	60	16.6				1	3.20		191	7	1634	440		6.16	1		1.0	
	2.0kjm	FILT	0 07	0.18					4.46		6	3	1600	457	428	6.34	1.20			
	2.00-	RAW	5.5	11.9					2.00		110	In				4.40			47	
	3.00pm	FILT.	0.01	0.14					3.57		5	3				6.45	0.45			
	300-	RAW	58	14.2	16.20	0.130	0.09	3.67	- L	120	185	210				-	1.14		344	11
_	6.00pm	FILT.	0.09	0.95	9.30	235	0.31	3.46		134	6	10					0.8	0.17		4
15-01-95	7 00- 6 00mm	RAW FILT	4 1 0 D2	15.4					2.89 4.15	162 30	136 2.5	105	1583 1566	574 446	903 353	6.1 6.15	1.7		33	
			1	144									-	_	_					
	11.00m	FILT	0.02	0.05					2.60		136	95 20	1636 1594	403	377 350	6.2	1.2 0.5		•	
	11.00-	RAW	5.7	14.7					275	167	114	100	-							
	2.00pm	FILT.	0.06	016					1.45	180	5	1				6.24	0.7		282	
	2.00-	RAW	5.6	16.8					2.85		150	97				1 44	135		20	
	3.00pm	FILT	0.04	0.13					1.16		4	1				6.28	0.6			
	100-	RAW	5.90	14.7	9.90	0.18	0.12	4.85	3 22	140	163	217	-			6.50	19		378	1.4
	6.00pm	FILT	Q UN	1.27	9.80	0.43	0.3	4.51	1.35	120	7.5	12	-			6.35	1.5	0.14		6
160493	7.00-	RAW	6.35	14.5					3.16	133	180	Q	1660	420	440	6.25	175			
	6.00mm	FILT	0.04	0.05					5.75	52	•	2.5	1625	377	433	6.35	0.9			
	£00-	RAW	4.5	15.4					2.90		154	6	1715	-	377	6.45	1.13			
	11.00em	FILT	0.05	0.06					5.70		5.5	3	1630	348	386	6.30	0.8		33	
	11.00-	RAW	5.20	15.2					2.56	130	160	70	1689			6.43	16		783	
	2.00pm	FILT	0.07	0 25					3.25	95	6.7	4	1665			6.32	1.2			
	2.00-	RAW	58	14.35					3.3		150	65				66	1.1.		4	
	3.00pm	FILT.	0.06	0.25					3.55		7	•				6.45	07			
	3.00-	RAW	54	15.9	19 60	0.20	0.15	3.7	3.15	142	170	185				6.5	1.2		116	17
	£.00pm	FILT	01	10	8.90	0.53	0.45	1.39	3.38	189	9	9.5				6.45	0.6	0.13		15

Des	Time	Sample	Perrous iron mg Fe*A	Total Iron mg Fe/1	Perm. No. mg KmmOgA	Nikrate mg NOyA	Nitrite mg NOy1	Ammonia mg NH ₂ 1	Dissolved Oxygen mg 04	Carbon Dioxide mg COy1	Colour mg Pd
19/04/95	7.00- 8.00m	RAW FILT.	5.20 0.06	15.30 0.08	-10 PA	-	1000	-	3.35 3.2	144 68	125 6.0
	8.00- 11.00mm	RAW FILT.	5.75 0.05	16.5 0.07	81 2100	1 P	2	21	2.80 1.83	611 929	120 6
	11.00- 2.00pm	RAW FILT.	5.30 0.08	15.4 0.35	-				2.75	105 178	140 7.5
	2.00- 3.00pm	RAW FILT.	6.5 0.07	15.5 0.30	2	1	2	1.11	3.13 1.65	61 639	130 7
	3.00- 6.00pm	RAW FILT.	4.7 0.09	14.9 0.84	17.80 9.50	0.33 0.59	0.10 0.43	4.35	2.85 0.85	126 90	150 9
21.04.93	7.00- 8.00pm	RAW FILT.	5.6 0.05	12.8 0.07					3.11 3.75	120 50	158 6.5
	8.00- 10.00mm	RAW FILT.	5.30 0.05	13.2 0.08	11	9 1 4 1	10.	4.00	2.95 1.65	1137 6401	162 7
-	10.00- 2.00pm	RAW FILT.	5.8 0.15	15.4 0.4	2.	3		44	2.58 0.8	150 159	170
	2.00- 3.00pm	RAW FILT.	6.3 0.10	15.5 0.35	1		1	0.28	3.33 1.1	9.41 9.32	160 6.5
-	3.00- 6.00pm	RAW FULT.	60 0.2	15.3 0.5	7.90 6.50	0.28	0.15	3.94	2.98	130	160

.

	Turbididity N.T.U	Conduct.	Total Alkalinity mg CaCO ₂ A	Total Hardness mg CaCOy1	pH Units	Manganese ng Mavi	Flow Rate Us	Prod. in Its	Total Coliform Per 100 ml
T	95	1575	460	424	6.55	14		68	1.00
ł	•	1570	456	413	6.25	0.6		Per 100	at a line
1	100	1644	510	387	6.20	1.30	1.1	48	
I	4	1570	412	379	6.35	0.70			1.1
I	116	1580			64	15		258	
I	6	1582		-	6.4	1.00			
I	110	1.000	-	1	6.30	1.0		32	
I	6	1.00		1	6.15	0.3	1000	-	1.1
I	195	1.00			6.35	1.7	-	312	18
1	8.5	1.11			6.25	1.1	0.12		5
I	98	1640	522	455	6.40	1.3		23	
1	1	1605	384	433	6.25	0.4			
I	108	1560	398	423	6.3	1.8	100	52	
ł	4.8	1530	384	375	6.2	0.6		1.1	1.414
I	115	1656	1.20	4	64	1.55		210	
	6.6	1604		10-100	6.4	0.8	10.1		
	138	1538	1.00	1	65	1.9	-	60	
I	6.0	1500	100 1	1	6.2	0.5		1	
	115	1636			63	1.6		108	1,
I	4.7	1586			6.3	0.8	0.12		i

-

APPENDIX A3 SHIVANGA PLANT (C-5467)

-	Tree	Sample	Fermosa inte mg Fe [*] /	Total Ison ng Fe/1	Colour ng PM	Turbidity N.T.U	Ammonia ng NH ₄ 1	Nitrate mg NO ₂ 1	Nitrite mg Noy1	Manganese ng Mari	Dissolved Oxygen mg 0,/1	Perm. No. mg KnanOy1	pH Units	Condu ot.	Carbon Dioxide mg CO ₂ /1	Total Alkalinity mg CaCo ₂ A	Total Hardness mg CaCo,4	Prod. in its	Total Coliform Per 100 ml	Plow Rate Uncc
28.06.93	7.00- 9.00mm	RAW FILT.	1.4 0.01	4.8 0.08	65 1.00	30 0.6	0.28 0.20	0.41 0.46	0.15 0.152	0.33 0.29	0.85 5.75		6.11 6.82	217 235	48.8 25.4	136 153	106 119	73		
	9.00- 11.00em					-	0.0	110					1.00	-		- 214		1.		
	11.00-	RAW	0.84	1.58	47	12	0.09	0.36	0.003	0.2	0.35		6.64	190	51.2	120	135			
	12.Sope	PILT.	0.02	0.07	2.0	1.5	0.04	0.39	0.005	0.18	43		6.80	200	22.5	135	120	15		
	12.30- 2.30pm	FILT.	1.10 0.025	2.45 0.15	55 2.0	1.5 1.0	110	0.00	1.00	1	0.20 3.8	:	6.20 6.75		5			55		
	2.30- 3.00pm	-	-	140			0.004	2.11	-	art.	and .	10.00	-		124			100		
Success.	3.00- 5.30pm	RAW FILT.	1.830	3.84 0.18	60 3	25 1.0	0.122	0.290	0.07	0.13	0.18	7.20	5.30	-	65.7	-		195	0	
06/07/93	7.00-	RAW	1.23	2.95	54	32	0.23	4.4	0.016		0.80		6.35	151	43.6	97	145	-		0.36
	1.00mm	FILT.	0.00	0.10	1.0	0.4	0.02	5.28	0.18	0.00	4.50		6.88	234	18.3	152	195	90		
	8.00- 11.00mm	RAW FILT.	0.9 0.05	4.2 0.10	64 1.2	33 0.3	0.52 0.14	0.28 0.36	0.13 0.25	0.62 0.51	0.35 2.73		6.15 6.86	174 196	65 17.5	114.5 126	98 121	10		
	11.00- 12.30pm	RAW FILT.	-	in .			0.110	6.10		1.11	4.50		1.00	10.		ad -	-	15		
	12.30- 2.00pm	RAW FILT.	1.30 0.08	3.6 0.2	59 1.0	45 0.5	0.54 0.26	•	-	0.75 0.56	0.95		6.5			147	164	60		
	2.00- 3.00pm	RAW FILT.	0.69	2.35 0.02	108.0 3.0	18.0	0.11	-	-	0.00	1.0	ra in	6.48	197		115	92			1
	3.00-	RAW	23	3.5	70	23	0.27	1.32	0.02	0.005	4.83	9.48	6.05	-	64			175		
1000	5.30pm	FU.T.	0.05	0.15	3.0	1.2	0.19	1.38	0.02	11	0.9 5.7	3.2	6.30	100	30	118	2		0	0.36
07,07,95	8.00- 10.00mp	RAW FILT.	1.85 0.00	3.25 0.053	48 2.5	25 1.0	0.20 0.15	0.132 0.136	0.005 0.045	0.00 0.00	11.0 5.20	8.35 3.30	6.51 6.70	236 253	64 15	177 192	108 144	35		
	10.00- 12_30pm	ALC: NOT	-	487 207	5	14.	0.51 520	1.14	1.11	4.5	128	-	1.00	142		12	10-			
	12.30- 2.00pm	RAW FILT.	0.75 0.03	2.28 0.10	57 3.0	38 1.5	0.33	0.24	0.09				6.22		46	-		55		
	2.00- 3.00pm	RAW FILT.	arte Auto	12	4 10	18. 1.18	6.13 1.13	43.12m	-		-	12			-	1		15	1	-
	3.00- 5.30pm	RAW FILT.	2.02	4.40	25.0	25	0.26	0.088	0.002	0.32	8.35	7.40	6.24	191	61.4	133	140	145	0	

