URBAN HOUSEHOLD SAVING BEHAVIOR: A CASE STUDY OF KENYA."

BY
NGUGI, WANJIRU,R.
B.A(HONS), UNIVERSITY OF NAIROBI, 1989.

Research Paper Submitted to the Department of Economics, University of Nairobi,in Partial Fulfillment of the Requirement for the Degree of Masters of Arts in Economics.

This Research paper is my original work and has not been presented for a Degree in another University.

Wayne.
 Ngugi, W.R.

This research paper has been submitted for examination with our approval as University Supervisors.

DR. F. M. Mwega.

DR. P. JUMI.

ACKNOWLEDGEMENT

I wish to thank those people who have in one way or another contributed to making this research paper a success.

Eirst, my sincere gratitude go to my supervisors, Dr. Mwega, the current Director of the Postgraduate Programme in the Economics Department, University of Nairobi, and Dr. Jumi for their assistance. They devoted much of their time reading through all the drafts of this research paper and made useful and constructive comments and suggestions. Their guidance helped to clarify many of my ideas.

My sincere gratitude to Mr. Mwaniki, the current Director of CBS, for allowing me get access to the information used in this paper. Also Dr. Mwega, Prof. Mukras, the current Chairman of the Economics Department, University of Nairobi, Mr. Mwangi, currently working with the Ministry of Planning, Mr. Kirimi and Mr. Kamunde, currently in CBS, for their assistance in getting the information.

I also wish to pass my since gratitude to Ryoichi Sasakawa Young Leader Eellowship Fund for their generosity in providing financial support without which my two years work in the University of Nairobi would not have been possible.

Most sincere thanks go to my Dad and Mum whose continuous prayers and wishes have made my academic life so far a success.

Last, but not least, special thanks to my beautiful and lovely sons Steve and Brian for their cooperation during the two years in college. Not to forget their care taker Lucy Wanjiru whose tender care took away any feeling of loneliness when I was away. Thanks also to my husband Kamau for boosting my morale in the course of the programme.

Finally, I am solely accountable for any errors in the research paper.
U.O.N NGUGI, W. R.

JULY 1991

To My lovely sons Steve and Erian
and

My dear parents Robert and Mary

ABSTRACT

Like many other developing countries, Kenya has faced problems in financing domestic investment. Despite a high proportion of GDP having been put into saving, Kenya has not met the investment finances fully. It has had to rely on foreign savings to supplement domestic resources. However, factors working on both demand and supply side of foreign savings have made the country put more emphasis on mobilization of domestic savings.

Saving is a complex socio-economic phenomenon. It is therefore necessary to understand the factors behind saving behavior. The main objective of the study is to examine the determinants of saving behavior of urban households in Kenya. Six towns are considered that is Nairobi, Mombasa, Kisumu, Nakuru and, Eldoret. An econometric study is carried out to test the explanatory power of various determinants of saving behavior and to see the effects of alternative policies that can be used in mobilizing savings. Due to data problems, the analysis lays greater emphasis on financial savings.

Using OLS technique, savings functions for urban households are fitted at urban center level. From the empirical work the following conclusion are arrived at: income is an important variable in savings function for urban households where saving
is a decreasing non-linear function of income; education and number of income contributors play insignificant role in explaining variations in financial savings, movement towards equitable distribution of income means increasing financial savings thus aggregate savings and, reducing family size will leave more income for saving purpose.

From these results various policy implications are drawn. First, with the population control policy the country will achieve a lot in mobilizing domestic personal savings in urban areas. Secondly, it is necessary that the government ensures equitable distribution of income in urban areas. Thirdly, although the effects of education policy may be indirectly felt on saving, education policy will not exert direct effect on savings.

TABLE OF CONTENT

DECLARATION i
ACKNOWLEDGEMENT ii
ABSTRACT v
TABLE OF CONTENT vii
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF APPENDICES xii
CHAPTER
1 INTRODUCTION 1
1.1 Background 1
1.2 Research problem 2
1.3 Savings and investment trend in Kenya and in other Sub-Saharan countries 4
1.4 Financing Gross Investment 7
1.5 The widening Gap 8
1.6 Some characteristics of urban areas 10
1.7 Objectives of the study 12
1.8 Significance of the study 12
1.9 Organization of the rest of the paper 13
2 LITERATURE REVIEW 14
2.1 Introduction. 14
2.2 Theoretical literature 14
2.3 Empirical Literature 17
2.4 Overview of the literature 27
3 METHODOLOGY AND DATA 29
3.1 Introduction 29
PAGE
3.2 Methodology 29
3.2.1 Model specification 29
3.2.2 Brief discussion of
variables in the model 30
3.2.3 Hypotheses to be tested 35
3.2.4 Estimation procedure 36
3.3 Data 37
3.3.1 Data source and type 37
3.3.2 Data limitations 38
3.3.3 Data base used in this study 39
3.4. Description of area of study 40
4 EMPIRICAL ANALYSIS 42
4.1 Introduction 42
4.2 Socio-economic characteristics of urban population 42
4.3 Regression analysis 49
4.3.1 Estimation results of the models by town 49
4.3.2 Interpretation of results 50
4.3.3 Test of equality between coefficientsof the fitted individual town models.53
4.3.4 Regression analysis of total urban saving model 55
5 CONCLUSION AND POLICY IMPLICATIONS 59
5.1 conclusion 59
5.2 Policy Implications 62
APPENDIX I. 63
APPENDIX II 64
REFERENCES 87PAGE

LIST OF TABLES

TABLE PAGE
1.1 Investment and saving rate 1965-1987 2
1.2 Total monthly income, Total monthly saving and Average Propensity to save by towns 4
1.3 Comparative Domestic Saving and Investment rates 1965-87 7
1.4 Share of Savings in the gross fixed investment 1983-88 9
1.5 External debt and debt service charges 1964-87 10
1.6 Urban population and number of centers with > 2000 persons 11
1.7 Income expenditure and saving (cash \& kind) of rural households 12
3.1 Number of clusters and households by town 38
3.2 Households covered by town 40
3.3 Population size of urban centers by selected towns 41
4.1 Urban centers Gini coefficient 45
4.2 Distribution of income by towns 45
4.3 Average monthly income and saving rate per month 46
4.4 Proportion of household by income group and town 47
4.5 Proportion of households by education years attained by head of household and town 47
4.6 Proportion of households by household size and town. 48
4.7 Proportion of households by income contributors cohorts and by town.................... 48
4.8 Estimation results by town.............................. 49
4.9 MPS and APS by town.. . . . 52
4.10 F- stat calculated between towns....................... 55
4.11 Regression results for the total urban model..... 56

TIST OF FIGURES

PAGE
1 Lorenz curve... 44

LIST OF APPENDICES

PAGE
1 Mean Value of Variables 63
2 Data 64

CHAPTER 1

INTRODUCTION

1.1 Background

Savings play a vital role in determining the level of economic development. They provide the financial resources required in meeting investment costs. The formation of capital is one of the most important prerequisite to economic development, and in recent years mobilization of savings has become a frequent recommendation for development policies.

Since independence, Kenya has been able to sustain its economic growth with high rates of saving and investment (see table 1.1). A substantial proportion of Gross National Product (GNP) has been saved and used in financing gross investment. However, financing of economic development has posed a problem in Kenya like in many other developing countries. The domestic savings are not enough to meet fully the investment costs. This has led to reliance on foreign savings if planned investment is to be fully financed and high Economic growth rate maintained.

Though reliance on foreign savings helps in supplementing domestic resources, it leads to increasing external debt burden for developing countries. With a limited ability to service external debt, Kenya's prospects for increasing the inflow of foreign capital in future are very poor. With the easy choice of continuing to borrow from external source no long feasible, Kenya has been left with only one choice - to mobilize domestic resources if rapid economic growth is to be maintained in
future. To do so Kenya will have to take policies that aim at increasing national savings and improving the allocation of financial resources to productive resources.

As is noted in the 1979/83 Development Plan, to maintain high rates of domestic savings not only should we have effective management of government budget but also households and business sector should share in the task. Studies that have been done in Kenya and in other developing countries have shown that; one, personal savings comprise a substantially large share of National savings and secondly , rural households have higher potential to save compared to urban households, Mwega 1990. However, increasing the overall level of personal savings is a difficult task because there are various social, economic and demographic factors that affect the ability and willingness of households to save. Understanding how these factors affect the personal savings behavior is necessary if mobilization of personal savings is to be met successfully.

Table 1.1: Investment and Saving rates, 1965-1987

GNP at current prices	$1965 / 69$	$1970 / 74$	$1975 / 79$	$1980 / 81$	$1985 / 87$
Gross Investment*	19.7	25.4	24.5	25.3	23.5
Foreign savings	3.2	7.4	7.0	7.0	5.2
Gross National Saving	16.5	17.9	17.5	18.3	18.3

source:Development Plan 1989/93

* Calculated as a percentage of total investment to total GNP.

1.2 The Besearch Problem.

From the previous section it has been observed that Kenya has been able to save a substantial proportion of her GNP. The savings have been used to finance (though partly) gross
investment. Despite domestic savings rate having an upward trend, investment has exceeded the domestic savings leading to a widening saving-investment gap. On the other hand, reliance on foreign savings has led to external indebtedness and left the country with only one alternative -to mobilize more domestic resources. The rural households sector has proved to be a better source of maintaining high levels of domestic savings. However, we notice that the rural area is not wholly monetized. Though with high potential for saving, some of these savings are kept in-kind rather than in cash form(see table 6). Such savings are not easy to put into productive use. This implies, that only a small proportion can be used for investment purposes out of the total rural savings. In looking at the savings problem, it is necessary to consider not only the volume and rate of saving, but also to ensure that a high and rising marginal rate of saving is expressed in a rising proportion of savings in financial form.

Again though the urban areas take a small proportion of the total human resources (see table 1.5), problems of urbanization are already with us. There is need for a large amount of capital to help in providing enough basic requirements to the growing urban population. It is therefore necessary to investigate alternatives for encouraging urban savings and channelling them to help in financing urban dwellers requirements.

Urban areas are not homogenous. There are differences for example in income levels (see table 1.2), cost of living and even distribution of income within the towns (see Fig 1)

Average propensity to Save (APS) varies among the towns ranging between 0.009 to 0.106 among the major towns to be considered in this study (see table 1.2). If this is the case then, it may imply differences in measures that can be used in mobilizing urban household savings at town level.

Again studies that have been done in kenya (as will be clear from the literature review) have looked at urban sector savings function, considering one or more centers together. No study have tried to model savings function for urban centers separately- of which would be suitable for comparison purposes. The present study tries to fill the information gap by fitting urban household savings function at urban center level. The study will take the following Kenya's major towns: Nairobi, Thika, Mombasa, Eldoret, and Nakuru.

Table 1.2 Total Monthly Income, Total Monthly Savings and

Propensity to Save (APS) by Town

	Total Income	Total Saving	APS
Nairobi	809,566	85,850	0.106
Mombasa	526,412	27,391	0.052
Kisumu	223,920	1,923	0.009
Nakuru	177,676	12,467	0.070
Eldoret	76,504	2,304	0.030
Thika	73,559	3,400	0.046

Source: Calculated from Urban Household Budget Survey (UHBS) $1982 / 83$ data collected by CBS.

1.3 Sayings and investment trends in Kenya and in other Sub-Saharan countries.

Kenya's savings performance since independence has been very good. At present it is able to save almost one-fifth of total GNP. Erom table 1.1 during the period 1965-1987, Kenya
experienced upward trends in the overall investment and saving rates though with fluctuations from period to period. The investment rate increased from 19.7% in $1965 / 69$ to 23.5% in 1985/87 while domestic saving rate increased from 16.5% in 1965/69 to 18.3\% 1985/87. Between 1970/74-1975/79 investment and saving rates declined from 25.4% to 24.5% and from 17.9% to 17.5\% respectively. Since domestic savings cannot meet the total costs of investment, Kenya has had to rely on foreign savings as a supplement. The ratio of foreign savings to GNP almost doubled during the period $1965 / 69$ to $1970 / 74$. But after that period there has been a decline in relative foreign savings injected in our economy. This implies that though in the early years after independence there was a massive inflow of foreign resources, there are poor prospects of such trends in future. This can be explained by both demand and supply factors. On the demand side we have one, external debt problem. High dependence on external resources inflow may result in an unsustainable external debt situation. In Kenya, as is noted in the 1979/83 Development Plan, by the year 1979, 22% of the foreign exchange earnings from the exports were required to service debt. It was assumed at that time that Kenya's capacity to borrow was nearly exhausted taking 25% as the limit.

Secondly, heavy reliance on external finance leads to increased external socio-political dependence of developing countries on creditors since the capital inflows are tied and come with policy conditionalities. On the supply side, there has been a general decline in net concessionary capital inflows from the

Western Industrialized countries, and the trend may continue with the opening up of the Eastern Europe economies.

Comparing Kenya with other Sub-Saharan countries in the period 1965/87, almost similar trends in savings and investment rates have been observed. Sub- Saharan countries have been able over the years to save a substantial proportion of their Gross Domestic Product (GDP) and to use the resources in financing their domestic investment. Like many other developing countries with a gap between the domestic resources and investment, they have relied on foreign savings to supplement domestic resources in order to meet planned gross investment fully. However, there are differences in performance over the years among the countries (see table 1.3). Some countries like Kenya and Cameroon,have shown an upward trend in both saving and investment rates (though with domestic savings rates being lower than gross investment); while others like Tanzania and Ethiopia have shown worsening condition. Tanzania has shown a decline in saving and investment rates, while Ethiopia has had increasing investment rates with declining domestic saving rates implying heavy reliance on foreign savings. The differences in performance may be explained by the political, economic and climatic conditions facing the countries.

