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Abstract

We develop an attractive and tractable model to describe the finan-
cial time series of stock prices observed at the Nairobi exchange market
then price financial derivatives on the underlying stock. The stock price
process is assumed to be of exponential Lévy type with normal inverse
Gaussian (NIG) distributed log-returns. We derived the PIDE satisfied
by the option’s price when the pricing measure is chosen by indifference
pricing method for exponential NIG Lévy models, implement its numer-
ical approximations and compare our results with Esscher transform’s
model.
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1 Introduction

Lévy processes combine great flexibility with analytical tractability for finan-
cial modelling. Essential features of asset returns like heavy tails, aggregational
Gaussianity, and discontinuous price movements are captured by simple expo-
nential Lévy models, that are a natural generalization of the famous geometric
Brownian motion.
The statistical analysis of data from the financial markets has shown that
generalized hyperbolic distributions allow for a more realistic description of
asset returns than the classical normal distribution, see e.g., [7]. This has been
supported by observations that in ‘real’ world the asset price processes have
jumps or spikes which have to be taken into consideration. The empirical dis-
tribution of asset return exhibits fat tails and skewness behavior that deviates
from normality, see e.g., [3].
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Generalized hyperbolic distribution contains as sub-classes hyperbolic, see e.g.,
[5] as well as normal inverse Gaussian distribution, see e.g., [1]. A detailed study
about generalized hyperbolic option pricing models can be found in [7] and it is
our objective in this study to discuss the NIG Lévy model as a tool to evaluate
the uncertainty in future prices of stock listed at Nairobi stock exchange.
We derive the indifference price partial integro-differential equation (PIDE)
then obtain the explicit solution in the limit in which the investor becomes
risk-neutral, that is, we explicitly construct the unique equivalent martingale
measure induced by the indifference pricing principle, in the limit of zero risk
aversion and implement some numerical pricing results.

The paper is organized as follows: We give an introduction of the NIG in sec-
tion 2 and discuss how to estimate the parameters of a NIG model. Section
3 presents some results regarding the normal inverse Gaussian Lévy process
which are later used throughout our study. Section 4 is our major contribu-
tion : We derive the pricing formula for financial derivatives written on stock
whose price process is a NIG Lévy process via indifference measure. It should
be pointed out that the approach in section 4 is rather general and can be
applied to any class of Lévy process. In section 5, we give some numerical
results.

2 Normal Inverse Gaussian distribution

Definition 2.1. A random variable X follows a normal inverse Gaussian
distribution with parameters (α, β, δ, λ, μ) if its probability density function is

fNIG(x; α, β, δ, μ) =
α

π
exp

(
δ
√

α2 − β2 + β(x − μ)
) δK1

(
α
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

(1)

Where the parameters (α, β, δ, μ) can be explained as follows: α is a steep-
ness parameters , β is an asymmetry parameter, δ is a scale and μ is a location
parameter.
K1(x) is the modified Bessel function of the third kind with index 1, that is;

K1(x) =
1

2

∫ ∞

0

exp

(
−1

2
x(z + z−1)

)
dz (2)

Moreover from the definition of the density function, the parameters α and β
must satisfy 0 ≤ |β| ≤ α and δ > 0.
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2.1 Parameter estimations

2.1.1 Maximum Likelihood Estimates

We recall that the density of the NIG distribution,

fNIG(x; α, β, δ, μ) =
αδK1(α

√
δ2 + (x − μ)2)

π
√

δ2 + (x − μ)2
eδ
√

(α2−β2)+β(x−μ)

We can rewrite the density function as

fNIG(x; α, β, δ, μ) =
α

π
exp(δ

√
α2 − β2 − βμ)ζ(x)−1/2K1(δαζ(x)1/2) exp(βx)

where ζ(x) = 1 + [(x − μ)/δ]2, then the log-likelihood function is given by

LNIG(x|α, β, δ, μ) = −n ln (π) + n ln (α) + n(δ
√

α2 − β2 − βμ)