-	Time	Sample	Ferrous iron mg Fe th /l	Total Iron mg Fe/1	Colour mg pt/l	Turbidiky N.T.U	Ammonia mg NH ₄ 1	Nitrate ang NOy1	Nitrite mg Noy1	Mangancen mg Mavi	Dissolved Oxygen mg 0,/1	Perm. No. mg KmsOy1	pH Units	Conduct.	Carbon Dioxide mg CO ₂ /1	Total Alkalinity mg CaCoyl	Total Hardnoss mg CeCoyl	Prod. in lu	Total Coliform Per 100 ml	Flow Rate Unec
06.07.93	7.00- 9.00am	RAW FILT.	2.01 0.02	2.26 0.07	37 0.8	30 0.2	2.14 2.02	1.76 1.87	0.004 0.100	0.00 0.00	1.80 5.50		6.74 6.86	47 56	54 15	125 135	97 115	75		
	9.00- 11.00mm	RAW FILT.	2.3 0.01	3.12 0.10	60	20 2	0.07 0.04	0.00 0.036	0.007 0.028	21 21	1.50 4.70		6.60 6.86	89 131		127 127	88 160	20		
	11.00-	RAW	25	42	70.0	46	1.62	1.33	0.009	0.30	1.30		6.50	115		134	117	1		
	12.30pm	FILT.	0.05	0.11	3.0	2.0	1.53	1.40	0.15	0.32	5.2		6.75	142		142	122	~		
	12.30- 2.30pm	RAW FILT.	1.85 0.07	3.55 0.12	65.0 3.5	34 25	0.185 0.180	0.00 0.004	0.03 0.025	0.52 0.49	0.65 4.85		6.30 6.70		62 38		-	100		
	2.30- 3.00pm	RAW FILT.	2.20 0.04	2.95 0.08	75 2.5	10 2.0	0.14 0.09	0.02 0.08	0.09 0.085	0.55 0.57	1.77 5.3		6.45 6.88		47 19			15		
	3.00- 5.30pm	RAW FILT.	2.85 0.03	160 0.14	80 2.0	23 1.3	0.109 0.06	2.30 2.34	0.04	0.77 0.72	0.45 7.5	10.48 7.42	6.2		55.6 24.7			170	0	0.26
14/07/93	7.00-	RAW	1.52	3.36	70	-0	0.13	0.044	0.00	0.10	0.70	1.1	674	161	1 52.0	105		~		1
	8.00mm	FILT	0.00	0.05	2	1.0	0.08	0.046	0.003	0.00	5.60	44	7.82	180	28	174	126	10		
	8.00- 11.00mm	RAW FILT	1.32 0.00	5.00 0.06	97 3	58 1.0	0.34	0.044 0.051	0.095 0.100	0.20 0.20	0.55		6.70 7.15	150 176	- 51 16	80 169	94 102	0		
	11.00- 12.30pm	RAW FILT.	1.88 0.01	4.73 0.11	80 3.5	63 20	0.25 0.15	0.185 0.275	0.160 0.163		0.63 5.30		6.8 7.13	153 185		98 122	128 136	25		
	12.30- 2.30pm	RAW FILT.	0.95 0.02	2.80 0.13	63 2.0	15 1.0	0.162 0.10	0.35 0.32	0.082 0.15	0.18 0.13	0.30 5.85		6.34 6.75	110 130	5	143 165	82 85	55		
-	2.00- 3.00pm	2.11 m							-					-		-		1		
	3.00- 5.30pm	RAW FILT.	1.28 0.025	3.42 0.15	93 3.5	27 1.2	0.35 0.28	0.22 0.26	0.096 0.12	0.11 0.095	0.20 4.90	12.50 8.5	6.55 7.25	176 195	65 28	115 133	138 142	175	0	0.26
19/07/93	8.00- 10.00am	RAW FILT.	1.24 0.00	3.13 0.07	131 5	15 2.0	0.14 0.00	1.76 1.90	0.154 0.153	2.2 0.00	0.7 5.7		6.51 7.02	180 210	43 21.6	119 150	92 137	70		
-	10.00- 12.00pm	RAW FILT.	4.62 0.02	8.40 0.05	129 2.0	20 0.00	0.34 0.00	0.00 4.4	0.000 0.003	2.2 0.00	0.2 4.5		6.48 6.93	140 200		86 150	88 125	5		
	12.00- 2.00pm	RAW FILT.	1.4 0.00	2.10 0.07	65 3.0	14 1.0	0.35 0.29	212 216	0.072 0.90	0.2 0.00	0.35 5.2	59	6.50	188 195		114	113	30		
	2.00- 3.00pm	AUX TOT								-										
	3.00- 5.30pm	RAW FILT.	0.93	3.3 0.16	72 3.0	26 1.15	0.17	0.154	0.87	0.12	0.40	6.32	6.30		56.8	154	113	190	0	0.22

61.0	0	£81	621	671 801	72 60	68 82	\$1.9 08'5	378 273	372 03	91'0 96'0	0"31 0"36	۲ <u>۲</u> .0 0	\$1'0 96'0	¥1 92	\$1 05	410 89%	200 \$61	TIL	udoe's -00's	Γ
		ot	1	11			119		9.0					ţ,	15 a	10		HIT. NVN	ud00's -067	
		εz	221 601	140 154			+1'L 18'9	0+'E 06'S	87 . 20	01 21				50 12	50 54	51'0 58'E	800 81	HIT.	adoc7 -0671	
		0	-		111		127		11		110	10		12	- 21	419 27	121	ELL.	-00'6	
-		EM	161 601	191 56	25 69	133 571	07.7		20 €	0000	990'0 100'0	0.25 0.25	1200 610	79'0 62	01 59	500 57	000 0+7	EAW B	4400'6 -00'L	56/10/92
061:0	0	841	911 66	891 831	£3 2,6,7	221	59'9 61'9	0'S 51	0.30	0.105 0.21	002 002	512 012	011 073	51 F1	77 29	+1'0 55'T	500 H01	FILT.	-007 and06.2	
-		st st	100	m	9751	751	NC1		COT		222	-	-					BAW BAW	200bm	
		0	26	36	57	521	029		20	\$10				50 51	51	600 017	100	TIM	-0x 21	
		ot	LP1	1+1			1879		+72	10	200'0	208	800	to	9'0	210	900	WAN RAW	-00'11	
		29	251 961	5H 261	17 19	10	0679	01 51	50 15 50	50 50	10'0	80°C	610 500	50	68 01	900	191	AV8	-00'6	-
0.20	0	061		-	972 L)		0879	· 21 56	8°E 9'0	£0'0 60'0	601'0 80'0	261'0 61'0	6000 610	TI R	20	610 24	100	TILI	ador:5 700-	withit
	-						-			-	-	-	-		1			11	200bm 570-	
		ss.					979 0179		87 520		60133 00062	0.18	014 035	51 02	57 QL	800 512	200 ¥1	HTT: NVB	5 X000	
		10	155	221 691		951 241	52 059		23 015	1	220 510	210	60'0 81'0	01 51	50 90	000 74	100 97	THI MYS	-00'11	
		0	021 411	158 105		0/1 761	57L 129		055 030	000 10	0000 0610	580 564	013 031	50 10	20 9	\$00	000 942	TTH MVN	-0011	
		09	021	156 104	rst zs	291 511	11.1		65 50	60 00.0	160 062.0	965 825	043	01 51	01	9500 02.9	100 52 X	TH	-0016	
1	Total Coliform Per 100 ml	bod. In In	Total Hardness Ing CaCo _y A	Total Alkaliaity NoOsO am	Carbon Dioride NOO gan	Conduct	He United	Nonal an	Dimoived Dimoived No an	Mangament Nati ya	Von Bu Moin	NON BO	V'HN Su spectru	N'I'N	Colour Colour	Total Ince Not Perl	Remons Noti N ⁴ 59 ym	aphang	-	-