Table 1.3 Comparative Domestic Saving and Investment Rates 196587

GDI/GDP									GDS/GDP
	$1965 / 73$	$1973 / 80$	$1980 / 87$	$1965 / 73$	$1973 / 80$	$1980 / 87$			
Kenya	22.6	26.2	25.2	17.2	16.4	18.3			
Tanzania	19.9	23.9	18.7	17.1	13.6	9.0			
Ethiopia	12.8	9.8	11.7	11.0	6.9	4.9			
Malawi	20.0	29.7	19.0	\star	10.7	17.0			
Cameroon	16.9	21.8	22.4	\star	16.2	18.2			
Zambia	31.9	31.4	18.4	39.1	27.0	8.1			

source:World Bank World Development Report 1989
GDI/GDP - Investment rate
GDS/GDP - Savings rate *- data not available

1.4 Financing Gross Investment

Domestic investment can be financed through domestic savings and inflow of capital from abroad (that is other people's savings). Domestic saving is undertaken by companies (through undistributed profits and depreciation allowances) ; by Government (through excess of current receipts over recurrent expenditures) and by household (through personal savings). Some savings are directly invested by the savers while others pass through financial institutions such as savings banks and securities markets. On the other hand international capital may enter as direct foreign investment or loans.

Kenya's performance with domestic savings sources has been as follows: During the first decade of independence, the Basic Economic Report 1974 pg 6 noted that, household savings amounted to 10% of personal disposable income while corporate savings (depreciation allowance), contributed 30% of the total domestic savings. The public sector had also been able to do well with successful fiscal policies. In 1976 (during the second decade of
independence) household savings represented 35.8%, public sector savings 10.6% and business savings 41.9% of the total domestic savings (Development Plan $1974 / 78 \mathrm{pg} 1660$).

Considering the proportion of savings to GNP, although the private sector has higher savings rates compared to public sector rates, it has been facing ups and downs during the period 1965-1984. The rates declined from 16.7% in $1965 / 69$ to 13.7\% in 1975/79. The situation improved however to 16.9% in $1980 / 84$ (Sessional Paper No. 11986 pg 15). Such trends were achieved through cooperatives ; special savings programmes like ensuring the Post Office Savings Bank plays a greater role in initiating the vast non-banking public into the banking habits and tapping the savings of low and middle income groups. Again the government has ensured higher positive rates of interest as an incentive to attract more financial savings (Development Plan $1979 / 83 \mathrm{pg} 93-94)$.

1.5 The Widening Gap

Despite the good performance in domestic saving rates, Kenya has not been able to finance her investment fully. She has relied on foreign savings to supplement domestic resources. With investment level being higher than savings, this has resulted in a widening saving-investment gap. The share of foreign savings in total investment finance has been increasing over the years. But the amount of foreign resourcés injected into our economy is declining such that future prospects of relying on foreign savings are very slim. During the period 1983-88, the share of domestic savings in total investment financing declined from 82\%
in 1983 to 67% in 1987 then increased slightly to 69\% in 1988 (see Table 1.4).

Table 1.4 Share of Domestic Savings in the Gross Fixed investments 1983/88
YEAR Proportion of domestic savings as of total finance
198382
198477
$1985 \quad 70$
198688
198767
198869

Source: Various Development Plan issues

Although foreign savings help in supplementing domestic resources thus ensuring that a higher investment rate is maintained in the economy, they lead to increased external indebtedness. In Kenya external debt has today outstripped the export earnings, while the ratio of debt service charges to export earnings has had an upward trend over the years except for 1974 (see table 1.5). In the $1979 / 83$ Development plan, it is noted that, though it is right to use the nation's borrowing capacity to promote development, Kenya's capacity is limited by the ability of the nation to service external debt. And, it seems now the easy choice of continuing to borrow from external sources is no longer feasible. Unless domestic resources including the foreign earning are used to support a larger part of the cost of development, then the pace of development will slow down. This has left the country with a much harder choice to make; either to have a much slower rate of growth or to make every conceivable effort to mobilize the nation's resources in a major domestic development effort. The Government has chosen the
latter course of action. Again; in the 1979/83 Development plan with the theme "Mobilization of Domestic Resources", its noted that the government can achieve this through not only effective management of her budget but also through household and business enterprises sharing in the task. The household should allocate a smaller proportion of their income to consumption and a larger share to savings. Also, the 1974 Basic Economic Report on Kenya noted that the prospects of greater savings by the government and corporations are rather uncertain. Therefore the task is left to the household sector.

Table 1.5 External Debt and Debt Service charges 1964-1987

	1964	1972	1974	1978	1982	1987
A^{*}	56.70	52.70	38.20	40.90	97.90	162.90
$B^{* *}$	1.65	3.61	2.41	5.26	11.69	18.38

source: 1989/93 Development Plan pg 15
A* Ratio of external debt to export of goods and services.

B**_ Ratio of debt service charge to export earnings.

1.6 Some Characteristics of Urban Areas

From the previous section, it is clear that; the household sector contributes substantially to the total domestic saving and that future hopes of maintaining high levels of domestic savings depends on mobilization of savings from this sector. The household sector is made up of two sub-sectors; the rural household and urban household sub-sectors. In this section, we examine the characteristics of urban areas. Kenya has experienced rapid urban growth since independence in terms of population size and number of urban centers(see table 1.5). This

source: 1979 Population Census Report on Urban Population Vol 3 pg 2

Among other factors that characterize the urban population we have one, it is composed mainly of the working age population. This would imply that the proportion of age population under 15 years to total population is very small in urban areas. Secondly, most of the highly educated population in Kenya is in the urban areas. For example Nairobi in 1979 had 28\% of its population aged 15 years and over who had at least completed Form 1 and over.

Comparing urban sector with the rural sector, we notice that the former is a high income area. However, despite the high income earning opportunities, the level of savings is very low. Previous studies in Kenya and in other developing countries have shown that rural population save more. The APS of rural sector in Kenya ranges between 0.127 and 0.366 while for urban sector it ranges between -0.050 and 0.181 . Also the MPS have shown to be greater in the rural areas than in urban areas. This concludes that the rural sector has a higher potential to save than the urban sector. However looking at the savings
composition for rural areas we find that a big proportion is inkind form(see table 1.6).

Table 1.7 Income Expenditure and Savings (cash \& kind) of Rural Household (Kshs)

	Kind		Cash		Total	
Average monthly income	396	48%	433	52%	829	
Average expenditure	191	36%	336	64%	527	64%
Average savings	205	68%	97	32%	302	36%

Source: Economic survey 1988
\% in column $1 \& 2$ are calculated as ratios to totals in column 3. \% in column 3 are calculated as ratios to totals in row 1 of the same column.

1.7 Objectives of the study

1: To study the various factors influencing household savings behavior.

2: To determine the relative importance of these factors across the towns.

3: To make a comparison across the towns to the nature and strength of relationships.

4: On the basis of the above (2-3), make policy recommendations on alternative ways of encouraging urban savings in future planning.

1.8 Significance of the Study

Country - wide the cost of investment is increasing each year. For example, according to Sessional Paper No. 1 of 1986 the average price of investment was increasing at annual rate of 3% reducing the real value of savings. By increasing the savings rate then it will be possible to maintain the real value of savings and thus cover the cost of investment.

Kenya like many other developing countries aims at reducing the reliance on foreign savings and foreign indebtedness. Doing a study on household sector (bearing in mind that it takes a proportion of the total domestic savings), it will be possible to tell the extent to which the investment savings gap could be closed.

Again the study will consider the urban savings function at urban center level. This will help the policy makers in making a decision as to whether planning for mobilization of urban resources should consider different policies or different dosages of policies at urban center level.

1.9 Organization of the rest of the paper

Theories on determinants of savings behavior and their empirical test are discussed in Chapter 2. Chapter 3 contains the model to be estimated, description of the data and description of the area of study. Results on estimated models are discussed in Chapter 4. Lastly, conclusions and recommended policy(ies) are in Chapter 5.

CHAPTER TWO

LITERATURE REVIEH

2.1 Introduction

The literature is divided into two parts: theoretical and empirical literature. Theoretical literature looks at the various savings models that have been developed. Empirical literature concentrates on studies that have been done on developing countries to test the models. It is divided into two sub-sections: studies on developing countries and specific studies done on Kenya.

2.2 Theoretical Literature

Modern savings models have been tested in developing countries. Among these models include: the Keynesian absolute income hypothesis ; Duesenberry's relative income hypothesis ; Friedman's permanent income hypothesis and Modiglian-Brumbery life-cycle hypothesis.

The Keynesian Absolute Income hypothesis

Keynes (1936) concluded that there is a fairly stable relationship between consumption and current income. He acknowledged other factors like wealth, interest rates and distribution of income but he dismissed their importance and concentrated on current income.

In explaining the relationship between consumption and income he invoked the "fundamental psychological law" which states that men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the
increase in their income (pg 96). According to Keynes MPS exceeds APS, and MPS increases at higher levels of income.

Eriedman's permanent income hypothesis

Friedman (1957) made a distinction between measured income (income actually received) and permanent income (income on which consumers actually base their consumption). According to Friedman consumption depends on permanent income, rate of interest or set of interest at which the consumer unit can borrow or lend, non-human income to wealth ratio and tastes and preferences. The MPS out of transitory income is higher than that of permanent income,implying that the individual consumer does not consume transitory income but relies on the past behavior as determinant of consumption spending thus saving all his transitory income.

The relative income hypothesis

After the second world war there were efforts to reconcile the cross section observations of the household saving ratio and the relative constancy of aggregate personal savings ratio overtime. The earliest explanation was provided by the Duesenberry(1949) relative income hypothesis.

According to the hypothesis, at any point in time the propensity to save by an individual can be regarded as a rising function of his percentile position in the income distribution. Again aggregate savings ratio is independent of absolute level of aggregate income over time though it may depend on income distribution. Therefore the division of income between
consumption and savings depend on the individual relative rather than absolute income.

The life - cycle hypothesis

Modigliani postulated that individuals adopt a planning horizon for their life time consumption. It is assumed that individuals attempt to spread their life time consumption evenly over their life's by accumulating enough savings during their earning years to maintain the consumption standard. Thus Modigliani postulated a hump savings function.

A stationary population and income would have no aggregate net personal savings as the dissaving of the retired would exactly offset the saving of the employed. A society on the other hand with growing population and per capita income has positive aggregate net personal saving as the working population tends to be higher than the retired population. The higher the current income therefore the larger the savings necessary to maintain individual consumption in retirement.

To conclude from these hypotheses, saving is a function of various factors including ; wealth, income, growth of the economy, income distribution and demographic factors. From the above theories individual saving behavior is influenced by economic, social and demographic factors.

2.3 Empirical Literature

2.3.1 Empirical studies on developing countries

In this section we look at empirical tests of the various factors postulated by the above economic theories to influence savings behavior.

Income

In testing for current income, studies have shown that savings respond to variations in current income but there is more variation of the results on developing than on developed countries. Hence the need to include other variables besides current income to adequately explain and predict the household behavior.

Kuznets (1960) with a cross sectional data of 70 countries subdivided into seven categories according to per capita, concluded that there is a tendency to have higher saving ratio the higher the per capita income but not consistently. He also related personal savings to personal disposable income and found that they are positively correlated. He concluded that personal savings are not important in the overall net domestic savings in lower per capita income countries as compared to higher per capita countries.

He was supported by Houthakker who found per capita personal savings to be proportional to per capita disposable income and Johnson \& Chiu(1968) who found the same results using crosssection data for 30 countries both developed and developing countries. Majority of the results showed a positive correlation between saving and income but only two cases yielded significant results. On the other hand only five countries showed negative
intercept with two significant. The results suggested that saving is a proportion of income.

In his study, Leff(1968) found Brazilian APS to be constant instead of increasing for the period 1939-1960. Hollis and Chenery (1970) found MPS for 16 Latin American countries to be between $0-0.03$ but these results did not indicate that MPS is uniformly greater than APS. Therefore Keynes assumption of $0<M P S<1$ holds for developing countries, and current income is statistically significant determinant of savings.

Empirical test of permanent income have shown divergency between Marginal Propensity to save from transitory income (MPSt) and Marginal Propensity to save from permanent income (MPSyp). Studies have supported the hypothesis where MPSt is positive and greater than MPSyp but not one (MPSyp $<$ MPSt but not $=1$).

Williamson (1968) using a three year moving average of actual income as a proxy for permanent income, studied 8 Asian countries and found significant results where MPSyp ranged between $0.20-0.29$ and MPSt between $0.37-1.12$.

Friend and Taubman (1968) studied 21 countries and found MPSyp to be 0.065 and MPSt to be 0.451. Also Ramanathan (1968) saw MPS ${ }_{t}$ to be positive and significantly below one in Delhi, India. He used mean current income as a proxy for permanent income, where households are classified into homogenous groups then their mean income is used as an estimate of permanent income.

Betacourts(1971) used cell approach on Chile with 6200 household. In this approach it is assumed that a household expected income in X years is the same as income for similar household with a head of X years old. He tested permanent income against absolute income by comparing total within group and between group consumption function. He found the permanent income hypothesis strongly supported. However the hypothesis that MPCyp is constant was rejected but with some uncertainty.

Although various proxies have been shown to be significant, the studies have used current or past behavior instead of expected income because the latter is not observable.

Demographic factors

Among the factors that have been tested include age of the household head, education of head of household dependency ratio and household size.

