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ABSTRACT

A general theory of Relativity has been developed on the basis of 
a complexified spacetime and its scale equivalence principle. The results 
are in agreement with the familiar Schwarzschild solution (as derived from 
Einstein’s relativity formulations) [Adler et eh, (1965)]1 and with the well 
confirmed Newtonian law of Gravitation.

On the very large scale, a composite curvature spacetime cosmolog
ical model is obtained in which an Euclidean horizon replaces the Event 
horizon in the determination of local scale evolution of spacetime.

The complexified relativistic formulation calls to question the con
stancy of G (Newton’s universal gravitational constant), the weak Cosmo
logical Principle which prescribes a requirement of homogeneity in the dis
tribution of cosmological matter [Narlikar, (1978)]2 , as well as the proper 
meaning of the black hole radius. Finally, some quantum considerations 
of gravity as well as of the Big Bang are propounded as plausible physical 
probabilities.
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....it must be conceded that a theory has an important advantage if its

basic concepts and fundamental hypotheses are ‘close to experience'.......
Yet more and more, as the depth of our knowledge increases, we must give 
up this advantage in our quest for logical simplicity and uniformity in the 
foundations of physical theory....

ALBERT EINSTEIN - Scientific American, 1950.
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INTRODUCTION

Throughout the history of physics, many attempts have been made to 
explain physical phenomena by geometrical arguments. Geometry grew 
in ancient Greece as the science of plane and solid figures [McKenzie, 
(I960)]3 . The construction of a figure was perceived to bring out points, 
which one then naturally regards as pre-existing - at least potentially - 
in a continuous medium (called space) that provides so to speak, the ma
terial from which the figures are made. Understandably, geometry came 
to be conceived of as the study of this medium, the science of points and 
their relation in space. In other words, space was considered as the repos
itory of all points required for carrying out the admissible construction of
geometry. iJNfVFRSfTY OF /VA

CHIROMO LI&RARr
Later, space came to be identified as the divine presence in which 

matter is placed, thus setting the stage for natural philosophy and ge
ometrical principles mainly attributed to Newton and based on Euclid’s 
geometric construction. In the 19th century, bold yet entirely plausible 
variations of the established principles and methods of geometric thinking 
gave rise to a whole crop of systems, that furnished either generalizations 
and extensions of, or alternatives to, the geometry of Euclid [Torretti, 
(1983)]4 . The choice of a physical geometry, among the many possibili
ties offered by mathematics, was either a matter of fact, to be resolved by 
experimental reasoning, or a mere matter of agreement.

In the third quarter of the century, Bernhard Riemann (1826-1862) 
sought to extend the two dimensional Gaussian geometry and to classify 
physical space within the vast genus of structured sets or ‘manifolds’ of 
which it is an instance. This was the basis of Riemann’s theory of metric 
manifolds which Albert Einstein adopted as the right approach to phys
ical geometry, in his theory of gravitation or, as he preferred to call it, 
the General Theory of Relativity [Einstein, (1920)]5 . However, a local
ized approximation to General Relativity, known as the Special Theory of

9



Relativity, which had earlier been developed by Einstein as a form of a 
non-Newtonian physics, was only properly interpreted on the basis of non- 
Euclidean geometry discovered by Hermann Minkowski, in which time and 
space are unified as a single chronogeometric structure [Einstein, (1920)]5 . 
This, so called, Minkowski geometry defines a uniquely affine and rather 
special case of the Riemann geometry.

Minkowski’s significant contribution towards the formal development 
of the theory of relativity was his recognition that the four-dimensional 
space-time continuum on which Albert Einstein had founded his relativis
tic electrodynamics of moving bodies was none other than the theory of in
variants of a definite group of linear transformations, namely, the Lorentz 
group. This, he achieved by a replacement of the usual real time co
ordinate by a proportional magnitude of imaginary time. Under these 
conditions, the natural laws satisfying the demands of the Special Theory 
of Relativity assume mathematical forms, in which the time coordinate 
plays exactly the same role as the three space coordinates in Euclidean 
geometry. This was the dawn of four-dimensional (and indeed of higher 
dimensional) spacetime as a physical geometric construction.

The idea of many dimensions has been a common feature of much 
recent theoretical speculations, especially on quantum gravity, on string 
theory and on supergravity theory, but of course it does pose the intriguing 
question of why the extra dimensions are not ‘seen’ in the ebb and flow 
of daily life? This is usually answered by supposing that they are ‘curled 
up on themselves’ in a very small circle (presumably of Planck length 
size). The question whether the global topological structures of the extra 
dimensions is exactly a set of circles, or whether it is something more 
complex, is currently a matter of some debate; but the general idea seems 
to work, provided that the extra dimension are spatial: trying to have 
more than one time dimension has not been considered as very productive 
[Isham, (1989)]6 .
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Unlike in Newtonian mechanics where the inexorable notions of de
terminism and clarity of description are preserved, quantum physics abol
ishes clear-cut trajectories and introduces a probabilistic fitfulness into 
nature. The resulting elusive quality bestowed on physical reality has 
been the subject of rather disputed interpretations especially in quantum 
gravity. An important implication of quantizing gravity is the persistence 
of the more central question; whether a fundamental revision of spacetime 
concepts should precede attempts to quantize the gravitational field, or 
whether it should emerge 'after the event’. The latter has been preferred 
by most researchers, and takes advantage of a great body of theoretical 
and experimental (particle physics) material against which new ideas can 
be developed and tested. However, the former, more iconoclastic, option 
also has its attractions which may be dated back to Minkowski’s geometric 
construction, and forms the main leitmotiv of this thesis.

Although Minkowski’s geometry is characterized by the introduction 
of an imaginary time coordinate, it made an even more profound contri
bution regarding the viability of complex numbers in the interpretation 
of physical geometry. The significance of this complex notion understand
ably motivates a more pragmatic complexification of the Minkowskian 
spacetime, which is the main subject of Chapter I. In this case the extra 
spatial dimensions assume imaginary scales and only qualify for physical 
interpretation in terms of interactive energy.

In science, a theory is considered better if it minimizes the number 
of fundamental generalizations (postulates) required in the description (or 
explanation) of physical phenomena. That this is the case, and advantage 
of a fully complexified spacetime over Minkowskian spacetime is quan
titatively evident (in Chapter I) since the Weak Equivalence Principle 
accredited to Einstein [Adler, (1965)]1 reduces to a non-trivial mathe
matical solution, based on the energy conservation principle, as well as on 
a dimensional scale equivalence which is proposed here as a more funda-
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mental principle of equivalence.

A geometric modification necessarily demands a reformulation of the 
concepts of motion and consequently of gravity. Albert Einstein had em
phasized this implication in his attempts to reduce the theory of gravity to 
geometry. In Chapter II, it is shown that the foregoing two principles (of 
scale equivalence and of energy conservation) suffice in the reformulation 
of Relativity (Special and General) which is in consonance with both the 
Newtonian and Einstenian forms.

On the very large length scales, the a relationship between the com
plex spacetime and matter provides a composite spacetime curvature 
model of the universe in which a flat (Euclidean) horizon separates a closed 
Newtonian region from the outer (open) bounds (influenced by antigrav
ity). This is the theme of Chapter III, in which the energy density profile 
clearly deviates from homogeneity. The complexified scheme further dis
tinguishes itself as an unequivocal relativity formulation that questions the 
constancy of G (Newton’s gravitational constant), the metric structure of 
gravity, as well as the proper meaning of the black hole radius. These are 
expounded in Chapter IV.

Finally, some quantum considerations of gravity as well as of the Big 
Bang are propounded here as Appendix A and Appendix B respectively.

12



CHAPTER I

COMPLEX SPACETIME

The purpose of this chapter is to convey a complexified spacetime pos
sibility as an extension of Minkowski’s geometric configuration, w’hereby 
the extra spatial dimensions assume imaginary scales, while the additional 
temporal coordinate is real. In addition to the Principle of Energy Con
servation, a requirement of scale equivalence is introduced as a basis for 
the description of all physical interactions and consequently reduces the 
Weak Equivalence Principle to a. non-trivial energy solution.