-	-	5-04	Ferman Inte mg Pe ^{ta} d	Total Incu reg Pot	Colmur ung PM	N.T.U	Association in the second seco	Nigrada ang NOyfi	Minim mg Mayl	N	Dissolved Oxyges esg 0yl	Para Na ng KasiQA	pH. Uata	Conduct.	Carton Distila mg CDyl	Total Albahistry ing Callay1	Total Hardasse ng CaCoyl	Piol. In In	Total Cohiform Per 100 art	Plow Rate Vinc
25-07-05	2.00- 9.00- 11.00xm	RAW PELT. RAW PELT.	1.90 0.01	29 Q1	63 Q.6	31 0.2	0.035 0.005	0.2 0.22	0.007 0.012	0.5 0.18	0.7 5.8	-	6.74 6.99		43 23			91 13		
	11.00- 12.30pm	RAW PET	2.46 0.021 2 0	3.60 0.08 4.30	40 0.5 36	28 1.0 39	0.073 0.00 0.0%	0.133 0.165 1.5	0.07 0.025 0.016	0.36 0.34 0.5	0.4 3.70 0.2	64	6.00 6.44 6.77	-		75	84	30 56	0 0	
	2.30- 3.00pm	PILT.	0.04	007	1.0	0.7	0.024	1.505	0.01	0.41	5.4	÷	7.06	75	-	\$7	91	22	<u> </u>	
	3.00- 5.30pm	RAW FILT	2.06 0.06	3.85 011	57 1.5	22 1.9	0.66 0.45	0.38	0.11 0.01	0.75 0.61		11.40 6.8	5.56 6.30		38.3 17.9	-		125	0	0.19
21/07/05	7.00- 6.00mm	RAW PILT	1.76 001	6.0 0.05	124 1.0	25 0.2	0.06 0.00	0.25 0.28	0.01 0.06	0.3 0.2	0.5 4.1		5.95 6.5	171 185	50 29	86 165	147 197	"		
	11 00- 11 00-	FILT.	0.02	0.1 0.1	10	24 0.5	0.09 0.03	0.2 0.028	0.001 0.000	0.2 0.190	0.3 3.65					98 135	163 172	27		
	12.30pm 12.30- 2.30pm	RAW FILT	1.50 0.03	46 Q.15	46 1.5	21 1.0	0.140 0.05	0.2 0.28	0.03 0.06	0.2 0.183	0.2 3.7		6.1 7.0	198 215	62 40	117	89 91	45		
	2.10- 3.00pm	RAW FILT		-	-	-		12				<u> </u>		-	-	-	÷	15	-	
	3.00 5 Yupun	RAW FILT.	125 0.04	15 018	65 3.0	27 1.3	0.33 0.22	1.5 1.35	0.002 0.006	0.20 0.120	0.25 3.3	4.30 3.90	5.5 6.5	Ť	54 25.8	122 133	63 61	192	0	0.19
28.07.95	6 00- 9 0Uam 9 00- 12 30pm	RAW FILT	1 AO 0 01	46 007	74 1.6	17 0.4	0.06 0.00	0.02 0.16	0.12 0.001	0.2 0.00	1.3 7.2		6.57 6.70		56.2 24.4	134 145	98 100	80		
	12.30- 2.30pm	RAW FILT:	1.76 0.01	4.2 0.08	\$3 10	24 0.7				:	0.4 4.3		6.18 6.27			68 159	95 98	25		
	4.30- 3.00pm																			
	3.00- 5.30pm	RAW FILT	1.4 0.03	38 0.17	64 2.8	28 1.25	0.14 0.00	0.25 0.32	0.15 0.005	0.42 0.33	0.3 3.5	5.6 4.8	1		46 24.2			175	0	010

Des	Ter	Sample	Ferrous iron mg Fe ^{to} A	Total Iron mg Fe/I	Colour mg PM	Turbidiky N.T.U	Ammonia mg NH,1	Nitrate mg NOy1	Nitrite mg Noy1	Mangasses mg Ma/I	Dissolved Oxygen mg Oyl	Perm. No. mg KaseO ₄ 1	pH Units	Conduct. Jatican	Carbon Dioxide mg COy1	Total Alkalinity mg CsCoyl	Total Hardness mg CaCoyA	Prod. in its	Total Coliform Per 100 ml	Plow Rate Us
29.07.95	6.00- 10.00-	RAW FILT	2.5 0.00	5.4 0.02	1.00	45 0.6	0.28 0.18	0.2 0.28	0.2 0.05	0.1 0.00	0.6 5.9	5.60 4.80	63 69	218 223	1 26.6	-		57		
	10.00- 12.00pm	RAW FILT					2	2									2	0		
	12.00- 2.00pm	RAW FILT	1.60 0.01	4.7	50 1.0	20 0.4	0.140 0.00		15	0.12 0.00	0.3 6.4	-	6.59 7.0	206 236	:	:	:	20		
	2.00- 3.00pm	RAW FILT	1	2.	41. 11.	5.	6.45 6.29	15	-		12		5	10		2	1	0		
	1.00- 5.30pm	RAW FILT.	2.66 0.03	3.30 0.20	30 2	25 1.3	0.31 0.11	0.14 0.25	0.180	0.03	0.2 6.2	5.00 4.4	5.8	:	54 33	:	:	195	0	0.18
30/07/93	6.00- 8.00m	RAW FILT	2.05 0.00	4.4 0.03	178 1.00	36 0.09	0.43 0.38	0.22 0.28	0.05	0.2 0.1	0.7 5.8	5.4 5.0	5.9 6.5	187 214	49 24	94 144	66 97	n		
-	8.00- 11.00mm	RAW FILT.	1.6 0.01	3.8 0.05	95 61.0	23 0.06	0.15	0.12 0.26	0.15	0.1	0.3		5.5	234	-	98 150	72	0	-	0.11
	11.00- 12.30pm	RAW FILT.	10	2	1	10	141	1.11	915		2	1.11	-		15	-	10			
	12.00 2.30pm	RAW FILT.	1.3	5.1 0.07	70 20	30 1.00	-	1	-		2	-	60	200		-01	ä			
	2.30- 3.00pm	RAW FILT.	101	in se	14	10					-0		-	-			1			
	3.00- 5.30pm	RAW FILT.	1.8	3.3	65 2.0	28	0.28	0.16	0.14	0.17	0.3	5.4	5.75	195	52	86	68		0	0.18
		-		1.1	-	-				1.00	3.5	3.0	100	220		120		110	0	-