Kelley and Williamson (1968) in Indonesia regressed per capita household savings on per capita household income for five household age groups. They found significant relationships for age cohort 40-49 years. MPS increased with age of head of household for age cohort $20-29$ years and $60-69$ years from 0.046 to 0.060 respectively. But they suggested modification of life cycle model if it is to be applicable in developing countries. The model assumption of temporary constant per capita consumption and strong retirement motive for saving are not tenable within the environment of extended family.

Although demographic factors influence or seem to be important variables in savings function, they are largely unexplored in the study of developing countries savings behavior.

Wealth

Although wealth has long been thought to affect consumption, its test has been limited by its definition. Various factors have been used as proxies of wealth. Wealth and income are highly correlated and this gives rise to estimation problems in empirical studies.

Kelley and Williamson(1968) found Indonesian farmers' MPS and APS rising with greater land ownership suggesting presence of positive interaction between wealth and income.

Ramanathan(1968 \& 1969) supported them with similar results for India. He incorporated wealth defined as household net worth into the saving function directly, in the form of a wealth income interaction term and through the normal wealth hypothesis of Crockett and Friend (1967) which postulates that saving depend on the difference between actual wealth and normal wealth. The findings supported the hypothesis particularly when the households are classified by occupation and age. The wealth coefficient and interaction coefficient were significant and had the positive and negative signs respectively.

Snyder (1971), used a linear probability model to analyse the decision to save or not among 300 west African households. He defined wealth in terms of an index of housing characteristics
and consumer durable ownership. Wealth families were found to be more significantly likely to save.

Friend and Taubman (1966) used target savings model where asset holdings is crucial to saving behavior. Past savings were used as proxy for wealth. He found past savings highly significant and with a negative sign. The results were supported by Choudhury (1968). He used household assets as a proxy. Then results were significant with a negative sign. Williamson found similar results testing wealth stock adjustment model of Lydall and Spiro.

Other factors

Among other variables that have been tested in developing countries include: number of earners in household; education level of household head; family structure; source of income; locality; income distribution and land ownership.

Gupta (1970), Jones(1960) and Choulhury(1968) classified household into rural and urban and found MPS for urban areas higher than the rural areas in India. MPS tend to increase with per capita income. Gupta suggested that redistribution of income from rural to urban will lead to higher aggregate savings.

In Sierra Leone Snyder(1971) found similar results. But such strange results could be attributed to by the underestimation in the rural income and not consumption leading to low figures of savings.

In testing for different distribution of income, Houthakker (1960) classified income into property and labour income and used international data. His results were that savings out of employment income tend to be zero implying that property income explains more of the variations in savings function.

Williamson (1968) applied the same method as Houthakker to six Asian countries and found strong disparities out of labor and non-labor income.

Kelley and Williamson (1968) looked at the role of income distribution differently. They classified the sample into entrepreneurs and non- entrepreneurs. Comparing the saving behavior for each group they found as expected entrepreneurs have the highest savings potentials.

Looking at the family structure, we are concerned about the extended and nuclear family. Synder (1971) in his study in Sierra Leone, found the nuclear family saved more than the extended family. With the extended family, income is distributed to many limiting the amount set aside for saving.

Blumenthal argued that saving ratios will differ with the same income and age of household head due to differences in the number of earners. The relationship may be positive or negative. For the former, with an extra earner the family will remain accustomed to the former levels and save the extra income. For the latter,

Eizenga (1961), on the other hand argued that with more earners, the family's vulnerability in cases of sickness and old age is reduced, and therefore need smaller reserves of saving.

Singh, Gupta, and Singh(1978), studied Hissar district in India. They grouped the data into five categories based on household holding. MPS and APS were higher on large sized farms than small sized farms.

2.3.2 Empirical studies on Kenya

Studies done on Kenya include both on rural and urban households. They have used Budget Survey data and generally carried out cross-sectional analysis. Various factors have been considered as influencing the savings function.

Among the studies done for the urban areas include Kamau (1973), was interested in seeing the impact of Africanization policy on household savings in Kenya after independence 1963; Lillydhal (1976) testing the impact of socio-economic and demographic factors on the level and composition of household savings; Massell and Heyer (1967) looking at the relationship between household expenditure pattern and other major variables in predicting urban household demand and finally Vandermoortele and Hoeven (1982) testing the hypothesis that household consumption is influenced by a series of variables.

Lillydhal (1976) fitted a savings model for the urban areas covering Kisumu, Nairobi and Mombasa. She used 1968/69 Kenyan household budget survey data with 1146 households. The following
variables were included: income, education, age of household head, number of adults in the household, land ownership, tribal status, and extended family. The results were APS 1.3% and MPS at mean 22.8\%. Income was the most significant factor in savings function but with a nonlinear relationship; extended family has a depressing effect on savings; tribal status, adults in household and children have little impact on savings while age of household head, education of household head and land ownership were insignificant. Although she just considered the first step of identifying the determinants of household saving in a single equation framework, her saving equation was well fitted with the variables explaining 72% of the variation in savings.

Kamau (1973) conducted a study in Nairobi to determine the effects of Kenyanization on personal saving. He took a sample of 1052 huoseholds. He found remarkable differences in holding of financial assets by African Asian and Europeans. Africans prefered savings account with 55% and current account 32% of the total sample. He also looked at the motives for saving. Education of children was the most frequently mentioned motive among the Africans.

Massell and Heyer (1967) found almost similar results. Their study however covered only Nairobi. They found income and household size to be statistically significant, education not significant in most cases with only one significant equation out of 26 estimates, and land ownership (used as a measure of wealth) not significant also.

Vandermoortele and Hoeven (1982) also fitted a saving model for the urban areas. They used the 1977 Urban Food Purchasing Survey data collected by the Central Bureau of Statistics(CBS). Households were divided into homogenous groups in order to measure the influence of the various factors on the household consumption. They used linear expenditure system technique. They found MPS of 0.666 and an APS of 0.50 indicating that the urban household are dissavers. There was a positive correlation between income and household size. APS increased with occupational status and education level. The limitation of this study is that the results depend on the partitioning of household population and on commodity classification. Taking a different classification may yield different results and it might not be possible to compare the results. Again the study did not consider the significance of the variables only the correlations were dealt with. The results were similar to those of Otundo (1982) who did a similar study using the same data and estimation technique.

Otundo (1982) and Vandermoortele and Hoeven (1982) carried out studies in the rural area using the Integrated Rural Survey 1 of 1974-75. Otundo tested the hypothesis that marginal propensity to consume is higher in rural areas than urban sector and that marginal food budget for food is higher than that for non-food in rural areas. Following the same method as they did for the urban areas they had the following results. The MPS were 0.458 and 0.549 for Otundo and Vandermoortele and Hoeven studies respectively. The differences may be due to differences in classification of commodities where Otundo did not get access to
disaggregated data but used food and non food classification while the other study used more disaggregated commodities.

Massell (1967) analyses the determinants of expenditure by rural household in central province of Kenya. He used Budget Survey data conducted by a U.N team for the Kenyan government in 1963. The sample size was 836 households. He also classified commodities. He noted that there are important differences in expenditure pattern from one district to another apart from the household size and total expenditure. He took district variable but classification by district was only significant for 1 non food item. The other results were that income was most significant variable, household size and acreage were only significant in three out of 18 estimations while education was significant in 7 estimations. Although this study noted the differences in the district's consumption pattern, it did not try to see where there is any significant differences among their consumption functions.

2.4 Overview of the literature

From the reviewed literature, a wide range of factors affecting the savings behavior have been reviewed. Income has been shown to be a significant variable in the savings function in studies done on Kenya like on many other LDCs. Studies done on Kenya's urban areas have attempted to look at the relationship between various factors and savings using various statistical techniques. However, they have used outdated data. The present study tries to update the studies using the $1982 / 83$ UHBS data using OLS technique.

Again, previous studies have looked at urban areas in general thus coming up with a savings model for the urban area as a whole. Differences in urban areas at urban centre level have been noted. It is the aim of this study to model the urban saving function at urban centre level and see whether there are any differences between them.

CHAPTER 3

METHODOLOGY AND DATA

3.1 Introduction

The chapter is divided into two major parts. Part one covers the model to be estimated and the hypotheses to be tested. Part two contains the description of data and, a brief description of the areas of study.

3.2 Methodology

3.2.1 Model specification.

Erom chapter two various determinants of saving behavior have been discussed. They are social, economic, and demographic factors. Some of these variables are considered in the present study, depending on the availability of data. The urban household saving model estimated in this study is as follows: $S=f[Y$ INCCON HHS EDUC YDS U].
$S \quad$ Household Savings in Kshs. Y Household Monthly income in Kshs. INCCON Number of contributor in the household. HHS Household size (total number of adults \& children).

EDUC Education level attained by the head of household measured in terms of number of years in school.

YDS Income distribution measured in terms of diversion from the equality line (Gini Coefficient of every town). U Random error term capturing effects of other variables not included in the model

```
but are thought to influence saving
behavior.
```


$3.2 .2 *$ Brief Discussion of Variables in the Model.

(i) Savings

In defining saving as a residuals - that part of income that is not consumed, an element of sacrifice is implied. An individual sacrifices his present consumption in order to increase future consumption. Thus given income, then savings will be equated to Y-C - where Y is income and C total consumption. On the other hand savings could be looked at as an increase in net worth or assets in general. This implies that there is a change in individuals' accumulated assets.

In the present study savings are defined in terms of assets, that is, financial savings including only savings deposits. Due to data limitations it is not possible to widen savings definition. It is true that aggregate savings include both financial and non-financial savings. Also the former is composed of more items and not just savings deposits. Again savings is a stock variable and not a flow variable. Using UHBS 1982/83 as the source of information, various problems were encountered in defining savings. One, there was no information on total income of household. This would have helped in defining saving as a residual, that is, $Y-C$ where Y is the total income and C total consumption, thus capturing aggregate savings. Only total expenditure data is available.

Two, though savings deposits are given, this is just part of the total financial and aggregate savings. There is no information for example on cash savings - accumulation of liquid assetsheld by households and other financial assets that individual hold their savings in. From the literature, Kamau (1973) has shown that majority of the people hold there savings in terms of savings deposits. Taking this into consideration then we can assume in this study that savings deposits is a proxy for the total financial assets.

Three, despite the fact that there is data on financial savings, we can not consider saving as a stock variable directly without making some assumptions. It is not possible to tell how financial assets changed from the previous period. The only information available was on financial assets held during for the period of the study. The present study assumes that the available data, gives the amount of financial savings that individuals put in banking system during the period, thus the change in financial assets. Again the information is on monthly basis. The question to answer in this study is what influences the average monthly savings for the households?

(ii) Income

Total income is defined as in the Urban Household Budget survey(UHBS) 1982/83. Income is defined as approximately equal to savings plus consumption $(Y=C+S)$. In defining income, the latter used the expenditure approach and the following items were considered in broader terms; Food, drinks and tobacco; minor goods e.g. clothing footwear and utensils; major goods or
durables; regular expenditures e.g. electricity and water bills, rent, school fees, and medical fee; saving deposits, loan servicing, miscellaneous expenditure, and transfers outside the household.

The argument is that income and expenditure information provide two alternative ways of estimating consumption and welfare. The use of income data has disadvantages in situation where considerable amount of consumption are derived from own production transfers or where there are considerable variation in prices.

Income has ben shown from the literature to be an important determinant of aggregate savings. The higher the income the higher the aggregate savings. Decomposing savings into financial savings and physical capital, we may find income influencing the two types of savings differently. For example if an individual is to consider the returns from different assets, it is possible to have a negative or positive relationship between savings deposits and income. From observation, some individuals accumulate savings in the bank to raise enough resources to meet a certain need - target savers. In this case it is possible that with an increase in income there will be a decline in savings since the individual can raise the finances more easily without putting money in the bank. This will thus imply a negative relationship between income and savings deposits.

(vi) Income contributors

From the literature this variable may influence aggregate savings positively or negatively. For the former situation it happens when the family remains accustomed to the former levels of income with extra earner. Positive savings may be due to increase in financial savings and / or non-financial savings. An increase in number of income contributors may imply shifting responsibilities away from the head of household (see below section iv). This lessens the burden and leaves the household head with more extra income. The extra income may be put into savings through various modes. for example purchasing a piece of land or increasing savings deposits. However, putting the extra income in form of physical capital is a more likely possibility. The other case is where the family becomes vulnerable to cases of sickness and old age with an extra income earner such that very little of total household income is saved.

(iv) Household size

The head of household has the responsibility to maintain and care for the family in terms of food, clothing, shelter, school fees and others. It can be argued that the larger the household size the more the family demands and the higher the expenditure level. This implies that increasing family expenditure leaves very little for saving out the total income (if Yd - $C=S$ then the higher the C the lesser the S : where Y (- is the disposable income, $E-$ is the expenditure and $S-$ Savings). On the other hand additional member may mean increasing future consumption by foregoing present consumption - needs as larger savings are needed for bride price etc. I would expect that the number of
individuals in a household to affect aggregate savings and financial savings in the same way.
(iii) Education level attained by head of household: A well educated person is considered to have an increased awareness of investment opportunities. Thus we expect such an individual to save more. For the aggregate savings then the more the number of years in school the higher the savings level. We have seen that savings could be in various forms of assets. If an individual were to consider the returns from the various assets then depending on which one has the highest return then an individual may choose the type of assets in which to accumulate savings depending on assets' returns. Again if we assume that a well educated individual is aware of the investment opportunities we find such an individual may prefer to have physical capital than financial savings or save through hoarding.