(1.1) Basic Formulations

Consider the non-Euclidean spacetime of general relativity described 
by a four general coordinates with a Minkowskian line-element [Isham, 
(1989)]() written in a quadratic form as

dS2M = r,t dXj dxt, ( j ,(  =  0,1,2,3) (1.1.1)

where r]j( are the metric functions, x0 points in the imaginary timelike 
direction, while \i , \ 2  and \3 are real spatial coordinates. The above 
four coordinate description is evidently incomplete in generality unless 
\( is fully complexified. In order to investigate the implications of such
a complexified spacetime structure, let us define an eight complexified

-
general coordinates

Xta )= i aXe

where a =  0,1 while i is the imaginary unit, so that the line-element is 
complexified as

dS2 =  ia+°'dS2M,

where a' =  0,1. In this case the expression for velocity under the sum

13



mation convention becomes

(7.1.4)

Since the significance of an appropriate physical geometry lies in its
interpretation of energy, we here introduce the concept of energy in rela
tion to velocity as a scalar product of the form

where Et is the total energy over the entire spacetime while £ is a propor
tionality ratio. Thus the global essence of the complex spacetime geometry 
should manifest itself via the real and imaginary components of the total 
energy of the universe. In addition, the concept of global conservation of 
energy demands that the total energy of the universe be zero [Hawking, 
(1988)]' , that is

Et — £,{Vaa' K (7.1.5)

Et = 0, (7.1.6)

which produces immediately that

voo = ~v\\ and Vqi =  vio- (7.1.7)

(1.2) Scale Equivalence Principle

There are infinite sets of relations of Eqn (1.1.7) that satisfy Eqn 
(1.1.6) and are thus intractable except under the special condition of scale 
equivalence, in which case

l^oo | =  |t>oi|, (7.2.1)

so that Eqn (1.1.5) becomes

14



where

W  = * °V « ' {1.2.3)

in analogy with Eqn (1.1.2). Eqn (1.2.2) is the expected form of a dynam
ical energy formulation, that is, in consonance with classical kinematics, 
and is guaranteed by the uniqueness of the scale equivalence contained in 
Eqn (1.2.1) which may be expressed as a principle in a more concise and 

qualitative form as follows;

‘The energy of all physical interactions are representable on a complex 
spacetime system in which the scales of the real and of the imaginary 
coordinates are equivalent1,

that is, when the scalar Ix ^ l is independent of a.

In the next section, it shall be shown how the Weak Equivalence 
Principle is contained in the above principle of Scale Equivalence.

(1.3) The Weak Equivalence Principle

The Principle of Equivalence (EP):- ‘that the extent to which a piece 
of matter produces, or reacts to a gravitational field is determined by 
its inertial mass’ , has historically played an important role in the devel
opment of gravitational theory. Isaac Newton regarded this principle as 
the cornerstone of mechanics and made it an empirical issue by carrying 
out experiments using pendular to verify it with modest precision, [Will, 
(1988)]8

One consequence of the EP is the mass-independence of the acceler
ation of a particle in a gravitational field. This elementary form of EP 
is known as the Weak Equivalence Principle (WTEP). Another implication 
is contained in a much more powerful and far-reaching EP known as the 
Einstein EP (EEP), which Einstein used in 1907 as the basis of General 
Relativity (more precisely, in asserting that gravitation is a curved space- 
time phenomenon) [Einstein, (1956)]9 . .

A derivation of the WEP by a plausible interpretation of Eqn (1.2.2)

15



is presented here, based on an idea advanced by Laue [Torretti, (1983)]10 
in which we consider each distinct term as an expression of interactive 
energy in a particular physical domain. So far there are four separate and 
distinct physical domains distinguished in physics as the gravitational, the 
electromagnetic, the strong and the weak interactions.

If we identify the real part of Eqn (1.2.2) with a' =  0 as the gravita
tional interaction energy Eg then we may write

(a )2

, v g  =  Y 1 z° Vj y -\ i7-3-1)
a

where £o and are the inertial and gravitational masses respectively.
(a)If we assume that Xe^o are êasf twice-differentiable functions of

/ / \
then from elementary calculus we can write

J W  -  2a(b) v(o)Vaa' ~  ZV 'A ^ 0 ' (7.3.2)

/  (fc)
where gaa, are accelerations associated with interaction energies of kinetic 
and potential types, wfth b=0,l.

It follows at once from Eqn (1.3.1) that if Eqn (1.1.6) holds indepen
dently in the gravitational domain, then

ffo°o)X ^ o « o - 6 )  =  0,

where and X^o need not vanish. Thus we obtain a non-trivial solu
tion to Eqn (1.3.3) as

fo  =  6 , ( 7 .3.4 )

which is a statement of the Weak Equivalence Principle [Torretti, 1983)]1, 
hitherto considered as a fundamental postulate of spacetime curvature 
[Einstein, 1920)]5 . This relation has been established experimentally by 
Eotvost and by Dicke [Adler et. al, (1965)]1 , and has been tested, for the 
Earth, by the observations of the Moon-Earth orbit using laser ranging 
[Narlikar, (1978)]11
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By Eqn (1.3.4) above, it has been shown that for a complex spacetime 
in which the principle of energy conservation is upheld, the Weak Equiv
alence Principle (so far considered as a postulate) is reduced to a non 
trivial mathematical solution based on the unique and apparently more 
fundamental principle of Scale Equivalence.

Finally we may surmise that interactive energies in all physical do
mains of reality are reducible to the form of Eqn (1.3.1) while the imaginary 
term in Eqn (1.2.2) may be attributed to antimatter, in which case we ar
rive at a more complete form of the Strong Equivalence Principle [Will, 
(1988)]8 .

17



CHAPTER II

RELATIVITY

The development of General Relativity (GR) has been one of the 
greatest intellectual adventure of our time. The basal idea that is principal 
to the subject of Relativity is that every motion must only be considered as 
a relative motion [Einstein, (1920)]5 . Although very successful, Einstein's 
theory of relativity is often criticized for giving, without justification, a 
central theoretical role to the propagation of light, in that it founds the 
concept of time upon the law of propagation of light (The Light Principle) 

[Torretti, (1983)]4 , [Savickas, (1994)]12 .

As an alternative formulation of the General Theory of Relativity, the 
complexified spacetime of chapter 1 will be adopted here in a derivation of 
quantitative formulae for gravitational acceleration and the Lorentz trans
formations of Special Relativity, without an explicit reference to the Light 
Principle. In order to show some compatibility of the complex spacetime 
formulation of GR with Einstein’s GR, a derivation of Schwarzschild line- 
element has been presented in section (II.4), while sections (II.5) and (11. G) 
provide derivations of Kepler’s third law and of Newton’s gravitational law 

respectively.

(II.1) Gravitational Acceleration

Consider a total gravitational interaction energy Eg as expressed 
in (1.3.1). Under the principle of energy conservation defined by Eqn 
(1.1.6) and the Weak Equivalence Principle given by Eqn (1.3.4), the Eg 
independently vanishes so that Eqn (1.3.1) becomes

l > o o ,2 =  0 (11.1.1)
a

,,(°)2 _  9„U) (0) (TT i 9\^  voo — ^QooXe^o' (ii.1 .2)

where <7  ̂ is the normal component of acceleration for a particle moving 
a long a path whose radius of curvature is X^o-

18



In the familiar centripetal form, Eqn (II. 1.2) becomes,

where

ffoo

V. =  ±

K
JO) ’
X

(U

(0)
voo
iv^r ( q

.1.3)

1.4)

Thus Eqn (II. 1.3) presents the desired form of gravitational acc .̂
•• e dera

tion, which is clearly consistent with the isotropic Newtonian kinem.
(0) \  . \  'tics,

provided X^o 1S considered as a unit length.

(II.2) Special Relativity

The formulations of Special Relativity relied heavily on the 1̂
V of

propagation of light postulated by Einstein, in the derivation of tlu
lin

earized Lorentz transformations. An attempt to derive the Lorentz t.(
m̂s-

formations from Relativity Principle alone, without assuming anyij
mg 

*ven 
i he 

F 'moves with a velocity V in F then F  moves with a velocity — V iq ^  
is a consequence of the Principle of Relativity [Torretti, (1983)]13 .

about the velocity of light or any other specific phenomenon was  ̂
by a Russian Mathematical Physicist W. Von Ignatowsky. Howevo( 
wrongly maintains that the Principle of Reciprocity (if inertial frail)

In this section the centripetal form of gravity given by Eqn (I) 
will be shown to prescribe an invariant velocity in the form of Eqn (II

1.3)

•4),
which is necessary for the determination of Lorentz transformations,

From Eqn (1.1.4) we can write; INlVrFS'TY Of NA;rjpr
4 v ' chiroho l V » >

vg =
dx

(0 )

(^0

dxyo
( 0 )

(U
*•1)

so that Eqn (II. 1.4) becomes

dx{%  ±  |V9|rfXoU' =  0.(0)
(I i12)

19



A scalar transformation of Eqn (II.2.2) presents three possibilities as fol

lows;

( dX\% ±  I V '^ d x f  = 0 ........(II.2.3a)
0(dX(t°J o±  IVjIrfXo0’ =  0) = l dX(,°Jo±  m id x o 01 =  0 .(II.2.3b)

[  dx \% ±I^IrfXo0’ ' =  0 .(11.2.3c)

where 0 is a scalar multiplier.