−1/2

n∑
i=1

ζ(xi) + β

n∑
i=1

xi +

n∑
i=1

K1(δαζ(xi)
1/2)

We then take the corresponding partials and solve the system of resulting
equations. However, since the derivatives of log-likelihood function involves the
Bessel function, a direct maximization might not be easy, that is, a numerical
methods need to be used.
Figure 1 shows our fit for the NIG distribution to the financial data of a
stock traded at Kenyan stock exchange market using the maximum likelihood
estimates.
The values of the estimates were α̂ = 5.33453, β̂ = 1.58963, δ̂ = 0.038264, μ̂ =
−0.00490113.

3 NIG Lévy model

We consider price dynamics of exponential-Lévy models in which the stock
price St is represented as

St = S0 exp(Lt) (3)

where {Lt}t≥0 is a stochastic process with independent and stationary incre-
ments defined as

Lt = γt + Xt (4)

where {Xt}t≥0 is an NIG process and γ is a constant.

Using results from Protter [8, Theorem 42 ] the following corollary gives a
representation of Lt in terms of Poisson processes.
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Figure 1: The histogram and empirical density fit of the weekly log-returns of
KPLC share price at Nairobi stock exchange, for the period 2002-2008 (338
observations).

Corollary 3.1. (NIG Lévy decomposition)
Let {Lt} be a NIG Lévy process, then Lt has the decomposition

Lt = γt +

∫ t

0

∫
|z|<1

z(N(dt, dz) − dtϑ(dz)) +

∫ t

0

∫
|z|≥1

zN(dt, dz) (5)

where t ≥ 0,

ϑ(dz) = f(z; α, β, δ)dz =
δα

π|z| exp (βz)K1(α|z|)dz

and K1(.) is the modified Bessel function of the third kind and index 1.

Remark 3.2. Equation (5) can as well be written as

Lt = γ2t +

∫ t

0

∫
�

zÑ (dt, dz)

Where γ2 = γ +
∫
|z|≥1

zϑ(dz), Ñ(dt, dz) = N(dt, dz) − dtϑ(dz)

We now give an illustration of Itô formula that will be referred to through-
out our study

Example 3.3. Suppose

dXt = γdt +

∫
�

zN̄ (dt, dz)

where γ is a constant and

N̄(dt, dz) =

{
N(dt, dz) − ϑ(dz)dt if |z| < 1

N(dt, dz) if |z| ≥ 1



NIG Lévy modeling 2319

Given that Y (t) = exp (X(t)) we can applying Itô’s formula

dY = Y (t−)[γdt +

∫
|z|<1

(ez − 1 − z)ϑ(dz)dt +

∫
�

(ez − 1)N̄(dt, dz)] (6)

4 Indifference pricing of options on a stock

driven by NIG Lévy process

This section is our major contribution in this study. We are interested in
pricing a European option with maturity T and payoff g(ST ) using the utility
indifference pricing method.
Particularly, we consider an investor facing the decision whether to sell a given
contingent claim with discounted payoff g(ST ) or not.

We assume the market consists of a riskless asset whose price process (e
� t
0 rdt)0≤t≤T

where r = 0, a traded(risky) asset whose price process (St)0≤t≤T is an adapted
process and a non-traded asset with price P0 today.

Let (θt)0≤t≤T be a trading strategy which describes the investor’s portfolio
as carried forward over time. For instance, consider an investor who sells a
liability to pay out the amount g(ST ) at time T and receives initial payment
P0 for such a contract then he has to hedge to reduce his risk exposure. His
final net wealth is given by

WT = P0 +

∫ T

0

θtdSt − g(ST )

If the investor was risk-neutral, he would choose a strategy to maximize
the expected value of the terminal wealth. However, all reasonable investors
are risk averse and he will follow the strategy that maximizes the expected
utility of the terminal wealth:

sup
{θt}∈A

E[U(WT )|Wt = w]

in which the function U is an increasing concave utility function of wealth
representing the investor’s risk preference and A is the set of squared integrable
self-financing trading strategies for which

∫ T

t
θ2

s < +∞. We will see that this
further restriction ensures the derived HJB has unique solutions, for technical
integrability conditions see for example [6].