(v) Income Distribution

Saving propensities tend to differ among household. Thus we expect that aggregate savings will vary depending on income distribution among the households. Keynes postulated that income distribution causes variations in saving behavior, however, he did not give it much emphasis.

Some theories of development especially those of classical economists, for example Classical theory, Adam Smith's theory, and Ricardian theory emphasis that only property owners save in an economy. Workers do not save since their income tend to be
equal to the amount for subsistence of laborers. They therefore suggest that a right - ward skewed income distribution leads to higher aggregate savings. However, it is possible that total savings increase due to an increase in savings deposits or physical capital. From observation the few higher income earners increase their physical capital or cash holding relative to savings deposits or conspicous comsumers. Thus we expect that with inequality aggregate savings will increase but savings deposits are declined compared to other assets. Various proxies for income distribution have been used for example occupation groups. In the present study income distribution will be captured by the Gini-Coefficient for different towns.

3.2.3 Hypotheses to be Tested

1. Income is expected to be either negatively or positively related to savings deposits. From economic theory Marginal propensity to save (MPS) is less than one and positive i.e. $0<d S / d Y<1$ for aggregate savings. The hypothesis to be tested is as follows; $\mathrm{H}_{0}: \mathrm{b}_{1}=0$
$\mathrm{H}_{\mathrm{a}}: \mathrm{b}_{1} \neq 0$
2. Income contributor sign is expected to be negative. The hypothesis to be tested is;
$\mathrm{H}_{0}: \mathrm{b}_{2}=0$
$\mathrm{H}_{\mathrm{a}}: \mathrm{b}_{2}<0$
3. Household size can have a negative or positive relationship with savings. The hypothesis to be tested then is;
$\mathrm{H}_{0}: \mathrm{b}_{3}=0$
$H_{a}: b_{3} \neq 0$
4. Education level of the head and savings are expected to be either negative or positively related to savings. Thus we expects to the direction of relationship from the estimations. The hypothesis to be tested then is;
$\mathrm{H}_{0}: \mathrm{b}_{4}=0$
$H_{a}: b_{4} \neq 0$
5. Income distribution variable is expected to be negatively related to savings. So that the higher the level of inequality- the larger the value of Gini-Coefficient- the lesser the financial savings. Thus the hypothesis to be tested is as follows;
$\mathrm{H}_{0}: \mathrm{b}_{5}=0$
$H_{a}: b_{5}<0$

3.2.4 Estimation Procedure

Econometric study is conducted to achieve objectives set in chapter 1. Such a study helps in testing the explanatory power of economic theories in chapter 2 and to make decision as to how well these theories explain the observed behavior of saving the economic unit. Also it is possible to compare the effects of alternative policy decisions (Koutysoyiannis, 1977. pg 8).

There are various methods for measuring the relationship between economic variables. The present study uses Multiple Regression analysis and Ordinary Least Square (OLS) technique. This implies that the models are single equations and multi variate where the study limits it self to the first step of identifying the determinants of household saving in a single equation framework.

The equations are fitted for urban areas separately. However since this models cannot capture the income distribution variable then a model capturing all the urban areas is estimated. Thus there is a total of seven equations estimated in this study.

The study also uses Analysis of Variance (ANOVA) a statistical method developed by R.A Fisher. The later is used in connection with the Chow Test that will be used in order to meet the third objective of the study.

3.3 Data

3.3.1 Data source and type

The study uses a cross-section Family Budget data. The information is contained in Urban Household Budget Survey (UHBS) 1982/83, carried out by Central Bureau of Statistics (CBS) (APPENDIX II gives data for six urban centres and for the variables extracted). This is the most recent household survey for urban areas. A total of 34 Urban towns were considered in this survey. The main objective of this survey was to provide basic information on patterns of expenditure and consumption of different socio - economic groups. The National Sampling Frame constructed as part of the National Sample Survey and Evaluation

Programme(NASSEP) was used. The latter is a sample of household achieved through two stage sampling. In the first stage we have selection of cluster and in second stage a selection of household within that cluster.

Table 3.1 Number of clusters and household by town

Town	Clusters	Households
Nairobi	60	588
Mombasa	24	280
Kisumu	10	161
Nakuru	8	117
Thika	4	66
Eldoret	4	65
Others*	40	763
Total	150	2040

Source: NASSEP 1980/84

* Others include 28 small urban centers

A total of 150 clusters were considered with a total of 2040 households. This sample is equivalent of 3% of the total urban population (see table 3.1)

Sample selection was accomplished by randomly selecting Enumeration Area(EA) using the 1979 Population Census. EAs were selected using probability sampling proportionate to town sizes in terms of expected cluster of an average of 100 households. Then sample size was allocated to towns taking account of expected reliability work and population of the town. Six big towns Nairobi, Mombasa, Kisumu, Nakuru, Eldoret, and Thika came into the sample with certainty. Other towns were grouped by Province and selection from them effected using probability sampling proportionate to size.

3.3.2 Data limitations

The limitations of the data as a base for this study are as follows: Despite the fact that it is the most recent data for
urban households it is outdated. This is because 10 years have elapsed since the information was collected and there may have been some changes during the period that would affect the information. On the other hand it forms a good base for other urban budget surveys and for comparison of other studies based on such surveys.

There is limitation of variables. Very few of the variables can be used for this study. For example information on age of the head of household, a major variable in testing Life-Cycle hypothesis is totally missing in this survey. Household size is given in total. There is no break down of the household composition.This makes it even impossible to test the economies of scale factor in consumption as household size increases, that is, a decrease in the additional expenditures on each subsequent family member (Henderson 1940-50).

3.3.3 Data base used in this study

The extraction of this data was done using the Aerial+Plus Micro Computer Programme. However to analyze the data some modifications were made to the original data(see table 2). Micro TSP Version 4.1C by David M.Lilien (1984) was used in analysis of data. To use the latter programme some households with missing information on households composition and other socioeconomic information were eliminated or termed as invalid observation for this study. The reason for this is that the programme does not take care of missing information. And also including them may bring biases on the results. Due to many
households having missing information about half of the total observations were lost in the process.

Table 3.2 Household Covered by Towns

Towns	Original size	Present sample size
Nairobi	588	217
Mombasa	266	166
Kisumu	161	76
Nakuru	117	67
Thika	66	44
Eldoret	179	39
Total	2040	609

3.4 Description of areas of study

The study will take the six major town in Kenya namely: Nairobi, Kisumu, Eldoret, Mombasa, Nakuru and Thika. In Kenya, majority of the existing urban centers originated during the colonial era. At that time, urban centers were located along the railway line which was by then the central transportation net work. Among such centers of the colonial development strategy include: Nairobi, Kisumu, Mombasa and Nakuru. Others like Thika evolved as a result of opening up of the productive highlands.

Nairobi is the capital and largest city in Kenya. It is also the location of most of the government offices and other international organizations offices.

Mombasa is situated in Coastal Province and it is the provincial and district headquarters. It has a unique location as a major East Africa port contributing immensely towards the economy of the country.

Kisumu is Kenya's chief port on Lake Victoria. It is a railhead for products from Mombasa destined for Uganda, Northern Tanzania, and Zaire.

Thika is in Kiambu district (a leading district in urbanization in Central Province). Thika has experienced rapid growth as a satellite to Nairobi attracting the over spill of industries from Nairobi. Together with Eldoret they are the leading textile industrial towns.

Considering the population size Nairobi takes the highest proportion of urban total population (see table 3.3).

Table 3.3 Population size of urban centers by selected towns.

Urban Center	Total population 1979 Census	
Nairobi	827,775	(35.70)
Mombasa	341,148	(14.70)
Kisumu	152,643	(6.60)
Nakuru	92,851	(2.00)
Eldoret	50,503	(1.80)
Thika	41,324	(65.00)

Source: 1979 Population Census Report Vol 111 Proportion of the total urban population for each town are given in the parentheses.
Last row given the total population of the six towns.

CHAPTER 4

EMPIRICAI ANAIYSIS

4.1 Introduction

The chapter constitutes the findings from the data. The analysis is conducted at two level: Descriptive and regression analysis. The former gives the socio-economic characteristics of urban population. The regression part gives the results of the fitted urban saving models. The first part of the chapter cover the descriptive analysis.

Part two which covers the regression analysis is divided into four sections; in section one regression equations for the various towns are presented. Section two we have the interpretation of regression results in section one. In an effort to meet the third objective of the study Chow test is conducted between the various towns in section three. Section four models the total urban area saving behavior including the extra variable that was not taken care of by the single town equations. This urban model also serves as a way of identifying the determinants of urban saving behavior.

4.2 Socio-economic characteristics of the urban

 households.Income distribution is one of the indicators of country's economic progress. Kenya's aim has been to ensure that there is some equity in income distribution since independence, however this has not yet been achieved. The Government still struggles to meet the underlying objective by trying to reduce the level of inequality further. While disparities between the urban and
rural areas are very clear and the government is trying to reduce the gap through rural development programmes, inequality among the urban centers seem not to have assumed great emphasis.

From the sample surveyed in this study it is clear that there are differences in income distribution as far as urban centers area concerned. The Gini-Coefficient - a measure of inequality in urban areas considered in this study range between 0.63 and 0.42 in Kisumu and Eldoret respectively (see table 4.1).

To calculate the gini coefficient the following steps were followed:
(i) For every town, the observations were arranged in ascending order according to income and grouped into deciles.
(ii) For every decile, total income was calculated as a percentage of the total town income. The results of this are as presented in Table 4.2.
(iii) The results were later presented in a line graph using a graph paper coming up with lorenz curves for each town(see Fig 1).
(iv) To get the gini - coefficient, the area between the lorenz curve and the equality line was estimated using the counting
square method and given as a percentage of the total triangle area.

FIG. 1: LORENZ CURVES

KEY:
HE Eldoret
\rightarrow Thika
-- Kisumu

- Nairobi
$x \times x$ Mombasa
-• Nakuru

Table 4.1 Urban Centers Gini Coefficients.

Towns	Gini coefficients
Nairobi	0.46
Mombasa	0.44
Kisumu	0.63
Nakuru	0.53
Eldoret	0.42
Thika	0.51

Source: Calculated from the modified sample extracted from UHBS 1982/83

From Table 4.2 the lowest 10% population of the six major urban centers receive less than 2% of the total income, while the highest 10% population receive more than 30% of the total income.

TABLE 4.2 Distribution of income by towns.

Percentiles	NRB	MBS	KSM	NKR	TK	ELD
10						
20	1.4	1.8	0.8	1.6	1.8	1.8
30	4.0	4.4	2.3	3.9	4.1	5.9
40	11.1	10.6	45.4	6.2	7.2	7.7
50	16.4	21.2	9.9	10.8	12.9	17.1
60	22.8	28.8	15.0	20.8	19.1	24.4
70	31.3	35.2	22.0	31.0	36.1	30.9
80	43.8	48.3	31.6	43.0	41.8	40.3
90	63.1	67.5	46.3	53.5	53.9	64.0
100	100.0	100.0	100.0	100.0	100.0	100.0

Key: NRB- Nairobi,MBS-Mombasa, KSM-Kisumu, NKR-Nakuru, TK-Thika, ELD-Eldoret.
** The sample for every town was arranged in ascending order according to income. For every population percentile the total income was calculated as a percentage of the total town income. Then cumulative percentages were calculated.

This implies that urban areas have a skewed distribution of income. This is true for all the urban centers, but Kisumu shows greater inequality compared to the other towns. 10% of highest decile in Kisumu receive more than 50% of the total income. These results differ from those of ILO using the 1969 Census (ILO
1972). The latter found out that Mombasa had more inequality compared to Nairobi and Kisumu.

Table 4.3 gives the proportions of income that goes to saving. There are variations among the towns on the amount of total income that is saved. This ranges between 5.3% and 18.5% in Nairobi and Eldoret respectively.

We find that Eldoret has the most equalities but relatively low savings rate compared to other towns. This implies that, although people take nearly the same proportion of income, savings are very low. This runs parallel to what the classical economist who argue that inequality does increase the levels of aggregate savings. Thus to some extent the results support classical economist.
Table 4.3: Average monthly Income and Savings Rate per month by Towns.

Town	Average income	Average savings rate*
Nairobi	1959	0.139
Mombasa	2024	0.050
Kisumu	2027	0.015
Nakuru	2105	0.069
Thika	1325	0.050
Eldoret	1234	0.021

[^0]growth rate of job opportunities in modern sector is very low compared to demand for them. This means that many of the migrants end up being absorbed in the informal sector - a low income sector compared to the modern sector.

Table 4.4 Proportion of household by income group and town.

	$0-1999$	$2000-3999$	$4000-5999$	$6000-7999$	$80000+$	Total
Nairobi	71.5	16.6	5.1	4.5	2.3	100
Mombasa	66.0	20.5	7.9	4.9	0.7	100
Kisumu	68.0	20.0	6.0	0.0	6.0	100
Nakuru	73.0	13.0	9.0	1.0	4.0	100
Thika	87.1	6.5	0.0	3.2	3.2	100
Eldoret	87.2	12.8	0.0	0.0	0.0	100

Source: Calculated from the modified sample.

One of the conclusions reached by CBS using the 1979 Census of the urban population is that urban population is highly educated. The present study supports this conclusion where from the sample about a third of the household heads have at had at least 9 years of education(see table 4.5). Kisumu has the highest percentage of illiterate heads of household. The above can be explained by the fact that highly educated people tend to have a higher propensity to migrate than those with no education due to high prospects of getting a job in the modern sector.

Table 4.5 Proportion of household by education level attained by household head and by town.