In conformity with the centripetal description in Eqn (II. 1.3), we 
here give physical meaning to the three transformations by a suitable 
interpretation of their rigid ‘disc-like’ possibilities:

(a) Eqn (II.2.3a) is only satisfied for all non zero scalars 0 ^  0 if \Vg \ =  0 
and |d\J,l))| = 0. This is a stationary case and the transformation does 
not represent energy exchange or interaction in the form of relative 
motion for the disc.

(b) Eqn (II.2.3b) describes Einstein’s rigid rotating disc which (as he 
proved) is representative of a non-Lorentzian transformation [Ein
stein, (1920)]5 .

(c) Eqn (II.2.3c) describes a rotation of a ‘semi-rigid’ disc (SRD) consist
ing of concentric circular rings (Fig 1.) each rotating at a constant 
tangential speed Vg in which case the two parts of the transformation 
may be written out as;

dx%*0 + I^M x-r' =  0i(dx'$ 0 + (//.2 .4a)

and

dx\%-  IV .W x r  =  M d X(t%  -  |V9k \o 0)), [II.2.4b)
where and 02 are scalar constants.

From equations (II.2.4a), (II.2.4b) and (II. 1.4) we can proceed by the 
usual method of Special Relativity (which is satisfied at localized regions or 
at regions far removed from the disc center)[Einstein, (1920)]5 , to obtain

20



the Lorentz transformations as;

(//.2.5a)

and

where v is the relative speed defined by the transformation, that is, be
tween two rings in Fig 1. Clearly, 0 < v < Vg in real spacetime.

The invariance of Vg is consistently redolent of Einstein’s postulate 
on the constancy of the speed of light, that is, the Light Principle [Torretti, 
(1983))4 and thus guarantees the validity of the Lorentz transformations 
above. In addition it suffices to appreciate the value of Eqn (II. 1.4), that 
generates the Special Relativistic results in Eqns (II.2.5a) and (II.2.5b), 
without any additional postulates in contrast to those inherent in Ein
stein’s derivation based on the Light Principle.

^Xq0) ~ V*dX&o
( 0 )

d xT ' =
(1 _ 4 )

(//.2.56)

Fig 1. ‘Semi-Rigid’ disc (SRD) model comprising concentric rings.
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(II.3) General Relativity

In his formulations of the general principle of relativity as a theory 
of gravitation, Einstein was motivated by the realization that the physical 
interpretation of space and time on a rigid rotating disc, and hence in the 
presence of (gravitational) acceleration, are in conflict with those of non
accelerated inertial systems, and consequently of Special Relativity and its 
Lorentz Transformations. His final result of GR was a geometrization of 
gravity in a theory consonant with the local validity of Special Relativity, 
in which the gravitational action of matter on matter was mediated by 
the spacetime geometry.

Since Eqn (II.2.3c) generates the desired Lorentz transformations, the 
SRD interpretation will be adopted here as the basis of General Relativity, 
that is, a theory of gravity that is consistent with Special Relativity.

Consider a section of the SRD model (Fig 1) which satisfies Eqn
(II.1.3). By change of notation, such that, —> r, and g ^  —» g we
end up with

Vg Vg
—  and g22 =  -__ £_

V2
(//.3 .1 )

as accelerations produced by particles located at the two rings of radii n  
and i'2 respectively as indicated in Fig 2.

Fig 2 shows that in a given period of time t , point particles at radii 
r\ and r2 each moving at a constant speed Vg , sweep out angles 0] and 
@2 respectively. Now suppose an acceleration <721 of magnitude |̂ 221 is 
produced by a particle located at a radius r 1 and moving at a speed of 
V2 such that it takes the same time t to cover the angle 02 , then we can 
write

#21 = ~ Y i
r\

YL
r\

{II. 3.2)

Due to the constancy of Vg the length of arcs swept out by the tips of r 1

22



(77.3.3)

and r2 in equal times are necessarily of equal lengths, so that

02 _  n  
0i r2'

Substituting Eqn (II.3.3) into Eqn (II.3.2) gives

V2
921 =  — f r ,  (77.3.4)

1 2

which is in agreement with the Newtonian inverse square law, with as 
the reference unit of distance. In general we have to know our reference 
unit ri so that gj\ may be determined at any other distance rj from the 
gravitating body, in the form

V2
gj l = - - ^ - r 1 (77.3.5a)

This is a statement of general relativity; an expression of acceleration 
due to gravity that is consistent with special relativity whose consequence 
is the assertion that every particle in the presence of a gravitational field 
gji moves in a curve wjiose radius of curvature is rj . This qualifies Ein
stein’s geodesic postulate: that every particle moves in a straight line even 
in the presence of gravity (except that the space is curved). Using Eqn 
(II. 1.4), we obtain a more explicit form of Eqn (II.3.5a) as

9( i )
act1

(0)2

2 J « )2 (77.3.56)

where is a unit spatial dimension. Since Eqn (II.3.5b) is based on a 
complex spacetime background, we shall refer to it as a complex general 
relativity reformulation.

Clearly, the results above provide a mathematically simpler version 
of GR, thus overcoming a fundamental difficulty encountered with Ein
stein’s GR; the lack of an exact general solution to the problem of motion, 
largely due to implicit mathematical complications of the theory in the 
establishment of how gravity curves spacetime.
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V g 3 / /

/ r2

* y /

Fig 2. Lorentzian dynamics on a SRD model.

(II.4) Scliwarzschild Line-element

Due to the lack of an exact general solution to the problem of mo
tion in Einstein’s general relativity, various approximation methods (like 
Scliwarzschild solution) are used to impose restrictions on the form of the 
matter tensor, that the gravitational field equations do actually deter
mine in free fall. Indeed the only very reliable experimental verification 
of Einstein’s field equations is based on the Scliwarzschild line- element. 
[Torretti, (1983)]4 . An alternative derivation of the Scliwarzschild solu
tion is here presented via the SRD model as a pointer to the versatility 
and simplifications accrued from its formulations of gravity on a spacetime 
background defined by x ^ o  anc  ̂ Xo0) • Consider Eqn (1.1.2) from which 
the Scliwarzschild line-element may be expressed as

dS2s  =  Vg2dx ‘0m  - (II-4.1)

in accordance with the generalized Lorentz transformation where x\°Jq = 
Vj and Vg are mutually orthogonal as in Fig 2. Eqn (II.2.5b) gives the 

value of c/\qU) relative to the origin where c/x(/^0 =  0- If ^ie starting 
time is set to zero, that is, =  0 then Eqn (II.2.5a) gives the relative
length contrition of each ring so that Eqn (II.4.1) becomes

V 29
d si  =  v? ( i  -  ^ -  ( i -  ^ )V29

-1
( 0)2 (77.4.2)
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For small v , we obtain a first order approximation as

.2
dS2s 1

.2 \
rfv(0)2 aX& 0

1 -
2rc

c

r2jjo)2 2r,
ty<*xr -  i + ( 0 )

XW
(/v(0)2

(77.4.3)

where the replacement

* 7

2rc
(0 )

X^o
(77.4.4)

is justified by equating Eqn (II.3.1) to (II.3.2), with rc as a constant. Eqn
(II.4.3) is the isotropic form of the conformal Schwarzschild solution pre
sented by Adler et al., from an alternative derivation based on Einstein’s 
GR and tensor analysis, in which case 2rc is the Schwarzschild radius. It 
is on the. basis of Eqn (II.4.3) that the well-known discrepancy in classi
cal mechanics concerning the perihelic motion of the planet Mercury was 

satisfactorily resolved [Adler et ah, (1965)]1 . UNIVERSITY

(II.5) Kepler’s Third Lraw CHIHOMO UBRAR.

Kepler’s third law is also called the law of periods and its derivation 
begins from Eqn (II.3.1) and Fig 2, in which case we may write

r,
47T2
rp2 rJ’ 

3
(77.5.1)

where Tj is the period of rotation for a particle moving with constant 
speed Vg at a constant radius rj . We shall refer to Tj as the gravitational 
period at r j .

By equating Eqn (II.3.5a) to Eqn (II.5.1) ie when \gjj\ =  \gj\ | ac
cording to Eqn (II.3.2), we obtain

d
Tf

V9
^  = 4 ^ n

(//.5 .2a)

This is Kepler’s third law with 7q as the reference unit of distance.
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Iii terms of the general complex spacetime co-ordinate notation, Eqn

(II.5.2a) becomes
( « ) 3

Xt*o 
v ( « ' ) 2  
Xo

( 0)2
ĝot' ~(Q)
8tt2 Xw

(77.5.26)

Historically Newton arrived at the gravitational law on the basis of Jo- 
hanness Kepler’s astronomical laws. More specifically, it is the application 
of Kepler’s third law, to the orbit of the moon about the Earth that gave 
support to Newton’s theory of gravity.