Suppose the investor has an exponential utility function:

U(x) = − exp {−αx}, α> 0 (7)
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The writer’s indifference price P (s, t) is defined implicitly by the following
equation

sup
θ

E

[
− exp {−α(P (s, t) +

∫ T

t

θkdSk − g(ST ))}
]

= sup
θ

E

[
− exp (−α

∫ T

t

θkdSk)

]
Hence

P (s, t) =
1

α
ln sup

θ
E

[
− exp {−α(

∫ T

t

θkdSk − g(ST ))}
]

− 1

α
ln sup

θ
E

[
− exp {−α(

∫ T

t

θkdSk}
]

(8)

4.1 Optimal control for NIG Lévy process

Suppose we would like to evaluate an optimization problem for an investor
who follows the hedging strategy θ on an option with a payoff g(ST ) at time
T.
From equation (8), the investor has to evaluate the following two maximized
expected utility functions(optimal equations)

J (0)(S0, 0) = sup
θ

E

[
− exp {−α(

∫ T

0

θtdSt)}
]

J (1)(S0, 0) = sup
θ

E

[
− exp {−α(

∫ T

0

θtdSt − g(ST ))}
]

(9)

Where α is the risk aversion and the stock price, St follows the process (3).

We note that, to determine the indifference price we need the dynamics of the
stock’s price St, given by Itô formula (see example 3.3):

dSt = St− [γdt +

∫
|z|<1

(ez − 1 − z)ϑ(dz)dt +

∫
|z|<1

(ez − 1)Ñ(dt, dz)

+

∫
|z|≥1

(ez − 1)N(dt, dz)] (10)

Where ∫
|z|≥1

(ez − 1)ϑ(dz) < ∞ (11)

Using remark 3.2, equation (10) can as well be written as follows

dSt

St−
= γdt +

∫
|z|≥1

(ez − 1)ϑ(dz)dt +

∫
|z|<1

(ez − 1 − z)ϑ(dz)dt

+

∫
|z|<1

(ez − 1)Ñ(dt, dz) +

∫
|z|≥1

(ez − 1)Ñ(dt, dz)

= γ2dt +

∫
�

(ez − 1 − z)ϑ(dz)dt +

∫
�

(ez − 1)Ñ(dt, dz)
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Where γ2 = γ +
∫
|z|≥1

(ez − 1)ϑ(dz) < ∞ (see equation 11)

Define

ξt = exp(

∫ T

0

∫
�

(eθ̃t(ez−1) − 1 − θ̃t(e
z − 1)ϑ(dz))dt

−
∫ T

0

∫
�

θ̃t(e
z − 1)dÑ(dt, dz))

and a new measure Q:
dQ = ξT dP,

then using Girsanov theorem,

J (1)(S0, 0) = sup
θ

E[− exp {(
∫ T

0

(−αθtSt−)
dSt

St−
+ αg(ST ))}]

= inf
θ̃

E[exp{(
∫ T

0

θ̃tγ2dt +

∫ T

0

∫
�

θ̃t(e
z − 1 − z)ϑ(dz)dt

+

∫ T

0

∫
�

θ̃t(e
z − 1)Ñ(dt, dz) + αg(ST ))}]

= inf
θ̃

E[ξT exp(

∫ T

0

γ2θ̃tdt +

∫ T

0

∫
�

(eθ̃t(ez−1) − 1 − θ̃tz)ϑ(dz)dt

+αg(ST ))]