	00		No. of years in school 01-08	09-14
Town			$15+$	
Nairobi	5.5	50.2	38.8	
Mombasa	16.9	50.0	31.3	5.5
Kisumu	28.9	39.5	27.6	1.8
Nakuru	4.5	58.2	29.8	4.0
Thika	20.5	47.7	31.8	7.5
Eldoret	7.7	51.3	41.0	0.0
			0.0	

source: calculated from the modified sample.

Distribution of urban household sizes differ across the towns. On average, Kisumu has the largest average household size among the six towns(see table 4.6), with majority of its households having 5-8 members. For Nairobi more than half of its households have more than 3 members. CBS findings using the 1979 Census were that majority urban households are single. From the present study, this is only true for Mombasa, Nakuru, Thika and Eldoret.

Table 4.6 Percentage of households by Household Size and by Town

			hold			
	1	2	3-4	5-8	$9+$	average hhs
Town						
Nairobi	21.9	13.8	25.2	31.9	7.1	4.08
Mombasa	37.2	18.9	14.0	25.6	4.3	3.15
Kisumu	5.2	16.9	23.3	42.9	11.7	5.09
Nakuru	26.9	19.4	22.4	23.9	7.4	3.57
Thika	45.5	9.1	18.2	20.5	6.8	2.95
Elderet	61.5	15.4	12.8	28.2	10.3	3.18

Source: Calculated from the modified sample.
There are also differences between towns on the number of income contributors per household. In Nairobi, Nakuru, and Kisumu, many households have two income contributors. Other towns have a higher proportion of households with one income contributors (see table 4.7).

Table 4.7 Proportion of Households by income contributors cohorts and by town.

	Income contributors				
	1		2	3	$4+$
Town					
Nairobi	36.6		46.3	13.9	3.2
Mombasa	48.2	39.8	7.8	4.2	2.22
Kisumu	23.7	47.4	18.4	10.5	1.67
Nakuru	51.5	36.4	7.6	4.5	2.22
Thika	75.0	20.5	4.5	0.0	1.65
Eldoret	76.9	20.5	2.5	0.0	1.30
					1.26

[^1]In summary, the following are the socio-economic characteristics of urban population:
(i) Income distribution is very highly skewed to the right in urban areas. The Gini-Coefficient ranges between 0.63 and 0.42 for the major six towns in Kenya.
(ii) More than half of urban population is earning less than 2000 Kshs per month.
(iii) Saving rate vary across the towns ranging between 0.23 and 0.14 across the towns.

4.3 Regression Analysis

4.3.1 Estimation Results of the Models by towns

Results of the fitted savings models by towns are as presented on table 4.8. Table 4.8 Estimation results by town

	Nairobi	Mombasa	Town Kisumu	Nakuru	Thika	Eldoret
Variable						
C(constant)	$\begin{array}{r} 172.05 \\ (1.30) \\ \hline \end{array}$	$\begin{gathered} 108.15 \\ (1.71) \star \\ \hline \end{gathered}$	$\begin{aligned} & 44.67 \\ & (1.10) \\ & \hline \end{aligned}$	$\begin{aligned} & 183.90 \\ & 12.361 \star \\ & \hline \end{aligned}$	$\begin{array}{r} 8.78 \\ (0.18) \\ \hline \end{array}$	$\begin{array}{r} 40.60 \\ (\quad 1.17) \\ \hline \end{array}$
Y	$\begin{gathered} -0.30 \\ (-3.9) * \\ \hline \end{gathered}$	$\begin{gathered} -0.14 \\ (-4.32) \star \end{gathered}$	$\begin{gathered} 0.01 \\ (1.03) \\ \hline \end{gathered}$	$\begin{gathered} -0.12 \\ (-4.05) \star \\ \hline \end{gathered}$	$\begin{gathered} 0.08 \\ (2.43) \star \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.12) \\ \hline \end{gathered}$
Y2	$\begin{aligned} & 2.7 \mathrm{D}-05 \\ & (22.0)^{*} \end{aligned}$	$\begin{aligned} & 2.2 D-05 \\ & (5.25) * \end{aligned}$	$\begin{gathered} -5.6 D-05 \\ (-1.10) \end{gathered}$	$\begin{gathered} 8 D-06 \\ (4.66)^{*} \end{gathered}$	$\begin{aligned} & 1.6 D-5 \\ & (4.9) * \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{D}-0 \\ & (0.75) \end{aligned}$
INCCON	$\begin{aligned} & 102.3 \\ & (2.23) \star \end{aligned}$	$\begin{aligned} & 78.4 \\ & (2.22) \star \end{aligned}$	$\begin{gathered} -9.47 \\ (-0.61) \\ \hline \end{gathered}$	$\begin{array}{r} 4.29 \\ (0.14) \\ \hline \end{array}$	$\begin{aligned} & -21.56 \\ & (-0.65) \\ & \hline \end{aligned}$	$\begin{gathered} -0.67 \\ (-0.05) \end{gathered}$
HHS	$\begin{aligned} & -41.11 \\ & (-2.91) * \end{aligned}$	$\begin{aligned} & -17.57 \\ & (-1.46) \\ & \hline \end{aligned}$	$\begin{aligned} & -5.59 \\ & (0.92) \\ & \hline \end{aligned}$	$\begin{array}{r} -8.66 \\ (-0.95) \\ \hline \end{array}$	$\begin{array}{r} -4.86 \\ (-0.73) \\ \hline \end{array}$	$\begin{gathered} -0.89 \\ (-0.30) \\ \hline \end{gathered}$
EDUC	$\begin{gathered} -4.35 \\ 1-0.331 \\ \hline \end{gathered}$	$\begin{array}{r} -7.74 \\ (-0.95) \\ \hline \end{array}$	$\begin{array}{r} 3.45 \\ (0.82) \\ \hline \end{array}$	$\begin{gathered} -17.14 \\ (-2.11) \\ \hline \end{gathered}$	$\begin{gathered} 9.47 \\ (2.35) * \\ \hline \end{gathered}$	$\begin{gathered} -1.62 \\ (-0.44) \\ \hline \end{gathered}$
EDY	$\begin{gathered} 0.019 \\ (2.98) * \end{gathered}$	$\begin{array}{r} 0.005 \\ (1.62) \\ \hline \end{array}$	$\begin{aligned} & 0.0003 \\ & 10.291 \\ & \hline \end{aligned}$	$\begin{gathered} 0.013 \\ (4.32) * \end{gathered}$	$\begin{gathered} -0.013 \\ (-5.56) \star \end{gathered}$	$\begin{array}{r} 0.003 \\ (1.05) \\ \hline \end{array}$
R2	93.9	45. 5	10.9	91.1	82.7	27.0
E-Stat	141.600	17.200	4. 500	50.300	16.600	01340
E 0.05	2.100	2.180	2.250	2.250	2. 250	2.420
T 0.05	1.645	1.658	1.671	1.671	1.671	1.697

* significant at 5\% level

The regressions were carried out using the Micro-TSP 4.1c
Programme and OLS estimation technique. The models include all the variable presented in chapter 3. These are: Income (Y Y ${ }^{2}$),

Income contributors (INCCON), Household size (HHS), Education of the head of household (EDUC), and Education -income interaction (EDY). The equations estimated include other statistical results. These are the F-statistic (F) a measure of significance of the fitted model, R^{2} the coefficient of multiple determination and the t-statistic given in parentheses for every coefficient as a measure of the significance of individual explanatory variable. For the results the assumptions of OLS are assumed to hold in the present study thus no econometric problems will be looked at.

4.3.2 Interpretation of the Results

The F-statistic has a high value for all fitted equations and is significant at 5% level except for Kisumu and Eldoret town. It takes a value of $545,22.1,1.4,102.7,29.9$ and 1.94 in Nairobi, Mombasa, Kisumu, Nakuru, Thika and Eldoret respectively. This suggests that there is significant relationship between the dependent and independent variables in all towns except for Kisumu \& Eldoret. It implies that the explanatory variables do actually have significant influence on financial savings.
R^{2} has a high value again in all the towns. This suggests that the explanatory variable explain 93.1%, 45.5%, 10.9%, 91.1%, 82.7% and 27% of the variations in saving in Nairobi, Mombasa, Kisumu, Nakuru Thika and Eldoret respectively.

Using the t-statistic to test for the significance of individual independent variable at 0.05 level of significance, the
following results were obtained. In Nairobi 5 out of 7, Mombasa 3 out of 7 , Nakuru 5 out of 7 and Thika 4 out of 7 variables are significant including the constant term. In Eldoret and Kisumu all variables are insignificant.

Income is negative and significant in Nairobi and Mombasa - two major towns in Kenya. It indicates that as individuals income increases, financial savings decline. With a positive and significant Y^{2}, it indicates that the amount of savings deposits an individual keeps in the banking system decreases at a decreasing rate as income increases. This suggests that at higher income levels individuals prefer to increase their physical assets than financial assets. Nakuru also shows the same relationships. However, in Thika $Y \& Y^{2}$ are positive and significant implying that at higher income levels savings deposits are much higher. The difference in town results may be explained by the availability of other forms of assets, or, differences in returns from different assets.

MPS and APS vary across the towns. MPS ranges between -0.090 and 0.016 in Nairobi and Thika respectively. On the other hand, APS ranges between 0.5% and 13.9% in again in Thika and Nairobi respectively. For Nairobi and Mombasa MPS is negative and APS positive. The results suggests that with increasing income by one unit there will be an increase in savings but the incremental savings decline. This implies that there is a diminishing MPS for savings deposits with an increase in income. On the other hand, the results suggests that MPS for nonfinancial savings is positive and therefore greater than for
financial savings. For Nakuru and Thika both APS and MPS are positive suggesting that there are positive incremental savings deposits with an increase in income per month.

Table 4.9 MPS and APS by towns.

Town	MPS*	APS**
Nairobi	-0.090	0.139
Mombasa	-0.065	0.050
Nakuru	0.008	0.069
Thika	0.016	0.005

Source: Calculated from the Modified Sample
NB Only those towns whose equations were well fitted are included.
*- Calculated by taking the first derivatives $d S / d Y$ of the fitted savings function, with values at the mean (See APPENDIX I).
**- Calculated by the ratio of total savings to total income.

Income Contributors: There are differences in the relationship between this variable and savings across the towns. It is positive and significant in Nairobi and Mombasa, positive and insignificant in Nakuru and negative and insignificant in Thika. This suggests that the number of income contributors plays vital role in explaining variations in savings for urban households for the two major towns, while it plays a no role for the rest of the towns.

Household size: This variable is negative in all towns implying that the larger the household size the lower the savings level. However, it is only significant in Nairobi, in all other towns it is insignificant. The negative sign indicates that with an extra member in the household there is an increase in family expenditures such that very little income is left for saving
purposes. This reduces the amount of income put into savings in banking system.

Education of the household head: In Nairobi, education variable EDUC is negative and insignificant while the interaction variable is positive and significant. The former indicates that education does not play a vital role in explaining variations in saving. However, the latter indicates that as income increases education become an important explanatory variable in explaining variations in average monthly savings deposits for individuals. Nakuru has similar results as Nairobi pertaining to this variable. In Mombasa however, education play no vital role in explaining variations in savings. Different relationship is observed in Thika where education variable EDUC is positive and significant and EDY negative and significant. The former indicates that as the number of years in school increase, savings increase. But, the latter indicate that as income increases education exerts lesser and lesser impact on savings deposits. The results therefore give different relationships across the towns.

```
4.3.3 Test of equality between coefficients of models
fitted for the urban centers.
One of the objectives of the study is to test whether there is any difference between the regressions fitted for the towns. This implies testing whether saving function for urban household does vary across the urban centers in Kenya.
```

The APS and MPS have shown to vary across the towns. There is also differences in explanatory power of the dependent variables from one town to another as can be observed from the fitted equations. However, level of significance of the explanatory variables does not vary a lot across the towns.

The question to be answered in this section is; should we have different saving models for the urban centers or should we just fit one for urban areas since the difference between the urban centers saving model are insignificant? To answer the question Chow test is carried out between the urban centers models. Chow test is a test of the equality between coefficients obtained from different samples. The idea is to see whether the estimated relationship differ significantly in which case we conclude that the relationship is changing from one urban center to another. To achieve this then the following steps were followed:

1. We pooled together two towns' samples at a time including only those equations with the same number of explanatory variables and significantly fitted. From this we computed 6 pairs of pooled functions and estimated their unexplained variations i.e. $\sum e^{2} p$.
2. Regression analyses were performed on each sample in the pair separately and unexplained variations estimated. $\sum e^{2} 1$ $\& \sum e^{2} 2$
3. For each pair, unexplained variation are added together forming a total unexplianed variations. $\sum \mathrm{e}^{2} 1+\sum \mathrm{e}^{2} 2$
4. Residual variances in step 3 are subtracted from those in step $1 \sum e^{2} p-\left(\sum e^{2} 1+\sum e^{2} 2\right)$
5. F^{*} ratio for each pair of towns is then calculated as follows:
$F^{*}=\left[\sum e^{2} p-\left(\sum e^{2} 1+\sum e^{2} 2\right)\right] / k$

$$
\left(\sum e^{2}{ }_{1}+\sum e^{2} 2\right) / n_{1}+n_{2}-2 k
$$

The results are as presented in table 4.10 .
In order to come to a conclusion, the F^{*} in step 5 was compared to $F_{0.05}$ critical ratio such that if $F_{0.05}<F^{*}$ we accept that the two functions differ significantly.

Table 4.10 F -statistics calculated between the towns.