(II.6) Newton’s Gravitational Law

In order to show that the formulation of gravitation based on the 
SRD model bears consonance with the quantitative outcomes of Newto
nian gravitational law, reference is made of Eqn (II.3.5a) which may be 
rewritten as

9j l =
2'kt\ n„2 (77. 6. la)

If we assume a symmetric and homogeneous mass distribution so that 
the mass M\ of the potential source located at O (in Fig 2) is given by

Mi =
47r?’i

(776.2)

where pM is mass density, then Eqn (11.6.1a) becomes

_  _ 4 tt2 /  3Mi \ _1_ _  GjiMi 
gjl Tf \4npM) rj rj

which is the Newtonian gravitational acceleration, with

3 7r
Gji —

T?P M

(11.6.1b)

(77.6.3)

as the gravitational parameter assumed as a universal proportionality con
stant in the Newtonian formalism. From the derivation above, Gj\ is 
clearly dependent on the variations of density pm and of the reference 
scale determined by the period T\ at the surface of the gravitating mass.
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1

In the general complex coordinates we have

(i)
9aa> =

47r2 /  3Ml \ 1
i ia')2 U *Pm )  x (taJo

{ 11. 6.4 )

Xo

and
37T

^a'l =  (a/)2 (JI.6.5)
Xo PM

where we have assumed that pM is a non-imaginary quantity. The accel
eration g ^ ,  points in the radial direction of unit displacement x [°Jq .

In the above consideration, the SRD model, has been established as 
a basis of an alternative non-tensorial derivation of a General Theory of 
Relativity, that is, by suitable physical interpretation of the linearized 
Lorentz transformation. The resulting simplicity is an advantage over the 
Einsten’s GR whose mathematical difficulties have largely hindered the 
establishment of an exact general solution to the problem of motion.

Since the SRD formulation of GR has submitted itself into compliance 
with the Newtonian theory of gravity as well as with Einstein’s GR, the 
underlying complex spacetime background seems justified as a realistic 
and viable description of an ubiquitous interactive physical geometry.
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CHAPTER III

COSMOLOGY

Although the universe has been widely presumed to be of singular 
curvature on the large scale, a possibility for a non-singular (composite) 
model has been developed here as a viable description of our observable 
universe based on a complexified spacetime background. The concept 
of antigravity arises here as an interpretation of the energy conservation 
principle. The results favour a universe of infinite existence.

(III. 1) A Composite Spacetime Curvature Model

An important problem in the current theory of gravity is the search 
for a realistic theoretical model for the distribution and dynamics of cos
mological matter and consequently of spacetime curvature. A theoretical 
concept or model is acceptable if it maintains credibility and compatibility 
with observational evidences. One such theory is the Big Bang Hypothe
sis described by the Friedmann equation [Silk, (1980)]14 , which together 
with the Cosmological Principle is often used as the basis of a standard 
procedure in the determination of spacetime curvature K.

The Big Bang theory provides three distinct curvatures determined 
by K  =  ±1,0. Since the Friedmann scheme presumes that the Universe is 
of singular curvature, there ought to be some principle that picks out one 
A and hence one model to represent the entire universe. In the absence 
of such a principle, it is understandable that the Cosmological Principle 
be called to question; and the answer is to be sought within the precincts 
of energy conservation.

A composite spacetime curvature (CSC) model of the universe in 
which all A = ±1,0. are encountered within the large scale spatial range, 
is developed here as a more realistic consequence of the energy conserva
tion principle.

Consider the expression for velocity in complexified spacetime given
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by Eqn (1.1.4) as,

(  f o o f f n  , , .• d o t ’l l
V a a 1-  I 2 , , . 2  +  „ 2  +  ' l  .,2 , . 2\ v 01 ' ^00 l , l l + u 1 0 /  \ T l l + u 10

For simplicity we rewrite Eqn (III. 1.1) as

»’oo«01 A 
V01 +  "oo /

( / / / . l . l )

VQQ> =  VR 4- ( I I I .1.2)

where vr and u/ derive their meaning from the brackets in Eqn (III. 1.1). 
In this case the total interaction energy Et over the entire spacetime may 
be expressed as a scalar product of velocities, in the form,

Et =  £[u  ̂+  (ivi)2 + 2w r v j) (III . 1.3)

If we consider the real part of Eqn (III. 1.3) as representative of all observ
able energy Eq then

£o =  ? K  +  ( ^ / )2] (III.1A )

where £*0 may assume either potential or kinetic forms, while £ is deter
mined in each domain of physical interactions.

From the principle of Conservation of Energy, it is apparent that 
different forms of energy are inherently indistinguishable so that we may 
express Eq in a fully singular potential form as

Eq — Xw (III.  1.5)

where gê  is the effective acceleration in a dynamical universe of total 
mass M . Thus Eqn (III. 1.4) becomes

e f f
9m =

H 2X&o N
9m

JNIVFPWTY nr AM 
nuiRciMn lip&a h *

(III.  1.6)

where g^  is the Newtonian gravitational acceleration associated with 
mass M  and velocity u / , while H is the Hubble constant defined by the 
Hubble law;

vr =  Hx ( 0 )
*9*0 ( I I I . 1.7)
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with reference to a gravitating mass centered at =  0- Consider a case
when = 0 which occurs at a flat (Euclidean) Horizon /< defineed by 

X&o = h -  so that
2 GM  =  # V >  (III.  1.8)

where G is the (Newtonian) universal gravitational constant. Thus Eqn 

(III. 1.6) becomes

9Mf  =  i k l S  -  S)-  ( I I  1.1.9)

This gives the potential profile of the large scale gravitational structure 
of the universe. At any instant, when H is constant, Equation (III. 1.9) 
gives a profile shown in Fig 3 [Buers et al. (1998)]15 (Ref. Appendix C).

In this scheme, all the three spatial curvatures appear within a single 
universe, that is within the range:

0 < xe^o < oo. (111.1.10)

Hence spacetime is;

(i) Closed (with attractive gravity, ie K  =  + 1) when,

gCMf < 0, for all |x^0| < /*. (111.1.11)

(ii) Flat (with no net gravity, ie K  =  0) when,

9m 1 =  0, for all |x/%| =  (111.1.12)

(iii) Open (with repulsive antigravity, ie A’ =  — 1) when,

<JMf > °> for a11 IX/^ol > V- (111.1.13)

This is the essence of a composite spacetime curvature (CSC) model.

Unlike the Event horizon which is fixed by the Cosmic Censorship
Hypothesis, the (Euclidean) horizon /i introduced here is time-dependent 

2

and scales as Xo°)3? according to the Hubble law. It is a property of a
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gravitational potential source in an expanding Universe and is directly
i

proportional to M(J:' , where M0 is the non-relativistic mass of the source. 
On the other hand /i is independent of the mass of a particle or galaxy in 
the potential field of the source, that is by ignoring perturbation effects 
[Anninos et ah, (1996)]16 . In a static universe where the Hubble velocity 
VR _► o, the horizon /i —> oo. This is a Newtonian approximation where 
the universe is infinitely old and is bounded by the long range gravity. For 
all finite times, the Hubble expansion reduces fi to finite values provided 
Mo is finite.

A>i^

Fig 3. Effective gravity profile for the CSC model.



(III.2) The Observable Universe

An appropriate location of our observable universe is here determined 
on a complex velocity plane, by applying the energy conservation principle.

From the energy conservation principle, we may write

v% +  ( i f / ) 2 =  V2

so that Eqn (III. 1.4) takes a fully singular kinetic form as

E0 = i v 2 (III .2.2)

with v as an inertial velocity. From the Hubble law we can write

vR = Dvj {III.  2.3;

where
D _  _  1 dvR

2 clvj ’
(7/7.2.4)

so that the inertial velocity reduces to

v =  J d ^ T
W i + « ? o

«oouoi (III.2.5)
V01 +  l’oo J

This is a kinetic description of the composite spacetime structure in a 
non-empty space (with non-vanishing v i ). The profile satisfies three pos
sibilities:

(i) closed spacetime when D < 1,

(ii) Flat space time when D =  1, and

(iii) Open spacetime when D > 1.

By application of elementary calculus Eqn ( I I I .2.5) can be rewritten

as
g t f '  = (D2 -  l ) j j5  ( I I I .2.6)

where is a Newtonian gravitational acceleration while geJi is the 
resultant (effective) acceleration of the universe at a given value of D. We
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then consider that D =  1 when Xf% = fl since equation (III. 1.9) and
(III.2.6) are descriptions of the same system.