Des	Time	Sample	Ferrous iron mg Fe*A	Total bros mg Fe/1	Colour mg Pv1	Turbidiky N.T.U	Amesonia mg NH,1	Nitrate ang NO ₂ 1	Nitrite mg Noy1	Manganese ng Mari	Dissolved Oxygen mg Oy1	Perm. No. mg KmaO ₄ /1	pH Unite	Conduct.	Carbon Dioxide mg COy1	Total Alkalinity mg CeCo/I	Total Hardness mg CaCo,4	Prod. in its	Total Coliform Per 100 ml	Flow Rate Ve
31/7/93	8.00- 9.00mm	RAW FILT.	2.7 0.07	4.25 0.06	50 2	35 1.0	0.23 0.10	1.2 1.24	0.003	0.4 0.23	0.2 3.7	430	6.36 6.7	212 206	65 38	142 149	117 108	83		2
	9.00- 11.00mm	RAW FILT.	12		24	6	Alt -	10	12	14 41	44 33	-		210 210		304 - 140	2	10		
	11.00- 12.30pm	RAW FULT.	10	10	10	34 675	11.14 11.17	40 675	111	101 51	11		225 877	10		10	2	10		1
	12.30-	RAW	2.2	42	63	30	0.42	3.8	0.002	25	0.3		5.9	226		168	145	60		-
	2.30pm	PILT.	0.05	0.10	2.5	1.0	0.33	44	0.062		3.3		6.5	217		163	127			
	2.30- 3.00pm	RAW FILT.	1	415	- in .	Est.	- 610	0.11	5.00A	24	10	11	10	10	10	2	-	15	1	int.
10,000	3.00- 5.30pm	RAW FILT.	1.87	3.20 0.13	56 3.5	26 1.2	0.255 0.126	2.64	0.05	0.3 0.2	0.2	42	60	5	44			105		
-	1000	100	100	100	-	-	0.05	14	1.70		010		100	100	-	-			0	0.18
01.04.93	7.00- 9.00em	RAW FILT.	1.2	5.4 0.08	239 3	52 1.55	0.54 0.41	3.73 3.87	0.006 0.13	0.3 0.4	0.2 5.7	6.54 3.16	5.75 6.60	231 215	58 35	140 129	60 53	86		
	9.00- 12.00mm	RAW	2.3	5.0	99	18	0.360	2.95	0.09	0.16	0.25	3.8	6.25	-		98	94			
	1200-		20						0.15	0.10	1	3.0	1.1	-		116	90	20		
	2.30pm	FILT.	0.03	0.16	3.0	1.0					4.2		:	223 189			-	45		
	2.30- 3.00pm	RAW FILT.	1.10	-			-	-								-		15		
	3.00-	RAW	0.95	1.90	80	27	0.48	5.0	0.008	0.3	0.3	3.8	5.95	203	48	133	118	1.		141
1000	3.Supan	FILT.	0.05	0.20	3.0	13	0.26	5.21	0.013	0.19	3.7	3.2	6.85	192	36	125	103	190	0	0.18
02.08.93	6.00- 9.00mm	RAW FILT.	2.30 0.00	6 0.09	44 0.3	13 0.6	0.36 0.20	0.70 0.75	0.110 0.20	0.2 0.00	0.36 4.2		6.82 7.15	224 217	53 38	180 131	119 86	-0		
	9.00- 11.00am	2,410	10	174	-		0.00	8.230	4.00	-	-		101	-	-		1.			
	11.00- 12.30pm	1.12							-				100	1		146	-			
	12.30- 2.30pm	RAW FILT.	1.3 20	4.8 0.12	193 2.0	37 1.3	0.550	0.22	0.13	0.10	24		6.5	215		156	109			
	2.30- 3.00pm			2.12		13	-	-	-	-	10	11	136		-	-		-	-	011
	3.00- 5.30pm	RAW FILT.	2.20 0.05	3.6 0.16	173 3	25 1.4	0.220 0.01	0.12 0.35	0.29 0.004	0.12 0.16	3 4.6	5.3 4.9	6.52 6.73	230 218	66 50			172	0	0.17

0	Time	Sample	Ferrosa iron mg Fe [*] /I	Total Iron mg Fc/1	Colour ing PM	Turbidiky N.T.U	Ammonia mg NH/1	Nitrate ang NO _y 1	Nitrite mg Noy1	Manganese ng Ma/I	Dissolved Oxygen mg 0/1	Perm. No. Mg KMINO/I	pH Uaika	Conduct.	Carbon Dioxide mg COy1	Total Alkalinity mg CaCo ₂ /1	Total Hardness mg Ca/Co/A	Prod. in Its	Total Coliform Per 100 ml	Plow Rate Vec
05.08.93	6.00- 10.00mm	RAW FILT.	1.50 0.03	3.8 0.05	44 0.00	8 0.00	0.030 0.13	5.2 6.6	0.028 0.52	0.6 0.4	1.2 2.4	6.30 5.70	6.4 6.7	226 230	55 44	132 153	108 121	90		:
	10.00- 12.00pm	RAW FILT.	1.30 0.05	2.90 0.05	75 2.0	23 1.0	0.30 0.04	0.05 0.26	0.20 0.34	0.6 0.2	0.6 3.3	3	65 72	190 200		108 140	61 81	60		
	12.00- 2.00pm	RAW FILT.	1.70 0.03	2.70 0.05	55 2.0	14 0.71	0.80	0.5 0.73	0.60 6.82	0.30 0.1	0.3		6.53	207 215		92 158	73 99	32		:
	2.00- 3.00pm	RAW FILT.	1.1 0.01	2.1 0.06	44 0.93	*	0.23 0.02	4.4	0.25 0.018	0.5 0.3	0.4 4.3		60	220 236	41 - 25	:	:	20	1	1.17
	3.00- 5.30pm	RAW FILT.	0.9 0.1	3.8 0.15	52 2.0	25 1.35	0.11 0.04	0.25 0.132	0.16 0.018	0.5 0.4	0.5 3.6	6.3 5.7	6.52 6.6	210 230	68 63	:	:	140	0	0.17
05/08/93	6.00- 9.00mm	RAW FILT.	3.23 0.02	5.6 0.04	90 1.6	16 0.90	0.38 0.27	0.38 0.43	0.18 0.55	0.6 0.4	0.6 4.4	4.60	6.2 6.8	225 230	42	-		75	15	100
10000	9.00- 11.00em	RAW FILT.	1.60 0.02	3.00 0.00	48 1.0	30 0.5	0.18	1.4 2.30	0.78 18	0.6 0.35	0.35 5.0		5.80 5.95	191 231	-	142.	117	15		
	11.00- 12.30pm	RAW FILT.	1.13 0.02	3.09 0.10	40 1.0	25 0.00	0.27 0.05	0.4 0.52	0.275 0.360	0.4 0.1	0.6 4.7		6.67	197 209		12	100.	35	-	
	12.30- 2.30pm	RAW FILT.	2.20 0.06	4.5 0.14	17 1.0	8 0.70	0.37 0.09	0.78 0.92	0.44 0.52	0.8 0.5	0.2 5.4		5.9 6.3	1		245 1/8	177 (11	60		
	2.30- 3.00pm	8449 1953	10	309 61	3	10- 100		-		1			2.4 5.30	12		10.	110	-		
	3.00- 5.30pm	RAW FILT.	1.30 0.03	3.90 0.2	34 20	22 1.4	0.25 0.03	0.05 0.15	0.33 0.41	0.30 0.10	0.2 5.8	4.6	6.0		50 46			185	0	0.17
10/08/93	7.00- 9.00em	RAW FILT.	2.05 0.02	4.67 0.18	52 1.0	8 0.3	0.16 0.10	0.22 0.27	0.16 0.19	0.00 0.00	0.7 5.7	3.6 3.2	6.40 6.76	216 230	54 46	138 150	100	75		-40
	9.00- 12.30pm	RAW FILT.	1.91 0.02	3.76 0.07	52 1.0	18 0.6	0.29 0.07	0.22 0.65	0.33 0.11	0.30 0.10	0.3 5.3		6.42 6.72	212 220	-	126 145	76 103	26	-	-
	12.30- 2.30pm	RAW FILT.	1.68 0.04	4.74 0.18	31 1.5	21 0.5	0.163 0.010	0.132 0.202	0.153 0.24	0.3 0.00	0.2 6.0	-	6.56	204 209	10	118	93	40		
	2.30- 3.00pm	RAW FILT.	2.00	10	-1	-	ten.	201	-	-	1.0		111	195			124	10		
	3.00- 5.30pm	RAW FILT.	1.85 0.1	3.63 0.22	35 2.00	29 1.35	1.	1.	1	0.12	0.3 5.0	3.6	6.00	-	58	:		180	0	

