ON COMMUTANTS AND OPERATOR EQUATIONS

J.M. Khalagai ${ }^{1}$, M. Kavila ${ }^{2}$ §
${ }^{1,2}$ School of Mathematics University of Nairobi
P.O. Box 30197, 00100, Nairobi, KENYA

Abstract

Let $\mathrm{B}(\mathrm{H})$ denote the algebra of bounded linear operators on a Hilbert Space H into itself. Given $A, B \in B(H)$ define $C(A, B)$ and $R(A, B): B(H) \longrightarrow$ $B(H)$ by $C(A, B) X=A X-X B$ and $R(A, B) X=A X B-X$. Our task in this note is to show that if A is one-one and B has dense range then $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ imply $C(A, B) X=0$ for some $X \in B(H)$. Similarly, if $R\left(A^{2}, B^{2}\right) X=0$ and $R\left(A^{3}, B^{3}\right) X=0$ then $R(A, B) X=0$ for some $X \in B(H)$.

AMS Subject Classification: 47B47, 47A30, 47B20
Key Words: commutant, quasiaffinity and normal operator

1. Introduction

Let $B(H)$ denote the algebra of operators, i.e. bounded linear transformations on the complex Hilbert space H into itself.

Given $A, B \in B(H)$, let $C(A, B): B(H) \longrightarrow B(H)$ be defined by $C(A, B) X=$ $A X-X B$ and $R(A, B) X=A X B-X$. Moajil [5] proved that if N is a normal operator such that $N^{2} X=X N^{2}$ and $N^{3} X=X N^{3}$ for some $X \in B(H)$, then $N X=X N$. Thus for a normal operator N, if $N^{2} \in\{X\}^{\prime}$ and $N^{3} \in\{X\}^{\prime}$, then $N \in\{X\}^{\prime}$ for some $X \in B(H)$.

Kittaneh [4] generalized this result to cover subnormal operators by taking A and B^{*} to be subnormal operators, i.e. if $A^{2} X=X B^{2}$ and $A^{3} X=X B^{3}$ for some $X \in B(H)$, then $A X=X B$. Thus if $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ then $C(A, B)=0$ for some $X \in B(H)$.

Bachir [1] generalized these results to cover the classes of dominant and p hyponormal operators as follows:

Received: July 31, 2012
© 2012 Academic Publications, Ltd.
${ }^{\text {§ }}$ Correspondence author

Theorem A. Let A be a dominant operator and B^{*} be a p-hyponormal operator or log-hyponormal. If $A^{2} X=X B^{2}$ and $A^{3} X=X B^{3}$ then $A X=X B$, for some $X \in B(H)$. Thus we have that if A is dominant and B^{*} is either p-hyponormal or log-hyponormal then $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ imply $C(A, B) X=0$

In this note we consider any operator $A, B \in B(H)$ without necessarily specifying the classes in which they belong and look for other conditions under which we can get similar results on the operator equation $C(A, B) X=0$. We will also investigate similar results on the operator equation $R(A, B) X=0$. Khalagai \& Nyamai, [3] also had the following theorem and corollaries on the operator equation $R(A, B) X=0$.

Theorem B. Let A, B and $X \in B(H)$ be such that $R(A, B) X=0$. Then B is one to one whenever X is one to one.

Corollary A. Let A, B and $X \in B(H)$ be such that $R(A, B) X=0$ where X is quasiaffinity. Then both B and A^{*} are one to one.

Corollary B. Let A, B and $X \in B(H)$ be such that $R(A, B) X=0$ implies $R\left(A^{*}, B^{*}\right) X=0$ where X is a quasiaffinity. Then both A and B are also quasiaffinities.

Goya \& Saito [2] had the following result:
Theorem C. Let $A, B, X \in B(H)$ where A is a paranormal contraction, B a coisometry and X has a dense range. Assume $C(A, B) X=0$. Then A is a unitary operator. In particular, if X is injective and has a dense range, then B is also a unitary operator.