On a complex velocity plane given as Fig 4, the total energy in the 
CSC model presents asymptotic approach to both axes in the first quad
rant. If we consider a universe of finite and conserved energy content then 
we must demand that v2 be a constant. This describes an arc of a circle 
centered at the origin. The two curves coincide uniquely when

vr = vj \ (III . 2.7)

which defines a flat spacetime. It is this region of coincidence that is
conjectured to determine the local position of our observable universe (in
dicated as HOME in Fig 4) in the CSC model.

\ {

Fig 4. Energy curves on the complex velocity plane of the CSC model.
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Although our position in the complex velocity plane is somehow an
thropic, it viably provides for the observed homogeneity of our universe. 
[Hawking (1988)]7 Further it has been shown that in a complexified space
time in which kinetic and potential energies combine into a singular form, 
the spacetime curvature is necessarily composite in the real large scale 
spatial range. The CSC Model is compatible with Gautreau’s (1996)1' 
results as has been shown by Buers et ah, (1998)15 (Ref. Appendix C).

(III.3) The Fate of the Universe

From spherically symmetric consideration, a potential source of 
Schwarzschild radius ra has an average density

Ps —
3

2 A9
(777.3.1)

where As is the non-decreasing surface area of the event horizon, in the 
general relativistic units. Similarly,

3
H  = 2 A u

(III. 3.2)

where T u is the surface area of the universe marked by the Big Bang 
photons. From the composite spacetime curvature model we obtain

Au
P* ~  Pv A (III . 3.3)

Alternatively, the average density of the universe may be expressed as

Total mass of the Universe
(777.3.4)

Pu = Total volume of the Universe
1's

= / v —ru

where is the radius of the universe. By combining Eqns (III.3.3) and
(III.3.4) to eliminating we obtain

u r u

P.pl =  Pi (I I I .3.5)

as a characteristic density profile equation in a composite spacetime cur
vature model [Buers et al. (1998)]15 .
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Our CSC model presents an infinitely closed universe when p =  oo, 
that is, in the infinite future. However, since p9 is fixed by the Cosmic

3

Censorship Hypothesis, therefore pu scales as p . It is clear that pu is
infinite at XqU) = 0  but decreases to zero thereafter as x|)UJ ~* °°* Con
sequently, and in accordance with the energy conservation principle, the 
universe becomes more open with epoch due to its expansion. This contra
diction arises from the use of average density that incorrectly introduces 
the notion of homogeneity (Cosmological Principle) within the radius ru 
of the universe. The proper baryonic radius of the universe is less than 
ru, thus giving a closed universe that expands forever. This agrees with 
Tipler's observation that in Newtonian cosmology, a matter dominated 
closed universe could expand for ever, as spatial topology is not the deter
mining feature in the dynamics of Newtonian cosmology as it is in general 
relativity [Tipler, (1996)118 . aw  i a a i

0 7 .4 8 9 4  2 - ^ 0
On the overall, the universe effectively assumes an infinite life span.

/
An inherent self-similarity of the composite structure on the small scale, 
similar to the independently nucleated superfluid regions considered by 
G.R. Pickett and his group [Bauerle et ah, (1995)]19, implies an enhance
ment of galaxy formation with epoch as opposed to the contrary prediction 
attributed to expansion in Friedman models.

( 0 )
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CHAPTER IV

APPLICATIONS 

(IV .1) The Variation of G

In his formulations of an inverse square law of gravity, Newton as
sumed that the proportionality parameter G, is a universal gravitational 
constant, that has the same value everywhere for all matter. In Ein
stein’s general relativity, G occurs as a coupling constant between matter 
and gravity so that the invariance of the action under general coordinate 
transformations clearly prohibits its variation with space or time [Narlikar, 
(1983)]2.

However, both Newton’s theory and Einsten’s GR are unjustified 
in their reference to point masses and to singularities respectively, as 
proper representatives of ordinary matter. This, of course, does not in 
the least compromise the existence of such configurations, especially for 
Black Holes. But in Physics, nature has to be understood, as far as possi
ble, purely in terms of itself, and idealism must always be seen as so. Thus 
a non-singular description of matter, and consequently a variable G , are 
certainly more desirable in a realistic theory of gravity.

The possibility of a variable gravitational G has been considered in 
Dirac Cosmology [Dirac, (1973)]20 and in the Brans-Dicke theory [Dicke, 
(1964)]21 or the Hoyle-Narlikar theory [Hoyle et ah, (1964)]22 which are 
Machian in character. Cosmological solutions to Brans-Dicke theory lead 
to a general result that G decreases with epoch, the models being of the 
Big Bang type. There are some indications from the celestial mechanics 
of the Sun-Earth-Moon system that G decreases with epoch [Flandern 
(1975)2 *, Muller (1976)24 ] at a rate comparable to the Hubble constant 
H , that is,

G =  —8GH, (IV. 1.1)

where G is the rate of change of G with respect to cosmic time Tc and
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6 is a dimensionless number of the order of or a fraction of unity. Thus 
the fractional change of G at the present epoch is approximately a few 
parts in 10 11 years.

In a Newtonian framework, the effective gravitational field due to the 
total mass of a spherical and homogeneous particle is experienced only at 
radii greater than or equal to the particle radius. From Eqn (II.6.3), the 
expression for Gj\ at the surface of a gravitational source mass is given

by

Gji —
3V;

4?r r\pM
{IV. 1.2)

where pm is the mass density, rq is the radius of the mass, while Vg is a 
constant speed. In this case, masses of same density will have a Gj\ that 
decreases with increase in radius rj .

For the entire universe of radius ru we consider the density to decrease 
with expansion so that Eqn (IV. 1.2) becomes

Vfl3Ti_ 9LtjI —
2ttM i

(7V.1.3)

where mass Mi of the universe may be assumed as a constant provided 
n  =  ru . Thus from Eqns (IV. 1.2) and (IV. 1.3) we obtain

Pm =
6tt2M i

(IV.1.4)

where we have assumed a spherically symmetric mass distribution. Clearly 
we have a Gj\ that increases with epoch for the large scale universe.

If we define cosmic time by the expression

Tc = f\T\ {IV. 1.5)

where f\ is a dimensionless surface parameter then from Eqn (IV. 1.3) we 

have
Gji -

V 39
2nfiMi

{IV. 1.6)
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so that
1

Therefore

Gji
Gj\ f\T\

{IV. 1.7)

Gji — Gj\H {IV. 1.8)

where H is the reciprocal of the cosmic time T c . Eqn (IV.1.8) agrees 
with Brans-Dicke theory when 6 =  — 1 in Eqn (IV. 1.1).

Although we have used the particle surface, of radius 7q as the grav
itational reference, both exterior and interior reference solutions are de
sirable for local and large scale probes respectively.

An interior solution arises when rj < r\ in which case the effective 
gravitating mass Mj is less than M\. If the interior mass density is a

constant then from Eqn (II.6.lb) we have UNIVERSITY OR
CHIRPMO U P R

3tt f r 0\ 3 Mj „  Mj ,
Sji -  ~rn2. I ~  ) ~ r  = Gji - j r  (IV.1.9)

T?pm

where 7’0 is the actual radius of the reference mass M\ . When r0 =  r3 = 
r\ then Eqn (IV.1.9) takes the exact form of Eqn (11.6.1b). In general 
however

37r ( ro
7\

Gji — {IV. 1.10)
T?pm X' j

so that Gji vanishes in the absence of matter, that is, when ro = 0. Since 
an expansion of the universe preserves M\ and decreases pM therefore 
Gji increases with epoch, at a given value of r;- . If r0 < rj < r\ then we 
obtain (jj\ > g\\. For some fixed M j, we find that gji is proportional to 
pM in agreement with Einsten’s GR.

An exterior solution occurs when r3 > r\. such that Mj is always 
equal to M\ . Hence we obtain g3\ < g\\.

In the foregoing analysis, a possible variation of Newton's universal 
gravitational ‘constant’ has been deduced from the SRD model of General 
Relativity, in which the value of Gji at the surface of a particle decreases
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with increasing radii, provided the density is kept constant. The implied 
results provide a quantitative distinction between the SRD model of GR 
and other theories of gravity.

Although measurements of Van Flandern (1975)23 and those by 
Muller (1976)24 support a negative ^ our result in Eqn (A.5) gives a 
positive value. The discrepancy can only be resolved by accurate obser
vatory (or experimental) data since the error bars in Flandern’s work are 
too large so that G > 0 cannot yet be ruled out [Narlikhar, (1978)]2 . 
The expression of G in Hoyle-Narlikar theory gives a positive value, that 
is, G > 0 in agreement with our SRD formulation. A most important 
consequence of a varying G is the relegation of Einstein’s GR to a non 
adequate group of theories since in it G cannot be deduced and has to be 
put into action principle on an ad-hoc basis.