100

-	Tex	Sample	Ferrous iron nug Fe*A	Total Iron mg Fe/1	Colour mg Pv1	Turbidiky N.T.U	Ammonia mg NH,1	Nitrate mg NO _y 1	Nitrite Mg Noy1	Manganese ng Ma/I	Dimolved Oxygen mg 0y1	Perm. No. mg KamO,4	pH Units	Condut.	Carbon Dioxide mg CO ₂ (1	Total Alkalinity mg CaCo_A	Total Hardness mg CaCo.4	Prod. in lu	Total Coliform Per 100 ml	Flow Rate Vec
11.06.95	7.00- 9.00mm	RAW FILT.	1.99 0.02	4.8 0.10	35 1.0	25 0.2	0.19 0.09	0.176 0.22	0.06 0.03	:	0.5 62		6.57 6.67	176 189	45 35	134 141	97 102	50		
	9.00- 11.00-	RAW FILT.	2.91 0.02	3.5 0.15	42 1.0	27 0.3	0.15 0.10	0.088 0.42	0.352 0.02	10	0.3 5.3	4.50 4.10	6.57 6.76	193 218	1	136 131	85 95	30		
-	11.00- 12.30pm	RAW FULT.	2.21 0.04	5.2 0.15	90 1.5	10 1.00	0.11 0.00		-		0.4 3.90		6.48 6.56	213 227		132 148	83 93	65		
	12.30- 2.30pm	RAW FILT.	0.94 0.03	2.30 0.23	65 2.0	15 1.45	0.22 0.15	0.058 0.27	0.155 0.03	0.35 0.11	0.2 4.3		5.60 6.5	10	63 57	:	:	150	0	0.17
	2.30- 3.00pm	RAW FILT.	-				-	1			-	10			1	-	1	15		
	3.00- 5.30pm	RAW FILT.	1.10 0.02	3.16 0.23	50 2.5	24 1.45	0.22 0.15	0.058 0.27	0.155 0.03	0.35 0.11	0.15 3.8	45	5.95 6.35	10	52 47	-	-	170	0	0.17
12/08/93	7.00- 9.00m	RAW FILT.	1.79 0.03	4.39 0.1	51 0.5	19 0.09	0.07 0.00	4.4 4.65	0.29	0.5 0.14	0.5 4.6		6.52 6.70	209 218	62 55	132 146	117 119	93		
	9.00- 11.00mm	RAW FILT.	1.02 0.02	4.5 0.08	47 1.0	4 0.06	0.03 0.00	2.64 2.2	0.30 0.002	0.75 0.24	0.3 5.8		6.74	206 234	-	143	116 119	26		
	11.00- 12.30pm	RAW FILT.	1.77 0.02	3.78 0.1	97 0.8	16 1.00	2.10 0.06	0.00 1.8	1.56 1.06	0.45 0.19	0.3 5.2		6.63 6.75	207 236		148 160	117 131			
	12.30- 2.30pm	RAW FILT.	2.2 0.06	2.90 0.2	82 1.5	15 1.00	10	8-17 6-10	1000	2	10	5	5.6	178 195	8	152 161	118 123	50		
	2.30- 3.00pm	RAW FILT.	100 810	171	2	2	1.0	111	1.1 ml	5.00	-			-	1 10			15		
	3.00- 5.30pm	RAW FILT.	1.65 0.1	3.75 0.25	48 2.0	26 1.35	1.54 0.03	3.8 4.2	22 3.5	0.65 0.18	10 10	4.7 3.9	63 7.3	-	57 52	• 100	- 114	165	0	0.17
16/08/93	6.00- 8.00mm	RAW FILT.	1.10 0.02	1.77 0.13	74 1.0	10 0.60	0.06 0.00	2.64 2.82	0.09	0.3 0.26	0.4		6.67	214	43	133	133	68	0	
	8.00- 11.00em	RAW FILT.	1.50 0.03	2.5 0.10	17 2.0	116 21.0	N/D 0.02		0.003	0.22	0.30	-	5.96	215		123	158	25		
	11.00- 12.30pm	RAW FILT.	1.60 0.02	3.3 0.15	47 20	70 1.0	0.03 0.00	2.64 2.65	0.002	0.4	0.60	-	6.73	175		129	123			
	12.30- 2.30pm	RAW FILT.	0.80 0.04	2.40 0.22	63 1.5	32 1.0	0.36 0.12	2.64 2.76	0.03	0.2	0.55	41 13	6.20	201	1	- 1	-	45		1.0
	2.30- 3.00pm								-						-			-	-	-
	3.00- 5.30pm	RAW FULT.	2.60 0.08	3.20 0.26	70 2.0	23 1.30	0.40	1.20	0.01	0.5	0.25	35	6.0	:	48			160	0	0.16

9.0	0 0	061	135 136	521 8+1	85 15	0722 212	59	38	43 00	010 07	570 005	0'22 0'28	600 073	OCT OZ	₽°1 25	0°31 2'6	70 0 60 1	LITL EVA	undoe's -00 6	
	1	00		971 STT		172 612	17 17		5% 20	04 09	900 0 00 1 10	0 0	0110 01	40 51	50 I 95	500 775	0 03 1 1	FLT FLT	mdoors -0072 -0072 -00721	
		n	061 161	251 051		062 912	579 079		17 20	50 25	010 0 038	6.48 0.42	6/15 075	04 J4	01 0r	90'0 87	00 0 6 l	LTLI MVII	-00 11 -00 11 -00 6	LLP
		59			99 99				80 08	032	008 0180	0'42 0'33	003 078	50 06	5°1 Q£	500 54%	003 502	LTL AVA	-00%	56-6070
\$10	0	581 02	90E 621	991 962	LS 95	95Z LHE	069 819 069 525	76 73	30 02 07 03	01 03 012 022	034 0035 03 03	0"31 0"35 0"30 0"30	000 038 078 070 012	00"1 52 90 91	57 52 01 02	076 784 10 583	900 ₩1 500 \$51	HIL BYAN HIL	2700- 2700- 1570hu 1100-	
		0 	577 9/1 5.91	951 591 251	9	318 00E ~	0879 8279 0979		219 014 22	000 000 870	01135 0 065 0 773	05170 54070 549 0	000 0 08 0 08	000 52	000 St	900 95% 03	100 171	1714 MV8	-00%	
	0			<u>sti</u>	20 22	691 122	2.60		01 23	0 V22	013 048	075	673	51 161	9 1	43	12		-009	GARDER
910	0	821		13	23	802	6.32	1	0010	90	110	0.03	1970	α	46.	34	680	AVE	200- 200- 720-	
		ot				318 281	29 85		24 018	120 60	0735 0715	072 079	8210 8250	17 51	3 75	51 22	60 6 0	1764 MYB	-06'21	
		05		SOE	5	_	165	15	5	70	50	6670	0023	61	ε	07.10	100	1764	-0011	
		u.	-	unt	19	-	575	10,	200	20	PO	110	700	۶۱	05	991	160		-00%	CAMERIES
ê i s	Totel Colifican In 001	2 5 2	Total Teaching NgChO ga	Total Total NoDO an	Curries Denies Inc. COvi	(Central Refer	F B	Party No.	hariomid nagero No per		Note of the second	VON IM	PHN Im	ITEN Amerika	and LVL	Not pre	Velg Im man man	signation		

APPENDIX A4 (Cont.) LUGUSI PLANT (KA-69)

Des	Tiese	Sample	Ferrous iron ny Fe [*] A	Total Iron mg Fe/1	Colour mg Pv1	Turbidiky N.T.U	Ammonia ng NH,1	Nitrate mg NO _y 1	Nitrite mg Noy1	Mangancee mg Ma/I	Dissolved Oxygen mg 04	Perm. No. mg KmnO ₂ /1	pH Units	Conduct.	Carbon Dioxidem g COy1	Total Alkalinity mg CaCo ₂ A	Total Hardness mg CaCoA	Prod. in Its	Total Coliform Per 100 ml	Flow nule Un
28/7/93	7.00- 9.00em	RAW FILT.	0.70	1.8	90 3.5	30 0.8	0.27	0.9 1.10	0.03 0.43	0.00 0.00	1.90 6.75	•	6.30 6.75	146 195	63 15	62.2 93.4	57 86	35		
	9.00- 12.30am	RAW FILT.	0.82	1.65	80	33 0.91				0.16	20 63		6.43	115 152	-	83.8 97.3	55 78	10		
	12.30- 2.50pm	RAW FILT.	0.53	3.2 0.12	*	29 1.1	0.18	1.63	0.04	0.22 0.13	24 5.6		100		400 13			185		
	2.30- 4.00pm	RAW FILT.	0.82	2.0	86 4.0	24 0.7			:		2			1				16		
	4.00- 6.30pm	RAW FILT	0.65	1.95	77	50 2.3	0.20 0.15	1.82	0.00	0.35	28 4.5	4.8	6.13 6.70	102 141	36 16	53.4 75.3	48 62	278	25 5	0.108
02.08/93	7.00- 9.00wm	RAW FILT.	0.71	1.80	110 20	29 0.6	0.31 0.23	2.6 2.73	0.07	0.18	27	1	6.3 6.75	113 123	44 10	86 112	67 89	50		
	900- 11.00am	RAW	0.56	21	82	30	0.17	0.116	0.092	0.28	3.2 5.7		5.5	125		93 116	46 76	18		
	11.00- 12 Nom	RAW	0.63	1.90	93 2.5	37	0.35	0.19	0.075	0.34	3.0 5.0		6.0			78 96	52 72	168		
	12.30- 2.30pm	8.40F 10.7	1.11 1.11	20	12	0 10				tan aan	90 95		24			di d	-			
											1			1			1	1	1	1

APPENDIX A4 LUGUSI PLANT (KA-69)

Des	Time	Sample	Ferrous iron mg Fe ³⁺ /I	Total Iron mg Fe/I	Colour mg Pv1	Turbidiky N.T.U	Ammonia mg NH ₂ /I	Nitrate mg NO _y 1	Nitrite mg Noy1	Mangances mg Ma/l	Dissolved Oxygen mg 0_/1	Perm. No. mg KmnO_/	pH Units	Conduct.	Carbon Dioxide CO _y 1	Total Alkalinity mg CaCoA	Total Hardness mg CaCoy1	Prod. in Its	Total Coliform Per 100 ml	Flow rate Vs
12/7/93	6.00- 9.00em	RAW FILT.	0.6 0.00	1.50 0.2	190 12.0	62 0.72	0.26 0.19	5.4 5.46	0.30 0.047	0.30 0.10	2.90 6.30	10	6.1 6.6	98 / 136	46.3 7.5	78 110	53 72	30		101
	9.00- 12.30am	RAW FILT.	0.9 0.03	1.50 0.1	180 15	54 0.8	0.62 0.50	1.51 1.92	0.04 0.02	0.2 0.15	3.0 5.8		6.2 6.7		-	-	-	70		
	12.30- 2.30pm	RAW FILT.	0.4 0.00	1.30 0.15	70 20	18 1.3	0.41 0.32		0.042 0.07	0.4 0.18	2.5 4.6		5.59 6.17	120 168	53.8 5.5	60 86	50.0 77	180		
	2.30- 4.00pm	RAW FILT.	0.5 0.02	1.4	85 9	18 0.6	0.33	5.72 5.50	:	0.28	3.1		6.2					0		
APPENDIX A4 (Cont.) LUGUSI PLANT (KA-69)