2. Notation and Terminology

Given an operator $A \in B(H)$ we shall denote the spectrum of A by $\sigma(A)$. Thus $\sigma(A)=\{\lambda \in \mathbb{C}: A-\lambda$ Iis not invertible $\}$. The numerical range of A is denoted by $W(A)=\{\langle A x, x\rangle:\|x\|=1\}$. The commutator of any two operators A and B is defined by $[A, B]=A B-B A$. The commutant of A is given by $\{A\}^{\prime}=$ $\{X \in B(H):[A, X]=0\}$. An operator A is said to be:

- Dominant if to each $\lambda \in \mathbb{C}$ there corresponds a number $M_{\lambda} \geq 1$ such that for all $x \in H,\left\|(A-\lambda I)^{*} x\right\| \leq M_{\lambda}\|(A-\lambda I) x\|$.
- M-hyponormal if there is a constant M such that $M_{\lambda} \leq M$ for all $\lambda \in \mathbb{C}$ such that $\left\|(A-\lambda I)^{*} x\right\| \leq M\|(A-\lambda I) x\|$
- Hyponormal if from above $M=1$
- P-hyponormal if $\left(A^{*} A\right)^{p} \geq\left(A A^{*}\right)^{p}$ for $0<p<1$
- Log-hyponormal if A is an invertible operator such that $\log \left(A^{*} A\right) \geq \log \left(A A^{*}\right)$
- Paranormal if $\left\|A^{2} x\right\| \leq\|A x\|^{2}$ for any unit vector $x \in H$
- Normal if $A^{*} A=A A^{*}$
- Subnormal if A has a normal extension
- Partial isometry if $A=A A^{*} A$
- Isometry if $A^{*} A=I$
- Co-isometry if $A A^{*}=I$
- Unitary if $A^{*} A=A A^{*}=I$
- Compact if for each bounded sequence $\left\{x_{n}\right\}$ in the domain H, the sequence $\left\{A x_{n}\right\}$ contains a sub sequence converging to some limit in the range.
- Contraction if $\|A\| \leq 1$.

3. Results

Theorem 1. Let $A, B \in B(H)$ be any pair of operators such that A is one-one and B has a dense range. Then we have that $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ imply $C(A, B) X=0$ for some $X \in B(H)$.

Proof. Let $T=A X$ and $S=X B$. Then from $A^{2} X=X B^{2}$ and $A^{3} X=X B^{3}$, we have $A T=S B$ and $A^{2} T=S B^{2}$ and moreover:

$$
\begin{gathered}
A(A T)=A S B=(S B) B, \\
A S B-(S B) B=0, \\
(A S-S B) B=0 .
\end{gathered}
$$

Since B has dense range we have that $B \neq 0$ and hence $A S-S B=0$. Therefore

$$
\begin{gathered}
A S=S B, \\
A T=S B=A S, \\
A T-A S=0,
\end{gathered}
$$

i.e. $T-S=0$ since A is one-one, $T=S$. Thus $A X=X B$.

Hence $C(A, B) X=0$.

Corollary 1. If A and B are quasi-affinities such that $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ then $C(A, B) X=0$ for some $X \in B(H)$.

Proof. If A and B are quasi-affinities then each one of them is both one-one and has dense range. Hence the proof of Theorem 1 can easily be traced to give the required result.

Corollary 2. If A is a quasi-affinity such that $C\left(A^{2}, A^{* 2}\right) X=0$ and $C\left(A^{3}, A^{* 3}\right) X=$ 0 then $C\left(A, A^{*}\right) X=0$ for some $X \in B(H)$.

Proof. If A is quasi-affinity then A^{*} is also quasi-affinity. Hence by Corollary 1 the result follows.

Corollary 3. Let \wp be the class of operators defined as follows:

$$
\wp=\{A \in B(H): 0 \notin W(A)\} .
$$

If $A, B \in \wp$ such that $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ then $C(A, B) X=0$ for some $X \in B(H)$.

Proof. We only have to note that for any operator A with $0 \notin W(A), A$ is both one-one and has a dense range.

Corollary 4. If A is a quasi-affinity such that $A^{2} \in\{X\}^{\prime}$ and $A^{3} \in\{X\}^{\prime}$ then $A \in\{X\}^{\prime}$ for some $X \in B(H)$.