	NRB	MBS	NKR
NRB	313	2.5	237
MBS		2.0	1.6
NKR			5.9

* $F_{0.05}=2.01$

From table 4.10 only two pairs showed insignificant difference, that is, Mombasa \& Nakuru and Mombasa \& Thika. This indicates that savings function is stable between these towns. For the rest there is significant difference among the pairs implying that savings function is not stable across these towns. Thus we cannot generalize the nature of relationship between the equations fitted for the urban centre.

4.3.4 Regression Analysis for the total urban saving

 medel.From the previous section we saw that the savings model for urban areas is stable across majority of the town pairs. This
suggests that for policy analysis, policies can be generalized for total urban areas.

In this section, results of the model fitted for all urban centers(see table 4.11) are analyzed. The aim of fitting the equation is to include the variable that was not taken care of by the single town models. To capture this variable the ginicoefficient for every urban center was calculated. Also the model is fitted to form a base for policy analysis for the urban household savings mobilization, having seen that there is insignificant difference across the towns models.

Table 4.11 Regression results for the total urban model

Variable	Coefficient	t-stat
C(constant)	507.40	1.94
Y	-0.07	-1.69
Y2	$1.56 \mathrm{D}-05$	11.39
INCCON	110.29	1.63
HHS	-25.30	-1.87
EDUC	7.08	0.64
GINI	-1167.20	-2.34

$R^{2}=51.1$
E-stat $=91.1$
$t_{0.05}=1.645$

The fitted total urban savings model indicates that there is a significant relationship between the dependent variable and independent variable, with an $F-s t a t i s t i c$ of 91 and is significant at the 5 号 level of significance. Also the results suggests that the explanatory variable explains more than a half of the variations in savings with R^{2} equal to 51%.

With a negative and significant Y the results indicate that financial savings decline with an increase in income. However this decline is less pronounced at higher levels of income. Therefore the results suggests that financial saving is a decreasing non - linear function of income. Increasing monthly income means reducing the average monthly savings deposits. MPS is negative and APS positive taking the following values respectively -0.01 and 0.061 . This suggests that although there are positive financial savings there is a decline in incremental savings with an increase in income.

The coefficient of income contributors is positive and significant at 5% level of significance. This implies that the number of income contributors in a household does play a vital role in explaining the variations in financial savings. The results however differ from the expectations.

Household size takes a negative sign and is significant. This indicates that as the family enlarges, expenditures increase leaving very little income for saving purposes.

Education variable is positive and insignificant. The results indicate that as the number of years in school increases there is an increase in financial savings but the influence is insignificant. This suggests that education plays no vital role in explaining variation in urban household financial savings.

The Gini coefficient variable takes unexpected negative sign and is significant at 5% level. This indicates that as the value of gini coefficient increases, the amount of financial
savings decline. A high value of gini coefficient is an indication of more inequality. The sign of the results in this study suggests that as we move to more equitable distribution of income, financial savings increase.

CHAPTER 5

CONCLUSIONS AND POLICY IMPLICATIONS.

5.1 CONCIUSIONS

The results of the study were made possible by UHBS $1982 / 83$ data collected by CBS. The data was intended to provides information on expenditure and income, only expenditure information for 34 urban centers covering 2040 households is available. As explained in chapter 3 , only a sub-sample of the towns and households was taken for the present study. Again, only few variables were included in the study due to none availability of some crucial variables. Also income variable was not available as it had been scrapped off with some errors having been detected on income data. However, despite the data limitations, some important conclusions were arrived at.

The main objective of the study was to look at the various determinants of saving behavior of urban households, and to see whether they affect savings significantly. From the equations fitted for urban areas, income variable is negative and significant in all towns models except for Thika and Kisumu. In Thika it is positive and significant. Thus, from the above it is not possible to make a generalization as to the relationship between income and financial savings from the town models. However, we can generalize from the total urban model and say that financial saving is a decreasing non-linear function of income. At higher income levels financial savings decrease at a decreasing rate. Marginal propensity to save ranges between 0.090 to 0.016 in Nairobi and Thika. However, it is negative ($0.01)$ in total urban model. From this then we can conclude that,
since in theory MPS for total saving is less than one, increasing income by one unit reduces the incremental financial savings while incremental non-financial savings increase by a higher margin. Thus for the urban huoseholds they prefer keeping their savings in physical form than in financial form.

Although very little has been said about the income distribution in the urban areas, this study has shown that there is a lot of inequality in urban areas. The gini-coefficient ranges between 0.42 to 0.63 among the towns considered. However, from the regression it is clear that an effort to reduce the inequalities in urban areas will significantly increase financial savings. Therefore distribution of income in urban areas must be considered in mobilizing personal savings.

In individual town regressions, the income earners variable take different signs across the towns and it is significant in only two regressions. However, the total urban area model show that there is a positive and insignificant relationship between income contributors and financial saving. Therefore we conclude the number of income contributors in urban households exerts insignificant influence on financial savings.

Household size is negative in all the towns and only significant in Nairobi. Considering total urban model this variable takes a negative sign and is significant, meaning that reduction of urban household sizes will exert considerable influence on financial savings.

Economist have hypothesized that the level of education of head of household influences aggregate saving behavior. However, education does not enter the financial savings models significantly. It takes a negative sign in total urban model but it is insignificant. We can therefore say that education of household head is insignificant in urban savings model.

5.2 POIICY IMPLICATIONS

Since independence Kenya's motto has been to ensure that all Kenyans are educated. There has been therefore a national policy to raise the literacy rate through free primary education, adult education and more admission to university colleges. However, such a policy will not influence the savings behavior of individuals. The effect however may be indirect through raising individual income.

The national policy of controlling population through limiting the number of children that a family has, will have significant effect on financial savings. Reducing family size will ease the burden on household heads and thus increase financial savings.

Again Kenya since independence has emphasized on equity in distribution of the national cake. Greater emphasis has been on rural - urban inequality and very little on inequality in urban centers. From the results of this study it is true that, income distribution play a vital role in determining variations in savings. The government should as well start thinking about the inequality among the urbanites. Such a policy will help a lot in mobilization of urban household savings.

Again in mobilization of urban savings it is necessary that the differences among the centers be taken into consideration.

APPENDIX_I

MEAN VALDES OF THE VARIABLES BY TOKNS

Town	s NRB	MBS	KSM	NKR	TK	ELD
variable						
Y	1959	2024	2027	2106	1326	1234
Y1 1	$1.150 \mathrm{D}+7$	$7.88 \mathrm{D}+6$	$2.00 \mathrm{D}+7$	1.22D+6	4.70D+6	$2.6 \mathrm{D}+6$
INCCON	1.840	1.670	2.220	1.640	1.300	1.260
HHS	4.080	3.150	5.090	3.560	2.950	3.180
EDUC	8.500	6.890	5.780	8.410	6.340	7.430
EDY	21282	17155	19391	21729	9877	10145
SAVINGS	273.880	101.570	30.320	144.580	71.950	26.300

Source: Modified Sample.
APPENDIX II
DATA
The following are the variables that were extracted
YARIABLE NAME WIDTH

1. IDENTIFICATION 6
2. STRATA 2
3. TOTAL INCOME 2
4. NR. OF INCOME CONTR 2
5. OCCUPATION OF HEAD 2
6. EDUCATION OF HEAD 2
7. HH SIZE 2
8. SAVINGS DEPOSIT 5
9. IMPUTED RENT 5
10. OTHER LOANS 5
11. TRANFERS OUT 5
12. EDUCATION FEE 4
13. FOOD 5
RECORD LENGTH 49
RECORDS PASSED 1277
STRATA
1 NAIROBI
2 MOMBASA
3 THIKA4 NAKURU
5 ELDORET
6 KISUMU

6500041007690109120100000000000002500000008700250 650004100844080000000165000000000000620 65001410081102051204000000013700000002500494 65002410171202031002000000009700000 65004410737503041606002250110001329 00566 650054100013021008 060701492

6500641010900101120100050000000014700000 00013 6500741004220201070300000000000000000000 00320 65008410279900250008320000000000041500964 65100410004700040 65101410009701070100042 65102410041801050200295 651044100476020402000000213 6510541009650204041100000010000679 6510741006140108100100000005000090 6510841025990201120900000000000024300005011201015 6520041004180100020000000210000000000000183 65201410125701000700000000900000000000003500815 652024100668021507060000000090000000000000472 652034100695020800020000000497 65204410270301000500000000920000000000006200418 652054100855020407060000000050000000000000660 652064100353011205 . 00000 00135 652074100666011200010000000515
6520841004110108030500000000150000000289
6520941001930204000300000000250000000151
65210410059002120006
00000001000493
65211410070502020705
005000426
65212410057802080702001750000000000
005000291
6521341013650216040400112000000000000000035300485
652144100681040908000000006200000012500370
6521541008740106010000000000000000000000874
653014101234021412030001700207000000000000504
653024102012011205010000000000000060000000361 6530341001850113000100000000000000000000002000054 6530441003640103010000000344 65305410358502000200000019870000000000064200649 653064100414010805010000000158 6530741015190712040900000022500863 653084100621030405060015000299 65310410003000030 654004100899021706020000000000000000000700281 6540141010080208080400000000000000000000006700401 654024100437010805020000000000000000000000145 6540341006560112000100000000000000000000000000289 65404410314604022100000003000000000000027201972 65405410017202050300172 654064101013020412040000000000000000000000524 654074100236010804010000000000000000000000084 65408410002101070100021
6540941009570112070200012000000011200020002000412
6541041006840112000200000007500283
6550041004840400338
65501410146901070401030000728
655024100457010407030000000000000000000000367
655034100705011703040000000490
655044100640010404080000000295
65505410368801000100237

6661641036650202100500125000000017600000054001014 66700410011002120700110 6670141032880303150400000016501002 6670241045480306120800000000000000000000065801296 6670341052960203160203125000000000000000012500485 667054100524 00524
667064101499012500306

66707411047802031307005000000000000021200920
667084100162 00162
6670941067440310140700750000000000000000028700844
66711410501002160201796
66800410051508
6680141004380108120100274
668024100437010807010000000000000520000000318 6680341006710104050000000000000250000000555 66804410015801070100158 66805410139303090600000000000010000069036700785 668064100456011707050000000000000430000000279 6680741010850211060900000000000023900000013000502 67000410300704080600052000000011000000016200464 67001410013903120600139 670024101477030114040050000300000000000000607 670044100477120200000001500000000000004000149 6700541007110301120500000000000017500000008700249 670064100916020612020000500268 670074100311010212010006200000000000000000090 6710041010170800197012500243 6710141074520210121000000000000014001200030300571 671024101718010412030019000000000000004000487 67103410011702090400117 671044101005030104040000000634 67105410086001040401019000525 6710641025050118040100025011200754 6710741009030121040100000000000000000000008700261 671084100047 00047
6710941011490102080300011015000314
6711041034700212030000000000000680200000754 671124101493010310010001000291 6711341035690304120800000000000018001908008000450 672004101222032607040000000801 $67202410006401 \quad 120100064$ 00456
67203410059502060307
67205410128602061002
672064100322020003000000007500000
00000003000609
67207410173101180610000000000000000 005000112

67208410068201241202 016201021 00208
67300410181203151208 $00000 \quad 01442$
67301410137503160003
67302410077902241003 673034100146010801 67305410082902220004 67306410050201040004 0000000649 0000000441 00087 00000017500388 010000362 6730741025800128050100073000000000000000082501315 673084100799013205040000000566 6740041045550115080100000000000006200000076800517 6740141011040207080800025000000008600000017500750 6740241013810114080200035000000017500000029700445 6740341023520107080700015000000003000000046500391

679104100823020607070000000000000000000000710 68000410105301020300010000250007500000005000589 680014100595021107020000000000000000000000269
68002410008100081
68003410020500205

680044100627010400010001000000000820000000413 6800541008770108080100000001500251 6800641016400212051100005000000001000000016200760 6800741016920122100100060000000016300010005200559 681004100502021003005000396 68101410007700077 68102410058801040100266 6810341011670218030900000000000000000000005100663 6810441019750204090700050000000016000000031700560 681054100339010804010004000000000000000000175 6810741006950208080200016015000419 68200410002500025 682014100524020603020000000439
6820241004070306070300005000500005400000002500250 6820341008420106080200000000000000000000025500252 682044101469010611030000700112002390000000254 6820541008610800010000000017500000006500289 682064101629020507080000000000000000000000628 6830041003560102120100275 683014100796011410010000000000000000001000351 68302410286602120601871 683034101097030512040000000000001450000000601 683044101102030712040000000000000000002000692 683054100011

00011
$683064110378050513000000037500000 \quad 061002185$ 6830741017440208070400000005000741 683084100538020212040000000428 68309410185001061201000000000000000026700585 68310410043101080901000700154 68312410060501100200477 68313410033501120100335 00047 6840041012850316000300000035000500 6840241010990104040000000821 684044100133010707020000000127 684054100857020412040000000713 684074101304020307060000000589 684084100526010612010000000000000000000000165 68411410235202041204000000022500724 685004102973040116070175000000000000000000362 6850141008300210000600000000000000000000003000530 6850241064150302160400050000000091200000022502123 6850441043820301140601465000000005000005009000818 685064100790010000000000001250000000207 685074100313021407020000000000000150005000147 6850841039320206140600750000000033700000062500703 6850941009600123000400052000000012800000022500312 685104100508020410040017500000000000000000183 6851141008560213070300455 6851241008780208120300000000000000000113012500235 686004100418130000000063 68601410004002160400040 686024100298010803010000000168