(IV .2) Gravity as a Metric Phenomenon

In General Relativity, the physical force of gravity is linked with the 
non-Lorentzian nature of-Riemann space. More precisely, GR presents 
spacetime that is curved back on the mass causing the distortion. This 
equivalence means that the geodesic equations of motion can be used as 
equations of motion for particles in a gravitational field. In the Composite 
Spacetime Curvature Model, this equivalence is a temporal limiting case 
of a more complicated structural equivalence.

In finite cosmic time the effective gravitational acceleration is given 
by Eqn (III. 1.9) and Fig 3 of Chapter III. The figure implies a metric 
geometry of the form given in Fig 5 below. Thus in general,

g T Ti\ ± X % o) =  =Flsif/ (±X&,o)l. UV.2.1)

so that the equivalence of gravity to metric curvature occurs only within 
the range

Ix&ol < /«•
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Ill a very old universe fi —> oo since fi scales as Xo°^3 so that the 
equivalence is of an infinite range. This is the limiting basis of Einstein’s 
General Relativity, in which gravity assumes static structure with the 
entire universe as a closed < 0) region.
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(IV .3) The Black Hole Radius

Newton’s formulations of gravity does not provide for interactions of 
particles that are cut off from the Universe such as Black Holes. Every 
particle is viewed as a dimensionless singularity and gravity is considered 
as an attractive and long range force that permeates everywhere. However, 
Einstein’s GR predicts the possibility of Black Holes and of singularities 
but cannot determine their fate.

From the Composite Spacetime Curvature model, a Black Hole (BH) 
singularity is predicted whose metric curvature is in the form of Fig 5, 
with the condition that

M > X'%  -  0

Thus a BH singularity in this case exists within a closed region of its own 
spacetime, that is, it is not ‘naked' [Penrose, (1973)]25 . Consequently, a 
BH cannot explode as far as an external observer (to whom > 0) 
is concerned. However the BH may evaporate by the Hawking radiation 
mechanism. By similar arguments, the future universal Big Crunch would 
not re-explode since \/j,\ ^  0, unless the temporal dimensions would also 
crunch.

In a standard form the BH radius (or Schwarzschild radius) rs is 
considered as the Event Horizon beyond which an external observer would 
not communicate with the interior of a BH [Droz et ah, (1996)]2(5. For a 
Black Hole of mass M  we have

2 GM
1 .9  -- {IV. 3.2)

where G is the local gravitational constant while c is the speed of light. 
From Eqns (1.3.1) and (1.3.2) in Chapter I, we can write

(i)2 2 GM
*’oo — r

where r is the reference radius about the Black Hole. Hence,
(1)2

'00 Tj_
r

(JV.3.3)

(7V.3.4)
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Also from Eqn (II. 1.2)

so that

Therefore

C 2 =  - C 2

=  —2Vf
(IV. 3.5)

V2 rg _  /jL 
c2 2r (JV.3.6)

(JV.3.7)

When r =  rs , that is, at the Event Horizon, we obtain

Vg »  0.7c. (IV.3.8)

This means that in the configuration of Fig 2 a particle would still manage 
to circulate the Black Hole at the Schwarzschild radius, at speeds less than 
c. This contrasts with the popular Newtonian argument for black holes 
as developed by Laplace [Hawking et ah, (1973)]27.

In the CSC model, there is an ultimate horizon (hereafter refered to 
as a Classical Horizon), where our classical ideas of physics breaks down, 

which occurs if Vg =  ±c, that is, when

rsr =  — = rc
2

In general, the Composite Spacetime Curvature model gives

y

(IV. 3.9)

rr =
H2r z
2c2 (/V . 3.10)

In Einstein’s GR, as given by Eqn (II.4.3), rc is assumed as a meaningless 
constant of integration [Adler et ah, (1965)]1 or, in general relativistic 
units, as the mass of the Black Hole [Penrose, (1969)]28 . But from the 
foregoing analysis it is identified as the Classical Horizon which is the 
lowest quantum gravity level (as we shall see in Appendix B), while the 
Schwarzschild radius is the first excited gravity level.
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CONCLUSION

In this thesis, a complex spacetime geometry has been adopted as a 
logical structure which together with the principle of energy conservation 
and of scale equivalence has accounted for the weak equivalence principle 
(WEP). A dynamical analysis of the WEP has lead to a Lorentzian SRD 
model whose formulations and results are consistent with the observations 
based on Newton’s Gravitational Theory and Einstein’s General Theory 
of Relativity, albeit in entirely different spacetime configuration. This 
provides a striking confirmation of Poincare’s 3 contention that a physical 
theory is a free creation of the mind rather than a unique induction from 
observations. Although its gravitational deductions are logical, they need 
not necessarily correspond with experience and are thus just as uncertain 
when applied to reality as those of any other empirical theory.

On the very largest length scales, a Composite Spacetime Curvature 
(CSC) cosmological model has been developed in which antigravity fea
tures on the outer bounds^of the universe. It is this antigravity that qual
ifies as the physical cause of the Big Bang explosion due to inflationary 
quantum fluctuations in the initial global singularity (Appendix A).

Finally, the thesis presents a perspective of quantum gravity with a 
generalized de Broglie relation (Appendix B), thus provinding a general
ized criterion for a possible unification of all the four forces of nature into 
a single physical theory.
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APPENDICES

Appendix A: Quantum Big Bang Probability

During the Newtonian era (before Einstein's GR), the universe was 
considered as static and the Anthropic Principle was widely accepted, that 
is, ‘things are as they are because they are as they are1 - or God made 
them so. Hence the expansion of the universe or more precisely the Big 
Bang was not known.

Later, Einstein came up with his equations of GR which predicted 
that the universe was either expanding or contracting. He therefore added 
the cosmological term that had a repulsive gravitational effect, to the 
equations that relate the mass and energy in the universe to the curvature 
of spacetime. Thus the negative curvature of spacetime produced by the 
cosmological term canceled the positive curvature of spacetime by the 
mass and energy in the universe. In this way, he obtained a static model 
of the universe that continued forever in the same state. Einstein later 
dropped the cosmological term on the confirmation, by Hubble (in 1929), 
that the universe is expanding (and referred to it as ‘the greatest mistake 
of my life1). Neither did he appreciate much the fact that if matter caused 
spacetime to curve in on itself, then a large enough portion of mass could 
curve a region in on itself so much that it would effectively cut itself 
off from the rest of the universe to form a singularity, that is, a place 
where spacetime has a beginning or end. However, other workers like 
Roger Penrose and Stephen Hawking [Torretti, (1985)]1 have used GR 
to affirm that the universe must have had a beginning from a singularity 
by a process or explosion popularly called the Big Bang, and that huge 
stars can collapse (or end) into a singularity called a Black Hole. However 
no explanation has been presented on the cause of the Big Bang since 
Einstein’s GR cannot predict what comes out of a singularity. Neither 
does it predict the fate of a Black Hole conclusively [Turner, (1996)]29.
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Ill the CSC model the idea of repulsive gravity (or antigravity) is 
introduced which unlike Einstein’s cosmological term, does not exactly 
cancel the effects of gravity throughout space, except at x^ o  =  A4- At 
the beginning when x[)U) =  0 and hence n =  0, the CSC model gives 
a singularity at \ = 0 which exists in the open region of its own 
spacetime where antigravity dominates. Consequently, it is the repulsive 
action of antigravity on this ‘naked’ singularity, that is propounded here 
as the cause of the Big Bang explosion.

Globally, the effective gravitational acceleration may be written in 
accordance with Eqn (III. 1.9) as

e f f  e f f
9m = 9 o 1 - A4

x {t%
(A l )

For the Big Bang explosion to occur, a logical initial requirement is a 
dominant and infinite antigravity, that is,

eff .
(Jm =  + °° [A. 2)

Previously the Big Bang has been assumed only to occur under arbi
trary conditions determined by x^0) — 9.

However Eqn (A.2) is also satisfied by two other conditions, that is, 

XqU) =  0, for all x^ o  > >  0 (A 3)

and

X/^o =  for a11 IXo1>l > >  0 (A-4)

where the non-vanishing parameters are surmised to arise as quantum 
fluctuations in the initial singularity via the Uncertainty Principle as an 
inflationary process. Thus the probability of the Big Bang takes the non 
deterministic form of Fig 6.
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Fig 6. Quantum probability density for the Big Bang origin.
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Appendix B: Quantum Gravity

Quantum mechanics has successfully been used to describe the partial 
theories that govern the weak, the strong and the electromagnetic forces. 
In order to find a theory that unifies gravity with the other forces, it is 
desirable that a partial theory of gravity be compatible with quantum 
mechanics through the Uncertainty Principle. This has not been possible 
with Einsten’s general relativity which is purely ‘classical’ and is thus 
inconsistent with quantum mechanics [Hawking, (1988)]7. In this section 
we shall explicate a theory of quantum gravity on the basis of the complex 
GR already developed in Chapter II. The results reveal some quantitative 
generalizations to matter waves.