-	Time	Sample	Perrova iron mg Fe ¹ +A	Total Iron ny Fe/1	Colour mg PA	Tutility N.T.U	Associa mg NH ₂ 1	Nitrate mg NOy1	Nitrite mg Noy1	Mangamon mg Mayl	Dissolved Oxygea mg Oy1	Perm. No. mg KmmOy/1	pH Units	Conduct.	Carbon Dioxide mg CO ₂	Total Alkalinity mg CaCo ₂ A	Total Hardness mg CaCoyA	Prod. in	Total Coliform Per 100 ml	Flow rate Us
1608-93	8.00- 10.00ms	RAW FILT.	0.54 0.03	2.2 0.05	94 1.5	42 0.7	1.M 0.3	0.93 1.20	0.05 0.23	0.14 0.04	21 62		5.92 7.2	142 190	62 18	73 86	39 63	62		
-	10.00- 12.30pm	RAW FILT.	0.50 0.02	1.63 0.07	64 1.8	51 0.6				0.41 0.13	2.6 6.0		5.66 6.56			56 63	56 84	28		
	12.30- 2.00pm	RAW FILT.	0.67 0.04	1.65 0.14	68 20	M 12				0.06	3.1 5.2		5.70		35 11	76 92	60 63	168		
	2.00- 4.00pm	RAW FILT.	0.82	1.10	75 1.9	34 1.0					2.8 4.8		1.00	131 150			30 71	42		
	4.00- 6.30pm	RAW FILT.	1.3 0.05	1.4 0.14	80 2.3	48 2.4	3.53 1.82	1.68 2.55	0.034 0.28	0.36 0.15	3.5 4.3	5.4 3.9	60 690		58 27	71 88	43	279	17	0.116
24.08.93	7.00- 9.00em	RAW FILT.	0.75 0.02	1.5 0.06	63 2.0	41 0.7	2.26 0.65	1.43 2.10	0.133 0.52	0.23 0.08	2.4 6.0	12 14	6.3 7.15		25 0	83 120	50 68	28	14	
144914	9.00- 11.00em	RAW FILT.	0.94 0.026	1.25 0.13	75 2.4	45 1.5				0.42 0.16	2.70 5.90		5.80 6.70	75 107	1	58 75	68 95	154		
	11.00- 12.30pm	RAW FILT.	0.48	1.94	54 2.0	36 1.0	-	12	-	0.27 0.05	2.6 5.9	-	A.177		ł	70	38 72	17		
	12.30- 2.00pm	RAW FILT.	0.68 0.03	1.7 0.11	87 25	48 2.0				0.48 0.130	3.0 5.3		5.4 6.5	-		90 136	76 103	67		
	2.00- 4.00pm	RAW FILT.	9.52 5.0%	1.4 210	5	*					2.0 3.0		140	110 110	1			0		
	4.00- 6.30pm	RAW FILT.	0.81 0.06	1.45 0.13	102 4.0	50 2.4	1.36 0.035	1.56 1.78	0.026 0.45	0.25 0.04	3.4 5.0	3.6 3.1	5.54 6.65	112 138	76	104 85	84 120	285	19	0.11
30.08.93	7.00- 8.00mm	RAW FILT.	0.50 0.02	2.0 0.08	110 1.8	57 0.7	0.38 0.03	1.75 1.92	0.012 0.084	0.19 0.00	1.75 6.6	18 17	6.0 6.4	122 140	41	73 112	60 97	25		hill
	8.00- 11.00am	RAW FILT.	0.95 0.032	1.20 0.10	86 2.6	39 0.9				0.28 0.075	2.5 5.6		5.45 6.5	14		55 89	36 54	50		
	11.00- 12.30pm	RAW FILT.	0.75 0.03	1.54 0.08	67 2.0	29 0.95				0.32 0.070	2.4 5.4		6.1 6.90	110 126				25		
	12.30- 2.30pm	RAW FILT.	0.64 0.08	1.62 0.11	98 3.8	53 1.3	0.58 0.02	1.64 1.82	0.044 0.156	0.22 0.09	3.6 4.7		5.85 6.3		65 50	5	2	190		
	4.00- 6.30pm	RAW FILT.	1.3 0.05	1.86 0.12	77 3.5	36 22				0.34 0.03	3.2 4.9	5.8 3.3	1.25	121 159	62 34	87 124	70	255	15	0.11

APPENDIX A4 (Cont.) LUGUSI PLANT (KA-69)

Dam	Time	Sample	Perioda Intel Ing Pe ^{te} ll	Total little org Fall		Tubliny N.T.U	Ammonia mg NHLA	Ninetic ung MOyA	Ninda mg Nayt	Mangason ng Mari	Dissolved Oxygen ung Oyl	Norm Ha	p#1 Uuda	Oradiust.	Carbon Dioxide mg CO ₂ /I	Total Alkalisity og CaCs,1	Total Hardness mg CaCo ₂ A	Prod. In In	Total Coliform Per 1920 mi	Plow min Us
-	LOD LODan	RAW FILT	843 003	1.55 0.08	67 2	8 0.9	0.14 0.00	3.48 4.28	0.009	0.17 0.06	1.66 6.4		6.13 6.6	74 328	55 15	74 110	57 85	2		
	11.00-	RAW FILT.	0.74 0.01	1.65 0.06	47 26	12 1.4					1.83 5.8		5.83 6.65					35		
	11.00- 12.30pm	=	=	=	1		100	2	-		-11			=						
	12.50-	RAW	0.00	1.24	78	10					26		5.60	10				144		
			U.U.	0.10	3.0	13					5.4		6.45	150		1.0				
	2.30- 4.00pm	FELT	-			-						1	-	1000	100	12	2	-	-	
-	4.00-	BAW	0.76	175			012	1.16						1						
	6.30pm	FILT	0.06	0.11	3.2	1.9	0.05	4.16	0.026	0.10	4.9	3.6	6.50		43	79	83	262	12	0 105
14.09.93	6.00- 9.00mm	RAW FILT.	0.66	1.40	6 4	20 2.0				0.23	1.73		5.94 6.70	91 121	20	70	59 96	16		
	9.00-	RAW	0.67	1.85	57	22	0.07	1.76	0.076	1.0	1.97		6.15			-				
	11.00	FILT	0.04	007	3.5	1.5	0.02	3.96	0.073	-	5.8		6.80		1					
	11.00- 12.30pm			-	2	2							12	-				-		
	12.30- 2.30pm	RAW FILT	0 52	2.4 0.11	73 4.0	16 2.5					2.6 5.3		5.30 6.44	80 136	48 22			175		
	2.30- 4.00pm	RAW FULT	-	114	-	-	1.2	14.		-	1	ä	=			1.2	-	-		-
	4.00- 6.30pm	RAW FILT	0.56	1 60 0 1 3	66 3.8	43 2.6	0.15 0.012	2.18	0.062	0.30	2.9	5.9 5.7	5.71	-	2	56 90.3	80	263	:	0.107
21/09/473	6.00- 9.00mm	RAW FILT	0.64 0.01	1 95 0.03	58 1.5	17 0.6	-			0.08	2.2		5.88	84	25 10	76	62	32		
	9.00- 11.00mm	-	1	1	-	-				1	1		11	12				-		
	11.00- 12.30pm	RAW FILT	0 76	1.50 0.11	82 2.3	37	0.036 0.013	3.42	0.088	0.0	3.4	2	5.81	12	12	65	59	150	15%	
	12.30-	RAW	0.39	2.30	48	19					3.0		6.14	1	-	70	57	20		
	2.30- 4.00pm	-					-	2	-	1	3.4	2	6.74	4		125	92	-	-	
	4.00- 6.30pm	RAW FILT.	0.45	1.10	86 3.0	45	0.05	24	0.045	0.18	3.5	63	5.96	95	29.0	L3	56	280	7	

APPENDIX A4 (Cont.) LUGUSI PLANT (KA-69)

