Volume 5 No. 3 2012, 99-104

ON COMMUTANTS AND OPERATOR EQUATIONS

J.M. Khalagai¹, M. Kavila² §

^{1,2}School of Mathematics University of Nairobi P.O. Box 30197, 00100, Nairobi, KENYA

Abstract: Let B(H) denote the algebra of bounded linear operators on a Hilbert Space H into itself. Given $A, B \in B(H)$ define C(A, B) and $R(A, B) : B(H) \longrightarrow$ B(H) by C(A,B)X = AX - XB and R(A,B)X = AXB - X. Our task in this note is to show that if A is one-one and B has dense range then $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ imply C(A, B)X = 0 for some $X \in B(H)$. Similarly, if $R(A^2, B^2)X = 0$ and $R(A^3, B^3)X = 0$ then R(A, B)X = 0 for some $X \in B(H)$.

AMS Subject Classification: 47B47, 47A30, 47B20 Key Words: commutant, quasiaffinity and normal operator

1. Introduction

Let B(H) denote the algebra of operators, i.e. bounded linear transformations on the complex Hilbert space H into itself.

Given $A, B \in B(H)$, let $C(A, B) : B(H) \longrightarrow B(H)$ be defined by C(A, B)X =AX - XB and R(A, B)X = AXB - X. Moajil [5] proved that if N is a normal operator such that $N^2 X = X N^2$ and $N^3 X = X N^3$ for some $X \in B(H)$, then NX = XN. Thus for a normal operator N, if $N^2 \in \{X\}'$ and $N^3 \in \{X\}'$, then $N \in \{X\}'$ for some $X \in B(H)$.

Kittaneh [4] generalized this result to cover subnormal operators by taking A and B^* to be subnormal operators, i.e. if $A^2X = XB^2$ and $A^3X = XB^3$ for some $X \in B(H)$, then AX = XB. Thus if $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ then C(A, B) = 0 for some $X \in B(H)$.

Bachir [1] generalized these results to cover the classes of dominant and phyponormal operators as follows:

Received: July 31, 2012

© 2012 Academic Publications, Ltd.

[§]Correspondence author

Theorem A. Let A be a dominant operator and B^* be a p-hyponormal operator or log-hyponormal. If $A^2X = XB^2$ and $A^3X = XB^3$ then AX = XB, for some $X \in B(H)$. Thus we have that if A is dominant and B^* is either p-hyponormal or log-hyponormal then $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ imply C(A, B)X = 0

In this note we consider any operator $A, B \in B(H)$ without necessarily specifying the classes in which they belong and look for other conditions under which we can get similar results on the operator equation C(A, B)X = 0. We will also investigate similar results on the operator equation R(A, B)X = 0. Khalagai & Nyamai, [3] also had the following theorem and corollaries on the operator equation R(A, B)X = 0.

Theorem B. Let A, B and $X \in B(H)$ be such that R(A, B)X = 0. Then B is one to one whenever X is one to one.

Corollary A. Let A, B and $X \in B(H)$ be such that R(A, B)X = 0 where X is quasiaffinity. Then both B and A^* are one to one.

Corollary B. Let A, B and $X \in B(H)$ be such that R(A, B)X = 0 implies $R(A^*, B^*)X = 0$ where X is a quasiaffinity. Then both A and B are also quasiaffinities.

Goya & Saito [2] had the following result:

Theorem C. Let $A, B, X \in B(H)$ where A is a paranormal contraction, B a coisometry and X has a dense range. Assume C(A, B)X = 0. Then A is a unitary operator. In particular, if X is injective and has a dense range, then B is also a unitary operator.

2. Notation and Terminology

Given an operator $A \in B(H)$ we shall denote the spectrum of A by $\sigma(A)$. Thus $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible}\}$. The numerical range of A is denoted by $W(A) = \{\langle Ax, x \rangle : ||x|| = 1\}$. The commutator of any two operators A and B is defined by [A, B] = AB - BA. The commutant of A is given by $\{A\}' = \{X \in B(H) : [A, X] = 0\}$. An operator A is said to be:

- Dominant if to each $\lambda \in \mathbb{C}$ there corresponds a number $M_{\lambda} \geq 1$ such that for all $x \in H$, $||(A \lambda I)^* x|| \leq M_{\lambda} ||(A \lambda I) x||$.
- M-hyponormal if there is a constant M such that $M_{\lambda} \leq M$ for all $\lambda \in \mathbb{C}$ such that $\|(A \lambda I)^* x\| \leq M \|(A \lambda I) x\|$
- Hyponormal if from above M = 1
- P-hyponormal if $(A^*A)^p \ge (AA^*)^p$ for 0