That is

J (1)(S0, 0) = inf
θ̃

E� [exp(

∫ T

0

(γ2θ̃t +

∫
�

(eθ̃t(ez−1) − 1 − θ̃tz)ϑ(dz)dt + αg(ST ))]

(12)

where the scaled optimal investment ratio θ̃ = −αθS.
Moreover under the new measure Q:

Ñ�(dt, dz) = N(dt, dz) − eθ̃t(ez−1)ϑ(dz)dt

=⇒ ϑ�(dt, dz) = eθ̃t(ez−1)ϑ(dz)dt

and the asset price process

dSt

St−
= γ̂dt +

∫
�

(ez − 1 − z)ϑ�(dz)dt +

∫
�

(ez − 1)Ñ�(dt, dz) (13)

Where γ̂ = γ2 +
∫
�

z(eθ̃t(ez−1) − 1)ϑ(dz)
Similarly,

dXt = γ̂dt +

∫
�

zÑ�(dt, dz) (14)

Equation (12) is a standard optimal problem whose value satisfies a Hamilton-
Jacobi-Bellman(HJB) type equation.
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Proposition 4.1. Assume that J (l)(X, t) ∈ C2 under the Lévy dynamics,
l = 0, 1, then the above optimal equations satisfies

inf
θ̃
{∂J (l)

∂t
+ γ2(

∂

∂X
+ θ̃I)J (l) +∫

�

(eθ̃(ez−1)J (l)(X + z, t) − (1 + θ̃z)J (l)(X, t) − z
∂J (l)

∂X
)ϑ(dz)} = 0

with terminal conditions

J (0)(X, T ) = 1 and J (1)(X, T ) = eαg(S0eXT )

Proof. From equation Equation (12), the HJB equation for the optimal con-
trol problem,

inf
θ̃
{∂J

∂t
+ γ̂

∂J

∂X
+

∫
�

(J(X + z, t) − J(X, t) − z
∂J

∂X
)eθ̃(ez−1)ϑ(dz)

+ γ2θ̃J + J

∫
�

(eθ̃(ez−1) − 1 − θ̃z)ϑ(dz)} = 0

Which can further be simplified to:

inf
θ̃
{∂J

∂t
+ γ2

∂J

∂X
+ γ2θ̃J

+

∫
�

(eθ̃(ez−1)J(X + z, t) − (1 + θ̃z)J(X, t) − z
∂J

∂X
)ϑ(dz)} = 0 (15)

�

The following is the second main results of our study

Proposition 4.2. Define

P (X, t) =
1

α
(ln J (1)(X, t) − ln J (0)(X, t)),

then as α �→ 0,

P (X, t) = E�0 [g(S0e
XT )] (16)

under Q0. The corresponding PIDE for the option’s price is given by

Pt +

∫
�

(P (X + z, t) − P (X, t) − (ez − 1)Px)ϑ�0 (dz) = 0 (17)

with the boundary conditions

P (X, T ) = g(S0e
XT )

where
ϑ�0 (dz) = eθ̃∗(ez−1)ϑ(dz).
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Proof. Given that the utility is exponential, we begin by considering the
case where
J(X, t) = J (0)(X, t) = J (0)(t).
Let f be a continuous function such that

J(X, t) = eαf(t) (18)

then

inf
θ̃
{αft(t) + γ2θ̃ +

∫
�

(eθ̃(ez−1) − 1 − θ̃z)ϑ(dz)} = 0

=⇒ αft(t) + inf
θ̃
{γ2θ̃ +

∫
�

(eθ̃(ez−1) − 1 − θ̃z)ϑ(dz)} = 0

Therefore the optimal investment strategy, θ∗ solves the following first-order
necessary conditions

γ2 +

∫
�

((ez − 1)eθ̃(ez−1) − z)ϑ(dz) = 0

Which implies

αf(t) = (T − t)(γ2θ̃∗ +

∫
�

(eθ̃∗(ez−1) − 1 − θ̃∗z)ϑ(dz)) ≡ (T − t)A (19)