693114100393010806010000000000000000000000192
693124100289020410020000000110
6931341020570108120100000018800192
6931441015880103120100000005000194
6931541028780208100400000003700346
693174100349021803020000000000000000000000216
693194100377090000000333
69400410068302000800000001200494
694014100588140008700000000000000000341
6940241006410207041000000000000000000000007500381 69403410102802040700000000300001700000018700560 6940441004200221070300000000000000000000004500255 69405410007901060100079 6940641007680600000000000002500000005000420 694074100421022007030000000000000000000000285 6940841008780213070600017000570000000200009500349 6940941006850107070400000003000527 694104100465011407020000500000000000000000298 6950041007340224100400000000900462 695014100432020108030000000303 695024100044021202 69503410050102010703 69504410018901010701 69505410096101321001 69506410118602101005 69507410039501080701 69508410049308
695094100560020704
696004100762010901
69601410499902120703
69602410062603120004
69603410015401060401
69604410077201180302
696054100752020905
69606410044518
69607410042201060701
69608410070902160003
696094100953
697004100659020703 69701410238902080703
69702410048202150502
$00000 \quad 00044$
0008500058
00125008700524
00050007500617
0018700154
0000000337 00416 00506 00329
$00000 \quad 00536$ 00119
0000000391 00513
0000000307
$00000 \quad 00423$ 00236
0000000345 00256

6970341013680218070200000000000000000106017500484
697044101123021407040000000479
6970541005030211100300040002500235
697064101506020811020000000154
69707410006401070200064
6970841001530107070200000000000000000128
697094100511021500030005000283
697104100952011608010000000000000000000000343
697114103631012807040000000000001450013700743
697124100797021505040000000000000500000000335
697134100194020707020000000108
697144100047
00047
6971541012190207070300000000000002000039001400138 6971641010450207100100000000000019500026004500304 697174101120020707030022500000000500000000319 697184100825010015000000000200000500183 6971941007660105010000000000000000000000438

698014100597021710060000000000000000000000413 698024100421011307010000000334 698034100643021107020000000000000050016200310 6980441007130113080200092002600255 69805410098002080408000000000000025018000662 698064101316021010040010000000000250000000569 6980741018740119050200015000000008200050093200296 698084100687020414050000000342 6980941006110332080500000000000000000000006200292 698104100391011510010000000000000000001000264 6981141005050114100400000000000000000000003100262 698124100627021807030000000000000100001200327 698134100638011108010000000000000950025200218 6981441003880108060100000000000000000000017500127 69815410016601000100000000000000000124 6981641001850104100100000000000000000122 6981741000970207070000000047 699004100683021804040000000000000000000000394 69901410026401080200164 699024101504021907050000000000000000000000282 6990341007950316110600000000000000000000002000438 699044101608010306010075000000000750000000292 6990541003410200070000000000000000000000130 699064100431020207060012500000000000000000142 699074100352010107010000000000000000000000229 699084100805270002000000000000000000412 699094100771022110020002500000000170000000307 699104100653032707030000000000000000000000416 6991141019760101100200000000000000000000007500029 700004104751030216070000000000001160200001389 70001410448903160500050000000004502000017500563 70002410381103160700000000000000000000101000972 70003410852603120700075000000088403000001001162 70004410146004121000000000000000000000004100783 7000541016050116020000000659 7000641017840302140500000018700666 700074102178021407000000000000000009500970 7000841052430204120500000000000018202000030001045 7000941020650304120600000000000000000000003700816 7010041025520203070400000000000000000977010000459 7010141006510309120800017003000336 7010241012330213090400000000000013700040007200493 70104410047002070500181 70105410016702120800019 701064103712020514020000000552 7010741003240302120700038
70108410048401000600000000520000000282
701094101315010007000000052500000001500407
7011041016990206100600050000000012100000005200480
701114100397010400020005000000000000002200105
70112410135202140700000004600650
70113410073100139
701144102526031314050000500000000000000000297
702004100968012107010000000000000000000000529
702014102079021010050000000473
70202410071702111106
702034101605020004
702044100553020810060000000252

702054100211021501030000000130
70206410033101080701
0000000136
70207410101102200702
00000000100682
70208410016001071201
0000000087
70209410081201040701
00527
702104100426010612030000500000000120012500158
702114100296020612030000000255
702124100164020903020000000151
7021341005470900000000000000000000013700291
702144101401020807050000000000000000000000482
702154100478010412030000000351
7021641003420100030000000030000000000000253
7021741007780214040000000000000000000000322
702184100530010907010000000313
7021941003430108120100000000000000000000015000115
7030141012280214120300000000000000000000006000670
70303410014902040703
00088
70304410141001070400000012500429
703054100515012107010000000316
70306410140002070500000000000000000000000500904
703074100157010607010000000062

70308410097602140503
70309410147402111204
70400410089802140603
704014100116010701
70402410103602170707
70403410026801121001
70404410030001150702
70405410071202021110
70406410027101100401
70407410033125
705004100150030003
70501410021503011003
705024100027011001
70504410030702031202
705054100066031203
00000007500481 01008
0000000653 00116 00413
0000000187
0000000201 00589
0000000210
00000005600141 00150
0000000138 00027 00271 00066
$00000 \quad 00361$ 00238 00122 00071
00000015200719 00208
00000004500515
70702410098002081005

7070341010340106120400000000000000000020010500250 707054101043011207020002500000000000000000498 70706410042802120300428 708004101315020912040012500000000000002000482 7080141011200104080200000000000000000020025000502 70802410036902120500261 708034100864160002000530 7080441014510221001000000000000015000017032000651 708064101334020607040000000000000690010000528 708074101771011907010017500000000000002000681 709004100404011007020000000199 7090141044570206120300050000000016500000077100921 7090241015110209140700000000000001200000033700641 7090441015710206120900000000000000000060006000564

71008420108902221203 71009420098702201203

007500698
00000001200695
715034200989011806030000000000000000000000522
715044202581011606010012500000000000000001576
7150542026520216120900000002000000000000012501866
715064200817012604010000000000000000000000412
7150742020110232120301486
715084200987011007010000000000000000000000818
715094200933031612040000000690
7151042007630107140100000021
7151142003530208000800000000370000000221
7151242029840509060000000631000000000000694
715134201642020412040005000000000250000001002
7151442024140208050501510
715154202385020712030000000577
715164200496030208080000000000
715174203287030612050012500000000000000001640
7151942008330108030000000000000000000000468
716004200938011907010000000150000000000000468
716014200356011004030000000000000000000000173
716024200849021605020000000075000000000000499
716034200801032707030000000075001000000000328
716044200429010807020000000075000000000000239
7160542005660108000100000001500000000259
7160642008180112060100075001500000000000001100355
716074201783010610050005000150001750000000405
716084200755012108010012500075000620000000287
716094201036021707050000000075000500000000421
716114201097030304050002500150001500000000504
716124200816011800020000000075000250000000562
7161342007810112050200000000750000000000002500521
716144201033021804050000000150000870000000272
716154200195010707010000000098
717004206346031610080037500000000000000002515
7170142070910208120500000000000000000000028702995
71702420795502090701500000000000001762
$71703421407803140400375000000000000000 \quad 02856$
717044205449020412100000000000000000000002507
717054200881011605010000000050000000000000580
7170642069240315120500000000000000000000026501527
7180042008770221000300000030200349
7180142011180105120500000003700459
718024201278011407010000000000000000000000994
7180342038350212070200050000000000000020003100694
718044200099010404030000000033
7180542020110216120500000005020000000020001801037
7180642008160108040300000000000000000000002500518
718074202016011400010000000062000000000001295
7180842005140210000100000000329
7180942006620800000000200308
$718104200520 \quad 11 \quad 000000011700000 \quad 003700247$
7181142004880114040100000007500255
718124200677020005000000011200000 00387
7181342008030109120100000 00321
7181442008680210100200000000000000000000 00464
71815420237502240302000000021500000 01727
7190042021380309160800250000000000000000004300643
7190142026430310071300300001820000000000003001281
7190342021190220120200000000210000000000 01228
71904420386602120300000005201234
719054200031 00031719064200088719074200679021812047190842010230221120471909420023901100200088
719074200679021812040000000371
00000011200535
00085
719104200489020707030000000232
71911420123202080608000000000000000012500568
719124201589020712050000000696
719134202139020002500182006730000000620
7191442004110108120100220
719154200423020000000000000000000000254
71916420032001070200320
7191742032650301080900000000000000003028
71918420057602180002007500226
720004202345020214020005000000000000000000744
7200142064870202160300000030600962
7200242003080108040100000000000007500100
720034200432011607010000000000000100000000217
7200442024230102150100005016200829
720054200597010804030037500000000000000000149
7200642011260800000000000000000000031700698
72007421228402041504037500000000795022501983
72008420082002160208 00701
7200942005740109040100000000000000000000021200232
720104201816020612030002500000000000000000803
720114200476011207010000000244
7201242030230116000102769
720134200808011600010000000000000070000000520
72014420684802021604012000000000000096902266
7201542003150104120100115
72016420015002140300150
721004203977051000060162500000000000000001080
7210142023610107100000001715
7210242036820400150000000017700020010000514
7210342029340112120100025000000020000211004000300
721044200490010412010015000000000000001200203
721054200267040000000162
7210642027120106080200300000000000000000026500569
7210742066510504121200441000000069202050001001348
7210842010120201120300040000000000000040011200294
7210942044350102120100108000000000000000018100564
7211042069210106120300000000000012500000027000877
7211142034160200375000000000001111
7211242042340303120700625000000019200020020000563
722004201067011205010000000000000000000000230
722014200366011600030000000000000060000000218
722024200796010807010000000030000000000000522
7220342002230108070100153
722044200397011707010000000000000150000000218
722054200734011703010011200000000000000000333

7290142044580206050500000000000003700000005301737 729024201038010807010000000000000000000000420
72903420090802321204
7290442003460124080100000000000000000000 00449

7290542010830221020400000000000007200000 00194

7290642010250108120100000000000000000000 00326

7290842004960218120300000000000000300000 00655 00281 729094200669022106020000000000000000000000348 7291042018700210140600237000000017700000012500586 7291142015110235070600000000000000000000000500355 730004201151011002000000000000000002500777 7300142057950232000600030000000000000000016001559 7300242068250600300002750000000000250501385 7300342035070118110300000000000000000000008700461 7300442008220221070200000000000000500000002500255 7300542015050114080200012000000005000000005000463 730064201129012710010000000000000120000000546 730074202949021605020000000000000320000000393 730084200538012800010000000000000000000000266 7300942007010118070100000000000000000000004800398 730104202774023601050000000000001270000000822 730114205505012112010000000000000350000000330 $731004200817 \quad 00000000000000000000000500523$ 7310142005830121060100000002500362 731024200354010600010000000248 7310342057910112040100075000000000000000044500914 731044200585010907010000000470 7310542025450121070100075000000000000000001600361 731064200555030907030000000395 73108420055201000100000000270000000333 731094200688012200010000000045000000000000465 732004201569023208020000000000000000001300278 7320142049040122160101715000000000000000044000549 7320242011750113000100425000000000000000003000293 732034200423010807010005000062000000000000127
732044200681011604020000000277000000000000296
7320542013380112000100000000320000000000071000411
732064200600022607050000000000000000000000432
7320742005390227000300000000300000000000010000275
7320842012290327050300225010200641
7320942007030000000382
73210420042102020300292
7321142011240232040600005013500647
7321242005000204070500000000350000000276
7321342004130109010000000244
7321442005760116040100000000120000000000002500259
73215420101002000200000005450000000345
733004202467011904010019000000002530000000334
733014200707020908080000000000000000000000461
7330242013110218080500025000000000000000001200434
733034201427011810020000000000000000000000345
733084201041012702010000000000000000000000291
733094201873021807070011500000000350000000848
7331042008010200030000000000000000000000335
733114200547022702020000000000000000000000363
733124200988011800020020500000001010000000285
746004300665011209010001500000000000000000441
746011300728020800030001000000000000000000468

74908530075401150701

00550
749091300341011406010000000000000000000000191
749098300748020702010000542
7491053007590109080100671
7491113006470208020000000472
7491183003670104070100284
7560044012680134080100000000000000000125
7560114001330118070100000000000000000060
7560184009750128070100025000000000000132
756025401606022412030007000000000000000000253
75603140042102040300222
7560384045310208040200025000000000000345
756045400716021507040002500000000000000000358
7560514009530107070600150000000000000000000700291
7560584008540221070700327
7560654007530114010010000000000000000000236
7560714041560103080100000000000000000000047500567
75607840029701220506
00168
756098401689011001009500000000000005000231
756105402780010400020000000000000000000000087
7561114004480221070400000000000000000207
7561184010000214040400000000000000000512
75613140036501060502007500067
756145400660011208020000000000000000000000310
756158400482012700010000000000000000000000204
756165400596022112020000000000000000000000255
757004401123010816010000000000003140000000213
7570114002490121070100000000000000000000000800115
7570314003800116070100000000370000000000001200002
75703840003601150100036
7570454148740408151003150000000000000010030201604
7570514040820215020125000450000000000000514
757058400342011207010000000025000000000000104
7570654154670208120502125004060182800000080502925
7570714057500302100900000003750087100000002002121
7570784060660104160200750003310125800000014000683
757085400662011607010000000050000000000000351
758004404391031907030000000302
75801140062902070200276
758018400735012510010018700210
7580254010850136040700000017200521
758031400485032710030000000062000000000000241
758038400445013607010000000163
758045400334012710010000000113
75805140049701000400000001100199
7580584005850200040000000222
7580714008050232110600000000000000000363
758078400733010810070000000401
75809140005202070300052
75809840001500015
7590044009540221070500000000000000000499
7590114002510102100100125000000000000074
75901840179301021201005000000000000027500190
759025400663010212060000000247
7590384006260227000700000000000000000336
75904540076302040500150000000000000353
7590514005430211070400000000000000000240
759058400748011807010003700000000000000000362