ON COMMUTANTS AND OPERATOR EQUATIONS

- Log-hyponormal if A is an invertible operator such that $log(A^*A) \ge log(AA^*)$
- Paranormal if $||A^2x|| \le ||Ax||^2$ for any unit vector $x \in H$
- Normal if $A^*A = AA^*$
- Subnormal if A has a normal extension
- Partial isometry if $A = AA^*A$
- Isometry if $A^*A = I$
- Co-isometry if $AA^* = I$
- Unitary if $A^*A = AA^* = I$
- Compact if for each bounded sequence $\{x_n\}$ in the domain H, the sequence $\{Ax_n\}$ contains a sub sequence converging to some limit in the range.
- Contraction if $||A|| \le 1$.

3. Results

Theorem 1. Let $A, B \in B(H)$ be any pair of operators such that A is one-one and B has a dense range. Then we have that $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ imply C(A, B)X = 0 for some $X \in B(H)$.

Proof. Let T = AX and S = XB. Then from $A^2X = XB^2$ and $A^3X = XB^3$, we have AT = SB and $A^2T = SB^2$ and moreover:

$$A(AT) = ASB = (SB)B,$$
$$ASB - (SB)B = 0,$$
$$(AS - SB)B = 0.$$

Since B has dense range we have that $B \neq 0$ and hence AS - SB = 0. Therefore

$$AS = SB,$$

$$AT = SB = AS,$$

$$AT - AS = 0,$$

i.e. T - S = 0 since A is one-one, T = S. Thus AX = XB. Hence C(A, B)X = 0.

Corollary 1. If A and B are quasi-affinities such that $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ then C(A, B)X = 0 for some $X \in B(H)$.

Proof. If A and B are quasi-affinities then each one of them is both one-one and has dense range. Hence the proof of Theorem 1 can easily be traced to give the required result. \Box

Corollary 2. If A is a quasi-affinity such that $C(A^2, A^{*2})X = 0$ and $C(A^3, A^{*3})X = 0$ then $C(A, A^*)X = 0$ for some $X \in B(H)$.

Proof. If A is quasi-affinity then A^* is also quasi-affinity. Hence by Corollary 1 the result follows.

Corollary 3. Let \wp be the class of operators defined as follows:

 $\wp = \{A \in B(H) : 0 \notin W(A)\}.$

If $A, B \in \wp$ such that $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ then C(A, B)X = 0 for some $X \in B(H)$.

Proof. We only have to note that for any operator A with $0 \notin W(A)$, A is both one-one and has a dense range.

Corollary 4. If A is a quasi-affinity such that $A^2 \in \{X\}'$ and $A^3 \in \{X\}'$ then $A \in \{X\}'$ for some $X \in B(H)$.

Proof. We only have to note that in Theorem 1 we let A = B.

Theorem 2. Let $A, B \in B(H)$ be a pair of operators such that A is oneone and B has dense range. Then $R(A^2, B^2)X = 0$ and $R(A^3, B^3)X = 0$ imply R(A, B)X = 0 for some $X \in B(H)$.

Proof. Given $A^2XB^2 = X$ and $A^3XB^3 = X$ we have $A^2XB^2 = A^3XB^3$,

$$A^3 X B^3 - A^2 X B^2 = 0,$$

$$A(A^2XB^2 - AXB)B = 0.$$

Since A is one-one and B has dense range we have:

$$A^2 X B^2 - A X B = 0$$

i.e. A(AXB - X)B = 0. Since A is one-one and B has dense range we have that AXB - X = 0.

Hence R(A, B)X = 0.

102

Corollary 5. If $A, B \in B(H)$ are quasi-affinity such that $R(A^2, B^2)X = 0$ and $R(A^3, B^3)X = 0$, then R(A, B)X = 0.

Proof. We note that the quasi-affinity is both one to one and has dense range. Hence the result is immediate by Theorem 2 above. \Box

Corollary 6. A is quasi-affinity such that:

 $R(A^2, A^{*2})X = 0$ and $R(A^3, A^{*3})X = 0$ then $R(A, A^*)X = 0$ for some $X \in B(H)$.

Proof. It is immediate from Theorem 2 above and the fact that if A is a quasi-affinity then A^* is also quasi-affinity.