In this case we conclude from equation (18) that

Hence J (0)(X, t) = e(T−t)A

Similarly, consider the case where

J(X, t) = J (1)(X, t) = eαf(t)+αP (X,t) (20)

then

inf
θ̃
{αft(t) + α

∂P

∂t
+ γ2

∂P

∂X
+ γ2θ̃

+

∫
�

(eθ̃(ez−1)+αP (X+z,t)−αP (X,t) − (1 + θ̃z) − z
∂P

∂X
)ϑ(dz)} = 0

Substituting the values of αft(t) from equation (19):

− A + α
∂P

∂t
+ inf

θ̃
{γ2

∂P

∂X
+ γ2θ̃

+

∫
�

(eθ̃(ez−1)+αP (X+z,t)−αP (X,t) − (1 + θ̃z) − z
∂P

∂X
)ϑ(dz)}

= 0 (21)
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Therefore the optimal investment strategy, θ̃∗ solves the first-order necessary
conditions

γ2 +

∫
�

((ez − 1)eθ̃(ez−1)eαP (X+z,t)−αP (X,t) − z)ϑ(dz) = 0

But we know from equation (8) that

P (x, t) =
1

α
(lnJ (1)(X, t) − ln J (0)(X, t))

Therefore equation (21) can as well be written as:

α
∂P

∂t
+ γ2α

∂P

∂X
+ inf

θ̃
{γ2(θ̃ − θ̃∗)

+

∫
�

(e(θ̃−θ̃∗)(ez−1)+αP (X+z,t)−αP (X,t) − 1 + (θ̃ − θ̃∗)z − z
∂P

∂X
)ϑ(dz)} = 0 (22)

Let

lim
α �→0

1

α
(θ̃(x, t, α) − θ̃∗(x, t, α)) =: λ(x, t),

then taking limits of equation (22) as α �→ 0;

∂P

∂t
+ γ2

∂P

∂X
= −

∫
�

(e
˜θ∗(ez−1)(P (X + z, t) − P (X, t)) − z

∂P

∂X
)ϑ(dz) (23)

Where γ2 = − ∫
�
(eθ̃∗(ez−1)(ez − 1) − z)ϑ(dz) �

Equation (17) does not have a closed form solution, so numerical methods
are needed to approximate solutions.

5 Numerical results

We discretize the indifference pricing equation (17) using the method of explicit
finite differences and perform numerical experiments using a pay-off function
which provides the return on the risky asset with

g(ST ) = (K − S0e
XT )+

where K is the exercise price. The results are recorded in figure (2).

In Table 1, the Esscher put option prices of NIG model are compared
with the corresponding limit of zero risk aversion indifference prices. The two
prices are very close with some small difference probably due to numerical
approximation errors of the integrals in PIDE equation (17).
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Figure 2: Indifference price of KPLC put options for t=1, Blue–Esscher, Red–
Indifference.

S0 Esscher price Indifference price
20 80.0000 80.0000
30 70.0002 70.0000
40 60.0013 60.0002
50 50.0054 50.0014
60 40.0192 40.0077
70 30.0605 30.0332
80 20.1823 20.1258
90 10.5793 10.4772
100 2.6130 2.5243
110 0.5398 0.5382
120 0.1997 0.1990

Table 1: Esscher and limit of zero risk aversion indifference pricing results
K = 100, t = 1.

6 Conclusions

We have studied the problem of pricing a contingent claim when the under-
lying stock follows NIG Lévy process. We have derived the PIDE that the
indifference price satisfies under exponential utility and explicitly constructed
the unique equivalent martingale measure induced by the indifference pricing
principle with limit of zero risk aversion.
For future work, one could incorporate stochastic volatility into the stock dy-
namics then compute indifference price and compare these prices with the
actual market price of the underlying derivatives.
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