Den	Ten	Simple	Printed lines ing Pa ^{te} A	Total Iron mg PeA	Colour ng PA	Turbility N.T.U	America mg NH ₄ 1	Nines mg NOy1	Nista ng Na _t 1	Mangaserse ng Mari	Dissolved Oxygee mg Dyl	Pores. No. reg KanaQ ₂ 1	pil. Uniu	Conduct.	Carbon Dice life ung CO ₂ 1	Total Alkalinity mg CaCoA	Total Hardware Mg CaCoyl	Prod, in ht	Total Chilform Per 100 mi	Plow Ram Vo
100041	2.00 9.00mm	RAW FILT	0.77 0.02	1.35 0.09	74 1.0	24 0.8	0.065 0.025	3.6 4.2	0.14 0.07	0.15 0.04	23 63		5.35 6.63		42.8 13.5	57 80	73 122	45		
	9.00- 12.10mm																-	-		
	12.30- 2.Nipm	RAW FILT	0.35 003	1.75 Q.12	61 2.0	ж 13	0.15 0.05	2.6 2.7	0.06 0.13	0.12 0.0	3.2 5.4		6.17 6.22	00.P 125				67		
	2.30- 4.00pm	RAW FILT																-		
	4.00- 6.X0pm	RAW FILT	0.44 0.012	145 Q13	55 2.7	30 2.3	0.12 0.04	1.72 2.6	0.09 0.15	0.26 0.08	3.4 4.4	3.79 4.1	5.63 6.82	76_3 135	83.7 16.2	50 77	III 133	245	13	0.11
061049	7.00- 9.00mm	RAW FILT	0.28 0.01	2.6 0.06	40 1.7	18 0.82				0.0 0.0	20 5.9		5.52 6.25		28.6 9.7	75 96	64 93	58		
	9.00- 11.00mm									E.										
	11.00- 12_10pm	RAW FILT.	0.65	1.49	75 3.0	33 1.6	0.17 0.05	20 211	0.19 0.16	0.31 0.07	22 5.5		6.05 6.85	69 116				148		
	12.10- 2.10pm	RAW FILT	0 74 0 04	1.55 0.05	48 2.4	16 1.2					2.1 5.0		5.90	82 140				17		
	2.30- 4.00pm	RAW FILT																-		
	4.00- 6.30pm	RAW FILT	0.00	1.24 0.14	68 3.4	36 2.0	0.14 0.06	1.5 1.64	0.25 0.21	0.29	2.7	5.3 3.5	5.45 6.92		43.3	70 90	ණ 100	250	17	011
13/10/93	11.00- 1_N0pm	RAW FTTL	0.76 0.068	1.60 0.6	75 40	36 1.3				0.34	3.5 5.1		6.01	97 125	55 30	67	58 70	125		
	4.00- 6.30pm	RAW FTTL	0.86 0.08	1_30 0.1	70 4.5	34 1.8	0.17 0.05	2.6 2.75	0.13 0.10	0.20 0.05	3.0 4.85	3.8	5.81	84 116	39 30	78	60	191	21	0.11
19/10/93	11.30- 2.00pm	RAW FTTL	0.64 0.07	1.65	80 5	45 1.0				0.18	2.65 5.40		5.6	81	60 37	199 131	75	145	-	
	4.00- 5.30pm	RAW FTTL	0.88	1.40 0.12	74 4.7	35 1.2	0.2 0.06	3.4 3.54	0.16 0.20	0.22	2.85	5.70	5.4	94 120	65	MD 135	70	1.20	10	
29/10/93	11.00- 1.%0pm	RAW FITL	U NU Q.075	1.50	70	35				0.30	3.3		5.70	97	57	98	м	130	,	0.11
	4.00-	RAW	0.9	1.10	85	34	0.13	23	0.21	0.33	29	3.0	5.5	152	45	106	98		16	0 10

APPENDIX B

APPENDIX B STANDARDS FOR CHEMICAL AND PHYSICAL QUALITY OF DRINKING WATER

NI ²	Water Classification and		1	Standards of Water
IN-	Substances	Linit A	ccentable	Allowable
	Water causing toxic effects			
1.	lead Pb	mg/l	n.m	0.05
2.	Arsenic, As,	mg/l	n.m	0.05
3.	Selenium, Sc	mg/l	n.m	0.01
4.	Chromium (b.) Cr	mg/l	n.m	0.05
5.	Cyanide, CN	mg/l	n.m	0.20
6.	Cadnium Cd	mg/l	n.m	0.01
7.	Barium Ba	mg/l	n.m	1.00
8.	Mercury Hg	mg/l	n.m	n.m
9.	Silver Ag	mg/l	n.m	n.m
	Water affecting human health			
10.	Fluoride	mg/l	n.m	1.5
11.	Nitrate	mg/l	n.m	30.0
	Water for general domestic use			
	Water being organo-septic			
12.	Colour	mgPt/l	5	50
13.	Turbidity	mgSiO ₂ /l	5	25
14.	Taste	-	n.o	D.O
15.	Odour	-	n.o	n.0
	Water of Salinity and hardness			
16.	pH	-	7.0-8.5	6.5-9.2
17.	Total filtrable residue	mg/l	500	1500
18.	Total hardness	mgCaCo	/l n.m	n.m
19.	Calcium Ca	mg/l	75	200
20.	Magnesium Mg	mg/l	50	150
21.	Magnesium-Sodium Sulphate	mg/l	500	1000
22.	Sulphate SO,	mg/l	200	400
23.	Chloride Cl	mg/l	200	600
	Water with non toxic metals	*		
24.	Iron Fe	mg/l	0.3	1.0
25.	Manganese Mn	mg/l	0.1	0.5
26.	Copper Cu	mg/l	1.0	1.5
27.	Zinc Zn	mg/l	5.0	15.0
	Water with organic pollution			
	of natural origin			
28.	BOD 5	mgO ₂ /l	n.m	6.0
29.	PV (Oxygen abs. KMnO ₄)	mgO ₁	n.m	10
30.	Ammonium NH,	mg/l	n.m	0.5
31.	Total Nitrogen, exclusive Nitrate	mg/l	n.m	0.1

APPENDIX B (Cont.)

ont.) STANDARDS FOR CHEMICAL AND PHYSICAL QUALITY OF DRINKING WATER

Nº	Water Classification and Substances	Unit	Acceptable	Standards of Water International (a) Allowable
32.	Water with organic pollution introduced artificially Surfactants ABS	mg/l	0.5	1.0
33.	Organic matter as carbon in chloroform extract	mg/l	0.2	0.5
34.	Phenolic substances as phenol	mg/l	0.001	0.002

Notes:

n.m = not mentioned

n.o = Unobjectionable

(a) = Intern. Standards for Drinking Water, WHO, Geneva, 1963

(b) = Proposed temporary standards for Rural Water supplies by RWSHSC, 1973

* = Tentative figures

APPENDIX C THE COST OF THE THREE IRON-REMOVAL PLANT MODELS AND MATERIAL AVAILABILITY

14	TTEM DELCRIPTION	DEAT	TTY	1863.7	RATE	COST			Advented
		OPLI	027.3	097.3	1	den t	int.	ngr 3	a h
1	Cimento otiven Stituto dai y Stituto	3		4	8200	2+00	800	-	Local
1	Concette cedivert 3000unte d'ile a 500mm	-	12	r	1500		1	3/100	Local
1	Caustiets cover dab		2	1	1209		5450	1200	koni
411	Chalassy perilon invested	3144	o baga	19 bags	430	1310	2100	630	Varenal
10	Making reat	16.628	1.000	14.108	-100	200	.030	300	Tent
4	risaged said.	a large	7 bags	2 bags	007	420	701	700	
7	Station (or gravel) 34"	1.0 100	4.00	1/10 100	650	12	2.68	-	2.1
	instan (or gravel) w"	Ny Kon	No star	14 1025	229	10	121	163	1
10	like or weldowh his o his	1.75	I.P.	176	507	.500	-982	220	Energy
14	Whendhamd (water and)	THE	-2 min	166 midb	300	300	1000	20	Imported
11	Rulphos officer monthesist)	-	DDENI		3905	-	-	- 500	
12	Ginz paint Siles	21,		IL.	325	200	250	325	Exercisi
18	PVC pipe 100mm dis	20	81	-	ditta	1200	-	-	1
24	PWC an sident dis	175	- 1	-	1000	1050	-	-	e
15	PVC galoip 30fem fla	1.80	1.	-	750	-908	-	-	
15.	105 pipe Zimer die	29	-60	1Los	100	200	-00	-	
10	One volto Zines file	TR.	1.19	170	2000	300	302	300	a.
18	DB about 25min Ar	2.74	2 Rc	2.94	100	.200	250	200	5 1
14	PVC solucer 100mm x 50mm	1.70		4.00	350	210	1	-	e
1.20	G/S pipe 50mm dia	in.	24	20	3.20	170	010	110	
1 28	Gi pipe Silam dis	170	1.70	2.74	100	-450	130	100	1
-	PVC adaptos 30mm dis	CN.	-	4	300	200	1-0	1	÷
28	con adapta science die	1.00	-	1.05	101	100	-14	100	1
36.	eig mehany strong a Boost die	1.	1 PE	170	100	-	170	150	-
5	All allows fillnam alk	1.71	TRE	2.00	150	200	300	300	* 1
12	-vite play 50min 40.4	10		1.85	75	1	-	75	1