Corollary 7. If R(A, B)X = 0 implies $R(A^*, B^*)X = 0$ for some X which is quasi-affinity then $C(A^2, B^2)X = 0$ and $C(A^3, B^3)X = 0$ imply C(A, B)X = 0.

Proof. R(A, B)X = 0 implying $R(A^*, B^*)X = 0$ where X is a quasi-affinity implies A and B are quasi-affinities from Corollary B. From Theorem 1, the result follows since quasi-affinities are both one to one and have a dense range.

Corollary 8. Let $A, B, X \in B(H)$ where A is a paranormal contraction, B a coisometry and X is a quasi-affinity. If $C(A, B^*)X = 0$, then $R(A, B)X = 0 = R(A^*, B^*)X$.

Proof. First note that B is unitary from Theorem C. Therefore

$$C(A, B^*)X = 0 \Rightarrow AX = XB^*,$$

$$\Rightarrow AXB = XB^*B, \Rightarrow AXB = X,$$

$$\Rightarrow AXB - X = 0,$$

$$R(A, B)X = 0.$$

We also have that A is unitary by theorem C. Thus:

$$C(A, B^*)X = 0 \Rightarrow AX = XB^*,$$

$$\Rightarrow A^*AX = A^*XB^*,$$

$$\Rightarrow X - A^*XB^* = 0,$$

$$\Rightarrow A^*XB^* - X = 0,$$

$$R(A^*, B^*)X = 0.$$

2	
_	
<u> </u>	
\sim	
\sim	
\sim	
\sim	
• •	
0	
\odot	
\circ	
\geq	
_	
>	
4	
-	
F7	
-	
61	
Ξ.	
5	
~	
F	
(1)	
ă.	
_	
+?	
ß	
_	
>	
$\overline{\mathbf{O}}$	
E.	
_	
Ö	
DD.	
pp.	
App.	
App.	
App.	
d App.	
id App.	
nd App	
and App	
and App.	
e and App	
ce and Appl	
ire and App.	
ure and App	
ure and Appl	
Pure and App.	
Pure and App.	
of Pure and App.	
of Pure and App.	
of Pure and App	
d of Pure and App	
al of Pure and Appl	
nal of Pure and Appl	
rnal of Pure and Appl	
irnal of Pure and Appl	
urnal of Pure and Appl	
ournal of Pure and Appl	
ournal of Pure and Appl	
Journal of Pure and Appl	
Journal of Pure and Appl	
c Journal of Pure and Appl	
ic Journal of Pure and Appl	
nic Journal of Pure and Appl	
onic Journal of Pure and Appl	
onic Journal of Pure and Appl	
ronic Journal of Pure and Appl	
tronic Journal of Pure and Appl	
ctronic Journal of Pure and Appl	
ectronic Journal of Pure and Appl	
lectronic Journal of Pure and Appl	
electronic Journal of Pure and Appl	
Electronic Journal of Pure and Appl	
Electronic Journal of Pure and App.	
d Electronic Journal of Pure and Appl	
al Electronic Journal of Pure and Appl	
nal Electronic Journal of Pure and Appl	
onal Electronic Journal of Pure and Appl	
ional Electronic Journal of Pure and Appl	
tional Electronic Journal of Pure and Appl	
utional Electronic Journal of Pure and Appl	
ational Electronic Journal of Pure and Appl	
national Electronic Journal of Pure and Appl	
mational Electronic Journal of Pure and App	
rnational Electronic Journal of Pure and Appl	
ernational Electronic Journal of Pure and App	
ternational Electronic Journal of Pure and App	
nternational Electronic Journal of Pure and App	

		I
	-	

References

- A. Bachir, Generalized derivation, SUT Journal of Mathematics, 40, No. 2 (2004), 111-116.
- [2] E. Goya, T. Saito, On Intertwining by an operator having a dense range, *Tohoku Math. Journ.*, **33** (1981), 127-131.
- [3] J.M. Khalagai, B. Nyamai, On quasiaffinity and quasisimilarity of operators, Kenya Journal of Sciences, Series A, 12, No. 2 (1998), 14-17.
- [4] F. Kittaneh, On a generalized Putnam and Fuglede theorem of Hilbert-Schmidt type, Proc. Amer. Math. Soc., 88 (1983), 293-298.
- [5] A.H. Moajil, On the commutant of relatively prime powers in Banach algebra, *Proc. Amer. Math. Soc.*, 57 (1976), 243-249.