75906540028202090705
$00000 \quad 00178$
7590714005540117070100000000000000000000000300311
7590784002210109050300125
759085400833010212040000000210
759091400465020808001500289
7590984003850107010000000142
75910540249902041202000720000000000.00255

75911140116802120400065004500000000158
760004400119011201000000004
760018400637012207010000000000000000000000187
$76002540034502000000000000000 \quad 006000136$
7600314011780206120200175000000000000269
76003840224002061203000250000000000010700534
76004540133901021601000460
7600584020020104120100050000000000000523
7600654019060104120400000000000000000456
760071401668010308010005000000000000000000406
76007840160601041202000000000000000001200193
7600854042180206120800000000000000000619
76009140006701060100067
7600984001860102120100029
7601114002060109000200112
76100440045001070100150000000000000161
7610114008450100010000000000000000000000329
7610184018440104070700075000000011300000012500884
7610384019890106160400025000000000000000028500471
7610454035620106120100150000000000000013006200311
7610514020770206140300285000000000000000016200668
76107140000403040700004
761078401691010304030017500000000000000000509
7610854007250127050300000000000000000000000700326
762004401118021807050002500000000000000000771
7620114007310212030900000000000000000000019000325
762018400625011008030000000000000000000000404
7620254008480207040000000514
762031400058010900080000000018
7620384005000106080200000003000305
7620454013970221070700025000000000000000000700744
76205140069602180410001800504
762065400663030605040000000000000000000700409
7620714006660112020600000000000000000000009100310
762078400721010804030002200000000000000000572
762085401181020409000250000000000031200547
7620914006710224000900458
7620984012330415060800000000000000000000012900686
762105400761012007030000000000000000000000266
762111400385011807010000000263
7621184028790220060200000000000000000000017500429
76212540016402081200164
7630044012060108020100084
7630114004300317070400025000000000000258
7630184007182200060000000000000000014100240
76302540009501040100062
763038400601011803040000000063
763045400761012707020004000000000000045000150
7630514018680109070100000000000000000149
7630584024070227070200000000000000000200012300139
763065400711012707020003000000000000030000199

76700450089101101201000120000000000
00339
7670115018320228120400175004620000000000 00517 7670185011190132000200075001620000000000017500434 767025500740012407010000000000000000000000402 7670315003410107010000000189 767038500828011203070003200000000000000000434 767045500544031810030003000000000000000000301 767051500998022403060000000000000000000000466 767058500218011210010007500000000000000000101 767065500188011207010005000000000000000000107 76707150102102040600000000000000000000006200632 767078500350010501000000229 7670855007590100060000000120000000000000473 7670915007510100040000000376 778004600089010002000000084 778011600210011800050000000021000000000000168 7780256001840200020000000003000000000000175 77803160007802000200078 778038600132030900050000000005000000000000124 7780456002130400070000500017000000000000170 7780516035950608031000000000920000000000073200859 7780586002060216000600000000080000000169 7780656001960216000800000000100000200161 778071600346021607050000000011000000000000271 778078601077030703090000000012000000000000210 778085600081010002000000000300000000000057 778091600386030900070000000028000000000000298 77809860028402000300000000030000000267
7790046002410100030000000020000000000000158
7790116006900202101100000000370000000000015000404
779018600688020112070000000020000000000000355
7790256013220308080000000020000000000000852
7790316001360200020000000020000000000000104
77903860102602120500000000100000000000000300683
77904560000701000600007
7790516008000204120000000020000000000000601
77905860022002050300000000060000000159
7790656001200200020000000012000000000000061
779071600081000000000000000000000049
779078600007
7800046003320500070000000020000000000000259
78001160261402090200000000450000000365
78001860164302030500000000750000000000001000898
7800256004440300050000000043000000000000354
7800316003910300030000000070000000000000279
7800386037420207050022500050000000000001156
7800456015470416080900030000300002500225003700811
78005160216001861
78006560147402050500320
7800716005770100010000000032000000000000504
7800786017460304100000000095000000000000701
781004600415011004010000000235
781011600549010202030000000345
78102560017301070100173
781031600480020412020000000279
781038603098012107010000000000000000000001351
781045602068020610100000000636
782018600234021010040000000102

78202560060601100200000000000000000000017500170 7820316008240201050600000000250000000000000200596 782038600014
78204560049601
78205160114302021205 00000005600219 000246
782058600313020711020000000000000000000000192
782065600017020002 00017
782071600096010000000036
782078600265010107020000000155
78208560046401020100209
7820916018940208090500000003700162
78209860000601040100006
7821056006310100070000000339
78211160000400004
78211860037001070400234
783004600188010606010000000148
78301160056303031000000000250000000000000600301
7830186008490104070000000676
78302560028203000300267
78304560050903051000461

783051600637010005000500264
7830586006730407070000000050000000000000475
783065602117010800000020000000000109
7830716007640000000000000000000000230
7830786014031100160000001089
7830856132960218000800000000210000000000010003518
78309160048502270509000000337
783098602077040903080000000020000000000002019
7831056005490900415
78311160073403021208000000005000000011500378
7831186003240218000200218
784004600523011605010005000000000000000000204
7840116006010208040400000000000000000000006200321
78401860120702000900100000870000000000003700736
7840256007140107010010000000000000000000311
7840386005860104040000000000000000000000440
784045600477010904020002500000000000000000326
784051600477020605030000000000000000000000290
7840586011140212030200000000000000000000001100515
$7840656004930206070200000000000000000000 \quad 00320$
7840716004320103100100000009500205
78407860138001070100525000000000000350
7840856005460218070200278
7840916006340208090400000000000000000000015000130
784098600498021002012500264
7841056017560206120900150000000000000000012500549
78411860122501040600000000000000000000023000509
7850046004620318050400000000000000000352
7850186003640200060000000000000000000000295
78502560012501040100125
785031602634050301060000000090000000000000667
78503860049105001000441
78505160024401000200000000370000000188
7850586005040208050300000000150000000403
78507160048102091203
00325
78507860039502020705
00000
00236
00469
785085600667020703
00246
78509860079905001000000000900000000000 00490
785105600076010702 00059
78511160052802040209 00356
7851186010590309000700020000220007200017 00520
7851256007990304090700000000000000000025 00438
785131600153021005 00153
7851386013840312001600025000750000000000005000668
785145600489021005 00366
78515160156202061300025000000003000000 00831
785158600188020704 00102
7851656019140208070300015000000000000000 01243
78517160123102130703 00000017500449
785191600072010406 00072
78519860513102021202 00780
7860046035940302160600000003000000000000010500502
78601860231402020902000000043700000 00439
78603160115002041602 00570
7860386038730210100400000000000000000000008001055
786045601195030006 00873
786051600537040713 00537
7860586049880202160500250006750000000020021501161
786065600125 00125
786071600234041105 00234
786078600194031404 00194
00056
786085600056020703
78609160419903041405000000100000000003701756
786098600254051213 00254
78610560075802011605 00559
7861116081760106120600000003000000000040057501633
786125600737040000000350
7861316310740203160300000003000000000000576201015
787004601023010501 00616
78701160853001090605 002508264
00350
787018600350021006
00000008200393
7870386013510102100700000000620000000000009300601
7870456035070102120600000003120000000000 01147
78705160175901010308 012000813
7870586093140101140500000000620000000000026200881
78706560061102080806 001100380
7870716017660116080300065000620000000000032100661
78707860071501091203000000000000000 010000274
7870856035620102120100075003120000000000014000439
7870916005530102080400000000620000000000010600176
787098600901011308030001500300000000000000390
7871056014750102100300050000000000000000032200596
7871116019990209071000000000000000000000005000559
7871186017880403100900050000000000000000008701054
787125600374021205 00173
78713160069302040906 00000010000372
7871386020690208070500000000000000000000002500591
787145600473010804 00473
78715160199403021208 00000026301003
787158601186020806060005000000000000000000913
787165600051020302 00051
7871716041530208120300000000000000000000003700669
7871786015250205060400000000000000000000005000936
78718560175902031208 00000006200853
78719860276501 00075000000000000000 01314

REEERENCES

Abraham, W., Savings Pattern in Latin America. Economic Development and Cultural_Change Vol 12 July 1964 37791

Betacourt, R., The Normal Income Hypothesis in Chile. Journal of American Statistical Association LXVI June 1971 258-62

Bhalla Surgit, S., Aspects of Savings in Rural India : Studies in Finance Ne. 31 Horld Development Eeonomic Department 1976

Branson W.H., Macro Economic Theory and Policy, $2^{\text {nd }}$ Edition. Harper and Row Publisher 1979

Burrows, J., Kenya: Into the Second Decade, The Hopkins University Press 1975.

Choudhury, U. D., Income, Consumption and Saving in Urban and Rural India. Beview of Income and Wealth XIV March 1968 37-56.

Deaton, A., Savings in Developing Countries: Theory and Review. World Bank Economic Review. Proceedings of the Horld Bank Annual Conference of Development .1989

Duesenbery, J., Income, Saying and the Theory of Consumex behavior. Cambridge, Mass: Harvard University Press 1949.

Donald Snyder, Econometric Studies of Household Savings Behavior in Developing countries. A survey. Journal of Development Studies. Vol, X Jan 1974, 139-167

Eizenga W. Demographic Factors and Savings Northholland Publishing Co, Amsterdam, 1961

Friedman Milton, A Theory of the consumption function Princeton University Press, 1957

Gupta, K., Dependency Rates and Savings Rate. Comment. American Economic Review LXI June 1971 469-71.

Hadjimatheou, G., Consumer Economics After Kevnes Wheat sheafbooks 1987.

Henderson, A. M., The Cost of Family. The Review of Economic Studies. XVII 1949-50 130-50.

Houthakker, On Some Determinants of Savings in Developed and Underdeveloped countries in problems of Economic Development Macmillian and Co., 1965.

ILO, Employment Income and inequality in Kenya,

 Imprimeries Popularies Geneva Printer, 1972.Johnson and Chiu, The Savings Income Relation in Underdeveloped and Developed countries . Economic Journal, June 1968, 321-3

Kamau, C., The Effect of Kenyanisation on Personal Savingi Preliminary Repert on Data collection and Some Tentative Conclusion. IDS No. 971973.

Kelley, A. C. \& Williamson, J., Household Savings Behavior in Developing Economies Indonesia. Economic Development and Cultural Change, Vol XVI, April 1968 385-402

Kempe, R., Hope, Role of Savings in Financing Economic Development in Caribbean . Saving \& Development Ouarterly Review Vol 1 No. 41982

Keynes, J.M., The Theory of Employment Interest and Money Macmillian \& Co., 1936

Koutsoyiannis, A., Theory of Eaconomatrics, $2^{\text {nd }}$ Edition. ELBS \checkmark Macmillian.

Kuznets, S., The Share and Structure of Consumption. Economic Development and Cultural Change, Vol X, Jan 1962

Landsberger, M., The Life Cycle Hypothesis: A Reinterpretation and Empirical Test. American Economic Reviek LX March 1970 175-83.

Leff, N., Dependency Ratio and Savings Rates. American Economic Review, Vol LIX Dec 1969, 886-896

Lillydhal J.H., Economic and Demographic Influence of Household Saving in urban areas. Unpublished Ph.D. Thesis, 1976.

Massell, B., and Heyer, J., Household Exeenditure in Nairobi: A Statistical Analysis of Consumer Behavior. University of Nairobi IDS, 1967.

Massell, B., Determinants of Household Expenditure in Rural Kenya. University of Nairobi, IDS, 1967.

Mead, D.,Saving Investment and Analysis of Growth. Economic Development and Cultural Change, 12 oct 1963, pp 81486.

Michael, L., The Life Cycle Hypothesis. A Re-interpretation and Empirical Test: American Economic Reyiew, Vol LX,March 1970.

Mikesell,R., and James, Z., The Nature of Savings Function in Developing Countries: A Survey of Theoretical and Empirical Literature. Journal of Economic Literature, Vol XI, March 1973.

Otundo,S., Bural-Urban dualism and Consumption Behavior of Kenyan Househeld, M.A., Thesis 1982.

Ramanathan, R.,Estimating the Permanent Income of a Household. An Application to India Data. Reviek of Economic and Statistic. I August 1968 90-101.

Ramanathan, Econometric Exploration of Indian Behavior. Journal of American Statistical Association, Vol 64, No.325, March 1969.

Republic of Kenya, Development Rlans, Various Issues, Government Printer, Nairobi.

Republic of Kenya, Economic Survevs, Various Issues, Government Printer, Nairobi.

Republic of Kenya, Sessional Paper Ne. 1986 on Economic Management for Renewed Growth. Government Printer, Nairobi, 1986.

Singh, G., Gupta, T.R., and Singh, B., Pattern of Voluntary Rural Savings in India, Savings and Development Ouarterly Review, Vol 1 No.3,1978,.

Vandermoortele, J. and Hoeven,R., Income Distribution and consumption pattern in Urban and Rural Kenya by Socio-economic Groups, ILO World Employment Programme, Working Paper No. 381982.

[^0]: Source: Calculated from modified sample UHBS 1982/83

 * Calculated as a ratio to total monthly income.

 From Table 4.4 it is clear that the highest proportion of urban population is in the low income group. More than half of urban households receive less than 2000 Kshs per month. This can be attributed to the following: One of the reasons why people migrate to urban areas is to seek for better paying job. However, in Kenya like in many other developing countries the

[^1]: source: Calculated from the modified sample. Inccon - Income contributors.