Basic Formulations

Consider a test particle of mass m which moves from a ring of radius 
7’; to that of rf in the gravitational configuration of Fig 2. Since Vg is 
an invariant quantity, an arbitrary radius rj gives

Vg =  2irr jUj {B. 1)

where vj is the gravitational frequency corresponding to the gravitational 
period Tj.

By making use of Eqn (II.3.5a), the change in the gravitational po
tential energy of the particle is given by

AEfi = Ei -  Ef

= mgtrt -  mgf rf

= mVg{ -  ~ )r  {B .2)* r f r{
= 2nrinVg(u f — V{)

= 2nrmVgAufi

where r is a common reference radius of unit length. Hence we can write,

A Efi = hrAvfi {B  .3)
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which is the Planck’s formular for energy quantization in which the pa
rameter hr that is,

hr =  2ir rinVg (B A )

corresoponds to the Planck’s constant h. However, unlike h which is a 
universal constant, hr is dependent on the mass ??? of the test particle as 
well as on the reference dimension r . In order to determine that hr is a 
Planck-like parameter, we will hereafter consider its relativistic approxi- 
mations in the special and the general regimes.

In special relativity, Vg is the magnitude of an invariant velocity vec
tor Vg of the test particle so that its linear momentum p has a magnitude

p =  rriVg (#-5)

Substituting Eqn (B.5) into Eqn (B.4) gives

ĥ  =  2nrp (5 .6 )

From wave mechanics [Feyman, (1963)]30, the test particle may be 
viewed to traverse a path of wavelength A f about a reference ring of radius 
r such that

2ttj' =  n\r (B.7)

where, n =  1 ,2 ,....

Eqns (B.6) and (B.7) combine to give
*

X r = —np

which is a general form of the de Broglie relation.

When n =  1, Eqn (B.8) gives the usual de Broglie wavelength Xjb 
in which case the wavenumber k assumes an exact equivalence with the 
curvature kr of the reference ring. In general,

k =  nkf- (B.9)
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so that Eqn (B.8) becomes

\dB =  n\r [B. 10)

This corresponds to the familiar optical formulations in which case n is 
the refractive index of the material characteristic of A/..

The de Broglie wavelength prescribes a radius rdB so that in analogy 
with Eqn (B.7) we can write

27r rdB = nXdB (#-11)

On substituting Eqns (B.7) and (B .ll) into Eqn (B.10) we obtain,

rdB = nr (£• 12)

which is a statement of space quantization.

In general relativity, Vg is the magnitude of a constantly rotating 
velocity vector so that the test particle has an angular momentum given

by,
Of. =  mVgr (B. 13)

which together with Eqn (B.4) gives

nr =  h? (£.14)

At the de Broglie radius rdB the angular momentum of the test particle 
is given by

&dB = rriVgi'dB

=  n£lr ( £ 15)

= nhf.

which is the Bohr formular for the quantization of angular momentum. 
Thus hr evidently qualifies as a Planck constant for some fixed m . This 
is the vital link between general relativity and quantum mechanics. In 
atomic considerations, m is usually the mass of the electron.
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Consistency with Bohr’s Correspondence Principle

A general expression for the gravitational acceleration at a distance 
rdB about a potential source is given by Eqn (II.3.5a) as

9dB (D. 16)

In view of Eqn (B.12), that is, space quantization, Eqn (B.1G) becomes

'  =  \  ( B - 1 7 )

where gr is the gravitational acceleration at the reference ring. Eqn (B.17) 
is in agreement with Bohr’s Correspondence Principle as is evident in Fig 

7.

Fig 7. Quantum gravity profile in correspondence with classical gravity.
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Iii the Newtonian picture only the mass of the potential source within 
the radius r contributes to the effective field experienced by the test par
ticle. If 7'o is the radius of the potential source, then r > 7'o, satisfies the 
Newtonian requirement. Hence the quantum effects are substantial when 
r0 is minimal, that is, when gf is maximum. If r =  rc , where rc is the 
Classical Horizon defined by Eqn (IV.3.9), then the space quantization 
criterion of Eqn (B.12) becomes

rdB = n r c  ̂ {BAS)

so that 7'c is the gravitational ground level, while the Schwarzschild radius 
is the first excited gravitational quantum level corresponding to n = 2.

From the foregoing analysis, the gravitational energy change may thus 
be considered to occur with a concomitant exchange of gravitons [Isham, 
(1975)]31 in accordance with Eqn (B.3) and with a blackbody spectral 
profile.
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Appendix C A Composite Spacetime Curvature Model
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W e d e v e lo p  a cu rv a tu re  sp e c if ica t io n  s c h e m e  in  w h ich  th e  co n stra in t  e ffects  o f  a lo ca lize d  
g ra v ita tio n a l p o te n tia l s o u rc e  o n  th e  H u b b le  e x p a n s ion  co m p r ise s  th e  ch a ra cte ris tics  o f  
the  la rg e  sca le  d y n a m ics  o f  th e  en tire  u n iv e rse . O u r  resu lt is a  c o m p o s it e  cu rv a tu re  m o d e l 
w h ich  has a  d y n a m ica l E u c lid e a n  h o r iz o n  ( o f  z e ro  cu rv a tu re ) th a t  p ro v id e s  an a ltern a tiv e  
t o  the  ev e n t h o r iz o n  in th e  d e te r m in a t io n  o f  th e  lo ca l sca le  e v o lu t io n  o f  s p a c e -t im e .

1 . I n t r o d u c t i o n
An important problem in the current theory of gravity is the search for a realistic 
model for the distribution and dynamics of cosmological matter. To date this search 
has been fruitless as only very simple solutions based on the cosmological principle 
have been investigated. As a consequence, cosmologists worldwide have not yet 
reached a general consensus as to the fate of the universe (whether it is open or 
closed). The main cause of these inadequacies is the inability to specify the value of 
space-time curvature in ar realistic theoretical model, though extreme mathematical 
complications have also hindered much progress in this area.1

The standard procedure in the determination of space-time curvature begins 
with the basic Friedmann equation,2 governing the evolution of a particle located 
at a distance R from the center of a homogeneous and isotropic sphere of matter, 
i.e.

1 /  d /A 2 _  87rGp k
R*\~dt) ~ 3 ~ ~ W  ’ ( L 1 )

where p is the reset mass density of the potential source, while k =  ± 1 ,0  is the 
time-independent curvature constant.3

Unfortunately, we cannot yet specify the spatial curvature of the universe from 
this Friedmann equation. The difficulty arises from the use of the cosmological 
principle that asserts the validity of homogeneity and isotropy in the derivation 
of Eq. (1.1). On the other hand, precise measurements of the rate of expan
sion and that at which the expansion is slowing down due to gravity, have not 
been conclusively determined.4

An attempt to overcome the above-mentioned difficulty is provided in Tipler’s 
procedure for a reformulated Newtonian gravity theory,5 in which space- time
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curvature is determined by the local symmetry conditions, i.e. gravity is no longer 
a global “action at a distance” . Matter locally tells space-time how to curve.

In this letter we shall extend the local symmetry conditions to show how the 
inadequacy may be overcome by introducing a Euclidean horizon in a dynamically 
composite representation of space-time curvature in which the constraint effects of 
a localized gravitational potential source on the Hubble expansion comprises the 
characteristics of the large scale dynamics of the entire universe. In this scenario, 
the long-range gravitational field will be considered to be continuous across the 
boundaries for regions of different curvatures so that we need not seek solutions 
which are true for all coordinate values, but only for coordinate values representative 
of the region under consideration. In Sec. 2 we reformulate the basic Friedmann 
equation by redefining the gravitational potential in terms of a Euclidean horizon 
whose role in curvature specification is presented in Sec. 3. In order to provide much 
insight into the essence of the composite space-time curvature and its consequence 
on the fate of the entire universe, a density profile is derived in Sec. 4. Finally we 
present a brief discussion and some figures.
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2 . B a s ic  F o r m u la t io n s
In a pressure-free region, the dynamical energy Ed for a particle of mass mg in the 
neighborhood of a localized gravitational potential source may be expressed as

/
Ed = ^™gP2,

where P is the dynamical velocity. In general,

(2.1)

Ed ~  A"*c|kinctic “I-  K.c\potential ~b ^"•c|electromagneti

«  \™,VH + + \m9vlm . ( 2 .2 )

where i /̂/, va and vem are kinetic, potential and electromagnetic velocities, re
spectively. In the absence of electromagnetic fields, and for a neutral particle, iy2m 
vanishes.