Proof. We only have to note that in Theorem 1 we let $A=B$.
Theorem 2. Let $A, B \in B(H)$ be a pair of operators such that A is oneone and B has dense range. Then $R\left(A^{2}, B^{2}\right) X=0$ and $R\left(A^{3}, B^{3}\right) X=0$ imply $R(A, B) X=0$ for some $X \in B(H)$.

Proof. Given $A^{2} X B^{2}=X$ and $A^{3} X B^{3}=X$ we have $A^{2} X B^{2}=A^{3} X B^{3}$,

$$
\begin{gathered}
A^{3} X B^{3}-A^{2} X B^{2}=0, \\
A\left(A^{2} X B^{2}-A X B\right) B=0 .
\end{gathered}
$$

Since A is one-one and B has dense range we have:

$$
A^{2} X B^{2}-A X B=0
$$

i.e. $A(A X B-X) B=0$. Since A is one-one and B has dense range we have that $A X B-X=0$.

Hence $R(A, B) X=0$.

Corollary 5. If $A, B \in B(H)$ are quasi-affinity such that $R\left(A^{2}, B^{2}\right) X=0$ and $R\left(A^{3}, B^{3}\right) X=0$, then $R(A, B) X=0$.

Proof. We note that the quasi-affinity is both one to one and has dense range. Hence the result is immediate by Theorem 2 above.

Corollary 6. A is quasi-affinity such that:
$R\left(A^{2}, A^{* 2}\right) X=0$ and $R\left(A^{3}, A^{* 3}\right) X=0$ then $R\left(A, A^{*}\right) X=0$ for some $X \in$ $B(H)$.

Proof. It is immediate from Theorem 2 above and the fact that if A is a quasi-affinity then A^{*} is also quasi-affinity.

Corollary 7. If $R(A, B) X=0$ implies $R\left(A^{*}, B^{*}\right) X=0$ for some X which is quasi-affinity then $C\left(A^{2}, B^{2}\right) X=0$ and $C\left(A^{3}, B^{3}\right) X=0$ imply $C(A, B) X=0$.

Proof. $R(A, B) X=0$ implying $R\left(A^{*}, B^{*}\right) X=0$ where X is a quasi-affinity implies A and B are quasi-affinities from Corollary B. From Theorem 1, the result follows since quasi-affinities are both one to one and have a dense range.

Corollary 8. Let $A, B, X \in B(H)$ where A is a paranormal contraction, B a coisometry and X is a quasi-affinity. If $C\left(A, B^{*}\right) X=0$, then $R(A, B) X=0=$ $R\left(A^{*}, B^{*}\right) X$.

Proof. First note that B is unitary from Theorem C. Therefore

$$
\begin{gathered}
C\left(A, B^{*}\right) X=0 \Rightarrow A X=X B^{*}, \\
\Rightarrow A X B=X B^{*} B, \Rightarrow A X B=X, \\
\Rightarrow A X B-X=0, \\
R(A, B) X=0 .
\end{gathered}
$$

We also have that A is unitary by theorem C . Thus:

$$
\begin{gathered}
C\left(A, B^{*}\right) X=0 \Rightarrow A X=X B^{*}, \\
\Rightarrow A^{*} A X=A^{*} X B^{*}, \\
\Rightarrow X-A^{*} X B^{*}=0 \\
\Rightarrow A^{*} X B^{*}-X=0 \\
\quad R\left(A^{*}, B^{*}\right) X=0
\end{gathered}
$$

References

[1] A. Bachir, Generalized derivation, SUT Journal of Mathematics, 40, No. 2 (2004), 111-116.
[2] E. Goya, T. Saito, On Intertwining by an operator having a dense range, Tohoku Math. Journ., 33 (1981), 127-131.
[3] J.M. Khalagai, B. Nyamai, On quasiaffinity and quasisimilarity of operators, Kenya Journal of Sciences, Series A, 12, No. 2 (1998), 14-17.
[4] F. Kittaneh, On a generalized Putnam and Fuglede theorem of Hilbert-Schmidt type, Proc. Amer. Math. Soc., 88 (1983), 293-298.
[5] A.H. Moajil, On the commutant of relatively prime powers in Banach algebra, Proc. Amer. Math. Soc., 57 (1976), 243-249.