APPENDIX C THE COST OF THE THREE IRON-REMOVAL PLANT MODELS AND MATERIAL AVAILABILITY

No.	ITEM DESCRIPTION	QUANT	ТТҮ	AATE 1	RATE	COST		REPUBLI	
	1.0711	OPT 1	OPT 2	OPT 3		OPT 1	OPT 2	OPT 3	
1	Concrete culvert 800mm dia. x 500mm	2	8	1	1200	2400	600	-	Local
2	Concrete culvert 1000mm dia x 500mm	-	-	1	1600	-	-	1600	Local
3	Concrete cover slab	-	2	1	1200	-	2400	1200	Local
4	Ordinary portland cement	3 begs	6 bags	11/2 bags	420	1260	2100	630	External
5	Building sand	1/2 LOD	1 ton	14 LOB	400	200	400	100	Local
6	Graded sand	4 bags	7 bags	2 bags	100	400	700	200	•
7	Ballast (or gravel) 3/4"	1/8 ton	14 ton	1/16 ton	650	82	160	41	-
8	Ballast (or gravel) 1/2"	1/4 ton	1/2 ton	1/4 ton	650	163	325	163	•
9	BRC or weldmesh 1m x 1m	1 Pc	1 Pc	1 Pc	500	500	500	250	External
10	Flexoband (water seal)	1 roll	2 rolls	1/2 roll	500	500	1000	250	Imported
11	Polyfelt (filter membrane)	-	-	1	500	-	-	500	•
12	Gloss paint blue	2L	21.	IL	125	250	250	125	External
13	PVC pipe 100mm dia	3m	-	-	400	1200	-	-	•
14	PVC tee 100mm dia	1 Pc	-	-	1000	1000	-	-	•
15	PVC endcap 100mm dia	1 Pc	-	-	700	700	-	-	ŀ
16	GS pipe 25mm dia	2m	4m	۲	100	200	400	-	•
17	Gate valve 25mm dia	1 Pc	1 Pc	1 Pc	300	300	300	300	•
18	GS elbow 25mm dia	2 Pc	2 Pc	2 Pc	100	200	200	200	•
19	PVC reducer 100mm x 50mm	1 Pc	=1	-	350	350	-	-	•
20	GS pipe 50mm dia	lm	3m	3m	170	170	510	510	•
21	GI pipe 50mm dia	1 Pc	1 Pc	2 Pc	450	450	450	900	•
22	PVC adaptor 50mm dia	1 Pc	-	-	200	200	-	-	-
23	GS nipple 50mm dia	1 Pc	-	1 Pc	100	100	-	100	-
24	GS reducer 50mm x 25mm dia	-	1 Pc	1 Pc	100	-	150	150	-
25	GS elbow 50mm dia	2 Pc	2 Pc	2 Pc	150	300	300	300	•
26	GS plug 50mm dia	-	-	1 Pc	75	-	-	75	

APPENDIX C (Cont.) THE COST OF THE THREE IRON-REMOVAL PLANT MODELS AND MATERIAL AVAILABILITY

NO	тем	QUANTITY			RATE	COST			
	DESCRIPTION	OPT 1	OPT 2	OPT 3		OPT 1	OPT 2	OPT 3	
27	GS tee 50mm dia	-	-	2 Pc	100	-	-	150	External
28	GS tee 25mm dia	1 Pc	-	-	75	75	-	-	•
29	GS cross 25mm dia	-	1	-	150	-	150	-	•
	TOTAL MATERIA	L COST				11,000	19,898	7,644	
	LABOUR AND AD	MINISTRA	NOIT			4,500	8,000	3,000	
	TOTAL PROJECT	COST				15,000	26,898	10,644	
	SAY	_				16,000	27,000	11,000	

NB:

1) Options:

Option	1:
Option	2:
Option	3:

One tank type (e.g. C-5467, Shivanga) Two tank type (e.g. KA 69, Lugusi) Single culvert type (e.g.BS-9, Siginga and BS-12, Khayinga)

2)

Local - Means item can be obtained (or made) at site or at least within Programme area. External - Means item obtainable outside Programme area but made in Kenya. Imported - Means item manufactured outside the country.

1.1

APPENDIX C THE COST OF THE THREE IRON-REMOVAL PLANT MODELS AND MATERIAL AVAILABILITY

No.	ITEM DESCRIPTION	QUANT	ITY		RATE	COST			IDIALE
	Section 1997	OPT 1	OPT 2	OPT 3		OPT 1	OPT 2	OPT 3	
1	Concrete culvert 800mm dia. x 500mm	2	8	1	1200	2400	600	-	Local
2	Concrete culvert 1000mm dia x 500mm	-	-	1	1600	-	-	1600	Local
3	Concrete cover slab	-	2	1	1200	-	2400	1200	Local
4	Ordinary portland cement	3 bags	6 bags	112 bags	420	1260	2100	630	External
5	Building sand	1/2 LOD	1 ton	1/4 LOR	400	200	400	100	Local
6	Graded sand	4 bags	7 bags	2 bags	100	400	700	200	•
7	Ballast (or gravel) 3/4"	1/8 ton	₩ ton	1/16 ton	650	82	160	41	•
8	Ballast (or gravel) ½"	¼ ton	1/2 ton	¼ ton	650	163	325	163	•
9	BRC or weldmesh 1m x 1m	1 Pc	1 Pc	1 Pc	500	500	500	250	External
10	Flexoband (water seal)	1 roll	2 rolls	¹ / ₂ roll	500	500	1000	250	Imported
11	Polyfelt (filter membrane)	-	-	1	500	-	-	500	•
12	Gloss paint blue	2L	2L	1L	125	250	250	125	External
13	PVC pipe 100mm dia	3m	-	-	400	1200	-	-	•
14	PVC tee 100mm dia	1 Pc	-	-	1000	1000	-	-	•
15	PVC endcap 100mm dia	1 Pc	-	-	700	700	-	-	•
16	GS pipe 25mm dia	2m	4m	1/2m	100	200	400	-	•
17	Gate valve 25mm dia	1 Pc	1 Pc	1 Pc	300	300	300	300	•
18	GS elbow 25mm dia	2 Pc	2 Pc	2 Pc	100	200	200	200	•
19	PVC reducer 100mm x 50mm	1 Pc	- 1	-	350	350	-	-	•
20	GS pipe 50mm dia	lm	3m	3m	170	170	510	510	•
21	GI pipe 50mm dia	1 Pc	1 Pc	2 Pc	450	450	450	900	•
22	PVC adaptor 50mm dia	1 Pc	-	-	200	200	-	-	•
23	GS nipple 50mm dia	1 Pc	-	1 Pc	100	100	-	100	•
24	GS reducer 50mm x 25mm dia	-	1 Pc	1 Pc	100	-	150	150	•
25	GS elbow 50mm dia	2 Pc	2 Pc	2 Pc	150	300	300	300	•
26	GS plug 50mm dia	-	-	1 Pc	75	-		75	•

APPENDIX C (Cont.)

THE COST OF THE THREE IRON-REMOVAL PLANT MODELS AND MATERIAL AVAILABILITY

NO	ГТЕМ	QUANT	ITY		RATE COST				
	DESCRIPTION	OPT 1	OPT 2	OPT 3		OPT 1	OPT 2	OPT 3	
27	GS tee 50mm dia	-	-	2 Pc	100	-	-	150	External
28	GS tee 25mm dia	1 Pc	-	-	75	75	-	-	•
29	GS cross 25mm dia	-	1	-	150	-	150	-	•
	TOTAL MATERIAL	L COST				11,000	19,898	7,644	
	LABOUR AND AD	AINISTRA	TION			4,500	8,000	3,000	
	TOTAL PROJECT	COST				15,000	26,898	10,644	
	SAY					16,000	27,000	11,000	

NB:

 1) Options:
 Option 1:
 One tank type (e.g. C-5467, Shivanga)

 Option 2:
 Two tank type (e.g. KA 69, Lugusi)

 Option 3:
 Single culvert type (e.g.BS-9, Siginga and BS-12, Khayinga)

Local - Means item can be obtained (or made) at site or at least within Programme area.
 External - Means item obtainable outside Programme area but made in Kenya.
 Imported - Means item manufactured outside the country.

PLATES

PLATE 1 Khayinga Plant immediately after backwashing

PLATE 2 Khayinga Plant one day after backwashing

PLATE 3 Khayinga Plant second day after backwashing

PLATE 4 Khayinga Plant after clogging up

PLATE 5 Siginga Plant two days after backwashing

PLATE 6 Khayinga Plant in operation

PLATE 7 Siginga Plant in operation

PLATE 8 Siginga Plant after clogging up

PLATE 9 Lugusi Plant in operation

PLATE 10 Shivanga Plant in operation

PLATE 11 Lutaso iron removal plant (C-5480)

PLATE 12 Handiti iron removal plant (C-5462)