Assuming that the cosmic censorship hypothesis holds such that any spherically 
symmetric gravitational potential source is associated with an event horizon of 
Schwarzschild type, then in conformity with the classical interpretation that the 
second term in Eq. (2.3) gives a gravitational potential energy6,9 in real space, we 
can write

iN{R), (2.3)

for the potential velocity, where e is the radius of the source’s event horizon and 
N(R)  is real (see Fig. 1).

Substituting Eq. (2.3) into (2.2) gives

(2.4)
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A Composite Space-Time Curvature Model 679

F ig . 1. D y n a m ica l v e lo c ity  p r o f i l e . --------------, — o — o — a n d ------------- represen t the  im a g in a ry  v b  in
real sp a ce  (R  >  0 ) ,  th e  real v b  in  v irtu a l sp a ce  (R  <  0 ) an d  th e  real i/ / /  (H u b b le  v e lo c ity ) ,  a b o u t  
(R  =  0 ) ,  resp ectiv e ly .

in which we consider gravity as a constraint to the Hubble velocity vn that varies 
according to the Hubble expansion law, i.e.

uh = HR. (2.5)

For extremely high densities e.g. inside neutron stars, situations arise that are 
impossible to mimic in terrestrial laboratory.7 On the other hand, the low densities 
encountered in most galaxies means that the Schwarzschild radius is often hidden 
inside their particle surface,8 thus hindering the verification of Eq. (2.4). Our pro
cedure is to overcome this difficulty by redefining the potential velocity in analogy 
with Eq. (2.3) as,

(2.6)

where /j is the Euclidean horizon at which the dynamical energy vanishes and sat
isfies the Hubble law of the form:

v  ̂ = H n = [ H e }1' 3 , (2.7)

where we have used the simplification that all velocities are in the units of c (the 
speed of light) as in Gautreau’s work.9 Equation (2.4) therefore becomes

P2 =  H2R2 — /i3^ -  > (2-8)

wliich is a form of Friedmann equation in which is the boundary that separates a 
region of closed curvature from that of open curvature.
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At any instant in time, Eq. (2.8) gives the energy conservation formula

aR3 -  bR -  q =  0 , (2.9)

where a and q are constants of the universe in the entire space — oo <  R < oo, while 
b has spatial dependence. The locus,

La J
defines the Euclidean (flat curvature) boundary n at which

(2.10)

N(R) =  uh (R). (2.11)

3 . A  C o m p o s i t e  S p a c e - T im e  C u r v a t u r e
In order to obtain a realistic solution for Eq. (2.9), it is necessary to impose two 
conditions:

(a) The spatial condition:

R > R o , (3.1)

where Ro is the proper (baryonic) radius of the source mass Mo considered as 
spherically symmetric about R =  0. This condition is in conformity with the 
familiar Newtonian force law.

(b) The big bang singularity requirement:

R =  0 when H =  o o . (3.2)

From Eq. (2.9) a singularity is clearly present at R =  0 for all II since the 
curvature becomes infinitely large as deduced from

{+<x>|yi=-o , for infinite recession.
(3.3)

—oo|/i=+o > for infinite attraction.
Thus the metric structure is undefined at R =  0 as expressed by the geodesic 
incompleteness in Fig. 2. This is the basis for the assumption that the cosmic 
censorship hypothesis holds.
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In the lower limit of Eq. (3.1) when R =  Ro, the energy conversation (2.9) 
becomes the fully relativistic Friedmann equation for a homogeneous and isotropic 
universe:

J_ (***. V  -  87rĜ ° _ A
R? \~dt )  3 R2 ’

where

3 M0
~  4?r ’

(3.4)

(3.5)

is the time-dependent average rest mass density of the potential source, while k  =  

±1 ,0  is the time-independent curvature constant.
By direct integration of Eq. (3.4) for k  — 0, often referred to in literature as 

Einstein-de Sitter universe, Gautreau9 has obtained

Po
1

67r£2 ’
(3.6)

as the density for a marginally bound universe. This is the same result obtained by 
Silk.2

However, for 6 =  0, Eq. (2.9) gives

d  9  g
P o  =  P o  — ^Po »

which is infinite at the big bang (t =  0) and decreases thereafter. 
For k  =  ±1 (the bounded universe), Gautreau has obtained

(3.7)

Pmin =  PO (3.8)

as the minimum density at the time of maximum expansion when /z =  Ro-
Further interpretation of Gautreau’s unbounded galaxy world line implies that 

/z =  Rq is the minimum radius for an unbounded universe (k =  -1 )  giving a
maximum density of

Pmax =  P o  • (3.9)

As opposed to the expectation that /z =  Rq when R — Rq, Eqs. (3.6) and (3.7)
give /z, as

P = Ro > (3.10)

which lies inside the Einstein-de Sitter universe. This situation is, however, not 
allowed by the topological condition of Eq. (3.1) in real space. An important con
sequence of our model is the resolution of this topological inconsistency. This is

56



682 A. J. Buers, J. O. Malo & S. Ram

achieved by interpreting the universe as comprising space-time curvature in com
posite form that satisfies Eqs. (3.6), (3.8) and (3.9) as

+1 for +  0 < R < p

0 for R = n

- 1 for R > /z, R < - 0

(3.11)

Thus the composite curvature A presents an interior region collapsing in upon itself 
with k = +1 and an exterior region with k = - 1, such that the two solutions match 
continuously across the collapsing boundary where k =  0 as illustrated in Fig. 2. 
This is the composite curvature specification scheme.

The interpretation of Gautreau’s equations given above represents a configura
tion that occurs under the condition that /z =  e. However, it presents the composite 
picture much more readily and convincingly.

4 . A v e r a g e  D e n s i t ie s
From spherically symmetric consideration, a potential source of Schwarzschild 
radius e has an average density

” '=i'(41)
where A£ is the nondecreasing surface area of the event horizon. Similarly

<4-2>
where Au is the surface area of the universe marked by the big bang photons. Since

9 o 
Pn ~ iPo (4.3)

we obtain the relation

Pc -  P,. , (4.4)

Alternatively, the average density of the universe may be expressed as

Pu =
total mass Mg

total volume Vu

- p“ Rv
Combining Eqs. (4.4) and (4.5) gives

2 3PePu =  »

(4.5)

(4.6)

as a characteristic density profile equation in a composite curvature space-time.
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Since pE is fixed by the cosmic censorship hypothesis, therefore pu scales as . 
It is clear that pu is infinite at t =  0 but decreases to zero thereafter as t -> oo.

5. Discussion

Unlike the event horizon e which is fixed by the cosmic censorship hypothesis, 
the Euclidean horizon p is time-dependent and scales as £2/ 3, according to the 
Hubble law. This is a property of a gravitational potential source in an expanding 
Universe and is directly proportional to M ^ 3, where Mo is the nonrelativistic mass 
of the potential source. On the other hand, p is independent of the mass mg of 
the test particle or galaxy in the potential field of the source, that is, by ignoring 
perturbation effects.1

In a static universe where the Hubble velocity ujj —> 0 and the horizon p —> oo, 
this is a Newtonian approximation where the universe is infinitely bounded by the 
long range gravity. For all finite times, the Hubble expansion reduces p to finite 
values provided that e is finite.

Our formulation presents an infinitely closed universe where R0 =  Ru =  p =  oo 
in the infinite future. However, the interpretation of Eq. (4.5), that the average 
density pu —> 0 as t —> oo provides for a fully open universe. This contradiction 
arises from the use of average density that incorrectly introduces the notion of 
homogeneity (cosmological principle) within the radius R  ̂ of the universe. The 
proper (baryonic) radius of the potential source of mass Mo =  Mq has a radius 
R0 (<  Ru) giving a closed universe that expands forever. This agrees with Tipler’s 
observation that in Newtonian cosmology, a matter dominated closed universe could 
expand forever, as spatial topology is not the determining feature in the dynamics 
of Newtonian cosmology as it is in general relativity.5

Equation (2.8) has the advantage that the replacement of the Schwarzschild 
(Black hole) radius e in Eq. (2.4) with a Euclidean horizon p, provides the possibility 
that astronomical measurements can be made (without the threat of a black hole) 
that fully describe the dynamics of the universe. Further, the specification of vh 
and ub at any position R, implies that the value of energy per unit mass Eo/m 
can be determined. This is an advantage over Newtonian cosmology.
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